WorldWideScience

Sample records for acoustic tomography ray

  1. X-ray-induced acoustic computed tomography of concrete infrastructure

    Science.gov (United States)

    Tang, Shanshan; Ramseyer, Chris; Samant, Pratik; Xiang, Liangzhong

    2018-02-01

    X-ray-induced Acoustic Computed Tomography (XACT) takes advantage of both X-ray absorption contrast and high ultrasonic resolution in a single imaging modality by making use of the thermoacoustic effect. In XACT, X-ray absorption by defects and other structures in concrete create thermally induced pressure jumps that launch ultrasonic waves, which are then received by acoustic detectors to form images. In this research, XACT imaging was used to non-destructively test and identify defects in concrete. For concrete structures, we conclude that XACT imaging allows multiscale imaging at depths ranging from centimeters to meters, with spatial resolutions from sub-millimeter to centimeters. XACT imaging also holds promise for single-side testing of concrete infrastructure and provides an optimal solution for nondestructive inspection of existing bridges, pavement, nuclear power plants, and other concrete infrastructure.

  2. Ocean acoustic tomography

    International Nuclear Information System (INIS)

    Cornuelle, Bruce D; Worcester, Peter F; Dzieciuch, Matthew A

    2008-01-01

    Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans are opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.

  3. Introducing passive matched field acoustic tomography

    International Nuclear Information System (INIS)

    Gasparini, O.; Camporeale, C.; Crise, A.

    1997-01-01

    In acoustic tomography sea-basin environmental parameters such as temperature profiles and current-velocities are derived, when ray propagation models are adopted, by the travel time estimates relative to the identifiable ray paths. The transmitted signals are either single frequency, or impulsive, or intermittent and deterministic. When the wavelength is comparable with the scale lengths present in the propagation scenario, Matched Field Tomography (MFT) is used, entailing the consideration of waveguide modes instead of rays. A new concept in tomography is introduced in the paper, that employs passively the noise emitted by ships of opportunity (cargoes, ferries) as source signals. The passive technique is acoustic-pollution-free, and if a basin is selected in which a regular ship traffic occurs data can be received on a regular schedule, with no transmission cost. A novel array pre-processor for passive tomography is introduced, such that the signal structure at the pre-processor output in nearly the same as that obtainable in the case of single-frequency source signals

  4. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, L; Tang, S [University of Oklahoma, Norman, OK (United States); Ahmad, M [Stanford University, Palo Alto, CA (United States); Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprised of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.

  5. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  6. Damage evolution analysis in mortar, during compressive loading using acoustic emission and X-ray tomography: Effects of the sand/cement ratio

    International Nuclear Information System (INIS)

    Elaqra, H.; Godin, N.; Peix, G.; R'Mili, M.; Fantozzi, G.

    2007-01-01

    This paper explores the use of acoustic emission (AE) and X-ray tomography to identify the mechanisms of damage and the fracture process during compressive loading on concrete specimens. Three-dimensional (3D) X-ray tomography image analysis was used to observe defects of virgin mortar specimen under different compressive loads. Cumulative AE events were used to evaluate damage process in real time according to the sand/cement ratio. This work shows that AE and X-ray tomography are complementary nondestructive methods to measure, characterise and locate damage sites in mortar. The effect of the sand proportion on damage and fracture behaviour is studied, in relation with the microstructure of the material

  7. Acoustic propagational characteristics and tomography studies of the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Somayajulu, Y.K.; Murty, T.V.R.

    , is dealt with in section 2, followed by the simulation results in section 3, using a ray acoustic model and reference sound speed profile to delineate the acoustic waveguide characteristics in the context of tomography. The generalised inversion model...

  8. Acoustic Tomography in the Canary Basin: Meddies and Tides

    Science.gov (United States)

    Dushaw, Brian D.; Gaillard, Fabienne; Terre, Thierry

    2017-11-01

    An acoustic propagation experiment over 308 km range conducted in the Canary Basin in 1997-1998 was used to assess the ability of ocean acoustic tomography to measure the flux of Mediterranean water and Meddies. Instruments on a mooring adjacent to the acoustic path measured the southwestward passage of a strong Meddy in temperature, salinity, and current. Over 9 months of transmissions, the acoustic arrival pattern was an initial broad stochastic pulse varying in duration by 250-500 ms, followed eight stable, identified-ray arrivals. Small-scale sound speed fluctuations from Mediterranean water parcels littered around the sound channel axis caused acoustic scattering. Internal waves contributed more modest acoustic scattering. Based on simulations, the main effect of a Meddy passing across the acoustic path is the formation of many early-arriving, near-axis rays, but these rays are thoroughly scattered by the small-scale Mediterranean-water fluctuations. A Meddy decreases the deep-turning ray travel times by 10-30 ms. The dominant acoustic signature of a Meddy is therefore the expansion of the width of the initial stochastic pulse. While this signature appears inseparable from the other effects of Mediterranean water in this region, the acoustic time series indicates the steady passage of Mediterranean water across the acoustic path. Tidal variations caused by the mode-1 internal tides were measured by the acoustic travel times. The observed internal tides were partly predicted using a recent global model for such tides derived from satellite altimetry.

  9. High-precision measurement of tidal current structures using coastal acoustic tomography

    Science.gov (United States)

    Zhang, Chuanzheng; Zhu, Xiao-Hua; Zhu, Ze-Nan; Liu, Wenhu; Zhang, Zhongzhe; Fan, Xiaopeng; Zhao, Ruixiang; Dong, Menghong; Wang, Min

    2017-07-01

    A high-precision coastal acoustic tomography (CAT) experiment for reconstructing the current variation in Dalian Bay (DLB) was successfully conducted by 11 coastal acoustic tomography systems during March 7-8, 2015. The horizontal distributions of tidal currents and residual currents were mapped well by the inverse method, which used reciprocal travel time data along 51 successful sound transmission rays. The semi-diurnal tide is dominant in DLB, with a maximum speed of 0.69 m s-1 at the eastern and southwestern parts near the bay mouth that gradually decreases toward the inner bay with an average velocity of 0.31 m s-1. The residual current enters the observational domain from the two flanks of the bay mouth and flows out in the inner bay. One anticyclone and one cyclone were noted inside DLB as was one cyclone at the bay mouth. The maximum residual current in the observational domain reached 0.11 m s-1, with a mean residual current of 0.03 m s-1. The upper 15-m depth-averaged inverse velocities were in excellent agreement with the moored Acoustic Doppler Current Profiler (ADCP) at the center of the bay, with a root-mean-square difference (RMSD) of 0.04 m s-1 for the eastward and northward components. The precision of the present tomography measurements was the highest thus far owing to the largest number of transmission rays ever recorded. Sensitivity experiments showed that the RMSD between CAT and moored-ADCP increased from 0.04 m s-1 to 0.08 m s-1 for both the eastward and northward velocities when reducing the number of transmission rays from 51 to 11. The observational accuracy was determined by the spatial resolution of acoustic ray in the CAT measurements. The cost-optimal scheme consisted of 29 transmission rays with a spatial resolution of acoustic ray of 2.03 √{ km2 / ray numbers } . Moreover, a dynamic analysis of the residual currents showed that the horizontal pressure gradient of residual sea level and Coriolis force contribute 38.3% and 36

  10. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  11. Estimating uncertainty in subsurface glider position using transmissions from fixed acoustic tomography sources.

    Science.gov (United States)

    Van Uffelen, Lora J; Nosal, Eva-Marie; Howe, Bruce M; Carter, Glenn S; Worcester, Peter F; Dzieciuch, Matthew A; Heaney, Kevin D; Campbell, Richard L; Cross, Patrick S

    2013-10-01

    Four acoustic Seagliders were deployed in the Philippine Sea November 2010 to April 2011 in the vicinity of an acoustic tomography array. The gliders recorded over 2000 broadband transmissions at ranges up to 700 km from moored acoustic sources as they transited between mooring sites. The precision of glider positioning at the time of acoustic reception is important to resolve the fundamental ambiguity between position and sound speed. The Seagliders utilized GPS at the surface and a kinematic model below for positioning. The gliders were typically underwater for about 6.4 h, diving to depths of 1000 m and traveling on average 3.6 km during a dive. Measured acoustic arrival peaks were unambiguously associated with predicted ray arrivals. Statistics of travel-time offsets between received arrivals and acoustic predictions were used to estimate range uncertainty. Range (travel time) uncertainty between the source and the glider position from the kinematic model is estimated to be 639 m (426 ms) rms. Least-squares solutions for glider position estimated from acoustically derived ranges from 5 sources differed by 914 m rms from modeled positions, with estimated uncertainty of 106 m rms in horizontal position. Error analysis included 70 ms rms of uncertainty due to oceanic sound-speed variability.

  12. A new acoustic lens material for large area detectors in photoacoustic breast tomography

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; van Hespen, Johannes C.G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Objectives We introduce a new acoustic lens material for photoacoustic tomography (PAT) to improve lateral resolution while possessing excellent acoustic acoustic impedance matching with tissue to minimize lens induced image artifacts. Background A large surface area detector due to its high

  13. Ray Tracing for Ocean Acoustic Tomography

    National Research Council Canada - National Science Library

    Dushaw, Brian

    1998-01-01

    .... The Numerical Recipes software package provided the basis for much of this computer code. The ray equations are reviewed, and ray equations that include the effects of ocean current are derived...

  14. A statistical-based approach for acoustic tomography of the atmosphere.

    Science.gov (United States)

    Kolouri, Soheil; Azimi-Sadjadi, Mahmood R; Ziemann, Astrid

    2014-01-01

    Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a statistical-based acoustic travel-time tomography algorithm based on dual state-parameter unscented Kalman filter (UKF) which is capable of reconstructing and tracking, in time, temperature, and wind velocity fields (state variables) as well as the dynamic model parameters within a specified investigation area. An adaptive 3-D spatial-temporal autoregressive model is used to capture the state evolution in the UKF. The observations used in the dual state-parameter UKF process consist of the acoustic time of arrivals measured for every pair of transmitter/receiver nodes deployed in the investigation area. The proposed method is then applied to the data set collected at the Meteorological Observatory Lindenberg, Germany, as part of the STINHO experiment, and the reconstruction results are presented.

  15. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    International Nuclear Information System (INIS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-01-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation. (paper)

  16. X-ray and neutron tomography on the bony inner ear of baleen whales

    International Nuclear Information System (INIS)

    Arlt, Tobias; Wieder, Frank; Hampe, Oliver; Manke, Ingo; Ritsche, Indira; Fahlke, Julia M.

    2018-01-01

    During their evolution whales and dolphins developed a highly specialized hearing organ for orientation in their deep sea territory covering a broad acoustic spectrum. The internal anatomy of the periotic bone, especially the morphology of the cochlea, has a significant influence on the hearing capability of mammals. The bony and fossilized cochleae of several fossil representatives of extinct baleen whales (e.g., Cetotheriidae) and modern rorquals (Balaenopteridae) and right whales, as well as cochleae of an archaeocete and some land mammals are investigated by X-ray and neutron tomography in order to record morphological changes that may be responsible for the development of low frequency hearing. Differences in the cochlear morphology have been determined by means of morphometric parameters, such as the number of turns, the length of the cochlea, and the curvature of the cochlear canal. In particular, X-ray tomography enables a high resolution display of the bony inner ear.

  17. 21 CFR 892.1750 - Computed tomography x-ray system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Computed tomography x-ray system. 892.1750 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1750 Computed tomography x-ray system. (a) Identification. A computed tomography x-ray system is a diagnostic x-ray system intended to...

  18. Control of synchrotron x-ray diffraction by means of standing acoustic waves

    International Nuclear Information System (INIS)

    Zolotoyabko, E.; Quintana, J.P.

    2004-01-01

    Synchrotron x-ray diffraction measurements in quartz crystals of different thickness excited by standing acoustic waves were carried out at the Advanced Photon Source of Argonne National Laboratory. We demonstrated the ability to significantly modify the quartz rocking curves for 20-25 keV x rays by changing the shear wave parameters in the frequency range between 15 and 105 MHz. Dynamic deformation introduced into the crystal lattice by acoustic waves resulted in a remarkable broadening of the rocking curves. The broadening effect strongly depends on the strength of the ultrasound, which can be easily regulated by changing the acoustic amplitude or frequency near the resonance. The maximum rocking curve broadening reached 17 times, which corresponds to the wavelength band, Δλ/λ=4x10 -3 , when used as a monochromator or analyzer for 20-25 keV x rays. The initial rocking curve shape is restored by sweeping the acoustic frequency within a 50-100 kHz range near the resonance. The tunable broadening effect allows effective manipulation of x-ray intensities in time domain. Time-resolved x-ray diffraction measurements under a 19.6 MHz acoustic wave excitation were performed by synchronizing the acoustic wave and x-ray burst periodicity. We used the fact that twice per period the standing wave produces a zero net deformation across the crystal thickness. By introducing an oscillating delay to the acoustic excitation, we were able to effectively change the phase of the acoustic wave relative to the x-ray burst periodicity. The x-ray diffraction intensity was strongly affected by tuning the timing of the x-ray arrivals to the minimum or maximum acoustic deformation. A deep modulation of x rays was observed in a wide frequency range between 0.1 Hz and 1 MHz, which certifies that acoustically excited quartz crystals can potentially be used as slow and fast x-ray modulators with high duty cycle

  19. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Chen, Dongmei; Zhu, Shouping; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-01-01

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging

  20. Inverse problem of Ocean Acoustic Tomography (OAT) - A numerical experiment

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Somayajulu, Y.K.; Mahadevan, R.; Murty, C.S.

    Acoustic model simulation experiments related to the forward and inverse aspects of ocean tomography have been taken up with a view to estimate the vertical sound speed field by inverting the travel time data. Two methods of inversion have been...

  1. Limitations of the acoustic approximation for seismic crosshole tomography

    Science.gov (United States)

    Marelli, Stefano; Maurer, Hansruedi

    2010-05-01

    Modelling and inversion of seismic crosshole data is a challenging task in terms of computational resources. Even with the significant increase in power of modern supercomputers, full three-dimensional elastic modelling of high-frequency waveforms generated from hundreds of source positions in several boreholes is still an intractable task. However, it has been recognised that full waveform inversion offers substantially more information compared with traditional travel time tomography. A common strategy to reduce the computational burden for tomographic inversion is to approximate the true elastic wave propagation by acoustic modelling. This approximation assumes that the solid rock units can be treated like fluids (with no shear wave propagation) and is generally considered to be satisfactory so long as only the earliest portions of the recorded seismograms are considered. The main assumption is that most of the energy in the early parts of the recorded seismograms is carried by the faster compressional (P-) waves. Although a limited number of studies exist on the effects of this approximation for surface/marine synthetic reflection seismic data, and show it to be generally acceptable for models with low to moderate impedance contrasts, to our knowledge no comparable studies have been published on the effects for cross-borehole transmission data. An obvious question is whether transmission tomography should be less affected by elastic effects than surface reflection data when only short time windows are applied to primarily capture the first arriving wavetrains. To answer this question we have performed 2D and 3D investigations on the validity of the acoustic approximation for an elastic medium and using crosshole source-receiver configurations. In order to generate consistent acoustic and elastic data sets, we ran the synthetic tests using the same finite-differences time-domain elastic modelling code for both types of simulations. The acoustic approximation was

  2. EOL3 M0 X-ray Tomography Test Results

    CERN Document Server

    Avramidou, R; Bozhko, N; Borisov, A; Goriatchev, V; Goriatchev, S; Gushin, V; Fakhroutdinov, R; Kojine, A; Kononov, A; Larionov, A; Salomatin, Yu I; Schuh, S; Sedykh, Yu; Tchougouev, A

    2001-01-01

    Results of X-ray tomography test of EOL3 module 0 chamber is presented in the note. Peculiarities of the X-ray tomography of the chamber are discussed. Comparison of the tomography results with predictions of the production site measurements is made.

  3. X-ray Compton line scan tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, Andreas; Lange, Axel; Jaenisch, Gerd-Ruediger [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe 8.5 - Mikro-ZfP; Hentschel, Manfred P. [Technische Univ. Berlin (Germany); Kardjilov, Nikolay; Markoetter, Henning; Hilger, Andre; Manke, Ingo [Helmholtz-Zentrum Berlin (HZB) (Germany); Toetzke, Christian [Potsdam Univ. (Germany)

    2015-07-01

    The potentials of incoherent X-ray scattering (Compton) computed tomography (CT) are investigated. The imaging of materials of very different atomic number or density at once is generally a perpetual challenge for X-ray tomography or radiography. In a basic laboratory set-up for simultaneous perpendicular Compton scattering and direct beam attenuation tomography are conducted by single channel photon counting line scans. This results in asymmetric distortions of the projection profiles of the scattering CT data set. In a first approach, corrections of Compton scattering data by taking advantage of rotational symmetry yield tomograms without major geometric artefacts. A cylindrical sample composed of PE, PA, PVC, glass and wood demonstrates similar Compton contrast for all the substances, while the conventional absorption tomogram only reveals the two high order materials. Comparison to neutron tomography reveals astonishing similarities except for the glass component (without hydrogen). Therefore, Compton CT offers the potential to replace neutron tomography, which requires much more efforts.

  4. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  5. Physics of x-ray computed tomography

    International Nuclear Information System (INIS)

    Akutagawa, W.M.; Huth, G.C.

    1976-01-01

    Sections are included on theoretical limits of x-ray computed tomography and the relationship of these limits to human organ imaging and specific disease diagnosis; potential of x-ray computed tomography in detection of small calcified particles in early breast cancer detection; early lung cancer measurement and detection; advanced materials for ionizing radiation detection; positron system with circular ring transaxial tomographic camera; contrast mechanism of transmission scanner and algorithms; and status of design on a 200 keV scanning proton microprobe

  6. Acoustic tomography for decay detection in black cherry trees

    Science.gov (United States)

    Xiping Wang; Jan Wiedenbeck; Shanqing Liang

    2009-01-01

    This study investigated the potential of using acoustic tomography for detecting internal decay in high-value hardwood trees in the forest. Twelve black cherry (Prunus serotina) trees that had a wide range of physical characteristics were tested in a stand of second-growth hardwoods in Kane, PA, using a PiCUS Sonic Tomograph tool. The trees were felled after the field...

  7. Laboratory soft x-ray microscopy and tomography

    International Nuclear Information System (INIS)

    Bertilson, Michael

    2011-01-01

    Soft x-ray microscopy in the water-window (λ = 2.28 nm - 4.36 nm) is based on zone-plate optics and allows high-resolution imaging of, e.g., cells and soils in their natural or near-natural environment. Three-dimensional imaging is provided via tomographic techniques, soft x-ray cryo tomography. However, soft x-ray microscopes with such capabilities have been based on large-scale synchrotron x-ray facilities, thereby limiting their accessibility for a wider scientific community. This Thesis describes the development of the Stockholm laboratory soft x-ray microscope to three-dimensional cryo tomography and to new optics-based contrast mechanisms. The microscope relies on a methanol or nitrogen liquid-jet laser-plasma source, normal-incidence multilayer or zone-plate condenser optics, in-house fabricated zone-plate objectives, and allows operation at two wavelengths in the water-window, λ = 2.48 nm and λ = 2.48 nm. With the implementation of a new state-of-the-art normal-incidence multilayer condenser for operation at λ = 2.48 nm and a tiltable cryogenic sample stage the microscope now allows imaging of dry, wet or cryo-fixed samples. This arrangement was used for the first demonstration of laboratory soft x-ray cryo microscopy and tomography. The performance of the microscope has been demonstrated in a number of experiments described in this Thesis, including, tomographic imaging with a resolution of 140 nm, cryo microscopy and tomography of various cells and parasites, and for studies of aqueous soils and clays. The Thesis also describes the development and implementation of single-element differential-interference and Zernike phase-contrast zone-plate objectives. The enhanced contrast provided by these optics reduce exposure times or lowers the dose in samples and are of major importance for harder x-ray microscopy. The implementation of a high-resolution 50 nm compound zone-plate objective for sub-25-nm resolution imaging is also described. All experiments

  8. MO-A-BRD-07: Feasibility of X-Ray Acoustic Computed Tomography as a Tool for Calibration and In Vivo Dosimetry of Radiotherapy Electron and Photon Beams

    International Nuclear Information System (INIS)

    Hickling, S; Hobson, M; El Naqa, I

    2014-01-01

    Purpose: This work simulates radiation-induced acoustic waves to assess the feasibility of x-ray acoustic computed tomography (XACT) as a dosimeter. XACT exploits the phenomenon that acoustic waves with amplitude proportional to the dose deposited are induced following a radiation pulse. After detecting these acoustic waves with an ultrasound transducer, an image of the dose distribution can be reconstructed in realtime. Methods: Monte Carlo was used to simulate the dose distribution for monoenergetic 6 MeV photon and 9 MeV electron beams incident on a water tank. The dose distribution for a prostate patient planned with a photon 4-field box technique was calculated using clinical treatment planning software. All three dose distributions were converted into initial pressure distributions, and transportation of the induced acoustic waves was simulated using an open-source toolkit. Ideal transducers were placed around the circumference of the target to detect the acoustic waves, and a time reversal reconstruction algorithm was used to obtain an XACT image of the dose for each radiation pulse. Results: For the photon water tank relative dosimetry case, it was found that the normalized acoustic signal amplitude agreed with the normalized dose at depths from 0 cm to 10 cm, with an average percent difference of 0.5%. For the reconstructed in-plane dose distribution of an electron water tank irradiation, all pixels passed a 3%–3 mm 2D gamma test. The reconstructed prostate dose distribution closely resembled the plan, with 89% of pixels passing a 3%–3 mm 2D gamma test. For all situations, the amplitude of the induced acoustic waves ranged from 0.01 Pa to 1 Pa. Conclusion: Based on the amplitude of the radiation-induced acoustic waves and accuracy of the reconstructed dose distributions, XACT is a feasible technique for dosimetry in both calibration and in vivo environments for photon and electron beams and merits further investigation. Funding from NSERC, CIHR and Mc

  9. Fluorescent scanning x-ray tomography with synchrotron radiation

    Science.gov (United States)

    Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji

    1995-02-01

    Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.

  10. Applications of X-ray Computed Tomography and Emission Computed Tomography

    International Nuclear Information System (INIS)

    Seletchi, Emilia Dana; Sutac, Victor

    2005-01-01

    Computed Tomography is a non-destructive imaging method that allows visualization of internal features within non-transparent objects such as sedimentary rocks. Filtering techniques have been applied to circumvent the artifacts and achieve high-quality images for quantitative analysis. High-resolution X-ray computed tomography (HRXCT) can be used to identify the position of the growth axis in speleothems by detecting subtle changes in calcite density between growth bands. HRXCT imagery reveals the three-dimensional variability of coral banding providing information on coral growth and climate over the past several centuries. The Nuclear Medicine imaging technique uses a radioactive tracer, several radiation detectors, and sophisticated computer technologies to understand the biochemical basis of normal and abnormal functions within the brain. The goal of Emission Computed Tomography (ECT) is to accurately determine the three-dimensional radioactivity distribution resulting from the radiopharmaceutical uptake inside the patient instead of the attenuation coefficient distribution from different tissues as obtained from X-ray Computer Tomography. ECT is a very useful tool for investigating the cognitive functions. Because of the low radiation doses associated with Positron Emission Tomography (PET), this technique has been applied in clinical research, allowing the direct study of human neurological diseases. (authors)

  11. Dynamic rayed aurora and enhanced ion-acoustic radar echoes

    Directory of Open Access Journals (Sweden)

    E. M. Blixt

    2005-01-01

    Full Text Available The generation mechanism for naturally enhanced ion-acoustic echoes is still debated. One important issue is how these enhancements are related to auroral activity. All events of enhanced ion-acoustic echoes observed simultaneously with the EISCAT Svalbard Radar (ESR and with high-resolution narrow field-of-view auroral imagers have been collected and studied. Characteristic of all the events is the appearance of very dynamic rayed aurora, and some of the intrinsic features of these auroral displays are identified. Several of these identified features are directly related to the presence of low energy (10-100eV precipitating electrons in addition to the higher energy population producing most of the associated light. The low energy contribution is vital for the formation of the enhanced ion-acoustic echoes. We argue that this type of aurora is sufficient for the generation of naturally enhanced ion-acoustic echoes. In one event two imagers were used to observe the auroral rays simultaneously, one from the radar site and one 7km away. The data from these imagers shows that the auroral rays and the strong backscattering filaments (where the enhanced echoes are produced are located on the same field line, which is in contrast to earlier statements in the litterature that they should be separated.

  12. Multiple X-ray tomography using transmitted, scattered and fluorescent radiation

    International Nuclear Information System (INIS)

    Cesareo, R.; Brunetti, A.; Golosio, B.; Lopes, R.T.; Barroso, R.C.; Donativi, M.; Castellano, A.; Quarta, S.

    2003-01-01

    A multiple CT-scanner is described, which contemporaneously uses transmitted, scattered and fluorescent X-rays for Imaging. The scanner is characterized by a small size X-ray tube and by four detectors: a ''pencil'' X-ray NaI(Tl) for transmitted tomography, a larger size NaI(Tl) for 90 C o Compton tomography, a thermoelectrically cooled Si-PIN or CdZnTe for fluorescent imaging and a CdZnTe for Rayleigh (or diffraction) tomography. Examples of applications are shown

  13. Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography

    Science.gov (United States)

    LaManna, J. M.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.

    2017-11-01

    Dual mode tomography using neutrons and X-rays offers the potential of improved estimation of the composition of a sample from the complementary interaction of the two probes with the sample. We have developed a simultaneous neutron and 90 keV X-ray tomography system that is well suited to the study of porous media systems such as fuel cells, concrete, unconventional reservoir geologies, limestones, and other geological media. We present the characteristic performance of both the neutron and X-ray modalities. We illustrate the use of the simultaneous acquisition through improved phase identification in a concrete core.

  14. Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments

    Science.gov (United States)

    Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony

    Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.

  15. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    Science.gov (United States)

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  16. Clinical and acoustical variability in hypokinetic dysarthria

    International Nuclear Information System (INIS)

    Metter, E.J.; Hanson, W.R.

    1986-01-01

    Ten male patients with parkinsonism secondary to Parkinson's disease or progressive supranuclear palsy had clinical neurological, speech, and acoustical speech evaluations. In addition, seven of the patients were evaluated by x-ray computed tomography (CT) and (F-18)-fluorodeoxyglucose (FDG) positron emission tomography (PET). Extensive variability of speech features, both clinical and acoustical, were found and seemed to be independent of the severity of any parkinsonian sign, CT, or FDG PET. In addition, little relationship existed between the variability across each measured speech feature. What appeared to be important for the appearance of abnormal acoustic measures was the degree of overall severity of the dysarthria. These observations suggest that a better understanding of hypokinetic dysarthria may result from more extensive examination of the variability between patients. Emphasizing a specific feature such as rapid speaking rate in characterizing hypokinetic dysarthria focuses on a single and inconstant finding in a complex speech pattern

  17. Review of X-ray Tomography and X-ray Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    This literature review will focus on both laboratory and synchrotron based X-ray tomography of materials and highlight the inner workings of these instruments. X-ray fluorescence spectroscopy will also be reviewed and applications of the tandem use of these techniques will be explored. The real world application of these techniques during the internship will also be discussed.

  18. Comparison of x-ray computed tomography, through-transmission ultrasound, and low-kV x-ray imaging for characterizing green-state ceramics

    International Nuclear Information System (INIS)

    Roberts, R.A.; Ellingson, W.A.; Vannier, M.W.

    1985-06-01

    Green-state MgAl 2 O 4 compact disk specimens have been studied by x-ray computed tomography (CT), through-transmission pulsed ultrasound, and low-kV x-ray imaging to compare the abilities of these nondestructive evaluation (NDE) methods to detect flaws and density variations. X-ray computed tomographic images were obtained from a 125-kV (peak) imaging system with a 512 x 512 matrix and a pixel size of 100 μm. A 3- to 10- MHz focused-beam ultrasonic transducer was used, together with special immersion techniques, to obtain topographical maps of acoustic attenuation and phase velocity; a 30 x 30 matrix was used in the ultrasonic scans. A 35-kV x-ray system with high-resolution type RR film was used to obtain conventional radiographs. Large-scale nonuniform density gradients were detected with CT and ultrasonics in supposedly uniform ceramic disks. In addition, inclusions in the green-state samples were detected by all three methods, with each method providing certain advantages. The influence of grain structure and other ceramic powder characteristics will be examined in the future. 5 refs., 9 figs

  19. Using Combined X-ray Computed Tomography and Acoustic Resonance to Understand Supercritical CO2 Behavior in Fractured Sandstone

    Science.gov (United States)

    Kneafsey, T. J.; Nakagawa, S.

    2015-12-01

    Distribution of supercritical (sc) CO2 has a large impact on its flow behavior as well as on the properties of seismic waves used for monitoring. Simultaneous imaging of scCO2 distribution in a rock core using X-ray computed tomography (CT) and measurements of seismic waves in the laboratory can help understand how the distribution evolves as scCO2 invades through rock, and the resulting seismic signatures. To this end, we performed a series of laboratory scCO2 core-flood experiments in intact and fractured anisotropic Carbon Tan sandstone samples. In these experiments, we monitored changes in the CO2 saturation distribution and sonic-frequency acoustic resonances (yielding both seismic velocity and attenuation) over the course of the floods. A short-core resonant bar test system (Split-Hopkinson Resonant Bar Apparatus) custom fit into a long X-ray transparent pressure vessel was used for the seismic measurements, and a modified General Electric medical CT scanner was used to acquire X-ray CT data from which scCO2 saturation distributions were determined. The focus of the experiments was on the impact of single fractures on the scCO2 distribution and the seismic properties. For this reason, we examined several cases including 1. intact, 2. a closely mated fracture along the core axis, 3. a sheared fracture along the core axis (both vertical and horizontal for examining the buoyancy effect), and 4. a sheared fracture perpendicular to the core axis. For the intact and closely mated fractured cores, Young's modulus declined with increasing CO2 saturation, and attenuation increased up to about 15% CO2 saturation after which attenuation declined. For cores having wide axial fractures, the Young's modulus was lower than for the intact and closely mated cases, however did not change much with CO2 pore saturation. Much lower CO2 pore saturations were achieved in these cases. Attenuation increased more rapidly however than for the intact sample. For the core

  20. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction

    Science.gov (United States)

    Brantut, Nicolas

    2018-02-01

    Acoustic emission and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenised wave velocity measurements and approximate source locations. Here I present a numerical method and its implementation in a free software to perform a joint inversion of acoustic emission locations together with the three-dimensional, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from acoustic emissions and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of acoustic emissions progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse acoustic emissions are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15%, with an increase in anisotropy of up to 20%. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localised changes associated with microcracking and damage generation.

  1. Development of industrial x-ray computed tomography and its application to refractories

    International Nuclear Information System (INIS)

    Aiba, Yoshiro; Oki, Kazuo; Nakamura, Shigeo; Fujii, Masashi.

    1985-01-01

    An industrial X-ray computed tomography was developed under the influence of the rapid spread of the use of the X-ray CT scanner in the medical field and improvements of the equipment. Although current nondestructive testing machines of refractories use the ultrasonic inspection method or the X-ray fluoroscopic method, these equipments cannot produce a tomogram or cannot carry out quantitative evaluation. By using an industrial X-ray computed tomography, submerged nozzles for continuous casting of steel were analyzed with interesting results. The features of the industrial X-ray computed tomography applied for refractory nozzles are as follows: (1) It promptly detects interior defects. (2) It can measure dimensions and shapes. (3) It can numerically express the distribution of density. Accordingly, it is expected that the industrial X-ray computed tomography will widely be used in the fields of development and quality control of refractories and advanced ceramic materials. (author)

  2. X-ray and neutron tomography on the bony inner ear of baleen whales; Roentgen- und Neutronentomographie am knoechernen Innenohr der Bartenwale

    Energy Technology Data Exchange (ETDEWEB)

    Arlt, Tobias [Technische Univ. Berlin (Germany); Wieder, Frank [Bundesanstalt fuer Materialforschung und -pruefung BAM, Berlin (Germany). Fachgruppe 8.3 ' ' Radiologische Verfahren' ' ; Hilger, Andre; Kardjilov, Nikolay [Helmholtz-Zentrum Berlin HZB, Berlin (Germany); Hampe, Oliver [Museum fuer Naturkunde, Berlin (Germany); Manke, Ingo [Helmholtz-Zentrum Berlin (HZB) fuer Materialien und Energie, Berlin (Germany). Fachgruppe ' ' Bildgebende Verfahren' ' ; Ritsche, Indira; Fahlke, Julia M.

    2018-04-01

    During their evolution whales and dolphins developed a highly specialized hearing organ for orientation in their deep sea territory covering a broad acoustic spectrum. The internal anatomy of the periotic bone, especially the morphology of the cochlea, has a significant influence on the hearing capability of mammals. The bony and fossilized cochleae of several fossil representatives of extinct baleen whales (e.g., Cetotheriidae) and modern rorquals (Balaenopteridae) and right whales, as well as cochleae of an archaeocete and some land mammals are investigated by X-ray and neutron tomography in order to record morphological changes that may be responsible for the development of low frequency hearing. Differences in the cochlear morphology have been determined by means of morphometric parameters, such as the number of turns, the length of the cochlea, and the curvature of the cochlear canal. In particular, X-ray tomography enables a high resolution display of the bony inner ear.

  3. Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals.

    Science.gov (United States)

    Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun; Xu, Cao

    2016-01-01

    Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.

  4. Iterative methods for photoacoustic tomography in attenuating acoustic media

    Science.gov (United States)

    Haltmeier, Markus; Kowar, Richard; Nguyen, Linh V.

    2017-11-01

    The development of efficient and accurate reconstruction methods is an important aspect of tomographic imaging. In this article, we address this issue for photoacoustic tomography. To this aim, we use models for acoustic wave propagation accounting for frequency dependent attenuation according to a wide class of attenuation laws that may include memory. We formulate the inverse problem of photoacoustic tomography in attenuating medium as an ill-posed operator equation in a Hilbert space framework that is tackled by iterative regularization methods. Our approach comes with a clear convergence analysis. For that purpose we derive explicit expressions for the adjoint problem that can efficiently be implemented. In contrast to time reversal, the employed adjoint wave equation is again damping and, thus has a stable solution. This stability property can be clearly seen in our numerical results. Moreover, the presented numerical results clearly demonstrate the efficiency and accuracy of the derived iterative reconstruction algorithms in various situations including the limited view case.

  5. X-ray Computed Tomography of Ultralightweight Metals

    National Research Council Canada - National Science Library

    Winter, John

    2001-01-01

    .... To date, the imaging capabilities of x-ray computed tomography have not been generally employed to nondestructively examine the internal structure of the products formed by these various processes...

  6. Ocean acoustic tomography - Travel time biases

    Science.gov (United States)

    Spiesberger, J. L.

    1985-01-01

    The travel times of acoustic rays traced through a climatological sound-speed profile are compared with travel times computed through the same profile containing an eddy field. The accuracy of linearizing the relations between the travel time difference and the sound-speed deviation at long ranges is assessed using calculations made for two different eddy fields measured in the eastern Atlantic. Significant nonlinearities are found in some cases, and the relationships of the values of these nonlinearities to the range between source and receiver, to the anomaly size associated with the eddies, and to the positions of the eddies are studied. An analytical model of the nonlinearities is discussed.

  7. Monte Carlo simulation of gamma ray tomography for image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Karlos A.N.; Moura, Alex; Dantas, Carlos; Melo, Silvio; Lima, Emerson, E-mail: karlosguedes@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Meric, Ilker [University of Bergen (Norway)

    2015-07-01

    The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)

  8. Compensation of shear waves in photoacoustic tomography with layered acoustic media.

    Science.gov (United States)

    Schoonover, Robert W; Anastasio, Mark A

    2011-10-01

    An image reconstruction formula is presented for photoacoustic computed tomography that accounts for conversion between longitudinal and shear waves in a planar-layered acoustic medium. We assume the optical absorber that produces the photoacoustic wave field is embedded in a single fluid layer and any elastic solid layers present are separated by one or more fluid layers. The measurement aperture is assumed to be planar. Computer simulation studies are conducted to demonstrate and investigate the proposed reconstruction formula.

  9. Systematic Errors in Dimensional X-ray Computed Tomography

    DEFF Research Database (Denmark)

    that it is possible to compensate them. In dimensional X-ray computed tomography (CT), many physical quantities influence the final result. However, it is important to know which factors in CT measurements potentially lead to systematic errors. In this talk, typical error sources in dimensional X-ray CT are discussed...

  10. Simulation on a limited angle beam gamma ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Jung, Sung Hee; Moon, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Limited angle beam tomography was introduced in the medical field more than two decades ago, where it was mainly used for cardiovascular diagnostics. Later, it was also used to trace multiphase flows. In these studies, the detection systems were fixed and a scanning electron beam was rapidly swept across an xray target using deflection coils. Thus very fast scanning was possible in these studies, but their geometry resulted in a heavy and bulky system because of a complex control system and vacuum tube. Because of its heavy hardware, limited angle beam tomography has remained as indoor equipment. If the source section is replaced by a gamma ray source, limited angle beam tomography will have a very light source device. In addition, limited angle beam tomography with a gamma ray source can be designed using an open type portable gantry because it does not need a vacuum guide for an electron beam. There is a lot of need for a portable tomographic system but so far no definitive solution has been created. The inspection of industrial on-line pipes, wood telephone poles, and cultural assets are some application areas. This study introduces limited angle beam gamma ray tomography, its simulation, and image reconstruction results. Image reconstruction was performed on the virtual experimental data from a Monte Carlo simulation. Image reconstruction algorithms that are known to be useful for limited angle data were applied and their results compared

  11. Quantitative photo-acoustic tomography with partial data

    International Nuclear Information System (INIS)

    Chen, Jie; Yang, Yang

    2012-01-01

    Photo-acoustic tomography is a newly developed hybrid imaging modality that combines a high-resolution modality with a high-contrast modality. We analyze the reconstruction of diffusion and absorption parameters in an elliptic equation and extend an earlier result of Bal and Uhlmann (2010 Inverse Problems 26 085010) to the partial data case. We show that the reconstruction can be uniquely determined by the knowledge of four internal data based on well-chosen partial boundary conditions. Stability of this reconstruction is ensured if a convexity condition is satisfied. A similar stability result is obtained without this geometric constraint if 4n well chosen partial boundary conditions are available, where n is the spatial dimension. The set of well chosen boundary measurements is characterized by some complex geometric optics solutions vanishing on a part of the boundary. (paper)

  12. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.

    Science.gov (United States)

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-04-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La 3 Ga 5 SiO 14 ) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.

  13. The color of X-rays: Spectral X-ray computed tomography using energy sensitive pixel detectors

    NARCIS (Netherlands)

    Schioppa, E.J.

    2014-01-01

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray

  14. Ray and wave chaos in underwater acoustic waveguides

    International Nuclear Information System (INIS)

    Virovlyansky, Anatolii L; Makarov, Denis V; Prants, Sergei V

    2012-01-01

    In the 1990s, the study of the chaotic behavior of ray trajectories in inhomogeneous waveguides emerged as a new field in ocean acoustics. It turned out that at ranges on the order of or larger than 1000 km ray chaos is well developed and should be taken into account when describing long-range sound propagation in the ocean. The theoretical analysis of ray chaos and of its finite-wavelength manifestation, wave chaos, is to a large extent based on well-known methods and ideas from the theory of dynamical and quantum chaos. Concrete examples are used to review the results obtained in this field over the last two decades. (reviews of topical problems)

  15. X-ray coherent scattering tomography of textured material (Conference Presentation)

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  16. High-speed X-ray phase tomography with Talbot interferometer and fringe scanning method

    International Nuclear Information System (INIS)

    Kibayashi, Shunsuke; Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi

    2012-01-01

    High-speed X-ray phase tomography based on the Fourier-transform method has been demonstrated with an X-ray Talbot interferometer using white synchrotron radiation. We report the experimental results of high-speed X-ray phase tomography with fringe-scanning method instead of Fourier-transform method to improve spatial resolution without a considerable increase of scan time. To apply fringe-scanning method to high speed tomography, we tested a scan that is a synchronous combination of one-way continuous movements of the sample rotation and the grating displacement. When this scanning method was combined with X-ray phase tomography, we were able to obtain a scan time of 5 s. A comparison of the image quality derived with the conventional approach and with the proposed approach using the fringe-scanning method showed that the latter had better spatial resolution.

  17. Fast synchrotron X-ray tomography study of the rod packing structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaodan; Xia Chengjie; Sun Haohua; Wang Yujie [Department of Physics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2013-06-18

    We present a fast synchrotron X-ray tomography study of the packing structures of rods under tapping. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a tomography scan within several seconds, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. Due to the high-energy nature of the X-ray beam, special image processing steps including image phase-retrieval has been implemented. Overall, this study suggests the possibility of acquiring statistically significant static packing structures within a reasonable time scale using high-intensity X-ray sources.

  18. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.

    Science.gov (United States)

    Kinahan, Paul E; Hasegawa, Bruce H; Beyer, Thomas

    2003-07-01

    A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended. Copyright 2003 Elsevier Inc. All rights reserved.

  19. Photons-based medical imaging - Radiology, X-ray tomography, gamma and positrons tomography, optical imaging; Imagerie medicale a base de photons - Radiologie, tomographie X, tomographie gamma et positons, imagerie optique

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Dinten, J.M.; Moy, J.P.; Rinkel, J. [CEA Leti, Grenoble (France); Buvat, I. [IMNC - CNRS, Orsay (France); Da Silva, A. [Institut Fresnel, Marseille (France); Douek, P.; Peyrin, F. [INSA Lyon, Lyon Univ. (France); Frija, G. [Hopital Europeen George Pompidou, Paris (France); Trebossen, R. [CEA-Service hospitalier Frederic Joliot, Orsay (France)

    2010-07-01

    This book describes the different principles used in medical imaging. The detection aspects, the processing electronics and algorithms are detailed for the different techniques. This first tome analyses the photons-based techniques (X-rays, gamma rays and visible light). Content: 1 - physical background: radiation-matter interaction, consequences on detection and medical imaging; 2 - detectors for medical imaging; 3 - processing of numerical radiography images for quantization; 4 - X-ray tomography; 5 - positrons emission tomography: principles and applications; 6 - mono-photonic imaging; 7 - optical imaging; Index. (J.S.)

  20. X-ray tomography on TCV

    International Nuclear Information System (INIS)

    Anton, M.; Weisen, H.; Dutch, M.J.; Buhlmann, F.; Chavan, R.; Marletaz, B.; Marmillod, P.; Paris, P.

    1996-04-01

    The TCV Tokamak offers an outstanding variability of the plasma shape. Using X-ray tomography, the shape of the inner flux surfaces of a poloidal cross section of the plasma can be reconstructed, including fast variations due to MHD activity. The hardware as well as the software of the 200 channel system developed for TCV is described. A new, 'dynamical' calibration is used. The actual plasma temperature and some global profile parameters serve to determine the spectrum-dependent efficiency of the photodiodes. Compared to a 'static' calibration with constant calibration factors, an enhanced quality of the reconstructed images is observed. The tomographic inversion is performed using a variety of methods such as Maximum Entropy, linear Regularisation and a new method making use of the Fisher information of the emissivity distribution. The merits of the different algorithms which have been implemented as MATLAB functions are compared. The tomographic inversion results are analysed with the help of the biorthogonal decomposition, allowing e.g. identification of MHD modes without using any a priori information on the poloidal mode structure. Recent results on the dependence of sawtooth activity on the plasma triangularity are presented to demonstrate the performance of the soft X-ray tomography system. (author) 14 figs., 2 tabs., 26 refs

  1. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Science.gov (United States)

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  2. X-ray Micro-Tomography of Ablative Heat Shield Materials

    Science.gov (United States)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  3. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  4. A comparison of partially specular radiosity and ray tracing for room acoustics modeling

    Science.gov (United States)

    Beamer, C. Walter; Muehleisen, Ralph T.

    2005-04-01

    Partially specular (PS) radiosity is an extended form of the general radiosity method. Acoustic radiosity is a form of bulk transfer of radiant acoustic energy. This bulk transfer is accomplished through a system of energy balance equations that relate the bulk energy transfer of each surface in the system to all other surfaces in the system. Until now acoustic radiosity has been limited to modeling only diffuse surface reflection. The new PS acoustic radiosity method can model all real surface types, diffuse, specular and everything in between. PS acoustic radiosity also models all real source types and distributions, not just point sources. The results of the PS acoustic radiosity method are compared to those of well known ray tracing programs. [Work supported by NSF.

  5. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    Science.gov (United States)

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  6. A review of X-ray computed axial tomography

    International Nuclear Information System (INIS)

    Schmidt, M.

    1989-01-01

    A review of Computed axial tomography (CAT) scanning literature outlining the theoretical and practical aspects of this technique with application in both medical diagnosis and industrial non-destructive inspection (NDI) is presented. Practical aspects of CAT scanning discussed include : radiation sources, currently available spatial and contrast resolution limits and the evolution of the computerized tomography (CT) system. It was found that monochromatic gamma rays are preferred to X-rays, especially for very high density materials, and that in medical CAT scanning, the special resolution is only, 0.5 mm while spatial resolutions of less than 50μm have been achieved in NDI. An increased number of scientific and industrial applications are anticipated (e.g. for studying sintering reactions), as the capital cost of CAT scanning decreased. 13 refs., 9 figs., 2 tabs

  7. Residual stress measurement with focused acoustic waves and direct comparison with X-ray diffraction stress measurements

    International Nuclear Information System (INIS)

    Sathish, Shamachary; Moran, Thomas J.; Martin, Richard W.; Reibel, Richard

    2005-01-01

    The technique of measuring small changes in acoustic wave velocity due to external or internal stress has been used for quantitative determination of residual stress in materials during the last decade. Application of similar methodology with focused acoustic waves leads to residual stress measurement with spatial resolution of a few millimeters to a few microns. The high spatial resolution residual stress measurement required development of new methodologies in both the design of acoustic lenses and the instrumentation for acoustic wave velocity determination. This paper presents two new methodologies developed for the measurement of residual stress with spatial resolution of a few millimeters. The design of new type of acoustic lens for achieving higher spatial resolution in residual stress measurement is introduced. Development of instrumentation for high precision local surface wave velocity measurement will be presented. Residual stresses measured around a crack tip in a sample of Ti-6A1-4V using a focused beam will be compared with X-ray diffraction measurements performed on the same region of the sample. Results of residual stress measurements along a direction perpendicular to the electron beam weld in a sample of Ti-6A1-4V, determined using focused acoustic waves and X-ray diffraction technique, are also presented. The spatial resolution and penetration depth of X-rays and focused acoustic beams with reference to residual stress measurements are discussed

  8. Quantitative X-ray dark-field and phase tomography using single directional speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-03-21

    X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematic investigation of complex samples containing both soft and hard materials.

  9. Examples and applications in long-range ocean acoustics

    International Nuclear Information System (INIS)

    Vera, M D

    2007-01-01

    Acoustic energy propagates effectively to long ranges in the ocean interior because of the physical properties of the marine environment. Sound propagation in the ocean is relevant to a variety of studies in communication, climatology and marine biology. Examples drawn from ocean acoustics, therefore, are compelling to students with a variety of interests. The dependence of sound speed on depth results in a waveguide that permits the detection of acoustic energy at ranges, in some experiments, of thousands of kilometres. This effect serves as an illustration of Snell's law with a continuously variable index of refraction. Acoustic tomography also offers a means for imaging the ocean's thermal structure, because of the dependence of sound speed on temperature. The ability to perform acoustic thermometry for large transects of the ocean provides an effective means of studying climate change. This application in an area of substantial popular attention allows for an effective introduction to concepts in ray propagation. Aspects of computational ocean acoustics can be productive classroom examples in courses ranging from introductory physics to upper-division mathematical methods courses

  10. MMX-I: data-processing software for multimodal X-ray imaging and tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Antoine, E-mail: antoine.bergamaschi@synchrotron-soleil.fr; Medjoubi, Kadda [Synchrotron SOLEIL, BP 48, Saint-Aubin, 91192 Gif sur Yvette (France); Messaoudi, Cédric; Marco, Sergio [Université Paris-Saclay, CNRS, Université Paris-Saclay, F-91405 Orsay (France); Institut Curie, INSERM, PSL Reseach University, F-91405 Orsay (France); Somogyi, Andrea [Synchrotron SOLEIL, BP 48, Saint-Aubin, 91192 Gif sur Yvette (France)

    2016-04-12

    The MMX-I open-source software has been developed for processing and reconstruction of large multimodal X-ray imaging and tomography datasets. The recent version of MMX-I is optimized for scanning X-ray fluorescence, phase-, absorption- and dark-field contrast techniques. This, together with its implementation in Java, makes MMX-I a versatile and friendly user tool for X-ray imaging. A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors’ knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments.

  11. Ring artifact reduction in synchrotron X-ray tomography through helical acquisition

    NARCIS (Netherlands)

    D.M. Pelt (Daniël); D.Y. Parkinson (Dilworth)

    2017-01-01

    textabstractIn synchrotron X-ray tomography, systematic defects in certain detector elements can result in arc-shaped artifacts in the final reconstructed image of the scanned sample. These ring artifacts are commonly found in many applications of synchrotron tomography, and can make

  12. Quality control of aluminium casting: X ray radiography or tomography?

    International Nuclear Information System (INIS)

    Munier, B.; Tamziti, J.; Grignard, A.; Peix, G.; Kaftandjian, V.

    2007-01-01

    Full text of publication follows: X ray radiography has been for years a well known method commonly used for controlling parts either on line or off line. The purpose is to detect internal defects or to achieve reverse engineering on the parts. More recently two-dimensional or three-dimensional Computed Tomography has been introduced and provides key advantages over standard X ray radiography, such as dimensional measurement of complex objects with hidden structures and 3D defect localisation. However, from the user point of view, despite the clear advantages of tomography, the time consuming drawback is predominant, and thus, it is worth assessing the added value of tomography with respect to several radioscopic images. It is clear that there is no unique response to that question. If unacceptable defects are already detected in one radioscopic image, then the sample can be rejected and 3D tomography is useless. On another hand, 3D tomography cannot be replaced if internal structures such as holes must be measured with accuracy. The paper will present a comparison between radiography and tomography for controlling parts in the aluminium casting industry. Advantages and drawbacks of both methods will be reviewed. Performance features in both cases will be assessed in this specific industrial case by estimating the defect detection efficiency and image quality parameters. (authors)

  13. Recent observations with phase-contrast x-ray computed tomography

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-09-01

    Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.

  14. Basic technological aspects and optimization problems in X-ray computed tomography (C.T.)

    International Nuclear Information System (INIS)

    Allemand, R.

    1987-01-01

    The current status and future prospects of physical performance are analysed and the optimization problems are approached for X-ray computed tomography. It is concluded that as long as clinical interest in computed tomography continues, technical advances can be expected in the near future to improve the density resolution, the spatial resolution and the X-ray exposure time. (Auth.)

  15. Quantitative x-ray dark-field computed tomography

    International Nuclear Information System (INIS)

    Bech, M; Pfeiffer, F; Bunk, O; Donath, T; David, C; Feidenhans'l, R

    2010-01-01

    The basic principles of x-ray image formation in radiology have remained essentially unchanged since Roentgen first discovered x-rays over a hundred years ago. The conventional approach relies on x-ray attenuation as the sole source of contrast and draws exclusively on ray or geometrical optics to describe and interpret image formation. Phase-contrast or coherent scatter imaging techniques, which can be understood using wave optics rather than ray optics, offer ways to augment or complement the conventional approach by incorporating the wave-optical interaction of x-rays with the specimen. With a recently developed approach based on x-ray optical gratings, advanced phase-contrast and dark-field scatter imaging modalities are now in reach for routine medical imaging and non-destructive testing applications. To quantitatively assess the new potential of particularly the grating-based dark-field imaging modality, we here introduce a mathematical formalism together with a material-dependent parameter, the so-called linear diffusion coefficient and show that this description can yield quantitative dark-field computed tomography (QDFCT) images of experimental test phantoms.

  16. Imaging phase holdup distribution of three phase flow systems using dual source gamma ray tomography

    International Nuclear Information System (INIS)

    Varma, Rajneesh; Al-Dahhan, Muthanna; O'Sullivan, Joseph

    2008-01-01

    Full text: Multiphase reaction and process systems are used in abundance in the chemical and biochemical industry. Tomography has been successfully employed to visualize the hydrodynamics of multiphase systems. Most of the tomography methods (gamma ray, x-ray and electrical capacitance and resistance) have been successfully implemented for two phase dynamic systems. However, a significant number of chemical and biochemical systems consists of dynamic three phases. Research effort directed towards the development of tomography techniques to image such dynamic system has met with partial successes for specific systems with applicability to limited operating conditions. A dual source tomography scanner has been developed that uses the 661 keV and 1332 keV photo peaks from the 137 Cs and 60 Co for imaging three phase systems. A new approach has been developed and applied that uses the polyenergetic Alternating Minimization (A-M) algorithm, developed by O'Sullivan and Benac (2007), for imaging the holdup distribution in three phases' dynamic systems. The new approach avoids the traditional post image processing approach used to determine the holdup distribution where the attenuation images of the mixed flow obtained from gamma ray photons of two different energies are used to determine the holdup of three phases. In this approach the holdup images are directly reconstructed from the gamma ray transmission data. The dual source gamma ray tomography scanner and the algorithm were validated using a three phase phantom. Based in the validation, three phase holdup studies we carried out in slurry bubble column containing gas liquid and solid phases in a dynamic state using the dual energy gamma ray tomography. The key results of the holdup distribution studies in the slurry bubble column along with the validation of the dual source gamma ray tomography system would be presented and discussed

  17. Development and prospects of X-ray computerized tomography. I

    International Nuclear Information System (INIS)

    Dobes, V.

    1985-01-01

    The history and developmental trends are described of X-ray computerized tomography (CT) as are its applications in clinical practise. Suitable criteria and economic aspects are proposed for the choice of CT systems. The types are listed and described of X-ray CT systems, including brain, whole-body, mobile and special systems. A table is given showing available specifications (types of detectors, X-ray source, resolution, configuration, scan angles, scan fields, image reconstruction, etc.) for machines by different companies. (M.D.)

  18. Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem.

    Science.gov (United States)

    Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis

    2009-04-01

    Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.

  19. A robust probabilistic approach for variational inversion in shallow water acoustic tomography

    International Nuclear Information System (INIS)

    Berrada, M; Badran, F; Crépon, M; Thiria, S; Hermand, J-P

    2009-01-01

    This paper presents a variational methodology for inverting shallow water acoustic tomography (SWAT) measurements. The aim is to determine the vertical profile of the speed of sound c(z), knowing the acoustic pressures generated by a frequency source and collected by a sparse vertical hydrophone array (VRA). A variational approach that minimizes a cost function measuring the distance between observations and their modeled equivalents is used. A regularization term in the form of a quadratic restoring term to a background is also added. To avoid inverting the variance–covariance matrix associated with the above-weighted quadratic background, this work proposes to model the sound speed vector using probabilistic principal component analysis (PPCA). The PPCA introduces an optimum reduced number of non-correlated latent variables η, which determine a new control vector and a new regularization term, expressed as η T η. The PPCA represents a rigorous formalism for the use of a priori information and allows an efficient implementation of the variational inverse method

  20. X-ray Computed Tomography Image Quality Indicator (IQI) Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase one of the program is to identify suitable x-ray Computed Tomography (CT) Image Quality Indicator (IQI) design(s) that can be used to adequately capture CT...

  1. X-ray radiography and tomography applied to material testing

    International Nuclear Information System (INIS)

    Rechapt, Jean de.

    1982-11-01

    X-ray radiography and tomography are compared to detect a defect in an object. These image acquisition processes are first modelled by a convolution system. For a fixed contrast defect and a given X ray dose, the process providing the best signal-to-noise ratio is given by calculation. Then a system for pattern recognition is given: for identifying a defect, the related signs from binary images are sorted according to their size. The improvement in the detection performance of the device, for an adapted filtration of the images obtained, is assessed. The whole of the preceding results is validated on images synthesized on a computer, selecting between tomography and radiography, the technique making it possible to ensure the detectability of a defect with a minimal dose of X photons [fr

  2. Improving material identification by combining x-ray and neutron tomography

    Science.gov (United States)

    LaManna, Jacob M.; Hussey, Daniel S.; Baltic, Eli; Jacobson, David L.

    2017-09-01

    X-rays and neutrons provide complementary non-destructive probes for the analysis of structure and chemical composition of materials. Contrast differences between the modes arise due to the differences in interaction with matter. Due to the high sensitivity to hydrogen, neutrons excel at separating liquid water or hydrogenous phases from the underlying structure while X-rays resolve the solid structure. Many samples of interest, such as fluid flow in porous materials or curing concrete, are stochastic or slowly changing with time which makes analysis of sequential imaging with X-rays and neutrons difficult as the sample may change between scans. To alleviate this issue, NIST has developed a system for simultaneous X-ray and neutron tomography by orienting a 90 keVpeak micro-focus X-ray tube orthogonally to a thermal neutron beam. This system allows for non-destructive, multimodal tomography of dynamic or stochastic samples while penetrating through sample environment equipment such as pressure and flow vessels. Current efforts are underway to develop methods for 2D histogram based segmentation of reconstructed volumes. By leveraging the contrast differences between X-rays and neutrons, greater histogram peak separation can occur in 2D vs 1D enabling improved material identification.

  3. X-ray microtome by fluorescence tomography

    CERN Document Server

    Simionovici, A S; Guenzler, F; Schrör, C; Snigirev, A; Snigireva, I; Tümmler, J; Weitkamp, T

    2001-01-01

    The X-ray fluorescence microtomography method is presented, which is capable of virtually slicing samples to obtain cross-sections of their inner structure. High precision experimental results of fluo-tomography in 'pencil-beam' geometry with up to 1.2 mu m resolution are described. Image reconstructions are based on either a simplified algebraic reconstruction method (ART) or the filtered back-projection method (FBP). Phantoms of inhomogeneous test objects as well as biological samples are successfully analyzed.

  4. Multi-Mounted X-Ray Computed Tomography.

    Science.gov (United States)

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.

  5. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography.

    Directory of Open Access Journals (Sweden)

    Torben Haugaard Jensen

    Full Text Available Invasive cancer causes a change in density in the affected tissue, which can be visualized by x-ray phase-contrast tomography. However, the diagnostic value of this method has so far not been investigated in detail. Therefore, the purpose of this study was, in a blinded manner, to investigate whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years diagnosed with invasive ductal carcinomas were analyzed by X-ray phase-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations to obtain information regarding lymph node involvement previously inaccessible with standard absorption x-ray imaging.

  6. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, Ramzi

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.

  7. Model-based image reconstruction in X-ray computed tomography

    NARCIS (Netherlands)

    Zbijewski, Wojciech Bartosz

    2006-01-01

    The thesis investigates the applications of iterative, statistical reconstruction (SR) algorithms in X-ray Computed Tomography. Emphasis is put on various aspects of system modeling in statistical reconstruction. Fundamental issues such as effects of object discretization and algorithm

  8. Use of micro X-ray computed tomography for development and research into waterjets

    OpenAIRE

    Souček, K. (Kamil); Sitek, L. (Libor); Gurková, L. (Lucie); Georgiovská, L. (Lucie)

    2015-01-01

    Non-destructive methods for analysis of various types of materials have been increasingly applied recently. One of these methods is the industrial micro X-ray computed tomography (CT). This paper presents an overview of experience in using the industrial micro X-ray computed tomography during research activities at the Institute of Geonics of the CAS. It discusses possibilities of the nondestructive visualization of the inner structures of a wide range of materials and objects, includin...

  9. Phase-contrast x-ray computed tomography for biological imaging

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1997-10-01

    We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.

  10. Reference sound speed profile and related ray acoustics of Bay of Bengal for tomographic studies

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Murty, T.V.R.; Somayajulu, Y.K.; Chodankar, P.V.; Murty, C.S.

    wave guide situated much below the surface as seen by the variation in the conjugate depth. Ray-tracing carried out using range-independent software revealed that acoustic rays with a flat angle of emergence from the source reach the receiver faster...

  11. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to

  12. A library least-squares approach for scatter correction in gamma-ray tomography

    International Nuclear Information System (INIS)

    Meric, Ilker; Anton Johansen, Geir; Valgueiro Malta Moreira, Icaro

    2015-01-01

    Scattered radiation is known to lead to distortion in reconstructed images in Computed Tomography (CT). The effects of scattered radiation are especially more pronounced in non-scanning, multiple source systems which are preferred for flow imaging where the instantaneous density distribution of the flow components is of interest. In this work, a new method based on a library least-squares (LLS) approach is proposed as a means of estimating the scatter contribution and correcting for this. The validity of the proposed method is tested using the 85-channel industrial gamma-ray tomograph previously developed at the University of Bergen (UoB). The results presented here confirm that the LLS approach can effectively estimate the amounts of transmission and scatter components in any given detector in the UoB gamma-ray tomography system. - Highlights: • A LLS approach is proposed for scatter correction in gamma-ray tomography. • The validity of the LLS approach is tested through experiments. • Gain shift and pulse pile-up affect the accuracy of the LLS approach. • The LLS approach successfully estimates scatter profiles

  13. MMX-I: data-processing software for multimodal X-ray imaging and tomography.

    Science.gov (United States)

    Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea

    2016-05-01

    A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors' knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments.

  14. Observation of human tissue with phase-contrast x-ray computed tomography

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-05-01

    Human tissues obtained from cancerous kidneys fixed in formalin were observed with phase-contrast X-ray computed tomography (CT) using 17.7-keV synchrotron X-rays. By measuring the distributions of the X-ray phase shift caused by samples using an X-ray interferometer, sectional images that map the distribution of the refractive index were reconstructed. Because of the high sensitivity of phase- contrast X-ray CT, a cancerous lesion was differentiated from normal tissue and a variety of other structures were revealed without the need for staining.

  15. Radiation dosimetry of computed tomography x-ray scanners

    International Nuclear Information System (INIS)

    Poletti, J.L.; Williamson, B.D.P.; Le Heron, J.C.

    1983-01-01

    This report describes the development and application of the methods employed in National Radiation Laboratory (NRL) surveys of computed tomography x-ray scanners (CT scanners). It includes descriptions of the phantoms and equipment used, discussion of the various dose parameters measured, the principles of the various dosimetry systems employed and some indication of the doses to occupationally exposed personnel

  16. X-ray micro-tomography system for small-animal imaging with zoom-in imaging capability

    International Nuclear Information System (INIS)

    Chun, In Kon; Cho, Myung Hye; Lee, Sang Chul; Cho, Min Hyoung; Lee, Soo Yeol

    2004-01-01

    Since a micro-tomography system capable of μm-resolution imaging cannot be used for whole-body imaging of a small laboratory animal without sacrificing its spatial resolution, it is desirable for a micro-tomography system to have local imaging capability. In this paper, we introduce an x-ray micro-tomography system capable of high-resolution imaging of a local region inside a small animal. By combining two kinds of projection data, one from a full field-of-view (FOV) scan of the whole body and the other from a limited FOV scan of the region of interest (ROI), we have obtained zoomed-in images of the ROI without any contrast anomalies commonly appearing in conventional local tomography. For experimental verification of the zoom-in imaging capability, we have integrated a micro-tomography system using a micro-focus x-ray source, a 1248 x 1248 flat-panel x-ray detector, and a precision scan mechanism. The mismatches between the two projection data caused by misalignments of the scan mechanism have been estimated with a calibration phantom, and the mismatch effects have been compensated in the image reconstruction procedure. Zoom-in imaging results of bony tissues with a spatial resolution of 10 lp mm -1 suggest that zoom-in micro-tomography can be greatly used for high-resolution imaging of a local region in small-animal studies

  17. Non-destructive analysis of micro texture and grain boundary character from X-ray diffraction contrast tomography

    DEFF Research Database (Denmark)

    King, A.; Herbig, M.; Ludwig, W.

    2010-01-01

    Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting new possibilities for mapping 3D grain shapes and crystallographic orientations in different classes of polycrystalline materials. X-ray diffraction contrast tomography (DCT) is a monochromatic beam...... imaging technique combining the principles of X-ray micro-tomography and three-dimensional X-ray diffraction microscopy (3DXRD). DCT provides simultaneous access to 3D grain shape, crystallographic orientation and attenuation coefficient distribution at the micrometer length scale. The microtexture...

  18. Early diagnosis of acoustic neuroma by quantitative neurootological and neuroradiological tests

    Energy Technology Data Exchange (ETDEWEB)

    Haid, C T

    1983-02-01

    Every patient with unilateral and sensoneural loss of hearing, independent of vertigo anamnesis or X-rays must be further examined by a vestibular test. Between 1974 and 1980, 80 acoustic neuromas could be diagnosed, including 12 early stage neuromas. This relatively high detection quote of small neuromas is due to a special diagnostical program: All 80 patients with acoustic neuroma had a pathological vestibular result. The positional test turned out to be the most sensitive examination in the early diagnosis of acoustic neuromas and yields a still higher incidence than the caloric test: 95% of the patients with a neurinoma showed a pathological result in the positional test. So every patient suffering from an unidentified unilateral and sensoneural hearing loss combined with a pathological result in the positional test must be further examined by a cisternomeatography or computerized tomography (using air-insufflation). Every fifth of these patients showed unique hints of an acoustic neuroma in the neuroradiological test.

  19. Early diagnosis of acoustic neuroma by the vestibular test

    Energy Technology Data Exchange (ETDEWEB)

    Haid, T; Rettinger, G; Berg, M; Wigand, M E

    1981-11-01

    In a series of 390 cases with suspicion of acoustic neurinomas 78 such tumors could be diagnosed, including 12 early stage neurinomas. This relatively high detection quote of small neurinomas is due to a special diagnostical programme: Every patient with unilateral and sensoneural hearingloss, independent of vertigo anamnesis or of the result of X-rays must be further examined by a vestibular test. All 78 patients with acoustic neuroma had pathological vestibular findings. The positional test turned out to be the most sensitive examination in the early diagnosis of acoustic neuromas and yields a still higher incidence than the thermic test: 95% of the patients with a neuroma showed pathological findings in the positional test. Every patient suffering from an unidentified unilateral and sensoneural hearingloss combined with a pathological result in the positional test must be further checked by a cisternomeatography or computerized tomography using airinsufflation. Every fifth of these patients showed typical signs of an acoustic neuroma in the neuroradiological tests. 68 neuromas are operated today and verfied histologically, 10 patients are still waiting for surgical treatment.

  20. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2013-02-15

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 {mu}m has been demonstrate, 20 {mu}m seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 {mu}m resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  1. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    International Nuclear Information System (INIS)

    Morris, C. L.; Bourke, M.; Byler, D. D.; Chen, C. F.; Hogan, G.; Hunter, J. F.; Kwiatkowski, K.; Mariam, F. G.; McClellan, K. J.; Merrill, F.; Morley, D. J.; Saunders, A.

    2013-01-01

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomography on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation, and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.

  2. X-ray micro-modulated luminescence tomography (XMLT)

    Science.gov (United States)

    Cong, Wenxiang; Liu, Fenglin; Wang, Chao; Wang, Ge

    2014-01-01

    Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach. PMID:24663898

  3. Development of portable gamma ray tomography for imaging corrosion under insulation

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Roslan Yahya

    2009-01-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are normally of a primary concern to an inspection program. The failures are often the result of localized corrosion and not general wasting over large area. These failures can tee catastrophic in nature at least have an adverse economic effect in terms of downtime and repairs. There are number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current (PEC), ultrasonic spot readings and insulation removal. A new system that has been developed is gamma-ray computer tomography. The system is based on parallel-beam gamma ray absorption technique using NaI(Tl) 1 ' x 1 ' scintillation detectors. This paper describes the development of gamma ray tomography system. (author)

  4. Time-dependent stochastic inversion in acoustic tomography of the atmosphere with reciprocal sound transmission

    International Nuclear Information System (INIS)

    Vecherin, Sergey N; Ostashev, Vladimir E; Wilson, D Keith; Ziemann, A

    2008-01-01

    Time-dependent stochastic inversion (TDSI) was recently developed for acoustic travel-time tomography of the atmosphere. This type of tomography allows reconstruction of temperature and wind-velocity fields given the location of sound sources and receivers and the travel times between all source–receiver pairs. The quality of reconstruction provided by TDSI depends on the geometry of the transducer array. However, TDSI has not been studied for the geometry with reciprocal sound transmission. This paper is focused on three aspects of TDSI. First, the use of TDSI in reciprocal sound transmission arrays is studied in numerical and physical experiments. Second, efficiency of time-dependent and ordinary stochastic inversion (SI) algorithms is studied in numerical experiments. Third, a new model of noise in the input data for TDSI is developed that accounts for systematic errors in transducer positions. It is shown that (i) a separation of the travel times into temperature and wind-velocity components in tomography with reciprocal transmission does not improve the reconstruction, (ii) TDSI yields a better reconstruction than SI and (iii) the developed model of noise yields an accurate reconstruction of turbulent fields and estimation of errors in the reconstruction

  5. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  6. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    International Nuclear Information System (INIS)

    Cho, Y; Chang, C-C; Zou, J; Wang, L V

    2016-01-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT. (paper)

  7. Hafnium-Based Contrast Agents for X-ray Computed Tomography.

    Science.gov (United States)

    Berger, Markus; Bauser, Marcus; Frenzel, Thomas; Hilger, Christoph Stephan; Jost, Gregor; Lauria, Silvia; Morgenstern, Bernd; Neis, Christian; Pietsch, Hubertus; Sülzle, Detlev; Hegetschweiler, Kaspar

    2017-05-15

    Heavy-metal-based contrast agents (CAs) offer enhanced X-ray absorption for X-ray computed tomography (CT) compared to the currently used iodinated CAs. We report the discovery of new lanthanide and hafnium azainositol complexes and their optimization with respect to high water solubility and stability. Our efforts culminated in the synthesis of BAY-576, an uncharged hafnium complex with 3:2 stoichiometry and broken complex symmetry. The superior properties of this asymmetrically substituted hafnium CA were demonstrated by a CT angiography study in rabbits that revealed excellent signal contrast enhancement.

  8. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    International Nuclear Information System (INIS)

    2010-01-01

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B 4 C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 ± 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  9. Fast simulation of Proton Induced X-Ray Emission Tomography using CUDA

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, D.G., E-mail: dgbeasley@itn.pt; Marques, A.C.; Alves, L.C.; Silva, R.C. da

    2013-07-01

    A new 3D Proton Induced X-Ray Emission Tomography (PIXE-T) and Scanning Transmission Ion Microscopy Tomography (STIM-T) simulation software has been developed in Java and uses NVIDIA™ Common Unified Device Architecture (CUDA) to calculate the X-ray attenuation for large detector areas. A challenge with PIXE-T is to get sufficient counts while retaining a small beam spot size. Therefore a high geometric efficiency is required. However, as the detector solid angle increases the calculations required for accurate reconstruction of the data increase substantially. To overcome this limitation, the CUDA parallel computing platform was used which enables general purpose programming of NVIDIA graphics processing units (GPUs) to perform computations traditionally handled by the central processing unit (CPU). For simulation performance evaluation, the results of a CPU- and a CUDA-based simulation of a phantom are presented. Furthermore, a comparison with the simulation code in the PIXE-Tomography reconstruction software DISRA (A. Sakellariou, D.N. Jamieson, G.J.F. Legge, 2001) is also shown. Compared to a CPU implementation, the CUDA based simulation is approximately 30× faster.

  10. Fast simulation of Proton Induced X-Ray Emission Tomography using CUDA

    International Nuclear Information System (INIS)

    Beasley, D.G.; Marques, A.C.; Alves, L.C.; Silva, R.C. da

    2013-01-01

    A new 3D Proton Induced X-Ray Emission Tomography (PIXE-T) and Scanning Transmission Ion Microscopy Tomography (STIM-T) simulation software has been developed in Java and uses NVIDIA™ Common Unified Device Architecture (CUDA) to calculate the X-ray attenuation for large detector areas. A challenge with PIXE-T is to get sufficient counts while retaining a small beam spot size. Therefore a high geometric efficiency is required. However, as the detector solid angle increases the calculations required for accurate reconstruction of the data increase substantially. To overcome this limitation, the CUDA parallel computing platform was used which enables general purpose programming of NVIDIA graphics processing units (GPUs) to perform computations traditionally handled by the central processing unit (CPU). For simulation performance evaluation, the results of a CPU- and a CUDA-based simulation of a phantom are presented. Furthermore, a comparison with the simulation code in the PIXE-Tomography reconstruction software DISRA (A. Sakellariou, D.N. Jamieson, G.J.F. Legge, 2001) is also shown. Compared to a CPU implementation, the CUDA based simulation is approximately 30× faster

  11. Studying fatigue damage evolution in uni-directional composites using x-ray computed tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    , it will be possible to lower the costs of energy for wind energy based electricity. In the present work, a lab-source x-ray computed tomography equipment (Zeiss Xradia 520 Versa) has been used in connection with ex-situ fatigue testing of uni-directional composites in order to identify fibre failure during...... comparable x-ray studies) have been used in order to ensure a representative test volume during the ex-situ fatigue testing. Using the ability of the x-ray computed tomography to zoom into regions of interest, non-destructive, the fatigue damage evolution in a repeating ex-situ fatigue loaded test sample has...... improving the fatigue resistance of non-crimp fabric used in the wind turbine industry can be made....

  12. Movements of the reef manta ray (Manta alfredi) in the Red Sea using satellite and acoustic telemetry

    KAUST Repository

    Braun, Camrin D.

    2015-10-27

    Populations of mobulid rays are declining globally through a combination of directed fisheries and indirect anthropogenic threats. Understanding the movement ecology of these rays remains an important priority for devising appropriate conservation measures throughout the world’s oceans. We sought to determine manta movements across several temporal and spatial scales with a focus on quantifying site fidelity and seasonality in the northern Farasan Banks, Red Sea. We fitted manta rays with acoustic transmitters (n = 9) and pop-up satellite archival transmitting (PSAT) tags (n = 9), including four with GPS capability (Fastloc), during spring 2011 and 2012. We deployed an extensive array of acoustic receivers (n = 67) to record movements of tagged mantas in the study area. All acoustically tagged individuals traveled frequently among high-use receiver locations and reefs and demonstrated fidelity to specific sites within the array. Estimated and realized satellite tag data indicated regional movements <200 km from the tagging location, largely coastal residency, and high surface occupation. GPS-tagged individuals regularly moved within the coastal reef matrix up to ~70 km to the south but continued to return to the tagging area near the high-occupancy sites identified in the acoustic array. We also tested the accuracy of several geolocation models to determine the best approach to analyze our light-based satellite tag data. We documented significant errors in light-based movement estimates that should be considered when interpreting tracks derived from light-level geolocation, especially for animals with restricted movements through a homogenous temperature field. Despite some error in satellite tag positions, combining results from PSAT and acoustic tags in this study yielded a comprehensive representation of manta spatial ecology across several scales, and such approaches will, in the future, inform the design of appropriate management strategies for manta

  13. Compositional Determination of Shale with Simultaneous Neutron and X-ray Tomography

    Science.gov (United States)

    LaManna, J.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.

    2017-12-01

    Understanding the distribution of organic material, mineral inclusions, and porosity are critical to properly model the flow of fluids through rock formations in applications ranging from hydraulic fracturing and gas extraction, CO2 sequestration, geothermal power, and aquifer management. Typically, this information is obtained on the pore scale using destructive techniques such as focused ion beam scanning electron microscopy. Neutrons and X-rays provide non-destructive, complementary probes to gain three-dimensional distributions of porosity, minerals, and organic content along with fluid interactions in fractures and pore networks on the core scale. By capturing both neutron and X-ray tomography simultaneously it is possible to capture slowly dynamic or stochastic processes with both imaging modes. To facilitate this, NIST offers a system for simultaneous neutron and X-ray tomography at the Center for Neutron Research. This instrument provides neutron and X-ray beams capable of penetrating through pressure vessels to image the specimen inside at relevant geological conditions at resolutions ranging from 15 micrometers to 100 micrometers. This talk will discuss current efforts at identifying mineral and organic content and fracture and wettability in shales relevant to gas extraction.

  14. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography

    International Nuclear Information System (INIS)

    Zhang, Shiping; Shen, Guoqing; An, Liansuo; Niu, Yuguang

    2015-01-01

    Online monitoring of the temperature field is crucial to optimally adjust combustion within a boiler. In this paper, acoustic computed tomography (CT) technology was used to obtain the temperature profile of a furnace cross-section. The physical principles behind acoustic CT, acoustic signals and time delay estimation were studied. Then, the technique was applied to a domestic 600-MW coal-fired boiler. Acoustic CT technology was used to monitor the temperature field of the cross-section in the boiler furnace, and the temperature profile was reconstructed through ART iteration. The linear sweeping frequency signal was adopted as the sound source signal, whose sweeping frequency ranged from 500 to 3000 Hz with a sweeping cycle of 0.1 s. The generalized cross-correlation techniques with PHAT and ML were used as the time delay estimation method when the boiler was in different states. Its actual operation indicated that the monitored images accurately represented the combustion state of the boiler, and the acoustic CT system was determined to be accurate and reliable. - Highlights: • An online monitoring approach to monitor temperature field in a boiler furnace. • The paper provides acoustic CT technology to obtain the temperature profile of a furnace cross-section. • The temperature profile was reconstructed through ART iteration. • The technique is applied to a domestic 600-MW coal-fired boiler. • The monitored images accurately represent the combustion state of the boiler

  15. Analytical device for X-ray tomography by transmission

    International Nuclear Information System (INIS)

    Allemand, Robert.

    1975-01-01

    The invention concerns an analytical system for X ray tomography by transmission. The principle of these appliances is based on measuring the absorption of an X ray beam in terms of the density of the tissue being examined. In the apparatus marketed by E.M.I. (Electric and Musical Industries Ltd) of Great Britain, one hundred absorption determinations are performed during a scan lasting around one second; with this apparatus the number of scans is 180. In order to extend this examination to organs other than the brain, it is necessary to use shorter examination times. To do so, the detection cells employed are ionization chambers and they are associated with instrumentation for determining the charge collected in each chamber over a given time under the effect of the X rays which have passed through the organ being examined [fr

  16. A nanotube-based field emission x-ray source for microcomputed tomography

    International Nuclear Information System (INIS)

    Zhang, J.; Cheng, Y.; Lee, Y.Z.; Gao, B.; Qiu, Q.; Lin, W.L.; Lalush, D.; Lu, J.P.; Zhou, O.

    2005-01-01

    Microcomputed tomography (micro-CT) is a noninvasive imaging tool commonly used to probe the internal structures of small animals for biomedical research and for the inspection of microelectronics. Here we report the development of a micro-CT scanner with a carbon nanotube- (CNT-) based microfocus x-ray source. The performance of the CNT x-ray source and the imaging capability of the micro-CT scanner were characterized

  17. Noninvasive 3D Structural Analysis of Arthropod by Synchrotron X-Ray Phase Contrast Tomography

    International Nuclear Information System (INIS)

    Yao, S.; Zong, Y.; Fan, J.; Sun, Z.; Jiang, H.

    2015-01-01

    X-ray imaging techniques significantly advanced our understanding of materials and biology, among which phase contrast X-ray microscopy has obvious advantages in imaging biological specimens which have low contrast by conventional absorption contrast microscopy. In this paper, three-dimensional microstructure of arthropod with high contrast has been demonstrated by synchrotron X-ray in-line phase contrast tomography. The external morphology and internal structures of an earthworm were analyzed based upon tomographic reconstructions with and without phase retrieval. We also identified and characterized various fine structural details such as the musculature system, the digestive system, the nervous system, and the circulatory system. This work exhibited the high efficiency, high precision, and wide potential applications of synchrotron X-ray phase contrast tomography in nondestructive investigation of low-density materials and biology.

  18. The cosmic ray muon tomography facility based on large scale MRPC detectors

    Science.gov (United States)

    Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping

    2015-06-01

    Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.

  19. Materials testing by computerized tomography with neutrons and gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghobary, A M; Bakkoush, F A; Megahid, R M [Reactor and Neutron Physics Department, Nuclear Research Center, A.E.A., Cairo (Egypt)

    1997-12-31

    The method of computerized tomography by fast neutrons and gamma-rays are used for inspecting and testing of materials by non-destructive technique. The transmission technique was applied using narrow collimated beams of reactor neutrons and gamma-ray. The neutron and gamma-rays transmitted through the object inspection were measured by means of a neutron gamma detector with Ne - 213 liquid organic scintillator. The undesired pulses of neutrons or gamma-rays are rejected from the transmitted beam by a discrimination technique based on the difference in the decay part of light pulse produced by recoil electrons or recoil protons. The transmitted neutrons or gamma-rays for different projections used to get the image of the section through the object investigated using the method of filtered back projection (FBP) algorithm. 8 figs.

  20. X-ray micro-Tomography at the Advanced Light Source

    Science.gov (United States)

    The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...

  1. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    Science.gov (United States)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  2. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    Science.gov (United States)

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  3. Comparative investigation of two-dimensional imaging methods and X-ray tomography in the characterization of microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Bacaicoa, Inigo; Luetje, Martin [Kassel Univ. (Germany). Inst. of Materials Engineering, Quality and Reliability; Saelzer, Philipp [Kassel Univ. (Germany). Abt. Materialentwicklung und Verbundwerkstoffe; Umbach, Cristin [Kassel Univ. (Germany). Inst. for Structural Engineering; Brueckner-Foit, Angelika [Kassel Univ. (Germany). Inst. of Materials Engineering; Heim, Hans-Peter [Kassel Univ. (Germany). Plastics Engineering; Middendorf, Bernhard [Kassel Univ. (Germany). Dept. of Building Materials and Construction Chemistry

    2017-11-01

    The microstructural features of three different materials have been quantified by means of 2D image analysis and X-ray micro-computer tomography (CT) and the results were compared to determine the reliability of the 2D analysis in the material characterization. The 3D quantification of shrinkage pores and Fe-rich inclusions of an Al-Si-Cu alloy by X-ray tomography was compared with the statistical analysis of the 2D metallographic pictures and a significant difference in the results was found due to the complex morphology of shrinkage pores and Fe-rich particles. Furthermore, wood particles of a wood-plastic composite were measured by dynamic image analysis and X-ray tomography. Similar results were obtained for the maximum length of the particles, although the results of width differ considerably, which leads to a miscalculation of the particles aspect ratio. Finally, air voids of a foam concrete were investigated by the analysis of the 2D pictures in ImageJ and the results of the 2D circularity were compared with the values of the 3D elongation obtained by micro-computed tomography. The 3D analysis of the air voids in the foam concrete showed a more precise description of the morphology, although the 2D result are in good agreement with the results obtained by X-ray micro-tomography.

  4. Comparative investigation of two-dimensional imaging methods and X-ray tomography in the characterization of microstructure

    International Nuclear Information System (INIS)

    Bacaicoa, Inigo; Luetje, Martin; Saelzer, Philipp; Umbach, Cristin; Brueckner-Foit, Angelika; Heim, Hans-Peter; Middendorf, Bernhard

    2017-01-01

    The microstructural features of three different materials have been quantified by means of 2D image analysis and X-ray micro-computer tomography (CT) and the results were compared to determine the reliability of the 2D analysis in the material characterization. The 3D quantification of shrinkage pores and Fe-rich inclusions of an Al-Si-Cu alloy by X-ray tomography was compared with the statistical analysis of the 2D metallographic pictures and a significant difference in the results was found due to the complex morphology of shrinkage pores and Fe-rich particles. Furthermore, wood particles of a wood-plastic composite were measured by dynamic image analysis and X-ray tomography. Similar results were obtained for the maximum length of the particles, although the results of width differ considerably, which leads to a miscalculation of the particles aspect ratio. Finally, air voids of a foam concrete were investigated by the analysis of the 2D pictures in ImageJ and the results of the 2D circularity were compared with the values of the 3D elongation obtained by micro-computed tomography. The 3D analysis of the air voids in the foam concrete showed a more precise description of the morphology, although the 2D result are in good agreement with the results obtained by X-ray micro-tomography.

  5. X-ray computed tomography using curvelet sparse regularization.

    Science.gov (United States)

    Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias

    2015-04-01

    Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  6. Grating-based X-ray Dark-field Computed Tomography of Living Mice.

    Science.gov (United States)

    Velroyen, A; Yaroshenko, A; Hahn, D; Fehringer, A; Tapfer, A; Müller, M; Noël, P B; Pauwels, B; Sasov, A; Yildirim, A Ö; Eickelberg, O; Hellbach, K; Auweter, S D; Meinel, F G; Reiser, M F; Bech, M; Pfeiffer, F

    2015-10-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue.

  7. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography.

    Science.gov (United States)

    Ale, Angelique; Ermolayev, Vladimir; Herzog, Eva; Cohrs, Christian; de Angelis, Martin Hrabé; Ntziachristos, Vasilis

    2012-06-01

    The development of hybrid optical tomography methods to improve imaging performance has been suggested over a decade ago and has been experimentally demonstrated in animals and humans. Here we examined in vivo performance of a camera-based hybrid fluorescence molecular tomography (FMT) system for 360° imaging combined with X-ray computed tomography (XCT). Offering an accurately co-registered, information-rich hybrid data set, FMT-XCT has new imaging possibilities compared to stand-alone FMT and XCT. We applied FMT-XCT to a subcutaneous 4T1 tumor mouse model, an Aga2 osteogenesis imperfecta model and a Kras lung cancer mouse model, using XCT information during FMT inversion. We validated in vivo imaging results against post-mortem planar fluorescence images of cryoslices and histology data. Besides offering concurrent anatomical and functional information, FMT-XCT resulted in the most accurate FMT performance to date. These findings indicate that addition of FMT optics into the XCT gantry may be a potent upgrade for small-animal XCT systems.

  8. Computerized tomography using high resolution X-ray imaging system with a microfocus source

    International Nuclear Information System (INIS)

    Zaprazny, Z.; Korytar, D.; Konopka, P.; Ac, V.; Bielecki, J.

    2011-01-01

    In recent years there is an effort to image an internal structure of an object by using not only conventional 2D X-ray radiography but also using high resolution 3D tomography which is based on reconstruction of multiple 2D projections at various angular positions of the object. We have previously reported [1] the development and basic parameters of a high resolution x-ray imaging system with a microfocus source. We report the recent progress using this high resolution X-ray laboratory system in this work. These first findings show that our system is particularly suitable for light weight and nonmetallic objects such as biological objects, plastics, wood, paper, etc. where phase contrast helps to increase the visibility of the finest structures of the object. Phase-contrast X-ray Computerized Tomography is of our special interest because it is an emerging imaging technique that can be implemented at third generation synchrotron radiation sources and also in laboratory conditions using a microfocus X-ray tube or beam conditioning optics. (authors)

  9. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    OpenAIRE

    Soichiro Tsujino; Takashi Tomizaki

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinn...

  10. Eigenvector decomposition of full-spectrum x-ray computed tomography.

    Science.gov (United States)

    Gonzales, Brian J; Lalush, David S

    2012-03-07

    Energy-discriminated x-ray computed tomography (CT) data were projected onto a set of basis functions to suppress the noise in filtered back-projection (FBP) reconstructions. The x-ray CT data were acquired using a novel x-ray system which incorporated a single-pixel photon-counting x-ray detector to measure the x-ray spectrum for each projection ray. A matrix of the spectral response of different materials was decomposed using eigenvalue decomposition to form the basis functions. Projection of FBP onto basis functions created a de facto image segmentation of multiple contrast agents. Final reconstructions showed significant noise suppression while preserving important energy-axis data. The noise suppression was demonstrated by a marked improvement in the signal-to-noise ratio (SNR) along the energy axis for multiple regions of interest in the reconstructed images. Basis functions used on a more coarsely sampled energy axis still showed an improved SNR. We conclude that the noise-resolution trade off along the energy axis was significantly improved using the eigenvalue decomposition basis functions.

  11. Introduction to the foundations of X-ray computed tomography

    International Nuclear Information System (INIS)

    Herman, G.T.

    1979-01-01

    The author gives a brief survey of a small fraction of the existing literature on the foundations of X-ray computed tomography. While the selection is biased by the interests of the author, taken in conjunction with the other articles in this book, it should provide the means for getting acquainted with this very active field of applicable research. (Auth.)

  12. [Contribution of X-ray computed tomography in the evaluation of kidney performance].

    Science.gov (United States)

    Lemoine, Sandrine; Rognant, Nicolas; Collet-Benzaquen, Diane; Juillard, Laurent

    2012-07-01

    X-ray computer assisted tomography scanner is an imaging method based on the use of X-ray attenuation in tissue. This attenuation is proportional to the density of the tissue (without or after contrast media injection) in each pixel image of the image. Spiral scanner, the electron beam computed tomography (EBCT) scanner and multidetector computed tomography scanner allow renal anatomical measurements, such as cortical and medullary volume, but also the measurement of renal functional parameters, such as regional renal perfusion, renal blood flow and glomerular filtration rate. These functional parameters are extracted from the modeling of the kinetics of the contrast media concentration in the vascular space and the renal tissue, using two main mathematical models (the gamma variate model and the Patlak model). Renal functional imaging allows measuring quantitative parameters on each kidney separately, in a non-invasive manner, providing significant opportunities in nephrology, both for experimental and clinical studies. However, this method uses contrast media that may alter renal function, thus limiting its use in patients with chronic renal failure. Moreover, the increase irradiation delivered to the patient with multi detector computed tomography (MDCT) should be considered. Copyright © 2011 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  13. Metrological study of CFRP drilled holes with x-ray computed tomography

    OpenAIRE

    Kourra, Nadia; Warnett, Jason M.; Attridge, Alex; Kiraci, Ercihan; Gupta, Aniruddha; Barnes, Stuart; Williams, M. A. (Mark A.)

    2015-01-01

    The popularity of composite materials is continuously growing with new varieties being developed and tested with different machining processes to establish their suitability. Destructive as well as non-destructive methods, such as ultrasonics, X-ray radiography and eddy-current, have previously been used to ensure that the combination of particular machining methods and composites provide the required quality that can allow the required lifespan of the final product. X-ray computed tomography...

  14. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    Science.gov (United States)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  15. High-resolution x-ray computed tomography to understand ruminant phylogeny

    Science.gov (United States)

    Costeur, Loic; Schulz, Georg; Müller, Bert

    2014-09-01

    High-resolution X-ray computed tomography has become a vital technique to study fossils down to the true micrometer level. Paleontological research requires the non-destructive analysis of internal structures of fossil specimens. We show how X-ray computed tomography enables us to visualize the inner ear of extinct and extant ruminants without skull destruction. The inner ear, a sensory organ for hearing and balance has a rather complex three-dimensional morphology and thus provides relevant phylogenetical information what has been to date essentially shown in primates. We made visible the inner ears of a set of living and fossil ruminants using the phoenix x-ray nanotom®m (GE Sensing and Inspection Technologies GmbH). Because of the high absorbing objects a tungsten target was used and the experiments were performed with maximum accelerating voltage of 180 kV and a beam current of 30 μA. Possible stem ruminants of the living families are known in the fossil record but extreme morphological convergences in external structures such as teeth is a strong limitation to our understanding of the evolutionary history of this economically important group of animals. We thus investigate the inner ear to assess its phylogenetical potential for ruminants and our first results show strong family-level morphological differences.

  16. Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors.

    Science.gov (United States)

    Ale, Angelique; Schulz, Ralf B; Sarantopoulos, Athanasios; Ntziachristos, Vasilis

    2010-05-01

    The performance is studied of two newly introduced and previously suggested methods that incorporate priors into inversion schemes associated with data from a recently developed hybrid x-ray computed tomography and fluorescence molecular tomography system, the latter based on CCD camera photon detection. The unique data set studied attains accurately registered data of high spatially sampled photon fields propagating through tissue along 360 degrees projections. Approaches that incorporate structural prior information were included in the inverse problem by adding a penalty term to the minimization function utilized for image reconstructions. Results were compared as to their performance with simulated and experimental data from a lung inflammation animal model and against the inversions achieved when not using priors. The importance of using priors over stand-alone inversions is also showcased with high spatial sampling simulated and experimental data. The approach of optimal performance in resolving fluorescent biodistribution in small animals is also discussed. Inclusion of prior information from x-ray CT data in the reconstruction of the fluorescence biodistribution leads to improved agreement between the reconstruction and validation images for both simulated and experimental data.

  17. High temperature x-ray micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, Alastair A., E-mail: aamacdowell@lbl.gov; Barnard, Harold; Parkinson, Dilworth Y.; Gludovatz, Bernd [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); Haboub, Abdel [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); current –Lincoln Univ., Jefferson City, Missouri, 65101 (United States); Larson, Natalie; Zok, Frank [University California Santa Barbara, Santa Barbara CA 93106 (United States); Panerai, Francesco; Mansour, Nagi N. [NASA Ames Research Centre, Moffett Field, CA, 94035 (United States); Bale, Hrishikesh [University California Berkeley, Berkeley, CA 94720 (United States); current - Carl Zeiss X-ray Microscopy, 4385 Hopyard Rd #100, Pleasanton, CA 94588 (United States); Acevedo, Claire [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); University California San Francisco, San Francisco, CA 94143 (United States); Liu, Dong [University of Bristol, Bristol BS8 1TH (United Kingdom); Ritchie, Robert O. [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); University California Berkeley, Berkeley, CA 94720 (United States)

    2016-07-27

    There is increasing demand for 3D micro-scale time-resolved imaging of samples in realistic - and in many cases extreme environments. The data is used to understand material response, validate and refine computational models which, in turn, can be used to reduce development time for new materials and processes. Here we present the results of high temperature experiments carried out at the x-ray micro-tomography beamline 8.3.2 at the Advanced Light Source. The themes involve material failure and processing at temperatures up to 1750°C. The experimental configurations required to achieve the requisite conditions for imaging are described, with examples of ceramic matrix composites, spacecraft ablative heat shields and nuclear reactor core Gilsocarbon graphite.

  18. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction

    Science.gov (United States)

    Brantut, Nicolas

    2018-06-01

    Acoustic emission (AE) and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenized wave velocity measurements and approximate source locations. Here, I present a numerical method and its implementation in a free software to perform a joint inversion of AE locations together with the 3-D, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from AEs and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of AEs progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse AEs are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15 per cent, with an increase in anisotropy of up to 20 per cent. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localized changes associated with microcracking and damage generation.

  19. Concealed nuclear material identification via combined fast-neutron/γ-ray computed tomography (FNGCT): a Monte Carlo study

    Science.gov (United States)

    Licata, M.; Joyce, M. J.

    2018-02-01

    The potential of a combined and simultaneous fast-neutron/γ-ray computed tomography technique using Monte Carlo simulations is described. This technique is applied on the basis of a hypothetical tomography system comprising an isotopic radiation source (americium-beryllium) and a number (13) of organic scintillation detectors for the production and detection of both fast neutrons and γ rays, respectively. Via a combination of γ-ray and fast neutron tomography the potential is demonstrated to discern nuclear materials, such as compounds comprising plutonium and uranium, from substances that are used widely for neutron moderation and shielding. This discrimination is achieved on the basis of the difference in the attenuation characteristics of these substances. Discrimination of a variety of nuclear material compounds from shielding/moderating substances (the latter comprising lead or polyethylene for example) is shown to be challenging when using either γ-ray or neutron tomography in isolation of one another. Much-improved contrast is obtained for a combination of these tomographic modalities. This method has potential applications for in-situ, non-destructive assessments in nuclear security, safeguards, waste management and related requirements in the nuclear industry.

  20. A library least-squares approach for scatter correction in gamma-ray tomography

    Science.gov (United States)

    Meric, Ilker; Anton Johansen, Geir; Valgueiro Malta Moreira, Icaro

    2015-03-01

    Scattered radiation is known to lead to distortion in reconstructed images in Computed Tomography (CT). The effects of scattered radiation are especially more pronounced in non-scanning, multiple source systems which are preferred for flow imaging where the instantaneous density distribution of the flow components is of interest. In this work, a new method based on a library least-squares (LLS) approach is proposed as a means of estimating the scatter contribution and correcting for this. The validity of the proposed method is tested using the 85-channel industrial gamma-ray tomograph previously developed at the University of Bergen (UoB). The results presented here confirm that the LLS approach can effectively estimate the amounts of transmission and scatter components in any given detector in the UoB gamma-ray tomography system.

  1. Development of a novel micro pattern gaseous detector for cosmic ray muon tomography

    Energy Technology Data Exchange (ETDEWEB)

    Biglietti, M. [INFN Sezione di Roma Tre, Rome (Italy); Canale, V. [Università di Napoli Federico II, Naples (Italy); INFN Sezione di Napoli, Naples (Italy); Franchino, S. [CERN, Geneva (Switzerland); Iengo, P. [INFN Sezione di Napoli, Naples (Italy); CERN, Geneva (Switzerland); Iodice, M. [INFN Sezione di Roma Tre, Rome (Italy); Petrucci, F., E-mail: petrucci@roma3.infn.it [INFN Sezione di Roma Tre, Rome (Italy); Università Roma Tre, Rome (Italy)

    2016-07-11

    We propose a novel detector (Thick Groove Detector, TGD) designed for cosmic ray tomography with a spatial resolution of ~500 μm, trying to keep the construction procedure as simple as possible and to reduce the operating costs. The TGD belongs to the category of MPGDs with an amplification region less than 1 mm wide formed by alternate anode/cathode microstrips layers at different heights. A first 10×10 cm{sup 2} prototype has been built, divided in four sections with different test geometries. We present the construction procedure and the first results in terms of gain and stability. Preliminary studies with cosmic rays are also reported. - Highlights: • A new MPGD detector designed for cosmic ray tomography is presented. • With respect to existing detectors, the construction procedure is simpler and operating costs are lower. • Construction procedures and preliminary performance are shown.

  2. Inversion gradients for acoustic VTI wavefield tomography

    KAUST Repository

    Li, Vladimir; Wang, Hui; Tsvankin, Ilya; Dí az, Esteban; Alkhalifah, Tariq Ali

    2017-01-01

    Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.

  3. Inversion gradients for acoustic VTI wavefield tomography

    KAUST Repository

    Li, Vladimir

    2017-03-21

    Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.

  4. Gradient computation for VTI acoustic wavefield tomography

    KAUST Repository

    Li, Vladimir

    2016-09-06

    Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a pseudospectral operator that employes a separable approximation of the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified stack-power objective functions. We also obtain the gradient expressions for the data-domain objective function, which can incorporate borehole information necessary for stable VTI velocity analysis. These gradients are compared to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations. Whereas the kernels computed with the two wave-equation operators are similar, the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show that the modified stack-power objective function produces cleaner gradients than the more conventional DSO operator.

  5. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Jonge, Martin D. de, E-mail: martin.dejonge@synchrotron.org.au [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Ryan, Christopher G. [CSIRO Earth Science and Research Engineering, Clayton, Victoria 3168 (Australia); Jacobsen, Chris J. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Department of Physics, Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208 (United States)

    2014-08-27

    Nanoscale X-ray scanning microscopes, or X-ray nanoprobes, will benefit greatly from diffraction-limited storage rings. Here the requirements for nanoscale fluorescence tomography are explored to gain insight into the scientific opportunities and technical challenges that such sources offer. X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer.

  6. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  7. In Vitro Validation of an Artefact Suppression Algorithm in X-Ray Phase-Contrast Computed Tomography.

    Science.gov (United States)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hirano, Shin-Ichi; Gupta, Rajiv; Ando, Masami

    2015-01-01

    X-ray phase-contrast tomography can significantly increase the contrast-resolution of conventional attenuation-contrast imaging, especially for soft-tissue structures that have very similar attenuation. Just as in attenuation-based tomography, phase contrast tomography requires a linear dependence of aggregate beam direction on the incremental direction alteration caused by individual voxels along the path of the X-ray beam. Dense objects such as calcifications in biological specimens violate this condition. There are extensive beam deflection artefacts in the vicinity of such structures because they result in large distortion of wave front due to the large difference of refractive index; for such large changes in beam direction, the transmittance of the silicon analyzer crystal saturates and is no longer linearly dependent on the angle of refraction. This paper describes a method by which these effects can be overcome and excellent soft-tissue contrast of phase tomography can be preserved in the vicinity of such artefact-producing structures.

  8. Acoustic window planning for ultrasound acquisition.

    Science.gov (United States)

    Göbl, Rüdiger; Virga, Salvatore; Rackerseder, Julia; Frisch, Benjamin; Navab, Nassir; Hennersperger, Christoph

    2017-06-01

    Autonomous robotic ultrasound has recently gained considerable interest, especially for collaborative applications. Existing methods for acquisition trajectory planning are solely based on geometrical considerations, such as the pose of the transducer with respect to the patient surface. This work aims at establishing acoustic window planning to enable autonomous ultrasound acquisitions of anatomies with restricted acoustic windows, such as the liver or the heart. We propose a fully automatic approach for the planning of acquisition trajectories, which only requires information about the target region as well as existing tomographic imaging data, such as X-ray computed tomography. The framework integrates both geometrical and physics-based constraints to estimate the best ultrasound acquisition trajectories with respect to the available acoustic windows. We evaluate the developed method using virtual planning scenarios based on real patient data as well as for real robotic ultrasound acquisitions on a tissue-mimicking phantom. The proposed method yields superior image quality in comparison with a naive planning approach, while maintaining the necessary coverage of the target. We demonstrate that by taking image formation properties into account acquisition planning methods can outperform naive plannings. Furthermore, we show the need for such planning techniques, since naive approaches are not sufficient as they do not take the expected image quality into account.

  9. Development of an X-ray Computed Tomography System for Non-Invasive Imaging of Industrial Materials

    International Nuclear Information System (INIS)

    Abdullah, J.; Sipaun, S. M.; Mustapha, I.; Zain, R. M.; Rahman, M. F. A.; Mustapha, M.; Shaari, M. R.; Hassan, H.; Said, M. K. M.; Mohamad, G. H. P.; Ibrahim, M. M.

    2008-01-01

    X-ray computed tomography is a powerful non-invasive imaging technique for viewing an object's inner structures in two-dimensional cross-section images without the need to physically section it. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper describes the development of an X-ray computed tomography system for imaging of industrial materials. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. The penetrating rays from a 160 kV industrial X-ray machine were used to investigate structures that manifest in a manufactured component or product. Some results were presented in this paper

  10. Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation

    Science.gov (United States)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao

    1998-08-01

    We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.

  11. Correlative cryogenic tomography of cells using light and soft x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Elizabeth A.; Cinquin, Bertrand P.; Do, Myan; McDermott, Gerry [Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA (United States); National Center for X-ray Tomography, Advanced Light Source, Berkeley, CA (United States); Le Gros, Mark A., E-mail: MALegros@lbl.gov [Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA (United States); Physical BioSciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); National Center for X-ray Tomography, Advanced Light Source, Berkeley, CA (United States); Larabell, Carolyn A., E-mail: carolyn.larabell@ucsf.edu [Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA (United States); Physical BioSciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); National Center for X-ray Tomography, Advanced Light Source, Berkeley, CA (United States)

    2014-08-01

    Correlated imaging is the process of imaging a specimen with two complementary modalities, and then combining the two data sets to create a highly informative, composite view. A recent implementation of this concept has been the combination of soft x-ray tomography (SXT) with fluorescence cryogenic microscopy (FCM). SXT–FCM is used to visualize cells that are held in a near-native, cryopreserved. The resultant images are, therefore, highly representative of both the cellular architecture and molecular organization in vivo. SXT quantitatively visualizes the cell and sub-cellular structures; FCM images the spatial distribution of fluorescently labeled molecules. Here, we review the characteristics of SXT–FCM, and briefly discuss how this method compares with existing correlative imaging techniques. We also describe how the incorporation of a cryo-rotation stage into a cryogenic fluorescence microscope allows acquisition of fluorescence cryogenic tomography (FCT) data. FCT is optimally suited for correlation with SXT, since both techniques image the specimen in 3-D, potentially with similar, isotropic spatial resolution. - Highlights: • We describe a new correlated imaging modality: soft x-ray tomography combined (SXT) with confocal fluorescence tomography (CFT). • Data from the two modalities are combined accurately and precisely using fiducials visible in both types of data. • Cells imaged by SXT–CFT are maintained close to their native state by cryo-preservation. • SXT–CFT is applicable to most cell types, especially cells grown in suspension. • ‘Super-resolution’ microscopes being developed for CFT data acquisition match the spatial resolution of SXT.

  12. Fluorescent x-ray computed tomography to visualize specific material distribution

    Science.gov (United States)

    Takeda, Tohoru; Yuasa, Tetsuya; Hoshino, Atsunori; Akiba, Masahiro; Uchida, Akira; Kazama, Masahiro; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1997-10-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT systems consists of a silicon channel cut monochromator, an x-ray slit and a collimator for detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the K(alpha) line, incident monochromatic x-ray was set at 37 keV. At 37 keV Monte Carlo simulation showed almost complete separation between Compton scattering and the K(alpha) line. Actual experiments revealed small contamination of Compton scattering on the K(alpha) line. A clear FXCT image of a phantom was obtained. Using this system the minimal detectable dose of iodine was 30 ng in a volume of 1 mm3, and a linear relationship was demonstrated between photon counts of fluorescent x-rays and the concentration of iodine contrast material. The use of high incident x-ray energy allows an increase in the signal to noise ratio by reducing the Compton scattering on the K(alpha) line.

  13. X-ray phase radiography and tomography with grating interferometry and the reverse projection technique

    International Nuclear Information System (INIS)

    Wang, Zhili; Gao, Kun; Ge, Xin; Wu, Zhao; Chen, Heng; Wang, Shenghao; Wu, Ziyu; Zhu, Peiping; Yuan, Qingxi; Huang, Wanxia; Zhang, Kai

    2013-01-01

    X-ray grating interferometry provides substantially increased contrast over conventional absorption-based imaging methods, and therefore new and complementary information. Compared with other phase-contrast imaging techniques, x-ray grating interferometry can overcome some of the problems that have impaired the applications of x-ray phase-contrast radiography and phase tomography. Recently, special attention has been paid to the development of quantitative phase retrieval methods, which is mandatory to perform x-ray phase tomography, to achieve material identification, to differentiate distinct tissues, etc. Typically, the phase-stepping approach has been utilized for phase retrieval in grating interferometry. This method requires a grating scanning and acquisition of multiple radiographic projections, and therefore is disadvantageous in terms of imaging speed and radiation damage. Here we present an innovative, highly sensitive approach, dubbed ‘reverse projection’ (RP), for quantitative phase retrieval. Compared with the phase-stepping approach, the present RP method abandons grating scanning completely, and thus is advantageous due to its much higher efficiency and the reduced radiation dose, without the degradation of reconstruction quality. This review presents a detailed explanation of the principle of the RP method. Both radiography and phase tomography experiments are performed to validate the RP method. We believe that this new technique will find widespread applications in biomedical imaging and in vivo studies. (paper)

  14. Soft x-ray tomography on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Camacho, J.F.

    1985-06-01

    A soft x-ray tomography experiment has been performed on the Alcator C tokamak. An 80-chord array of detectors consisting of miniature PIN photodiodes was used to obtain tomographic reconstructions of the soft x-ray emissivity function's poloidal cross-section. The detectors are located around the periphery of the plasma at one toroidal location (top and bottom ports) and are capable of yielding useful information over a wide range of plasma operating parameters and conditions. The reconstruction algorithm employed makes no assumption whatsoever about plasma rotation, position, or symmetry. Its performance was tested, and it was found to work well and to be fairly insensitive to estimated levels of random and systematic errors in the data

  15. Optimization of soft X-ray tomography on the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Imríšek, Martin; Mlynář, Jan; Löffelmann, Viktor; Weinzettl, Vladimír; Odstrčil, T.; Odstrčil, M.; Tomeš, Matěj

    2016-01-01

    Roč. 61, č. 4 (2016), s. 403-408 ISSN 0029-5922. [Summer School of Plasma Diagnostics PhDiaFusion 2015: “Soft X-ray Diagnostics for Fusion Plasma”. Bezmiechowa, 16.06.2015-20.06.2015] R&D Projects: GA MŠk(CZ) LM2011021; GA MŠk LG14002; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : soft X-ray * tomography * Tikhonov regularization * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.760, year: 2016 http://www.ichtj.waw.pl/nukleonikaa/?p=1256

  16. Towards adaptive, streaming analysis of x-ray tomography data

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.; Kuprat, Andrew P.; Carson, James P.; Lansing, Carina S.; Guillen, Zoe C.; Miller, Erin A.; Lanekoff, Ingela; Laskin, Julia

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing a framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.

  17. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi

    2013-08-19

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it\\'s kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  18. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2013-01-01

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it's kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  19. Direct integration of the inverse Radon equation for X-ray computed tomography.

    Science.gov (United States)

    Libin, E E; Chakhlov, S V; Trinca, D

    2016-11-22

    A new mathematical appoach using the inverse Radon equation for restoration of images in problems of linear two-dimensional x-ray tomography is formulated. In this approach, Fourier transformation is not used, and it gives the chance to create the practical computing algorithms having more reliable mathematical substantiation. Results of software implementation show that for especially for low number of projections, the described approach performs better than standard X-ray tomographic reconstruction algorithms.

  20. Mathematics of Photoacoustic and Thermoacoustic Tomography

    KAUST Repository

    Kuchment, Peter; Kunyansky, Leonid

    2011-01-01

    The chapter surveys the mathematical models, problems, and algorithms of the thermoacoustic tomography (TAT) and photoacoustic tomography (PAT). TAT and PAT represent probably the most developed of the several novel “hybrid” methods of medical imaging. These new modalities combine different physical types of waves (electromagnetic and acoustic in case of TAT and PAT) in such a way that the resolution and contrast of the resulting method are much higher than those achievable using only acoustic or electromagnetic measurements.

  1. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source.

    Science.gov (United States)

    Le Gros, Mark A; McDermott, Gerry; Cinquin, Bertrand P; Smith, Elizabeth A; Do, Myan; Chao, Weilun L; Naulleau, Patrick P; Larabell, Carolyn A

    2014-11-01

    Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with `water window' X-rays (284-543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies.

  2. Acoustic characteristics of the water of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Somayajulu, Y.K.; Chodankar, P.V.; Murty, C.S.

    Acoustic eigen rays (rays connecting the source and receiver) have been indentified and their turning depth, path length, travel time etc. evaluated. Acoustic intensity loss due to mean environmental conditions, vergence along acoustic rays...

  3. Using X-ray computed tomography to predict carcass leanness in pigs

    International Nuclear Information System (INIS)

    Horn, P.; Kover, Gy.; Paszthy, Gy.; Berenyi, E.; Repa, I; Kovacs, G.

    1996-01-01

    Just one hundred years ago. Wilhelm Conrad Rontgen published his paper in Wurzburg describing X-rays and their effects, earning him the first Nobel Prize in Physics, presented in 1901. X-ray based diagnostic equipment revolutionized human diagnostics. A new milestone in the development of radiology was when Godfrey Hotmufield proposed to get additional anatomical information from a cross-sectional plane of the body by computer aided mathematical synthesis of an image from X-ray transmission data obtained from many different angles through the plane in consideration. The idea of the X-ray Computer Aided Tomography (CAT) was born, and the dramatic development of X-ray CAT imaging technology began, enhancing efficiency and scope of human diagnostics in human medicine. The numbers used to characterize the X-ray absorption in each picture element (pixel) of the CAT image are called ''CT'' or Hounsfield numbers (Hounsfield, 1979). The Nobel Prize was awarded to Hounsfield in 1979. X-ray Computer Aided Tomography system and software used were developed for humen medical purposes - mainly to detect anatomical physiological disorders - by all leading high-tech manufacturers in the world. As early as 1980, the potential of the new technique to be utilized in animal science was first recognized in Norway (Skjervold et al., 1981). In 1982, the Agricultural University of Norway acquired a Siemens Somatom 2 CAT system, and pioneering work started to apply X-ray CAT techniques in animal science. Based on the promising results obtained and published by the ''Norwegian school'' (Sehested, 1 984 Vangen, 1984 Allen and Vangen, 1984: Vangen and Standal, 1984), a research project proposal was prepared for the Hungarian Ministry of Agriculture and Food and the World Bank in 1985 to set up a digital imaging center at our Institute. The project was approved in 1986 (Horn, 1991a). The new digital imaging and diagnostic center started its operation in 1990, equipped first with a Siemens

  4. Computerized tomography with X-rays: an instrument in the analysis physico-chemical between formations and drilling fluids interactions

    International Nuclear Information System (INIS)

    Coelho, Marcus Vinicius Cavalcante

    1998-01-01

    In this study it is demonstrated the applicability of the Computerized Tomography technique with x-rays to evaluate the reactivity degree between various drilling fluids and argillaceous sediments (Shales and Sandstones). The research has been conducted in the Rock-Fluid Interaction Pressure Simulator (RFIPS), where the possible physico-chemical alterations can be observed through successive tomography images, which are obtained during the flow of the fluid through the samples. In addition, it was noticed the formation of mud cake in Berea Sandstones samples in the RFIPS, though the Computerized Tomography with X-rays, when utilizing drilling fluids weighted with the baryte. (author)

  5. Iterative reconstruction methods for Thermo-acoustic Tomography

    International Nuclear Information System (INIS)

    Marinesque, Sebastien

    2012-01-01

    We define, study and implement various iterative reconstruction methods for Thermo-acoustic Tomography (TAT): the Back and Forth Nudging (BFN), easy to implement and to use, a variational technique (VT) and the Back and Forth SEEK (BF-SEEK), more sophisticated, and a coupling method between Kalman filter (KF) and Time Reversal (TR). A unified formulation is explained for the sequential techniques aforementioned that defines a new class of inverse problem methods: the Back and Forth Filters (BFF). In addition to existence and uniqueness (particularly for backward solutions), we study many frameworks that ensure and characterize the convergence of the algorithms. Thus we give a general theoretical framework for which the BFN is a well-posed problem. Then, in application to TAT, existence and uniqueness of its solutions and geometrical convergence of the algorithm are proved, and an explicit convergence rate and a description of its numerical behaviour are given. Next, theoretical and numerical studies of more general and realistic framework are led, namely different objects, speeds (with or without trapping), various sensor configurations and samplings, attenuated equations or external sources. Then optimal control and best estimate tools are used to characterize the BFN convergence and converging feedbacks for BFF, under observability assumptions. Finally, we compare the most flexible and efficient current techniques (TR and an iterative variant) with our various BFF and the VT in several experiments. Thus, robust, with different possible complexities and flexible, the methods that we propose are very interesting reconstruction techniques, particularly in TAT and when observations are degraded. (author) [fr

  6. X-Ray Micro-Tomography Applied to Nasa's Materials Research: Heat Shields, Parachutes and Asteroids

    Science.gov (United States)

    Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.; Stern, Eric C.; Barnard, Harold S.; Macdowell, Alastair A.; Parkinson, Dilworth Y.

    2017-01-01

    X-ray micro-tomography is used to support the research on materials carried out at NASA Ames Research Center. The technique is applied to a variety of applications, including the ability to characterize heat shield materials for planetary entry, to study the Earth- impacting asteroids, and to improve broadcloths of spacecraft parachutes. From micro-tomography images, relevant morphological and transport properties are determined and validated against experimental data.

  7. Scanning Microwave Induced Acoustic Tomography

    National Research Council Canada - National Science Library

    Wang, Lihong V

    2002-01-01

    .... Specifically, our accomplishments include (1) an exact and an approximate time-domain reconstruction algorithm for thermoacoustic tomography in a spherical geometry was derived and published, (2...

  8. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    International Nuclear Information System (INIS)

    Cordes, Nikolaus L.; Seshadri, Srivatsan; Havrilla, George J.; Yuan, Xiaoli; Feser, Michael; Patterson, Brian M.

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  9. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, Nikolaus L., E-mail: ncordes@lanl.gov [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Seshadri, Srivatsan, E-mail: srivatsan.seshadri@zeiss.com [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Havrilla, George J. [Chemical Diagnostics and Engineering, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Yuan, Xiaoli [Julius Kruttschnitt Mineral Research Centre, University of Queensland, Indooroopilly, Brisbane, QLD 4068 (Australia); Feser, Michael [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Patterson, Brian M. [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  10. Quasimonochromatic x-ray computed tomography by the balanced filter method using a conventional x-ray source

    International Nuclear Information System (INIS)

    Saito, Masatoshi

    2004-01-01

    A quasimonochromatic x-ray computed tomography (CT) system utilizing balanced filters has recently been developed for acquiring quantitative CT images. This system consisted of basic components such as a conventional x-ray generator for radiography, a stage for mounting and rotating objects, and an x-ray line sensor camera. Metallic sheets of Er and Yb were used as the balanced filters for obtaining quasimonochromatic incident x rays that include the characteristic lines of the W Kα doublet from a tungsten target. The mean energy and energy width of the quasimonochromatic x rays were determined to be 59.0 and 1.9 keV, respectively, from x-ray spectroscopic measurements using a high-purity Ge detector. The usefulness of the present x-ray CT system was demonstrated by obtaining spatial distributions of the linear attenuation coefficients of three selected samples--a 20 cm diameter cylindrical water phantom, a 3.5 cm diameter aluminum rod, and a human head phantom. The results clearly indicate that this apparatus is surprisingly effective for estimating the distribution of the linear attenuation coefficients without any correction of the beam-hardening effect. Thus, implementing the balanced filter method on an x-ray CT scanner has promise in producing highly quantitative CT images

  11. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    Science.gov (United States)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-12-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.

  12. Revealing fatigue damage evolution in unidirectional composites for wind turbine blades using x-ray computed tomography

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    ’. Thereby, it will be possible to lower the cost of energy for wind energy based electricity. In the presented work, a lab-source x-ray computed tomography equipment (Zeiss Xradia 520 Versa) has been used in connection with ex-situ fatigue testing of uni-directional composites in order to identify fibre...... to other comparable x-ray studies) have been used in order to ensure a representative test volume during the ex-situ fatigue testing. Using the ability of the x-ray computed tomography to zoom into regions of interest, non-destructive, the fatigue damage evolution in a repeating ex-situ fatigue loaded test...... improving the fatigue resistance of non-crimp fabric used in the wind turbine industry can be made....

  13. 3D visualization of subcellular structures of Schizosaccharomyces pombe by hard X-ray tomography.

    Science.gov (United States)

    Yang, Y; Li, W; Liu, G; Zhang, X; Chen, J; Wu, W; Guan, Y; Xiong, Y; Tian, Y; Wu, Z

    2010-10-01

    Cellular structures of the fission yeast, Schizosaccharomyces pombe, were examined by using hard X-ray tomography. Since cells are nearly transparent to hard X-rays, Zernike phase contrast and heavy metal staining were introduced to improve image contrast. Through using such methods, images taken at 8 keV displayed sufficient contrast for observing cellular structures. The cell wall, the intracellular organelles and the entire structural organization of the whole cells were visualized in three-dimensional at a resolution better than 100 nm. Comparison between phase contrast and absorption contrast was also made, indicating the obvious advantage of phase contrast for cellular imaging at this energy. Our results demonstrate that hard X-ray tomography with Zernike phase contrast is suitable for cellular imaging. Its unique abilities make it have potential to become a useful tool for revealing structural information from cells, especially thick eukaryotic cells. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  14. Acoustic 3D imaging of dental structures

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Hume, W.R. [California Univ., Los Angeles, CA (United States); Douglass, G.D. [California Univ., San Francisco, CA (United States)

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  15. Film-based X-ray tomography combined with digital image processing: investigation of an ancient pattern-welded sword

    International Nuclear Information System (INIS)

    Lindegaard-Andersen, A.; Vedel, T.; Jeppesen, L.; Gottlieb, B.

    1988-01-01

    Film-based X-ray tomography and digital image processing have been used to investigate an inhomogeneous object of non-circular cross-section. The feasibility of using digital image processing to compensate for the poor contrast resolution inherent in film-based tomography has been demonstrated. (author)

  16. Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan.

    Science.gov (United States)

    Radrich, Karin; Ale, Angelique; Ermolayev, Vladimir; Ntziachristos, Vasilis

    2012-12-01

    We examine the improvement in imaging performance, such as axial resolution and signal localization, when employing limited-projection-angle fluorescence molecular tomography (FMT) together with x-ray computed tomography (XCT) measurements versus stand-alone FMT. For this purpose, we employed living mice, bearing a spontaneous lung tumor model, and imaged them with FMT and XCT under identical geometrical conditions using fluorescent probes for cancer targeting. The XCT data was employed, herein, as structural prior information to guide the FMT reconstruction. Gold standard images were provided by fluorescence images of mouse cryoslices, providing the ground truth in fluorescence bio-distribution. Upon comparison of FMT images versus images reconstructed using hybrid FMT and XCT data, we demonstrate marked improvements in image accuracy. This work relates to currently disseminated FMT systems, using limited projection scans, and can be employed to enhance their performance.

  17. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    Science.gov (United States)

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  18. Towards Noise Tomography and Passive Monitoring Using Distributed Acoustic Sensing

    Science.gov (United States)

    Paitz, P.; Fichtner, A.

    2017-12-01

    Distributed Acoustic Sensing (DAS) has the potential to revolutionize the field of seismic data acquisition. Thanks to their cost-effectiveness, fiber-optic cables may have the capability of complementing conventional geophones and seismometers by filling a niche of applications utilizing large amounts of data. Therefore, DAS may serve as an additional tool to investigate the internal structure of the Earth and its changes over time; on scales ranging from hydrocarbon or geothermal reservoirs to the entire globe. An additional potential may be in the existence of large fibre networks deployed already for telecommunication purposes. These networks that already exist today could serve as distributed seismic antennas. We investigate theoretically how ambient noise tomography may be used with DAS data. For this we extend the theory of seismic interferometry to the measurement of strain. With numerical, 2D finite-difference examples we investigate the impact of source and receiver effects. We study the effect of heterogeneous source distributions and the cable orientation by assessing similarities and differences to the Green's function. We also compare the obtained interferometric waveforms from strain interferometry to displacement interferometric wave fields obtained with existing methods. Intermediate results show that the obtained interferometric waveforms can be connected to the Green's Functions and provide consistent information about the propagation medium. These simulations will be extended to reservoir scale subsurface structures. Future work will include the application of the theory to real-data examples. The presented research depicts the early stage of a combination of theoretical investigations, numerical simulations and real-world data applications. We will therefore evaluate the potentials and shortcomings of DAS in reservoir monitoring and seismology at the current state, with a long-term vision of global seismic tomography utilizing DAS data from

  19. Laboratory of computerized tomography and X-ray of Centro Federal de Educacao Tecnologica (CEFET) from Parana State, Brazil

    International Nuclear Information System (INIS)

    Schelin, Hugo R.; Paschuk, Sergei A.; Jakubiak, Rosangela J.; David, Denise E.H.; Gomes, Cintia L.; Soboll, Daniel S.; Ruehle, Gustavo; Carvalho, Arnolfo

    1996-01-01

    The development of X-ray laboratory at CEFET-PR (Brazil) is considered. The advancement and hospital practice application of an Image Quality Program for X-ray and tomography scanning is studied. A project regarding to the modernization of installed X-ray equipment, particularly X-ray detector, software and hardware is reported

  20. Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation

    Science.gov (United States)

    Takeda, Tohoru; Yu, Quanwen; Yashiro, Toru; Yuasa, Tetsuya; Hasegawa, Yasuo; Itai, Yuji; Akatsuka, Takao

    1999-09-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT system consists of a silicon (111) channel cut monochromator, an x-ray slit and a collimator for fluorescent x ray detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the fluorescent K(alpha) line, incident monochromatic x-ray was set at 37 keV. The FXCT clearly imaged a human thyroid gland and iodine content was estimated quantitatively. In a case of hyperthyroidism, the two-dimensional distribution of iodine content was not uniform, and thyroid cancer had a small amount of iodine. FXCT can be used to detect iodine within thyroid gland quantitatively and to delineate its distribution.

  1. Application of X-ray Computed Tomography to Cultural Heritage diagnostics

    International Nuclear Information System (INIS)

    Morigi, M.P.; Casali, F.; Bettuzzi, M.; Brancaccio, R.; D'Errico, V.

    2010-01-01

    Physical methods of diagnosis are more and more frequently applied in the field of Cultural Heritage either for scientific investigations or for restoration and conservation purposes. X-ray Computed Tomography (CT) is one of the most powerful non-destructive testing techniques for the full-volume inspection of an object, as it is able to give morphological and physical information on the inner structure of the investigated sample. The great variety of size and composition that characterizes archaeological findings and art objects requires the development of tomographic systems specifically designed for Cultural Heritage analysis. In the last few years our research group has developed several acquisition systems for Digital Radiography and X-ray CT. We are able to perform high resolution micro-tomography of small objects (voxel size of few microns) as well as CT of large objects (up to 2 m of size). In this paper we will mainly focus the attention on the results of the investigation recently performed on two Japanese wooden statues with our CT system for large works of art. The CT analysis was carried out on site at the Conservation and Restoration Center ''La Venaria Reale'', where the statues have been restored before their exposition at the Oriental Art Museum in Turin. (orig.)

  2. Novel X-ray phase-contrast tomography method for quantitative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, Rikke; Nielsen, Mikkel Schou; Einarsdottir, Hildur

    2014-01-01

    The objective of this study was to evaluate the use of X-ray phase-contrast tomography combined with 3D image segmentation to investigate the heat induced structural changes in meat. The measurements were performed at the Swiss synchrotron radiation light source using a grating interferometric...... and separated into a water phase and a gel phase formed by the sarcoplasmic proteins in the exudate. The results show that X-ray phase contrast tomography offers unique possibilities in studies both the meat structure and the different meat component such as water, fat, connective tissue and myofibrils...

  3. X-ray computed tomography

    International Nuclear Information System (INIS)

    Kalender, Willi A

    2006-01-01

    X-ray computed tomography (CT), introduced into clinical practice in 1972, was the first of the modern slice-imaging modalities. To reconstruct images mathematically from measured data and to display and to archive them in digital form was a novelty then and is commonplace today. CT has shown a steady upward trend with respect to technology, performance and clinical use independent of predictions and expert assessments which forecast in the 1980s that it would be completely replaced by magnetic resonance imaging. CT not only survived but exhibited a true renaissance due to the introduction of spiral scanning which meant the transition from slice-by-slice imaging to true volume imaging. Complemented by the introduction of array detector technology in the 1990s, CT today allows imaging of whole organs or the whole body in 5 to 20 s with sub-millimetre isotropic resolution. This review of CT will proceed in chronological order focussing on technology, image quality and clinical applications. In its final part it will also briefly allude to novel uses of CT such as dual-source CT, C-arm flat-panel-detector CT and micro-CT. At present CT possibly exhibits a higher innovation rate than ever before. In consequence the topical and most recent developments will receive the greatest attention. (review)

  4. Thermal characterisation of ceramic/metal joining techniques for fusion applications using X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Ll.M., E-mail: llion.evans@ccfe.ac.uk [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Margetts, L. [School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Manchester M13 9PL (United Kingdom); Casalegno, V. [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Leonard, F.; Lowe, T.; Lee, P.D. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Schmidt, M.; Mummery, P.M. [School of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-06-15

    This work investigates the thermal performance of four novel CFC–Cu joining techniques. Two involve direct casting and brazing of Cu onto a chromium modified CFC surface, the other two pre-coat a brazing alloy with chromium using galvanisation and sputtering processes. The chromium carbide layer at the interface has been shown to improve adhesion. Thermal conductivity across the join interface was measured by laser flash analysis. X-ray tomography was performed to investigate micro-structures that might influence the thermal behaviour. It was found that thermal conductivity varied by up to 72%. Quantification of the X-ray tomography data showed that the dominant feature in reducing thermal conductivity was the lateral spread of voids at the interface. Correlations were made to estimate the extent of this effect.

  5. X-ray machine vision and computed tomography

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This survey examines how 2-D x-ray machine vision and 3-D computed tomography will be used in industry in the 1988-1995 timeframe. Specific applications are described and rank-ordered in importance. The types of companies selling and using 2-D and 3-D systems are profiled, and markets are forecast for 1988 to 1995. It is known that many machine vision and automation companies are now considering entering this field. This report looks at the potential pitfalls and whether recent market problems similar to those recently experienced by the machine vision industry will likely occur in this field. FTS will publish approximately 100 other surveys in 1988 on emerging technology in the fields of AI, manufacturing, computers, sensors, photonics, energy, bioengineering, and materials

  6. Low-dose x-ray phase-contrast and absorption CT using equally sloped tomography

    International Nuclear Information System (INIS)

    Fahimian, Benjamin P; Miao Jianwei; Mao Yu; Cloetens, Peter

    2010-01-01

    Tomographic reconstruction from undersampled and noisy projections is often desirable in transmission CT modalities for purposes of low-dose tomography and fast acquisition imaging. However under such conditions, due to the violation of the Nyquist sampling criteria and the presence of noise, reconstructions with acceptable accuracy may not be possible. Recent experiments in transmission electron tomography and coherent diffraction microscopy have shown that the technique of equally sloped tomography (EST), an exact tomographic method utilizing an oversampling iterative Fourier-based reconstruction, provides more accurate image reconstructions when the number of projections is significantly undersampled relative to filtered back projection and algebraic iterative methods. Here we extend this technique by developing new reconstruction algorithms which allow for the incorporation of advanced mathematical regularization constraints, such as the nonlocal means total variational model, in a manner that is consistent with experimental projections. We then evaluate the resulting image quality of the developed algorithm through simulations and experiments at the European Synchrotron Radiation Facility on image quality phantoms using the x-ray absorption and phase contrast CT modalities. Both our simulation and experimental results have indicated that the method can reduce the number of projections by 60-75% in parallel beam modalities, while achieving comparable or better image quality than the conventional reconstructions. As large-scale and compact synchrotron radiation facilities are currently under rapid development worldwide, the implementation of low-dose x-ray absorption and phase-contrast CT can find broad applications in biology and medicine using these advanced x-ray sources.

  7. The stochastic inverse method for ocean acoustic tomography studies

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Mahadevan, R.

    stream_size 10 stream_content_type text/plain stream_name Acoust_Lett_19_15.pdf.txt stream_source_info Acoust_Lett_19_15.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  8. Fluorescent x-ray computed tomography with synchrotron radiation using fan collimator

    Science.gov (United States)

    Takeda, Tohoru; Akiba, Masahiro; Yuasa, Tetsuya; Kazama, Masahiro; Hoshino, Atsunori; Watanabe, Yuuki; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1996-04-01

    We describe a new system of fluorescent x-ray computed tomography applied to image nonradioactive contrast materials in vivo. The system operates on the basis of computed tomography (CT) of the first generation. The experiment was also simulated using the Monte Carlo method. The research was carried out at the BLNE-5A bending-magnet beam line of the Tristan Accumulation Ring in Kek, Japan. An acrylic cylindrical phantom containing five paraxial channels of 5 and 4 mm diameters was imaged. The channels were filled with a diluted iodine-based contrast material, with iodine concentrations of 2 mg/ml and 500 (mu) g/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated clearly the K(alpha ) and K(beta 1) x-ray fluorescent lines, and the Compton scattering. CT images were reconstructed from projections generated by integrating the counts in these spectral lines. The method had adequate sensitivity and detection power, as shown by the experiment and predicted by the simulations, to show the iodine content of the phantom channels, which corresponded to 1 and 4 (mu) g iodine content per pixel in the reconstructed images.

  9. Cone beam x-ray luminescence computed tomography: a feasibility study.

    Science.gov (United States)

    Chen, Dongmei; Zhu, Shouping; Yi, Huangjian; Zhang, Xianghan; Chen, Duofang; Liang, Jimin; Tian, Jie

    2013-03-01

    The appearance of x-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging by x ray. In the previous XLCT system, the sample was irradiated by a sequence of narrow x-ray beams and the x-ray luminescence was measured by a highly sensitive charge coupled device (CCD) camera. This resulted in a relatively long sampling time and relatively low utilization of the x-ray beam. In this paper, a novel cone beam x-ray luminescence computed tomography strategy is proposed, which can fully utilize the x-ray dose and shorten the scanning time. The imaging model and reconstruction method are described. The validity of the imaging strategy has been studied in this paper. In the cone beam XLCT system, the cone beam x ray was adopted to illuminate the sample and a highly sensitive CCD camera was utilized to acquire luminescent photons emitted from the sample. Photons scattering in biological tissues makes it an ill-posed problem to reconstruct the 3D distribution of the x-ray luminescent sample in the cone beam XLCT. In order to overcome this issue, the authors used the diffusion approximation model to describe the photon propagation in tissues, and employed the sparse regularization method for reconstruction. An incomplete variables truncated conjugate gradient method and permissible region strategy were used for reconstruction. Meanwhile, traditional x-ray CT imaging could also be performed in this system. The x-ray attenuation effect has been considered in their imaging model, which is helpful in improving the reconstruction accuracy. First, simulation experiments with cylinder phantoms were carried out to illustrate the validity of the proposed compensated method. The experimental results showed that the location error of the compensated algorithm was smaller than that of the uncompensated method. The permissible region strategy was applied and reduced the reconstruction error to less than 2 mm. The robustness and stability were then

  10. Simulations and imaging algorithm development for a cosmic ray muon tomography system for the detection of special nuclear material in transport containers

    International Nuclear Information System (INIS)

    Jewett, C.; Anghel, V.N.P.; Armitage, J.; Boudjemline, K.; Botte, J.; Bryman, D.; Bueno, J.; Charles, E.; Cousins, T.; Didsbury, R.; Erhardt, L.; Erlandson, A.; Gallant, G.; Jason, A.; Jonkmans, G.; Liu, Z.; McCall, M.; Noel, S.; Oakham, F.G.; Ong, D.; Stocki, T.; Thompson, M.; Waller, D.

    2011-01-01

    The Cosmic Ray Inspection and Passive Tomography (CRIPT) collaboration is developing a cosmic ray muon tomography system to identify Special Nuclear Materials (SNM) in cargo containers. In order to gauge the viability of the technique, and to determine the best detector type, GEANT4 was used to simulate the passage of cosmic ray muons through a cargo container. The scattering density estimation (SDE) algorithm was developed and tested with data from these simulations to determine how well it could reconstruct the interior of a container. The simulation results revealed the ability of cosmic ray muon tomography techniques to image spheres of lead-shielded Special Nuclear Materials (SNM), such as uranium or plutonium, in a cargo container, containing a cargo of granite slabs. (author)

  11. Simulations and imaging algorithm development for a cosmic ray muon tomography system for the detection of special nuclear material in transport containers

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, C.; Anghel, V.N.P. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Armitage, J.; Boudjemline, K.; Botte, J. [Carleton Univ., Dept. of Physics, Ottawa, Ontario (Canada); Bryman, D. [Advanced Applied Physics Solutions, Vancouver, British Columbia (Canada); Univ. of British Columbia, Vancouver, British Columbia (Canada); Bueno, J. [Advanced Applied Physics Solutions, Vancouver, British Columbia (Canada); Charles, E. [Canada Border Services Agency, Ottawa, Ontario (Canada); Cousins, T. [International Safety Research, Ottawa, Ontario (Canada); Didsbury, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Erhardt, L. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Erlandson, A. [Carleton Univ., Dept. of Physics, Ottawa, Ontario (Canada); Gallant, G. [Canada Border Services Agency, Ottawa, Ontario (Canada); Jason, A. [Los Alamos National Laboratory, Los Alamos (United States); Jonkmans, G. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Liu, Z. [Advanced Applied Physics Solutions, Vancouver, British Columbia (Canada); Univ. of British Columbia, Vancouver, British Columbia (Canada); McCall, M.; Noel, S. [International Safety Research, Ottawa, Ontario (Canada); Oakham, F.G. [Carleton Univ., Dept. of Physics, Ottawa, Ontario (Canada); TRIUMF, Vancouver, British Columbia, (Canada); Ong, D.; Stocki, T. [Health Canada, Ottawa, Ontario (Canada); Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Waller, D. [Defence Research and Development Canada, Ottawa, Ontario (Canada)

    2011-07-01

    The Cosmic Ray Inspection and Passive Tomography (CRIPT) collaboration is developing a cosmic ray muon tomography system to identify Special Nuclear Materials (SNM) in cargo containers. In order to gauge the viability of the technique, and to determine the best detector type, GEANT4 was used to simulate the passage of cosmic ray muons through a cargo container. The scattering density estimation (SDE) algorithm was developed and tested with data from these simulations to determine how well it could reconstruct the interior of a container. The simulation results revealed the ability of cosmic ray muon tomography techniques to image spheres of lead-shielded Special Nuclear Materials (SNM), such as uranium or plutonium, in a cargo container, containing a cargo of granite slabs. (author)

  12. Diagnostic perspectives of mobile x-ray computerized tomography

    International Nuclear Information System (INIS)

    Portnoj, L.M.; Dibirov, M.P.; Denisova, L.B.

    1992-01-01

    Mobile x-ray computerized tomography (CT) and an organization and methodological scheme of its application were assessed. CT is realized in special hospitals of large regions, where the patients with the optimal indications for CT are assembled. Over 15000 examinations were carried out with the use of the suggested CT program over 4 years, that resulted in detection of 1295 brain tumors, 804 cases with neoplastic involvement of the abdominal cavity and the retroperitoneal space. Wide application of mobile CT devices according to the program will help to decide the problem of unavailability of such examinations. One mobile device may replace 3 permanent CT devices

  13. Excitation-resolved cone-beam x-ray luminescence tomography.

    Science.gov (United States)

    Liu, Xin; Liao, Qimei; Wang, Hongkai; Yan, Zhuangzhi

    2015-07-01

    Cone-beam x-ray luminescence computed tomography (CB-XLCT), as an emerging imaging technique, plays an important role in in vivo small animal imaging studies. However, CB-XLCT suffers from low-spatial resolution due to the ill-posed nature of reconstruction. We improve the imaging performance of CB-XLCT by using a multiband excitation-resolved imaging scheme combined with principal component analysis. To evaluate the performance of the proposed method, the physical phantom experiment is performed with a custom-made XLCT/XCT imaging system. The experimental results validate the feasibility of the method, where two adjacent nanophosphors (with an edge-to-edge distance of 2.4 mm) can be located.

  14. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  15. Investigating the use of the acousto-optic effect for acoustic holography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Fernandez Grande, Efren; Jacobsen, Finn

    2012-01-01

    Recent studies have demonstrated that the acousto-optic effect, that is, the interaction between sound and light, can be used as a means to visualize acoustic fields in the audible frequency range. The changes of density caused by sound waves propagating in air induce phase shifts to a laser beam...... that travels through the acoustic field. This phenomenon can in practice be captured with a laser Doppler vibrometer (LDV), and the pressure distribution of the acoustic field can be reconstructed using tomography. The present work investigates the potential of the acousto-optic effect in acoustic holography....... Two different holographic methods are examined for this purpose. One method first reconstructs the hologram plane using acousto-optic tomography and then propagates it using conventional near-field acoustic holography (NAH). The other method exploits the so-called Fourier Slice Theorem and bases all...

  16. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography.

    Science.gov (United States)

    Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing

    2011-04-11

    Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America

  17. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    Czech Academy of Sciences Publication Activity Database

    Harris, W.H.; Guillen, D.P.; Kloužek, Jaroslav; Pokorný, P.; Yano, T.; Lee, S.; Schweiger, M. J.; Hrma, P.

    2017-01-01

    Roč. 100, č. 9 (2017), s. 3883-3894 ISSN 0002-7820 Institutional support: RVO:67985891 Keywords : borosilicate glass * computed tomography * glass melting * morphology * nuclear waste * X-ray Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.841, year: 2016

  18. A Monte Carlo simulation of scattering reduction in spectral x-ray computed tomography

    DEFF Research Database (Denmark)

    Busi, Matteo; Olsen, Ulrik Lund; Bergbäck Knudsen, Erik

    2017-01-01

    In X-ray computed tomography (CT), scattered radiation plays an important role in the accurate reconstruction of the inspected object, leading to a loss of contrast between the different materials in the reconstruction volume and cupping artifacts in the images. We present a Monte Carlo simulation...

  19. Cross-sectional imaging with rotational panoramic X-ray machine for preoperative assessment of dental implant site. Comparisons of imaging properties with conventional film tomography and computed tomography

    International Nuclear Information System (INIS)

    Makihara, Masahiro; Nishikawa, Keiichi; Kuroyanagi, Kinya

    2001-01-01

    To clarify the validity of cross-sectional imaging with rotational panoramic x-ray machine for preoperative assessment of the dental implant site, the imaging properties were compared with those of spiral tomography and multi-planer reconstruction (MPR) manipulation of x-ray computed tomography. Cross-sectional imaging of the maxilla and mandible of an edentulous dry skull was performed by each technique at an image layer thickness of 1 mm. Steel spheres were used to identify cross-sectional planes and measure distance. Six oral radiologists scored the image clarity of structures with 5-grade rating scales and measured the distance between images of 2 steel spheres. Each measured distance was divided by the magnification factor. The actual distance was also measured on the skull. The score and the distance were statistically compared. The Spearman's rank correlation coefficients for the score and the absolute values of the difference in distances measured by different observers were calculated as test units to compare inter-observer agreements statistically. The same observation and measurement were repeated to compare intra-observer agreement. Image clarity of the linear tomography available with a panoramic machine was comparable to spiral tomography and superior to MPR, except for the cortical bone on the lingual side. The inter- and intra-observer agreements were comparable. The accuracy for measurement of distance, the inter- and intra-observer agreements were also comparable to the spiral tomography and superior to those of MPR. Therefore, it is concluded that cross-sectional imaging with a rotational panoramic x-ray machine is useful for preoperative assessment of the dental implant site. (author)

  20. Characterization of scalar mixing in dense gaseous jets using X-ray computed tomography

    Science.gov (United States)

    Dunnmon, Jared; Sobhani, Sadaf; Kim, Tae Wook; Kovscek, Anthony; Ihme, Matthias

    2015-10-01

    An experimental technique based on X-ray computed tomography (XCT) is used to characterize scalar mixing of a krypton jet with air at turbulent conditions. The high radiodensity of the krypton gas enables non-intrusive volumetric measurements of gas density and mixture composition based on spatial variations in X-ray attenuation. Comparisons of these measurements to both computational results from large-eddy simulations and data from previous experiments are presented, and the viability of this diagnostic technique is assessed. Important aspects of X-ray attenuation theory, XCT practice, and relevant error analysis are considered in data processing, and their impacts on the future development of this technique are discussed.

  1. Study of dielectric liquids at room temperature for high energy x ray Tomography

    International Nuclear Information System (INIS)

    Lepert, S.

    1989-09-01

    The detection of X rays by means of a dielectric liquid detector system, at room temperature, is discussed. The physico-chemical properties of a dielectric liquid, the construction of a cleaning device and of two electrode configurations, and the utilization of different amplifier models are studied. The results allowed the analysis and characterization of the behavior of the dielectric liquid under X ray irradiation. Data obtained is confirmed by computerized simulation. The choice of Tetramethyl-germanium for the X ray tomography, applied in nondestructive analysis, is explained. The investigation of the system parameters allowed the setting of the basis of a prototype project for a multi-detector [fr

  2. Combined X-ray fluorescence and absorption computed tomography using a synchrotron beam

    International Nuclear Information System (INIS)

    Hall, C

    2013-01-01

    X-ray computed tomography (CT) and fluorescence X-ray computed tomography (FXCT) using synchrotron sources are both useful tools in biomedical imaging research. Synchrotron CT (SRCT) in its various forms is considered an important technique for biomedical imaging since the phase coherence of SR beams can be exploited to obtain images with high contrast resolution. Using a synchrotron as the source for FXCT ensures a fluorescence signal that is optimally detectable by exploiting the beam monochromaticity and polarisation. The ability to combine these techniques so that SRCT and FXCT images are collected simultaneously, would bring distinct benefits to certain biomedical experiments. Simultaneous image acquisition would alleviate some of the registration difficulties which comes from collecting separate data, and it would provide increased information about the sample: functional X-ray images from the FXCT, with the morphological information from the SRCT. A method is presented for generating simultaneous SRCT and FXCT images. Proof of principle modelling has been used to show that it is possible to recover a fluorescence image of a point-like source from an SRCT apparatus by suitably modulating the illuminating planar X-ray beam. The projection image can be successfully used for reconstruction by removing the static modulation from the sinogram in the normal flat and dark field processing. Detection of the modulated fluorescence signal using an energy resolving detector allows the position of a fluorescent marker to be obtained using inverse reconstruction techniques. A discussion is made of particular reconstruction methods which might be applied by utilising both the CT and FXCT data.

  3. Observations on the Performance of X-Ray Computed Tomography for Dimensional Metrology

    Science.gov (United States)

    Corcoran, H. C.; Brown, S. B.; Robson, S.; Speller, R. D.; McCarthy, M. B.

    2016-06-01

    X-ray computed tomography (XCT) is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.

  4. OBSERVATIONS ON THE PERFORMANCE OF X-RAY COMPUTED TOMOGRAPHY FOR DIMENSIONAL METROLOGY

    Directory of Open Access Journals (Sweden)

    H. C. Corcoran

    2016-06-01

    Full Text Available X-ray computed tomography (XCT is a rising technology within many industries and sectors with a demand for dimensional metrology, defect, void analysis and reverse engineering. There are many variables that can affect the dimensional metrology of objects imaged using XCT, this paper focusses on the effects of beam hardening due to the orientation of the workpiece, in this case a holeplate, and the volume of material the X-rays travel through. Measurements discussed include unidirectional and bidirectional dimensions, radii of cylinders, fit point deviations of the fitted shapes and cylindricity. Results indicate that accuracy and precision of these dimensional measurements are affected in varying amounts, both by the amount of material the X-rays have travelled through and the orientation of the object.

  5. Comparative analysis of brain X-ray computed tomography in patients with acromegaly before and after gamma-ray teletherapy

    International Nuclear Information System (INIS)

    Balkanov, A.S.; Stashuk, G.A.; Polyakov, P.Yu.; Sherman, L.A.; Bychenkov, O.A.

    1999-01-01

    Results are analysed of the application of X-ray computerized tomography (KT) of brain in acromegaly patients before and after remote gamma therapy (RGT). Efficiency is shown of the KT method permitting both to reveal pituitary adenomas in case of acromegaly and to be applicable in the combination with other methods to assessment of the RGT efficiency when treating acromegaly [ru

  6. Characterization of feed channel spacer performance using geometries obtained by X-ray computed tomography

    KAUST Repository

    Haaksman, Viktor A.; Siddiqui, Amber; Schellenberg, Carsten; Kidwell, James; Vrouwenvelder, Johannes S.; Picioreanu, Cristian

    2016-01-01

    design from X-ray computed tomography (CT) scans. The method revealed that the filaments of industrial spacers have a highly variable cross-section size and shape, which impact the flow characteristics in the feed channel. The pressure drop and friction

  7. Characteristics of the neutron and X-ray tomography system at the SANRAD facility in South Africa

    International Nuclear Information System (INIS)

    Beer, F.C. de

    2005-01-01

    Through collaboration with the NEUTRA-facility at the Paul Scherrer Institute (PSI), Switzerland, a turnkey tomography system was designed specifically for the beam geometry at the South African Neutron Radiography (SANRAD) facility, located on the beam port floor of the SAFARI-1 nuclear research reactor and operated by Necsa. The new system is currently being extensively utilized in both 2D and 3D mode for various applications in general industry and institutional activities. The basic performance characteristics of its 3D tomography capability in a neutron and X-ray configuration are presented with the aid of several case studies. An X-ray source has also been commissioned to further diversify the capabilities of the facility

  8. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.

    Science.gov (United States)

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-19

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  9. Computed tomography for light materials using a monochromatic X-ray beam produced by parametric X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Y., E-mail: yahayak@lebra.nihon-u.ac.jp [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Hayakawa, K.; Inagaki, M. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Kaneda, T. [Nihon University School of Dentistry at Matsudo, Sakaecho-Nishi 2-870-1, Matsudo 271-8587 (Japan); Nakao, K.; Nogami, K. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Sakae, T. [Nihon University School of Dentistry at Matsudo, Sakaecho-Nishi 2-870-1, Matsudo 271-8587 (Japan); Sakai, T.; Sato, I. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Takahashi, Y. [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-8501 (Japan); Tanaka, T. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan)

    2013-08-15

    Computed tomography (CT) for light materials such as soft biological tissues was performed using a monochromatic X-ray beam provided by a parametric X-ray radiation (PXR) source at the Laboratory for Electron Beam Research and Application (LEBRA) of Nihon University. Using a high-efficiency flat panel detector (FPD), each projection image for CT was taken with exposure times of 5 or 10 s, and 60–360 projection images in each run were obtained with total measurement time of 5 min to 1 h. CT images were obtained from the projection images using the conventional calculation method. The typical tomograms obtained had sharp outlines, which are likely attributable to the propagation-based phase contrast.

  10. Principles of image reconstruction in X-ray computer tomography

    International Nuclear Information System (INIS)

    Schwierz, G.; Haerer, W.; Ruehrnschopf, E.P.

    1978-01-01

    The presented geometrical interpretation elucidates the convergence behavior of the classical iteration technique in X-ray computer tomography. The filter techniques nowadays used in preference are derived from a concept of linear system theory which excels due to its particular clarity. The one-dimensional form of the filtering is of decisive importance for immediate image reproduction as realized by both Siemens systems, the SIRETOM 2000 head scanner and the SOMATOM whole-body machine, as such unique to date for whole-body machines. The equivalence of discrete and continuous filtering when dealing with frequency-band-limited projections is proved. (orig.) [de

  11. Assessment of natural enamel lesions with optical coherence tomography in comparison with microfocus x-ray computed tomography

    Science.gov (United States)

    Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2015-01-01

    Abstract. A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography (μCT) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In μCT, the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer–Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to 606  μm in SS-OCT. A correlation between μCT and SS-OCT was found regarding lesion depth (R=0.81, p<0.001) and also surface layer thickness (R=0.76, p<0.005). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution μCT without the use of x-ray. PMID:26158079

  12. Compression of Born ratio for fluorescence molecular tomography/x-ray computed tomography hybrid imaging: methodology and in vivo validation.

    Science.gov (United States)

    Mohajerani, Pouyan; Ntziachristos, Vasilis

    2013-07-01

    The 360° rotation geometry of the hybrid fluorescence molecular tomography/x-ray computed tomography modality allows for acquisition of very large datasets, which pose numerical limitations on the reconstruction. We propose a compression method that takes advantage of the correlation of the Born-normalized signal among sources in spatially formed clusters to reduce the size of system model. The proposed method has been validated using an ex vivo study and an in vivo study of a nude mouse with a subcutaneous 4T1 tumor, with and without inclusion of a priori anatomical information. Compression rates of up to two orders of magnitude with minimum distortion of reconstruction have been demonstrated, resulting in large reduction in weight matrix size and reconstruction time.

  13. Technical Note. The Concept of a Computer System for Interpretation of Tight Rocks Using X-Ray Computed Tomography Results

    Directory of Open Access Journals (Sweden)

    Habrat Magdalena

    2017-03-01

    Full Text Available The article presents the concept of a computer system for interpreting unconventional oil and gas deposits with the use of X-ray computed tomography results. The functional principles of the solution proposed are presented in the article. The main goal is to design a product which is a complex and useful tool in a form of a specialist computer software for qualitative and quantitative interpretation of images obtained from X-ray computed tomography. It is devoted to the issues of prospecting and identification of unconventional hydrocarbon deposits. The article focuses on the idea of X-ray computed tomography use as a basis for the analysis of tight rocks, considering especially functional principles of the system, which will be developed by the authors. The functional principles include the issues of graphical visualization of rock structure, qualitative and quantitative interpretation of model for visualizing rock samples, interpretation and a description of the parameters within realizing the module of quantitative interpretation.

  14. Initial evaluation of image performance of a 3-D x-ray system: phantom-based comparison of 3-D tomography with conventional computed tomography.

    Science.gov (United States)

    Benz, Robyn Melanie; Garcia, Meritxell Alzamora; Amsler, Felix; Voigt, Johannes; Fieselmann, Andreas; Falkowski, Anna Lucja; Stieltjes, Bram; Hirschmann, Anna

    2018-01-01

    Phantom-based initial performance assessment of a prototype three-dimensional (3-D) x-ray system and comparison of 3-D tomography with computed tomography (CT) were proposed. A 3-D image quality phantom was scanned with a prototype version of 3-D cone-beam CT imaging implemented on a twin robotic x-ray system using three trajectories (163 deg = table, 188 deg = upright, and 200 deg = side), six tube voltages (60, 70, 81, 90, 100, and 121 kV), and four detector doses (0.348, 0.696, 1.740, and [Formula: see text]). CT was obtained with a clinical protocol. Spatial resolution (line pairs/cm) and soft-tissue-contrast resolution were assessed by two independent readers. Radiation dose was assessed. Descriptive and analysis of variance (ANOVA) ([Formula: see text]) were performed. With 3-D tomography, a maximum of 16 lp/cm was visible and best soft-tissue-contrast resolution was 2 mm at 30 Hounsfield units (HU) for 160 projections. With CT, 10 lp/cm was visible and soft-tissue-contrast resolution was 4 mm at 20 HU. The upright trajectory yielded significantly better spatial resolution and soft tissue contrast, and the side trajectory yielded significantly higher soft tissue contrast than the table trajectory ([Formula: see text]). Radiation dose was higher in 3-D tomography (45 to 704 mGycm) than CT (44 mGycm). Three-dimensional tomography renders overall equal or higher spatial resolution and comparable soft tissue contrast to CT for medium- and high-dose protocols in the side and upright trajectories, but with higher radiation doses.

  15. What is Computed Tomography?

    Science.gov (United States)

    ... Imaging Medical X-ray Imaging What is Computed Tomography? Share Tweet Linkedin Pin it More sharing options ... Chest X ray Image back to top Computed Tomography (CT) Although also based on the variable absorption ...

  16. A hyperspectral X-ray computed tomography system for enhanced material identification

    Science.gov (United States)

    Wu, Xiaomei; Wang, Qian; Ma, Jinlei; Zhang, Wei; Li, Po; Fang, Zheng

    2017-08-01

    X-ray computed tomography (CT) can distinguish different materials according to their absorption characteristics. The hyperspectral X-ray CT (HXCT) system proposed in the present work reconstructs each voxel according to its X-ray absorption spectral characteristics. In contrast to a dual-energy or multi-energy CT system, HXCT employs cadmium telluride (CdTe) as the x-ray detector, which provides higher spectral resolution and separate spectral lines according to the material's photon-counter working principle. In this paper, a specimen containing ten different polymer materials randomly arranged was adopted for material identification by HXCT. The filtered back-projection algorithm was applied for image and spectral reconstruction. The first step was to sort the individual material components of the specimen according to their cross-sectional image intensity. The second step was to classify materials with similar intensities according to their reconstructed spectral characteristics. The results demonstrated the feasibility of the proposed material identification process and indicated that the proposed HXCT system has good prospects for a wide range of biomedical and industrial nondestructive testing applications.

  17. Statistical reconstruction for cosmic ray muon tomography.

    Science.gov (United States)

    Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J

    2007-08-01

    Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.

  18. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography

    International Nuclear Information System (INIS)

    Bonnin, Anne; Duvauchelle, Philippe; Kaftandjian, Valérie; Ponard, Pascal

    2014-01-01

    This paper focuses on dual-energy X-ray computed tomography and especially the decomposition of the measured attenuation coefficient in a mass density and atomic number basis. In particular, the concept of effective atomic number is discussed. Although the atomic number is well defined for chemical elements, the definition of an effective atomic number for any compound is not an easy task. After reviewing different definitions available in literature, a definition related to the method of measurement and X-ray energy, is suggested. A new concept of effective mass density is then introduced in order to characterize material from dual-energy computed tomography. Finally, this new concept and definition are applied on a simulated case, focusing on explosives identification in luggage

  19. Preliminary results for X-ray phase contrast micro-tomography on the biomedical imaging beamline at SSRF

    International Nuclear Information System (INIS)

    Chen Rongchang; Du Guohao; Xie Honglan; Deng Biao; Tong Yajun; Hu Wen; Xue Yanling; Chen Can; Ren Yuqi; Zhou Guangzhao; Wang Yudan; Xiao Tiqiao; Xu Hongjie; Zhu Peiping

    2009-01-01

    With X-ray phase contrast micro-tomography(CT), one is able to obtain edge-enhanced image of internal structure of the samples. This allows visualization of the fine internal features for biology tissues, which is not able to resolve by conventional absorption CT. After preliminary modulation, monochromatic X-rays (8-72.5 keV) are available for experiments on the experimental station of the biomedical imaging beamline at Shanghai Synchrotron Radiation Facility(SSRF). In this paper, we report the in line phase contrast micro-tomography(IL-XPCT) of biology sample (locust) on the beamline. The reconstruct slice images and three dimensional rendering images of the locust were obtained, with clearly visible images of locus's wing, surface texture and internal tissue distribution. (authors)

  20. Application of X-ray scanning and tomography to evaluate the filtercake removal efficiency

    International Nuclear Information System (INIS)

    Lopes, R.T.; Oliveira, L.F. de; Miranda, C.R.; Leite, J.C.

    2004-01-01

    The removal of the filtercake formed during the drilling operation is essential for a successful cementing job. Nowadays, the use of synthetic base fluids brings the necessity of proceeding new evaluations of the efficiency of the washes in removing the filtercake and to guarantee the wettability inversion of the formation from oil to waterwet. It is presented here the application of X-ray tomographic scanning to evaluate the filtercake removal efficiency performed by different washes. This technique uses a natural core with a perforation, where a filtercake is formed by circulating a drilling fluid. The wash is circulated through this perforation and the filtercake removal efficiency is measured precisely by computer tomography scanning. This procedure enables the filtercake removal visualization during the wash circulation through the formation and from the data obtained from the X-ray tomography it is possible to select the most appropriate wash for a given drilling fluid, as well as to predict the necessary contact time between the wash and the formation to achieve an appropriate filtercake removal

  1. SOUND-SPEED TOMOGRAPHY USING FIRST-ARRIVAL TRANSMISSION ULTRASOUND FOR A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; QUAN, YOULI [Los Alamos National Laboratory

    2007-01-31

    Sound-speed tomography images can be used for cancer detection and diagnosis. Tumors have generally higher sound speeds than the surrounding tissue. Quality and resolution of tomography images are primarily determined by the insonification/illumination aperture of ultrasound and the capability of the tomography method for accurately handling heterogeneous nature of the breast. We investigate the capability of an efficient time-of-flight tomography method using transmission ultrasound from a ring array for reconstructing sound-speed images of the breast. The method uses first arrival times of transmitted ultrasonic signals emerging from non-beamforming ultrasound transducers located around a ring. It properly accounts for ray bending within the breast by solving the eikonal equation using a finite-difference scheme. We test and validate the time-of-flight transmission tomography method using synthetic data for numerical breast phantoms containing various objects. In our simulation, the objects are immersed in water within a ring array. Two-dimensional synthetic data are generated using a finite-difference scheme to solve acoustic-wave equation in heterogeneous media. We study the reconstruction accuracy of the tomography method for objects with different sizes and shapes as well as different perturbations from the surrounding medium. In addition, we also address some specific data processing issues related to the tomography. Our tomography results demonstrate that the first-arrival transmission tomography method can accurately reconstruct objects larger than approximately five wavelengths of the incident ultrasound using a ring array.

  2. Advanced X-ray radiography and tomography in several engineering applications

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Dammer, J.; Jakůbek, J.; Jeon, I.; Jiroušek, Ondřej; Kroupa, M.; Zlámal, Petr

    2011-01-01

    Roč. 633, č. 1 (2011), s. 152-155 ISSN 0168-9002. [International workshop on radiation imaging detectors /11./. Praha, 26.06.2009-02.07.2009] R&D Projects: GA ČR(CZ) GA103/09/2101 Grant - others:GA MŠk(CZ) LC06041 Program:LC Institutional research plan: CEZ:AV0Z20710524 Keywords : digital radiography * computed tomography * X-ray crack imaging Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.207, year: 2011 http://dx.doi.org/10.1016/j.nima.2010.06.152

  3. The Medical Case for a Positron Emission Tomography and X-ray Computed Tomography Combined Service in Oman.

    Science.gov (United States)

    Al-Bulushi, Naima K; Bailey, Dale; Mariani, Giuliano

    2013-11-01

    The value of a positron emission tomography and X-ray computed tomography (PET/CT) combined service in terms of diagnostic accuracy, cost-effectiveness and impact on clinical decision-making is well-documented in the literature. Its role in the management of patients presenting with cancer is shifting from early staging and restaging to the early assessment of the treatment response. Currently, the application of PET/CT has extended to non-oncological specialties-mainly neurology, cardiology and rheumatology. A further emerging application for PET/CT is the imaging of infection/inflammation. This article illustrates some of the PET/CT applications in both oncological and non-oncological disorders. In view of the absence of this modality in Oman, this article aims to increase the awareness of the importance of these imaging modalities and their significant impact on diagnosis and management in both oncological and non-oncological specialties for patients of all age groups as well as the decision-makers.

  4. Generalized algorithm for X-ray projections generation in cone-beam tomography

    International Nuclear Information System (INIS)

    Qin Zhongyuan; Mu Xuanqin; Wang Ping; Cai Yuanlong; Hou Chuanjian

    2002-01-01

    In order to get rid of random factors in the measurement so as to support proceeding 3D reconstruction, a general approach is presented to obtain the X-ray projections in cone-beam tomography. The phantom is firstly discretized into cubic volume through inverse transformation then a generalized projection procedure is proposed to the digitized result without concerning what the phantom exactly is. In the second step, line integrals are calculated to obtain the projection of each X-ray through accumulation of tri-linear interpolation. Considering projection angles, a rotation matrix is proposed to the X-ray source and the detector plane so projections in arbitrary angles can be got. In this approach the algorithm is easy to be extended and irregular objects can also be processed. The algorithm is implemented in Visual C++ and experiments are done using different models. Satisfactory results are obtained. It makes good preparation for the proceeding reconstruction

  5. Ray-tracing traveltime tomography versus wave-equation traveltime inversion for near-surface seismic land data

    KAUST Repository

    Fu, Lei; Hanafy, Sherif M.

    2017-01-01

    . This initial starting model can be obtained by inverting traveltimes with ray-tracing traveltime tomography (RT) or wave-equation traveltime (WT) inversion. We have found that WT can provide a more accurate tomogram than RT by inverting the first

  6. Application of X-ray phase-contrast tomography in quantative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, R.; Nielsen, M. S.; Einarsdottir, Hildur

    2013-01-01

    X-ray computed tomography is increasingly used in the studies of food structure. This paper describes the perspectives of use of phase contrast computed tomography in studies of heat induced structural changes in meat. From the data it was possible to obtain reconstructed images of the sample...... structure for visualization and qualitative studies of the sample structure. Further data segmentation allowed structural changes to be quantified....

  7. X-Ray Computed Tomography of Tranquility Base Moon Rock

    Science.gov (United States)

    Jones, Justin S.; Garvin, Jim; Viens, Mike; Kent, Ryan; Munoz, Bruno

    2016-01-01

    X-ray Computed Tomography (CT) was used for the first time on the Apollo 11 Lunar Sample number 10057.30, which had been previously maintained by the White House, then transferred back to NASA under the care of Goddard Space Flight Center. Results from this analysis show detailed images of the internal structure of the moon rock, including vesicles (pores), crystal needles, and crystal bundles. These crystals, possibly the common mineral ilmenite, are found in abundance and with random orientation. Future work, in particular a greater understanding of these crystals and their formation, may lead to a more in-depth understanding of the lunar surface evolution and mineral content.

  8. Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography

    International Nuclear Information System (INIS)

    Wang, Jinguo; Zhao, Zhiqin; Song, Jian; Chen, Guoping; Nie, Zaiping; Liu, Qing-Huo

    2015-01-01

    Purpose: An iterative reconstruction method has been previously reported by the authors of this paper. However, the iterative reconstruction method was demonstrated by solely using the numerical simulations. It is essential to apply the iterative reconstruction method to practice conditions. The objective of this work is to validate the capability of the iterative reconstruction method for reducing the effects of acoustic heterogeneity with the experimental data in microwave induced thermoacoustic tomography. Methods: Most existing reconstruction methods need to combine the ultrasonic measurement technology to quantitatively measure the velocity distribution of heterogeneity, which increases the system complexity. Different to existing reconstruction methods, the iterative reconstruction method combines time reversal mirror technique, fast marching method, and simultaneous algebraic reconstruction technique to iteratively estimate the velocity distribution of heterogeneous tissue by solely using the measured data. Then, the estimated velocity distribution is used subsequently to reconstruct the highly accurate image of microwave absorption distribution. Experiments that a target placed in an acoustic heterogeneous environment are performed to validate the iterative reconstruction method. Results: By using the estimated velocity distribution, the target in an acoustic heterogeneous environment can be reconstructed with better shape and higher image contrast than targets that are reconstructed with a homogeneous velocity distribution. Conclusions: The distortions caused by the acoustic heterogeneity can be efficiently corrected by utilizing the velocity distribution estimated by the iterative reconstruction method. The advantage of the iterative reconstruction method over the existing correction methods is that it is successful in improving the quality of the image of microwave absorption distribution without increasing the system complexity

  9. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    Science.gov (United States)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  10. A reference sample for investigating the stability of the imaging system of x-ray computed tomography

    International Nuclear Information System (INIS)

    Sun, Wenjuan; Brown, Stephen; Flay, Nadia; McCarthy, Michael; McBride, John

    2016-01-01

    The use of x-ray computed tomography for dimensional measurements associated with engineering applications has flourished in recent years. However, error sources associated with the technology are not well understood. In this paper, a novel two-sphere reference sample has been developed and used to investigate the stability of the imaging system that consists of an x-ray tube and a detector. In contrast with other research work reported, this work considered relative positional variation along the x -, y - and z -axes. This sample is a significant improvement over the one sphere sample proposed previously, which can only be used to observe the stability of the imaging system along x - and y -axes. Temperature variations of different parts of the system have been monitored and the relationship between temperature variations and x-ray image stability has been studied. Other effects that may also influence the stability of the imaging system have been discussed. The proposed reference sample and testing method are transferable to other types of x-ray computed tomography systems, for example, systems with transmission targets and systems with sub-micrometre focal spots. (paper)

  11. Three-dimensional grain structure of sintered bulk strontium titanate from X-ray diffraction contrast tomography

    DEFF Research Database (Denmark)

    Syha, M.; Rheinheimer, W.; Bäurer, M.

    2012-01-01

    The three-dimensional grain boundary network of sintered bulk strontium titanate is reconstructed using X-ray diffraction contrast tomography, a non-destructive technique for determining the grain shape and crystallographic orientation in polycrystals that is ideally suited for detailed studies...

  12. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao [Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573 (Japan)

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  13. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    International Nuclear Information System (INIS)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data

  14. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Science.gov (United States)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke's tabulated data.

  15. Imaging-therapy computed tomography with quasi-monochromatic X-rays.

    Science.gov (United States)

    Jost, Gregor; Golfier, Sven; Lawaczeck, Ruediger; Weinmann, Hanns-Joachim; Gerlach, Martin; Cibik, Levent; Krumrey, Michael; Fratzscher, Daniel; Rabe, Johannis; Arkadiev, Vladimir; Haschke, Michael; Langhoff, Norbert; Wedell, Reiner; Luedemann, Lutz; Wust, Peter; Pietsch, Hubertus

    2008-12-01

    Computed tomography (CT) is a widespread and highly precise technique working in the energy range around 50-100 keV. For radiotherapy, however, the MeV energy range enables a better dose distribution. This gap between diagnosis and therapy can be overcome by the use of a modified CT machine in combination with heavy elements targeted to the tumour and used as photoelectric radiation enhancer. The experimental setup consists of an X-ray optical module mounted at the exit of the X-ray tube of a clinical CT. The module converts the standard fan-shaped beam into a high intensity, monochromatized and focused beam. The radiation was characterized using an energy-dispersive detection system calibrated by synchrotron radiation and gel dosimetry. The photoelectric radiation enhancement for different elements was calculated and experimentally verified. The X-ray optical module filters selectively the energy of the tungsten K alpha-emission line (59.3 keV) with a full width at half maximum (FWHM) of 5 keV and focused the radiation onto a focal spot which coincides with the isocentre of the gantry. This results in a steep dose gradient at the centre of rotation qualified for locoregional radiation therapy. The photon energy of the quasi-monochromatic radiation agrees with the energy range of maximal photoelectric dose enhancement for gadolinium and iodine. An additional X-ray optical module optimized for targeted therapy and photoelectric dose enhancement allows the combination of diagnosis and radiotherapy on a clinical CT.

  16. The influence of glass fibers on elongational viscosity studied by means of optical coherence tomography and X-ray computed tomography

    International Nuclear Information System (INIS)

    Aigner, M.; Köpplmayr, T.; Lang, C.; Burzic, I.; Miethlinger, J.; Salaberger, D.; Buchsbaum, A.; Leitner, M.; Heise, B.; Schausberger, S. E.; Stifter, D.

    2014-01-01

    We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inline measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured

  17. The influence of glass fibers on elongational viscosity studied by means of optical coherence tomography and X-ray computed tomography

    Science.gov (United States)

    Aigner, M.; Salaberger, D.; Buchsbaum, A.; Heise, B.; Schausberger, S. E.; Köpplmayr, T.; Lang, C.; Leitner, M.; Stifter, D.; Burzic, I.; Miethlinger, J.

    2014-05-01

    We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inline measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured.

  18. Ray splitting in the reflection and refraction of surface acoustic waves in anisotropic solids.

    Science.gov (United States)

    Every, A G; Maznev, A A

    2010-05-01

    This paper examines the conditions for, and provides examples of, ray splitting in the reflection and refraction of surface acoustic waves (SAW) in elastically anisotropic solids at straight obstacles such as edges, surface breaking cracks, and interfaces between different solids. The concern here is not with the partial scattering of an incident SAW's energy into bulk waves, but with the occurrence of more than one SAW ray in the reflected and/or transmitted wave fields, by analogy with birefringence in optics and mode conversion of bulk elastic waves at interfaces. SAW ray splitting is dependent on the SAW slowness curve possessing concave regions, which within the constraint of wave vector conservation parallel to the obstacle allows multiple outgoing SAW modes for certain directions of incidence and orientation of obstacle. The existence of pseudo-SAW for a given surface provides a further channel for ray splitting. This paper discusses some typical material configurations for which SAW ray splitting occurs. An example is provided of mode conversion entailing backward reflection or negative refraction. Experimental demonstration of ray splitting in the reflection of a laser generated SAW in GaAs(111) is provided. The calculation of SAW mode conversion amplitudes lies outside the scope of this paper.

  19. Polarized X-ray excitation for scatter reduction in X-ray fluorescence computed tomography.

    Science.gov (United States)

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses X-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized X-rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized X-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent X-rays are emitted isotropically, while scattered X-rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic X-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an X-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image

  20. Impact of polychromatic x-ray sources on helical, cone-beam computed tomography and dual-energy methods

    International Nuclear Information System (INIS)

    Sidky, Emil Y; Zou Yu; Pan Xiaochuan

    2004-01-01

    Recently, there has been much work devoted to developing accurate and efficient algorithms for image reconstruction in helical, cone-beam computed tomography (CT). Little attention, however, has been directed to the effect of physical factors on helical, cone-beam CT image reconstruction. This work investigates the effect of polychromatic x-rays on image reconstruction in helical, cone-beam computed tomography. A pre-reconstruction dual-energy technique is developed to reduce beam-hardening artefacts and enhance contrast in soft tissue

  1. 3D Coda Attenuation Tomography of Acoustic Emission Data from Laboratory Samples as a tool for imaging pre-failure deformation mechanisms

    Science.gov (United States)

    Vinciguerra, S.; King, T. I.; Benson, P. M.; De Siena, L.

    2017-12-01

    In recent years, 3D and 4D seismic tomography have unraveled medium changes during the seismic cycle or before eruptive events. As our resolving power increases, however, complex structures increasingly affect images. Being able to interpret and understand these features requires a multi-discipline approach combining different methods, each sensitive to particular properties of the sub-surface. Rock deformation laboratory experiments can relate seismic properties to the evolving medium quantitatively. Here, an array of 1 MHz Piezo-Electric Transducers has recorded high-quality low-noise acoustic emission (AE) data during triaxial compressional experiments. Samples of Carrara Marble, Darley Dale Sandstone and Westerly Granite were deformed in saturated conditions representative of a depth of about 1 km until brittle failure. Using a time window around sample failure, AE data were filtered between 5 and 75 KHz and processed using a 3D P-coda attenuation-tomography method. Ratios of P-direct to P-coda energies calculated for each source-receiver path were inverted using the coda normalisation method for values of Q (P-wave quality factor). The results show Q-variation with respect to an average Q. Q is a combination of the effects of scattering attenuation (Qs) and intrinsic attenuation Q (Qi), which can be correlated to the sample structure. Qs primary controls energy dissipation in the presence at acoustic impedance (AI) surfaces and at fracture tips, independently of rock type, while pore fluid effects dissipate energy (Qi). Damaged zones appear as high-Q and low-Q anomalies in unsaturated and saturated samples, respectively. We have attributed frequency-dependent high-Q to resonance in the presence of AI surfaces. Low Q areas appear behind AI surfaces and are interpreted as energy shadows. These shadows can affect attenuation tomography imaging at field scale.

  2. Gaussian process tomography for soft x-ray spectroscopy at WEST without equilibrium information

    Science.gov (United States)

    Wang, T.; Mazon, D.; Svensson, J.; Li, D.; Jardin, A.; Verdoolaege, G.

    2018-06-01

    Gaussian process tomography (GPT) is a recently developed tomography method based on the Bayesian probability theory [J. Svensson, JET Internal Report EFDA-JET-PR(11)24, 2011 and Li et al., Rev. Sci. Instrum. 84, 083506 (2013)]. By modeling the soft X-ray (SXR) emissivity field in a poloidal cross section as a Gaussian process, the Bayesian SXR tomography can be carried out in a robust and extremely fast way. Owing to the short execution time of the algorithm, GPT is an important candidate for providing real-time reconstructions with a view to impurity transport and fast magnetohydrodynamic control. In addition, the Bayesian formalism allows quantifying uncertainty on the inferred parameters. In this paper, the GPT technique is validated using a synthetic data set expected from the WEST tokamak, and the results are shown of its application to the reconstruction of SXR emissivity profiles measured on Tore Supra. The method is compared with the standard algorithm based on minimization of the Fisher information.

  3. Identification of strain fields in pure Al and hybrid Ni/Al metal foams using X-ray micro-tomography under loading

    International Nuclear Information System (INIS)

    Fíla, T.; Jiroušek, O.; Jung, A.; Kumpová, I.

    2016-01-01

    Hybrid foams are materials formed by a core from a standard open cell metal foam that is during the process of electrodeposition coated by a thin layer of different nanocrystalline metals. The material properties of the base metal foam are in this way modified resulting in higher plateau stress and, more importantly, by introduction of strain-rate dependence to its deformation response. In this paper, we used time-lapse X-ray micro-tomography for the mechanical characterization of Ni/Al hybrid foams (aluminium open cell foams with nickel coating layer). To fully understand the effects of the coating layer on the material's effective properties, we compared the compressive response of the base uncoated foam to the response of the material with coating thickness of 50 and 75 μm. Digital volume correlation (DVC) was applied to obtain volumetric strain fields of the deforming micro-structure up to the densification region of the deforming cellular structure. The analysis was performed as a compressive mechanical test with simultaneous observation using X-ray radiography and tomography. A custom design experimental device was used for compression of the foam specimens in several deformation states directly in the X-ray setup. Planar X-ray images were taken during the loading phases and a X-ray tomography was performed at the end of each loading phase (up to engineering strain 22%). The samples were irradiated using micro-focus reflection type X-ray tube and images were taken using a large area flat panel detector. Tomography reconstructions were used for an identification of a strain distribution in the foam using digital volumetric correlation. A comparison of the deformation response of the coated and the uncoated foam in uniaxial quasi-static compression is summarized in the paper.

  4. Using x-ray computed tomography in hydrology: Systems, resolutions, and limitations

    DEFF Research Database (Denmark)

    Wildenschild, Dorthe; Hopmans, J.W.; Vaz, C.M.P.

    2002-01-01

    media, obtained with different scanning systems and sample sizes, to illustrate advantages and limitations of these various systems, including topics of spatial resolution and contrast. In addition, we present examples of our most recent three-dimensional high-resolution images, for which......A combination of advances in experimental techniques and mathematical analysis has made it possible to characterize phase distribution and pore geometry in porous media using non-destructive X-ray computed tomography (CT). We present qualitative and quantitative CT results for partially saturated...

  5. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    Science.gov (United States)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine

  6. Radiation acoustics and its applications

    International Nuclear Information System (INIS)

    Lyamshev, L.M.

    1992-01-01

    Radiation acoustics is a new branch of acoustics, developing on the boundary of acoustics, nuclear physics, elementary particles and high-energy physics. Its fundamentals are laying in the research of acoustical effects due to the interaction of penetrating radiation with matter. The study of radiation-acoustical effects leads to the new opportunities in the penetration radiation research (acoustical detection, radiation-acoustical dosimetry), study of the physical parameters of matter, in a solution of some applied problems of nondestructive testing, and also for the radiation-acoustical influence on physical and chemical structure of the matter. Results of theoretical and experimental investigations are given. Different mechanisms of the sound generation by penetrating radiation of liquids and solids are considered. Some applications - the radiation acoustical microscopy and visualisation, the acoustical detection of high energy X-ray particles and possibility of using of high energy neutrino beams in geoacoustics - are discussed

  7. Wave chaos in acoustics and elasticity

    International Nuclear Information System (INIS)

    Tanner, Gregor; Soendergaard, Niels

    2007-01-01

    Interpreting wave phenomena in terms of an underlying ray dynamics adds a new dimension to the analysis of linear wave equations. Forming explicit connections between spectra and wavefunctions on the one hand and the properties of a related ray dynamics on the other hand is a comparatively new research area, especially in elasticity and acoustics. The theory has indeed been developed primarily in a quantum context; it is increasingly becoming clear, however, that important applications lie in the field of mechanical vibrations and acoustics. We provide an overview over basic concepts in this emerging field of wave chaos. This ranges from ray approximations of the Green function to periodic orbit trace formulae and random matrix theory and summarizes the state of the art in applying these ideas in acoustics-both experimentally and from a theoretical/numerical point of view. (topical review)

  8. Imaging osteoarthritis in the knee joints using x-ray guided diffuse optical tomography

    Science.gov (United States)

    Zhang, Qizhi; Yuan, Zhen; Sobel, Eric S.; Jiang, Huabei

    2010-02-01

    In our previous studies, near-infrared (NIR) diffuse optical tomography (DOT) had been successfully applied to imaging osteoarthritis (OA) in the finger joints where significant difference in optical properties of the joint tissues was evident between healthy and OA finger joints. Here we report for the first time that large joints such as the knee can also be optically imaged especially when DOT is combined with x-ray tomosynthesis where the 3D image of the bones from x-ray is incorporated into the DOT reconstruction as spatial a priori structural information. This study demonstrates that NIR light can image large joints such as the knee in addition to finger joints, which will drastically broaden the clinical utility of our x-ray guided DOT technique for OA diagnosis.

  9. Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography

    International Nuclear Information System (INIS)

    Oldenburg, Amy L; Boppart, Stephen A

    2010-01-01

    We present a new method for performing dynamic elastography of soft tissue samples. By sensing nanoscale displacements with optical coherence tomography, a chirped, modulated force is applied to acquire the mechanical spectrum of a tissue sample within a few seconds. This modulated force is applied via magnetic nanoparticles, named 'nanotransducers', which are diffused into the tissue, and which contribute negligible inertia to the soft tissue mechanical system. Using this novel system, we observed that excised tissues exhibit mechanical resonance modes which are well described by a linear damped harmonic oscillator. Results are validated by using cylindrical tissue phantoms of agarose in which resonant frequencies (30-400 Hz) are consistent with longitudinal modes and the sample boundary conditions. We furthermore show that the Young's modulus can be computed from their measured resonance frequencies, analogous to resonant ultrasound spectroscopy for stiff material analysis. Using this new technique, named magnetomotive resonant acoustic spectroscopy (MRAS), we monitored the relative stiffening of an excised rat liver during a chemical fixation process.

  10. Inside marginal adaptation of crowns by X-ray micro-computed tomography

    International Nuclear Information System (INIS)

    Dos Santos, T. M.; Lima, I.; Lopes, R. T.; Author, S. B. Jr.

    2015-01-01

    The objective of this work was to access dental arcade by using X-ray micro-computed tomography. For this purpose high resolution system was used and three groups were studied: Zirkonzahn CAD-CAM system, IPS e.max Press, and metal ceramic. The three systems assessed in this study showed results of marginal and discrepancy gaps clinically accepted. The great result of 2D and 3D evaluations showed that the used technique is a powerful method to investigate quantitative characteristics of dental arcade. (authors)

  11. Inside marginal adaptation of crowns by X-ray micro-computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dos Santos, T. M.; Lima, I.; Lopes, R. T. [Nuclear Instrumentation Laboratory, Nuclear Engineering Program, Federal University of Rio de Janeiro, RJ, (Brazil); Author, S. B. Jr. [Department of Physics, Colorado State University, Ft. Collins, CO 80523, (United States)

    2015-07-01

    The objective of this work was to access dental arcade by using X-ray micro-computed tomography. For this purpose high resolution system was used and three groups were studied: Zirkonzahn CAD-CAM system, IPS e.max Press, and metal ceramic. The three systems assessed in this study showed results of marginal and discrepancy gaps clinically accepted. The great result of 2D and 3D evaluations showed that the used technique is a powerful method to investigate quantitative characteristics of dental arcade. (authors)

  12. Acoustic shadows help gleaning bats find prey, but may be defeated by prey acoustic camouflage on rough surfaces.

    Science.gov (United States)

    Clare, Elizabeth L; Holderied, Marc W

    2015-09-01

    Perceptual abilities of animals, like echolocating bats, are difficult to study because they challenge our understanding of non-visual senses. We used novel acoustic tomography to convert echoes into visual representations and compare these cues to traditional echo measurements. We provide a new hypothesis for the echo-acoustic basis of prey detection on surfaces. We propose that bats perceive a change in depth profile and an 'acoustic shadow' cast by prey. The shadow is more salient than prey echoes and particularly strong on smooth surfaces. This may explain why bats look for prey on flat surfaces like leaves using scanning behaviour. We propose that rather than forming search images for prey, whose characteristics are unpredictable, predators may look for disruptions to the resting surface (acoustic shadows). The fact that the acoustic shadow is much fainter on rougher resting surfaces provides the first empirical evidence for 'acoustic camouflage' as an anti-predator defence mechanism.

  13. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    International Nuclear Information System (INIS)

    Grasland-Mongrain, Pol; Destrempes, François; Cloutier, Guy; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril

    2015-01-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging. (paper)

  14. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    Science.gov (United States)

    Grasland-Mongrain, Pol; Destrempes, François; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-05-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging.

  15. Imaging-therapy computed tomography with quasi-monochromatic X-rays

    International Nuclear Information System (INIS)

    Jost, Gregor; Golfier, Sven; Lawaczeck, Ruediger; Weinmann, Hanns-Joachim; Gerlach, Martin; Cibik, Levent; Krumrey, Michael; Fratzscher, Daniel; Rabe, Johannis; Arkadiev, Vladimir; Haschke, Michael; Langhoff, Norbert; Wedell, Reiner

    2008-01-01

    Introduction: Computed tomography (CT) is a widespread and highly precise technique working in the energy range around 50-100 keV. For radiotherapy, however, the MeV energy range enables a better dose distribution. This gap between diagnosis and therapy can be overcome by the use of a modified CT machine in combination with heavy elements targeted to the tumour and used as photoelectric radiation enhancer. Materials and methods: The experimental setup consists of an X-ray optical module mounted at the exit of the X-ray tube of a clinical CT. The module converts the standard fan-shaped beam into a high intensity, monochromatized and focused beam. The radiation was characterized using an energy-dispersive detection system calibrated by synchrotron radiation and gel dosimetry. The photoelectric radiation enhancement for different elements was calculated and experimentally verified. Results: The X-ray optical module filters selectively the energy of the tungsten Kα-emission line (59.3 keV) with a full width at half maximum (FWHM) of 5 keV and focused the radiation onto a focal spot which coincides with the isocentre of the gantry. This results in a steep dose gradient at the centre of rotation qualified for locoregional radiation therapy. The photon energy of the quasi-monochromatic radiation agrees with the energy range of maximal photoelectric dose enhancement for gadolinium and iodine. Conclusion: An additional X-ray optical module optimized for targeted therapy and photoelectric dose enhancement allows the combination of diagnosis and radiotherapy on a clinical CT

  16. Imaging-therapy computed tomography with quasi-monochromatic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Gregor [Bayer Schering Pharma AG, Contrast Media Research, Muellerstrasse 178, 13353 Berlin (Germany)], E-mail: gregor.jost@bayerhealthcare.com; Golfier, Sven [Bayer Schering Pharma AG, Contrast Media Research, Muellerstrasse 178, 13353 Berlin (Germany)], E-mail: sven.golfier@bayerhealthcare.com; Lawaczeck, Ruediger [Bayer Schering Pharma AG, Contrast Media Research, Muellerstrasse 178, 13353 Berlin (Germany)], E-mail: ruediger.lawaczeck@bayerhealthcare.com; Weinmann, Hanns-Joachim [Bayer Schering Pharma AG, Contrast Media Research, Muellerstrasse 178, 13353 Berlin (Germany)], E-mail: hanns-joachim.weinmann@bayerhealthcare.com; Gerlach, Martin [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany)], E-mail: martin.gerlach@ptb.de; Cibik, Levent [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany)], E-mail: levent.cibik@ptb.de; Krumrey, Michael [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany)], E-mail: michael.krumrey@ptb.de; Fratzscher, Daniel [Institute for Scientific Instruments GmbH, Rudower Chaussee 29/31, 12489 Berlin (Germany)], E-mail: Fratzscher@ifg-adlershof.de; Rabe, Johannis [Institute for Scientific Instruments GmbH, Rudower Chaussee 29/31, 12489 Berlin (Germany)], E-mail: Rabe@ifg-adlershof.de; Arkadiev, Vladimir [Institute for Scientific Instruments GmbH, Rudower Chaussee 29/31, 12489 Berlin (Germany)], E-mail: Arkadiev@ifg-adlershof.de; Haschke, Michael [Institute for Scientific Instruments GmbH, Rudower Chaussee 29/31, 12489 Berlin (Germany)], E-mail: Haschke@ifg-adlershof.de; Langhoff, Norbert [Institute for Scientific Instruments GmbH, Rudower Chaussee 29/31, 12489 Berlin (Germany)], E-mail: Langhoff@ifg-adlershof.de; Wedell, Reiner [Institut fuer angewandte Photonik e.V., Rudower Chaussee 29/31, 12489 Berlin (Germany)], E-mail: wedell-iap@ifg-adlershof.de (and others)

    2008-12-15

    Introduction: Computed tomography (CT) is a widespread and highly precise technique working in the energy range around 50-100 keV. For radiotherapy, however, the MeV energy range enables a better dose distribution. This gap between diagnosis and therapy can be overcome by the use of a modified CT machine in combination with heavy elements targeted to the tumour and used as photoelectric radiation enhancer. Materials and methods: The experimental setup consists of an X-ray optical module mounted at the exit of the X-ray tube of a clinical CT. The module converts the standard fan-shaped beam into a high intensity, monochromatized and focused beam. The radiation was characterized using an energy-dispersive detection system calibrated by synchrotron radiation and gel dosimetry. The photoelectric radiation enhancement for different elements was calculated and experimentally verified. Results: The X-ray optical module filters selectively the energy of the tungsten K{alpha}-emission line (59.3 keV) with a full width at half maximum (FWHM) of 5 keV and focused the radiation onto a focal spot which coincides with the isocentre of the gantry. This results in a steep dose gradient at the centre of rotation qualified for locoregional radiation therapy. The photon energy of the quasi-monochromatic radiation agrees with the energy range of maximal photoelectric dose enhancement for gadolinium and iodine. Conclusion: An additional X-ray optical module optimized for targeted therapy and photoelectric dose enhancement allows the combination of diagnosis and radiotherapy on a clinical CT.

  17. A general method for motion compensation in x-ray computed tomography

    Science.gov (United States)

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-08-01

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  18. A General Method for Motion Compensation in X-ray Computed Tomography

    CERN Document Server

    AUTHOR|(CDS)2067162; Dosanjh, Manjit; Soleimani, Manuchehr

    2017-01-01

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D X-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  19. A general method for motion compensation in x-ray computed tomography.

    Science.gov (United States)

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-07-24

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  20. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  1. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.

    Science.gov (United States)

    Liu, Xin

    2014-01-01

    This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.

  2. Nondestructive assay of TRU waste using gamma-ray active and passive computed tomography

    International Nuclear Information System (INIS)

    Roberson, G.P.; Decman, D.; Martz, H.; Keto, E.R.; Johansson, E.M.

    1995-01-01

    The authors have developed an active and passive computed tomography (A and PCT) scanner for assaying radioactive waste drums. Here they describe the hardware components of their system and the software used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using ''mock'' waste drums and calibrated radioactive sources. They also describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content. The results are compared with X-ray NDE studies of the same TRU waste drum as well as assay results from segmented gamma scanner (SGS) measurements

  3. Development of a novel micro pattern gaseous detector for cosmic ray muon tomography

    Science.gov (United States)

    Biglietti, M.; Canale, V.; Franchino, S.; Iengo, P.; Iodice, M.; Petrucci, F.

    2016-07-01

    We propose a novel detector (Thick Groove Detector, TGD) designed for cosmic ray tomography with a spatial resolution of 500 μm, trying to keep the construction procedure as simple as possible and to reduce the operating costs. The TGD belongs to the category of MPGDs with an amplification region less than 1 mm wide formed by alternate anode/cathode microstrips layers at different heights. A first 10×10 cm2 prototype has been built, divided in four sections with different test geometries. We present the construction procedure and the first results in terms of gain and stability. Preliminary studies with cosmic rays are also reported.

  4. Optimal Contrast Agent Staining of Ligaments and Tendons for X-Ray Computed Tomography.

    Science.gov (United States)

    Balint, Richard; Lowe, Tristan; Shearer, Tom

    2016-01-01

    X-ray computed tomography has become an important tool for studying the microstructures of biological soft tissues, such as ligaments and tendons. Due to the low X-ray attenuation of such tissues, chemical contrast agents are often necessary to enhance contrast during scanning. In this article, the effects of using three different contrast agents--iodine potassium iodide solution, phosphotungstic acid and phosphomolybdic acid--are evaluated and compared. Porcine anterior cruciate ligaments, patellar tendons, medial collateral ligaments and lateral collateral ligaments were used as the basis of the study. Three samples of each of the four ligament/tendon types were each assigned a different contrast agent (giving a total of twelve samples), and the progression of that agent through the tissue was monitored by performing a scan every day for a total period of five days (giving a total of sixty scans). Since the samples were unstained on day one, they had been stained for a total of four days by the time of the final scans. The relative contrast enhancement and tissue deformation were measured. It was observed that the iodine potassium iodide solution penetrated the samples fastest and caused the least sample shrinkage on average (although significant deformation was observed by the time of the final scans), whereas the phosphomolybdic acid caused the greatest sample shrinkage. Equations describing the observed behaviour of the contrast agents, which can be used to predict optimal staining times for ligament and tendon X-ray computed tomography, are presented.

  5. Fluorescent X-ray computed tomography using synchrotron radiation for imaging nonradioactive tracer materials

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Masahiro; Yuasa, Tetsuya; Uchida, Akira; Akatsuka, Takao [Yamagata Univ., Yonezawa (Japan). Electrical and Information of Engineering; Takeda, Tohoru; Hyodo, Kazuyuki; Itai, Yuji

    1997-09-01

    We describe a system of fluorescent X-ray computed tomography using synchrotron radiation (SR-FXCT) to image nonradioactive contrast materials. The system operates on the basis of computed tomography (CT) scanned by the pencil beam. In the previous experiment, we have imaged an acrylic cylindrical phantom with cross-shaped channel, filled with a diluted iodine-based tracer material of 200 {mu}g/ml. This research is aimed to improve image quality, to select the optimum energy of the incident X-ray, to confirm quantitative evaluation of the image, and to demonstrate FXCT image for living body. First, we simulated output energy profile by the Monte Carlo simulation and confirmed to predetermine the incident X-ray energy at 37 keV, in order to separate the fluorescent photons from background scattering components. Next, the imaging experiment was performed by using conventional CT algorithm under the optimum parameter at the Tristan Accumulation Ring, KEK, Japan. An acrylic phantom containing five paraxial channels of 5 and 4 mm in diameter, could be imaged; where each channel was respectively filled with diluted iodine-based contrast materials of 50, 100, 200 and 500 {mu}g/ml. From the reconstructed image, we confirmed quantitativity in the FXCT image. Finally, a rat`s brain was imaged in vitro by FXCT and monochromatic transmission CT. The comparison between these results showed that the iodine-rich region in the FXCT image corresponded with that in the monochromatic transmission CT image. (author)

  6. A multiresolution approach to iterative reconstruction algorithms in X-ray computed tomography.

    Science.gov (United States)

    De Witte, Yoni; Vlassenbroeck, Jelle; Van Hoorebeke, Luc

    2010-09-01

    In computed tomography, the application of iterative reconstruction methods in practical situations is impeded by their high computational demands. Especially in high resolution X-ray computed tomography, where reconstruction volumes contain a high number of volume elements (several giga voxels), this computational burden prevents their actual breakthrough. Besides the large amount of calculations, iterative algorithms require the entire volume to be kept in memory during reconstruction, which quickly becomes cumbersome for large data sets. To overcome this obstacle, we present a novel multiresolution reconstruction, which greatly reduces the required amount of memory without significantly affecting the reconstructed image quality. It is shown that, combined with an efficient implementation on a graphical processing unit, the multiresolution approach enables the application of iterative algorithms in the reconstruction of large volumes at an acceptable speed using only limited resources.

  7. Acoustic waves in M dwarfs: Maintaining a corona

    Science.gov (United States)

    Mullan, D. J.; Cheng, Q. Q.

    1994-01-01

    We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.

  8. UGCT: New X-ray radiography and tomography facility

    International Nuclear Information System (INIS)

    Masschaele, B.C.; Cnudde, V.; Dierick, M.; Jacobs, P.; Hoorebeke, L. van; Vlassenbroeck, J.

    2007-01-01

    The UGCT (University Gent Computer Tomography) facility, a cooperation between the Radiation Physics research group and the Sedimentary Geology and Engineering Geology research group is a new CT facility providing a large range of scanning possibilities. Formerly a Skyscan 1072 was used to perform X-ray micro-CT scans at the UGCT facility and although this is a very powerful instrument, there were needs for a higher resolution and more flexibility. Therefore, the UCGT facility started the construction of a multidisciplinary micro-CT scanner inside a shielded room with a maximum flexibility of the set-up. The X-ray tube of this high-resolution CT scanner is a state-of-the-art open-type device with dual head: one head for high power micro-CT and one for sub-micro- or also called nano-CT. An important advantage of this scanner is that different detectors can be used to optimize the scanning conditions of the objects under investigation. The entire set-up is built on a large optical table to obtain the highest possible stability. Due to the flexible set-up and the powerful CT reconstruction software 'Octopus', it is possible to obtain the highest quality and the best signal-to-noise of the reconstructed images for each type of sample

  9. UGCT: New X-ray radiography and tomography facility

    Energy Technology Data Exchange (ETDEWEB)

    Masschaele, B.C. [Department of Subatomic and Radiation Physics, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium)], E-mail: bert.masschaele@ugent.be; Cnudde, V. [Department of Geology and Soil Science, Ghent University, Krijgslaan 281, B-9000 Gent (Belgium); Dierick, M. [Department of Subatomic and Radiation Physics, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium); Jacobs, P. [Department of Geology and Soil Science, Ghent University, Krijgslaan 281, B-9000 Gent (Belgium); Hoorebeke, L. van; Vlassenbroeck, J. [Department of Subatomic and Radiation Physics, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium)

    2007-09-21

    The UGCT (University Gent Computer Tomography) facility, a cooperation between the Radiation Physics research group and the Sedimentary Geology and Engineering Geology research group is a new CT facility providing a large range of scanning possibilities. Formerly a Skyscan 1072 was used to perform X-ray micro-CT scans at the UGCT facility and although this is a very powerful instrument, there were needs for a higher resolution and more flexibility. Therefore, the UCGT facility started the construction of a multidisciplinary micro-CT scanner inside a shielded room with a maximum flexibility of the set-up. The X-ray tube of this high-resolution CT scanner is a state-of-the-art open-type device with dual head: one head for high power micro-CT and one for sub-micro- or also called nano-CT. An important advantage of this scanner is that different detectors can be used to optimize the scanning conditions of the objects under investigation. The entire set-up is built on a large optical table to obtain the highest possible stability. Due to the flexible set-up and the powerful CT reconstruction software 'Octopus', it is possible to obtain the highest quality and the best signal-to-noise of the reconstructed images for each type of sample.

  10. Multiple energy computed tomography with monochromatic x rays from the NSLS

    International Nuclear Information System (INIS)

    Dilmanian, F.A.; Nachaliel, E.; Garrett, R.F.; Thomlinson, W.C.; Chapman, L.D.; Moulin, H.R.; Oversluizen, T.; Rarback, H.M.; Rivers, M.; Spanne, P.; Thompson, A.C.; Zeman, H.D.

    1991-01-01

    We used monochromatic x rays from the X17 superconducting wiggler beamline at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, for dual-energy quantitative computed tomography (CT) of a 27 mm-diameter phantom containing solutions of different KOH concentrations in cylindrical holes of 5-mm diameter. The CT configuration was a fixed horizontal fan-shaped beam of 1.5 mm height and 30 mm width, and a subject rotating around a vertical axis. The transmitted x rays were detected by a linear-array Si(Li) detector with 120 elements of 0.25 mm width each. We used a two-crystal Bragg-Bragg fixed-exit monochromator with Si crystals. Dual photon absorptiometry (DPA) CT data were taken at 20 and 38 keV. The reconstructed phantom images show the potential of the system for quantitative CT

  11. Acoustic signal generation in excised muscle by pulsed proton beam irradiation and the possibility of its clinical application to radiation therapy

    International Nuclear Information System (INIS)

    Hayakawa, Yoshinori; Tada, Junichiro; Inada, Tetsuo; Kitagawa, Toshio; Wagai, Toshio; Yoshioka, Katsuya.

    1989-01-01

    Acoustic signals generated in liquids and in metals by pulsed proton beam are thought to be thermal shock wave due to localized energy deposition of incident protons. Thus the intensity of generated acoustic signals is almost proportional to the energy deposited at the region. This suggests the possibility for measuring spatial distribution of energy deposition of proton beam using the acoustic method. In proton beam radiation therapy, treatment planning is developed from data of X-ray computer tomography which reflects the information on the electron density distribution in the patient's body. Ensuring the agreement of the dose distribution in the patient with the planned one, however, is difficult. It is expected that the acoustic method can provide a useful tool for this purpose. The pulsed proton beam of 50ns in pulse width is used for cancer therapy at the University of Tsukuba. A hydrophone is used to detect acoustic signals generated by pulsed proton beam. Detected signals are amplified ten thousand times before being averaged and analyzed by digital oscilloscope. Measurements made suggest that the method could be useful for radiation therapy. (N.K.)

  12. Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography

    International Nuclear Information System (INIS)

    Pani, S.; Cook, E.J.; Horrocks, J.A.; Jones, J.L.; Speller, R.D.

    2010-01-01

    A method for sample characterization using energy-dispersive X-ray diffraction computed tomography (EDXRDCT) is presented. The procedures for extracting diffraction patterns from the data and the corrections applied are discussed. The procedures were applied to the characterization of breast tissue samples, 6 mm in diameter. Comparison with histological sections of the samples confirmed the possibility of grouping the patterns into five families, corresponding to adipose tissue, fibrosis, poorly differentiated cancer, well differentiated cancer and benign tumour.

  13. Toward Rapid Unattended X-ray Tomography of Large Planar Samples at 50-nm Resolution

    International Nuclear Information System (INIS)

    Rudati, J.; Tkachuk, A.; Gelb, J.; Hsu, G.; Feng, Y.; Pastrick, R.; Lyon, A.; Trapp, D.; Beetz, T.; Chen, S.; Hornberger, B.; Seshadri, S.; Kamath, S.; Zeng, X.; Feser, M.; Yun, W.; Pianetta, P.; Andrews, J.; Brennan, S.; Chu, Y. S.

    2009-01-01

    X-ray tomography at sub-50 nm resolution of small areas (∼15 μmx15 μm) are routinely performed with both laboratory and synchrotron sources. Optics and detectors for laboratory systems have been optimized to approach the theoretical efficiency limit. Limited by the availability of relatively low-brightness laboratory X-ray sources, exposure times for 3-D data sets at 50 nm resolution are still many hours up to a full day. However, for bright synchrotron sources, the use of these optimized imaging systems results in extremely short exposure times, approaching live-camera speeds at the Advanced Photon Source at Argonne National Laboratory near Chicago in the US These speeds make it possible to acquire a full tomographic dataset at 50 nm resolution in less than a minute of true X-ray exposure time. However, limits in the control and positioning system lead to large overhead that results in typical exposure times of ∼15 min currently.We present our work on the reduction and elimination of system overhead and toward complete automation of the data acquisition process. The enhancements underway are primarily to boost the scanning rate, sample positioning speed, and illumination homogeneity to performance levels necessary for unattended tomography of large areas (many mm 2 in size). We present first results on this ongoing project.

  14. 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography

    DEFF Research Database (Denmark)

    Herbig, M.; King, Andrew; Reischig, Peter

    2011-01-01

    X-ray diffraction contrast tomography is a recently developed, non-destructive synchrotron imaging technique which characterizes microstructure and grain orientation in polycrystalline materials in three dimensions. By combining it with propagation-based phase-contrast tomography it is possible t...

  15. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    Directory of Open Access Journals (Sweden)

    Chang-Chieh Cheng

    Full Text Available A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.

  16. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    Science.gov (United States)

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.

  17. 15 Mcps photon-counting X-ray computed tomography system using a ZnO-MPPC detector and its application to gadolinium imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Eiichi, E-mail: dresato@iwate-med.ac.jp [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Sugimura, Shigeaki [Tokyo Denpa Co. Ltd., 82-5 Ueno, Ichinohe, Iwate 028-5321 (Japan); Endo, Haruyuki [Iwate Industrial Research Insutitute 3, 3-35-2 Shinden, Iioka, Morioka, Iwate 020-0852 (Japan); Oda, Yasuyuki [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Abudurexiti, Abulajiang [Faculty of Software and Information Science, Iwate Prefectural University, 152-52 Sugo, Takizawa, Iwate 020-0193 (Japan); Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya [3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Ogawa, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537 (Japan)

    2012-01-15

    15 Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2 mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15 Mcps (mega counts per second) at a tube voltage of 100 kV and a tube current of 1.95 mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15 min, and photon-counting CT was accomplished using gadolinium-based contrast media. - Highlights: Black-Right-Pointing-Pointer We developed a first-generation 15 Mcps photon-counting X-ray computed tomography (CT) system. Black-Right-Pointing-Pointer High-speed photon counting was carried out using a zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module in the X-ray CT system. Black-Right-Pointing-Pointer Tomography is accomplished by repeated translations and rotations of an object. Black-Right-Pointing-Pointer The minimum exposure time for obtaining a tomogram was 15 min. Black-Right-Pointing-Pointer The photon-counting CT was accomplished using gadolinium-based contrast media.

  18. Artifact Elimination Technique in Tomogram of X-ray Computed Tomography

    International Nuclear Information System (INIS)

    Rasif Mohd Zain

    2015-01-01

    Artifacts of tomogram are main commonly problems occurred in x-ray computed tomography. The artifacts will be appearing in tomogram due to noise, beam hardening, and scattered radiation. The study has been carried out using CdTe time pix detector. The new technique has been developed to eliminate the artifact occurred in hardware and software. The hardware setup involved the careful alignment all of the components of the system and the introduction of a collimator beam. Meanwhile, in software development deal with the flat field correction, noise filter and data projection algorithm. The results show the technique developed produce good quality images and eliminate the artifacts. (author)

  19. Incoherent-scatter computed tomography with monochromatic synchrotron x ray: feasibility of multi-CT imaging system for simultaneous measurement-of fluorescent and incoherent scatter x rays

    Science.gov (United States)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-10-01

    We describe a new system of incoherent scatter computed tomography (ISCT) using monochromatic synchrotron X rays, and we discuss its potential to be used in in vivo imaging for medical use. The system operates on the basis of computed tomography (CT) of the first generation. The reconstruction method for ISCT uses the least squares method with singular value decomposition. The research was carried out at the BLNE-5A bending magnet beam line of the Tristan Accumulation Ring in KEK, Japan. An acrylic cylindrical phantom of 20-mm diameter containing a cross-shaped channel was imaged. The channel was filled with a diluted iodine solution with a concentration of 200 /spl mu/gI/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated the incoherent X-ray line from the other notable peaks, i.e., the iK/sub /spl alpha// and K/sub /spl beta/1/ X-ray fluorescent lines and the coherent scattering peak. CT images were reconstructed from projections generated by integrating the counts In the energy window centering around the incoherent scattering peak and whose width was approximately 2 keV. The reconstruction routine employed an X-ray attenuation correction algorithm. The resulting image showed more homogeneity than one without the attenuation correction.

  20. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography.

    Science.gov (United States)

    Lin, Chun-Li; Kuo, Wen-Chuan; Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Yun-Chu

    2014-08-01

    This study investigates monitored micro-crack growth and damage in the ceramic/enamel adhesive interface using the acoustic emission (AE) technique with optical coherence tomography (OCT) under fatigue shear testing. Shear bond strength (SBS) was measured first with eight prepared ceramic/enamel adhesive specimens under static loads. The fatigue shear testing was performed with three specimens at each cyclic load according to a modified ISO14801 method, applying at 80%, 75%, 70%, and 65% of the SBS to monitor interface debonding. The number of cycles at each load was recorded until ceramic/enamel adhesive interface debonding occurred. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 18.07 ± 1.72 MPa (mean ± standard deviation), expressed in Newton's at 56.77 ± 5.40N. The average number of fatigue cycles in which ceramic/enamel interface damage was detected in 80%, 75%, 70% and 65% of the SBS were 41, 410, 8141 and 76,541, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 65% and 70% fatigue tests. A good correlation was observed between the crack location in OCT images and the number of AE signal hits. The AE technique combined with OCT images as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/enamel bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 10.98 MPa (about 34.48 N) passing 10(6) fatigue cyclic. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Low-dose phase contrast tomography with conventional x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, C. K., E-mail: charlotte.hagen.10@ucl.ac.uk; Endrizzi, M.; Diemoz, P. C.; Olivo, A. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom); Munro, P. R. T. [Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia and Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2014-07-15

    Purpose: The edge illumination (EI) x-ray phase contrast imaging (XPCi) method has been recently further developed to perform tomographic and, thus, volumetric imaging. In this paper, the first tomographic EI XPCi images acquired with a conventional x-ray source at dose levels below that used for preclinical small animal imaging are presented. Methods: Two test objects, a biological sample and a custom-built phantom, were imaged with a laboratory-based EI XPCi setup in tomography mode. Tomographic maps that show the phase shift and attenuating properties of the object were reconstructed, and analyzed in terms of signal-to-noise ratio and quantitative accuracy. Dose measurements using thermoluminescence devices were performed. Results: The obtained images demonstrate that phase based imaging methods can provide superior results compared to attenuation based modalities for weakly attenuating samples also in 3D. Moreover, and, most importantly, they demonstrate the feasibility of low-dose imaging. In addition, the experimental results can be considered quantitative within the constraints imposed by polychromaticity. Conclusions: The results, together with the method's dose efficiency and compatibility with conventional x-ray sources, indicate that tomographic EI XPCi can become an important tool for the routine imaging of biomedical samples.

  2. Progress in Cell Marking for Synchrotron X-ray Computed Tomography

    Science.gov (United States)

    Hall, Christopher; Sturm, Erica; Schultke, Elisabeth; Arfelli, Fulvia; Menk, Ralf-Hendrik; Astolfo, Alberto; Juurlink, Bernhard H. J.

    2010-07-01

    Recently there has been an increase in research activity into finding ways of marking cells in live animals for pre-clinical trials. Development of certain drugs and other therapies crucially depend on tracking particular cells or cell types in living systems. Therefore cell marking techniques are required which will enable longitudinal studies, where individuals can be examined several times over the course of a therapy or study. The benefits of being able to study both disease and therapy progression in individuals, rather than cohorts are clear. The need for high contrast 3-D imaging, without harming or altering the biological system requires a non-invasive yet penetrating imaging technique. The technique will also have to provide an appropriate spatial and contrast resolution. X-ray computed tomography offers rapid acquisition of 3-D images and is set to become one of the principal imaging techniques in this area. Work by our group over the last few years has shown that marking cells with gold nano-particles (GNP) is an effective means of visualising marked cells in-vivo using x-ray CT. Here we report the latest results from these studies. Synchrotron X-ray CT images of brain lesions in rats taken using the SYRMEP facility at the Elettra synchrotron in 2009 have been compared with histological examination of the tissues. Some deductions are drawn about the visibility of the gold loaded cells in both light microscopy and x-ray imaging.

  3. Analysis of concrete material through gamma ray computerized tomography

    International Nuclear Information System (INIS)

    Oliveira Junior, J.M. de

    2004-01-01

    Computerized Tomography (CT) refers to the cross sectional imaging of an object from both transmission or reflection data collected by illuminating the object from many different directions. The most important contribution of CT is to greatly improve abilities to distinguish regions with different gamma ray transmittance and to separate over-lying structures. The mathematical problem of the CT imaging is that of estimating an image from its projections. These projections can represent, for example, the linear attenuation coefficient of γ-rays along the path of the ray. In this work we will present some new results obtained by using tomographic techniques to analyze column samples of concrete to check the distribution of various materials and structural problems. These concrete samples were made using different proportions of stone, sand and cement. Another set of samples with different proportions of sand and cement were also used to verify the outcome from the CT analysis and the differences between them. Those samples were prepared at the Material Laboratory of Faculdade de Engenharia de Sorocaba, following the same procedures used in real case of concrete tests. The projections used in this work was obtained by Mini Computerized Tomograph of Uniso (MTCU), located at the Experimental Nuclear Physics Laboratory at University of Sorocaba. This tomograph operates with a gamma ray source of 241 Am (photons of 60 keV and 100 mCi of intensity) and a NaI(Tl) solid state detector. The system features translation and rotation scanning modes, a 100 mm effective field of view, and 1 mm spatial resolution. The image reconstruction problem is solved using Discrete Filtered Backprojection (FBP). (author)

  4. Evaluation of bone response to titanium-coated polymethyl methacrylate resin (PMMA) implants by X-ray tomography.

    NARCIS (Netherlands)

    Shalabi, M.M.; Wolke, J.G.C.; Cuijpers, V.M.J.I.; Jansen, J.A.

    2007-01-01

    High-resolution three-dimensional data about the bone response to oral implants can be obtained by using microfocus computer tomography. However, a disadvantage is that metallic implants cause streaking artifacts due to scattering of X-rays, which prevents an accurate evaluation of the interfacial

  5. Experimental investigation of the diffusion coefficients in porous media by application of X-ray computer tomography

    DEFF Research Database (Denmark)

    Zhelezny, Petr; Shapiro, Alexander

    2006-01-01

    The present work describes a new experimental method that makes it possible to investigate diffusion coefficients in a porous medium. The method is based on application of X-ray computed tomography (CT). The general applicability of this method for the determination of diffusion coefficients...

  6. Early development and orientation of the acoustic funnel provides insight into the evolution of sound reception pathways in cetaceans.

    Directory of Open Access Journals (Sweden)

    Maya Yamato

    Full Text Available Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete and baleen (mysticete whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding.

  7. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special x-ray ... What is CT Scanning of the Head? Computed tomography, more commonly known as a CT or CAT ...

  8. X-ray phase-contrast micro-tomography and image analysis of wood microstructure

    International Nuclear Information System (INIS)

    Mayo, Sheridan; Evans, Robert; Chen, Fiona; Lagerstrom, Ryan

    2009-01-01

    A number of commercially important properties of wood depend on details of the wood micro- and nano- structure. CSIRO Forest Biosciences have developed SilviScan, an analytical instrument which uses a number of high-speed techniques for analyzing these properties. X-ray micro-tomographic analysis of wood samples provides detailed 3D reconstructions of the wood microstructure which can be used to validate results from SilviScan measurements. A series of wood samples was analysed using laboratory-based phase-contrast x-ray micro-tomography. Image analysis techniques were applied to the 3D data sets to extract significant features and statistical properties of the specimens. These data provide a means of verification of results from the more rapid SilviScan techniques, and will clarify the results of micro-diffraction studies of wood microfibrils.

  9. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    International Nuclear Information System (INIS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-01-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences

  10. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yidong, E-mail: yidongyang@med.miami.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 and Department of Radiation Oncology, University of Miami School of Medicine, Miami, Florida 33136 (United States); Wang, Ken Kang-Hsin; Wong, John W. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Eslami, Sohrab; Iordachita, Iulian I. [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Patterson, Michael S. [Juravinski Cancer Centre and Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4K1 (Canada)

    2015-04-15

    .0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.

  11. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    International Nuclear Information System (INIS)

    Yang, Yidong; Wang, Ken Kang-Hsin; Wong, John W.; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.

    2015-01-01

    .0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems

  12. A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations

    Science.gov (United States)

    Zohdi, T. I.

    2016-03-01

    In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.

  13. Design, development and integration of a large scale multiple source X-ray computed tomography system

    International Nuclear Information System (INIS)

    Malcolm, Andrew A.; Liu, Tong; Ng, Ivan Kee Beng; Teng, Wei Yuen; Yap, Tsi Tung; Wan, Siew Ping; Kong, Chun Jeng

    2013-01-01

    X-ray Computed Tomography (CT) allows visualisation of the physical structures in the interior of an object without physically opening or cutting it. This technology supports a wide range of applications in the non-destructive testing, failure analysis or performance evaluation of industrial products and components. Of the numerous factors that influence the performance characteristics of an X-ray CT system the energy level in the X-ray spectrum to be used is one of the most significant. The ability of the X-ray beam to penetrate a given thickness of a specific material is directly related to the maximum available energy level in the beam. Higher energy levels allow penetration of thicker components made of more dense materials. In response to local industry demand and in support of on-going research activity in the area of 3D X-ray imaging for industrial inspection the Singapore Institute of Manufacturing Technology (SIMTech) engaged in the design, development and integration of large scale multiple source X-ray computed tomography system based on X-ray sources operating at higher energies than previously available in the Institute. The system consists of a large area direct digital X-ray detector (410 x 410 mm), a multiple-axis manipulator system, a 225 kV open tube microfocus X-ray source and a 450 kV closed tube millifocus X-ray source. The 225 kV X-ray source can be operated in either transmission or reflection mode. The body of the 6-axis manipulator system is fabricated from heavy-duty steel onto which high precision linear and rotary motors have been mounted in order to achieve high accuracy, stability and repeatability. A source-detector distance of up to 2.5 m can be achieved. The system is controlled by a proprietary X-ray CT operating system developed by SIMTech. The system currently can accommodate samples up to 0.5 x 0.5 x 0.5 m in size with weight up to 50 kg. These specifications will be increased to 1.0 x 1.0 x 1.0 m and 100 kg in future

  14. Characterization by X-ray tomography of granulated alumina powder during in situ die compaction

    Energy Technology Data Exchange (ETDEWEB)

    Cottrino, Sandrine; Jorand, Yves, E-mail: yves.jorand@insa-lyon.fr; Maire, Eric; Adrien, Jérôme

    2013-07-15

    Compaction process, the aim of which being to obtain green bodies with low porosity and small size, is often used before sintering treatment. Prior to die filling, the ceramic powder is generally granulated to improve flowability. However during compaction, density heterogeneity and critical size defects may appear due to intergranule and granule-die wall frictions. In this work, the influence of granule formulation on the compact morphology has been studied. To do so, a compaction setup was installed inside an X-ray tomography equipment so that the evolution of the compact morphology could be analysed during the whole compaction process. We have demonstrated that high humidity rate and the addition of binder in the granule formulation increase density heterogeneity and generate larger defects. - Highlights: • An original compaction set up was installed inside an X-Ray tomography equipment. • The compaction process of granulated ceramic powder is imaged. • The compact green microstructure is quantified and related to the compaction stages. • The most detrimental defects of dry-pressed parts are caused by hollow granules. • Formulations without binder allow a reduction of the number of large defects.

  15. Three Dimensional Digital Sieving of Asphalt Mixture Based on X-ray Computed Tomography

    OpenAIRE

    Chichun Hu; Jiexian Ma; M. Emin Kutay

    2017-01-01

    In order to perform three-dimensional digital sieving based on X-ray computed tomography images, the definition of digital sieve size (DSS) was proposed, which was defined as the minimum length of the minimum bounding squares of all possible orthographic projections of an aggregate. The corresponding program was developed to reconstruct aggregate structure and to obtain DSS. Laboratory experiments consisting of epoxy-filled aggregate specimens were conducted to investigate the difference betw...

  16. Analysis of inner structure changes of concretes exposed to high temperatures using micro X-ray computed tomography

    OpenAIRE

    Sitek, L. (Libor); Bodnárová, L.; Souček, K. (Kamil); Staš, L. (Lubomír); Gurková, L. (Lucie)

    2015-01-01

    The X-ray Computed Tomography (X-ray CT) repr esents a progressive non-destructive metho d of analysing the inner structure of materials. The method was used for monitoring changes in inner structure of concrete samples of different composition before and after their exposure to various thermal loads. Eight types of concrete samples were prepared which differed by cement and aggregate types. We intentionally used such composition of concrete mixtures which increased their resist...

  17. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses uses special x-ray equipment ... story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content ...

  18. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special x-ray equipment ... story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content ...

  19. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  20. Multifunctional BSA-Au nanostars for photoacoustic imaging and X-ray computed tomography.

    Science.gov (United States)

    Zu, Lihui; Liu, Lin; Qin, Yeshan; Liu, Hongguang; Yang, Haishan

    2016-10-01

    We report the synthesis and characterization of bovine serum albumin-capped Au nanostars (BSA-AuNSs) for dual-modal computed tomography (CT)/photoacoustic (PA) imaging application. The BSA-AuNSs have an average size of 85nm, and a surface plasmon resonance (SPR) peak at approximately 770nm. They have excellent biocompatibility, good X-ray attenuation, and great PA contrast enhancement properties. When injected intravenously, liver signal markedly increases in both CT and PA modalities. The in vivo biodistribution studies and pathology results showed that the BSA-AuNSs were mainly excreted through the liver and intestines with no obvious biotoxicity. These results indicate that BSA-AuNSs have high potential to be used as dual-modal CT/PA imaging contrast agents or further used to develop targeted probes. This preliminary study suggests that PA tomography may be used to non-invasively trace the kinetics and biodistribution of the nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Dry coupling for whole-body small-animal photoacoustic computed tomography

    Science.gov (United States)

    Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.

    2017-04-01

    We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using a whole-body small-animal ring-shaped photoacoustic computed tomography system. Dry coupling was found to provide image quality comparable to that of conventional water coupling.

  2. Six dimensional X-ray Tensor Tomography with a compact laboratory setup

    Science.gov (United States)

    Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.

    2016-09-01

    Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.

  3. Quantitative 3D imaging of yeast by hard X-ray tomography.

    Science.gov (United States)

    Zheng, Ting; Li, Wenjie; Guan, Yong; Song, Xiangxia; Xiong, Ying; Liu, Gang; Tian, Yangchao

    2012-05-01

    Full-field hard X-ray tomography could be used to obtain three-dimensional (3D) nanoscale structures of biological samples. The image of the fission yeast, Schizosaccharomyces pombe, was clearly visualized based on Zernike phase contrast imaging technique and heavy metal staining method at a spatial resolution better than 50 nm at the energy of 8 keV. The distributions and shapes of the organelles during the cell cycle were clearly visualized and two types of organelle were distinguished. The results for cells during various phases were compared and the ratios of organelle volume to cell volume can be analyzed quantitatively. It showed that the ratios remained constant between growth and division phase and increased strongly in stationary phase, following the shape and size of two types of organelles changes. Our results demonstrated that hard X-ray microscopy was a complementary method for imaging and revealing structural information for biological samples. Copyright © 2011 Wiley Periodicals, Inc.

  4. X-ray Micro Tomography as a Tool for Studying Localized Damage / Deformation in Clay Rock

    International Nuclear Information System (INIS)

    Viggiani, Gioacchino; Besuelle, Pierre; Desrues, Jacques

    2013-01-01

    Deformation in geo-materials (soils, rocks, concrete, etc.) is often localized, e.g., in the form of shear bands or fractures. In experimental analysis of the mechanical behavior of such materials, standard laboratory methods are insufficient as the majority of measurements are made at the sample scale and rarely at a local scale. X-ray tomography monitoring during loading allows high-resolution full-field observation of the development of deformation. However, such images only indicate clearly the de-formation when there are significant changes in material density (i.e., volume changes) that produce a change in x-ray absorption. As such 3D Digital Image Correlation (DIC) approaches have been developed that allow quantification of the full strain tensor field throughout the imaged volume. This paper presents results from triaxial compression tests on a clay rock (Callovo-Oxfordian argillite) with in situ synchrotron x-ray micro tomography imaging providing complete 3D images of the specimen at several stages throughout the test. These images have been analyzed using 3D DIC to provide full-field displacement and strain measurements, which allowed the detection of the onset of strain localization and its timing relative to the load peak plus insight into the 3D structure of the localized zone. The paper concludes with a few general remarks concerning the lessons learned from this study and perspectives for current and future work. (authors)

  5. X-ray Computed Tomography.

    Science.gov (United States)

    Michael, Greg

    2001-01-01

    Describes computed tomography (CT), a medical imaging technique that produces images of transaxial planes through the human body. A CT image is reconstructed mathematically from a large number of one-dimensional projections of a plane. The technique is used in radiological examinations and radiotherapy treatment planning. (Author/MM)

  6. Construction and Test of Low Cost X-Ray Tomography Scanner for Physical-Chemical Analysis and Nondestructive Inspections

    International Nuclear Information System (INIS)

    Oliveira, Jose Martins Jr. de; Martins, Antonio Cesar Germano

    2009-01-01

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe the development of a low cost micro-CT X-ray scanner that is being developed for nondestructive testing. This tomograph operates using a microfocus X-ray source and contains a silicon photodiode as detectors. The performance of the system, by its spatial resolution, has been estimated through its Modulation Transfer Function-MTF and the obtained value at 10% of MTF is 661 μm. It was built as a general purpose nondestructive testing device.

  7. Feasibility of the left ventricular volume measurement by acoustic quantification method. Comparison with ultrafast computed tomography

    International Nuclear Information System (INIS)

    Tomimoto, Shigehiro; Nakatani, Satoshi; Tanaka, Norio; Uematsu, Masaaki; Beppu, Shintaro; Nagata, Seiki; Hamada, Seiki; Takamiya, Makoto; Miyatake, Kunio

    1995-01-01

    Acoustic quantification (AQ: the real-time automated boundary detection system) allows instantaneous measurement of cardiac chamber volumes. The feasibility of this method was evaluated by comparing the left ventricular (LV) volumes obtained with AQ to those derived from ultrafast computed tomography (UFCT), which enables accurate measurements of LV volumes even in the presence of LV asynergy, in 23 patients (8 with ischemic heart disease, 5 with cardiomyopathy, 3 with valvular heart disease). Both LV end-diastolic and end-systolic volumes obtained with the AQ method were in good agreement with those obtained with UFCT (y=1.04χ-16.9, r=0.95; y=0.87χ+15.7, r=0.91; respectively). AQ was reliable even in the presence of LV asynergy. Interobserver variability for the AQ measurement was 10.2%. AQ provides a new, clinically useful method for real-time accurate estimation of the left ventricular volume. (author)

  8. Feasibility of the left ventricular volume measurement by acoustic quantification method. Comparison with ultrafast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tomimoto, Shigehiro; Nakatani, Satoshi; Tanaka, Norio; Uematsu, Masaaki; Beppu, Shintaro; Nagata, Seiki; Hamada, Seiki; Takamiya, Makoto; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1995-01-01

    Acoustic quantification (AQ: the real-time automated boundary detection system) allows instantaneous measurement of cardiac chamber volumes. The feasibility of this method was evaluated by comparing the left ventricular (LV) volumes obtained with AQ to those derived from ultrafast computed tomography (UFCT), which enables accurate measurements of LV volumes even in the presence of LV asynergy, in 23 patients (8 with ischemic heart disease, 5 with cardiomyopathy, 3 with valvular heart disease). Both LV end-diastolic and end-systolic volumes obtained with the AQ method were in good agreement with those obtained with UFCT (y=1.04{chi}-16.9, r=0.95; y=0.87{chi}+15.7, r=0.91; respectively). AQ was reliable even in the presence of LV asynergy. Interobserver variability for the AQ measurement was 10.2%. AQ provides a new, clinically useful method for real-time accurate estimation of the left ventricular volume. (author).

  9. Metrizamide cisternography in the diagnosis of acoustic neurinomas

    Energy Technology Data Exchange (ETDEWEB)

    Servo, A.; Porras, M.; Jaeaeskinen, J.

    1981-02-01

    Seventy-three cisternographies with metrizamide were performed on 69 patients, mainly for diagnosis of an acoustic neurinoma. Of the 31 patients with pathological findings on cisternography 26 underwent surgery for 23 acoustic neurinomas, one neurinoma of the facial nerve, and two meningiomas. For diagnosing small tumours of the cerebellopontine cistern, cisternography is superior to all other neuroradiological methods. Tomography of the porus acusticus internus and CT scanning are the initial radiological methods in patients with signs of cerebellopontine angle lesions; if no lesion is disclosed by these two methods cisternography with metrizamide should be performed to exclude a small tumor, particularly a small acoustic neurinoma.

  10. INVERSION OF FULL ACOUSTIC WAVEFIELD IN LOCAL HELIOSEISMOLOGY: A STUDY WITH SYNTHETIC DATA

    International Nuclear Information System (INIS)

    Cobden, L. J.; Warner, M. R.; Tong, C. H.

    2011-01-01

    We present the first results from the inversion of full acoustic wavefield in the helioseismic context. In contrast to time-distance helioseismology, which involves analyzing the travel times of seismic waves propagating into the solar interior, wavefield tomography models both the travel times and amplitude variations present in the entire seismic record. Unlike the use of ray-based, Fresnel-zone, Born, or Rytov approximations in previous time-distance studies, this method does not require any simplifications to be made to the sensitivity kernel in the inversion. In this study, the acoustic wavefield is simulated for all iterations in the inversion. The sensitivity kernel is therefore updated while lateral variations in sound-speed structure in the model emerge during the course of the inversion. Our results demonstrate that the amplitude-based inversion approach is capable of resolving sound-speed structures defined by relatively sharp vertical and horizontal boundaries. This study therefore provides the foundation for a new type of subsurface imaging in local helioseismology that is based on the inversion of the entire seismic wavefield.

  11. Quantitative reconstruction of PIXE-tomography data for thin samples using GUPIX X-ray emission yields

    Energy Technology Data Exchange (ETDEWEB)

    Michelet, C., E-mail: michelet@cenbg.in2p3.fr [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Barberet, Ph., E-mail: barberet@cenbg.in2p3.fr [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Devès, G., E-mail: deves@cenbg.in2p3.fr [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Bouguelmouna, B., E-mail: bbouguel@gmail.com [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Bourret, S., E-mail: bourret@cenbg.in2p3.fr [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Delville, M.-H., E-mail: delville@icmcb-bordeaux.cnrs.fr [Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB, UPR9048) CNRS, Université de Bordeaux, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Le Trequesser, Q., E-mail: letreque@cenbg.in2p3.fr [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB, UPR9048) CNRS, Université de Bordeaux, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Gordillo, N., E-mail: nuri.gordillo@gmail.com [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Beasley, D.G., E-mail: d.beasley@ucl.ac.uk [Center of Medical Imaging Computing (CMIC), Department of Medical Physics & Bioengineering, University College London, Gower Street, London WC1E 6BT (United Kingdom); and others

    2015-04-01

    We present here a new development of the TomoRebuild software package, to perform quantitative Particle Induced X-ray Emission Tomography (PIXET) reconstruction. X-ray yields are obtained from the GUPIX code. The GUPIX data base is available for protons up to 5 MeV and also in the 20–100 MeV energy range, deuterons up to 6 MeV, {sup 3}He and alphas up to 12 MeV. In this version, X-ray yields are calculated for thin samples, i.e. without simulating X-ray attenuation. PIXET data reconstruction is kept as long as possible independent from Scanning Transmission Ion Microscopy Tomography (STIMT). In this way, the local mass distribution (in g/cm{sup 3}) of each X-ray emitting element is reconstructed in all voxels of the analyzed volume, only from PIXET data, without the need of associated STIMT data. Only the very last step of data analysis requires STIMT data, in order to normalize PIXET data to obtain concentration distributions, in terms of normalized mass fractions (in μg/g). For this, a noise correction procedure has been designed in ImageJ. Moreover sinogram or image misalignment can be corrected, as well as the difference in beam size between the two experiments. The main features of the TomoRebuild code, user friendly design and modular C++ implementation, were kept. The software package is portable and can run on Windows and Linux operating systems. An optional user-friendly graphic interface was designed in Java, as a plugin for the ImageJ graphic software package. Reconstruction examples are presented from biological specimens of Caenorhabditis elegans – a small nematode constituting a reference model for biology studies. The reconstruction results are compared between the different codes TomoRebuild, DISRA and JPIXET, and different reconstruction methods: Filtered BackProjection (FBP) and Maximum Likelihood Expectation Maximization (MLEM)

  12. A novel PFIB sample preparation protocol for correlative 3D X-ray CNT and FIB-TOF-SIMS tomography

    Energy Technology Data Exchange (ETDEWEB)

    Priebe, Agnieszka, E-mail: agnieszka.priebe@gmail.com [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Audoit, Guillaume; Barnes, Jean-Paul [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2017-02-15

    We present a novel sample preparation method that allows correlative 3D X-ray Computed Nano-Tomography (CNT) and Focused Ion Beam Time-Of-Flight Secondary Ion Mass Spectrometry (FIB-TOF-SIMS) tomography to be performed on the same sample. In addition, our invention ensures that samples stay unmodified structurally and chemically between the subsequent experiments. The main principle is based on modifying the topography of the X-ray CNT experimental setup before FIB-TOF-SIMS measurements by incorporating a square washer around the sample. This affects the distribution of extraction field lines and therefore influences the trajectories of secondary ions that are now guided more efficiently towards the detector. As the result, secondary ion detection is significantly improved and higher, i.e. statistically better, signals are obtained. - Highlights: • Novel sample preparation for correlative 3D X-ray CNT and FIB-TOF-SIMS is presented. • Two experiments are conducted on exactly the same sample without any modifications. • Introduction of a square washer around the sample leads to increased ion detection.

  13. Study of CdTe:Cl and CdZnTe detectors for medical multi-slices X-ray Computed Tomography

    International Nuclear Information System (INIS)

    Ricq, St.

    1999-01-01

    The application of CdTe and CdZnTe detectors to medical X-ray Computed Tomography have been investigated. Different electrodes (Au, Pt, In) have been deposited on CdZnTe HPBM and on CdTe:ClTHM. Their injection properties have been determined with Current-Voltage characteristics. Under X-ray in CT conditions, injection currents measurements reveal trapped carriers space-charges formation. The same way, the comparisons of the responses to X-beam cut-off with various injection possibilities enable to follow the space-charges evolutions and then to determine the predominant traps types. Nevertheless, both hole and electron traps are responsible for the memory effect e.g. the currents levels dependence with irradiation history. This effect is noticed in particular on responses to fast flux variations that simulate scanner's conditions. Trap levels probably corresponding to native defects are responsible for these limitations. In order to make such detectors suitable for X-ray Computed Tomography, significant progresses in CdTe for CdZnTe crystal growth with an important defects densities reduction (factor 10), or possibly counting mode operation, seem necessary. (author)

  14. Design and implemention of a multi-functional x-ray computed tomography system

    Science.gov (United States)

    Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin; Zhang, Xiang; Deng, Lin; Chen, Siyu; Jin, Zhao; Li, Zengguang

    2015-10-01

    A powerful volume X-ray tomography system has been designed and constructed to provide an universal tool for the three-dimensional nondestructive testing and investigation of industrial components, automotive, electronics, aerospace components, new materials, etc. The combined system is equipped with two commercial X-ray sources, sharing one flat panel detector of 400mm×400mm. The standard focus 450kV high-energy x-ray source is optimized for complex and high density components such as castings, engine blocks and turbine blades. And the microfocus 225kV x-ray source is to meet the demands of micro-resolution characterization applications. Thus the system's penetration capability allows to scan large objects up to 200mm thick dense materials, and the resolution capability can meet the demands of 20μm microstructure inspection. A high precision 6-axis manipulator system is fitted, capable of offset scanning mode in large field of view requirements. All the components are housed in a room with barium sulphate cement. On the other hand, the presented system expands the scope of applications such as dual energy research and testing. In this paper, the design and implemention of the flexible system is described, as well as the preliminary tomographic imaging results of an automobile engine block.

  15. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Stroke Brain Tumors Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  16. Mechanical behaviour and rupture in clayey rocks studied by x-ray micro tomography

    International Nuclear Information System (INIS)

    Lenoir, N.

    2006-03-01

    Within the framework of feasibility studies of underground repositories for radioactive waste, the study of permeability evolution with damage of the host layer is crucial. The goals of this work were: (i) to characterize experimentally the damage of two clayey rocks (BEAUCAIRE MARL and EAST SHALE) with x-ray micro tomography, (ii) to develop a high pressure triaxial set-up adapted to permeability measurement on very low permeability rocks.A number of original triaxial devices have been realised to characterize damage of clayey rocks, under deviatoric loading, with x-ray micro tomography on a synchrotron beamline at the ESRF (Grenoble). Localized damage and its evolution have been characterized at a fine scale (of order of ten microns). Digital image correlation techniques, extended to 3d images, have been used to measure incremental strain fields from tomographic images. we demonstrated that these techniques are very useful in the study of the localized damage of geo-materials and especially for the initiation. A high pressure triaxial device has been realised to measure permeability evolution of the east shale as a function of applied stress (isotropic and deviatoric). The particularity of this set-up is the small size of the test specimen (cylinder of 10 mm in diameter and 20 mm in height) which allows significant reduction of test duration. (author)

  17. X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, Kenta, E-mail: takashima-k@med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Sendai (Japan); University of Tokyo, Tokyo (Japan); Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto [SPring-8, Hyogo (Japan); Matsuda, Shojiro [Gunze Limited, Shiga (Japan); Nakahira, Atsushi [Osaka Prefecture University, Osaka (Japan); Osumi, Noriko; Kohzuki, Masahiro [Tohoku University Graduate School of Medicine, Sendai (Japan); Onodera, Hiroshi [University of Tokyo, Tokyo (Japan)

    2015-01-01

    X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described, and the way it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord is shown. Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies.

  18. Application of γ-ray computed tomography to analysis of soil structure before density evaluations

    International Nuclear Information System (INIS)

    Pires, Luiz F.; Bacchi, Osny O.S.; Reichardt, Klaus; Timm, Luis C.

    2005-01-01

    Several studies have shown that physical properties of a soil may vary significantly over relatively short distances. This variability is due to the nature of the soil, agricultural management practices and sampling procedures; this study is focused on the latter factor. γ-Ray tomography was used as a tool to evaluate the quality of soil samples collected for estimating physical characteristics of the soil and to detect possible damage to the soil in the process of sampling. A first-generation tomograph with an 241 Am source and a 3'x3' NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube was employed. The results show that computed tomography can provide an insight into the sample structure, which helps to select samples that are best suited for evaluation of physical characteristics of a soil

  19. Study of brain atrophy using X-ray computed tomography

    International Nuclear Information System (INIS)

    Kawabata, Masayoshi

    1987-01-01

    Cerebrospinal fluid space-cranial cavity ratio (CCR) of 811 subjects with no brain damage were investigated using X-ray computed tomography. Brain volume of healthy adults aged 20 - 59 years was almost constant and decreased gradually after 60 years. CCR of men aged 20 - 49 years kept constant value and increased with aging after 50 years. CCR of women aged 20 - 59 years kept equal value and CCR increased with aging after 60 years. Brain atrophy with aging was investigated in this study also. In retrospective study, CCR of patients in any age diagnosed brain atrophy in daily CT reports were beyond the normal range of CCR of healthy subjects aged 20 - 49 years. In 48 patients with Parkinson's disease, almost of CCR of them were included within normal range of CCR in age-matched control. (author)

  20. Computed tomography

    International Nuclear Information System (INIS)

    Wells, P.; Davis, J.; Morgan, M.

    1994-01-01

    X-ray or gamma-ray transmission computed tomography (CT) is a powerful non-destructive evaluation (NDE) technique that produces two-dimensional cross-sectional images of an object without the need to physically section it. CT is also known by the acronym CAT, for computerised axial tomography. This review article presents a brief historical perspective on CT, its current status and the underlying physics. The mathematical fundamentals of computed tomography are developed for the simplest transmission CT modality. A description of CT scanner instrumentation is provided with an emphasis on radiation sources and systems. Examples of CT images are shown indicating the range of materials that can be scanned and the spatial and contrast resolutions that may be achieved. Attention is also given to the occurrence, interpretation and minimisation of various image artefacts that may arise. A final brief section is devoted to the principles and potential of a range of more recently developed tomographic modalities including diffraction CT, positron emission CT and seismic tomography. 57 refs., 2 tabs., 14 figs

  1. A general methodology for full-field plastic strain measurements using X-ray absorption tomography and internal markers

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Nielsen, Søren Fæster; Wert, John A.

    2008-01-01

    on a homogenous distribution of marker particles throughout the bulk of a sample, markers which are detected through the application of synchrotron X-ray tomography. Making use of the morphology of individual markers, motion of individual markers is tracked during deformation allowing the local displacement field...

  2. Development of Millimeter-Wave Velocimetry and Acoustic Time-of-Flight Tomography for Measurements in Densely Loaded Gas-Solid Riser Flow

    Energy Technology Data Exchange (ETDEWEB)

    Fort, James A.; Pfund, David M.; Sheen, David M.; Pappas, Richard A.; Morgen, Gerald P.

    2007-04-01

    The MFDRC was formed in 1998 to advance the state-of-the-art in simulating multiphase turbulent flows by developing advanced computational models for gas-solid flows that are experimentally validated over a wide range of industrially relevant conditions. The goal was to transfer the resulting validated models to interested US commercial CFD software vendors, who would then propagate the models as part of new code versions to their customers in the US chemical industry. Since the lack of detailed data sets at industrially relevant conditions is the major roadblock to developing and validating multiphase turbulence models, a significant component of the work involved flow measurements on an industrial-scale riser contributed by Westinghouse, which was subsequently installed at SNL. Model comparisons were performed against these datasets by LANL. A parallel Office of Industrial Technology (OIT) project within the consortium made similar comparisons between riser measurements and models at NETL. Measured flow quantities of interest included volume fraction, velocity, and velocity-fluctuation profiles for both gas and solid phases at various locations in the riser. Some additional techniques were required for these measurements beyond what was currently available. PNNL’s role on the project was to work with the SNL experimental team to develop and test two new measurement techniques, acoustic tomography and millimeter-wave velocimetry. Acoustic tomography is a promising technique for gas-solid flow measurements in risers and PNNL has substantial related experience in this area. PNNL is also active in developing millimeter wave imaging techniques, and this technology presents an additional approach to make desired measurements. PNNL supported the advanced diagnostics development part of this project by evaluating these techniques and then by adapting and developing the selected technology to bulk gas-solids flows and by implementing them for testing in the SNL riser

  3. Compton tomography system

    Science.gov (United States)

    Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz

    2016-02-02

    A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.

  4. Quantitative Analysis of Micro-Structure in Meat Emulsions from Grating-Based Multimodal X-Ray Tomography

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Nielsen, Mikkel Schou; Miklos, Rikke

    2013-01-01

    Using novel X-ray techniques, based on grating-interferometry, new imaging modalities can be obtained simultaneously with absorption computed tomography (CT). These modalities, called phase contrast and dark field imaging, measure the electron density and the diffusion length of the sample....... Enhanced contrast capabilities of this X-ray technique makes studies on materials with similar attenuation properties possible. In this paper the focus is set on processing grating-based X-ray tomograms of meat emulsions to quantitatively measure micro-structural changes due to heat treatment. The emulsion...... samples were imaged both in a raw and cooked state. Additionally, different fat types were used in the emulsions in order to compare micro-structural differences when either pork fat or sunflower oil was used. From the reconstructed tomograms the different ingredients in the emulsions were segmented using...

  5. The feasibility study on 3-dimensional fluorescent x-ray computed tomography using the pinhole effect for biomedical applications.

    Science.gov (United States)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hyodo, Kazuyuki; Zeniya, Tsutomu

    2013-01-01

    We propose a 3-dimensional fluorescent x-ray computed tomography (CT) pinhole collimator, aimed at providing molecular imaging with quantifiable measures and sub-millimeter spatial resolution. In this study, we demonstrate the feasibility of this concept and investigate imaging properties such as spatial resolution, contrast resolution and quantifiable measures, by imaging physical phantoms using a preliminary imaging system developed with monochromatic synchrotron x rays constructed at the BLNE-7A experimental line at KEK, Japan.

  6. Computed tomography of post-traumatic orbito-palpebral emphysema

    International Nuclear Information System (INIS)

    Nose, Harumi; Kohno, Keiko

    1981-01-01

    Two cases of orbito-palpebral emphysema are described. Both having a history of recent facial trauma, emphysema occurred after blowing the nose. They were studied by computed tomography and plain x-ray film, including tomograms of the orbit. The emphysema was revealed by computed tomography and x-ray film, but more clearly by the former technique. The fracture lines of the orbit were revealed in only one case by x-ray film, but in both cases by computed tomography. The authors stress that computed tomography is the best technique for the study of orbital emphysema. (author)

  7. 3D observation of the solidified structures by x-ray micro computerized tomography

    International Nuclear Information System (INIS)

    Yasuda, Hideyuki; Ohnaka, Itsuo; Tsuchiyama, Akira; Nakano, Tsukasa; Uesugi, Kentaro

    2003-01-01

    The high flux density of the monochromatized and well-collimated X-ray and the high-resolution detector provide a new 3D observation tool for microstructures of metallic alloys and ceramics. The X-ray micro computerized tomography in BL47XU of SPring-8 (SP-μCT) was applied to observe microstructures produced through the eutectic reaction for Sn-based alloys and an Al 2 O 3 -Y 2 O 3 oxide system. The constituent phases in the eutectic structures were three-dimensionally identified, in which the lamellar spacing ranged from several to 10 μm. Since the 3D structure of the unidirectionally solidified specimens contains history of the eutectic structure formation, the 3D structure obtained by SP-μCT gives useful information to consider the microstructure evolution. (author)

  8. On the problem of possibilities of X-ray computer tomography in the diagnosis of endophitic tumors of the stomach

    International Nuclear Information System (INIS)

    Gorshkov, A.N.; Akberov, R.F.

    1996-01-01

    The possibilities of X-ray computer tomography in the diagnosis of endophitic tumors of the stomach including tumors of small size are considered using the examinations of 100 patients with stomach diseases. The computer-tomographic semiotics of small endophitic tumors of the stomach is presented, the place of computer tomography in the diagnosis of tumors of the stomach as well as its potential possibilities in revealing small tumors of the stomach with principally endophitic spreading. 10 refs.; 3 figs

  9. Application of ray tracing towards a correction for refracting effects in computed tomography with diffracting sources

    International Nuclear Information System (INIS)

    Andersen, A.H.

    1983-01-01

    Ray tracing methods are investigated in forward and inverse processes and applied for image restoration and resolution enhancement in computed tomography with diffracting sources. Within the geometrical optics approximation for a given refractive field, a mathematical model for the forward propagation and inverse reconstruction process is presented. For a finite set of rays in a discrete image representation, an algebraic reconstruction technique is derived which is analogous to the inverse process for a continuum of rays. The geometrical theory of diffraction is invoked to describe ray patterns arising from the introduction of object discontinuity surfaces. We have compared the performance of existing recursive ray tracing techniques for the reconstruction of objects exhibiting discontinuity boundaries. A novel ray tracing and reconstruction technique is presented which enjoys significant computational savings over traditional implementations incorporating tedious ray linking procedures. Simulation studies illustrate the macro-structural distortion and loss of fine resolution when ray refraction is unaccounted for. Restoration and resolution enhancement is achieved with a recursive ray tracing approach. Successful experimental studies with tissue equivalent phantoms are presented. The comparison of simulation and experimental results demonstrated the reasonable assumption of the geometrical optics approximation. Simulation results for larger refractive deviations are encouraging

  10. Hybrid setup for micro- and nano-computed tomography in the hard X-ray range

    Science.gov (United States)

    Fella, Christian; Balles, Andreas; Hanke, Randolf; Last, Arndt; Zabler, Simon

    2017-12-01

    With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of ever-increasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding, and quality assurance of microscopic samples, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volume via computed tomography (CT). The following article describes a compact X-ray microscope in the hard X-ray regime around 9 keV, based on a highly brilliant liquid-metal-jet source. In comparison to commercially available instruments, it is a hybrid that works in two different modes. The first one is a micro-CT mode without optics, which uses a high-resolution detector to allow scans of samples in the millimeter range with a resolution of 1 μm. The second mode is a microscope, which contains an X-ray optical element to magnify the sample and allows resolving 150 nm features. Changing between the modes is possible without moving the sample. Thus, the instrument represents an important step towards establishing high-resolution laboratory-based multi-mode X-ray microscopy as a standard investigation method.

  11. X-ray computed tomography imaging method which is immune to beam hardening effect

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Uesaka, Akio; Nomiya, Seiichiro; Onabe, Hideaki

    2009-01-01

    For the easy treatment of cancers, early finding of them is an important theme of study. X-ray transmission measurement and computed tomography (CT) are powerful tools for finding cancers. The x-ray CT shows cross sectional view of human body and is able to detect small cancers such as 1 cm in diameter. The CT, however, gives very high dose exposure to human body: some 10 to 1000 times higher dose exposure than the chest radiography. It is not possible to have medical health check using CT frequently, in view of both individual and public accumulated dose exposures. The authors have been working on the reduction of dose exposure in x-ray transmission measurements in case of detecting iodine contrast media, which concentrates in cancers. In our method, energy information of x-rays is employed: in conventional x-ray transmission measurements, x-rays are measured as current and the energy of each x-ray is ignored. The numbers of x-ray events, φ 1 and φ 2 , of which energies are lower and higher than the one of iodine K-edge, respectively, are used for the estimation of iodine thickness in cancers. Moreover, high energy x-rays, which are not sensitive to the absorption by iodine, are cut by a filter made of higher atomic number material than iodine. We call this method filtered x-ray energy subtraction (FIX-ES) method. This FIX-ES method was shown twice as sensitive to iodine than current measurement method. With the choice of filter thickness, minimum dose exposure in FIX-ES is 30% of that when white x-rays are employed. In the study described above, we concentrated on the observation of cancer part. In this study, a cancer phantom in normal tissue is observed by FIX-ES method. The results are compared with the ones obtained by current measurement method. (author)

  12. Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method

    International Nuclear Information System (INIS)

    Dilmanian, F.A.; Ren, B.; Wu, X.Y.; Orion, I.; Zhong, Z.; Thomlinson, W.C.; Chapman, L.D.

    2000-01-01

    Diffraction enhanced imaging (DEI) is a new, synchrotron-based, x-ray radiography method that uses monochromatic, fan-shaped beams, with an analyser crystal positioned between the subject and the detector. The analyser allows the detection of only those x-rays transmitted by the subject that fall into the acceptance angle (central part of the rocking curve) of the monochromator/analyser system. As shown by Chapman et al , in addition to the x-ray attenuation, the method provides information on the out-of-plane angular deviation of x-rays. New images result in which the image contrast depends on the x-ray index of refraction and on the yield of small-angle scattering, respectively. We implemented DEI in the tomography mode at the National Synchrotron Light Source using 22 keV x-rays, and imaged a cylindrical acrylic phantom that included oil-filled, slanted channels. The resulting 'refraction CT image' shows the pure image of the out-of-plane gradient of the x-ray index of refraction. No image artefacts were present, indicating that the CT projection data were a consistent set. The 'refraction CT image' signal is linear with the gradient of the refractive index, and its value is equal to that expected. The method, at the energy used or higher, has the potential for use in clinical radiography and in industry. (author)

  13. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    International Nuclear Information System (INIS)

    Chou, Cheng-Ying; Anastasio, Mark A.

    2010-01-01

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  14. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Cheng-Ying; Anastasio, Mark A. [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan 106, Taiwan (China); Department of Biomedical Engineering, Medical Imaging Research Center, Illinois Institute of Technology, 3440 S. Dearborn Street, E1-116, Chicago, Illinois 60616 (United States)

    2010-01-15

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  15. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer.

    Science.gov (United States)

    Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis

    2013-05-01

    The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.

  16. Combining x-ray diffraction contrast tomography and mesoscale grain growth simulations in strontium titanate: An integrated approach for the investigation of microstructure evolution

    DEFF Research Database (Denmark)

    Syha, Melanie; Baürer, Michael; Rheinheimer, Wolfgang

    2013-01-01

    Motivated by the recently reported a growth anomaly in strontium titatate bulk samples1, the microstructure of bulk strontium titanate has been investigated by an integrated approach comprising conventional metallography, three dimensional X-ray diffraction contrast tomography (DCT)2, and the obs......Motivated by the recently reported a growth anomaly in strontium titatate bulk samples1, the microstructure of bulk strontium titanate has been investigated by an integrated approach comprising conventional metallography, three dimensional X-ray diffraction contrast tomography (DCT)2......, and the observation of pore shapes in combination with mesoscale grain growth simulations. The microstructural evolution in strontium titanate has been characterized alternating ex-situ annealing and high energy X-ray DCT measurements, resulting in three dimensional microstructure reconstructions which...

  17. Chest X-ray and computed tomography in the evaluation of pulmonary emphysema

    International Nuclear Information System (INIS)

    Irion, Klaus Loureiro; Porto, Nelson da Silva; Santana, Pablo Rydz

    2007-01-01

    Emphysema is a condition of the lung, characterized by the abnormal increase in the size of the airspace distal to the terminal bronchioles. Currently, emphysema is the fourth leading cause of death in the USA, affecting 14 million people. The present article describes the principal tools in the imaging diagnosis of emphysema, from the early days until the present. We describe traditional techniques, such as chest X-ray, together with the evolution of computed tomography (CT) to more advanced forms, such as high resolution CT, as well as three-dimensional CT densitometry and volumetric assessment. (author)

  18. High energy x-ray radiography and computed tomography of bridge pins

    International Nuclear Information System (INIS)

    Green, R E; Logan, C M; Martz, H E; Updike, E; Waters, A M

    1999-01-01

    Bridge pins were used in the hanger assemblies for some multi-span steel bridges built prior to the 1980's, and are sometimes considered fracture critical elements of a bridge. During a test on a bridge conducted by the Federal Highway Administration (FHWA), ultrasonic field inspection results indicated that at least two pins contained cracks. Several pins were removed and selected for further examination. This provided an excellent opportunity to learn more about these pins and the application of x-ray systems at Lawrence Livermore National Laboratory (LLNL), as well as to learn more about the application of different detectors recently obtained by LLNL. Digital radiographs and computed tomography (CT) were used to characterize the bridge pins, using a LINAC x-ray source with a 9-MV bremsstrahlung spectrum. We will describe the performance of two different digital radiographic detectors. One is a detector system frequently used at LLNL consisting of a scintillator glass optically coupled to a CCD camera. The other detector is a new amorphous silicon detector recently acquired by LLNL

  19. Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Zangenberg Hansen, Jens; Lowe, Tristan

    2016-01-01

    In this study, the progression of tension-tension fatigue (R=0.1) damage in a unidirectional (UD) composite made from a non-crimp glass fibre fabric used for wind turbine blades is investigated using multi-scale 3D X-ray computed tomography (CT). Initially, a representative volume is examined at ...

  20. Acoustic Source Analysis of Magnetoacoustic Tomography With Magnetic Induction for Conductivity Gradual-Varying Tissues.

    Science.gov (United States)

    Wang, Jiawei; Zhou, Yuqi; Sun, Xiaodong; Ma, Qingyu; Zhang, Dong

    2016-04-01

    As a multiphysics imaging approach, magnetoacoustic tomography with magnetic induction (MAT-MI) works on the physical mechanism of magnetic excitation, acoustic vibration, and transmission. Based on the theoretical analysis of the source vibration, numerical studies are conducted to simulate the pathological changes of tissues for a single-layer cylindrical conductivity gradual-varying model and estimate the strengths of sources inside the model. The results suggest that the inner source is generated by the product of the conductivity and the curl of the induced electric intensity inside conductivity homogeneous medium, while the boundary source is produced by the cross product of the gradient of conductivity and the induced electric intensity at conductivity boundary. For a biological tissue with low conductivity, the strength of boundary source is much higher than that of the inner source only when the size of conductivity transition zone is small. In this case, the tissue can be treated as a conductivity abrupt-varying model, ignoring the influence of inner source. Otherwise, the contributions of inner and boundary sources should be evaluated together quantitatively. This study provide basis for further study of precise image reconstruction of MAT-MI for pathological tissues.

  1. Lab-based x-ray tomography of a cochlear implant using energy discriminating detectors for metal artefact reduction

    Science.gov (United States)

    Yokhana, Viona S. K.; Arhatari, Benedicta D.; Gureyev, Timur E.; Abbey, Brian

    2018-01-01

    X-ray computed tomography (XCT) is an important clinical diagnostic tool which is also used in a range of biological imaging applications in research. The increasing prevalence of metallic implants in medical and dental radiography and tomography has driven the demand for new approaches to solving the issue of metal artefacts in XCT. Metal artefacts occur when a highly absorbing material is imaged which is in boundary contact with one or more weakly absorbing components, such as soft-tissue. The resulting `streaking' in the reconstructed images creates significant challenges for X-ray analysis due to the non-linear dependence on the absorption properties of the sample. In this paper we introduce a new approach to removing metal artefacts which exploits the capabilities of the recently available, photon-counting PiXirad detector. Our approach works for standard lab-based polychromatic X-ray tubes and does not rely on any postprocessing of the data. The method is demonstrated using both simulated data from a test phantom and experimental data collected from a cochlear implant. The results show that by combining the individual images, which are simultaneously generated for each different energy threshold, artefact -free segmentation of the implant from the surrounding biological tissue is achieved.

  2. CdTe and CdZnTe detectors behavior in X-ray computed tomography conditions

    CERN Document Server

    Ricq, S; Garcin, M

    2000-01-01

    The application of CdTe and CdZnTe 2D array detectors for medical X-ray Computed Tomography (XCT) is investigated. Different metallic electrodes have been deposited on High-Pressure Bridgman Method CdZnTe and on Traveling Heater Method CdTe:Cl. These detectors are exposed to X-rays in the CT irradiation conditions and are characterized experimentally in current mode. Detectors performances such as sensitivity and response speed are studied. They are correlated with charge trapping and de-trapping. The trapped carrier space charges may influence the injection from the electrodes. This enables one to get information on the nature of the predominant levels involved. The performances achieved are encouraging: dynamic ranges higher than 4 decades and current decreases of 3 decades in 4 ms after X-ray beam cut-off are obtained. Nevertheless, these detectors are still limited by high trap densities responsible for the memory effect that makes them unsuitable for XCT.

  3. X-ray computed tomography of the anterior cruciate ligament and patellar tendon

    Science.gov (United States)

    Shearer, Tom; Rawson, Shelley; Castro, Simon Joseph; Balint, Richard; Bradley, Robert Stephen; Lowe, Tristan; Vila-Comamala, Joan; Lee, Peter David; Cartmell, Sarah Harriet

    2014-01-01

    Summary The effect of phosphotungstic acid (PTA) and iodine solution (IKI) staining was investigated as a method of enhancing contrast in the X-ray computed tomography of porcine anterior cruciate ligaments (ACL) and patellar tendons (PT). We show that PTA enhanced surface contrast, but was ineffective at penetrating samples, whereas IKI penetrated more effectively and enhanced contrast after 70 hours of staining. Contrast enhancement was compared when using laboratory and synchrotron based X-ray sources. Using the laboratory source, PT fascicles were tracked and their alignment was measured. Individual ACL fascicles could not be identified, but identifiable features were evident that were tracked. Higher resolution scans of fascicle bundles from the PT and ACL were obtained using synchrotron imaging techniques. These scans exhibited greater contrast between the fascicles and matrix in the PT sample, facilitating the identification of the fascicle edges; however, it was still not possible to detect individual fascicles in the ACL. PMID:25332942

  4. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    International Nuclear Information System (INIS)

    Majidi, Keivan; Wernick, Miles N; Brankov, Jovan G; Li, Jun; Muehleman, Carol

    2014-01-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  5. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    Science.gov (United States)

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  6. Dentinal tubules revealed with X-ray tensor tomography.

    Science.gov (United States)

    Jud, Christoph; Schaff, Florian; Zanette, Irene; Wolf, Johannes; Fehringer, Andreas; Pfeiffer, Franz

    2016-09-01

    Dentin is a mineralized material making up most of the tooth bulk. A system of microtubules, so called dentinal tubules, transverses it radially from the pulp chamber to the outside. This highly oriented structure leads to anisotropic mechanical properties directly connected to the tubules orientation and density: the ultimate tensile strength as well as the fracture toughness and the shear strength are largest perpendicular to dentinal tubules. Consequently, the fatigue strength depends on the direction of dentinal tubules, too. However, none of the existing techniques used to investigate teeth provide access to orientation and density of dentinal tubules for an entire specimen in a non-destructive way. In this paper, we measure a third molar human tooth both with conventional micro-CT and X-ray tensor tomography (XTT). While the achievable resolution in micro-CT is too low to directly resolve the dentinal tubules, we provide strong evidence that the direction and density of dentinal tubules can be indirectly measured by XTT, which exploits small-angle X-ray scattering to retrieve a 3D map of scattering tensors. We show that the mean directions of scattering structures correlate to the orientation of dentinal tubules and that the mean effective scattering strength provides an estimation of the relative density of dentinal tubules. Thus, this method could be applied to investigate the connection between tubule orientation and fatigue or tensile properties of teeth for a full sample without cutting one, non-representative peace of tooth out of the full sample. Copyright © 2016 The Academy of Dental Materials. All rights reserved.

  7. Dynamic angle selection in X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dabravolski, Andrei, E-mail: andrei.dabravolski@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Batenburg, Kees Joost, E-mail: joost.batenburg@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica (CWI), Science Park 123, 1098 XG Amsterdam (Netherlands); Sijbers, Jan, E-mail: jan.sijbers@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2014-04-01

    Highlights: • We propose the dynamic angle selection algorithm for CT scanning. • The approach is based on the concept of information gain over a set of solutions. • Projection angles are selected based on the already available projection data. • The approach can lead to more accurate results from fewer projections. - Abstract: In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number of projections can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image. In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximizing the information gain about the object, given the set of possible new angles. Experiments show that this approach can select projection angles for which the accuracy of the reconstructed image is significantly higher compared to the standard angle selections schemes.

  8. Dynamic angle selection in X-ray computed tomography

    International Nuclear Information System (INIS)

    Dabravolski, Andrei; Batenburg, Kees Joost; Sijbers, Jan

    2014-01-01

    Highlights: • We propose the dynamic angle selection algorithm for CT scanning. • The approach is based on the concept of information gain over a set of solutions. • Projection angles are selected based on the already available projection data. • The approach can lead to more accurate results from fewer projections. - Abstract: In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number of projections can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image. In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximizing the information gain about the object, given the set of possible new angles. Experiments show that this approach can select projection angles for which the accuracy of the reconstructed image is significantly higher compared to the standard angle selections schemes

  9. Assessment of skull base involvement in nasopharyngeal carcinoma: comparisons of single-photon emission tomography with planar bone scintigraphy and X-ray computed tomography

    International Nuclear Information System (INIS)

    Lee Chianghsuan; Wang Peiwen; Chen Hueyong; Lui Chunchung; Su Chihying

    1995-01-01

    The diagnostic contribution of single-photon emission tomography (SPET) to the detection of bone lesions of the skull base was explored in 200 patients with nasopharyngeal carcinoma (NPC). Comparison of SPET with planar bone scintigraphy showed that SPET improved the contrast and better defined the lesions in 107 out of the 200 patients. Comparison of SPET with X-ray computed tomography (CT) showed that SPET did not miss the lesions detected by CT while CT missed 49% of the lesions detected by SPET. The only false-positive lesion with SPET was detected in the mastoid bone. SPET detected skull base lesions in all of the 35 patients with cranial nerve involvement, while CT missed eight and planar bone scintigraphy missed four. The findings suggest that SPET should be included in the routine check-up examinations of patients with NPC. (orig.)

  10. Identification of Material Parameters for the Simulation of Acoustic Absorption of Fouled Sintered Fiber Felts

    Directory of Open Access Journals (Sweden)

    Nicolas Lippitz

    2016-08-01

    Full Text Available As a reaction to the increasing noise pollution, caused by the expansion of airports close to residential areas, porous trailing edges are investigated to reduce the aeroacoustic noise produced by flow around the airframe. Besides mechanical and acoustical investigations of porous materials, the fouling behavior of promising materials is an important aspect to estimate the performance in long-term use. For this study, two sintered fiber felts were selected for a long-term fouling experiment where the development of the flow resistivity and accumulation of dirt was observed. Based on 3D structural characterizations obtained from X-ray tomography of the initial materials, acoustic models (Biot and Johnson–Champoux–Allard in the frame of the transfer matrix method were applied to the sintered fiber felts. Flow resistivity measurements and the measurements of the absorption coefficient in an impedance tube are the basis for a fouling model for sintered fiber felts. The contribution will conclude with recommendations concerning the modeling of pollution processes of porous materials.

  11. Three-Dimensional Printing of X-Ray Computed Tomography Datasets with Multiple Materials Using Open-Source Data Processing

    Science.gov (United States)

    Sander, Ian M.; McGoldrick, Matthew T.; Helms, My N.; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W. Matthew

    2017-01-01

    Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing…

  12. Reflection tomography from pre-stack migrated images; Tomographie de reflexion a partir des images migrees avant addition

    Energy Technology Data Exchange (ETDEWEB)

    Adler, F

    1996-10-29

    The application of reflection tomography to data from complex geological structures is very interesting in the hydrocarbons exploration. Indeed, it contributes to localize the hydrocarbons potential traps. The used reflection tomography method is faced with two major difficulties. Travel time picking is difficult or impossible in seismic time sections. The processing of multiple arrival travel times needs an adequate formulation of reflection tomography. In order to solve the first problem, we adopt the approach of the SMART (Sequential Migration Aided Reflection Tomography) method which is an original method for the implementation of migration velocity analysis. The velocity model is automatically calculated by reflection tomography. The kinematic data set for reflection tomography is constructed from pre-stack depth-migrated images that are interpreted in the chosen migration configuration. For the implementation of the SMART method in the common-offset domain, we propose an original formulation of reflection tomography that takes multiple arrival travel times, which are calculated from common-offset migrated images, into account. In this new formulation, we look for a model such that a modelling, which consists in shooting in this model from the source locations with some ray parameters at the source, matches some emergence conditions: for each offset, the rays emerge at the receiver locations (given by the offset) with the same travel times and the same travel time slopes as observed in the associated common-offset section. These conditions constitute the kinematic data set for tomographic inversion. The common-offset travel time slope is the difference between the ray parameter at the receiver and the ray parameter at the source. Therefore, the ray parameter at the source is an unknown and has to be determined together with the model parameters during inversion. (author)

  13. Quantitative analysis of scaling error compensation methods in dimensional X-ray computed tomography

    DEFF Research Database (Denmark)

    Müller, P.; Hiller, Jochen; Dai, Y.

    2015-01-01

    X-ray Computed Tomography (CT) has become an important technology for quality control of industrial components. As with other technologies, e.g., tactile coordinate measurements or optical measurements, CT is influenced by numerous quantities which may have negative impact on the accuracy...... errors of the manipulator system (magnification axis). This article also introduces a new compensation method for scaling errors using a database of reference scaling factors and discusses its advantages and disadvantages. In total, three methods for the correction of scaling errors – using the CT ball...

  14. Computerized tomography and conventional radiography: A comparison from the standpoint of X-ray physics and technology

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiler, M; Linke, G [Siemens A.G., Erlangen (Germany, F.R.). Unternehmensbereich Medizinische Technik

    1979-08-01

    After a short explantation of the technical foundations of computerized tomography (CT) from terms used in conventional X-ray technique and CT the differences (dose distribution, image character) and similarities (quantum noise, beam quality) of both methods are discussed. Finally possible methods of quantitative evaluation of CT images and computation of longitudinal layers from a series of computerized tomograms are described. (author).

  15. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    International Nuclear Information System (INIS)

    Cho, Y; Kumar, A; Xu, S; Zou, J

    2016-01-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays. (paper)

  16. X-Ray longitudinal and computed tomography in the diagnosis of peripheral tumor-like formations of the lungs

    International Nuclear Information System (INIS)

    Sokolov, V.A.; Kartashov, V.M.; Piven', A.I.; Krasnoborova, S.Yu.; Blinova, L.V.; Savel'ev, A.V.

    1997-01-01

    Fifty eight patients with peripheral tumor-like formations of the lung (33 with cancer and 25 with benign formations) were examined by longitudinal tomography and CT. The potentialities f the two techniques in detecting the major semiotic signs of cancer and malignant formations were compared. The main or major signs, such as the shape of shadow and the pattern of outlines, which make it possible to differentiate bening and malignant formations, are virtually equally imaged by the two techniques. CT is superior to X-ray longitudinal tomography in revealing minor calcifications and microdestructions, hyperplastic intrathoracic lymph nodes. The significance of some symptoms for differential diagnosis calls for further clarification

  17. HARPA: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain

    Science.gov (United States)

    Jones, R. M.; Riley, J. P.; Georges, T. M.

    1986-08-01

    The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.

  18. Soft x-ray tomography for real-time applications: present status at Tore Supra and possible future developments

    Czech Academy of Sciences Publication Activity Database

    Mazon, D.; Vezinet, D.; Pacella, D.; Moreau, D.; Gabelieri, L.; Romano, A.; Malard, P.; Mlynář, Jan; Masset, R.; Lotte, P.

    2012-01-01

    Roč. 83, č. 6 (2012), 063505-063505 ISSN 0034-6748 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * tomography X-ray * diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.602, year: 2012 http://rsi.aip.org/resource/1/rsinak/v83/i6/p063505_s1

  19. Use of an improved simultaneous tomography cassette in linear tomography

    International Nuclear Information System (INIS)

    Egender, G.; Pirker, E.; Gornik, E.; Innsbruck Univ.

    1984-01-01

    An improved simultaneous tomography cassette according to P. Landau was tried out for four months using four tomographs in routine work. The mode of operation is based on accurate control of the relative speeds of the individual x-ray films resulting in simultaneous imaging of 6 equidistant tomographic levels. Clinical testing was effected in 80 cases: nephrotomography, of the lungs, the hilum, and the skeleton. In particular, the article describes imaging of the renal arteries by simultaneous tomography for the purpose of finding out the cause of hypertension, and if there is suspicion of a space-occupying growth in the kidney, basing on the urogram. The specific advantages of this technique are, on the one hand, improved diagnostic efficiency (the tomograms are taken during the same respiratory phase, more rapid diagnosis especially with accident patients), and, on the other hand, an important reduction in the x-ray exposure of the patient; furthermore, the life of the x-ray tube is prolonged, and there is a definite saving of time for both patient and personnel, the image quality being comparable with that of single-layer tomography. (orig.) [de

  20. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    International Nuclear Information System (INIS)

    Schaefer, Thomas; Hampel, Uwe; Technische Univ. Dresden

    2017-01-01

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  1. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Thomas [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Hampel, Uwe [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Technische Univ. Dresden (Germany). AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering

    2017-07-15

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  2. Cone-beam X-ray phase-contrast tomography for the observation of single cells in whole organs

    International Nuclear Information System (INIS)

    Krenkel, Martin

    2015-01-01

    X-ray imaging enables the nondestructive investigation of interior structures in otherwise opaque samples. In particular the use of computed tomography (CT) allows for arbitrary virtual slices through the object and 3D information about intricate structures can be obtained. However, when it comes to image very small structures like single cells, the classical CT approach is limited by the weak absorption of soft-tissue. The use of phase information, encoded in measureable intensity images by free-space propagation of coherent X-rays, allows a huge increase in contrast, which enables 3D reconstructions at higher resolutions. In this work the application of propagation-based phase-contrast tomography to lung tissue samples is demonstrated in close to in vivo conditions. Reconstructions of the lung structure of whole mice at down to 5 µm resolution are obtained at a selfbuilt CT setup, which is based on a liquid-metal jet X-ray source. To reach even higher resolutions, synchrotron radiation in combination with suitable holographic phase-retrieval algorithms is employed. Due to optimized cone-beam geometry, field of view and resolution can be varied over a wide range of parameters, so that information on different length scales can be achieved, covering several millimeters field of view down to a 3D resolution of 50 nm. Thus, the sub-cellular 3D imaging of single cells embedded in large pieces of tissue is enabled, which paves the way for future biomedical research.

  3. 3D map of theranostic nanoparticles distribution in mice brain and liver by means of X-ray Phase Contrast Tomography

    Science.gov (United States)

    Longo, E.; Bravin, A.; Brun, F.; Bukreeva, I.; Cedola, A.; Fratini, M.; Le Guevel, X.; Massimi, L.; Sancey, L.; Tillement, O.; Zeitoun, P.; de La Rochefoucauld, O.

    2018-01-01

    The word "theranostic" derives from the fusion of two terms: therapeutic and diagnostic. It is a promising research field that aims to develop innovative therapies with high target specificity by exploiting the therapeutic and diagnostic properties, in particular for metal-based nanoparticles (NPs) developed to erase cancer. In the framework of a combined research program on low dose X-ray imaging and theranostic nanoparticles (NPs), high resolution Phase-Contrast Tomography images of mice organs injected with gadolinium and gold-NPs were acquired at the European Synchrotron Radiation Facility (ESRF). Both compounds are good X-ray contrast agents due to their high attenuation coefficient with respect to biological tissues, especially immediately above K-edge energy. X-ray tomography is a powerful non-invasive technique to image the 3D vasculature network in order to detect abnormalities. Phase contrast methods provide more detailed anatomical information with higher discrimination among soft tissues. We present the images of mice liver and brain injected with gold and gadolinium NPs, respectively. We discuss different image processing methods used aiming at enhancing the accuracy on localizing nanoparticles.

  4. Enabling three-dimensional densitometric measurements using laboratory source X-ray micro-computed tomography

    Science.gov (United States)

    Pankhurst, M. J.; Fowler, R.; Courtois, L.; Nonni, S.; Zuddas, F.; Atwood, R. C.; Davis, G. R.; Lee, P. D.

    2018-01-01

    We present new software allowing significantly improved quantitative mapping of the three-dimensional density distribution of objects using laboratory source polychromatic X-rays via a beam characterisation approach (c.f. filtering or comparison to phantoms). One key advantage is that a precise representation of the specimen material is not required. The method exploits well-established, widely available, non-destructive and increasingly accessible laboratory-source X-ray tomography. Beam characterisation is performed in two stages: (1) projection data are collected through a range of known materials utilising a novel hardware design integrated into the rotation stage; and (2) a Python code optimises a spectral response model of the system. We provide hardware designs for use with a rotation stage able to be tilted, yet the concept is easily adaptable to virtually any laboratory system and sample, and implicitly corrects the image artefact known as beam hardening.

  5. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography

    Czech Academy of Sciences Publication Activity Database

    Viani, Alberto; Sotiriadis, Konstantinos; Kumpová, Ivana; Mancini, L.; Appavou, M.-S.

    2017-01-01

    Roč. 33, č. 4 (2017), s. 402-417 ISSN 0109-5641 R&D Projects: GA MŠk(CZ) LO1219 Keywords : zinc phosphate cements * small angle neutron scattering * X-ray micro-computed tomography * X-ray powder diffraction * zinc oxide * acid-base cements Subject RIV: JJ - Other Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 4.070, year: 2016 https://www.sciencedirect.com/science/article/pii/S0109564116305127

  6. Limited-angle x-ray luminescence tomography: methodology and feasibility study

    International Nuclear Information System (INIS)

    Carpenter, C M; Pratx, G; Sun, C; Xing, L

    2011-01-01

    X-ray luminescence tomography (XLT) has recently been proposed as a new imaging modality for biological imaging applications. This modality utilizes phosphor nanoparticles which luminesce near-infrared light when excited by x-ray photons. The advantages of this modality are that it uniquely combines the high sensitivity of radioluminescent nanoparticles and the high spatial localization of collimated x-ray beams. Currently, XLT has been demonstrated using x-ray spatial encoding to resolve the imaging volume. However, there are applications where the x-ray excitation may be limited by geometry, where increased temporal resolution is desired, or where a lower dose is mandatory. This paper extends the utility of XLT to meet these requirements by incorporating a photon propagation model into the reconstruction algorithm in an x-ray limited-angle (LA) geometry. This enables such applications as image-guided surgery, where the ability to resolve lesions at depths of several centimeters can be the key to successful resection. The hybrid x-ray/diffuse optical model is first formulated and then demonstrated in a breast-sized phantom, simulating a breast lumpectomy geometry. Both numerical and experimental phantoms are tested, with lesion-simulating objects of various sizes and depths. Results show localization accuracy with median error of 2.2 mm, or 4% of object depth, for small 2-14 mm diameter lesions positioned from 1 to 4.5 cm in depth. This compares favorably with fluorescence optical imaging, which is not able to resolve such small objects at this depth. The recovered lesion size has lower size bias in the x-ray excitation direction than the optical direction, which is expected due to the increased optical scatter. However, the technique is shown to be quite invariant in recovered size with respect to depth, as the standard deviation is less than 2.5 mm. Sensitivity is a function of dose; radiological doses are found to provide sufficient recovery for μg ml -1

  7. Statistical x-ray computed tomography imaging from photon-starved measurements

    Science.gov (United States)

    Chang, Zhiqian; Zhang, Ruoqiao; Thibault, Jean-Baptiste; Sauer, Ken; Bouman, Charles

    2013-03-01

    Dose reduction in clinical X-ray computed tomography (CT) causes low signal-to-noise ratio (SNR) in photonsparse situations. Statistical iterative reconstruction algorithms have the advantage of retaining image quality while reducing input dosage, but they meet their limits of practicality when significant portions of the sinogram near photon starvation. The corruption of electronic noise leads to measured photon counts taking on negative values, posing a problem for the log() operation in preprocessing of data. In this paper, we propose two categories of projection correction methods: an adaptive denoising filter and Bayesian inference. The denoising filter is easy to implement and preserves local statistics, but it introduces correlation between channels and may affect image resolution. Bayesian inference is a point-wise estimation based on measurements and prior information. Both approaches help improve diagnostic image quality at dramatically reduced dosage.

  8. X-ray computed tomography datasets for forensic analysis of vertebrate fossils

    Science.gov (United States)

    Rowe, Timothy B.; Luo, Zhe-Xi; Ketcham, Richard A.; Maisano, Jessica A.; Colbert, Matthew W.

    2016-01-01

    We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils. PMID:27272251

  9. The use of combined single photon emission computed tomography and X-ray computed tomography to assess the fate of inhaled aerosol.

    Science.gov (United States)

    Fleming, John; Conway, Joy; Majoral, Caroline; Tossici-Bolt, Livia; Katz, Ira; Caillibotte, Georges; Perchet, Diane; Pichelin, Marine; Muellinger, Bernhard; Martonen, Ted; Kroneberg, Philipp; Apiou-Sbirlea, Gabriela

    2011-02-01

    Gamma camera imaging is widely used to assess pulmonary aerosol deposition. Conventional planar imaging provides limited information on its regional distribution. In this study, single photon emission computed tomography (SPECT) was used to describe deposition in three dimensions (3D) and combined with X-ray computed tomography (CT) to relate this to lung anatomy. Its performance was compared to planar imaging. Ten SPECT/CT studies were performed on five healthy subjects following carefully controlled inhalation of radioaerosol from a nebulizer, using a variety of inhalation regimes. The 3D spatial distribution was assessed using a central-to-peripheral ratio (C/P) normalized to lung volume and for the right lung was compared to planar C/P analysis. The deposition by airway generation was calculated for each lung and the conducting airways deposition fraction compared to 24-h clearance. The 3D normalized C/P ratio correlated more closely with 24-h clearance than the 2D ratio for the right lung [coefficient of variation (COV), 9% compared to 15% p computer analysis is a useful approach for applications requiring regional information on deposition.

  10. A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography.

    Science.gov (United States)

    Dunlop, Jason A; Wirth, Stefan; Penney, David; McNeil, Andrew; Bradley, Robert S; Withers, Philip J; Preziosi, Richard F

    2012-06-23

    High-resolution phase-contrast X-ray computed tomography (CT) reveals the phoretic deutonymph of a fossil astigmatid mite (Acariformes: Astigmata) attached to a spider's carapace (Araneae: Dysderidae) in Eocene (44-49 Myr ago) Baltic amber. Details of appendages and a sucker plate were resolved, and the resulting three-dimensional model demonstrates the potential of tomography to recover morphological characters of systematic significance from even the tiniest amber inclusions without the need for a synchrotron. Astigmatids have an extremely sparse palaeontological record. We confirm one of the few convincing fossils, potentially the oldest record of Histiostomatidae. At 176 µm long, we believe this to be the smallest arthropod in amber to be CT-scanned as a complete body fossil, extending the boundaries for what can be recovered using this technique. We also demonstrate a minimum age for the evolution of phoretic behaviour among their deutonymphs, an ecological trait used by extant species to disperse into favourable environments. The occurrence of the fossil on a spider is noteworthy, as modern histiostomatids tend to favour other arthropods as carriers.

  11. A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography

    Science.gov (United States)

    Dunlop, Jason A.; Wirth, Stefan; Penney, David; McNeil, Andrew; Bradley, Robert S.; Withers, Philip J.; Preziosi, Richard F.

    2012-01-01

    High-resolution phase-contrast X-ray computed tomography (CT) reveals the phoretic deutonymph of a fossil astigmatid mite (Acariformes: Astigmata) attached to a spider's carapace (Araneae: Dysderidae) in Eocene (44–49 Myr ago) Baltic amber. Details of appendages and a sucker plate were resolved, and the resulting three-dimensional model demonstrates the potential of tomography to recover morphological characters of systematic significance from even the tiniest amber inclusions without the need for a synchrotron. Astigmatids have an extremely sparse palaeontological record. We confirm one of the few convincing fossils, potentially the oldest record of Histiostomatidae. At 176 µm long, we believe this to be the smallest arthropod in amber to be CT-scanned as a complete body fossil, extending the boundaries for what can be recovered using this technique. We also demonstrate a minimum age for the evolution of phoretic behaviour among their deutonymphs, an ecological trait used by extant species to disperse into favourable environments. The occurrence of the fossil on a spider is noteworthy, as modern histiostomatids tend to favour other arthropods as carriers. PMID:22072283

  12. Principles of medical imaging with emphasis on tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kouris, K [Institute of Nuclear Medicine, University College, London Medical School, Mortimer Street, London W1N 8AA (United Kingdom)

    1994-12-31

    Medical imaging with ionizing and non-ionizing radiations belongs to the class of problems known as indirect sensing. This article is concerned with imaging methods known as image reconstruction from projections or computerized tomography. A brief comparative study of the theory is presented. Depending on the nature and modes of propagation of the employed radiation, methods are discussed either under transmission tomography (with gamma rays and X rays) or emission tomography (with gamma rays and positrons). Magnetic resonance Imaging (MRI) is described as resonant absorption and re-emission of radiofrequency energy. (author). 6 refs, 1 fig.

  13. Radial lens distortion correction with sub-pixel accuracy for X-ray micro-tomography.

    Science.gov (United States)

    Vo, Nghia T; Atwood, Robert C; Drakopoulos, Michael

    2015-12-14

    Distortion correction or camera calibration for an imaging system which is highly configurable and requires frequent disassembly for maintenance or replacement of parts needs a speedy method for recalibration. Here we present direct techniques for calculating distortion parameters of a non-linear model based on the correct determination of the center of distortion. These techniques are fast, very easy to implement, and accurate at sub-pixel level. The implementation at the X-ray tomography system of the I12 beamline, Diamond Light Source, which strictly requires sub-pixel accuracy, shows excellent performance in the calibration image and in the reconstructed images.

  14. Dry coupling for whole-body small-animal photoacoustic computed tomography

    OpenAIRE

    Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.

    2017-01-01

    We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using ...

  15. A study on measurement of scattery ray of computed tomography

    International Nuclear Information System (INIS)

    Cho, Pyong Kon; Lee, Joon Hyup; Kim, Yoon Sik; Lee, Chang Yeop

    2003-01-01

    Computed tomographic equipment is essential for diagnosis by means of radiation. With passage of time and development of science computed tomographic was developed time and again and in future examination by means of this equipment is expected to increase. In this connection these authors measured rate of scatter ray generation at front of lead glass for patients within control room of computed tomographic equipment room and outside of entrance door for exit and entrance of patients and attempted to find out method for minimizing exposure to scatter ray. From November 2001 twenty five units of computed tomographic equipment which were already installed and operation by 13 general hospitals and university hospitals in Seoul were subjected to this study. As condition of photographing those recommended by manufacturer for measuring exposure to scatter ray was use. At the time objects used DALI CT Radiation Dose Test Phantom fot Head (φ 16 cm Plexglas) and Phantom for Stomache (φ 32 cm Plexglas) were used. For measurement of scatter ray Reader (Radiation Monitor Controller Model 2026) and G-M Survey were used to Survey Meter of Radical Corporation, model 20 x 5-1800, Electrometer/Ion Chamber, S/N 21740. Spots for measurement of scatter ray included front of lead glass for patients within control room of computed tomographic equipment room which is place where most of work by gradiographic personnel are carried out and is outside of entrance door for exit and entrance of patients and their guardians and at spot 100 cm off from isocenter at the time of scanning the object. Work environment within computed tomography room which was installed and under operation by each hospital showed considerable difference depending on circumstances of pertinent hospitals and status of scatter ray was as follows. 1) From isocenter of computed tomographic equipment to lead glass for patients within control room average distance was 377 cm. At that time scatter ray showed diverse

  16. Utilization of dual-source X-ray tomography for reduction of scanning time of wooden samples

    Czech Academy of Sciences Publication Activity Database

    Fíla, Tomáš; Kumpová, Ivana; Jandejsek, Ivan; Kloiber, Michal; Tureček, D.; Vavřík, Daniel

    2015-01-01

    Roč. 10, č. 5 (2015), C05008 ISSN 1748-0221. [International workshop on radiation imaging detectors. Trieste, 22.06.2014-26.06.2014] R&D Projects: GA MK(CZ) DF11P01OVV001 Keywords : computerized tomography (CT) * computed radiography (CR) * overall mechanics design * inspection with X-rays Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.310, year: 2015 http://iopscience.iop.org/article/10.1088/1748-0221/10/05/C05008

  17. A model problem for restricted-data gamma ray emission tomography of highly active nuclear waste

    International Nuclear Information System (INIS)

    Cattle, Brian A.

    2007-01-01

    This paper develops the work of Cattle et al. [Cattle, B.A., Fellerman, A.S., West, R.M., 2004. On the detection of solid deposits using gamma ray emission tomography with limited data. Measurement Science and Technology 15, 1429-1439] by considering a generalization of the model employed therein. The focus of the work is the gamma ray tomographic analysis of high-level waste processing. The work in this paper considers a two-dimensional model for the measurement of gamma ray photon flux, as opposed to the previous one-dimensional analysis via the integrated Beer-Lambert law. The mathematical inverse problem that arises in determining physical quantities from the photon count measurements is tackled using Bayesian statistical methods that are implemented computationally using a Markov chain Monte Carlo (MCMC) approach. In a further new development, the effect of the degree of collimation of the detector on the reliability of the solutions is also considered

  18. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  19. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Computed tomography (CT) of the head uses special x-ray equipment to help assess head injuries, severe headaches, ... is a diagnostic medical test that, like traditional x-rays, produces multiple images or pictures of the inside ...

  20. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    DEFF Research Database (Denmark)

    Borg, Leise; Jørgensen, Jakob Sauer; Frikel, Jürgen

    2017-01-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered...... and artifact-reduction methods are designed in context of FBP reconstruction motivated by computational efficiency practical for large, real synchrotron data. While a specific variable-truncation case is considered, the proposed methods can be applied to general data cut-offs arising in different in situ x-ray...... backprojection (FBP) reconstruction at certain orientations. Projections with non-trivial variable truncation caused by the metal bars are the source of these variable-truncation artifacts. To understand the artifacts a mathematical model of variable-truncation data as a function of metal bar radius and distance...

  1. Multi-mounted X-ray cone-beam computed tomography

    Science.gov (United States)

    Fu, Jian; Wang, Jingzheng; Guo, Wei; Peng, Peng

    2018-04-01

    As a powerful nondestructive inspection technique, X-ray computed tomography (X-CT) has been widely applied to clinical diagnosis, industrial production and cutting-edge research. Imaging efficiency is currently one of the major obstacles for the applications of X-CT. In this paper, a multi-mounted three dimensional cone-beam X-CT (MM-CBCT) method is reported. It consists of a novel multi-mounted cone-beam scanning geometry and the corresponding three dimensional statistical iterative reconstruction algorithm. The scanning geometry is the most iconic design and significantly different from the current CBCT systems. Permitting the cone-beam scanning of multiple objects simultaneously, the proposed approach has the potential to achieve an imaging efficiency orders of magnitude greater than the conventional methods. Although multiple objects can be also bundled together and scanned simultaneously by the conventional CBCT methods, it will lead to the increased penetration thickness and signal crosstalk. In contrast, MM-CBCT avoids substantially these problems. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed MM-CBCT prototype system. This technique will provide a possible solution for the CT inspection in a large scale.

  2. Computed tomography for radiographers

    International Nuclear Information System (INIS)

    Brooker, M.

    1986-01-01

    Computed tomography is regarded by many as a complicated union of sophisticated x-ray equipment and computer technology. This book overcomes these complexities. The rigid technicalities of the machinery and the clinical aspects of computed tomography are discussed including the preparation of patients, both physically and mentally, for scanning. Furthermore, the author also explains how to set up and run a computed tomography department, including advice on how the room should be designed

  3. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Computed tomography (CT) of the sinuses uses special x-ray equipment to evaluate the paranasal sinus cavities – hollow, ... is a diagnostic medical test that, like traditional x-rays, produces multiple images or pictures of the inside ...

  4. Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis

    DEFF Research Database (Denmark)

    Ludwig, W.; Reischig, P.; King, A.

    2009-01-01

    X-ray diffraction contrast tomography (DCT) is a technique for mapping grain shape and orientation in plastically undeformed polycrystals. In this paper, we describe a modified DCT data acquisition strategy which permits the incorporation of an innovative Friedel pair method for analyzing...

  5. 15Mcps photon-counting X-ray computed tomography system using a ZnO-MPPC detector and its application to gadolinium imaging.

    Science.gov (United States)

    Sato, Eiichi; Sugimura, Shigeaki; Endo, Haruyuki; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-01-01

    15Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15Mcps (mega counts per second) at a tube voltage of 100kV and a tube current of 1.95mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15min, and photon-counting CT was accomplished using gadolinium-based contrast media. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. [Treatment choice in dacryostenosis based on single-photon emission computed tomography and X-ray computed tomography findings].

    Science.gov (United States)

    At'kova, E L; Yartsev, V D; Tomashevskiy, I O; Krakhovetskiy, N N

    2016-01-01

    To develop surgical indications in dacryostenosis within the vertical portion of lacrimal pathways that would consider findings of single-photon emission computed tomography (SPECT) combined with X-ray computed tomography (CT). A total of 96 patients with isolated vertical-portion dacryostenosis (127 cases) were enrolled. The examination included collecting Munk's scores for epiphora, optical coherence tomography of the lower tear meniscus, lacrimal scintigraphy, and SPECT/CT. Group 1 (40 cases) was composed of patients with lacrimal obstruction on CT, group 2 (87 cases) - of those whose lacrimal pathways proved passable. There were also 3 patients (4 cases) from group 1, whose lacrimal pathways, despite being blocked on CT, were still passable on SPECT. Surgeries performed in group 1 were endoscopic endonasal dacryocystorhinostomy (DCR) (36 cases) and pathways recanalization with bicanalicular intubation and balloon dacryoplasty (DCP) (4 cases). In group 2, all patients (87 cases) underwent recanalization with bicanalicular intubation (supplemented with balloon DCP in 32 cases). Surgical results were evaluated 8-12 months after the treatment. In group 2, particular attention was paid to the concordance in locations of dacryostenosis provided by CT and SPECT scans. Favorable outcomes of endoscopic endonasal DCR were obtained in as many as 32 cases from group 1 (88.9%), while in 4 cases (12.1%) the condition relapsed. Of those patients whose stenosis was not complete on SPECT, 3 cases (75.0%) improved, 1 (25.0%) - relapsed. In group 2, favorable outcomes were obtained in 65 cases (74.7%), relapses were 22 (25.3%). A high concordance in stenosis locations by CT and SPECT was noted in 60 cases of those who improved (92.3%) and 3 cases of those who relapsed (13.6%). The value of information provided by SPECT/CT has proved high in patients with nasolacrimal duct stenosis or obstruction. A combined scan allows to establish causal relationships between anatomical changes

  7. X-ray micro computed tomography characterization of cellular SiC foams for their applications in chemical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Xiaoxia [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Zhang, Xun; Lowe, Tristan [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Blanc, Remi [FEI, 3 Impasse Rudolf Diesel, BP 50227, 33708 Mérignac (France); Rad, Mansoureh Norouzi [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Wang, Ying [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Batail, Nelly; Pham, Charlotte [SICAT SARL, 20 Place des Halles, 67000 Strasbourg (France); Shokri, Nima; Garforth, Arthur A. [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom); Withers, Philip J. [Henry Moseley X-ray Imaging Facility, Materials Science Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Fan, Xiaolei, E-mail: xiaolei.fan@manchester.ac.uk [School of Chemical Engineering and Analytical Science, The University of Manchester, M13 9PL (United Kingdom)

    2017-01-15

    Open-cell SiC foams clearly are promising materials for continuous-flow chemical applications such as heterogeneous catalysis and distillation. X-ray micro computed tomography characterization of cellular β-SiC foams at a spatial voxel size of 13.6{sup 3} μm{sup 3} and the interpretation of morphological properties of SiC open-cell foams with implications to their transport properties are presented. Static liquid hold-up in SiC foams was investigated through in-situ draining experiments for the first time using the μ-CT technique providing thorough 3D information about the amount and distribution of liquid hold-up inside the foam. This will enable better modeling and design of structured reactors based on SiC foams in the future. In order to see more practical uses, μ-CT data of cellular foams must be exploited to optimize the design of the morphology of foams for a specific application. - Highlights: •Characterization of SiC foams using novel X-ray micro computed tomography. •Interpretation of structural properties of SiC foams regarding to their transport properties. •Static liquid hold-up analysis of SiC foams through in-situ draining experiments.

  8. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography.

    Science.gov (United States)

    Yang, Xiaogang; De Carlo, Francesco; Phatak, Charudatta; Gürsoy, Dogˇa

    2017-03-01

    This paper presents an algorithm to calibrate the center-of-rotation for X-ray tomography by using a machine learning approach, the Convolutional Neural Network (CNN). The algorithm shows excellent accuracy from the evaluation of synthetic data with various noise ratios. It is further validated with experimental data of four different shale samples measured at the Advanced Photon Source and at the Swiss Light Source. The results are as good as those determined by visual inspection and show better robustness than conventional methods. CNN has also great potential for reducing or removing other artifacts caused by instrument instability, detector non-linearity, etc. An open-source toolbox, which integrates the CNN methods described in this paper, is freely available through GitHub at tomography/xlearn and can be easily integrated into existing computational pipelines available at various synchrotron facilities. Source code, documentation and information on how to contribute are also provided.

  9. L-shell x-ray fluorescence computed tomography (XFCT) imaging of Cisplatin

    International Nuclear Information System (INIS)

    Bazalova, Magdalena; Ahmad, Moiz; Pratx, Guillem; Xing, Lei

    2014-01-01

    X-ray fluorescence computed tomography (XFCT) imaging has been focused on the detection of K-shell x-rays. The potential utility of L-shell x-ray XFCT is, however, not well studied. Here we report the first Monte Carlo (MC) simulation of preclinical L-shell XFCT imaging of Cisplatin. We built MC models for both L- and K-shell XFCT with different excitation energies (15 and 30 keV for L-shell and 80 keV for K-shell XFCT). Two small-animal sized imaging phantoms of 2 and 4 cm diameter containing a series of objects of 0.6 to 2.7 mm in diameter at 0.7 to 16 mm depths with 10 to 250 µg mL −1  concentrations of Pt are used in the study. Transmitted and scattered x-rays were collected with photon-integrating transmission detector and photon-counting detector arc, respectively. Collected data were rearranged into XFCT and transmission CT sinograms for image reconstruction. XFCT images were reconstructed with filtered back-projection and with iterative maximum-likelihood expectation maximization without and with attenuation correction. While K-shell XFCT was capable of providing an accurate measurement of Cisplatin concentration, its sensitivity was 4.4 and 3.0 times lower than that of L-shell XFCT with 15 keV excitation beam for the 2 cm and 4 cm diameter phantom, respectively. With the inclusion of excitation and fluorescence beam attenuation correction, we found that L-shell XFCT was capable of providing fairly accurate information of Cisplatin concentration distribution. With a dose of 29 and 58 mGy, clinically relevant Cisplatin Pt concentrations of 10 µg mg −1  could be imaged with L-shell XFCT inside a 2 cm and 4 cm diameter object, respectively. (paper)

  10. Photo acoustic imaging: technology, systems and market trends

    Science.gov (United States)

    Faucheux, Marc; d'Humières, Benoît; Cochard, Jacques

    2017-03-01

    Although the Photo Acoustic effect was observed by Graham Bell in 1880, the first applications (gas analysis) occurred in 1970's using the required energetic light pulses from lasers. During mid 1990's medical imaging research begun to use Photo Acoustic effect and in vivo images were obtained in mid-2000. Since 2009, the number of patent related to Photo Acoustic Imaging (PAI) has dramatically increased. PAI machines for pre-clinical and small animal imaging have been being used in a routine way for several years. Based on its very interesting features (non-ionizing radiation, noninvasive, high depth resolution ratio, scalability, moderate price) and because it is able to deliver not only anatomical, but functional and molecular information, PAI is a very promising clinical imaging modality. It penetrates deeper into tissue than OCT (Optical Coherence Tomography) and provides a higher resolution than ultrasounds. The PAI is one of the most growing imaging modality and some innovative clinical systems are planned to be on market in 2017. Our study analyzes the different approaches such as photoacoustic computed tomography, 3D photoacoustic microscopy, multispectral photoacoustic tomography and endoscopy with the recent and tremendous technological progress over the past decade: advances in image reconstruction algorithms, laser technology, ultrasound detectors and miniaturization. We analyze which medical domains and applications are the most concerned and explain what should be the forthcoming medical system in the near future. We segment the market in four parts: Components and R&D, pre-clinical, analytics, clinical. We analyzed what should be, quantitatively and qualitatively, the PAI medical markets in each segment and its main trends. We point out the market accessibility (patents, regulations, clinical evaluations, clinical acceptance, funding). In conclusion, we explain the main market drivers and challenges to overcome and give a road map for medical

  11. Use of 99mTc-sestamibi Single-photon Emission Computed Tomography / X-ray Computed Tomography in the Diagnosis of Hybrid Oncocytic / Chromophobe Tumor in a Pediatric Patient.

    Science.gov (United States)

    Almassi, Nima; Gorin, Michael A; Purysko, Andrei S; Rowe, Steven P; Kaouk, Jihad; Allaf, Mohamad E; Campbell, Steven C; Rhee, Audrey

    2018-03-01

    The differential diagnosis of solid renal neoplasms in adolescence includes aggressive malignancy and indolent oncocytic tumors, which are typically indistinguishable using conventional imaging. We report the use of 99m Tc-sestamibi single-photon emission computed tomography / x-ray computed tomography (SPECT/CT) in characterizing enhancing renal neoplasms in a pediatric patient. Genetic testing suggested a hereditary syndrome associated with aggressive malignancy, whereas renal mass biopsy suggested an oncocytic tumor. 99m Tc-sestamibi SPECT/CT indicated probable oncocytomas or hybrid oncocytic / chomophobe tumors. Enucleative resection was performed with final pathology demonstrating hybrid oncocytic / chomophobe tumors. This case highlights the potential utility of 99m Tc-sestamibi SPECT/CT in characterizing indeterminate enhancing renal neoplasm in pediatric patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Metal artifact removal (MAR) analysis for the security inspections using the X-ray computed tomography

    International Nuclear Information System (INIS)

    Cho, Hyo Sung; Woo, Tae Ho; Park, Chul Kyu

    2016-01-01

    Using the metal artifact property, it is analyzed for the X-ray computed tomography (CT) in the aspect of the security on the examined places like airport and surveillance areas. Since the importance of terror prevention strategy has been increased, the security application of X-ray CT has the significant remark. One shot X-ray image has the limitation to find out the exact shape to property in the closed box, which could be solved by the CT scanning without the tearing off the box in this work. Cleaner images can be obtained by the advanced technology if the CT scanning is utilized in the security purposes on the secured areas. A metal sample is treated by the metal artifact removal (MAR) method for the enhanced image. The mimicked explosive is experimented for the imaging processing application where the cleaner one is obtained. The procedure is explained and the further study is discussed. - Highlights: • The X-ray image is used for the nuclear inspections which are made by the image processing. • Nuclear security has been performed for counterterrorism. • Easy and fast inspections are needed. • Metal shows the characteristics of the noises.

  13. An X-Ray computed tomography/positron emission tomography system designed specifically for breast imaging.

    Science.gov (United States)

    Boone, John M; Yang, Kai; Burkett, George W; Packard, Nathan J; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D; Lindfors, Karen K

    2010-02-01

    Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging.

  14. The geometrical acoustic method for calculating the echo of targets submerged in a shallow water waveguide

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan; TANG Weilin; FAN Wei; FAN Jun

    2012-01-01

    A geometrical acoustic method based on image-source method and physicM acoustic method was developed to calculate the echo of targets submerged in the shallow water waveguide. The incident rays and the scattering rays are reflected by two boundaries for many times, and then the back rays become countless. The total backscattering field is obtained through summing up the scattering field produced by each combination of incident rays and back rays. The echo of the 10m-radius pressure release sphere in Pekeris waveguide with the range is calculated by the geometrical acoustic method. Compared with the results calculated by the wave acoustic method in the available literature, it shows that both are in accordance on average value and descend trend. The following results indicate that the difference between Effective Target Strength (ETS) in shallow water and the Target Strength (TS) in free space for spheres and certain other rounded objects is small. However, the ETS of some targets such as cone-shaped is quite different from TS in free space, which can lead to large errors in estimating a target's scattering property using traditional sonar equation. Compared with the method of wave acoustics, the geometrical acoustic method not only has the definite physical meaning but also can calculate the echo of complex objects in shallow water waveguide.

  15. A Prototype Scintillating Fibre Tracker for the Cosmic-Ray Muon Tomography of Legacy Nuclear Waste Containers

    OpenAIRE

    Kaiser, R.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D.G.; Johnstone, J.R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.

    2014-01-01

    Cosmic-ray muons are highly-penetrative charged particles observed at sea level with a flux of approximately 1 cm−2 min−1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. This paper presents the prototype scintillating-fibre detector developed for this application at the University of Glasgow. Experimental results taken with test objects are shown in comparison to results from...

  16. Ex-situ X-ray computed tomography data for a non-crimp fabric based glass fibre composite under fatigue loading

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2017-01-01

    The data published with this article are high resolution X-ray computed tomography (CT) data obtained during an ex-situ fatigue test of a coupon test specimen made from a non-crimp fabric based glass fibre composite similar to those used for wind turbine blades. The fatigue test was interrupted...

  17. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    Science.gov (United States)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  18. X-ray computed tomography for additive manufacturing: a review

    International Nuclear Information System (INIS)

    Thompson, A; Maskery, I; Leach, R K

    2016-01-01

    In this review, the use of x-ray computed tomography (XCT) is examined, identifying the requirement for volumetric dimensional measurements in industrial verification of additively manufactured (AM) parts. The XCT technology and AM processes are summarised, and their historical use is documented. The use of XCT and AM as tools for medical reverse engineering is discussed, and the transition of XCT from a tool used solely for imaging to a vital metrological instrument is documented. The current states of the combined technologies are then examined in detail, separated into porosity measurements and general dimensional measurements. In the conclusions of this review, the limitation of resolution on improvement of porosity measurements and the lack of research regarding the measurement of surface texture are identified as the primary barriers to ongoing adoption of XCT in AM. The limitations of both AM and XCT regarding slow speeds and high costs, when compared to other manufacturing and measurement techniques, are also noted as general barriers to continued adoption of XCT and AM. (topical review)

  19. X-ray computed tomography for additive manufacturing: a review

    Science.gov (United States)

    Thompson, A.; Maskery, I.; Leach, R. K.

    2016-07-01

    In this review, the use of x-ray computed tomography (XCT) is examined, identifying the requirement for volumetric dimensional measurements in industrial verification of additively manufactured (AM) parts. The XCT technology and AM processes are summarised, and their historical use is documented. The use of XCT and AM as tools for medical reverse engineering is discussed, and the transition of XCT from a tool used solely for imaging to a vital metrological instrument is documented. The current states of the combined technologies are then examined in detail, separated into porosity measurements and general dimensional measurements. In the conclusions of this review, the limitation of resolution on improvement of porosity measurements and the lack of research regarding the measurement of surface texture are identified as the primary barriers to ongoing adoption of XCT in AM. The limitations of both AM and XCT regarding slow speeds and high costs, when compared to other manufacturing and measurement techniques, are also noted as general barriers to continued adoption of XCT and AM.

  20. Magnetic resonance imaging in 38 cases of acoustic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Masafumi; Ohtsuka, Takashi; Seiki, Yoshikatsu; Matsumoto, Mikiro; Shibata, Iekado; Terao, Hideo [Toho Univ., Tokyo (Japan). School of Medicine; Kohno, Takeshi; Sanpei, Kenji; Mano, Isamu

    1989-08-01

    The value of magnetic resonance imaging (MRI) in the diagnosis of acoustic tumors was retrospectively assessed in 38 cases. A 0.15 Tesla permanent magnet and a 1.5 Tesla superconducting magnet were employed in 24 and 14 cases, respectively. Gadolinium diethlene triamine pentaacetic acid (Gd-DTPA), a paramagnetic contrast agent, was used in 10 cases. Acoustic tumors were identified in all cases. Small, medium, and large tumors were depicted with equal clarity by MRI and computed tomography (CT). However, tumor contour and extension, accompanying cysts, and brainstem displacement were more clarly visualized on MRI. The use of Gd-DTPA improved the quality of the MR images by markedly enhancing the acoustic tumors in all cases. In particular, detection of small acoustic tumors and intra- or paratumoral cysts was facilitated by the use of Gd-DTPA. The possibility of a correlation between acoustic tumor histology and MRI features was studied by calculation of the contrast to noise (C/N) ratio in 10 cases of acoustic tumor and 7 cases of meningioma. No definite correlation was demonstrated, but there appeared to be some difference in the C/N ratio between acoustic tumors and meningiomas. In three volunteers, MRI demonstrated intracanalicular nerves, separately. Because of its higher resolution, MRI can be expected to replace CT and air CT in the diagnosis of acoustic tumors. (author).

  1. Meaning of Interior Tomography

    Science.gov (United States)

    Wang, Ge; Yu, Hengyong

    2013-01-01

    The classic imaging geometry for computed tomography is for collection of un-truncated projections and reconstruction of a global image, with the Fourier transform as the theoretical foundation that is intrinsically non-local. Recently, interior tomography research has led to theoretically exact relationships between localities in the projection and image spaces and practically promising reconstruction algorithms. Initially, interior tomography was developed for x-ray computed tomography. Then, it has been elevated as a general imaging principle. Finally, a novel framework known as “omni-tomography” is being developed for grand fusion of multiple imaging modalities, allowing tomographic synchrony of diversified features. PMID:23912256

  2. Image covariance and lesion detectability in direct fan-beam x-ray computed tomography.

    Science.gov (United States)

    Wunderlich, Adam; Noo, Frédéric

    2008-05-21

    We consider noise in computed tomography images that are reconstructed using the classical direct fan-beam filtered backprojection algorithm, from both full- and short-scan data. A new, accurate method for computing image covariance is presented. The utility of the new covariance method is demonstrated by its application to the implementation of a channelized Hotelling observer for a lesion detection task. Results from the new covariance method and its application to the channelized Hotelling observer are compared with results from Monte Carlo simulations. In addition, the impact of a bowtie filter and x-ray tube current modulation on reconstruction noise and lesion detectability are explored for full-scan reconstruction.

  3. Image covariance and lesion detectability in direct fan-beam x-ray computed tomography

    International Nuclear Information System (INIS)

    Wunderlich, Adam; Noo, Frederic

    2008-01-01

    We consider noise in computed tomography images that are reconstructed using the classical direct fan-beam filtered backprojection algorithm, from both full- and short-scan data. A new, accurate method for computing image covariance is presented. The utility of the new covariance method is demonstrated by its application to the implementation of a channelized Hotelling observer for a lesion detection task. Results from the new covariance method and its application to the channelized Hotelling observer are compared with results from Monte Carlo simulations. In addition, the impact of a bowtie filter and x-ray tube current modulation on reconstruction noise and lesion detectability are explored for full-scan reconstruction

  4. Additional signals due to negative refraction in acoustic microscopy of anisotropic plates

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Mozhaev, V.G.

    2008-01-01

    The additional V(z) oscillations and pulses are predicted in the case of positive defocusing (focus above the sample surface) in acoustic microscopy of anisotropic plates exhibiting negative refraction of acoustic rays. The relationship between these additional signals and separate points on the acoustic slowness surface of the plate material is elucidated

  5. Additional signals due to negative refraction in acoustic microscopy of anisotropic plates

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A.V. [Faculty of Physics, Moscow State University, Moscow, 119991 GSP-1 (Russian Federation)], E-mail: av_kozlov@inbox.ru; Mozhaev, V.G. [Faculty of Physics, Moscow State University, Moscow, 119991 GSP-1 (Russian Federation)], E-mail: vgmozhaev@mail.ru

    2008-06-23

    The additional V(z) oscillations and pulses are predicted in the case of positive defocusing (focus above the sample surface) in acoustic microscopy of anisotropic plates exhibiting negative refraction of acoustic rays. The relationship between these additional signals and separate points on the acoustic slowness surface of the plate material is elucidated.

  6. Possible Radiation-Induced Damage to the Molecular Structure of Wooden Artifacts Due to Micro-Computed Tomography, Handheld X-Ray Fluorescence, and X-Ray Photoelectron Spectroscopic Techniques

    Directory of Open Access Journals (Sweden)

    Madalena Kozachuk

    2016-05-01

    Full Text Available This study was undertaken to ascertain whether radiation produced by X-ray photoelectron spectroscopy (XPS, micro-computed tomography (μCT and/or portable handheld X-ray fluorescence (XRF equipment might damage wood artifacts during analysis. Changes at the molecular level were monitored by Fourier transform infrared (FTIR analysis. No significant changes in FTIR spectra were observed as a result of μCT or handheld XRF analysis. No substantial changes in the collected FTIR spectra were observed when XPS analytical times on the order of minutes were used. However, XPS analysis collected over tens of hours did produce significant changes in the FTIR spectra.

  7. Optimal iodine staining of cardiac tissue for X-ray computed tomography.

    Science.gov (United States)

    Butters, Timothy D; Castro, Simon J; Lowe, Tristan; Zhang, Yanmin; Lei, Ming; Withers, Philip J; Zhang, Henggui

    2014-01-01

    X-ray computed tomography (XCT) has been shown to be an effective imaging technique for a variety of materials. Due to the relatively low differential attenuation of X-rays in biological tissue, a high density contrast agent is often required to obtain optimal contrast. The contrast agent, iodine potassium iodide ([Formula: see text]), has been used in several biological studies to augment the use of XCT scanning. Recently I2KI was used in XCT scans of animal hearts to study cardiac structure and to generate 3D anatomical computer models. However, to date there has been no thorough study into the optimal use of I2KI as a contrast agent in cardiac muscle with respect to the staining times required, which has been shown to impact significantly upon the quality of results. In this study we address this issue by systematically scanning samples at various stages of the staining process. To achieve this, mouse hearts were stained for up to 58 hours and scanned at regular intervals of 6-7 hours throughout this process. Optimal staining was found to depend upon the thickness of the tissue; a simple empirical exponential relationship was derived to allow calculation of the required staining time for cardiac samples of an arbitrary size.

  8. Acoustic emission from thermal-gradient cracks in UO2

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Kupperman, D.S.; Wrona, B.J.

    1975-01-01

    A feasibility study has been conducted to evaluate the potential use of acoustic emission to monitor thermal-shock damage in direct electrical heating of UO 2 pellets. In the apparatus used for the present tests, two acoustic-emission sensors were placed on extensions of the upper and lower electrical feedthroughs. Commercially available equipment was used to accumulate acoustic-emission data. The accumulation of events displayed on a cathode-ray-tube screen indicates the total number of acoustic-emission events at a particular location within the pellet stack. These tests have indicated that acoustic emission can be used to monitor thermal-shock damage in UO 2 pellets subjected to direct-electrical heating. 8 references

  9. X-ray and gamma-ray transmission computed tomographic imaging of archaeological objects

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Susan Maria Sipaun

    2004-01-01

    X-ray or gamma-ray transmission computed tomography (CT) is a powerful non-destructive evaluation (NDE) technique that produces two-dimensional cross-section images of an object without the need to physically section it. CT is also known by the acronym CAT, for computerised axial tomography or computed-aided tomography. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper presents a brief overview of X-ray or gamma-ray transmission tomography. It is not intended to be a technical treatise but is hoped that it would raise awareness and promote opportunities for further collaboration amongst the nuclear research community, including archaeologists and those in the conservation profession. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. In addition, a few examples of CT images for archaeological objects are presented. The examples were purposely chosen to illustrate clearly and precisely the fundamental concepts of this sophisticated field. (Author)

  10. Technology development of the soft X-ray tomography system in Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Schülke, M., E-mail: mathias.schuelke@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Cardella, A.; Hathiramani, D.; Mettchen, S.; Thomsen, H.; Weißflog, S.; Zacharias, D. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2013-10-15

    Highlights: ► Engineering and design of soft X-ray Multi Camera Tomography System. ► Requirements of in-vessel diagnostics in Wendelstein 7-X. ► Development of internal cooling system including FEM-Analysis. ► Development of lateral shield system with testing for microwave stray radiation compatibility. ► Development of multipin feedthrough including welding qualification and leak tests. -- Abstract: The engineering and design of the soft X-ray Multi Camera Tomography System (XMCTS) in Wendelstein 7-X stellarator (W7-X) must fulfill several additional requirements compared to short pulse machines. The XMCTS has to withstand irradiation and electron cyclotron microwave loads in addition to being ultra high vacuum compatible, having low magnetic permeability and using low neutron activation materials (e.g. Co ≤ 2000 ppm). A further difficulty is the limited space inside the plasma vessel, which requires special engineering solutions. After detailed design development, supported by finite element analyses, prototypes have been manufactured and tested. At the end all test results have successfully proven that the components fulfill the requirements and that reliable and stable measurements will be possible with the XMCTS diagnostics during W7-X operation. The paper describes the design and the technological development, in particular on the electric multipin feedthrough (UHV barrier between in vessel detectors and the preamplifiers), the active cooling of the electronic components (reducing dark current/noise increase), the pneumatic shutter (protection of the detectors from sputtering and during baking) and the fiber optics illumination system (calibration of the detectors)

  11. Comparative review of computed tomography of the spinal column and conventional x-ray films

    Energy Technology Data Exchange (ETDEWEB)

    Shin, H.; Yamaura, A.; Horie, T.; Makino, H. (Chiba Univ. (Japan). School of Medicine)

    1982-04-01

    Computerized tomography (CT) of the cervical spinal column was carried out in 39 patients using a GE.CT/T or Toshiba TCT60A scanner. There were 22 cervical disk lesions, 4 spinal neoplasms, 5 narrow spinal canals with or without ossification of the posterior longitudinal ligament, 2 syringomyelias, 5 traumas, and one Arnold-Chiari malformation. In all the patients, tomography was done after conventional spinal X-ray studies. The correlation between the CT findings and conventional X-ray films revealed the excellent capability of the CT. The measurement of the midline sagittal diameter of the spinal canal in the patient with the narrowest canal in this series showed 7.4 mm when done by CT and 9.6 mm when done by the conventional plain film at the C/sub 5/ level. To ascertain the precise sagittal diameter of the cord itself, CT myelography is indispensable after the intrathecal injection of metrizamide A; metrizamide CT myelogram is useful in determining the nature of the disease, the risk of and best approach to surgery, and the evaluation after a surgical procedure. Although the range of motion of cervical joints and intervertebral foramen are visible with the conventional films, the size of the spinal tumors, the degree of bony change, and the tumor extension to the paraspinal connective tissue can be precisely demonstrated only by CT. A CT study of the spine is a simple procedure and is less likely to produce complication, even with a metrizamide CT myelogram, though there are certain limitations in the examination.

  12. Signal Processing of Underwater Acoustic Waves

    Science.gov (United States)

    1969-11-01

    for the interest they have shown in the work and for many helpful discussions. The book was supported by Naval Ship Systems Corn- mand tinder ...inclination of the ray. The relationship is such that for the maximum values of dnldz just quoted radius of 0ectromapnetic ray 2,0 radius of acoustic... relationship for the angles, in, of the geometric ray, and carry out the limiting process as h -- 0. Show that when the velocity func- tion c(z) is

  13. Relationship of brain imaging with radionuclides and with x-ray computed tomography

    International Nuclear Information System (INIS)

    Kuhl, D.E.

    1981-01-01

    Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings are inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma

  14. Waste inspection tomography (WIT)

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, R.T. [Bio-Imaging Research, Inc., Lincolnshire, IL (United States)

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  15. Waste inspection tomography (WIT)

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1995-01-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU

  16. Correction of the X-ray tube spot movement as a tool for improvement of the micro-tomography quality

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jandejsek, Ivan; Pichotka, M.

    2016-01-01

    Roč. 11, č. 1 (2016), C01029 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LO1219 Keywords : computerized tomography (CT) * computed radiography (CR) * inspection with x-rays * detector alignment and calibration methods Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/11/01/C01029

  17. Axial Tomography from Digitized Real Time Radiography

    Science.gov (United States)

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  18. Transient thermal finite element analysis of CFC–Cu ITER monoblock using X-ray tomography data

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Ll.M., E-mail: llion.evans@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Margetts, L. [School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Manchester M13 9PL (United Kingdom); Casalegno, V. [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Lever, L.M. [IT Services for Research, University of Manchester, Devonshire House, Oxford Road, Manchester M13 9PL (United Kingdom); Bushell, J.; Lowe, T.; Wallwork, A. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Young, P. [Simpleware Ltd., Bradninch Hall, Castle Street, Exeter EX4 3PL (United Kingdom); Lindemann, A. [NETZSCH-Gerätebau GmbH, Wittelsbacherstraße 42, D-95100 Selb, Bayern (Germany); Schmidt, M.; Mummery, P.M. [School of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-11-15

    Highlights: • Thermal performance of a fusion power heat exchange component was investigated. • Microstructures effecting performance were determined using X-ray tomography. • This data was used to perform a microstructurally faithful finite element analysis. • FEA demonstrated that manufacturing defects had an appreciable effect on performance. • This image-based modelling showed which regions could be targeted for improvements. - Abstract: The thermal performance of a carbon fibre composite-copper monoblock, a sub-component of a fusion reactor divertor, was investigated by finite element analysis. High-accuracy simulations were created using an emerging technique, image-based finite element modelling, which converts X-ray tomography data into micro-structurally faithful models, capturing details such as manufacturing defects. For validation, a case study was performed where the thermal analysis by laser flash of a carbon fibre composite-copper disc was simulated such that computational and experimental results could be compared directly. Results showed that a high resolution image-based simulation (102 million elements of 32 μm width) provided increased accuracy over a low resolution image-based simulation (0.6 million elements of 194 μm width) and idealised computer aided design simulations. Using this technique to analyse a monoblock mock-up, it was possible to detect and quantify the effects of debonding regions at the carbon fibre composite-copper interface likely to impact both component performance and expected lifetime. These features would not have been accounted for in idealised computer aided design simulations.

  19. Transient thermal finite element analysis of CFC–Cu ITER monoblock using X-ray tomography data

    International Nuclear Information System (INIS)

    Evans, Ll.M.; Margetts, L.; Casalegno, V.; Lever, L.M.; Bushell, J.; Lowe, T.; Wallwork, A.; Young, P.; Lindemann, A.; Schmidt, M.; Mummery, P.M.

    2015-01-01

    Highlights: • Thermal performance of a fusion power heat exchange component was investigated. • Microstructures effecting performance were determined using X-ray tomography. • This data was used to perform a microstructurally faithful finite element analysis. • FEA demonstrated that manufacturing defects had an appreciable effect on performance. • This image-based modelling showed which regions could be targeted for improvements. - Abstract: The thermal performance of a carbon fibre composite-copper monoblock, a sub-component of a fusion reactor divertor, was investigated by finite element analysis. High-accuracy simulations were created using an emerging technique, image-based finite element modelling, which converts X-ray tomography data into micro-structurally faithful models, capturing details such as manufacturing defects. For validation, a case study was performed where the thermal analysis by laser flash of a carbon fibre composite-copper disc was simulated such that computational and experimental results could be compared directly. Results showed that a high resolution image-based simulation (102 million elements of 32 μm width) provided increased accuracy over a low resolution image-based simulation (0.6 million elements of 194 μm width) and idealised computer aided design simulations. Using this technique to analyse a monoblock mock-up, it was possible to detect and quantify the effects of debonding regions at the carbon fibre composite-copper interface likely to impact both component performance and expected lifetime. These features would not have been accounted for in idealised computer aided design simulations.

  20. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Sauer; Sidky, E. Y.

    2015-01-01

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study...... and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers...... measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means...

  1. Bayesian soft X-ray tomography using non-stationary Gaussian Processes

    International Nuclear Information System (INIS)

    Li, Dong; Svensson, J.; Thomsen, H.; Werner, A.; Wolf, R.; Medina, F.

    2013-01-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods

  2. Bayesian soft X-ray tomography using non-stationary Gaussian Processes

    Science.gov (United States)

    Li, Dong; Svensson, J.; Thomsen, H.; Medina, F.; Werner, A.; Wolf, R.

    2013-08-01

    In this study, a Bayesian based non-stationary Gaussian Process (GP) method for the inference of soft X-ray emissivity distribution along with its associated uncertainties has been developed. For the investigation of equilibrium condition and fast magnetohydrodynamic behaviors in nuclear fusion plasmas, it is of importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory can provide a posterior probability distribution over all possible solutions under given model assumptions. Specifically, the use of a non-stationary GP to model the emission allows the model to adapt to the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a multivariate normal distribution whose mean and covariance are analytically available, making inversions and calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be optimized through a Bayesian Occam's Razor formalism and thereby automatically adjust the model complexity. This method is shown to produce convincing reconstructions and good agreements with independently calculated results from the Maximum Entropy and Equilibrium-Based Iterative Tomography Algorithm methods.

  3. Feasibility study for mega-electron-volt electron beam tomography.

    Science.gov (United States)

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  4. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    Science.gov (United States)

    Khimchenko, A.; Bikis, C.; Schulz, G.; Zdora, M.-C.; Zanette, I.; Vila-Comamala, J.; Schweighauser, G.; Hench, J.; Hieber, S. E.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers (Stratum moleculare and Stratum granulosum), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H&E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology.

  5. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    International Nuclear Information System (INIS)

    Khimchenko, A; Bikis, C; Schulz, G; Hieber, S E; Deyhle, H; Thalmann, P; Müller, B; Zdora, M-C; Zanette, I; Vila-Comamala, J; Schweighauser, G; Hench, J

    2017-01-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers ( Stratum moleculare and Stratum granulosum ), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H and E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology. (paper)

  6. X-ray micro-tomography for investigations of brain tissues on cellular level

    Science.gov (United States)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Zanette, Irene; Zdora, Marie-Christine; Bikis, Christos; Hipp, Alexander; Hieber, Simone E.; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, performance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D) characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a laboratory environment. Using the laboratory-based microtomography (μCT) system nanotom m (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution down to 0.45 μm for visualization of a human cerebellum specimen down to cellular level. We have shown that all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBμCT), synchrotron radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range. The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (HE) stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome restrictions of limited beamline access for phase contrast measurements, we have equipped the μCT system nanotom m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast data provide comparable results to synchrotron radiation based

  7. Study of CdTe:Cl and CdZnTe detectors for medical multi-slices X-ray Computed Tomography; Etude de detecteurs en CdTe:Cl et CdZnTe pour la tomographie X medicale multicoupes

    Energy Technology Data Exchange (ETDEWEB)

    Ricq, St

    1999-09-28

    The application of CdTe and CdZnTe detectors to medical X-ray Computed Tomography have been investigated. Different electrodes (Au, Pt, In) have been deposited on CdZnTe HPBM and on CdTe:ClTHM. Their injection properties have been determined with Current-Voltage characteristics. Under X-ray in CT conditions, injection currents measurements reveal trapped carriers space-charges formation. The same way, the comparisons of the responses to X-beam cut-off with various injection possibilities enable to follow the space-charges evolutions and then to determine the predominant traps types. Nevertheless, both hole and electron traps are responsible for the memory effect e.g. the currents levels dependence with irradiation history. This effect is noticed in particular on responses to fast flux variations that simulate scanner's conditions. Trap levels probably corresponding to native defects are responsible for these limitations. In order to make such detectors suitable for X-ray Computed Tomography, significant progresses in CdTe for CdZnTe crystal growth with an important defects densities reduction (factor 10), or possibly counting mode operation, seem necessary. (author)

  8. Radiological evaluation of acoustic neurinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Tae; Park, Chang Yun; Choi, Byung So [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1974-04-15

    All 25 patients surgically proven acoustic neurinoma was analysed clinically, radiographically at Severance Hospital of Yonsei Univ. The patients not proved surgically in spite of clinical diagnosis of acoustic neurinoma was excluded from this study. The results are summarized as follows; The clinical findings are; 1. The incidence of tumor in female was twice more frequent than in male and the range of age was 20-50 years peak of age at onset of symptom. 2. The clinical symptoms were variable from unilateral hearing impairment or less (100%), headache (84%) to tinnitus (60%) in order of frequency. 3. The tumor growth in the left cerebellopontine angle was twice more than in the right side with the radio of 16:8. However, in one case bilateral simultaneous growth of acoustic neurinoma was noted. The radiological findings are: The best radiographic method to study the shape and size of internal acoustic canal to demonstrate erosion or destruction of petrous pyramida was considered to be straight frontal view and tomography of the skull in our series. 1. The shape of internal acoustic canal in tumors were straight (in 2 cases), bulbous (in 12 cases), and flared (in 11 cases). Particularly there was erosion or destruction of petrous bone in all of the flared cases of canal. 2. The acoustic meatal erosion was mainly suprameatal in 14 cases of 17 which was noted definite erosion radiographically. 3. The difference of height (vertical diameter) of both side of acoustic canal were follows; 6 cases among 25 was in the range of 0-2 mm measurement, remainder was more than 2 mm. Hence the variation in greater than 1 mm in between both sides of canal in same patient should be regard as abnormal as of acoustic neurinoma. 4. The carotid angiogram shows hydrocephalic pattern in 12 cases among 17. 5. In the vertebral angiogram of 8 cases, anterolateral displacement of basilar artery (in 6 caes), the upward displacement of superior cerebellar artery (in 4 cases) was common findings

  9. Radiological evaluation of acoustic neurinoma

    International Nuclear Information System (INIS)

    Lee, Jong Tae; Park, Chang Yun; Choi, Byung So

    1974-01-01

    All 25 patients surgically proven acoustic neurinoma was analysed clinically, radiographically at Severance Hospital of Yonsei Univ. The patients not proved surgically in spite of clinical diagnosis of acoustic neurinoma was excluded from this study. The results are summarized as follows; The clinical findings are; 1. The incidence of tumor in female was twice more frequent than in male and the range of age was 20-50 years peak of age at onset of symptom. 2. The clinical symptoms were variable from unilateral hearing impairment or less (100%), headache (84%) to tinnitus (60%) in order of frequency. 3. The tumor growth in the left cerebellopontine angle was twice more than in the right side with the radio of 16:8. However, in one case bilateral simultaneous growth of acoustic neurinoma was noted. The radiological findings are: The best radiographic method to study the shape and size of internal acoustic canal to demonstrate erosion or destruction of petrous pyramida was considered to be straight frontal view and tomography of the skull in our series. 1. The shape of internal acoustic canal in tumors were straight (in 2 cases), bulbous (in 12 cases), and flared (in 11 cases). Particularly there was erosion or destruction of petrous bone in all of the flared cases of canal. 2. The acoustic meatal erosion was mainly suprameatal in 14 cases of 17 which was noted definite erosion radiographically. 3. The difference of height (vertical diameter) of both side of acoustic canal were follows; 6 cases among 25 was in the range of 0-2 mm measurement, remainder was more than 2 mm. Hence the variation in greater than 1 mm in between both sides of canal in same patient should be regard as abnormal as of acoustic neurinoma. 4. The carotid angiogram shows hydrocephalic pattern in 12 cases among 17. 5. In the vertebral angiogram of 8 cases, anterolateral displacement of basilar artery (in 6 caes), the upward displacement of superior cerebellar artery (in 4 cases) was common findings

  10. Inversion techniques in the Soft X-Ray tomography of fusion plasmas: towards real-time applications

    Czech Academy of Sciences Publication Activity Database

    Mlynář, Jan; Weinzettl, Vladimír; Bonheure, G.; Murari, A.

    2010-01-01

    Roč. 58, č. 3 (2010), s. 733-741 ISSN 1536-1055. [Workshop on Fusion Data Processing, Validation and Ananlyses/6th./. Madrid, 25.01.2010-27.01.2010] R&D Projects: GA ČR GAP205/10/2055; GA ČR GA202/09/1467; GA MŠk LA08048 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma tomography * real - time control * soft-X-ray diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.654, year: 2010 http://www.new.ans.org/store/j_10922

  11. Computer tomography in complex diagnosis of laryngeal cancer

    International Nuclear Information System (INIS)

    Savin, A.A.

    1999-01-01

    To specify the role of computer tomography in the diagnosis of malignant of the larynx. Forty-two patients with suspected laryngeal tumors were examined: 38 men and 4 women aged 41-68 years. X-ray examinations included traditional immediate tomography of the larynx. Main X-ray and computer tomographic symptoms of laryngeal tumors of different localizations are described. It is shown that the use of computer tomography in complex diagnosis of laryngeal cancer permits an objective assessment of the tumor, its structure and dissemination, and of the regional lymph nodes [ru

  12. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  13. Using high resolution X-ray computed tomography to create an image based model of a lymph node.

    Science.gov (United States)

    Cooper, L J; Zeller-Plumhoff, B; Clough, G F; Ganapathisubramani, B; Roose, T

    2018-07-14

    Lymph nodes are an important part of the immune system. They filter the lymphatic fluid as it is transported from the tissues before being returned to the blood stream. The fluid flow through the nodes influences the behaviour of the immune cells that gather within the nodes and the structure of the node itself. Measuring the fluid flow in lymph nodes experimentally is challenging due to their small size and fragility. In this paper, we present high resolution X-ray computed tomography images of a murine lymph node. The impact of the resulting visualized structures on fluid transport are investigated using an image based model. The high contrast between different structures within the lymph node provided by phase contrast X-ray computed tomography reconstruction results in images that, when related to the permeability of the lymph node tissue, suggest an increased fluid velocity through the interstitial channels in the lymph node tissue. Fluid taking a direct path from the afferent to the efferent lymphatic vessel, through the centre of the node, moved faster than the fluid that flowed around the periphery of the lymph node. This is a possible mechanism for particles being moved into the cortex. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Microstructural Quantification, Property Prediction, and Stochastic Reconstruction of Heterogeneous Materials Using Limited X-Ray Tomography Data

    Science.gov (United States)

    Li, Hechao

    An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for quantitative structure-property relations establishment and its performance prediction and optimization. X-ray tomography has provided a non-destructive means for microstructure characterization in both 3D and 4D (i.e., structural evolution over time). Traditional reconstruction algorithms like filtered-back-projection (FBP) method or algebraic reconstruction techniques (ART) require huge number of tomographic projections and segmentation process before conducting microstructural quantification. This can be quite time consuming and computationally intensive. In this thesis, a novel procedure is first presented that allows one to directly extract key structural information in forms of spatial correlation functions from limited x-ray tomography data. The key component of the procedure is the computation of a "probability map", which provides the probability of an arbitrary point in the material system belonging to specific phase. The correlation functions of interest are then readily computed from the probability map. Using effective medium theory, accurate predictions of physical properties (e.g., elastic moduli) can be obtained. Secondly, a stochastic optimization procedure that enables one to accurately reconstruct material microstructure from a small number of x-ray tomographic projections (e.g., 20 - 40) is presented. Moreover, a stochastic procedure for multi-modal data fusion is proposed, where both X-ray projections and correlation functions computed from limited 2D optical images are fused to accurately reconstruct complex heterogeneous materials in 3D. This multi-modal reconstruction algorithm is proved to be able to integrate the complementary data to perform an excellent optimization procedure, which indicates its high efficiency in using limited structural information. Finally, the accuracy of the stochastic reconstruction procedure using limited X-ray

  15. Determination of the metal distribution in tooth fillings in real teeth based on element sensitive X-ray tomography

    International Nuclear Information System (INIS)

    Masschaele, B.; Mondelaers, W.; Cauwels, P.; Jolie, J.; Baechler, S.; Materna, T.

    2000-01-01

    Since a couple of centuries people are using metal tooth-fillings in order to protect their teeth. In the beginning of the 19th century the amalgam or silver fillings were introduced for to first time. Nowadays, dentists mostly use amalgam. These fillings are a mixture of silver, tin and mercury. The mercury which is abundant, about 50%, is dangerous for any living organism. Mercury has a particular affinity for the brain tissue but is also accumulated in the liver, kidneys, lungs, gastrointestinal track and jawbone. Mercury Basely crosses the placenta and is gathered in the heart, pituitary gland and liver of the fetus. It is been proven that the mercury vaporises and enter enters the body via the lungs. Since a couple of years we apply the element sensitive X-ray tomography technique on heavy elements like uranium or lead. By scanning teeth using photons having two different energies, one just below and one just above the K-edge of the element under investigation, the tomography becomes element sensitive. The experiment has been done at the ESRF, beam line ID15A, with a very intense tunable monochromatic high energy X-ray beam. We made tomographies of different teeth with 20 μm image resolution. The slices were 20 μm apart. The results after reconstruction are three dimensional mercury maps which can tell us something about the possibility of mercury diffusion into the roots of the tooth. From there the mercury could enter the blood stream and end up in the organs. (author)

  16. Simultaneous CT and SPECT tomography using CZT detectors

    Science.gov (United States)

    Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.

    2002-01-01

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  17. Crosshole Tomography, Waveform Inversion, and Anisotropy: A Combined Approach Using Simulated Annealing

    Science.gov (United States)

    Afanasiev, M.; Pratt, R. G.; Kamei, R.; McDowell, G.

    2012-12-01

    Crosshole seismic tomography has been used by Vale to provide geophysical images of mineralized massive sulfides in the Eastern Deeps deposit at Voisey's Bay, Labrador, Canada. To date, these data have been processed using traveltime tomography, and we seek to improve the resolution of these images by applying acoustic Waveform Tomography. Due to the computational cost of acoustic waveform modelling, local descent algorithms are employed in Waveform Tomography; due to non-linearity an initial model is required which predicts first-arrival traveltimes to within a half-cycle of the lowest frequency used. Because seismic velocity anisotropy can be significant in hardrock settings, the initial model must quantify the anisotropy in order to meet the half-cycle criterion. In our case study, significant velocity contrasts between the target massive sulfides and the surrounding country rock led to difficulties in generating an accurate anisotropy model through traveltime tomography, and our starting model for Waveform Tomography failed the half-cycle criterion at large offsets. We formulate a new, semi-global approach for finding the best-fit 1-D elliptical anisotropy model using simulated annealing. Through random perturbations to Thompson's ɛ parameter, we explore the L2 norm of the frequency-domain phase residuals in the space of potential anisotropy models: If a perturbation decreases the residuals, it is always accepted, but if a perturbation increases the residuals, it is accepted with the probability P = exp(-(Ei-E)/T). This is the Metropolis criterion, where Ei is the value of the residuals at the current iteration, E is the value of the residuals for the previously accepted model, and T is a probability control parameter, which is decreased over the course of the simulation via a preselected cooling schedule. Convergence to the global minimum of the residuals is guaranteed only for infinitely slow cooling, but in practice good results are obtained from a variety

  18. Patient radiation exposure in computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, V [Meditsinska Akademiya, Sofia (Bulgaria)

    1980-01-01

    Radiation exposure to patients undergoing axial computerized tomography as a tool of neurological X-ray diagnostics was studied. Doses thereby delivered were compared with those from routine head films at X-ray tube parameters 200 W, 70 kV, and 70 cm target-to-patient distance. Radiation exposures were analyzed with a view to improving shielding and procedural techniques. Comparisons were made using LiF TLD measurements with an Alderson phantom (standard for axial computer tomography). Skin and intracranial space doses were compared using two computers, Siretom I and Siretom 2000, for various positionings: frontal, fronto-lateral, temporal, temporo-occipital, and occipital. In addition, patient body doses with or without shielding and doses to subjects attending sick children or restless adults were examined. Achievable protection was estimated for lead shields of 0.5 mm lead equivalent. It was concluded that radiation doses delivered to neurologic patients undergoing axial computer tomography are smaller than those resulting from conventional X-ray examinations.

  19. Pressurized subsampling system for pressured gas-hydrate-bearing sediment: Microscale imaging using X-ray computed tomography

    International Nuclear Information System (INIS)

    Jin, Yusuke; Konno, Yoshihiro; Nagao, Jiro

    2014-01-01

    A pressurized subsampling system was developed for pressured gas hydrate (GH)-bearing sediments, which have been stored under pressure. The system subsamples small amounts of GH sediments from cores (approximately 50 mm in diameter and 300 mm in height) without pressure release to atmospheric conditions. The maximum size of the subsamples is 12.5 mm in diameter and 20 mm in height. Moreover, our system transfers the subsample into a pressure vessel, and seals the pressure vessel by screwing in a plug under hydraulic pressure conditions. In this study, we demonstrated pressurized subsampling from artificial xenon-hydrate sediments and nondestructive microscale imaging of the subsample, using a microfocus X-ray computed tomography (CT) system. In addition, we estimated porosity and hydrate saturation from two-dimensional X-ray CT images of the subsamples

  20. Optimal Tikhonov Regularization in Finite-Frequency Tomography

    Science.gov (United States)

    Fang, Y.; Yao, Z.; Zhou, Y.

    2017-12-01

    The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.

  1. Introduction: a brief overview of iterative algorithms in X-ray computed tomography.

    Science.gov (United States)

    Soleimani, M; Pengpen, T

    2015-06-13

    This paper presents a brief overview of some basic iterative algorithms, and more sophisticated methods are presented in the research papers in this issue. A range of algebraic iterative algorithms are covered here including ART, SART and OS-SART. A major limitation of the traditional iterative methods is their computational time. The Krylov subspace based methods such as the conjugate gradients (CG) algorithm and its variants can be used to solve linear systems of equations arising from large-scale CT with possible implementation using modern high-performance computing tools. The overall aim of this theme issue is to stimulate international efforts to develop the next generation of X-ray computed tomography (CT) image reconstruction software. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Design and operation of a field telescope for cosmic ray geophysical tomography

    Directory of Open Access Journals (Sweden)

    N. Lesparre

    2012-04-01

    Full Text Available The cosmic ray muon tomography gives an access to the density structure of geological targets. In the present article we describe a muon telescope adapted to harsh environmental conditions. In particular the design optimizes the total weight and power consumption to ease the deployment and increase the autonomy of the detector. The muon telescopes consist of at least two scintillator detection matrices readout by photosensors via optical fibres. Two photosensor options have been studied. The baseline option foresees one multianode photomultiplier (MAPM per matrix. A second option using one multipixel photon counter (MPPC per bar is under development. The readout electronics and data acquisition system developed for both options are detailed. We present a first data set acquired in open-sky conditions compared with the muon flux detected across geological objects.

  3. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    Science.gov (United States)

    Borg, Leise; Jørgensen, Jakob S.; Frikel, Jürgen; Sporring, Jon

    2017-12-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered backprojection (FBP) reconstruction at certain orientations. Projections with non-trivial variable truncation caused by the metal bars are the source of these variable-truncation artifacts. To understand the artifacts a mathematical model of variable-truncation data as a function of metal bar radius and distance to sample is derived and verified numerically and with experimental data. The model accurately describes the arising variable-truncation artifacts across simulated variations of the experimental setup. Three variable-truncation artifact-reduction methods are proposed, all aimed at addressing sinogram discontinuities that are shown to be the source of the streaks. The ‘reduction to limited angle’ (RLA) method simply keeps only non-truncated projections; the ‘detector-directed smoothing’ (DDS) method smooths the discontinuities; while the ‘reflexive boundary condition’ (RBC) method enforces a zero derivative at the discontinuities. Experimental results using both simulated and real data show that the proposed methods effectively reduce variable-truncation artifacts. The RBC method is found to provide the best artifact reduction and preservation of image features using both visual and quantitative assessment. The analysis and artifact-reduction methods are designed in context of FBP reconstruction motivated by computational efficiency practical for large, real synchrotron data. While a specific variable-truncation case is considered, the proposed methods can be applied to general data cut-offs arising in different in situ x-ray tomography experiments.

  4. Investigation of optimal scanning protocol for X-ray computed tomography polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sellakumar, P. [Bangalore Institute of Oncology, 44-45/2, II Cross, RRMR Extension, Bangalore 560 027 (India)], E-mail: psellakumar@rediffmail.com; James Jebaseelan Samuel, E. [School of Science and Humanities, VIT University, Vellore 632 014 (India); Supe, Sanjay S. [Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Hosur Road, Bangalore 560 027 (India)

    2007-11-15

    X-ray computed tomography is one of the potential tool used to evaluate the polymer gel dosimeters in three dimensions. The purpose of this study is to investigate the factors which affect the image noise for X-ray CT polymer gel dosimetry. A cylindrical water filled phantom was imaged with single slice Siemens Somatom Emotion CT scanner. The imaging parameters like tube voltage, tube current, slice scan time, slice thickness and reconstruction algorithm were varied independently to study the dependence of noise on each other. Reductions of noise with number of images to be averaged and spatial uniformity of the image were also investigated. Normoxic polymer gel PAGAT was manufactured and irradiated using Siemens Primus linear accelerator. The radiation induced change in CT number was evaluated using X-ray CT scanner. From this study it is clear that image noise is reduced with increase in tube voltage, tube current, slice scan time, slice thickness and also reduced with increasing the number of images averaged. However to reduce the tube load and total scan time, it was concluded that tube voltage of 130 kV, tube current of 200 mA, scan time of 1.5 s, slice thickness of 3 mm for high dose gradient and 5 mm for low dose gradient were optimal scanning protocols for this scanner. Optimum number of images to be averaged was concluded to be 25 for X-ray CT polymer gel dosimetry. Choice of reconstruction algorithm was also critical. From the study it is also clear that CT number increase with imaging tube voltage and shows the energy dependency of polymer gel dosimeter. Hence for evaluation of polymer gel dosimeters with X-ray CT scanner needs the optimization of scanning protocols to reduce the image noise.

  5. Neutron Tomography Application for Aircraft-parts and Root of Ginseng

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yi Kyung; Lee, Seung Wook; Sim, Chul Mu; Jeon, Jin Su; Kim, Tae Ju [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The neutron computerized tomography is considered to be a complementary tool to X-ray tomography in the sense that neutron interacts with atomic nucleus, otherwise X-ray interacts with an orbital electron of atom. The neutron tomography compared with X-ray tomography has a relatively short history. It is employed in stationary, as neutron sources are produced by the nuclear reactor. The full potential of the neutron tomography has yet to be investigated. Since, HANARO NRF was installed in 1995, the neutron radiography research group of KAERI has been developed the non-destructive testing methods by the computer tomography served for aerospace industry and agricultural industry. Concerning to NDT for aerospace, research was cooperated with Korean Air force. At the first stage, research was focused to find the micro-cracks based on internal passages inside aircraft parts and residual core of turbine blade. Concerning to NDT for agriculture, research was cooperated with the Agricultural Development and Technology Center. Research was focused to find the alive roots of Korean ginseng.

  6. A data acquisition and control system for high-speed gamma-ray tomography

    Science.gov (United States)

    Hjertaker, B. T.; Maad, R.; Schuster, E.; Almås, O. A.; Johansen, G. A.

    2008-09-01

    A data acquisition and control system (DACS) for high-speed gamma-ray tomography based on the USB (Universal Serial Bus) and Ethernet communication protocols has been designed and implemented. The high-speed gamma-ray tomograph comprises five 500 mCi 241Am gamma-ray sources, each at a principal energy of 59.5 keV, which corresponds to five detector modules, each consisting of 17 CdZnTe detectors. The DACS design is based on Microchip's PIC18F4550 and PIC18F4620 microcontrollers, which facilitates an USB 2.0 interface protocol and an Ethernet (IEEE 802.3) interface protocol, respectively. By implementing the USB- and Ethernet-based DACS, a sufficiently high data acquisition rate is obtained and no dedicated hardware installation is required for the data acquisition computer, assuming that it is already equipped with a standard USB and/or Ethernet port. The API (Application Programming Interface) for the DACS is founded on the National Instrument's LabVIEW® graphical development tool, which provides a simple and robust foundation for further application software developments for the tomograph. The data acquisition interval, i.e. the integration time, of the high-speed gamma-ray tomograph is user selectable and is a function of the statistical measurement accuracy required for the specific application. The bandwidth of the DACS is 85 kBytes s-1 for the USB communication protocol and 28 kBytes s-1 for the Ethernet protocol. When using the iterative least square technique reconstruction algorithm with a 1 ms integration time, the USB-based DACS provides an online image update rate of 38 Hz, i.e. 38 frames per second, whereas 31 Hz for the Ethernet-based DACS. The off-line image update rate (storage to disk) for the USB-based DACS is 278 Hz using a 1 ms integration time. Initial characterization of the high-speed gamma-ray tomograph using the DACS on polypropylene phantoms is presented in the paper.

  7. A data acquisition and control system for high-speed gamma-ray tomography

    International Nuclear Information System (INIS)

    Hjertaker, B T; Maad, R; Schuster, E; Almås, O A; Johansen, G A

    2008-01-01

    A data acquisition and control system (DACS) for high-speed gamma-ray tomography based on the USB (Universal Serial Bus) and Ethernet communication protocols has been designed and implemented. The high-speed gamma-ray tomograph comprises five 500 mCi 241 Am gamma-ray sources, each at a principal energy of 59.5 keV, which corresponds to five detector modules, each consisting of 17 CdZnTe detectors. The DACS design is based on Microchip's PIC18F4550 and PIC18F4620 microcontrollers, which facilitates an USB 2.0 interface protocol and an Ethernet (IEEE 802.3) interface protocol, respectively. By implementing the USB- and Ethernet-based DACS, a sufficiently high data acquisition rate is obtained and no dedicated hardware installation is required for the data acquisition computer, assuming that it is already equipped with a standard USB and/or Ethernet port. The API (Application Programming Interface) for the DACS is founded on the National Instrument's LabVIEW® graphical development tool, which provides a simple and robust foundation for further application software developments for the tomograph. The data acquisition interval, i.e. the integration time, of the high-speed gamma-ray tomograph is user selectable and is a function of the statistical measurement accuracy required for the specific application. The bandwidth of the DACS is 85 kBytes s −1 for the USB communication protocol and 28 kBytes s −1 for the Ethernet protocol. When using the iterative least square technique reconstruction algorithm with a 1 ms integration time, the USB-based DACS provides an online image update rate of 38 Hz, i.e. 38 frames per second, whereas 31 Hz for the Ethernet-based DACS. The off-line image update rate (storage to disk) for the USB-based DACS is 278 Hz using a 1 ms integration time. Initial characterization of the high-speed gamma-ray tomograph using the DACS on polypropylene phantoms is presented in the paper

  8. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    International Nuclear Information System (INIS)

    Mertens, J.C.E.; Williams, J.J.; Chawla, Nikhilesh

    2014-01-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution

  9. Forward transformation for high resolution eddy current tomography using whitney elements

    International Nuclear Information System (INIS)

    Szewczyk, R.; Salach, J.; Nowicki, M.; Ruokolainen, J.; Raback, P.

    2014-01-01

    Tomographic methods are intensively developed field of non-destructive testing. The main advantage of this type of NDT method is 3D information concerning the shape of the discontinuities in investigated material. On the other hand, the most common tomography method utilizing X-rays creates the significant risks typical to X-ray technique. As a result, Xray tomography is difficult to use in industry. Introduced to the industry in 2007, the eddy current tomography is safe and cost effective. However, in opposite to X-ray tomography, eddy current tomography requires sophisticated and time consuming inverse transformation creating 2D or 3D view of discontinuities. For this reason solutions presented previously are focused on 2D inverse transformation and exhibit limited resolution. For eddy current tomography, the forward tomographic transformation is most important, which is the base of inverse transformation. This paper presents the novel, fast and cost-effective solution utilizing Whitney elements method for such forward transformation. As a result, new possibilities of development in the area of high resolution 3D eddy current tomography are created. (authors)

  10. Reconstruction methods for sound visualization based on acousto-optic tomography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Lylloff, Oliver; Barrera Figueroa, Salvador

    2013-01-01

    The visualization of acoustic fields using acousto-optic tomography has recently proved to yield satisfactory results in the audible frequency range. The current implementation of this visualization technique uses a laser Doppler vibrometer (LDV) to measure the acousto-optic effect, that is, the ...

  11. Current radiography and tomography applications at Necsa and an envisaged upgrade towards a proposed South African national centre for radiography and tomography (SANCRAT)

    Energy Technology Data Exchange (ETDEWEB)

    Radebe, M.J.; De Beer, F.C. [Necsa - South African Nuclear Energy Corporation Limited, P. O.Box 582, Pretoria, 0001 (South Africa)

    2008-07-01

    An upgrade of the current Radiography and Tomography Research facilities is envisaged to enhance the group's support for Necsa's mission to undertake and support nuclear research and utilize penetrating radiation for the benefit of mankind. It is envisage that the SANCRAT will host neutron-, X-ray- and gamma ray penetrating radiation imaging infrastructures that can be utilized by researchers from industry as well as post graduate students from higher educational institutions. Modelling for the upgrade to a multifunctional neutron radiography and tomography facility has been underway. Upgrade plans and implementation has also begun for a 250 kV X-ray radiography set-up, that will exist independent from the neutron facility. Future expansion entails catering for a micro-focus X-ray -, and gamma ray radiography and tomography facilities. The current facilities available consist of one infrastructure facility based on two sources of penetrating radiation, i.e. SAFARI-1 research nuclear reactor as thermal neutron source and a 100 kV X-ray generator. This facility, which hosts the only operational neutron tomography R and D facility in the Southern Hemisphere and in Africa, are being extensively utilized by post graduate students and industry. The facility sees application in a wide range of scientific and engineering disciplines, amongst which is nuclear, geosciences, palaeontology, civil, mechanical, chemical, etc. This paper focus on case studies engaged at the current radiography and tomography facilities over the past 2 years as well as describing the envisaged upgrade initiatives to a fully equipped national centre. (authors)

  12. Current radiography and tomography applications at Necsa and an envisaged upgrade towards a proposed South African national centre for radiography and tomography (SANCRAT)

    International Nuclear Information System (INIS)

    Radebe, M.J.; De Beer, F.C.

    2008-01-01

    An upgrade of the current Radiography and Tomography Research facilities is envisaged to enhance the group's support for Necsa's mission to undertake and support nuclear research and utilize penetrating radiation for the benefit of mankind. It is envisage that the SANCRAT will host neutron-, X-ray- and gamma ray penetrating radiation imaging infrastructures that can be utilized by researchers from industry as well as post graduate students from higher educational institutions. Modelling for the upgrade to a multifunctional neutron radiography and tomography facility has been underway. Upgrade plans and implementation has also begun for a 250 kV X-ray radiography set-up, that will exist independent from the neutron facility. Future expansion entails catering for a micro-focus X-ray -, and gamma ray radiography and tomography facilities. The current facilities available consist of one infrastructure facility based on two sources of penetrating radiation, i.e. SAFARI-1 research nuclear reactor as thermal neutron source and a 100 kV X-ray generator. This facility, which hosts the only operational neutron tomography R and D facility in the Southern Hemisphere and in Africa, are being extensively utilized by post graduate students and industry. The facility sees application in a wide range of scientific and engineering disciplines, amongst which is nuclear, geosciences, palaeontology, civil, mechanical, chemical, etc. This paper focus on case studies engaged at the current radiography and tomography facilities over the past 2 years as well as describing the envisaged upgrade initiatives to a fully equipped national centre. (authors)

  13. Study on Sintering Mechanism of Stainless Steel Fiber Felts by X-ray Computed Tomography

    Directory of Open Access Journals (Sweden)

    Jun Ma

    2016-01-01

    Full Text Available The microstructure evolution of Fe-17 wt. % Cr-12 wt. % Ni-2 wt. % Mo stainless steel fiber felts during the fast sintering process was investigated by the synchrotron radiation X-ray computed tomography technique. The equation of dynamics of stable inter-fiber neck growth was established for the first time based on the geometry model of sintering joints of two fibers and Kucsynski’s two-sphere model. The specific evolutions of different kinds of sintering joints were observed in the three-dimensional images. The sintering mechanisms during sintering were proposed as plastic flow and grain boundary diffusion, the former leading to a quick growth of sintering joints.

  14. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    International Nuclear Information System (INIS)

    Zou, C.; Li, B.; Zhang, C.; Wang, S.; Marrow, T.J.; Reinhard, C.

    2016-01-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a 'node-bond' geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1∼ 9.3% closed micropores

  15. Neutron beam tomography software

    International Nuclear Information System (INIS)

    Newbery, A.C.R.

    1988-05-01

    When a sample is traversed by a neutron beam, inhomogeneities in the sample will cause deflections, and the deflections will permit conclusions to be drawn concerning the location and size of the inhomogeneities. The associated computation is similar to problems in tomography, analogous to X-ray tomography though significantly different in detail. We do not have any point-sample information, but only mean values over short line segments. Since each mean value is derived from a separate neutron counter, the quantity of available data has to be modest; also, since each datum is an integral, its geometric precision is inferior to that of X-ray data. Our software is designed to cope with these difficulties. (orig.) [de

  16. Treatment of early and late reflections in a hybrid computer model for room acoustics

    DEFF Research Database (Denmark)

    Naylor, Graham

    1992-01-01

    The ODEON computer model for acoustics in large rooms is intended for use both in design (by predicting room acoustical indices quickly and easily) and in research (by forming the basis of an auralization system and allowing study of various room acoustical phenomena). These conflicting demands...... preclude the use of both ``pure'' image source and ``pure'' particle tracing methods. A hybrid model has been developed, in which rays discover potential image sources up to a specified order. Thereafter, the same ray tracing process is used in a different way to rapidly generate a dense reverberant decay...

  17. 4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, T. M. M.; Finegan, D. P.; Tjaden, B.; Lu, X.; Iacoviello, F.; Millichamp, J.; Brett, D. J. L.; Shearing, P. R.

    2018-05-01

    Electrochemical energy devices offer a variety of alternate means for low-carbon, multi-scale energy conversion and storage. Reactions in these devices are supported by electrodes with characteristically complex microstructures. To meet the increasing capacity and lifetime demands across a range of applications, it is essential to understand microstructural evolutions at a cell and electrode level which are thought to be critical aspects influencing material and device lifetime and performance. X-ray computed tomography (CT) has become a highly employed method for non-destructive characterisation of such microstructures with high spatial resolution. However, sub-micron resolutions present significant challenges for sample preparation and handling particularly in 4D studies, (three spatial dimensions plus time). Here, microstructural information is collected from the same region of interest within two electrode materials: a solid oxide fuel cell and the positive electrode from a lithium-ion battery. Using a lab-based X-ray instrument, tomograms with sub-micron resolutions were obtained between thermal cycling. The intricate microstructural evolutions captured within these two materials provide model examples of 4D X-ray nano-CT capabilities in tracking challenging degradation mechanisms. This technique is valuable in the advancement of electrochemical research as well as broader applications for materials characterisation.

  18. Nondestructive and quantitative characterization of TRU and LLW mixed-waste using active and passive gamma-ray spectrometry and computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.C.; Martz, H.E.

    1991-11-12

    The technology being proposed by LLNL is an Active and Passive Computed Tomography (A P CT) Drum Scanner for contact-handled (CH) wastes. It combines the advantages offered by two well-developed nondestructive assay technologies: gamma-ray spectrometry and computed tomography (CT). Coupled together, these two technologies offer to nondestructively and quantitatively characterize mixed- wastes forms. Gamma-ray spectroscopy uses one or more external radiation detectors to passively and nondestructively measure the energy spectrum emitted from a closed container. From the resulting spectrum one can identify most radioactivities detected, be they transuranic isotopes, mixed-fission products, activation products or environmental radioactivities. Spectral libraries exist at LLNL for all four. Active (A) or transmission CT is a well-developed, nondestructive medical and industrial technique that uses an external-radiation beam to map regions of varying attenuation within a container. Passive (P) or emission CT is a technique mainly developed for medical application, e.g., single-photon emission CT. Nondestructive industrial uses of PCT are under development and just coming into use. This report discuses work on the A P CT Drum Scanner at LLNL.

  19. Reconstruction method for fluorescent X-ray computed tomography by least-squares method using singular value decomposition

    Science.gov (United States)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-02-01

    We describe a new attenuation correction method for fluorescent X-ray computed tomography (FXCT) applied to image nonradioactive contrast materials in vivo. The principle of the FXCT imaging is that of computed tomography of the first generation. Using monochromatized synchrotron radiation from the BLNE-5A bending-magnet beam line of Tristan Accumulation Ring in KEK, Japan, we studied phantoms with the FXCT method, and we succeeded in delineating a 4-mm-diameter channel filled with a 500 /spl mu/g I/ml iodine solution in a 20-mm-diameter acrylic cylindrical phantom. However, to detect smaller iodine concentrations, attenuation correction is needed. We present a correction method based on the equation representing the measurement process. The discretized equation system is solved by the least-squares method using the singular value decomposition. The attenuation correction method is applied to the projections by the Monte Carlo simulation and the experiment to confirm its effectiveness.

  20. Fine Output Voltage Control Method considering Time-Delay of Digital Inverter System for X-ray Computed Tomography

    Science.gov (United States)

    Shibata, Junji; Kaneko, Kazuhide; Ohishi, Kiyoshi; Ando, Itaru; Ogawa, Mina; Takano, Hiroshi

    This paper proposes a new output voltage control for an inverter system, which has time-delay and nonlinear load. In the next generation X-ray computed tomography of a medical device (X-ray CT) that uses the contactless power transfer method, the feedback signal often contains time-delay due to AD/DA conversion and error detection/correction time. When the PID controller of the inverter system is received the adverse effects of the time-delay, the controller often has an overshoot and a oscillated response. In order to overcome this problem, this paper proposes a compensation method based on the Smith predictor for an inverter system having a time-delay and the nonlinear loads which are the diode bridge rectifier and X-ray tube. The proposed compensation method consists of the hybrid Smith predictor system based on an equivalent analog circuit and DSP. The experimental results confirm the validity of the proposed system.

  1. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    Science.gov (United States)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  2. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography.

    Science.gov (United States)

    Jørgensen, J S; Sidky, E Y

    2015-06-13

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling. First, we demonstrate that there are cases where X-ray CT empirically performs comparably with a near-optimal CS strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization.

  3. Quantitative wood–adhesive penetration with X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Jesse L.; Kamke, Frederick A. (Oregon State U.); (Willamette Valley)

    2015-09-01

    Micro X-ray computed tomography (XCT) was used to analyze the 3D adhesive penetration behavior of different wood–adhesive bondlines. Three adhesives, a phenol formaldehyde (PF), a polymeric diphenylmethane diisocyanate (pMDI), and a hybrid polyvinyl acetate (PVA), all tagged with iodine for enhanced X-ray attenuation, were used to prepare single-bondline laminates in two softwoods, Douglas-fir and loblolly pine, and one hardwood, a hybrid polar. Adhesive penetration depth was measured with two separate calculations, and results were compared with 2D fluorescent micrographs. A total of 54 XCT scans were collected, representing six replicates of each treatment type; each replicate, however, consisted of approximately 1500 individual, cross-section slices stacked along the specimen length. As these adhesives were highly modified, the presented results do not indicate typical behavior for their broader adhesive classes. Still, clear penetration differences were observed between each adhesive type, and between wood species bonded with both the PF and pMDI adhesives. Furthermore, penetration results depended on the calculation method used. Two adhesive types with noticeably different resin distributions in the cured bondline, showed relatively similar penetration depths when calculated with a traditional effective penetration equation. However, when the same data was calculated with a weighted penetration calculation, which accounts for both adhesive area and depth, the results appeared to better represent the different distributions depicted in the photomicrographs and tomograms. Additionally, individual replicate comparisons showed variation due to specimen anatomy, not easily observed or interpreted from 2D images. Finally, 3D views of segmented 3D adhesive phases offered unique, in-situ views of the cured adhesive structures. In particular, voids formed by CO2 bubbles generated during pMDI cure were clearly visible in penetrated columns of the solidified

  4. Assessing carotid atherosclerosis by fiber-optic multispectral photoacoustic tomography

    Science.gov (United States)

    Hui, Jie; Li, Rui; Wang, Pu; Phillips, Evan; Bruning, Rebecca; Liao, Chien-Sheng; Sturek, Michael; Goergen, Craig J.; Cheng, Ji-Xin

    2015-03-01

    Atherosclerotic plaque at the carotid bifurcation is the underlying cause of the majority of ischemic strokes. Noninvasive imaging and quantification of the compositional changes preceding gross anatomic changes within the arterial wall is essential for diagnosis of disease. Current imaging modalities such as duplex ultrasound, computed tomography, positron emission tomography are limited by the lack of compositional contrast and the detection of flow-limiting lesions. Although high-resolution magnetic resonance imaging has been developed to characterize atherosclerotic plaque composition, its accessibility for wide clinical use is limited. Here, we demonstrate a fiber-based multispectral photoacoustic tomography system for excitation of lipids and external acoustic detection of the generated ultrasound. Using sequential ultrasound imaging of ex vivo preparations we achieved ~2 cm imaging depth and chemical selectivity for assessment of human arterial plaques. A multivariate curve resolution alternating least squares analysis method was applied to resolve the major chemical components, including intravascular lipid, intramuscular fat, and blood. These results show the promise of detecting carotid plaque in vivo through esophageal fiber-optic excitation of lipids and external acoustic detection of the generated ultrasound. This imaging system has great potential for serving as a point-ofcare device for early diagnosis of carotid artery disease in the clinic.

  5. Investigating the correlation between residual nonwetting phase liquids and pore-scale geometry and topology using synchrotron x-ray tomography

    International Nuclear Information System (INIS)

    Willson, C.S.; Ham, K.; Thompson, K.A.

    2005-01-01

    The entrapment of nonwetting phase fluids in unconsolidated porous media systems is strongly dependent on the pore-scale geometry and topology. Synchrotron X-ray tomography allows us to nondestructively obtain high-resolution (on the order of 1-10 micron), three-dimensional images of multiphase porous media systems. Over the past year, a number of multiphase porous media systems have been imaged using the synchrotron X-ray tomography station at the GeoSoilEnviroCARS beamline at the Advanced Photon Source. For each of these systems, we are able to: (1) obtain the physically-representative network structure of the void space including the pore body and throat distribution, coordination number, and aspect ratio; (2) characterize the individual nonwetting phase blobs/ganglia (e.g., volume, sphericity, orientation, surface area); and (3) correlate the porous media and fluid properties. The images, data, and network structure obtained from these experiments provide us with a better understanding of the processes and phenomena associated with the entrapment of nonwetting phase fluids. Results from these experiments will also be extremely useful for researchers interested in interphase mass transfer and those utilizing network models to study the flow of multiphase fluids in porous media systems.

  6. Double-Capon and double-MUSICAL for arrival separation and observable estimation in an acoustic waveguide

    Science.gov (United States)

    Touzé, Grégoire Le; Nicolas, Barbara; Mars, Jérôme I.; Roux, Philippe; Oudompheng, Benoit

    2012-12-01

    Recent developments in shallow water ocean acoustic tomography propose the use of an original configuration composed of two source-receiver vertical arrays and wideband sources. The recording space thus has three dimensions, with two spatial dimensions and the frequency dimension. Using this recording space, it is possible to build a three-dimensional (3D) estimation space that gives access to the three observables associated with the acoustic arrivals: the direction of departure, the direction of arrivals, and the time of arrival. The main interest of this 3D estimation space is its capability for the separation of acoustic arrivals that usually interfere in the recording space, due to multipath propagation. A 3D estimator called double beamforming has already been developed, although it has limited resolution. In this study, the new 3D high-resolution estimators of double Capon and double MUSICAL are proposed to achieve this task. The ocean acoustic tomography configuration allows a single recording realization to estimate the cross-spectral data matrix, which is necessary to build high-resolution estimators. 3D smoothing techniques are thus proposed to increase the rank of the matrix. The estimators developed are validated on real data recorded in an ultrasonic tank, and their detection performances are compared to existing 2D and 3D methods.

  7. Combining X-ray computed tomography and visible near-infrared spectroscopy for prediction of soil structural properties

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Hermansen, Cecilie; Knadel, Maria

    2018-01-01

    agricultural fields within Denmark with a wide range of textural properties and organic C (OC) contents were studied. Macroporosity (>1.2 mm in diameter) and CTmatrix (the density of the field-moist soil matrix devoid of large macropores and stones) were determined from X-ray CT scans of undisturbed soil cores...... (19 by 20 cm). Both macroporosity and CTmatix are soil structural properties that affect the degree of preferential transport. Bulk soils from the 127 sampling locations were scanned with a vis-NIR spectrometer (400–2500 nm). Macroporosity and CTmatrix were statistically predicted with partial least......Soil structure is a key soil property affecting a soil’s flow and transport behavior. X-ray computed tomography (CT) is increasingly used to quantify soil structure. However, the availability, cost, time, and skills required for processing are still limiting the number of soils studied. Visible...

  8. X-ray Computed Tomography Assessment of Air Void Distribution in Concrete

    Science.gov (United States)

    Lu, Haizhu

    Air void size and spatial distribution have long been regarded as critical parameters in the frost resistance of concrete. In cement-based materials, entrained air void systems play an important role in performance as related to durability, permeability, and heat transfer. Many efforts have been made to measure air void parameters in a more efficient and reliable manner in the past several decades. Standardized measurement techniques based on optical microscopy and stereology on flat cut and polished surfaces are widely used in research as well as in quality assurance and quality control applications. Other more automated methods using image processing have also been utilized, but still starting from flat cut and polished surfaces. The emergence of X-ray computed tomography (CT) techniques provides the capability of capturing the inner microstructure of materials at the micrometer and nanometer scale. X-ray CT's less demanding sample preparation and capability to measure 3D distributions of air voids directly provide ample prospects for its wider use in air void characterization in cement-based materials. However, due to the huge number of air voids that can exist within a limited volume, errors can easily arise in the absence of a formalized data processing procedure. In this study, air void parameters in selected types of cement-based materials (lightweight concrete, structural concrete elements, pavements, and laboratory mortars) have been measured using micro X-ray CT. The focus of this study is to propose a unified procedure for processing the data and to provide solutions to deal with common problems that arise when measuring air void parameters: primarily the reliable segmentation of objects of interest, uncertainty estimation of measured parameters, and the comparison of competing segmentation parameters.

  9. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  10. Study of CdTe:Cl and CdZnTe detectors for medical multi-slices X-ray Computed Tomography; Etude de detecteurs en CdTe:Cl et CdZnTe pour la tomographie X medicale multicoupes

    Energy Technology Data Exchange (ETDEWEB)

    Ricq, St

    1999-09-28

    The application of CdTe and CdZnTe detectors to medical X-ray Computed Tomography have been investigated. Different electrodes (Au, Pt, In) have been deposited on CdZnTe HPBM and on CdTe:ClTHM. Their injection properties have been determined with Current-Voltage characteristics. Under X-ray in CT conditions, injection currents measurements reveal trapped carriers space-charges formation. The same way, the comparisons of the responses to X-beam cut-off with various injection possibilities enable to follow the space-charges evolutions and then to determine the predominant traps types. Nevertheless, both hole and electron traps are responsible for the memory effect e.g. the currents levels dependence with irradiation history. This effect is noticed in particular on responses to fast flux variations that simulate scanner's conditions. Trap levels probably corresponding to native defects are responsible for these limitations. In order to make such detectors suitable for X-ray Computed Tomography, significant progresses in CdTe for CdZnTe crystal growth with an important defects densities reduction (factor 10), or possibly counting mode operation, seem necessary. (author)

  11. PARTOS - Passive and Active Ray TOmography Software: description and preliminary analysis using TOMO-ETNA experiment’s dataset

    Directory of Open Access Journals (Sweden)

    Alejandro Díaz-Moreno

    2016-09-01

    Full Text Available In this manuscript we present the new friendly seismic tomography software based on joint inversion of active and passive seismic sources called PARTOS (Passive Active Ray TOmography Software. This code has been developed on the base of two well-known widely used tomographic algorithms (LOTOS and ATOM-3D, providing a robust set of algorithms. The dataset used to set and test the program has been provided by TOMO-ETNA experiment. TOMO-ETNA database is a large, high-quality dataset that includes active and passive seismic sources recorded during a period of 4 months in 2014. We performed a series of synthetic tests in order to estimate the resolution and robustness of the solutions. Real data inversion has been carried out using 3 different subsets: i active data; ii passive data; and iii joint dataset. Active database is composed by a total of 16,950 air-gun shots during 1 month and passive database includes 452 local and regional earthquakes recorded during 4 months. This large dataset provides a high ray density within the study region. The combination of active and passive seismic data, together with the high quality of the database, permits to obtain a new tomographic approach of the region under study never done before. An additional user-guide of PARTOS software is provided in order to facilitate the implementation for new users.

  12. X-ray apparatus

    International Nuclear Information System (INIS)

    Sell, L.J.

    1981-01-01

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  13. Characterization of filters and filtration process using X-ray computerized tomography

    International Nuclear Information System (INIS)

    Maschio, Celio; Arruda, Antonio Celso Fonseca de

    1999-01-01

    The objective of this work is to present the potential of X-Ray computerized tomography as a tool for internal characterization of filters used in the solid-liquid separation, mainly the water filters. Cartridge filters (for industrial and domestic applications) contaminated with glass beads were used. The scanning process was carried out both with and without contaminant in the filter to compare the attenuation coefficient of the clean filter and the contaminated filter. The images showed that is possible the mapping the internal structure of the filters and the distribution of the contaminant, permitting a local analysis, that is not possible through the standard tests used by the manufactures. These standard tests reveal only global characteristics of the filter media. The possibility of application for manufacturing process control was also shown, because the non invasive nature is a important advantage of the technique, which also permitted damage detection in filters submitted to severe operational conditions. (author)

  14. Iterative reconstruction for x-ray computed tomography using prior-image induced nonlocal regularization.

    Science.gov (United States)

    Zhang, Hua; Huang, Jing; Ma, Jianhua; Bian, Zhaoying; Feng, Qianjin; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2014-09-01

    Repeated X-ray computed tomography (CT) scans are often required in several specific applications such as perfusion imaging, image-guided biopsy needle, image-guided intervention, and radiotherapy with noticeable benefits. However, the associated cumulative radiation dose significantly increases as comparison with that used in the conventional CT scan, which has raised major concerns in patients. In this study, to realize radiation dose reduction by reducing the X-ray tube current and exposure time (mAs) in repeated CT scans, we propose a prior-image induced nonlocal (PINL) regularization for statistical iterative reconstruction via the penalized weighted least-squares (PWLS) criteria, which we refer to as "PWLS-PINL". Specifically, the PINL regularization utilizes the redundant information in the prior image and the weighted least-squares term considers a data-dependent variance estimation, aiming to improve current low-dose image quality. Subsequently, a modified iterative successive overrelaxation algorithm is adopted to optimize the associative objective function. Experimental results on both phantom and patient data show that the present PWLS-PINL method can achieve promising gains over the other existing methods in terms of the noise reduction, low-contrast object detection, and edge detail preservation.

  15. A Prototype Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    Science.gov (United States)

    Kaiser, R.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnston, J. R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.

    2014-03-01

    Cosmic-ray muons are highly-penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. This paper presents the prototype scintillating-fibre detector developed for this application at the University of Glasgow. Experimental results taken with test objects are shown in comparison to results from GEANT4 simulations. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.

  16. Damage evolution in TWIP and standard austenitic steel by means of 3D X ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fabrègue, D., E-mail: damien.fabregue@insa-lyon.fr [Université de Lyon, CNRS, F-69621 Villeurbanne (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Landron, C. [Université de Lyon, CNRS, F-69621 Villeurbanne (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Bouaziz, O. [ArcelorMittal Research, Voie Romaine-BP30320, F-57283 Maizières les Metz (France); Maire, E. [Université de Lyon, CNRS, F-69621 Villeurbanne (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France)

    2013-09-01

    The evolution of ductile damage of Fe–22Mn–0.6C austenitic TWIP steel by means of 3D X ray tomography in-situ tensile tests is reported for the first time. The comparison with another fully austenitic steel (316 stainless steel) is also carried out. The damage process of TWIP steel involves intense nucleation of small voids combined with the significant growth of the biggest cavities whereas macroscopical triaxiality remains constant. Due to this high nucleation rate, the average cavity diameter remains constant unlike the 316 stainless steel.

  17. Application and development of Industrial Computed Tomography in China

    International Nuclear Information System (INIS)

    Kong Fangeng; Xian Wu

    1996-01-01

    Compared with traditional perspective radiography, ICT (Industrial Computed Tomography) is able to acquire tomography image without the disadvantages of image overlapping and blurring that exist in traditional perspective radiography. By acquiring the 2D tomography image of the object at different stage as many as needed, it is possible to achieve 3D tomography image. In China, the first Γ-ray ICT equipment was born at Chongqing University in May 1993. For this equipment, 60 Co radiation source with 1 Ci and 30 Ci was used, and spatial resolution is about 0.5mm, and density resolution is about 0.5%, and the diameter of the test object can be 300mm, but the price of the Chinese ICT equipment is only about a half on the same type of ICT equipment producing abroad other than China. Besides Γ-ray ICT, Chinese are engaging in research and develop x-ray ICT to meet foreign and domestic need. (author)

  18. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaopeng Ma

    2017-01-01

    Full Text Available Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future.

  19. Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography.

    Science.gov (United States)

    Müller, Mark; de Sena Oliveira, Ivo; Allner, Sebastian; Ferstl, Simone; Bidola, Pidassa; Mechlem, Korbinian; Fehringer, Andreas; Hehn, Lorenz; Dierolf, Martin; Achterhold, Klaus; Gleich, Bernhard; Hammel, Jörg U; Jahn, Henry; Mayer, Georg; Pfeiffer, Franz

    2017-11-21

    X-ray computed tomography (CT) is a powerful noninvasive technique for investigating the inner structure of objects and organisms. However, the resolution of laboratory CT systems is typically limited to the micrometer range. In this paper, we present a table-top nanoCT system in conjunction with standard processing tools that is able to routinely reach resolutions down to 100 nm without using X-ray optics. We demonstrate its potential for biological investigations by imaging a walking appendage of Euperipatoides rowelli , a representative of Onychophora-an invertebrate group pivotal for understanding animal evolution. Comparative analyses proved that the nanoCT can depict the external morphology of the limb with an image quality similar to scanning electron microscopy, while simultaneously visualizing internal muscular structures at higher resolutions than confocal laser scanning microscopy. The obtained nanoCT data revealed hitherto unknown aspects of the onychophoran limb musculature, enabling the 3D reconstruction of individual muscle fibers, which was previously impossible using any laboratory-based imaging technique.

  20. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons

    Science.gov (United States)

    Sato, K.; Kobayashi, Y.

    2015-05-01

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  1. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons

    International Nuclear Information System (INIS)

    Sato, K.; Kobayashi, Y.

    2015-01-01

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed

  2. Bone mineral density in renal osteodystrophy: Comparison of dual energy X-ray absorptiometry and quantitative computed tomography

    International Nuclear Information System (INIS)

    Funke, M.; Maeurer, J.; Grabbe, E.; Scheler, F.

    1992-01-01

    Measurements of bone density were carried out in 25 patients on dialysis for terminal renal insufficiency, using quantitative computed tomography (QCT) and dual energy X-ray absorptiometry (DXA). Unlike in subjects with normal kidneys, there was no significant correlation between these methods in this series. Ten patients showed an increase in bone density of the vertebral spongiosa on QCT measurements, which was interpreted as due to osteosclerotic bone changes in renal osteopathy. QCT showed advantages over DXA in demonstrating these changes. (orig.) [de

  3. Fibre failure assessment in carbon fibre reinforced polymers under fatigue loading by synchrotron X-ray computed tomography

    OpenAIRE

    Garcea, Serafina; Sinclair, Ian; Spearing, Simon

    2016-01-01

    In situ fatigue experiments using synchrotron X-ray computed tomography (SRCT) are used to assess the underpinning micromechanisms of fibre failure in double notch carbon/epoxy coupons. Observations showed fibre breaks along the 0º ply splits, associated with the presence and failure of bridging fibres, as well as fibres failed in the bulk composite within the 0º plies. A tendency for cluster formation, with multiple adjacent breaks in the bulk composite was observed when higher peak loads we...

  4. Large vessel imaging using cosmic-ray muons

    International Nuclear Information System (INIS)

    Jenneson, P.M.

    2004-01-01

    Cosmic-ray muons are assessed for their practical use in the tomographic imaging of the internal composition of large vessels over 2 m in diameter. The technique is based on the attenuation and scattering of cosmic-ray muons passing through a vessel and has advantages over photon-based methods of tomography that it is extendable to object containing high-density materials over many tens of metres. The main disadvantage is the length of time required to produce images of sufficient resolution and hence cosmic ray muon tomography will be most suited to the imaging of large structures whose internal composition is effectively static for the duration of the imaging period. Simulation and theoretical results are presented here which demonstrate the feasibility of cosmic ray muon tomography

  5. Introduction to 2D and 3D tomographic methods based on straight line propagation: X-ray, emission and ultrasonic tomography

    International Nuclear Information System (INIS)

    Peyrin, F.; Magnin, I.; Garnero, L.

    1996-01-01

    This paper presents the basic principles of computerized tomography (CT), and its evolution towards three dimensional (3D) imaging. Since the modeling of CT reconstruction relies on the Radon transform, its definition and major properties are first recalled. After a brief summary on conventional 2D methods, we present the imaging principles for two modalities appropriated to this modeling: X-Ray and emission tomography. We describe the evolution of the instrumentation for these two techniques, and emphasize the approximations introduced by a modeling using the Radon transform taking into account the physics of the problem. We also describe the principles of ultrasonic tomography systems, and their major differences with the two previous techniques. At last, we formulate the general problematic of 3D image reconstruction from 2D projections. We consider four classes of reconstruction methods corresponding to the classification to the classification chosen for the synthetic presentation of methods, accompanying this paper. (authors)

  6. Introducing minimum Fisher regularisation tomography to AXUV and soft x-ray diagnostic systems of the COMPASS tokamak

    International Nuclear Information System (INIS)

    Mlynar, J.; Weinzettl, V.; Imrisek, M.; Odstrcil, M.; Havlicek, J.; Janky, F.; Alper, B.; Murari, A.

    2012-01-01

    The contribution focuses on plasma tomography via the minimum Fisher regularisation (MFR) algorithm applied on data from the recently commissioned tomographic diagnostics on the COMPASS tokamak. The MFR expertise is based on previous applications at Joint European Torus (JET), as exemplified in a new case study of the plasma position analyses based on JET soft x-ray (SXR) tomographic reconstruction. Subsequent application of the MFR algorithm on COMPASS data from cameras with absolute extreme ultraviolet (AXUV) photodiodes disclosed a peaked radiating region near the limiter. Moreover, its time evolution indicates transient plasma edge cooling following a radial plasma shift. In the SXR data, MFR demonstrated that a high resolution plasma positioning independent of the magnetic diagnostics would be possible provided that a proper calibration of the cameras on an x-ray source is undertaken.

  7. Acoustic levitator for containerless measurements on low temperature liquids

    Energy Technology Data Exchange (ETDEWEB)

    Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Rey, Charles A A [Charles Ray, Inc.

    2009-01-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops at temperatures from -40 to +40 C. The levitator consisted of: (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) a acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ~ 22 kHz and could produce sound pressure levels up to 160 dB. The force applied by the acoustic field could be modulated using a frequency generator to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  8. Assimilation of coastal acoustic tomography data using an unstructured triangular grid ocean model for water with complex coastlines and islands

    Science.gov (United States)

    Zhu, Ze-Nan; Zhu, Xiao-Hua; Guo, Xinyu; Fan, Xiaopeng; Zhang, Chuanzheng

    2017-09-01

    For the first time, we present the application of an unstructured triangular grid to the Finite-Volume Community Ocean Model using the ensemble Kalman filter scheme, to assimilate coastal acoustic tomography (CAT) data. The fine horizontal and vertical current field structures around the island inside the observation region were both reproduced well. The assimilated depth-averaged velocities had better agreement with the independent acoustic Doppler current profiler (ADCP) data than the velocities obtained by inversion and simulation. The root-mean-square difference (RMSD) between depth-averaged current velocities obtained by data assimilation and those obtained by ADCPs was 0.07 m s-1, which was less than the corresponding difference obtained by inversion and simulation (0.12 and 0.17 m s-1, respectively). The assimilated vertical layer velocities also exhibited better agreement with ADCP than the velocities obtained by simulation. RMSDs between assimilated and ADCP data in vertical layers ranged from 0.02 to 0.14 m s-1, while RMSDs between simulation and ADCP data ranged from 0.08 to 0.27 m s-1. These results indicate that assimilation had the highest accuracy. Sensitivity experiments involving the elimination of sound transmission lines showed that missing data had less impact on assimilation than on inversion. Sensitivity experiments involving the elimination of CAT stations showed that the assimilation with four CAT stations was the relatively economical and reasonable procedure in this experiment. These results indicate that, compared with inversion and simulation, data assimilation of CAT data with an unstructured triangular grid is more effective in reconstructing the current field.

  9. The value of computed tomography in ''sciatica''

    International Nuclear Information System (INIS)

    Boehm-Jurkovic, H.; Hammer, B.

    1981-01-01

    13 cases of therapy-resistant lumboischialgia without herniated disk, caused in 12 cases by a tumour and in 1 case by an abscess, were examined by computed tomography of the lumbar and pelvic region. This method is indicated immediately after insufficient results of conventional X-ray methods (including tomography) and of lumbosacral radiculography. The computed tomography is indispensable also in patients with ''sciatica'' with a known malignoma. The information given by computed tomography is essential for the therapy planning. (author)

  10. Sci-Thur AM: YIS – 02: Imaging dose distributions through the detection of radiation-induced acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Hickling, Susannah; Lei, Hao; Hobson, Maritza; Leger, Pierre; Wang, Xueding; El Naqa, Issam [University of Michigan, McGill University, McGill University , University of Michigan, University of Michigan/McGill University (United States)

    2016-08-15

    Purpose: X-ray acoustic computed tomography (XACT) is an emerging technique that images the dose deposited within an object following linac irradiation by detecting acoustic waves induced via the photoacoustic effect. This work shows that XACT images can be formed in soft-tissue equivalent material and that dosimetric information can be extracted from such images. Methods: Acoustic waves induced in a water tank following irradiation by a 10 MV flattening filter free photon beam were detected with an immersion ultrasound transducer at 60 angles surrounding the radiation field. A back-projection algorithm was used to reconstruct an XACT image from the detected transducer signals. Profiles extracted from XACT images were compared to profiles measured with ion chambers as per the current clinical protocol. Results: XACT images were successfully formed of simple 4 cm × 4 cm and 6 cm × 3 cm fields, as well as of more complicated multi-leaf collimator defined fields. For the 6 cm × 3 cm field, 74% and 87% of the XACT profile points in the 6 cm and 3 cm dimensions, respectively, passed a 7% / 4 mm gamma test when compared to ion chamber measurements. In a complicated puzzle piece shaped field, 86% of the pixels in an extracted profile passed a 7% / 4 mm gamma test. Conclusions: XACT is capable of imaging the dose distribution delivered by a variety of field sizes and shapes in water, and is a viable technique for both water tank and in vivo dosimetry.

  11. Challenges related to the measurement of components composed of more than one material using computed tomography by absorption of X-rays

    International Nuclear Information System (INIS)

    Silva, Diogo Cesar B.; Yamanaka, Douglas M.; Baldo, Christian R.

    2013-01-01

    This paper discusses the issues involved in inspecting by X-ray tomography objects composed of more than one material. It addresses the following measurement cases: continuity analysis in copper wire insulation layer, alignment analysis between a metallic shaft and its plastic body; analysis of the distribution of different materials inside a concrete sample. (author)

  12. Morphological analysis of the vestibular aqueduct by computerized tomography images

    International Nuclear Information System (INIS)

    Marques, Sergio Ricardo; Smith, Ricardo Luiz; Isotani, Sadao; Alonso, Luis Garcia; Anadao, Carlos Augusto; Prates, Jose Carlos; Lederman, Henrique Manoel

    2007-01-01

    Objective: In the last two decades, advances in the computerized tomography (CT) field revise the internal and medium ear evaluation. Therefore, the aim of this study is to analyze the morphology and morphometric aspects of the vestibular aqueduct on the basis of computerized tomography images (CTI). Material and method: Computerized tomography images of vestibular aqueducts were acquired from patients (n = 110) with an age range of 1-92 years. Thereafter, from the vestibular aqueducts images a morphometric analysis was performed. Through a computerized image processing system, the vestibular aqueduct measurements comprised of its area, external opening, length and the distance from the vestibular aqueduct to the internal acoustic meatus. Results: The morphology of the vestibular aqueduct may be funnel-shaped, filiform or tubular and the respective proportions were found to be at 44%, 33% and 22% in children and 21.7%, 53.3% and 25% in adults. The morphometric data showed to be of 4.86 mm 2 of area, 2.24 mm of the external opening, 4.73 mm of length and 11.88 mm of the distance from the vestibular aqueduct to the internal acoustic meatus, in children, and in adults it was of 4.93 mm 2 , 2.09 mm, 4.44 mm, and 11.35 mm, respectively. Conclusions: Computerized tomography showed that the vestibular aqueduct presents high morphological variability. The morphometric analysis showed that the differences found between groups of children and adults or between groups of both genders were not statistically significant

  13. Non-linear time reversal ultrasonic pseudo-tomography

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Vejvodová, Šárka; Krofta, Josef; Převorovský, David

    2011-01-01

    Roč. 6, 3/4 (2011), s. 206-213 ISSN 1741-8410. [NDT in Progress. Praha, 05.11.2007-07.11.2007] R&D Projects: GA MPO(CZ) FR-TI1/274 Institutional research plan: CEZ:AV0Z20760514 Keywords : NDT * nonlinear elastic wave spectroscopy * time reversal mirrors * ultrasonic pseudo-tomography Subject RIV: BI - Acoustics http://www.inderscience.com/offer.php?id=43216

  14. Computerized tomography in radiodiagnosis of pneumonia

    International Nuclear Information System (INIS)

    Degtyareva, I.A.; Mamaev, V.V.; Savchenko, A.P.

    1989-01-01

    Experience in the use of computerized tomography (CT) in combined radiodiagnosis of pneumonia was analysed. It has been concluded that CT objectively reflects morphological inflammatory changes and permits their all-round assessment over time. The diagnosis of pneumonia in CT is based on classical x-ray symptoms. As compared to survery radiography CT reveals symptoms of pneumonia to the full at earlier stages. CT is an important additional method of investigation of inflammatory pulmonary diseases but it should not be used separately without survey radiography. In a majority of cases when CT is performed there is no need in x-ray tomography

  15. X-ray micro-tomography investigation of the foaming process in the system of waste glass–silica mud–MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ducman, V., E-mail: vilma.ducman@zag.si [ZAG Ljubljana, Dimičeva 12, 1000 Ljubljana (Slovenia); Korat, L.; Legat, A. [ZAG Ljubljana, Dimičeva 12, 1000 Ljubljana (Slovenia); Mirtič, B. [NTF, Aškerčeva 12, 1000 Ljubljana (Slovenia)

    2013-12-15

    In case of foamed lightweight aggregates (LWAs), porosity is introduced by the addition of a foaming agent to the glassy matrix, which degasses at an elevated temperature, so that the resulting gases remain trapped inside the glassy structure. The efficiency of action of MnO{sub 2} as a foaming agent in waste glass and waste glass/silica mud systems was studied. Samples were fired at different temperatures and with different dwelling times at a certain temperature, and the development of porosity was investigated by means of X-ray micro-tomography. It was found that, with the prolongation in dwelling times, the number of pores decreased, while, on the other hand, the volume of these pores increased, and that the addition of silica mud increases the foaming temperature and slows down the foaming process. - Highlights: • Preparation of lightweight aggregate from waste glass, silica sludge, and MnO{sub 2} • DTA/TG investigation of MnO{sub 2} • Characterization of pore-forming process by means of X-ray micro-tomography (μcT)

  16. MMX-I: A data-processing software for multi-modal X-ray imaging and tomography

    International Nuclear Information System (INIS)

    Bergamaschi, A; Medjoubi, K; Somogyi, A; Messaoudi, C; Marco, S

    2017-01-01

    Scanning hard X-ray imaging allows simultaneous acquisition of multimodal information, including X-ray fluorescence, absorption, phase and dark-field contrasts, providing structural and chemical details of the samples. Combining these scanning techniques with the infrastructure developed for fast data acquisition at Synchrotron Soleil permits to perform multimodal imaging and tomography during routine user experiments at the Nanoscopium beamline. A main challenge of such imaging techniques is the online processing and analysis of the generated very large volume (several hundreds of Giga Bytes) multimodal data-sets. This is especially important for the wide user community foreseen at the user oriented Nanoscopium beamline (e.g. from the fields of Biology, Life Sciences, Geology, Geobiology), having no experience in such data-handling. MMX-I is a new multi-platform open-source freeware for the processing and reconstruction of scanning multi-technique X-ray imaging and tomographic datasets. The MMX-I project aims to offer, both expert users and beginners, the possibility of processing and analysing raw data, either on-site or off-site. Therefore we have developed a multi-platform (Mac, Windows and Linux 64bit) data processing tool, which is easy to install, comprehensive, intuitive, extendable and user-friendly. MMX-I is now routinely used by the Nanoscopium user community and has demonstrated its performance in treating big data. (paper)

  17. MMX-I: A data-processing software for multi-modal X-ray imaging and tomography

    Science.gov (United States)

    Bergamaschi, A.; Medjoubi, K.; Messaoudi, C.; Marco, S.; Somogyi, A.

    2017-06-01

    Scanning hard X-ray imaging allows simultaneous acquisition of multimodal information, including X-ray fluorescence, absorption, phase and dark-field contrasts, providing structural and chemical details of the samples. Combining these scanning techniques with the infrastructure developed for fast data acquisition at Synchrotron Soleil permits to perform multimodal imaging and tomography during routine user experiments at the Nanoscopium beamline. A main challenge of such imaging techniques is the online processing and analysis of the generated very large volume (several hundreds of Giga Bytes) multimodal data-sets. This is especially important for the wide user community foreseen at the user oriented Nanoscopium beamline (e.g. from the fields of Biology, Life Sciences, Geology, Geobiology), having no experience in such data-handling. MMX-I is a new multi-platform open-source freeware for the processing and reconstruction of scanning multi-technique X-ray imaging and tomographic datasets. The MMX-I project aims to offer, both expert users and beginners, the possibility of processing and analysing raw data, either on-site or off-site. Therefore we have developed a multi-platform (Mac, Windows and Linux 64bit) data processing tool, which is easy to install, comprehensive, intuitive, extendable and user-friendly. MMX-I is now routinely used by the Nanoscopium user community and has demonstrated its performance in treating big data.

  18. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    International Nuclear Information System (INIS)

    Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu; Sun, Xiaodong; Zhang, Dong

    2016-01-01

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharp and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.

  19. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn [Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing 210023 (China); Sun, Xiaodong [China Key System & Integrated Circuit Co., Ltd., Wuxi 214072 (China); Zhang, Dong [Laboratory of Modern Acoustics of MOE, Institute of Acoustics, Nanjing University, Nanjing 210093 (China)

    2016-03-07

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharp and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.

  20. Bayesian soft x-ray tomography and MHD mode analysis on HL-2A

    Science.gov (United States)

    Li, Dong; Liu, Yi; Svensson, J.; Liu, Y. Q.; Song, X. M.; Yu, L. M.; Mao, Rui; Fu, B. Z.; Deng, Wei; Yuan, B. S.; Ji, X. Q.; Xu, Yuan; Chen, Wei; Zhou, Yan; Yang, Q. W.; Duan, X. R.; Liu, Yong; HL-2A Team

    2016-03-01

    A Bayesian based tomography method using so-called Gaussian processes (GPs) for the emission model has been applied to the soft x-ray (SXR) diagnostics on HL-2A tokamak. To improve the accuracy of reconstructions, the standard GP is extended to a non-stationary version so that different smoothness between the plasma center and the edge can be taken into account in the algorithm. The uncertainty in the reconstruction arising from measurement errors and incapability can be fully analyzed by the usage of Bayesian probability theory. In this work, the SXR reconstructions by this non-stationary Gaussian processes tomography (NSGPT) method have been compared with the equilibrium magnetic flux surfaces, generally achieving a satisfactory agreement in terms of both shape and position. In addition, singular-value-decomposition (SVD) and Fast Fourier Transform (FFT) techniques have been applied for the analysis of SXR and magnetic diagnostics, in order to explore the spatial and temporal features of the saturated long-lived magnetohydrodynamics (MHD) instability induced by energetic particles during neutral beam injection (NBI) on HL-2A. The result shows that this ideal internal kink instability has a dominant m/n  =  1/1 mode structure along with a harmonics m/n  =  2/2, which are coupled near the q  =  1 surface with a rotation frequency of 12 kHz.