WorldWideScience

Sample records for acoustic tissue type

  1. Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.

    Science.gov (United States)

    Gao, Fei; Zheng, Qian; Zheng, Yuanjin

    2014-05-01

    Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network

  2. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 78713-8029 (United States)

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  3. Ultrasonic characterization of three animal mammary tumors from three-dimensional acoustic tissue models

    Science.gov (United States)

    Mamou, Jonathan M.

    This dissertation investigated how three-dimensional (3D) tissue models can be used to improve ultrasonic tissue characterization (UTC) techniques. Anatomic sites in tissue responsible for ultrasonic scattering are unknown, which limits the potential applications of ultrasound for tumor diagnosis. Accurate 3D models of tumor tissues may help identify the scattering sites. Three mammary tumors were investigated: a rat fibroadenoma, a mouse carcinoma, and a mouse sarcoma. A 3D acoustic tissue model, termed 3D impedance map (3DZM), was carefully constructed from consecutive histologic sections for each tumor. Spectral estimates (scatterer size and acoustic concentration) were obtained from the 3DZMs and compared to the same estimates obtained with ultrasound. Scatterer size estimates for three tumors were found to be similar (within 10%). The 3DZMs were also used to extract tissue-specific scattering models. The scattering models were found to allow clear distinction between the three tumors. This distinction demonstrated that UTC techniques may be helpful for noninvasive clinical tumor diagnosis.

  4. Bi-layer plate-type acoustic metamaterials with Willis coupling

    Science.gov (United States)

    Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui

    2018-01-01

    Dynamic effective negative parameters are principal to the representation of the physical properties of metamaterials. In this paper, a bi-layer plate-type unit was proposed with both a negative mass density and a negative bulk modulus; moreover, through analysis of these bi-layer structures, some important problems about acoustic metamaterials were studied. First, dynamic effective mass densities and the bulk modulus of the bi-layer plate-type acoustic structure were clarified through both the direct and the retrieval methods, and, in addition, the intrinsic relationship between the sound transmission (absorption) characteristics and the effective parameters was analyzed. Furthermore, the properties of dynamic effective parameters for an asymmetric bi-layer acoustic structure were further considered through an analysis of experimental data, and the modified effective parameters were then obtained through consideration of the Willis coupling in the asymmetric passive system. In addition, by taking both the clamped and the periodic boundary conditions into consideration in the bi-layer plate-type acoustic system, new perspectives were presented for study on the effective parameters and sound insulation properties in the range below the cut-off frequency. The special acoustic properties established by these effective parameters could enrich our knowledge and provide guidance for the design and installation of acoustic metamaterial structures in future sound engineering practice.

  5. The effect of magnetic nanoparticles on the acoustic properties of tissue-mimicking agar-gel phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Józefczak, A., E-mail: aras@amu.edu.pl [Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Kaczmarek, K. [Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Kubovčíková, M. [Institute of Experimental Physics, Slovak Academy of Sciences, Košice (Slovakia); Rozynek, Z.; Hornowski, T. [Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland)

    2017-06-01

    In ultrasonic hyperthermia, ultrasound-induced heating is achieved by the absorption of wave energy and its conversion into heat. The effectiveness of ultrasounds can be improved by using sonosensitisers that greatly attenuate ultrasonic waves and then dissipate the acquired energy in the form of heat. One possible candidate for such a sonosensitiser are superparamagnetic iron oxide nanoparticles. Here, we used magnetic nanoparticles embedded in a tissue-mimicking agar-gel matrix. Such tissue-mimicking phantoms possess acoustic properties similar to those of real tissues, and are used as a tool for performance testing and optimisation of medical ultrasound systems. In this work, we studied the effect of magnetic nanoparticles on the acoustic properties of agar-gel phantoms, including the attenuation of ultrasonic waves. - Highlights: • Ultrasonic insertion technique is used to study acoustic properties of agar-gel phantoms with and without magnetic particles. • The addition of magnetic nanoparticles improves effectiveness of ultrasound heating in agar phantoms. • Acoustics properties of a pure agar-gel phantom are altered by adding nanoparticles.

  6. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.

    Science.gov (United States)

    Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan

    2015-01-01

    Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.

  7. Acoustic glitches in solar-type stars from Kepler

    DEFF Research Database (Denmark)

    Mazumdar, A.; Monteiro, M. J. P. F. G.; Ballot, J

    2012-01-01

    We report the measurement of the acoustic locations of layers of sharp variation in sound speed in the interiors of 19 solar-type stars observed by the Kepler mission. The oscillatory signal in the frequencies arising due to the acoustic glitches at the base of the convection zone and the second...

  8. Perforated membrane-type acoustic metamaterials

    International Nuclear Information System (INIS)

    Langfeldt, F.; Kemsies, H.; Gleine, W.; Estorff, O. von

    2017-01-01

    This letter introduces a modified design of membrane-type acoustic metamaterials (MAMs) with a ring mass and a perforation so that an airflow through the membrane is enabled. Simplified analytical investigations of the perforated MAM (PMAM) indicate that the perforation introduces a second anti-resonance, where the effective surface mass density of the PMAM is much higher than the static value. The theoretical results are validated using impedance tube measurements, indicating good agreement between the theoretical predictions and the measured data. The anti-resonances yield high low-frequency sound transmission loss values with peak values over 25 dB higher than the corresponding mass-law. - Highlights: • A new membrane-type acoustic metamaterial exhibiting negative density is presented. • The metamaterial design contains a ring mass with a perforation through the membrane. • The sound transmission loss exhibits narrow-band peaks much higher than the mass-law. • The emergence of the peaks is explained using a simple theoretical model. • Impedance tube measurements are used to validate the theoretical predictions.

  9. Perforated membrane-type acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Langfeldt, F., E-mail: Felix.Langfeldt@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Kemsies, H., E-mail: Hannes.Kemsies@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Gleine, W., E-mail: Wolfgang.Gleine@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Estorff, O. von, E-mail: estorff@tu-harburg.de [Institute of Modelling and Computation, Hamburg University of Technology, Denickestr. 17, D-21073 Hamburg (Germany)

    2017-04-25

    This letter introduces a modified design of membrane-type acoustic metamaterials (MAMs) with a ring mass and a perforation so that an airflow through the membrane is enabled. Simplified analytical investigations of the perforated MAM (PMAM) indicate that the perforation introduces a second anti-resonance, where the effective surface mass density of the PMAM is much higher than the static value. The theoretical results are validated using impedance tube measurements, indicating good agreement between the theoretical predictions and the measured data. The anti-resonances yield high low-frequency sound transmission loss values with peak values over 25 dB higher than the corresponding mass-law. - Highlights: • A new membrane-type acoustic metamaterial exhibiting negative density is presented. • The metamaterial design contains a ring mass with a perforation through the membrane. • The sound transmission loss exhibits narrow-band peaks much higher than the mass-law. • The emergence of the peaks is explained using a simple theoretical model. • Impedance tube measurements are used to validate the theoretical predictions.

  10. Tissue types (image)

    Science.gov (United States)

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  11. Performance Assessment of Suture Type in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.

    2009-02-27

    The objective of this study was to determine the best overall suture material to close incisions from the surgical implantation of Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic microtransmitters in subyearling Chinook salmon Oncorhynchus tshawytscha. The effects of seven suture materials, four surgeons, and two water temperatures on suture retention, incision openness, tag retention, tissue inflammation, and tissue ulceration were quantified. The laboratory study, conducted by researchers at the Pacific Northwest National Laboratory, supports a larger effort under way for the U.S. Army Corps of Engineers, Portland District, aimed at determining the suitability of acoustic telemetry for estimating short- and longer-term (30-60 days) juvenile-salmonid survival at Columbia and Snake River dams and through the lower Columbia River.

  12. Acoustic emission from hydrogen saturated Type 304L stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1978-01-01

    Acoustic emission is attributed to energy release within a material body by localized plastic deformation or failure processes. The elastic stress waves may come from slip band formation, mechanical twinning, martensite transformation, or crack propagation. Each of these processes has slightly different acoustic characteristics allowing for easy identification. Acoustic emission was monitored during tensile tests of Type 304L austenitic stainless steel to explore the applicability of the technique to hydrogen-assisted fracture

  13. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.

    Science.gov (United States)

    Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M

    2010-04-01

    Acoustic radiation force-optical coherence elastography (ARF-OCE) systems are novel imaging systems that have the potential to simultaneously quantify and characterize the optical and mechanical properties of in vivo tissues. This article presents the construction of bladder wall phantoms for use in ARF-OCE systems. Mechanical, acoustic, and optical properties are reported and compared to published values for the urinary bladder. The phantom consisted of 0.2000 +/- 0.0089 and 6.0000 +/- 0.2830 microm polystyrene microspheres (Polysciences Inc., Warrington, PA, Catalog Nos. 07304 and 07312), 7.5 +/- 1.5 microm copolymer microspheres composed of acrylonitrile and vinylidene chloride, (Expancel, Duluth, GA, Catalog No. 461 DU 20), and bovine serum albumin within a gelatin matrix. Young's modulus was measured by successive compression of the phantom and obtaining the slope of the resulting force-displacement data. Acoustic measurements were performed using the transmission method. The phantoms were submerged in a water bath and placed between transmitting and receiving 13 mm diameter unfocused transducers operating at a frequency of 3.5 MHz. A MATLAB algorithm to extract the optical scattering coefficient from optical coherence tomography (OCT) images of the phantom was used. The phantoms possess a Young's modulus of 17.12 +/- 2.72 kPa, a mass density of 1.05 +/- 0.02 g/cm3, an acoustic attenuation coefficient of 0.66 +/- 0.08 dB/cm/MHz, a speed of sound of 1591 +/- 8.76 m/s, and an optical scattering coefficient of 1.80 +/- 0.23 mm(-1). Ultrasound and OCT images of the bladder wall phantom are presented. A material that mimics the mechanical, optical, and acoustic properties of healthy bladder wall has been developed. This tissue-mimicking bladder wall phantom was developed as a control tool to investigate the feasibility of using ARF-OCE to detect the mechanical and optical changes that may be indicative of the onset or development of cancer in the urinary bladder

  14. Novel types of surface acoustic wave microreflectors - Performance analysis and simulations

    Science.gov (United States)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1990-06-01

    Surface acoustic waves for micrograting reflectors have been characterized. Based on the perturbation theory, eight different types of structures on an acoustic waveguide were analyzed. Results of simulations of all eight types of corrugation structures were evaluated in order to find the least leaky waveguide, the most efficient reflector (with minimum necessary perturbations), and the optimal mode shape for improved performances. General design curves are presented in order to illustrate the behavior of the incident and reflected waves under a variety of structural conditions. Analytic expressions for the calculations of the mode amplitude and mode shape, and for general acoustic corrugations are derived and then the simulations results are presented.

  15. Application of acoustic microscopy to assessment of cardiovascular biomechanics

    Science.gov (United States)

    Saijo, Yoshifumi; Sasaki, Hidehiko; Nitta, Shin-ichi; Tanaka, Motonao; Joergensen, Claus S.; Falk, Erling

    2002-11-01

    Acoustic microscopy provides information on physical and mechanical properties of biological tissues, while optical microscopy with various staining techniques provides chemical properties. The biomechanics of tissues is especially important in cardiovascular system because its pathophysiology is closely related with mechanical stresses such as blood pressure or blood flow. A scanning acoustic microscope (SAM) system with tone-burst ultrasound in the frequency range of 100-200 MHz has been developed, and attenuation and sound speed of tissues have been measured. In human coronary arteries, attenuation and sound speed were high in calcification and collagen, while both values were low in smooth muscle and lipid. Another SAM system with 800-MHz-1.3-GHz ultrasound was applied for aortas of Apo-E deficient mouse, which is known to develop atherosclerosis. Attenuation of ultrasound was significantly higher in type 1 collagen compared to type 3 collagen. Recently, a new type FFT-SAM using a single-pulse, broadband frequency range ultrasound (20-150 MHz) has been developed. Cardiac allograft was observed by FFT-SAM and the acoustic properties were able to grade allograft rejection. SAM provides very useful information for assessing cardiovascular biomechanics and for understanding normal and abnormal images of clinical ultrasound.

  16. Laboratory investigation of the acoustic response of seagrass tissue in the frequency band 0.5-2.5 kHz.

    Science.gov (United States)

    Wilson, Preston S; Dunton, Kenneth H

    2009-04-01

    Previous in situ investigations of seagrass have revealed acoustic phenomena that depend on plant density, tissue gas content, and free bubbles produced by photosynthetic activity, but corresponding predictive models that could be used to optimize acoustic remote sensing, shallow water sonar, and mine hunting applications have not appeared. To begin to address this deficiency, low frequency (0.5-2.5 kHz) acoustic laboratory experiments were conducted on three freshly collected Texas Gulf Coast seagrass species. A one-dimensional acoustic resonator technique was used to assess the biomass and effective acoustic properties of the leaves and rhizomes of Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass), and Halodule wrightii (shoal grass). Independent biomass and gas content estimates were obtained via microscopic cross-section imagery. The acoustic results were compared to model predictions based on Wood's equation for a two-phase medium. The effective sound speed in the plant-filled resonator was strongly dependent on plant biomass, but the Wood's equation model (based on tissue gas content alone) could not predict the effective sound speed for the low irradiance conditions of the experiment, in which no free bubbles were generated by photosynthesis. The results corroborate previously published results obtained in situ for another seagrass species, Posidonia oceanica.

  17. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.

    Science.gov (United States)

    Ergün, A Sanlı

    2011-10-01

    Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Design and optimization of membrane-type acoustic metamaterials

    Science.gov (United States)

    Blevins, Matthew Grant

    One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.

  19. Acoustic Band Gaps in Three-Dimensional NaCl-Type Acoustic Crystals

    International Nuclear Information System (INIS)

    Nong-Yu, Fang; Fu-Gen, Wu; Xin, Zhang

    2008-01-01

    We present the acoustic band gaps (ABGs) for a geometry of three-dimensional complex acoustic crystals: the NaCl-type structure. By using the super cell method based on the plane-wave expansion method (PWE), we study the three configurations formed by water objects (either a sphere of different sizes or a cube) located at the vertices of simple cubic (SC) lattice and surrounded by mercury background. The numerical results show that ABGs larger than the original SC structure for all the three configurations can be obtained by adjusting the length-diameter ratio of adjacent objects but keeping the filling fraction (f = 0.25) of the unit cell unchanged. We also compare our results with that of 3D solid composites and find that the ABGs in liquid composites are insensitive to the shapes as that in the solid composites. We further prove that the decrease of the translation group symmetry is more efficient in creating the ABGs in 3D water-mercury systems. (fundamental areas of phenomenology (including applications))

  20. An Acoustic Study of the Relationships among Neurologic Disease, Dysarthria Type, and Severity of Dysarthria

    Science.gov (United States)

    Kim, Yunjung; Kent, Raymond D.; Weismer, Gary

    2011-01-01

    Purpose: This study examined acoustic predictors of speech intelligibility in speakers with several types of dysarthria secondary to different diseases and conducted classification analysis solely by acoustic measures according to 3 variables (disease, speech severity, and dysarthria type). Method: Speech recordings from 107 speakers with…

  1. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.

    Science.gov (United States)

    Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F

    2018-01-01

    Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue

  2. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.

    Science.gov (United States)

    Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli

    2017-05-01

    A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.

  3. The Relationship Between Acoustic Signal Typing and Perceptual Evaluation of Tracheoesophageal Voice Quality for Sustained Vowels.

    Science.gov (United States)

    Clapham, Renee P; van As-Brooks, Corina J; van Son, Rob J J H; Hilgers, Frans J M; van den Brekel, Michiel W M

    2015-07-01

    To investigate the relationship between acoustic signal typing and perceptual evaluation of sustained vowels produced by tracheoesophageal (TE) speakers and the use of signal typing in the clinical setting. Two evaluators independently categorized 1.75-second segments of narrow-band spectrograms according to acoustic signal typing and independently evaluated the recording of the same segments on a visual analog scale according to overall perceptual acoustic voice quality. The relationship between acoustic signal typing and overall voice quality (as a continuous scale and as a four-point ordinal scale) was investigated and the proportion of inter-rater agreement as well as the reliability between the two measures is reported. The agreement between signal type (I-IV) and ordinal voice quality (four-point scale) was low but significant, and there was a significant linear relationship between the variables. Signal type correctly predicted less than half of the voice quality data. There was a significant main effect of signal type on continuous voice quality scores with significant differences in median quality scores between signal types I-IV, I-III, and I-II. Signal typing can be used as an adjunct to perceptual and acoustic evaluation of the same stimuli for TE speech as part of a multidimensional evaluation protocol. Signal typing in its current form provides limited predictive information on voice quality, and there is significant overlap between signal types II and III and perceptual categories. Future work should consider whether the current four signal types could be refined. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography

    International Nuclear Information System (INIS)

    Oldenburg, Amy L; Boppart, Stephen A

    2010-01-01

    We present a new method for performing dynamic elastography of soft tissue samples. By sensing nanoscale displacements with optical coherence tomography, a chirped, modulated force is applied to acquire the mechanical spectrum of a tissue sample within a few seconds. This modulated force is applied via magnetic nanoparticles, named 'nanotransducers', which are diffused into the tissue, and which contribute negligible inertia to the soft tissue mechanical system. Using this novel system, we observed that excised tissues exhibit mechanical resonance modes which are well described by a linear damped harmonic oscillator. Results are validated by using cylindrical tissue phantoms of agarose in which resonant frequencies (30-400 Hz) are consistent with longitudinal modes and the sample boundary conditions. We furthermore show that the Young's modulus can be computed from their measured resonance frequencies, analogous to resonant ultrasound spectroscopy for stiff material analysis. Using this new technique, named magnetomotive resonant acoustic spectroscopy (MRAS), we monitored the relative stiffening of an excised rat liver during a chemical fixation process.

  5. Acoustic Estimates of Distribution and Biomass of Different Acoustic Scattering Types Between the New England Shelf Break and Slope Waters

    KAUST Repository

    McLaren, Alexander

    2011-11-01

    Due to their great ecological significance, mesopelagic fishes are attracting a wider audience on account of the large biomass they represent. Data from the National Marine Fisheries Service (NMFS) provided the opportunity to explore an unknown region of the North-West Atlantic, adjacent to one of the most productive fisheries in the world. Acoustic data collected during the cruise required the identification of acoustically distinct scattering types to make inferences on the migrations, distributions and biomass of mesopelagic scattering layers. Six scattering types were identified by the proposed method in our data and traces their migrations and distributions in the top 200m of the water column. This method was able to detect and trace the movements of three scattering types to 1000m depth, two of which can be further subdivided. This process of identification enabled the development of three physically-derived target-strength models adapted to traceable acoustic scattering types for the analysis of biomass and length distribution to 1000m depth. The abundance and distribution of acoustic targets varied closely in relation to varying physical environments associated with a warm core ring in the New England continental Shelf break region. The continental shelf break produces biomass density estimates that are twice as high as the warm core ring and the surrounding continental slope waters are an order of magnitude lower than either estimate. Biomass associated with distinct layers is assessed and any benefits brought about by upwelling at the edge of the warm core ring are shown not to result in higher abundance of deepwater species. Finally, asymmetric diurnal migrations in shelf break waters contrasts markedly with the symmetry of migrating layers within the warm ring, both in structure and density estimates, supporting a theory of predatorial and nutritional constraints to migrating pelagic species.

  6. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation μCT

    International Nuclear Information System (INIS)

    Raum, K; Leguerney, I; Chandelier, F; Talmant, M; Saied, A; Peyrin, F; Laugier, P

    2006-01-01

    200 MHz scanning acoustic microscopy (SAM) and synchrotron radiation μCT (SR-μCT) were used to assess microstructural parameters and tissue properties in site-matched regions of interest in cortical bone. Anterior and postero-lateral regions of ten cross sections from human cortical radius were explored. Structural parameters, including diameter and number of Haversian canals per cortical area (Ca.Dm, N.Ca/Ar) and porosity Po were assessed with both methods using a custom-developed image fusion and analysis software. Acoustic impedance Z and degree of mineralization of bone DMB were extracted separately for osteonal and interstitial tissues from the fused images. Structural parameter estimations obtained from radiographic and acoustic images were almost identical. DMB and impedance values were in the range between 0.77 and 1.28 g cm -3 and 5.13 and 12.1 Mrayl, respectively. Interindividual and regional variations were observed, whereas the strongest difference was found between osteonal and interstitial tissues (Z: 7.2 ± 1.1 Mrayl versus 9.3 ± 1.0 Mrayl, DMB: 1.06 ± 0.07 g cm -3 versus 1.16 ± 0.05 g cm -3 , paired t-test, p 2 = 0.174, p -4 ) and for the pooled (osteonal and interstitial) data. The regression of the pooled osteonal and interstitial tissue data follows a second-order polynomial (R 2 = 0.39, p -4 ). Both modalities fulfil the requirement for a simultaneous evaluation of cortical bone microstructure and material properties at the tissue level. While SAM inspection is limited to the evaluation of carefully prepared sample surfaces, SR-μCT provides volumetric information on the tissue without substantial preparation requirements. However, SAM provides a quantitative estimate of elastic properties at the tissue level that cannot be captured by SR-μCT

  7. The Effects of Size and Type of Vocal Fold Polyp on Some Acoustic Voice Parameters

    Directory of Open Access Journals (Sweden)

    Elaheh Akbari

    2018-03-01

    Full Text Available Background: Vocal abuse and misuse would result in vocal fold polyp. Certain features define the extent of vocal folds polyp effects on voice acoustic parameters. The present study aimed to define the effects of polyp size on acoustic voice parameters, and compare these parameters in hemorrhagic and non-hemorrhagic polyps. Methods: In the present retrospective study, 28 individuals with hemorrhagic or non-hemorrhagic polyps of the true vocal folds were recruited to investigate acoustic voice parameters of vowel/ æ/ computed by the Praat software. The data were analyzed using the SPSS software, version 17.0. According to the type and size of polyps, mean acoustic differences and correlations were analyzed by the statistical t test and Pearson correlation test, respectively; with significance level below 0.05. Results: The results indicated that jitter and the harmonics-to-noise ratio had a significant positive and negative correlation with the polyp size (P=0.01, respectively. In addition, both mentioned parameters were significantly different between the two types of the investigated polyps. Conclusion: Both the type and size of polyps have effects on acoustic voice characteristics. In the present study, a novel method to measure polyp size was introduced. Further confirmation of this method as a tool to compare polyp sizes requires additional investigations.

  8. Reconstruction of the forehead acoustic properties in an Indo-Pacific humpback dolphin (Sousa chinensis), with investigation on the responses of soft tissue sound velocity to temperature.

    Science.gov (United States)

    Song, Zhongchang; Zhang, Yu; Berggren, Per; Wei, Chong

    2017-02-01

    Computed tomography (CT) imaging and ultrasound experimental measurements were combined to reconstruct the acoustic properties (density, velocity, and impedance) of the head from a deceased Indo-Pacific humpback dolphin (Sousa chinensis). The authors extracted 42 soft forehead tissue samples to estimate the sound velocity and density properties at room temperature, 25.0  °C. Hounsfield Units (HUs) of the samples were read from CT scans. Linear relationships between the tissues' HUs and velocity, and HUs and density were revealed through regression analyses. The distributions of the head acoustic properties at axial, coronal, and sagittal cross sections were reconstructed, suggesting that the forehead soft tissues were characterized by low-velocity in the melon, high-velocity in the muscle and connective tissues. Further, the sound velocities of melon, muscle, and connective tissue pieces were measured under different temperatures to investigate tissues' velocity response to temperature. The results demonstrated nonlinear relationships between tissues' sound velocity and temperature. This study represents a first attempt to provide general information on acoustic properties of this species. The results could provide meaningful information for understanding the species' bioacoustic characteristics and for further investigation on sound beam formation of the dolphin.

  9. Characterization of human breast cancer by scanning acoustic microscopy

    Science.gov (United States)

    Chen, Di; Malyarenko, Eugene; Seviaryn, Fedar; Yuan, Ye; Sherman, Mark; Bandyopadhyay, Sudeshna; Gierach, Gretchen; Greenway, Christopher W.; Maeva, Elena; Strumban, Emil; Duric, Neb; Maev, Roman

    2013-03-01

    Objectives: The purpose of this study was to characterize human breast cancer tissues by the measurement of microacoustic properties. Methods: We investigated eight breast cancer patients using acoustic microscopy. For each patient, seven blocks of tumor tissue were collected from seven different positions around a tumor mass. Frozen sections (10 micrometer, μm) of human breast cancer tissues without staining and fixation were examined in a scanning acoustic microscope with focused transducers at 80 and 200 MHz. Hematoxylin and Eosin (H and E) stained sections from the same frozen breast cancer tissues were imaged by optical microscopy for comparison. Results: The results of acoustic imaging showed that acoustic attenuation and sound speed in cancer cell-rich tissue regions were significantly decreased compared with the surrounding tissue regions, where most components are normal cells/tissues, such as fibroblasts, connective tissue and lymphocytes. Our observation also showed that the ultrasonic properties were influenced by arrangements of cells and tissue patterns. Conclusions: Our data demonstrate that attenuation and sound speed imaging can provide biomechanical information of the tumor and normal tissues. The results also demonstrate the potential of acoustic microscopy as an auxiliary method for operative detection and localization of cancer affected regions.

  10. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, A. [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Monteiro, M. J. P. F. G.; Cunha, M. S. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, J. [CNRS, Institut de Recherche en Astrophysique et Planétologie, 14 avenue Edouard Belin, F-31400 Toulouse (France); Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, S. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 065208101 (United States); Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); García, R. A. [Laboratoire AIM, CEA/DSM, CNRS, Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salabert, D. [Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06304 Nice (France); Verner, G. A.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanderfer, D. T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Seader, S. E.; Smith, J. C. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  11. Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials

    International Nuclear Information System (INIS)

    Zhang, Yuguang; Wen, Jihong; Xiao, Yong; Wen, Xisen; Wang, Jianwei

    2012-01-01

    Membrane-type acoustic metamaterials have been recently shown to exhibit good performance of sound attenuation in a low frequency range. An analytical approach for the fast calculation of sound transmission loss of the membrane-type acoustic metamaterials is presented here. The discussion indicate that the first transmission loss valley and the transmission loss peak depend strongly on the attaching mass, while the second transmission loss valley is mainly influenced by the membrane properties. The effects of membrane tension and mass position on the transmission loss and characteristic frequencies are also discussed in detail. -- Highlights: ► An analytical approach was presented here. ► First TL valley and peak depend strongly on attaching mass. ► Second TL valley is mainly influenced by properties of membrane. ► TL peak move to low frequency at a special position keeping TL valley motionless.

  12. Acoustically accessible window determination for ultrasound mediated treatment of glycogen storage disease type Ia patients

    Science.gov (United States)

    Wang, Shutao; Raju, Balasundar I.; Leyvi, Evgeniy; Weinstein, David A.; Seip, Ralf

    2012-10-01

    Glycogen storage disease type Ia (GSDIa) is caused by an inherited single-gene defect resulting in an impaired glycogen to glucose conversion pathway. Targeted ultrasound mediated delivery (USMD) of plasmid DNA (pDNA) to liver in conjunction with microbubbles may provide a potential treatment for GSDIa patients. As the success of USMD treatments is largely dependent on the accessibility of the targeted tissue by the focused ultrasound beam, this study presents a quantitative approach to determine the acoustically accessible liver volume in GSDIa patients. Models of focused ultrasound beam profiles for transducers of varying aperture and focal lengths were applied to abdomen models reconstructed from suitable CT and MRI images. Transducer manipulations (simulating USMD treatment procedures) were implemented via transducer translations and rotations with the intent of targeting and exposing the entire liver to ultrasound. Results indicate that acoustically accessible liver volumes can be as large as 50% of the entire liver volume for GSDIa patients and on average 3 times larger compared to a healthy adult group due to GSDIa patients' increased liver size. Detailed descriptions of the evaluation algorithm, transducer-and abdomen models are presented, together with implications for USMD treatments of GSDIa patients and transducer designs for USMD applications.

  13. Khokhlov Zabolotskaya Kuznetsov type equation: nonlinear acoustics in heterogeneous media

    Science.gov (United States)

    Kostin, Ilya; Panasenko, Grigory

    2006-04-01

    The KZK type equation introduced in this Note differs from the traditional form of the KZK model known in acoustics by the assumptions on the nonlinear term. For this modified form, a global existence and uniqueness result is established for the case of non-constant coefficients. Afterwards the asymptotic behaviour of the solution of the KZK type equation with rapidly oscillating coefficients is studied. To cite this article: I. Kostin, G. Panasenko, C. R. Mecanique 334 (2006).

  14. Pillar-type acoustic metasurface

    DEFF Research Database (Denmark)

    Jin, Yabin; Bonello, Bernard; Moiseyenko, Rayisa

    2017-01-01

    We theoretically investigate acoustic metasurfaces consisting of either a single pillar or a line of identical pillars on a thin plate, and we report on the dependence on the geometrical parameters of both the monopolar compressional and dipolar bending modes. We show that for specific dimensions...

  15. Acoustic emission measurements on type 316 stainless steel

    International Nuclear Information System (INIS)

    Palmer, I.G.; Holt, J.; Goddard, D.J.

    1976-01-01

    Acoustic emission measurements have been made on Type 316 stainless steel in the solution treated condition, as part of a feasibility study for the monitoring of fast reactor components. The work involved testing both plain tensile specimens and precracked compact tension specimens in the temperature range 20-200 deg C. At 20 deg C plastic deformation was a quiet process but ductile crack growth was accompanied by high amplitude emissions capable of detection on plant. At 200 deg C both plastic deformation and ductile crack growth were quiet

  16. Acoustic emission during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches

    International Nuclear Information System (INIS)

    Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission generated during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches has been studied. The extent of acoustic activity generated depends on notch tip severity, notch tip blunting and tearing of the notches. The equation N=AK m applied to the acoustic emission data of the notched specimens has shown good correlation. Acoustic emission technique can be used to estimate the size of an unknown notch. (author)

  17. Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps

    International Nuclear Information System (INIS)

    Raum, Kay; Cleveland, Robin O; Peyrin, Francoise; Laugier, Pascal

    2006-01-01

    200 MHz acoustic impedance maps and site-matched synchrotron radiation micro computed tomography (SR-μCT) maps of tissue degree of mineralization of bone (DMB) were used to derive the elastic coefficient c 33 in cross sections of human cortical bone. To accomplish this goal, a model was developed to relate the DMB accessible with SR-μCT to mass density. The formulation incorporates the volume fractions and densities of the major bone tissue components (collagen, mineral and water), and accounts for tissue porosity. We found that the mass density can be well modelled by a second-order polynomial fit to DMB (R 2 = 0.999) and appears to be consistent with measurements of many different types of mineralized tissues. The derived elastic coefficient c 33 correlated more strongly with the acoustic impedance (R 2 = 0.996) than with mass density (R 2 = 0.310). This finding suggests that estimates of c 33 made from measurements of the acoustic impedance are more reliable than those made from density measurements. Mass density and elastic coefficient were in the range between 1.66 and 2.00 g cm -3 and 14.8 and 75.4 GPa, respectively. Although SAM inspection is limited to the evaluation of carefully prepared sample surfaces, it provides a two-dimensional quantitative estimate of elastic tissue properties at the tissue level

  18. Effect of aberration on the acoustic field in tissue harmonic imaging (THI)

    Science.gov (United States)

    Jing, Yuan; Cleveland, Robin

    2003-10-01

    A numerical simulation was used to study the impact of an aberrating layer on the generation of the fundamental and second-harmonic (SH) field in a tissue harmonic imaging scenario. The simulation used a three-dimensional time-domain code for solving the KZK equation and accounted for arbitrary spatial variations in all acoustic properties. The aberration effect was modeled by assuming that the tissue consisted of two layers where the interface has a spatial variation C that acted like an effective phase screen. Initial experiments were carried out with sinusoidal-shaped interfaces. The sinusoidal interface produced grating lobes which were at least 6 dB larger for the fundamental signal than the SH. The energy outside of the main lobe was found to increase linearly as the amplitude of the interface variation increased. The location of the grating lobes was affected by the spatial period on the interface variation. The inhomogeneous nature of tissue was modeled with an interface with a random spatial variation. With the random interface the average sidelobe level for the fundamental was -30 dB whereas the SH had an average sidelobe level of -36 dB. [Work supported by the NSF through the Center for Subsurface Sensing and Imaging Systems.

  19. Acoustic Source Analysis of Magnetoacoustic Tomography With Magnetic Induction for Conductivity Gradual-Varying Tissues.

    Science.gov (United States)

    Wang, Jiawei; Zhou, Yuqi; Sun, Xiaodong; Ma, Qingyu; Zhang, Dong

    2016-04-01

    As a multiphysics imaging approach, magnetoacoustic tomography with magnetic induction (MAT-MI) works on the physical mechanism of magnetic excitation, acoustic vibration, and transmission. Based on the theoretical analysis of the source vibration, numerical studies are conducted to simulate the pathological changes of tissues for a single-layer cylindrical conductivity gradual-varying model and estimate the strengths of sources inside the model. The results suggest that the inner source is generated by the product of the conductivity and the curl of the induced electric intensity inside conductivity homogeneous medium, while the boundary source is produced by the cross product of the gradient of conductivity and the induced electric intensity at conductivity boundary. For a biological tissue with low conductivity, the strength of boundary source is much higher than that of the inner source only when the size of conductivity transition zone is small. In this case, the tissue can be treated as a conductivity abrupt-varying model, ignoring the influence of inner source. Otherwise, the contributions of inner and boundary sources should be evaluated together quantitatively. This study provide basis for further study of precise image reconstruction of MAT-MI for pathological tissues.

  20. Resonant acoustic radiation force optical coherence elastography

    OpenAIRE

    Qi, Wenjuan; Li, Rui; Ma, Teng; Li, Jiawen; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2013-01-01

    We report on a resonant acoustic radiation force optical coherence elastography (ARF-OCE) technique that uses mechanical resonant frequency to characterize and identify tissues of different types. The linear dependency of the resonant frequency on the square root of Young's modulus was validated on silicone phantoms. Both the frequency response spectrum and the 3D imaging results from the agar phantoms with hard inclusions confirmed the feasibility of deploying the resonant frequency as a mec...

  1. Simultaneous observation of cavitation bubbles generated in biological tissue by high-speed optical and acoustic imaging methods

    Science.gov (United States)

    Suzuki, Kai; Iwasaki, Ryosuke; Takagi, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    Acoustic cavitation bubbles are useful for enhancing the heating effect in high-intensity focused ultrasound (HIFU) treatment. Many studies were conducted to investigate the behavior of such bubbles in tissue-mimicking materials, such as a transparent gel phantom; however, the detailed behavior in tissue was still unclear owing to the difficulty in optical observation. In this study, a new biological phantom was developed to observe cavitation bubbles generated in an optically shallow area of tissue. Two imaging methods, high-speed photography using light scattering and high-speed ultrasonic imaging, were used for detecting the behavior of the bubbles simultaneously. The results agreed well with each other for the area of bubble formation and the temporal change in the region of bubbles, suggesting that both methods are useful for visualizing the bubbles.

  2. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  3. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    Directory of Open Access Journals (Sweden)

    Kuan Lu

    2016-02-01

    Full Text Available A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL at low frequencies (⩽500Hz was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial’s structure is like a sandwich with a thin (thickness=0.25mm lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM. The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  4. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    Science.gov (United States)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  5. The study on linac stereotactic radiosurgery for acoustic tumors

    International Nuclear Information System (INIS)

    Ohishi, Hitoshi

    1995-01-01

    We have designed and manufactured a new type of device for stereotactic radiosurgery characterized by the combined use of a rotatory chair and a linear accelerator. In this study, 20 acoustic tumors treated by our modality were evaluated by serial neuroimaging, neurofunctional outcome and, in a few cases, pathological findings of surgical specimens. Because tumor size usually changed very slowly after radiosurgery, 12 cases that had a minimum of 12 months of follow-up were employed in the analysis of tumor size. Serial neuroimaging studies revealed the reduction of tumor size in 3 cases and prevention of tumor growth in 7 cases, therefore, the rate of tumor control was evaluated as 83%. Growth of tumor size occurred in 3 cases, two were cases harbouring a large cyst in the tumor and another was a case of neurofibromatosis type 2. In 13 cases (68%), loss of the gadolinium enhancement effect inside the tumor was observed. This is a characteristic change after radiosurgery for acoustic tumors, and attributable to a necrotic change. Cranial nerve neuropathies as a complication also occurred (facial nerve palsy in 2 and trigeminal nerve dysfunction in 1). Adjacent parenchymal change appeared in 1 case. This patient had two prior operations and the tumor had an irregular shape, therefore, planning for radiosurgery encountered some difficulty. Hydrocephalus occurred in 1 case. Surgical specimens in 2 cases in which microsurgery was undertaken for growing tumors, revealed a necrotic tumor tissue and proliferation of fibrous tissue. In conclusion, our new device for stereotactic radiosurgery is particularly useful for the treatment of acoustic tumors. Similar therapeutic results of the gamma knife have been achieved. Radiosurgery is a recommendable treatment for acoustic tumors. However, the superiority of radiosurgery over microsurgery is still controversial and needs a longer term follow-up and multivariate analysis for a final conclusion. (author)

  6. New vibro-acoustic paradigms in biological tissues with application to diagnosis of pulmonary disorders

    Science.gov (United States)

    Zhang, Xiangling

    The fundamental objective of the present study is to improve our understanding of audible sound propagation in the pulmonary system and torso. A related applied objective is to assess the feasibility of using audible acoustics for diagnosis of specific pulmonary conditions, such as pneumothorax (PTX). To accomplish these objectives, this study includes theoretical, computational and experimental developments aimed at: (1) better identifying the mechanical dynamic properties of soft biological tissues found in the torso region, (2) investigating the mechanisms of sound attenuation that occur when a PTX is present using greatly simplified theoretical and computational models, and (3) exploring the feasibility and utility of more comprehensive and precise computational finite element models of audible sound propagation in the pulmonary system and torso that would aid in related diagnostic developments. Mechanical material properties of soft biological tissue are studied for the low audible frequency range. The sensitivity to shear viscoelastic material constants of theoretical solutions for radiation impedance and surface wave motion are compared. Theoretical solutions are also compared to experimental measurements and numerical results from finite element analysis. It is found that, while prior theoretical solutions for radiation impedance are accurate, use of such measurements to estimate shear viscoelastic constants is not as precise as the use of surface wave measurements. The feasibility of using audible sound for diagnosis of pneumothorax is studied. Simplified one- and two-dimensional theoretical and numerical models of sound transmission through the pulmonary system and chest region to the chest wall surface are developed to more clearly understand the mechanism of energy loss when a pneumothorax is present, relative to a baseline case. A canine study on which these models are based predicts significant decreases in acoustic transmission strength when a

  7. Laser Generated Leaky Acoustic Waves for Needle Visualization.

    Science.gov (United States)

    Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi

    2018-04-01

    Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.

  8. Microvascular characteristics of the acoustic fats: Novel data suggesting taxonomic differences between deep and shallow-diving odontocetes.

    Science.gov (United States)

    Gabler, Molly K; Gay, D Mark; Westgate, Andrew J; Koopman, Heather N

    2018-04-01

    Odontocetes have specialized mandibular fats, the extramandibular (EMFB) and intramandibular fat bodies (IMFB), which function as acoustic organs, receiving and channeling sound to the ear during hearing and echolocation. Recent strandings of beaked whales suggest that these fat bodies are susceptible to nitrogen (N 2 ) gas embolism and empirical evidence has shown that the N 2 solubility of these fat bodies is higher than that of blubber. Since N 2 gas will diffuse from blood into tissue at any blood/tissue interface and potentially form gas bubbles upon decompression, it is imperative to understand the extent of microvascularity in these specialized acoustic fats so that risk of embolism formation when diving can be estimated. Microvascular density was determined in the EMFB, IMFB, and blubber from 11 species representing three odontocete families. In all cases, the acoustic tissues had less (typically 1/3 to 1/2) microvasculature than did blubber, suggesting that capillary density in the acoustic tissues may be more constrained than in the blubber. However, even within these constraints there were clear phylogenetic differences. Ziphiid (Mesoplodon and Ziphius, 0.9 ± 0.4% and 0.7 ± 0.3% for EMFB and IMFB, respectively) and Kogiid families (1.2 ± 0.2% and 1.0 ± 0.01% for EMFB and IMFB, respectively) had significantly lower mean microvascular densities in the acoustic fats compared to the Delphinid species (Tursiops, Grampus, Stenella, and Globicephala, 1.3 ± 0.3% and 1.3 ± 0.3% for EMFB and IMFB, respectively). Overall, deep-diving beaked whales had less microvascularity in both mandibular fats and blubber compared to the shallow-diving Delphinids, which might suggest that there are differences in the N 2 dynamics associated with diving regime, phylogeny, and tissue type. These novel data should be incorporated into diving physiology models to further understand potential functional disruption of the acoustic tissues due to changes

  9. A numerical study on acoustic behavior in gas turbine combustor with acoustic resonator

    International Nuclear Information System (INIS)

    Park, I Sun; Sohn, Chae Hoon

    2005-01-01

    Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes

  10. Regression of uveal malignant melanomas following cobalt-60 plaque. Correlates between acoustic spectrum analysis and tumor regression

    International Nuclear Information System (INIS)

    Coleman, D.J.; Lizzi, F.L.; Silverman, R.H.; Ellsworth, R.M.; Haik, B.G.; Abramson, D.H.; Smith, M.E.; Rondeau, M.J.

    1985-01-01

    Parameters derived from computer analysis of digital radio-frequency (rf) ultrasound scan data of untreated uveal malignant melanomas were examined for correlations with tumor regression following cobalt-60 plaque. Parameters included tumor height, normalized power spectrum and acoustic tissue type (ATT). Acoustic tissue type was based upon discriminant analysis of tumor power spectra, with spectra of tumors of known pathology serving as a model. Results showed ATT to be correlated with tumor regression during the first 18 months following treatment. Tumors with ATT associated with spindle cell malignant melanoma showed over twice the percentage reduction in height as those with ATT associated with mixed/epithelioid melanomas. Pre-treatment height was only weakly correlated with regression. Additionally, significant spectral changes were observed following treatment. Ultrasonic spectrum analysis thus provides a noninvasive tool for classification, prediction and monitoring of tumor response to cobalt-60 plaque

  11. Acoustic constituents of prosodic typology

    Science.gov (United States)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The

  12. Acoustic Levitation Transportation of Small Objects Using a Ring-type Vibrator

    Science.gov (United States)

    Thomas, Gilles P. L.; Andrade, Marco A. B.; Adamowski, Julio C.; Silva, Eḿílio C. N.

    A new device for noncontact transportation of small solid objects is presented here. Ultrasonic flexural vibrations are generated along the ring shaped vibrator using two Langevin transducers and by using a reflector parallel to the vibrator, small particles are trapped at the nodal points of the resulting acoustic standing wave. The particles are then moved by generating a traveling wave along the vibrator, which can be done by modulating the vibration amplitude of the transducers. The working principle of the traveling wave along the vibrator has been modeled by the superposition of two orthogonal standing waves, and the position of the particles can be predicted by using finite element analysis of the vibrator and the resulting acoustic field. A prototype consisting of a 3 mm thick, 220 mm long, 50 mm wide and 52 mm radius aluminum ring-type vibrator and a reflector of the same length and width was built and small polystyrene spheres have been successfully transported along the straight parts of the vibrator.

  13. Combined spectroscopic imaging and chemometric approach for automatically partitioning tissue types in human prostate tissue biopsies

    Science.gov (United States)

    Haka, Abigail S.; Kidder, Linda H.; Lewis, E. Neil

    2001-07-01

    We have applied Fourier transform infrared (FTIR) spectroscopic imaging, coupling a mercury cadmium telluride (MCT) focal plane array detector (FPA) and a Michelson step scan interferometer, to the investigation of various states of malignant human prostate tissue. The MCT FPA used consists of 64x64 pixels, each 61 micrometers 2, and has a spectral range of 2-10.5 microns. Each imaging data set was collected at 16-1 resolution, resulting in 512 image planes and a total of 4096 interferograms. In this article we describe a method for separating different tissue types contained within FTIR spectroscopic imaging data sets of human prostate tissue biopsies. We present images, generated by the Fuzzy C-Means clustering algorithm, which demonstrate the successful partitioning of distinct tissue type domains. Additionally, analysis of differences in the centroid spectra corresponding to different tissue types provides an insight into their biochemical composition. Lastly, we demonstrate the ability to partition tissue type regions in a different data set using centroid spectra calculated from the original data set. This has implications for the use of the Fuzzy C-Means algorithm as an automated technique for the separation and examination of tissue domains in biopsy samples.

  14. Methods And Systems For Using Reference Images In Acoustic Image Processing

    Science.gov (United States)

    Moore, Thomas L.; Barter, Robert Henry

    2005-01-04

    A method and system of examining tissue are provided in which a field, including at least a portion of the tissue and one or more registration fiducials, is insonified. Scattered acoustic information, including both transmitted and reflected waves, is received from the field. A representation of the field, including both the tissue and the registration fiducials, is then derived from the received acoustic radiation.

  15. A new definition for acoustic dose

    International Nuclear Information System (INIS)

    Duck, F A

    2011-01-01

    This paper discusses a recent proposal for definitions of acoustic dose and acoustic dose-rate. Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Its time-derivative, acoustic dose-rate, Q m , in W kg -1 is central to the prediction of both rate of temperature rise and radiation force. These quantities have spatial and temporal dependency, depending on the local field parameters (acoustic pressure, particle velocity, intensity) and local material properties (absorption coefficient, α a , and mass density, ρ 0 ). Spatial and/or temporal averaging can be applied where appropriate. For plane-wave monochromatic conditions in a homogeneous medium, Q m =2α a I/ρ 0 , (I is the time-averaged intensity), a simple expression which may also incorporate frequency dependencies of energy deposition. Acoustic dose and acoustic does-rate are exact analogues for Specific Absorption and Specific Absorption Rate (SAR), quantities central to radiofrequency (RF) and microwave dosimetry. Acoustic dosimetry in the presence of tissue/gas interfaces remains a considerable challenge.

  16. A feasibility study of in vivo applications of single beam acoustic tweezers

    International Nuclear Information System (INIS)

    Li, Ying; Lee, Changyang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for in vivo and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 μm, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for in vivo applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles in vivo inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

  17. A feasibility study of in vivo applications of single beam acoustic tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying, E-mail: yli582@usc.edu; Lee, Changyang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk [NIH Transducer Resource Center and Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089-1111 (United States)

    2014-10-27

    Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for in vivo and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 μm, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for in vivo applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles in vivo inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

  18. Numerical Calculation and Measurement of Nonlinear Acoustic Fields in Ultrasound Diagnosis

    Science.gov (United States)

    Kawagishi, Tetsuya; Saito, Shigemi; Mine, Yoshitaka

    2002-05-01

    In order to develop a tool for designing on the ultrasonic probe and its peripheral devices for tissue-harmonic-imaging systems, a study is carried out to compare the calculation and observation results of nonlinear acoustic fields for a diagnostic ultrasound system. The pulsed ultrasound with a center frequency of 2.5 MHz is emanated from a weakly focusing sector probe with a 6.5 mm aperture radius and a 50 mm focal length into an agar phantom with an attenuation coefficient of about 0.6 dB/cm/MHz or 1.2 dB/cm/MHz. The nonlinear acoustic field is measured using a needle-type hydrophone. The calculation is based on the Khokhlov-Zabolotskaya-Kuznetsov(KZK) equation which is modified so that the frequency dependence of the attenuation coefficient is the same as that in biological tissue. This equation is numerically solved with the implicit backward method employing the iterative method. The measured and calculated amplitude spectra show good agreement with each other.

  19. Application of cluster analysis and unsupervised learning to multivariate tissue characterization

    International Nuclear Information System (INIS)

    Momenan, R.; Insana, M.F.; Wagner, R.F.; Garra, B.S.; Loew, M.H.

    1987-01-01

    This paper describes a procedure for classifying tissue types from unlabeled acoustic measurements (data type unknown) using unsupervised cluster analysis. These techniques are being applied to unsupervised ultrasonic image segmentation and tissue characterization. The performance of a new clustering technique is measured and compared with supervised methods, such as a linear Bayes classifier. In these comparisons two objectives are sought: a) How well does the clustering method group the data?; b) Do the clusters correspond to known tissue classes? The first question is investigated by a measure of cluster similarity and dispersion. The second question involves a comparison with a supervised technique using labeled data

  20. Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range

    Science.gov (United States)

    Chen, Xing; Liu, Peng; Hou, Zewei; Pei, Yongmao

    2017-04-01

    Wavelength division multiplexing technology, adopted to increase the information density, plays a significant role in optical communication. However, in acoustics, a similar function can be hardly implemented due to the weak dispersion in natural acoustic materials. Here, an acoustic demultiplexer, based on the concept of metasurfaces, is proposed for splitting acoustic waves and propagating along different trajectories in a low frequency range. An acoustic metasurface, containing multiple resonant units, is designed with various phase profiles for different frequencies. Originating from the highly dispersive properties, the resonant units are independent and merely work in the vicinity of their resonant frequencies. Therefore, by combing multiple resonant units appropriately, the phenomena of anomalous reflection, acoustic focusing, and acoustic wave bending can occur in different frequencies. The proposed acoustic demultiplexer has advantages on the subwavelength scale and the versatility in wave control, providing a strategy for separating acoustic waves with different Fourier components.

  1. A computerized system based on an alternative pulse echo immersion technique for acoustic characterization of non-porous solid tissue mimicking materials

    Science.gov (United States)

    Nazihah Mat Daud, Anis; Jaafar, Rosly; Kadri Ayop, Shahrul; Supar Rohani, Md

    2018-04-01

    This paper discusses the development of a computerized acoustic characterization system of non-porous solid tissue mimicking materials. This system employs an alternative pulse echo immersion technique and consists of a pulser/receiver generator, a transducer used as both a transmitter and a receiver, a digital oscilloscope, and a personal computer with a custom-developed program installed. The program was developed on the LabVIEW 2012 platform and comprises two main components, a user interface and a block diagram. The user interface consists of three panels: a signal acquisition and selection panel, a display panel, and a calculation panel. The block diagram comprises four blocks: a signal acquisition block, a peak signal analysis block, an acoustic properties calculation and display block, and an additional block. Interestingly, the system can be operated in both online and offline modes. For the online mode, the measurements are performed by connecting the system with a Rigol DS2000 Series digital oscilloscope. In contrast, the measurements are carried out by processing the saved data on the computer for the offline mode. The accuracy and consistency of the developed system was validated by a KB-Aerotech Alpha Series transducer with 5 MHz center frequency and a Rigol DS2202 two-channel 200 MHz 2 GSa s-1 digital oscilloscope, based on the measurement of the acoustic properties of three poly(methyl methacrylate) samples immersed in a medium at a temperature of (24.0  ±  0.1) °C. The findings indicated that the accuracy and consistency of the developed system was exceptionally high, within a 1.04% margin of error compared to the reference values. As such, this computerized system can be efficiently used for the acoustic characterization of non-porous solid tissues, given its spontaneous display of results, user-friendly interface, and convenient hardware connection.

  2. Effect of train type on annoyance and acoustic features of the rolling noise.

    Science.gov (United States)

    Kasess, Christian H; Noll, Anton; Majdak, Piotr; Waubke, Holger

    2013-08-01

    This study investigated the annoyance associated with the rolling noise of different railway stock. Passbys of nine train types (passenger and freight trains) equipped with different braking systems were recorded. Acoustic features showed a clear distinction of the braking system with the A-weighted energy equivalent sound level (LAeq) showing a difference in the range of 10 dB between cast-iron braked trains and trains with disk or K-block brakes. Further, annoyance was evaluated in a psychoacoustic experiment where listeners rated the relative annoyance of the rolling noise for the different train types. Stimuli with and without the original LAeq differences were tested. For the original LAeq differences, the braking system significantly affected the annoyance with cast-iron brakes being most annoying, most likely as a consequence of the increased wheel roughness causing an increased LAeq. Contribution of the acoustic features to the annoyance was investigated revealing that the LAeq explained up to 94% of the variance. For the stimuli without differences in the LAeq, cast-iron braked train types were significantly less annoying and the spectral features explained up to 60% of the variance in the annoyance. The effect of these spectral features on the annoyance of the rolling noise is discussed.

  3. Shallow-Water Mud Acoustics

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow-Water Mud Acoustics William L. Siegmann...models and methods that explain observed material and acoustic properties of different physical types of shallow-ocean mud sediments. Other goals...are to assess prior data relating to the acoustic properties of mud and to provide guidance in the development and interpretation of experiments. A

  4. Non-mineralized fibrocartilage shows the lowest elastic modulus in the rabbit supraspinatus tendon insertion: measurement with scanning acoustic microscopy.

    Science.gov (United States)

    Sano, Hirotaka; Saijo, Yoshifumi; Kokubun, Shoichi

    2006-01-01

    The acoustic properties of rabbit supraspinatus tendon insertions were measured by scanning acoustic microscopy. After cutting parallel to the supraspinatus tendon fibers, specimens were fixed with 10% neutralized formalin, embedded in paraffin, and sectioned. Both the sound speed and the attenuation constant were measured at the insertion site. The 2-dimensional distribution of the sound speed and that of the attenuation constant were displayed with color-coded scales. The acoustic properties reflected both the histologic architecture and the collagen type. In the tendon proper and the non-mineralized fibrocartilage, the sound speed and attenuation constant gradually decreased as the predominant collagen type changed from I to II. In the mineralized fibrocartilage, they increased markedly with the mineralization of the fibrocartilaginous tissue. These results indicate that the non-mineralized fibrocartilage shows the lowest elastic modulus among 4 zones at the insertion site, which could be interpreted as an adaptation to various types of biomechanical stress.

  5. Acoustic Wave Propagation in Snow Based on a Biot-Type Porous Model

    Science.gov (United States)

    Sidler, R.

    2014-12-01

    Despite the fact that acoustic methods are inexpensive, robust and simple, the application of seismic waves to snow has been sparse. This might be due to the strong attenuation inherent to snow that prevents large scale seismic applications or due to the somewhat counterintuitive acoustic behavior of snow as a porous material. Such materials support a second kind of compressional wave that can be measured in fresh snow and which has a decreasing wave velocity with increasing density of snow. To investigate wave propagation in snow we construct a Biot-type porous model of snow as a function of porosity based on the assumptions that the solid frame is build of ice, the pore space is filled with a mix of air, or air and water, and empirical relationships for the tortuosity, the permeability, the bulk, and the shear modulus.We use this reduced model to investigate compressional and shear wave velocities of snow as a function of porosity and to asses the consequences of liquid water in the snowpack on acoustic wave propagation by solving Biot's differential equations with plain wave solutions. We find that the fast compressional wave velocity increases significantly with increasing density, but also that the fast compressional wave velocity might be even lower than the slow compressional wave velocity for very light snow. By using compressional and shear strength criteria and solving Biot's differential equations with a pseudo-spectral approach we evaluate snow failure due to acoustic waves in a heterogeneous snowpack, which we think is an important mechanism in triggering avalanches by explosives as well as by skiers. Finally, we developed a low cost seismic acquisition device to assess the theoretically obtained wave velocities in the field and to explore the possibility of an inexpensive tool to remotely gather snow water equivalent.

  6. Predicting Natural Neuroprotection in Marine Mammals: Environmental and Biological Factors Affecting the Vulnerability to Acoustically Mediated Tissue Trauma in Marine Species

    Science.gov (United States)

    2013-09-30

    comparing both globin deposition profiles from carcasses ranging in age from neonates to adults, as well as the change in mass-specific metabolic demands...to acoustically mediated trauma, 1) molecular and biochemical evaluation of neuroprotection at the tissue level, and 2) whole animal /physiological...Noren, UCSC.) The second component of this study examined the susceptibility of marine mammals to decompression illness at the whole animal

  7. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    KAUST Repository

    Zheng, L.-Y.; Wu, Y.; Zhang, X.-L.; Ni, X.; Chen, Z.-G.; Lu, M.-H.; Chen, Y.-F.

    2013-01-01

    We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated

  8. Effects of anticancer drugs on glia-glioma brain tumor model characterized by acoustic impedance microscopy

    Science.gov (United States)

    Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko

    2017-07-01

    An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.

  9. Predicting and auralizing acoustics in classrooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    2005-01-01

    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven...

  10. Holographic acoustic elements for manipulation of levitated objects

    Science.gov (United States)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  11. A new acoustic lens material for large area detectors in photoacoustic breast tomography

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; van Hespen, Johannes C.G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Objectives We introduce a new acoustic lens material for photoacoustic tomography (PAT) to improve lateral resolution while possessing excellent acoustic acoustic impedance matching with tissue to minimize lens induced image artifacts. Background A large surface area detector due to its high

  12. Acoustic Angiography: A New Imaging Modality for Assessing Microvasculature Architecture

    Directory of Open Access Journals (Sweden)

    Ryan C. Gessner

    2013-01-01

    Full Text Available The purpose of this paper is to provide the biomedical imaging community with details of a new high resolution contrast imaging approach referred to as “acoustic angiography.” Through the use of dual-frequency ultrasound transducer technology, images acquired with this approach possess both high resolution and a high contrast-to-tissue ratio, which enables the visualization of microvascular architecture without significant contribution from background tissues. Additionally, volumetric vessel-tissue integration can be visualized by using b-mode overlays acquired with the same probe. We present a brief technical overview of how the images are acquired, followed by several examples of images of both healthy and diseased tissue volumes. 3D images from alternate modalities often used in preclinical imaging, contrast-enhanced micro-CT and photoacoustics, are also included to provide a perspective on how acoustic angiography has qualitatively similar capabilities to these other techniques. These preliminary images provide visually compelling evidence to suggest that acoustic angiography may serve as a powerful new tool in preclinical and future clinical imaging.

  13. Acoustic emission technique and its applications

    International Nuclear Information System (INIS)

    Sato, Ichiya; Sasaki, Soji

    1976-01-01

    Acoustic emission technique is described. The characteristics of acoustic emission signal, measurement techniques, and its application are explained. The acoustic signals are grouped into continuous and burst types. The continuous signal is due to plastic deformation, and the burst type is due to the generation and growth of cracks. The latter can be used for the identification of the position of cracks. The frequency of the acoustic emission is in the range from several tens of KHz to two MHz. Piezoelectric ceramics are used as the oscillators of sensors. The dynamic behavior of acoustic emission can be observed with a two-channel acoustic emission measuring apparatus. Multi-channel method was developed at Hitachi, Ltd., and is used for large structures. General computer identification method and simple zone identification method are explained. Noise elimination is important for the measurement, and the methods were studied. Examples of application are the observation of acoustic emission in the plastic deformation of steel, the tensile test of large welded material with natural defects, and others. The method will be used for the diagnosis and observation of large structures, the test and quality control of products. (Kato, T.)

  14. Review of Progress in Acoustic Levitation

    Science.gov (United States)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2018-04-01

    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  15. New vibrational mode of the acoustic type in Nd(Pr)2 Cu O4 single crystals

    International Nuclear Information System (INIS)

    Fil', D.V.; Kolobov, I.G.; Fil', V.D.; Barilo, S.N.; Zhigunov, D.I.

    1995-01-01

    Sound velocities along main symmetry directions as well as their angle dependences in (100),(110)-type planes are measured in Nd(Pr) 2 Cu O 4 . Anomalies in the angle dependences are found, which are interpreted as a result of the interaction of elastic vibrations with an additional plane mode of the acoustic type. According to the proposed interpretation, the bare spectrum of the additional mode is two-dimensional, and the origin of the mode is connected with the electron degrees of freedom in the Cu O 2 -planes. A phenomenological model for description of acoustic mode spectra in the investigated systems is proposed. On the basis of the anion model of HTSC, a possible microscopic scenario of the appearance of the additional mode is analyzed. In the framework of the phenomenological model, the Debye temperatures are computed, which are in agreement with the specific heat data. The values of the components of the elastic moduli tensor are given

  16. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    Science.gov (United States)

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  17. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    KAUST Repository

    Zheng, L.-Y.

    2013-10-18

    We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  18. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    Directory of Open Access Journals (Sweden)

    Li-Yang Zheng

    2013-10-01

    Full Text Available We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  19. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  20. CO2 laser milling of hard tissue

    Science.gov (United States)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  1. Acoustic cloaking in two dimensions: a feasible approach

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de vera s.n., E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es

    2008-06-15

    This work proposes an acoustic structure feasible to engineer that accomplishes the requirements of acoustic cloaking design recently introduced by Cummer and Schurig (2007 New J. Phys. 9 45). The structure, which consists of a multilayered composite made of two types of isotropic acoustic metamaterials, exactly matches the conditions for the acoustic cloaking. It is also shown that the isotropic metamaterials needed can be made of sonic crystals containing two types of material cylinders, whose elastic parameters should be properly chosen in order to satisfy (in the homogenization limit) the acoustic properties under request. In contrast to electromagnetic cloaking, the structure here proposed verifies the acoustic cloaking in a wide range of wavelengths; its performance is guaranteed for any wavelength above a certain cutoff defined by the homogenization limit of the sonic crystal employed in its fabrication.

  2. Mammary-type myofibroblastoma of soft tissue

    Directory of Open Access Journals (Sweden)

    Nebojsa Arsenovic

    2011-01-01

    Full Text Available A 40-year-old woman presented with a 1 year history of a painless, subcutaneous lump on the right buttock. Clinical examination showed an approximately 6 cm large subcutaneous mass covered by apparently normal-looking skin. No inguinal lymphadenopathy was found. The mass was excised with the clinical diagnosis of fibroma. Histologically, the lesion was consistent with mammary-type myofibroblastoma of soft tissue, a very rare, benign mesenchymal neoplasm with myofibroblastic differentiation. After surgical excision she was free of recurrence over a period of 8 months. This article also challenges the theory that suggests the origin of this tumor to be from the embryonic mammary tissue, adding another case of a site other than the milk lines.

  3. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  4. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    Science.gov (United States)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  5. Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments

    International Nuclear Information System (INIS)

    Khokhlova, Tanya D; Pelivanov, Ivan M; Solomatin, Vladimir S; Karabutov, Aleksander A; Sapozhnikov, Oleg A

    2006-01-01

    The possibility of using the opto-acoustic (OA) method for monitoring high-intensity ultrasonic therapy is studied. The optical properties of raw and boiled liver samples used as the undamaged model tissue and tissue destroyed by ultrasound, respectively, are measured. Experiments are performed with samples consisting of several alternating layers of raw and boiled liver of different thickness. The position and transverse size of the thermal lesion were determined from the temporal shape of the OA signals. The results of measurements are compared with the real size and position of the thermal lesion determined from the subsequent cuts of the sample. It is shown that the OA method permits the diagnostics of variations in biological tissues upon ultrasonic therapy. (special issue devoted to multiple radiation scattering in random media)

  6. Combination of elastography and tissue quantification using the acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses.

    Science.gov (United States)

    Tozaki, Mitsuhiro; Isobe, Sachiko; Sakamoto, Masaaki

    2012-10-01

    We evaluated the diagnostic performance of elastography and tissue quantification using acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses. There were 161 mass lesions. First, lesion correspondence on ARFI elastographic images to those on the B-mode images was evaluated: no findings on ARFI images (pattern 1), lesions that were bright inside (pattern 2), lesions that were dark inside (pattern 4), lesions that contained both bright and dark areas (pattern 3). In addition, pattern 4 was subdivided into 4a (dark area same as B-mode lesion) and 4b (dark area larger than lesion). Next, shear wave velocity (SWV) was measured using virtual touch tissue quantification. There were 13 pattern 1 lesions and five pattern 2 lesions; all of these lesions were benign, whereas all pattern 4b lesions (n = 43) were malignant. When the value of 3.59 m/s was chosen as the cutoff value, the combination of elastography and tissue quantification showed 91 % (83-91) sensitivity, 93 % (65-70) specificity, and 92 % (148-161) accuracy. The combination of elastography and tissue quantification is thought to be a promising ultrasound technique for differential diagnosis of breast-mass lesions.

  7. Arguments for fundamental emission by the parametric process L yields T + S in interplanetary type III bursts. [langmuir, electromagnetic, ion acoustic waves (L, T, S)

    Science.gov (United States)

    Cairns, I. H.

    1984-01-01

    Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.

  8. Sediment Types Determination Using Acoustic Techniques in the Northeastern Gulf of Mexico

    National Research Council Canada - National Science Library

    Kim, Gil

    2004-01-01

    ... those (acoustic impedance and grain size) in the northeastern Gulf of Mexico. The acoustic data were acquired using a 11 kHz normal incident echo sounder over approximately 2000 km of track line...

  9. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. The stochastic inverse method for ocean acoustic tomography studies

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Mahadevan, R.

    stream_size 10 stream_content_type text/plain stream_name Acoust_Lett_19_15.pdf.txt stream_source_info Acoust_Lett_19_15.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  11. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).

    Science.gov (United States)

    Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M

    2013-11-01

    Optical/acoustic radiation imaging (OARI) is a novel imaging modality being developed to interrogate the optical and mechanical properties of soft tissues. OARI uses acoustic radiation force to generate displacement in soft tissue. Optical images before and after the application of the force are used to generate displacement maps that provide information about the mechanical properties of the tissue under interrogation. Since the images are optical images, they also represent the optical properties of the tissue as well. In this paper, the authors present the first imaging probe that uses acoustic radiation force in conjunction with optical coherence tomography (OCT) to provide information about the optical and mechanical properties of tissues to assist in the diagnosis and staging of epithelial cancers, and in particular bladder cancer. The OARI prototype probe consisted of an OCT probe encased in a plastic sheath, a miniaturized transducer glued to a plastic holder, both of which were encased in a 10 cm stainless steel tube with an inner diameter of 10 mm. The transducer delivered an acoustic intensity of 18 W/cm(2) and the OCT probe had a spatial resolution of approximately 10-20 μm. The tube was filled with deionized water for acoustic coupling and covered by a low density polyethylene cap. The OARI probe was characterized and tested on bladder wall phantoms. The phantoms possessed Young's moduli ranging from 10.2 to 12 kPa, mass density of 1.05 g/cm(3), acoustic attenuation coefficient of 0.66 dB/cm MHz, speed of sound of 1591 m/s, and optical scattering coefficient of 1.80 mm(-1). Finite element model (FEM) theoretical simulations were performed to assess the performance of the OARI probe. The authors obtained displacements of 9.4, 8.7, and 3.4 μm for the 3%, 4%, and 5% bladder wall phantoms, respectively. This shows that the probe is capable of generating optical images, and also has the ability to generate and track displacements in tissue. This will

  12. On the numerical investigation of sound transmission through double-walled structures with membrane-type acoustic metamaterials.

    Science.gov (United States)

    Marinova, Polina; Lippert, Stephan; von Estorff, Otto

    2017-10-01

    Acoustic metamaterials appear to be of great help in the design of reliable and effective noise reduction measures in the low frequency range. The current contribution is concerned with the modeling of a low-frequency noise shield, based on a double wall arrangement, which includes membrane-type acoustic metamaterials (MAMs), considered as the most promising approach when it comes especially to the tonal noise at frequencies below 300 Hz. MAMs consist of small-sized membranes loaded with a mass. Due to their robustness and relatively simple production, MAMs have been proven to decrease the sound transmission in frequency ranges, for which poro-elastic materials have a rather negligible effect. A simulation model of a double wall panel, whose acoustic cavity is furnished with layers of metamaterials, has been developed and the sound transmission loss (STL) through the structure was calculated, using the finite element method. In order to validate the modelling approach, the STL estimation from the finite element analysis was compared to experimental measurements. The achieved results indicate a noise-decreasing possibility in tunable narrow bands as well as a broadband noise reduction for frequencies less than 300 Hz without significantly adding to the panel mass.

  13. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  14. Coherent acoustic excitation of cavity polaritons

    DEFF Research Database (Denmark)

    Poel, Mike van der; de Lima, M. M.; Hey, R.

    The study of acoustic excitation of semiconductor based photonic structures is anemerging field with great potential for new types of photonic manipulation1. In this paperwe present results of using a surface acoustic wave (SAW) to modulate a microcavitywith embedded quantum-well (QW) active layer...

  15. Biobanking of Fresh-Frozen Cancer Tissue: RNA Is Stable Independent of Tissue Type with Less Than 1 Hour of Cold Ischemia.

    Science.gov (United States)

    Song, Sang Yong; Jun, Jonghyun; Park, Miyeon; Park, Seo Kyu; Choi, Wonju; Park, Kyunghee; Jang, Kee-Taek; Lee, Myoyong

    2018-02-01

    The effects of preanalytical variables in tissue processing and storage periods on RNA quality of tissues have been well documented in each type of cancer. However, few studies have been performed on a comparative assessment of the impacts across different cancer tissues, even though it is well known that RNase activity is highly variable in various tissue types and RNase-rich tissues have been found to yield low-quality RNA. We investigated the impacts of cold ischemia times and long-term storage on RNA integrity in various types of cancer tissue, which had been fresh-frozen and collected at the Samsung Medical Center Biobank. RNA quality was also evaluated with regard to histopathological variables. We analyzed RNA integrity number (RIN) data, which had been obtained from our quality control (QC) processes over the last 7 years. Approximately 2% of samples were randomly selected and processed to measure RIN quarterly and after 6 years of storage for QC purposes. Fresh-frozen tumor tissues yielded high-quality RNA regardless of tumor type and histopathological features. Up to 1-hour cold ischemia times and up to 6-year storage times did not adversely influence RNA integrity. Only 3 samples showed RIN of <7 out of a total of 396 analyzed tumor tissues. Tissue quality was not adversely affected by long-term storage or limited variations of cold ischemia times. The low-quality samples could be correlated with the structural composition or intratumoral heterogeneity of tissues. The strict application of standardized protocols for tissue collection is the key for high-quality biobanking.

  16. Transmission Characteristics of Primate Vocalizations: Implications for Acoustic Analyses

    Science.gov (United States)

    Maciej, Peter; Fischer, Julia; Hammerschmidt, Kurt

    2011-01-01

    Acoustic analyses have become a staple method in field studies of animal vocal communication, with nearly all investigations using computer-based approaches to extract specific features from sounds. Various algorithms can be used to extract acoustic variables that may then be related to variables such as individual identity, context or reproductive state. Habitat structure and recording conditions, however, have strong effects on the acoustic structure of sound signals. The purpose of this study was to identify which acoustic parameters reliably describe features of propagated sounds. We conducted broadcast experiments and examined the influence of habitat type, transmission height, and re-recording distance on the validity (deviation from the original sound) and reliability (variation within identical recording conditions) of acoustic features of different primate call types. Validity and reliability varied independently of each other in relation to habitat, transmission height, and re-recording distance, and depended strongly on the call type. The smallest deviations from the original sounds were obtained by a visually-controlled calculation of the fundamental frequency. Start- and end parameters of a sound were most susceptible to degradation in the environment. Because the recording conditions can have appreciable effects on acoustic parameters, it is advisable to validate the extraction method of acoustic variables from recordings over longer distances before using them in acoustic analyses. PMID:21829682

  17. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    Energy Technology Data Exchange (ETDEWEB)

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  18. Interaction of langmuir and ion acoustic waves

    International Nuclear Information System (INIS)

    Lee, Hee Jae

    1991-01-01

    Interaction of Langmuir and ion acoustic waves in a plasma is described by Landau-Ginzburg type of equation when the group velocity of the Langmuir wave is equal to the wave velocity of ion acoustic wave. (Author)

  19. Opto-acoustic microscopy reveals adhesion mechanics of single cells.

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  20. Virtual touch tissue quantification of acoustic radiation force impulse: a new ultrasound elastic imaging in the diagnosis of thyroid nodules.

    Directory of Open Access Journals (Sweden)

    Yi-Feng Zhang

    Full Text Available OBJECTIVE: Virtual touch tissue quantification (VTQ of acoustic radiation force impulse (ARFI is a new quantitative technique to measure tissue stiffness. The study was aimed to assess the usefulness of VTQ in the diagnosis of thyroid nodules. METHODS: 173 pathologically proven thyroid nodules in 142 patients were included and all were examined by conventional ultrasound (US, conventional elasticity imaging (EI and VTQ of ARFI. The tissue stiffness for VTQ was expressed as shear wave velocity (SWV (m/s. Receiver-operating characteristic curve (ROC analyses were performed to assess the diagnostic performance. Intra- and inter-observer reproducibility of VTQ measurement was assessed. RESULTS: The SWVs of benign and malignant thyroid nodules were 2.34±1.17 m/s (range: 0.61-9.00 m/s and 4.82±2.53 m/s (range: 2.32-9.00 m/s respectively (P20 mm and lowest for those ≤10 mm. The correlation coefficients were 0.904 for intraobserver measurement and 0.864 for interobserver measurement. CONCLUSIONS: VTQ of ARFI provides quantitative and reproducible information about the tissue stiffness, which is useful for the differentiation between benign and malignant thyroid nodules. The diagnostic performance of VTQ is higher than that of conventional EI.

  1. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  2. Acoustic effects of single electrostatic discharges

    International Nuclear Information System (INIS)

    Orzech, Łukasz

    2015-01-01

    Electric discharges, depending on their character, can emit different types of energy, resulting in different effects. Single electrostatic discharges besides generation of electromagnetic pulses are also the source of N acoustic waves. Their specified parameters depending on amount of discharging charge enable determination of value of released charge in a function of acoustic descriptor (e.g. acoustic pressure). Presented approach is the basics of acoustic method for measurement of single electrostatic discharges, enabling direct and contactless measurement of value of charge released during ESD. Method for measurement of acoustic effect of impact of a single electrostatic discharge on the environment in a form of pressure shock wave and examples of acoustic descriptors in a form of equation Q=f(p a ) are described. The properties of measuring system as well as the results of regression static analyses used to determine the described relationships are analysed in details. (paper)

  3. Cell agglomeration in the wells of a 24-well plate using acoustic streaming.

    Science.gov (United States)

    Kurashina, Yuta; Takemura, Kenjiro; Friend, James

    2017-02-28

    Cell agglomeration is essential both to the success of drug testing and to the development of tissue engineering. Here, a MHz-order acoustic wave is used to generate acoustic streaming in the wells of a 24-well plate to drive particle and cell agglomeration. Acoustic streaming is known to manipulate particles in microfluidic devices, and even provide concentration in sessile droplets, but concentration of particles or cells in individual wells has never been shown, principally due to the drag present along the periphery of the fluid in such a well. The agglomeration time for a range of particle sizes suggests that shear-induced migration plays an important role in the agglomeration process. Particles with a diameter of 45 μm agglomerated into a suspended pellet under exposure to 2.134 MHz acoustic waves at 1.5 W in 30 s. Additionally, BT-474 cells also agglomerated as adherent masses at the center bottom of the wells of tissue-culture treated 24-well plates. By switching to low cell binding 24-well plates, the BT-474 cells formed suspended agglomerations that appeared to be spheroids, fully fifteen times larger than any cell agglomerates without the acoustic streaming. In either case, the viability and proliferation of the cells were maintained despite acoustic irradiation and streaming. Intermittent excitation was effective in avoiding temperature excursions, consuming only 75 mW per well on average, presenting a convenient means to form fully three-dimensional cellular masses potentially useful for tissue, cancer, and drug research.

  4. Design of the Acoustic Signal Receiving Unit of Acoustic Telemetry While Drilling

    Directory of Open Access Journals (Sweden)

    Li Zhigang

    2016-01-01

    Full Text Available Signal receiving unit is one of the core units of the acoustic telemetry system. A new type of acoustic signal receiving unit is designed to solve problems of the existing devices. The unit is a short joint in whole. It not only can receive all the acoustic signals transmitted along the drill string, without losing any signal, but will not bring additional vibration and interference. In addition, the structure of the amplitude transformer is designed, which can amplify the signal amplitude and improve the receiving efficiency. The design of the wireless communication module makes the whole device can be used in normal drilling process when the drill string is rotating. So, it does not interfere with the normal drilling operation.

  5. Acoustic control of sodium leakage in valve gates of NPP

    International Nuclear Information System (INIS)

    Trykov, E.L.; Kovtun, S.N.; Anan'ev, A.A.; Yugov, S.I.

    2014-01-01

    Short description of sodium bench and acoustic investigation results on leakage monitoring of valves DN10 and DN40 are given. It is shown that acoustic method can be used successfully to control the leakages of sodium valves. Leakages on both type of valves increase the acoustic signal dispersion by 2-3 orders. For each type of valve acoustic system of leakage determination allows to conduct the preliminary graduation of signal dispersion on the sodium discharge rate. It make possible not only to record the leakage presence but also to determine the sodium discharge rate through the valve during the leakage [ru

  6. Acoustic excitation of mechatronic systems by diffuse acoustic sound fields; Numerical predictions and measurements.

    NARCIS (Netherlands)

    Roozen, N.B.

    2006-01-01

    With the accuracy of metrology frame applications entering the nanometer-range, the necessity arises totackle all types of disturbances. In the process of estimating the relative importance of the different types of disturbances on the machine accuracy, also called dynamic error budgeting, acoustic

  7. Directional Acoustic Wave Manipulation by a Porpoise via Multiphase Forehead Structure

    Science.gov (United States)

    Zhang, Yu; Song, Zhongchang; Wang, Xianyan; Cao, Wenwu; Au, Whitlow W. L.

    2017-12-01

    Porpoises are small-toothed whales, and they can produce directional acoustic waves to detect and track prey with high resolution and a wide field of view. Their sound-source sizes are rather small in comparison with the wavelength so that beam control should be difficult according to textbook sonar theories. Here, we demonstrate that the multiphase material structure in a porpoise's forehead is the key to manipulating the directional acoustic field. Computed tomography (CT) derives the multiphase (bone-air-tissue) complex, tissue experiments obtain the density and sound-velocity multiphase gradient distributions, and acoustic fields and beam formation are numerically simulated. The results suggest the control of wave propagations and sound-beam formations is realized by cooperation of the whole forehead's tissues and structures. The melon size significantly impacts the side lobes of the beam and slightly influences the main beams, while the orientation of the vestibular sac mainly adjusts the main beams. By compressing the forehead complex, the sound beam can be expanded for near view. The porpoise's biosonar allows effective wave manipulations for its omnidirectional sound source, which can help the future development of miniaturized biomimetic projectors in underwater sonar, medical ultrasonography, and other ultrasonic imaging applications.

  8. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  9. Electromagnetic Acoustic Test of the Artificial Defects for a Plate-type Nuclear Fuel

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Kim, Dong Min; Lee, Yoon Sang; Cheong, Yong Moo

    2011-01-01

    Most research and test reactors use the nuclear fuel plates which are consisted of a fuel meat in aluminum alloy. Last year, KAERI signed a deal with the Jordan Atomic Energy Commission to build the research reactor and have to supply the plate-type nuclear fuels. For the demands of world market, KAERI started the research and development of the plate-type fuel elements and endeavored to achieve a localization of the plate-type fuel fabrication. For the inspection of plate-type fuel elements to be used in Research Reactors, an immersion pulse-echo ultrasonic technique was applied. This inspection was done under immersion condition, so a nuclear fuel was immersed to be prone to corrosion and needed to have time and cost due to an additional process. The sample that will be examined is a non-ferromagnetic material such as aluminum with a good acousto-elastic property, which requires an effective inspection of a bond quality for a nuclear fuel under a manufacturing environment. The purpose of this study is to investigate the feasibility of an Electromagnetic Acoustic Transducer (EMAT) technology for an automated inspection of a nuclear fuel without water

  10. Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system

    Science.gov (United States)

    Nguendon Kenhagho, Hervé K.; Rauter, Georg; Guzman, Raphael; C. Cattin, Philippe; Zam, Azhar

    2018-02-01

    Characterization of acoustic shock wave will guarantee efficient tissue differentiation as feedback to reduce the probability of undesirable damaging (i.e. cutting) of tissues in laser surgery applications. We ablated hard (bone) and soft (muscle) tissues using a nanosecond pulsed Nd:YAG laser at 532 nm and a microsecond pulsed Er:YAG laser at 2.94 μm. When the intense short ns-pulsed laser is applied to material, the energy gain causes locally a plasma at the ablated spot that expands and propagates as an acoustic shock wave with a rarefaction wave behind the shock front. However, when using a μs-pulsed Er:YAG laser for material ablation, the acoustic shock wave is generated during the explosion of the ablated material. We measured and compared the emitted acoustic shock wave generated by a ns-pulsed Nd:YAG laser and a μs-pulsed Er:YAG laser measured by a calibrated microphone. As the acoustic shock wave attenuates as it propagates through air, the distance between ablation spots and a calibrated microphone was at 5 cm. We present the measurements on the propagation characteristics of the laser generated acoustic shock wave by measuring the arrival time-of-flight with a calibrated microphone and the energy-dependent evolution of acoustic parameters such as peak-topeak pressure, the ratio of the peak-to-peak pressures for the laser induced breakdown in air, the ablated muscle and the bone, and the spectral energy.

  11. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal

    Science.gov (United States)

    Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le

    2016-08-01

    The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.

  12. Theoretical Model of Acoustic Wave Propagation in Shallow Water

    Directory of Open Access Journals (Sweden)

    Kozaczka Eugeniusz

    2017-06-01

    Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.

  13. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells

    Science.gov (United States)

    Zhang, Yuguang; Wen, Jihong; Zhao, Honggang; Yu, Dianlong; Cai, Li; Wen, Xisen

    2013-08-01

    We present the experimental realization and theoretical understanding of membrane-type acoustic metamaterials embedded with different masses at adjacent cells, capable of increasing the transmission loss at low frequency. Owing to the reverse vibration of adjacent cells, Transmission loss (TL) peaks appear, and the magnitudes of the TL peaks exceed the predicted results of the composite wall. Compared with commonly used configuration, i.e., all cells carrying with identical mass, the nonuniformity of attaching masses causes another much low TL peak. Finite element analysis was employed to validate and provide insights into the TL behavior of the structure.

  14. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.

    1978-01-01

    In order to improve the security of handling special nuclear materials at the Oak Ridge Y-12 Plant, a sensitive acoustic emission detector has been developed that will detect forcible entry through block or tile walls, concrete floors, or concrete/steel vault walls. A small, low-powered processor was designed to convert the output from a sensitive, crystal-type acoustic transducer to an alarm relay signal for use with a supervised alarm loop. The unit may be used to detect forcible entry through concrete, steel, block, tile, and/or glass

  15. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    Directory of Open Access Journals (Sweden)

    Arash Hanifi

    Full Text Available Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in

  16. Cell type-specific characterization of nuclear DNA contents within complex tissues and organs

    Directory of Open Access Journals (Sweden)

    Lambert Georgina M

    2005-10-01

    Full Text Available Abstract Background Eukaryotic organisms are defined by the presence of a nucleus, which encloses the chromosomal DNA, and is characterized by its DNA content (C-value. Complex eukaryotic organisms contain organs and tissues that comprise interspersions of different cell types, within which polysomaty, endoreduplication, and cell cycle arrest is frequently observed. Little is known about the distribution of C-values across different cell types within these organs and tissues. Results We have developed, and describe here, a method to precisely define the C-value status within any specific cell type within complex organs and tissues of plants. We illustrate the application of this method to Arabidopsis thaliana, specifically focusing on the different cell types found within the root. Conclusion The method accurately and conveniently charts C-value within specific cell types, and provides novel insight into developmental processes. The method is, in principle, applicable to any transformable organism, including mammals, within which cell type specificity of regulation of endoreduplication, of polysomaty, and of cell cycle arrest is suspected.

  17. Theory, simulation and experimental results of the acoustic detection of magnetization changes in superparamagnetic iron oxide

    Directory of Open Access Journals (Sweden)

    Borgert Jörn

    2011-06-01

    Full Text Available Abstract Background Magnetic Particle Imaging is a novel method for medical imaging. It can be used to measure the local concentration of a tracer material based on iron oxide nanoparticles. While the resulting images show the distribution of the tracer material in phantoms or anatomic structures of subjects under examination, no information about the tissue is being acquired. To expand Magnetic Particle Imaging into the detection of soft tissue properties, a new method is proposed, which detects acoustic emissions caused by magnetization changes in superparamagnetic iron oxide. Methods Starting from an introduction to the theory of acoustically detected Magnetic Particle Imaging, a comparison to magnetically detected Magnetic Particle Imaging is presented. Furthermore, an experimental setup for the detection of acoustic emissions is described, which consists of the necessary field generating components, i.e. coils and permanent magnets, as well as a calibrated microphone to perform the detection. Results The estimated detection limit of acoustic Magnetic Particle Imaging is comparable to the detection limit of magnetic resonance imaging for iron oxide nanoparticles, whereas both are inferior to the theoretical detection limit for magnetically detected Magnetic Particle Imaging. Sufficient data was acquired to perform a comparison to the simulated data. The experimental results are in agreement with the simulations. The remaining differences can be well explained. Conclusions It was possible to demonstrate the detection of acoustic emissions of magnetic tracer materials in Magnetic Particle Imaging. The processing of acoustic emission in addition to the tracer distribution acquired by magnetic detection might allow for the extraction of mechanical tissue parameters. Such parameters, like for example the velocity of sound and the attenuation caused by the tissue, might also be used to support and improve ultrasound imaging. However, the method

  18. Laser-induced acoustic imaging of underground objects

    Science.gov (United States)

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  19. Office layout affecting privacy, interaction, and acoustic quality in LEED-certified buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young S. [School of Planning, Design, and Construction, Michigan State University, East Lansing, MI 48823 (United States)

    2010-07-15

    The study investigated differences in worker satisfaction and perceived job performance regarding privacy, interaction, and acoustic quality issues in personal workspaces between five office types in LEED-certified buildings. It finds that people in high cubicles showed significantly lower satisfaction and job performance in relation to visual privacy and interaction with co-workers than both enclosed private and enclosed shared office types. They also showed significantly lower satisfaction with noise level and sound privacy and lower job performance perceived by acoustic quality than enclosed private, enclosed shared, and bullpen types. The bullpen type, open-plan office without partitions, presented significantly higher satisfaction with noise level and higher performance perceived by acoustic quality than both high and low cubicles. Considering the bullpen type also showed higher satisfaction with sound privacy than the high cubicle type, high partitions don't seem to contribute to creating workspaces where people can have a secure conversation. The bullpen type didn't show any difference from the enclosed shared type in all privacy, interaction, and acoustic quality questions, indicating it may be a good option for a small office space instead of the enclosed shared type. (author)

  20. Guiding tissue regeneration with ultrasound in vitro and in vivo

    Science.gov (United States)

    Dalecki, Diane; Comeau, Eric S.; Raeman, Carol H.; Child, Sally Z.; Hobbs, Laura; Hocking, Denise C.

    2015-05-01

    Developing new technologies that enable the repair or replacement of injured or diseased tissues is a major focus of regenerative medicine. This paper will discuss three ultrasound technologies under development in our laboratories to guide tissue regeneration both in vitro and in vivo. A critical obstacle in tissue engineering is the need for rapid and effective tissue vascularization strategies. To address this challenge, we are developing acoustic patterning techniques for microvascular tissue engineering. Acoustic radiation forces associated with ultrasound standing wave fields provide a rapid, non-invasive approach to spatially pattern cells in three dimensions without affecting cell viability. Acoustic patterning of endothelial cells leads to the rapid formation of microvascular networks throughout the volumes of three-dimensional hydrogels, and the morphology of the resultant microvessel networks can be controlled by design of the ultrasound field. A second technology under development uses ultrasound to noninvasively control the microstructure of collagen fibers within engineered tissues. The microstructure of extracellular matrix proteins provides signals that direct cell functions critical to tissue regeneration. Thus, controlling collagen microfiber structure with ultrasound provides a noninvasive approach to regulate the mechanical properties of biomaterials and control cellular responses. The third technology employs therapeutic ultrasound to enhance the healing of chronic wounds. Recent studies demonstrate increased granulation tissue thickness and collagen deposition in murine dermal wounds exposed to pulsed ultrasound. In summary, ultrasound technologies offer noninvasive approaches to control cell behaviors and extracellular matrix organization and thus hold great promise to advance tissue regeneration in vitro and in vivo.

  1. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  2. A comparison of partially specular radiosity and ray tracing for room acoustics modeling

    Science.gov (United States)

    Beamer, C. Walter; Muehleisen, Ralph T.

    2005-04-01

    Partially specular (PS) radiosity is an extended form of the general radiosity method. Acoustic radiosity is a form of bulk transfer of radiant acoustic energy. This bulk transfer is accomplished through a system of energy balance equations that relate the bulk energy transfer of each surface in the system to all other surfaces in the system. Until now acoustic radiosity has been limited to modeling only diffuse surface reflection. The new PS acoustic radiosity method can model all real surface types, diffuse, specular and everything in between. PS acoustic radiosity also models all real source types and distributions, not just point sources. The results of the PS acoustic radiosity method are compared to those of well known ray tracing programs. [Work supported by NSF.

  3. The MiAge Calculator: a DNA methylation-based mitotic age calculator of human tissue types.

    Science.gov (United States)

    Youn, Ahrim; Wang, Shuang

    2018-01-01

    Cell division is important in human aging and cancer. The estimation of the number of cell divisions (mitotic age) of a given tissue type in individuals is of great interest as it allows not only the study of biological aging (using a new molecular aging target) but also the stratification of prospective cancer risk. Here, we introduce the MiAge Calculator, a mitotic age calculator based on a novel statistical framework, the MiAge model. MiAge is designed to quantitatively estimate mitotic age (total number of lifetime cell divisions) of a tissue using the stochastic replication errors accumulated in the epigenetic inheritance process during cell divisions. With the MiAge model, the MiAge Calculator was built using the training data of DNA methylation measures of 4,020 tumor and adjacent normal tissue samples from eight TCGA cancer types and was tested using the testing data of DNA methylation measures of 2,221 tumor and adjacent normal tissue samples of five other TCGA cancer types. We showed that within each of the thirteen cancer types studied, the estimated mitotic age is universally accelerated in tumor tissues compared to adjacent normal tissues. Across the thirteen cancer types, we showed that worse cancer survivals are associated with more accelerated mitotic age in tumor tissues. Importantly, we demonstrated the utility of mitotic age by showing that the integration of mitotic age and clinical information leads to improved survival prediction in six out of the thirteen cancer types studied. The MiAge Calculator is available at http://www.columbia.edu/∼sw2206/softwares.htm .

  4. One-dimensional rigid film acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-11-01

    We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves.

  5. One-dimensional rigid film acoustic metamaterials

    International Nuclear Information System (INIS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-01-01

    We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves. (paper)

  6. Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials

    Science.gov (United States)

    Wang, Xiaole; Luo, Xudong; Zhao, Hui; Huang, Zhenyu

    2018-01-01

    We report the mechanism for simultaneous realization of acoustic perfect absorption (PA) and broadband insulation (BI) in the acoustic free field by a layered acoustic metamaterial (LAM). The proposed LAM comprises two critically coupled membrane-type acoustic metamaterials sandwiching a porous material layer. Both theoretical and experimental results verify that the proposed LAM sample can achieve nearly PA (98.4% in experiments) at 312 Hz with a thickness of 15 mm (1/73 of wavelength) and BI in the frequency range of 200-1000 Hz with an areal density of 2.2 kg/m2. In addition, the real parts of both the effective dynamic density and bulk modulus reach zero precisely at the critical frequency of 312 Hz, arising from the monopolar eigenmode of LAM. Our work advances the concept of synthetic design of sound absorption and insulation properties of multi-impedance-coupled acoustic systems and promotes membrane-type acoustic metamaterials to more practical engineering applications.

  7. Hydrogel based tissue mimicking phantom for in-vitro ultrasound contrast agents studies.

    Science.gov (United States)

    Demitri, Christian; Sannino, Alessandro; Conversano, Francesco; Casciaro, Sergio; Distante, Alessandro; Maffezzoli, Alfonso

    2008-11-01

    Ultrasound medical imaging (UMI) is the most widely used image analysis technique, and often requires advanced in-vitro set up to perform morphological and functional investigations. These studies are based on contrast properties both related to tissue structure and injectable contrast agents (CA). In this work, we present a three-dimensional structure composed of two different hydrogels reassembly the microvascular network of a human tissue. This phantom was particularly suitable for the echocontrastographic measurements in human microvascular system. This phantom has been characterized to present the acoustic properties of an animal liver, that is, acoustic impedance (Z) and attenuation coefficient (AC), in UMI signal analysis in particular; the two different hydrogels have been selected to simulate the target organ and the acoustic properties of the vascular system. The two hydrogels were prepared starting from cellulose derivatives to simulating the target organ parenchyma and using a PEG-diacrylate to reproduce the vascular system. Moreover, harmonic analysis was performed on the hydrogel mimicking the liver parenchyma hydrogel to evaluate the ultrasound (US) distortion during echographic measurement. The phantom was employed in the characterization of an experimental US CA. Perfect agreement was found when comparing the hydrogel acoustical properties materials with the corresponding living reference tissues (i.e., vascular and parenchimal tissue).

  8. Acoustic properties of perforates under high level multi-tone excitation

    OpenAIRE

    Bodén, Hans

    2013-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. Compared to previously published results the present investigation concentrates on the effect of multiple harmonics. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perfo...

  9. Vibro-acoustic analysis of composite plates

    International Nuclear Information System (INIS)

    Sarigül, A S; Karagözlü, E

    2014-01-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed

  10. Vibro-acoustic analysis of composite plates

    Science.gov (United States)

    Sarigül, A. S.; Karagözlü, E.

    2014-03-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed.

  11. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  12. What does See the Impulse Acoustic Microscopy inside Nanocomposites?

    Science.gov (United States)

    Levin, V. M.; Petronyuk, Y. S.; Morokov, E. S.; Celzard, A.; Bellucci, S.; Kuzhir, P. P.

    The paper presents results of studying bulk microstructure in carbon nanocomposites by impulse acoustic microscopy technique. Nanocomposite materials are in the focus of interest because of their outstanding properties in minimal nanofiller content. Large surface area and high superficial activity cause strong interaction between nanoparticles that can result in formation of fractal conglomerates. This paper involves results of the first direct observation of nanoparticle conglomerates inside the bulk of epoxy-carbon nanocomposites. Diverse types of carbon nanofiller have been under investigation. The impulse acoustic microscope SIAM-1 (Acoustic Microscopy Lab, IBCP RAS) has been employed for 3D imaging bulk microstructure and measuring elastic properties of the nanocomposite specimens. The range of 50-200 MHz allows observing microstructure inside the entire specimen bulk. Acoustic images are obtained in the ultramicroscopic regime; they are formed by the Rayleigh type scattered radiation. It has been found the high-resolution acoustic vision (impulse acoustic microscopy) is an efficient technique to observe mesostructure formed by fractal cluster inside nanocomposites. The clusterization takes its utmost form in nanocomposites with graphite nanoplatelets as nanofiller. The nanoparticles agglomerate into micron-sized conglomerates distributed randomly over the material. Mesostructure in nanocomposites filled with carbon nanotubes is alternation of regions with diverse density of nanotube packing. Regions with alternative density of CNT packing are clearly seen in acoustical images as neighboring pixels of various brightness.

  13. TU-G-210-03: Acoustic Simulations in Transcranial MRgFUS: Treatment Prediction and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, U. [Stanford University (United States)

    2015-06-15

    Modeling can play a vital role in predicting, optimizing and analyzing the results of therapeutic ultrasound treatments. Simulating the propagating acoustic beam in various targeted regions of the body allows for the prediction of the resulting power deposition and temperature profiles. In this session we will apply various modeling approaches to breast, abdominal organ and brain treatments. Of particular interest is the effectiveness of procedures for correcting for phase aberrations caused by intervening irregular tissues, such as the skull in transcranial applications or inhomogeneous breast tissues. Also described are methods to compensate for motion in targeted abdominal organs such as the liver or kidney. Douglas Christensen – Modeling for Breast and Brain HIFU Treatment Planning Tobias Preusser – TRANS-FUSIMO - An Integrative Approach to Model-Based Treatment Planning of Liver FUS Urvi Vyas – Acoustic Simulations in Transcranial MRgFUS: Treatment Prediction and Analysis Learning Objectives: Understand the role of acoustic beam modeling for predicting the effectiveness of therapeutic ultrasound treatments. Apply acoustic modeling to specific breast, liver, kidney and transcranial anatomies. Determine how to obtain appropriate acoustic modeling parameters from clinical images. Understand the separate role of absorption and scattering in energy delivery to tissues. See how organ motion can be compensated for in ultrasound therapies. Compare simulated data with clinical temperature measurements in transcranial applications. Supported by NIH R01 HL172787 and R01 EB013433 (DC); EU Seventh Framework Programme (FP7/2007-2013) under 270186 (FUSIMO) and 611889 (TRANS-FUSIMO)(TP); and P01 CA159992, GE, FUSF and InSightec (UV)

  14. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    Science.gov (United States)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However

  15. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-09-01

    In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.

  16. Acoustic and categorical dissimilarity of musical timbre: Evidence from asymmetriesbetween acoustic and chimeric sounds

    Directory of Open Access Journals (Sweden)

    Kai eSiedenburg

    2016-01-01

    Full Text Available This paper investigates the role of acoustic and categorical information in timbre dissimilarity ratings. Using a Gammatone-filterbank-based sound transformation, we created tones that were rated as less familiar than recorded tones from orchestral instruments and that were harder to associate with an unambiguous sound source (Exp. 1. A subset of transformed tones, a set of orchestral recordings, and a mixed set were then rated on pairwise dissimilarity (Exp. 2A. We observed that recorded instrument timbres clustered into subsets that distinguished timbres according to acoustic and categorical properties. For the subset of cross-category comparisons in the mixed set, we observed asymmetries in the distribution of ratings, as well as a stark decay of inter-rater agreement. These effects were replicated in a more robust within-subjects design (Exp. 2B and cannot be explained by acoustic factors alone. We finally introduced a novel model of timbre dissimilarity based on partial least-squares regression that compared the contributions of both acoustic and categorical timbre descriptors. The best model fit (R^2 = .88 was achieved when both types of descriptors were taken into account. These findings are interpreted as evidence for an interplay of acoustic and categorical information in timbre dissimilarity perception.

  17. Invasive Ductal Carcinoma of Breast : Correlation between Sonographic Posterior Acoustic Patterns with Histopathology

    International Nuclear Information System (INIS)

    Cho, Hyun Cheol; Lee, Yong Woo; Hwang, Mi Soo; Cho, Kil Ho; Chang, Jae Chun; Kim, Dong Sug; Bae, Young Kyung

    1996-01-01

    To evaluate the frequency of posterior sonic attenuation and enhancement in invasive ductal carcinoma of breast on ultrasound, and to compare with histo-pathologic findings. Sonographic findings of 26 histologically proven invasive ductal carcinomas were retrospectively reviewed in point of posterior echo pattern regardless other ultrasonic features. They were classified in two groups according to posterior echo pattern such as enhancement or shadowing, and compared with various internal histologic characteristics such as amount of connective tissue, degree of elastosis, necrosis, gross circumscription,harboring inflammation, histologic differentiation, nuclear pleomorphism, and mitotic index. The acoustic shadowing was seen in 34.6%, whereas posterior sonic enhancement was seen in 65.4% of cases. The acoustic shadowing group had more connective tissue, elastosis, and poor demarcated margin than the sonic enhancement group(p < 0.05). But no significant differences were seen in other histopathologic findings representing malignancy between two groups. A close relationship between posterior echo pattern and amount of connective tissue or elastosis is found in invasive ductal carcinoma of breast. The acoustic shadowing known as a characteristic ultrasonographic finding of malignant breast mass does not represent the degree of malignancy

  18. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin

    DEFF Research Database (Denmark)

    Hoadley, Katherine A; Yau, Christina; Wolf, Denise M

    2014-01-01

    Recent genomic analyses of pathologically defined tumor types identify "within-a-tissue" disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform...... on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head and neck, and a subset...

  19. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    DEFF Research Database (Denmark)

    Augustsson, Per; Karlsen, Jonas Tobias; Su, Hao-Wei

    2016-01-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance...... of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide...... theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic...

  20. First description of underwater acoustic diversity in three temperate ponds

    Directory of Open Access Journals (Sweden)

    Camille Desjonquères

    2015-11-01

    Full Text Available The past decade has produced an increased ecological interest in sonic environments, or soundscapes. However, despite this rise in interest and technological improvements that allow for long-term acoustic surveys in various environments, some habitats’ soundscapes remain to be explored. Ponds, and more generally freshwater habitats, are one of these acoustically unexplored environments. Here we undertook the first long term acoustic monitoring of three temperate ponds in France. By aural and visual inspection of a selection of recordings, we identified 48 different sound types, and according to the rarefaction curves we calculated, more sound types are likely present in one of the three ponds. The richness of sound types varied significantly across ponds. Surprisingly, there was no pond-to-pond daily consistency of sound type richness variation; each pond had its own daily patterns of activity. We also explored the possibility of using six acoustic diversity indices to conduct rapid biodiversity assessments in temperate ponds. We found that all indices were sensitive to the background noise as estimated through correlations with the signal-to-noise ratio (SNR. However, we determined that the AR index could be a good candidate to measure acoustic diversities using partial correlations with the SNR as a control variable. Yet, research is still required to automatically compute the SNR in order to apply this index on a large data set of recordings. The results showed that these three temperate ponds host a high level of acoustic diversity in which the soundscapes were variable not only between but also within the ponds. The sources producing this diversity of sounds and the drivers of difference in daily song type richness variation both require further investigation. Such research would yield insights into the biodiversity and ecology of temperate ponds.

  1. Translational illusion of acoustic sources by transformation acoustics.

    Science.gov (United States)

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  2. Wavelet-based feature extraction applied to small-angle x-ray scattering patterns from breast tissue: a tool for differentiating between tissue types

    International Nuclear Information System (INIS)

    Falzon, G; Pearson, S; Murison, R; Hall, C; Siu, K; Evans, A; Rogers, K; Lewis, R

    2006-01-01

    This paper reports on the application of wavelet decomposition to small-angle x-ray scattering (SAXS) patterns from human breast tissue produced by a synchrotron source. The pixel intensities of SAXS patterns of normal, benign and malignant tissue types were transformed into wavelet coefficients. Statistical analysis found significant differences between the wavelet coefficients describing the patterns produced by different tissue types. These differences were then correlated with position in the image and have been linked to the supra-molecular structural changes that occur in breast tissue in the presence of disease. Specifically, results indicate that there are significant differences between healthy and diseased tissues in the wavelet coefficients that describe the peaks produced by the axial d-spacing of collagen. These differences suggest that a useful classification tool could be based upon the spectral information within the axial peaks

  3. Reversal of Type 1 Diabetes in Mice by Brown Adipose Tissue Transplant

    OpenAIRE

    Gunawardana, Subhadra C.; Piston, David W.

    2012-01-01

    Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized gluco...

  4. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    Science.gov (United States)

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins

  5. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    Science.gov (United States)

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional

  6. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.

    Science.gov (United States)

    Kumar, Jagadish; Ananthakrishna, G

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum

  7. Beam aperture modifier design with acoustic metasurfaces

    Science.gov (United States)

    Tang, Weipeng; Ren, Chunyu

    2017-10-01

    In this paper, we present a design concept of acoustic beam aperture modifier using two metasurface-based planar lenses. By appropriately designing the phase gradient profile along the metasurface, we obtain a class of acoustic convex lenses and concave lenses, which can focus the incoming plane waves and collimate the converging waves, respectively. On the basis of the high converging and diverging capability of these lenses, two kinds of lens combination scheme, including the convex-concave type and convex-convex type, are proposed to tune up the incoming beam aperture as needed. To be specific, the aperture of the acoustic beam can be shrunk or expanded through adjusting the phase gradient of the pair of lenses and the spacing between them. These lenses and the corresponding aperture modifiers are constructed by the stacking ultrathin labyrinthine structures, which are obtained by the geometry optimization procedure and exhibit high transmission coefficient and a full range of phase shift. The simulation results demonstrate the effectiveness of our proposed beam aperture modifiers. Due to the flexibility in aperture controlling and the simplicity in fabrication, the proposed modifiers have promising potential in applications, such as acoustic imaging, nondestructive evaluation, and communication.

  8. Acoustic monitoring systems tests at Indian Point Unit 1. Final report

    International Nuclear Information System (INIS)

    Smith, J.R.; Rao, G.V.; Craig, J.

    1979-12-01

    This report describes the results of a program to test acoustic monitoring systems on Indian Point Unit No. 1 under actual plant operating conditions, less the reactor core. The two types of systems evaluated were the monitoring of acoustic emissions generated by growing flaws and the monitoring of acoustic signals from leaks

  9. Microfibrous metallic cloth for acoustic isolation of a MEMS gyroscope

    Science.gov (United States)

    Dean, Robert; Burch, Nesha; Black, Meagan; Beal, Aubrey; Flowers, George

    2011-04-01

    The response of a MEMS device that is exposed to a harsh environment may range from an increased noise floor to a completely erroneous output to temporary or even permanent device failure. One such harsh environment is high power acoustic energy possessing high frequency components. This type of environment sometimes occurs in small aerospace vehicles. In this type of operating environment, high frequency acoustic energy can be transferred to a MEMS gyroscope die through the device packaging. If the acoustic noise possesses a sufficiently strong component at the resonant frequency of the gyroscope, it will overexcite the motion of the proof mass, resulting in the deleterious effect of corrupted angular rate measurement. Therefore if the device or system packaging can be improved to sufficiently isolate the gyroscope die from environmental acoustic energy, the sensor may find new applications in this type of harsh environment. This research effort explored the use of microfibrous metallic cloth for isolating the gyroscope die from environmental acoustic excitation. Microfibrous cloth is a composite of fused, intermingled metal fibers and has a variety of typical uses involving chemical processing applications and filtering. Specifically, this research consisted of experimental evaluations of multiple layers of packed microfibrous cloth composed of sintered nickel material. The packed cloth was used to provide acoustic isolation for a test MEMS gyroscope, the Analog Devices ADXRS300. The results of this investigation revealed that the intermingling of the various fibers of the metallic cloth provided a significant contact area between the fiber strands and voids, which enhanced the acoustic damping of the material. As a result, the nickel cloth was discovered to be an effective acoustic isolation material for this particular MEMS gyroscope.

  10. A pilot study of the characterization of hepatic tissue strain in children with cystic-fibrosis-associated liver disease (CFLD) by acoustic radiation force impulse imaging

    International Nuclear Information System (INIS)

    Behrens, Christopher B.; Langholz, Juliane H.; Eiler, Jessika; Jenewein, Raphael; Fuchs, Konstantin; Alzen, Gerhard F.P.; Naehrlich, Lutz; Harth, Sebastian; Krombach, Gabriele A.

    2013-01-01

    Progressive fibrotic alterations of liver tissue represent a major complication in children with cystic fibrosis. Correct assessment of cystic-fibrosis-associated liver disease (CFLD) in clinical routine is a challenging issue. Sonographic elastography based on acoustic radiation force impulse imaging (ARFI) is a new noninvasive approach for quantitatively assessing in vivo elasticity of biological tissues in many organs. To characterize ARFI elastography as a diagnostic tool to assess alteration of liver tissue elasticity related to cystic fibrosis in children. ARFI elastography and B-mode US imaging were performed in 36 children with cystic fibrosis. The children's clinical history and laboratory parameters were documented. According to the findings on conventional US, children were assigned to distinct groups indicating severity of hepatic tissue alterations. The relationship between US findings and respective elastography values was assessed. Additionally, differences between ARFI elastography values of each US group were statistically tested. Children with sonomorphologic characteristics of fibrotic tissue remodeling presented significantly increased values for tissue elasticity. Children with normal B-mode US or discrete signs of hepatic tissue alterations showed a tendency toward increased tissue stiffness indicating early tissue remodeling. Assessment of children with CFLD by means of ARFI elastography yields adequate results when compared to conventional US. For detection of early stages of liver disease with mild fibrotic reactions of hepatic tissue, ARFI elastography might offer diagnostic advantages over conventional US. Thus, liver stiffness measured by means of elastography might represent a valuable biological parameter for evaluation and follow-up of CFLD. (orig.)

  11. A pilot study of the characterization of hepatic tissue strain in children with cystic-fibrosis-associated liver disease (CFLD) by acoustic radiation force impulse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher B.; Langholz, Juliane H.; Eiler, Jessika; Jenewein, Raphael; Fuchs, Konstantin; Alzen, Gerhard F.P. [University Hospital Giessen, Department of Pediatric Radiology, Giessen (Germany); Naehrlich, Lutz [University Hospital Giessen, Department of Pediatrics, Giessen (Germany); Harth, Sebastian; Krombach, Gabriele A. [University Hospital Giessen, Department of Radiology, Giessen (Germany)

    2013-03-15

    Progressive fibrotic alterations of liver tissue represent a major complication in children with cystic fibrosis. Correct assessment of cystic-fibrosis-associated liver disease (CFLD) in clinical routine is a challenging issue. Sonographic elastography based on acoustic radiation force impulse imaging (ARFI) is a new noninvasive approach for quantitatively assessing in vivo elasticity of biological tissues in many organs. To characterize ARFI elastography as a diagnostic tool to assess alteration of liver tissue elasticity related to cystic fibrosis in children. ARFI elastography and B-mode US imaging were performed in 36 children with cystic fibrosis. The children's clinical history and laboratory parameters were documented. According to the findings on conventional US, children were assigned to distinct groups indicating severity of hepatic tissue alterations. The relationship between US findings and respective elastography values was assessed. Additionally, differences between ARFI elastography values of each US group were statistically tested. Children with sonomorphologic characteristics of fibrotic tissue remodeling presented significantly increased values for tissue elasticity. Children with normal B-mode US or discrete signs of hepatic tissue alterations showed a tendency toward increased tissue stiffness indicating early tissue remodeling. Assessment of children with CFLD by means of ARFI elastography yields adequate results when compared to conventional US. For detection of early stages of liver disease with mild fibrotic reactions of hepatic tissue, ARFI elastography might offer diagnostic advantages over conventional US. Thus, liver stiffness measured by means of elastography might represent a valuable biological parameter for evaluation and follow-up of CFLD. (orig.)

  12. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping.

    Science.gov (United States)

    Augustsson, Per; Karlsen, Jonas T; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-05-16

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.

  13. Sound reduction by metamaterial-based acoustic enclosure

    Directory of Open Access Journals (Sweden)

    Shanshan Yao

    2014-12-01

    Full Text Available In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  14. Sound reduction by metamaterial-based acoustic enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shanshan; Li, Pei; Zhou, Xiaoming; Hu, Gengkai, E-mail: hugeng@bit.edu.cn [Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education and School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2014-12-15

    In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  15. Acoustic radiation force impulse imaging with Virtual Touch™ tissue quantification: mean shear wave velocity of malignant and benign breast masses.

    Science.gov (United States)

    Wojcinski, Sebastian; Brandhorst, Kathrin; Sadigh, Gelareh; Hillemanns, Peter; Degenhardt, Friedrich

    2013-01-01

    Acoustic radiation force impulse imaging (ARFI) with Virtual Touch™ tissue quantification (VTTQ) enables the determination of shear wave velocity (SWV) in meters per second (m/s). The aim of our study was to describe the mean SWV in normal breast tissue and various breast masses. We performed measurements of SWV with ARFI VTTQ in 145 breast masses (57 malignant, 88 benign) and in the adjacent breast parenchyma and adipose tissue. The mean SWV as well as the rate of successful measurements were analyzed. The difference between adipose tissue and parenchyma was statistically significant (3.05 versus 3.65 m/s) (P breast masses, numerous measurements exceeded the upper limit of possible measurement (≥9.10 m/s, indicated as "X.XX m/s"). Nevertheless, the difference between the malignant and benign masses was statistically significant (8.38 ± 1.99 m/s versus 5.39 ± 2.95 m/s) (P < 0.001). The best diagnostic accuracy (75.9%) was achieved when the cutoff point for malignancy was set to 9.10 m/s in ARFI VTTQ. This implies that the SWV was regarded as suspicious when the upper limit of possible measurement was exceeded and the machine returned the value X.XX m/s. In conclusion, ARFI VTTQ is a feasible method for measurement of SWV in a region of interest. Furthermore, we propose the event of a highly elevated SWV as a significant criterion for malignancy. However, the method is technically not yet fully developed, and the problem of unsuccessful measurements must still be solved.

  16. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves.

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-01-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  17. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  18. Flaw identification using acoustic emission

    International Nuclear Information System (INIS)

    Woodward, B.; McDonald, N.R.

    1975-01-01

    Acoustic emission 'signatures' contain information about the fine structure of metallurgical source events and their interpretation may provide a means of assessing the severity of internal flaws as well as surface flaws. The ultimate aim of this research on signature analysis is to develop a real time non-destructive testing technique having the capability of flaw recognition as well as flaw location in nuclear reactor components and structures under stress. Thus the requisite, unlike that in most acoustic emission work to date, is for a technique which affords discrimination between acoustic emission from different types of flaws propagating simultaneously. The approach described here requires detailed analysis of the emission signatures in terms of a specific statistical parameter, energy spectral density. In order to realise the full inspection potential of acoustic emission monitoring data obtained from zirconium and steel testpieces have been correlated with metallurgical condition and mechanical behaviour, since the nature of emission signatures is strongly affected by the physical characteristics and internal structure of the material. (Auth.)

  19. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    Energy Technology Data Exchange (ETDEWEB)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    .9% respectively). No acoustic transmitters were shed by yearling fish during the course of the 90 day study. Up to 7.8% of subyearling fish expelled transmitters. Tags were expelled from 5 to 63 days post-surgery. The average time to expulsion was 27 days; few fish expelled transmitters within 14 days of implantation or less. Histological results suggest that inflammation associated with implantation of an acoustic transmitter can produce fibrous tissue which can invade and possibly damage internal organs soon after implantation. Reactions severe enough to damage organs however, were limited to only ~20% of subyearling Chinook salmon, all of which were under 101mm and 12g at tagging. The infiltration of the fibrous tissue into organs was observed most often in fish held for 21 days and appeared to decrease in subsequent holding times.

  20. On the possibility of the soliton description of acoustic emission during plastic deformation of crystals

    International Nuclear Information System (INIS)

    Pawelek, A.

    1987-06-01

    Two basic sources of acoustic emission (AE) during plastic deformation of pure crystals are discussed. One is related to non-stationary dislocation motion (the bremsstrahlung type of acoustic radiation), and the other to dislocation annihilation processes (the main component of the transition type of acoustic radiation). The possible soliton description of the bremsstrahlung acoustic radiation by oscillating dislocation kink and by bound kink-antikink pair (dislocation breather) is cosidered on the basis of Eshelby's theory (Proc. Roy. Soc. London A266, 222 (1962)). The dislocation annihilation component of transition acoustic emission is considered only in relation to the Frank-Read source operation. A soliton model for this type of acoustic radiation is proposed and the simple quantum-mechanical hypothesis is advanced for the purpose. Both soliton descriptions are discussed on the basis of available experimental data on the AE intensity behaviour during tensile deformation of crystals. (author). 36 refs, 5 figs

  1. Acoustic and Categorical Dissimilarity of Musical Timbre: Evidence from Asymmetries Between Acoustic and Chimeric Sounds

    Science.gov (United States)

    Siedenburg, Kai; Jones-Mollerup, Kiray; McAdams, Stephen

    2016-01-01

    This paper investigates the role of acoustic and categorical information in timbre dissimilarity ratings. Using a Gammatone-filterbank-based sound transformation, we created tones that were rated as less familiar than recorded tones from orchestral instruments and that were harder to associate with an unambiguous sound source (Experiment 1). A subset of transformed tones, a set of orchestral recordings, and a mixed set were then rated on pairwise dissimilarity (Experiment 2A). We observed that recorded instrument timbres clustered into subsets that distinguished timbres according to acoustic and categorical properties. For the subset of cross-category comparisons in the mixed set, we observed asymmetries in the distribution of ratings, as well as a stark decay of inter-rater agreement. These effects were replicated in a more robust within-subjects design (Experiment 2B) and cannot be explained by acoustic factors alone. We finally introduced a novel model of timbre dissimilarity based on partial least-squares regression that compared the contributions of both acoustic and categorical timbre descriptors. The best model fit (R2 = 0.88) was achieved when both types of descriptors were taken into account. These findings are interpreted as evidence for an interplay of acoustic and categorical information in timbre dissimilarity perception. PMID:26779086

  2. Tissue-specific expression of type IX collagen

    International Nuclear Information System (INIS)

    Nishimura, I.; Muragaki, Y.; Ninomiya, Y.; Olsen, B.R.; Hayashi, M.

    1990-01-01

    This paper reports on the tissue-specific expression of type IX collagen, a major component of cartilage fibrils. It contains molecules with three genetically distinct subunits. The subunits form three triple-helical (CO) domains separated by non-triple-helical (NC) sequences. One of the subunits in cartilage, α1(IX), contains a large amino-terminal globular domain, NC4, while a second subunit, α2(IX), contains a covalently attached chondroitin sulfate chain. The site of attachment for this chain is located within the non-triple-helical sequence NC3, which separates the amino-terminal and central triple-helical domains of the type IX molecules. The NC3 region is 5 amino acid residues longer in the α2(IX) chain than in the α1(IX) and α3(IX) chains. This may explain why type IX molecules tend to show a sharp angle in the NC3 region, and why monoclonal antibody molecules that are specific for the stub left after chondroitinase ABC digestion of the chondroitin sulfate side chain always are located on the outside of the angle

  3. Curcumin protects against acoustic trauma in the rat cochlea.

    Science.gov (United States)

    Soyalıç, Harun; Gevrek, Fikret; Karaman, Serhat

    2017-08-01

    In this study we evaluated the therapeutic utility of curcumin in a rodent model of acoustic trauma using histopathology, immunohistochemical, and distortion product otoacoustic emission (DPOAEs) measurements. 28 Wistar albino rats were included in the study and randomly assigned to 4 treatment groups. The first group (group 1) served as the control and was exposed to acoustic trauma alone. Group 2 was the curcumin group. Group 3 was the curcumin plus acoustic trauma group. Group 4 was the saline plus acoustic trauma group. Otoacoustic emission measurements were collected at the end of the experiment and all animals were sacrificed. Cochlea were collected and prepared for TUNEL (TdT-mediated deoxyuridinetriphosphate nick end-labelling) staining assay. Group 3 maintained baseline DPOAEs values at 3000 Hz, 4000 Hz and 8000 Hz on the 3rd and 5th day of the experiment. DPOAEs results were correlated with the immunohistochemical and histopathological findings in all groups. In comparison to the histopathologic control group, Group 1 exhibited a statistically significant increase in apoptotic indices in the organ of Corti, inner hair cell, and outer hair cell areas (p curcumin may protect the cochlear tissues from acoustic trauma in rats. Curcumin injection prior to or after an acoustic trauma reduces cochlear hair cell damage and may protect against hearing loss. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of substrate choice and tissue type on tissue preparation for spectral histopathology by Raman microspectroscopy.

    Science.gov (United States)

    Fullwood, Leanne M; Griffiths, Dave; Ashton, Katherine; Dawson, Timothy; Lea, Robert W; Davis, Charles; Bonnier, Franck; Byrne, Hugh J; Baker, Matthew J

    2014-01-21

    Raman spectroscopy is a non-destructive, non-invasive, rapid and economical technique which has the potential to be an excellent method for the diagnosis of cancer and understanding disease progression through retrospective studies of archived tissue samples. Historically, biobanks are generally comprised of formalin fixed paraffin preserved tissue and as a result these specimens are often used in spectroscopic research. Tissue in this state has to be dewaxed prior to Raman analysis to reduce paraffin contributions in the spectra. However, although the procedures are derived from histopathological clinical practice, the efficacy of the dewaxing procedures that are currently employed is questionable. Ineffective removal of paraffin results in corruption of the spectra and previous experiments have shown that the efficacy can depend on the dewaxing medium and processing time. The aim of this study was to investigate the influence of commonly used spectroscopic substrates (CaF2, Spectrosil quartz and low-E slides) and the influence of different histological tissue types (normal, cancerous and metastatic) on tissue preparation and to assess their use for spectral histopathology. Results show that CaF2 followed by Spectrosil contribute the least to the spectral background. However, both substrates retain paraffin after dewaxing. Low-E substrates, which exhibit the most intense spectral background, do not retain wax and resulting spectra are not affected by paraffin peaks. We also show a disparity in paraffin retention depending upon the histological identity of the tissue with abnormal tissue retaining more paraffin than normal.

  5. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    Science.gov (United States)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  6. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  7. A Review of Acoustic Consideration in Public and Multifunctional ...

    African Journals Online (AJOL)

    It has been shown that acoustics in buildings depend mainly on the type and use of the buildings, therefore acoustic criteria and design parameters in public and multifunctional buildings should be such that it takes into consideration the room reverberation time, background noise and sound isolation to enhance speech ...

  8. Acoustic source for generating an acoustic beam

    Science.gov (United States)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  9. Acoustic signal emission monitoring as a novel method to predict steam pops during radiofrequency ablation: preliminary observations.

    Science.gov (United States)

    Chik, William W B; Kosobrodov, Roman; Bhaskaran, Abhishek; Barry, Michael Anthony Tony; Nguyen, Doan Trang; Pouliopoulos, Jim; Byth, Karen; Sivagangabalan, Gopal; Thomas, Stuart P; Ross, David L; McEwan, Alistair; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-04-01

    Steam pop is an explosive rupture of cardiac tissue caused by tissue overheating above 100 °C, resulting in steam formation, predisposing to serious complications associated with radiofrequency (RF) ablations. However, there are currently no reliable techniques to predict the occurrence of steam pops. We propose the utility of acoustic signals emitted during RF ablation as a novel method to predict steam pop formation and potentially prevent serious complications. Radiofrequency generator parameters (power, impedance, and temperature) were temporally recorded during ablations performed in an in vitro bovine myocardial model. The acoustic system consisted of HTI-96-min hydrophone, microphone preamplifier, and sound card connected to a laptop computer. The hydrophone has the frequency range of 2 Hz to 30 kHz and nominal sensitivity in the range -240 to -165 dB. The sound was sampled at 96 kHz with 24-bit resolution. Output signal from the hydrophone was fed into the camera audio input to synchronize the video stream. An automated system was developed for the detection and analysis of acoustic events. Nine steam pops were observed. Three distinct sounds were identified as warning signals, each indicating rapid steam formation and its release from tissue. These sounds had a broad frequency range up to 6 kHz with several spectral peaks around 2-3 kHz. Subjectively, these warning signals were perceived as separate loud clicks, a quick succession of clicks, or continuous squeaking noise. Characteristic acoustic signals were identified preceding 80% of pops occurrence. Six cardiologists were able to identify 65% of acoustic signals accurately preceding the pop. An automated system identified the characteristic warning signals in 85% of cases. The mean time from the first acoustic signal to pop occurrence was 46 ± 20 seconds. The automated system had 72.7% sensitivity and 88.9% specificity for predicting pops. Easily identifiable characteristic acoustic emissions

  10. Bubble dynamics under acoustic excitation with multiple frequencies

    International Nuclear Information System (INIS)

    Zhang, Y N; Zhang, Y N; Li, S C

    2015-01-01

    Because of its magnificent mechanical and chemical effects, acoustic cavitation plays an important role in a broad range of biomedical, chemical and mechanical engineering problems. Particularly, irradiation of the multiple frequency acoustic wave could enhance the effects of cavitation. The advantages of employment of multi-frequency ultrasonic field include decreasing the cavitation thresholds, promoting cavitation nuclei generation, increasing the mass transfer and improving energy efficiency. Therefore, multi-frequency ultrasonic systems are employed in a variety of applications, e.g., to enhance the intensity of sonoluminenscence, to increase efficiency of sonochemical reaction, to improve the accuracy of ultrasound imaging and the efficiency of tissue ablation. Compared to single-frequency systems, a lot of new features of bubble dynamics exist in multi-frequency systems, such as special properties of oscillating bubbles, unique resonances in the bubble response curves, and unusual chaotic behaviours. In present paper, the underlying mechanisms of the cavitation effects under multi-frequency acoustical excitation are also briefly introduced

  11. Spectral identification of sperm whales from Littoral Acoustic Demonstration Center passive acoustic recordings

    Science.gov (United States)

    Sidorovskaia, Natalia A.; Richard, Blake; Ioup, George E.; Ioup, Juliette W.

    2005-09-01

    The Littoral Acoustic Demonstration Center (LADC) made a series of passive broadband acoustic recordings in the Gulf of Mexico and Ligurian Sea to study noise and marine mammal phonations. The collected data contain a large amount of various types of sperm whale phonations, such as isolated clicks and communication codas. It was previously reported that the spectrograms of the extracted clicks and codas contain well-defined null patterns that seem to be unique for individuals. The null pattern is formed due to individual features of the sound production organs of an animal. These observations motivated the present studies of adapting human speech identification techniques for deep-diving marine mammal phonations. A three-state trained hidden Markov model (HMM) was used with the phonation spectra of sperm whales. The HHM-algorithm gave 75% accuracy in identifying individuals when it had been initially tested for the acoustic data set correlated with visual observations of sperm whales. A comparison of the identification accuracy based on null-pattern similarity analysis and the HMM-algorithm is presented. The results can establish the foundation for developing an acoustic identification database for sperm whales and possibly other deep-diving marine mammals that would be difficult to observe visually. [Research supported by ONR.

  12. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  13. Potential-well model in acoustic tweezers.

    Science.gov (United States)

    Kang, Shih-Tsung; Yeh, Chih-Kuang

    2010-06-01

    Standing-wave acoustic tweezers are popularly used for non-invasive and non-contact particle manipulation. Because of their good penetration in biological tissue, they also show promising prospects for in vivo applications. According to the concept of an optical vortex, we propose an acoustics-vortex- based trapping model of acoustic tweezers. A four-element 1-MHz planar transducer was used to generate 1-MHz sine waves at 1 MPa, with adjacent elements being driven with a pi/2-rad phase difference. Each element was a square with a side length of 5.08 mm, with kerfs initially set at 0.51 mm. An acoustic vortex constituting the spiral motion of an acoustic wave around the beam axis was created, with an axial null. Applying Gor'kov's theory in the Rayleigh regime yielded the potential energy and radiation force for use in subsequent analysis. In the transverse direction, the vortex structure behaved as a series of potential wells that tended to drive a suspended particle toward the beam axis. They were highly fragmented in the near field that is very close to the transducer where there was spiral interference, and well-constructed in the far field. We found that the significant trapping effect was only present between these two regions in the transverse direction--particles were free to move along the beam axis, and a repulsive force was observed in the outer acoustic vortex. Because the steepness of the potential gradient near an axial null dominates the trapping effect, the far field of the acoustic vortex is inappropriate for trapping. Particles too close to the transducer are not sufficiently trapped because of the fragmented potential pattern. We suggest that the ideal distance from the transducer for trapping particles is in front of one-fourth of the Rayleigh distance, based on the superposition of the wavefronts. The maximum trapping force acting on a 13-mum polystyrene sphere in the produced acoustic vortex was 50.0 pN, and it was possible to trap

  14. Perivascular adipose tissue: role in the pathogenesis of obesity, type 2 diabetes mellitus and cardiovascular pathology.

    Directory of Open Access Journals (Sweden)

    Tat'yana Ivanovna Romantsova

    2015-09-01

    Full Text Available Perivascular adipose tissue is a part of blood vessel wall, regulating endovascular homeostasis, endothelial and smooth muscle cells functioning. Under physiological conditions, perivascular tissue provides beneficial anticontractile effect, though undergoes structural and functional changes in obesity, atherosclerosis and diabetes mellitus type2.Collected data suggest the possible key role of perivascular adipose tissue in the pathogenesis of these diseases. Perivascular tissue has been determined as an independent cardiovascular risk factor, regardless of visceral obesity. General mechanisms include a local low-grade inflammation, oxidative stress, tissue renin-angiotensin-aldosterone system activation, paracrine and metabolic alterations. Properties of perivascular adipose tissue depend on the certain type of adipocytes it contains. Brown adipocytes are well known for their metabolic preferences, however it has been shown recently that brown perivascular tissue can contribute to dyslipidemia under some conditions.  The aim of this review is to discuss the current literature understanding of perivascular adipose tissue specifics, changes in its activity, secretory and genetic profilein a course of the most common non-infectious diseases development, as well as molecular mechanisms of its functioning. We also discuss perspectives of target interventions using metabolic pathways and genes of perivascular tissue, for the effective prevention of obesity, diabetes mellitus type2 and cardiovascular diseases.

  15. Matrix method for acoustic levitation simulation.

    Science.gov (United States)

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.

  16. Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering.

    Science.gov (United States)

    Almeida, Henrique V; Sathy, Binulal N; Dudurych, Ivan; Buckley, Conor T; O'Brien, Fergal J; Kelly, Daniel J

    2017-01-01

    Regenerating articular cartilage and fibrocartilaginous tissue such as the meniscus is still a challenge in orthopedic medicine. While a range of different scaffolds have been developed for joint repair, none have facilitated the development of a tissue that mimics the complexity of soft tissues such as articular cartilage. Furthermore, many of these scaffolds are not designed to function in mechanically challenging joint environments. The overall goal of this study was to develop a porous, biomimetic, shape-memory alginate scaffold for directing cartilage regeneration. To this end, a scaffold was designed with architectural cues to guide cellular and neo-tissue alignment, which was additionally functionalized with a range of extracellular matrix cues to direct stem cell differentiation toward the chondrogenic lineage. Shape-memory properties were introduced by covalent cross-linking alginate using carbodiimide chemistry, while the architecture of the scaffold was modified using a directional freezing technique. Introducing such an aligned pore structure was found to improve the mechanical properties of the scaffold, and promoted higher levels of sulfated glycosaminoglycans (sGAG) and collagen deposition compared to an isotropic (nonaligned) pore geometry when seeded with adult human stem cells. Functionalization with collagen improved stem cell recruitment into the scaffold and facilitated more homogenous cartilage tissue deposition throughout the construct. Incorporating type II collagen into the scaffolds led to greater cell proliferation, higher sGAG and collagen accumulation, and the development of a stiffer tissue compared to scaffolds functionalized with type I collagen. The results of this study demonstrate how both scaffold architecture and composition can be tailored in a shape-memory alginate scaffold to direct stem cell differentiation and support the development of complex cartilaginous tissues.

  17. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.

    Science.gov (United States)

    Chen, Kejie; Wu, Mengxi; Guo, Feng; Li, Peng; Chan, Chung Yu; Mao, Zhangming; Li, Sixing; Ren, Liqiang; Zhang, Rui; Huang, Tony Jun

    2016-07-05

    The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed for fabricating 3D cell assemblies or spheroids, due to the limited understanding on SAW-based vertical levitation. In this work, we demonstrated the capability of fabricating multicellular spheroids in the 3D acoustic tweezers platform. Our method used drag force from microstreaming to levitate cells in the vertical direction, and used radiation force from Gor'kov potential to aggregate cells in the horizontal plane. After optimizing the device geometry and input power, we demonstrated the rapid and high-throughput nature of our method by continuously fabricating more than 150 size-controllable spheroids and transferring them to Petri dishes every 30 minutes. The spheroids fabricated by our 3D acoustic tweezers can be cultured for a week with good cell viability. We further demonstrated that spheroids fabricated by this method could be used for drug testing. Unlike the 2D monolayer model, HepG2 spheroids fabricated by the 3D acoustic tweezers manifested distinct drug resistance, which matched existing reports. The 3D acoustic tweezers based method can serve as a novel bio-manufacturing tool to fabricate complex 3D cell assembles for biological research, tissue engineering, and drug development.

  18. Unvoiced Speech Recognition Using Tissue-Conductive Acoustic Sensor

    Directory of Open Access Journals (Sweden)

    Heracleous Panikos

    2007-01-01

    Full Text Available We present the use of stethoscope and silicon NAM (nonaudible murmur microphones in automatic speech recognition. NAM microphones are special acoustic sensors, which are attached behind the talker's ear and can capture not only normal (audible speech, but also very quietly uttered speech (nonaudible murmur. As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech transform, etc. for sound-impaired people. Using adaptation techniques and a small amount of training data, we achieved for a 20 k dictation task a word accuracy for nonaudible murmur recognition in a clean environment. In this paper, we also investigate nonaudible murmur recognition in noisy environments and the effect of the Lombard reflex on nonaudible murmur recognition. We also propose three methods to integrate audible speech and nonaudible murmur recognition using a stethoscope NAM microphone with very promising results.

  19. Tuned Chamber Core Panel Acoustic Test Results

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  20. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  1. Optoacoustic laser monitoring of cooling and freezing of tissues

    International Nuclear Information System (INIS)

    Larin, Kirill V; Larina, I V; Motamedi, M; Esenaliev, R O

    2002-01-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast. (laser biology and medicine)

  2. Interior acoustic cloak

    Directory of Open Access Journals (Sweden)

    Wael Akl

    2014-12-01

    Full Text Available Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which are invariably heavy and bulky. The transformation acoustics relationships that govern the operation of this class of interior acoustic cloaks are presented. Physical insights are given to relate these relationships to the reasons behind the effectiveness of the proposed interior acoustic cloaks. Finite element models are presented to demonstrate the characteristics of interior acoustic cloaks used in treating the interior walls of circular and square cavities both in the time and frequency domains. The obtained results emphasize the effectiveness of the proposed interior cloaks in eliminating the reflections of the acoustic waves from the walls of the treated cavities and thereby rendering these cavities acoustically quiet. It is important to note here that the proposed interior acoustic cloaks can find applications in acoustic cavities such as aircraft cabins and auditoriums as well as many other critical applications.

  3. Observation of topological edge states of acoustic metamaterials at subwavelength scale

    Science.gov (United States)

    Dai, Hongqing; Jiao, Junrui; Xia, Baizhan; Liu, Tingting; Zheng, Shengjie; Yu, Dejie

    2018-05-01

    Topological states are of key importance for acoustic wave systems owing to their unique transport properties. In this study, we develop a hexagonal array of hexagonal columns with Helmholtz resonators to obtain subwavelength Dirac cones. Rotation operations are performed to open the Dirac cones and obtain acoustic valley vortex states. In addition, we calculate the angular-dependent frequencies for the band edges at the K-point. Through a topological phase transition, the topological phase of pattern A can change into that of pattern B. The calculations for the bulk dispersion curves show that the acoustic metamaterials exhibit BA-type and AB-type topological edge states. Experimental results demonstrate that a sound wave can transmit well along the topological path. This study could reveal a simple approach to create acoustic topological edge states at the subwavelength scale.

  4. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer.

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress - a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.

  5. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  6. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  7. Acoustic characteristics of the flow over different shapes of nozzle chevrons,

    Directory of Open Access Journals (Sweden)

    Daniel CRUNTEANU

    2013-09-01

    Full Text Available The objective of this paper is to present a comparison between different types of chevrons and their influence on the acoustic power level radiated by the flow over them. The comparison was performed using a two-dimensional simulation of the flow over four different shapes of chevrons resulting propagation of the acoustic waves for each shape. Acoustic characteristics were revealed studying the main flow parameters (pressure, velocity, kinetic energy in order to be able to discover the most efficient shape of chevron regarding the acoustic power level emitted.

  8. Nonlinear dust-ion-acoustic waves in a multi-ion plasma with ...

    Indian Academy of Sciences (India)

    The basic features of such dust-ion-acoustic solitary and shock waves have been ... ion plasmas because of its vital role in understanding different types of ... cannot support the usual ion-acoustic waves, but can support the DIA waves of ...

  9. Concentration Levels of Imidacloprid and Dinotefuran in Five Tissue Types of Black Walnut, Juglans nigra

    Directory of Open Access Journals (Sweden)

    Paul Merten

    2013-11-01

    Full Text Available Black walnut, a valuable economic and environmentally important species, is threatened by thousand cankers disease. Systemic imidacloprid and dinotefuran applications were made to mature black walnut trees to evaluate their translocation and concentration levels in various tissue types including leaf, twig, trunk core, nutmeat, and walnut husk. The metabolism of imidacloprid in plants produces a metabolite, olefin-imidacloprid, which has been documented to have insecticidal properties in other systems. Trunk CoreTect (imidacloprid soil pellets and a trunk spray of dinotefuran were applied to mature black walnuts in spring 2011. Imidacloprid concentrations were detected in both the lower and upper strata in all tissue types tested and progressively increased through month 12 post-treatment in twig and leaf tissue. Olefin-imidacloprid was detected in the nutmeat and walnut husk. Dinotefuran was only detected in the first sampling period and was found in low concentration levels in leaf and twig tissue types, and was not detected in the trunk, nutmeat or the walnut husk.

  10. Acoustic Radiation Force Impulse Elastography in Determining the Effects of Type 1 Diabetes on Pancreas and Kidney Elasticity in Children.

    Science.gov (United States)

    Sağlam, Dilek; Bilgici, Meltem Ceyhan; Kara, Cengiz; Yılmaz, Gülay Can; Çamlıdağ, İlkay

    2017-11-01

    The aim of this study is to determine the effects of type 1 diabetes on pancreas and kidney elasticity in children, using acoustic radiation force impulse ultrasound elastography. Sixty autoantibody-positive patients with type 1 diabetes (45% girls; mean [± SD] age, 11.7 ± 4.4 years; range, 1.9-19.3 years) admitted to the pediatric endocrinology outpatient clinic and 32 healthy children (50% girls; mean age, 10.2 ± 3.8 years; range, 2.1-17.3 years) were included in the study. Acoustic radiation force impulse elastography measurements were performed of the kidneys and pancreas in both groups. Body mass index, duration of diabetes, HbA1c levels, and insulin dosage of patients with type 1 diabetes were recorded. The mean shear-wave velocities of the pancreas were 0.99 ± 0.25 m/s in patients with type 1 diabetes and 1.09 ± 0.22 m/s in healthy control subjects; the difference was not significant (p = 0.08). The median shear-wave velocities of the right and left kidneys in patients with type 1 diabetes were 2.43 ± 0.29 and 2.47 ± 0.25 m/s, respectively. There were no significant differences in the shear-wave velocities of the right and left kidneys between the patients with type 1 diabetes and the healthy control subjects (p = 0.91 and p = 0.73, respectively). Correlation analysis showed no correlation between the shear-wave velocities of the pancreas and kidney versus HbA1c level, duration of diabetes, insulin dosage, height, weight, and body mass index of the patients with type 1 diabetes. The current study showed no significant difference in the shear-wave velocity of kidneys in children with type 1 diabetes with normoalbuminuria compared with the healthy control subjects. We also observed that the shear-wave velocity of the pancreas in children with type 1 diabetes and healthy control subjects did not differ significantly.

  11. Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation.

    Science.gov (United States)

    De Baerdemaeker, Niels J F; Salomón, Roberto Luis; De Roo, Linus; Steppe, Kathy

    2017-11-01

    Reassimilation of internal CO 2 via woody tissue photosynthesis has a substantial effect on tree carbon income and wood production. However, little is known about its role in xylem vulnerability to cavitation and its implications in drought-driven tree mortality. Young trees of Populus nigra were subjected to light exclusion at the branch and stem levels. After 40 d, measurements of xylem water potential, diameter variation and acoustic emission (AE) were performed in detached branches to obtain acoustic vulnerability curves to cavitation following bench-top dehydration. Acoustic vulnerability curves and derived AE 50 values (i.e. water potential at which 50% of cavitation-related acoustic emissions occur) differed significantly between light-excluded and control branches (AE 50,light-excluded  = -1.00 ± 0.13 MPa; AE 50,control  = -1.45 ± 0.09 MPa; P = 0.007) denoting higher vulnerability to cavitation in light-excluded trees. Woody tissue photosynthesis represents an alternative and immediate source of nonstructural carbohydrates (NSC) that confers lower xylem vulnerability to cavitation via sugar-mediated mechanisms. Embolism repair and xylem structural changes could not explain this observation as the amount of cumulative AE and basic wood density did not differ between treatments. We suggest that woody tissue assimilates might play a role in the synthesis of xylem surfactants for nanobubble stabilization under tension. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    Science.gov (United States)

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  13. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    Science.gov (United States)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  14. [Treatment of giant acoustic neuromas].

    Science.gov (United States)

    Samprón, Nicolás; Altuna, Xabier; Armendáriz, Mikel; Urculo, Enrique

    2014-01-01

    To analyze the treatment modality and outcome of a series of patients with giant acoustic neuromas, a particular type of tumour characterised by their size (extracanalicular diameter of 4cm or more) and high morbidity and mortality. This was a retrospective unicentre study of patients with acoustic neuromas treated in a period of 12 years. In our institutional series of 108 acoustic neuromas operated on during that period, we found 13 (12%) cases of giant acoustic neuromas. We reviewed the available data of these cases, including presentation and several clinical, anatomical, and microsurgical aspects. All patients were operated on by the same neurosurgeon and senior author (EU) using the suboccipital retrosigmoid approach and complete microsurgical removal was achieved in 10 cases. In one case, near total removal was deliberately performed, in another case a CSF shunt was placed as the sole treatment measure, and in the remaining case no direct treatment was given. One patient died in the immediate postoperative period. One year after surgery, 4 patients showed facial nerve function of iii or more in the House-Brackman scale. The 4 most important prognostic characteristics of giant acoustic neuromas are size, adhesion to surrounding structures, consistency and vascularity. Only the first of these is evident in neuroimaging. Giant acoustic neuromas are characterised by high morbidity at presentation as well as after treatment. Nevertheless, the objective of complete microsurgical removal with preservation of cranial nerve function is attainable in some cases through the suboccipital retrosigmoid approach. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  15. Multi-frequency acoustic metasurface for extraordinary reflection and sound focusing

    Directory of Open Access Journals (Sweden)

    Yi-Fan Zhu

    2016-12-01

    Full Text Available We theoretically and numerically present the design of multi-frequency acoustic metasurfaces (MFAMs with simple structure that can work not only at fundamental frequency, but also at their harmonic frequencies, which breaks the single frequency limitation in conventional resonance-based acoustic metasurfaces. The phase matched condition for achromatic manipulation is discussed. We demonstrate achromatic extraordinary reflection and sound focusing at 1700Hz, 3400Hz, and 5100Hz, that is, they have the same reflection direction and the same focusing position. This significant feature may pave the way to new type of acoustic metasurface, and will also extend acoustic metasurface applications to strongly nonlinear source cases.

  16. Nonlinear generation of non-acoustic modes by low-frequency sound in a vibrationally relaxing gas

    International Nuclear Information System (INIS)

    Perelomova, A.

    2010-01-01

    Two dynamic equations referring to a weakly nonlinear and weakly dispersive flow of a gas in which molecular vibrational relaxation takes place, are derived. The first one governs an excess temperature associated with the thermal mode, and the second one describes variations in vibrational energy. Both quantities refer to non-wave types of gas motion. These variations are caused by the nonlinear transfer of acoustic energy into thermal mode and internal vibrational degrees of freedom of a relaxing gas. The final dynamic equations are instantaneous; they include a quadratic nonlinear acoustic source, reflecting the nonlinear character of interaction of low-frequency acoustic and non-acoustic motions of the fluid. All types of sound, periodic or aperiodic, may serve as an acoustic source of both phenomena. The low-frequency sound is considered in this study. Some conclusions about temporal behavior of non-acoustic modes caused by periodic and aperiodic sound are made. Under certain conditions, acoustic cooling takes place instead of heating. (author)

  17. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  18. Sound insulation and energy harvesting based on acoustic metamaterial plate

    Science.gov (United States)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2015-03-01

    The emergence of artificially designed sub-wavelength acoustic materials, denoted acoustic metamaterials (AMM), has significantly broadened the range of materials responses found in nature. These engineered materials can indeed manipulate sound/vibration in surprising ways, which include vibration/sound insulation, focusing, cloaking, acoustic energy harvesting …. In this work, we report both on the analysis of the airborne sound transmission loss (STL) through a thin metamaterial plate and on the possibility of acoustic energy harvesting. We first provide a theoretical study of the airborne STL and confronted them to the structure-borne dispersion of a metamaterial plate. Second, we propose to investigate the acoustic energy harvesting capability of the plate-type AMM. We have developed semi-analytical and numerical methods to investigate the STL performances of a plate-type AMM with an airborne sound excitation having different incident angles. The AMM is made of silicone rubber stubs squarely arranged in a thin aluminum plate, and the STL is calculated at low-frequency range [100Hz to 3kHz] for an incoming incident sound pressure wave. The obtained analytical and numerical STL present a very good agreement confirming the reliability of developed approaches. A comparison between computed STL and the band structure of the considered AMM shows an excellent agreement and gives a physical understanding of the observed behavior. On another hand, the acoustic energy confinement in AMM with created defects with suitable geometry was investigated. The first results give a general view for assessing the acoustic energy harvesting performances making use of AMM.

  19. Effect of rib-cage structure on acoustic chest impedance

    DEFF Research Database (Denmark)

    Zimmermann, Niels Henrik; Møller, Henrik; Hansen, John

    2011-01-01

    When a stethoscope is placed on the surface of the chest, the coupler picks up sound from heart and lungs transmitted through the tissues of the ribcage and from the surface of the skin. If the acoustic impedance of the chest surface is known, it is possible to optimize the coupler for picking up...

  20. Unvoiced Speech Recognition Using Tissue-Conductive Acoustic Sensor

    Directory of Open Access Journals (Sweden)

    Hiroshi Saruwatari

    2007-01-01

    Full Text Available We present the use of stethoscope and silicon NAM (nonaudible murmur microphones in automatic speech recognition. NAM microphones are special acoustic sensors, which are attached behind the talker's ear and can capture not only normal (audible speech, but also very quietly uttered speech (nonaudible murmur. As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech transform, etc. for sound-impaired people. Using adaptation techniques and a small amount of training data, we achieved for a 20 k dictation task a 93.9% word accuracy for nonaudible murmur recognition in a clean environment. In this paper, we also investigate nonaudible murmur recognition in noisy environments and the effect of the Lombard reflex on nonaudible murmur recognition. We also propose three methods to integrate audible speech and nonaudible murmur recognition using a stethoscope NAM microphone with very promising results.

  1. Acoustic Wave Treatment For Cellulite—A New Approach

    Science.gov (United States)

    Russe-Wilflingseder, Katharina; Russe, Elisabeth

    2010-05-01

    Background and Objectives: Cellulite is a biological caused modification of the female connective tissue. In extracorporeal shockwave therapy (ESWT) pulses are penetrating into the tissue without causing a thermal effect or micro lesions, but leading to a stimulation of tissue metabolism and blood circulation, inducing a natural repair process with cell activation and stem cells proliferation. Recently ESWT treatment showed evidence of remodelling collagen within the dermis and of stimulating microcirculation in fatty tissue. Study Design and Methods: The study was designed to assess acoustic wave treatment for cellulite by comparison treated vs. untreated side (upper-leg and buttock). Each individual served as its own control. 11 females with a BMI less then 30 and an age over 18 years were included. 6 treatments were given weekly with radial acoustic waves. Documentation was done before and 1, 4, 12 weeks after last treatment by standardized photo documentation, relaxed and with muscle contraction, measurement of body weight and circumference of the thigh, pinch test, and evaluation of hormonal status and lifestyle. The efficacy of AWT/EPAT was evaluated before and 1, 4, 12 weeks after last treatment. Patients rated the improvement of cellulite, overall satisfaction and acceptance. The therapist assessed improvement of cellulite, side effects and photo documentation treated vs. untreated side, before vs. after treatment. The blinded investigator evaluated the results using photo documentation right vs. left leg, before vs. after treatment in a frontal, lateral and dorsal view, relaxed and with muscle contraction. Results: The improvement of cellulite at the treated side was rated by patients with 27,3% at week 4 and 12, by the therapist with 34,1% at week 4 and 31,2% at week 12 after the last treatment The blinded investigator could verify an improvement of cellulite in an increasing number of patients with increasing time interval after treatment. No side

  2. Acoustic window planning for ultrasound acquisition.

    Science.gov (United States)

    Göbl, Rüdiger; Virga, Salvatore; Rackerseder, Julia; Frisch, Benjamin; Navab, Nassir; Hennersperger, Christoph

    2017-06-01

    Autonomous robotic ultrasound has recently gained considerable interest, especially for collaborative applications. Existing methods for acquisition trajectory planning are solely based on geometrical considerations, such as the pose of the transducer with respect to the patient surface. This work aims at establishing acoustic window planning to enable autonomous ultrasound acquisitions of anatomies with restricted acoustic windows, such as the liver or the heart. We propose a fully automatic approach for the planning of acquisition trajectories, which only requires information about the target region as well as existing tomographic imaging data, such as X-ray computed tomography. The framework integrates both geometrical and physics-based constraints to estimate the best ultrasound acquisition trajectories with respect to the available acoustic windows. We evaluate the developed method using virtual planning scenarios based on real patient data as well as for real robotic ultrasound acquisitions on a tissue-mimicking phantom. The proposed method yields superior image quality in comparison with a naive planning approach, while maintaining the necessary coverage of the target. We demonstrate that by taking image formation properties into account acquisition planning methods can outperform naive plannings. Furthermore, we show the need for such planning techniques, since naive approaches are not sufficient as they do not take the expected image quality into account.

  3. Topological Acoustics

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  4. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression.

    Science.gov (United States)

    Tsai, Shih-Jen

    2017-12-22

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.

  5. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  6. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha; Wu, Ying

    2016-01-01

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  7. Numerical prediction and measurement of optoacoustic signals generated in PVA-H tissue phantoms

    Science.gov (United States)

    Melchert, Oliver; Blumenröther, Elias; Wollweber, Merve; Roth, Bernhard

    2018-01-01

    We present numerical simulations of optoacoustic (OA) signals, complementing laboratory experiments on melanin doped polyvinyl alcohol hydrogel (PVA-H) tissue phantoms. We review the computational approach to model the underlying mechanisms, i.e. optical absorption of laser energy and acoustic propagation of mechanical stress, geared toward experiments that involve absorbing media with homogeneous acoustic properties. We apply the numerical procedure to predict signals observed in the acoustic near- and farfield in both, forward and backward detection mode, in PVA-H tissue phantoms (i.e. an elastic solid). Further, we report on verification tests of our research code based on OA experiments on dye solution (i.e. a liquid) detailed in the literature and benchmark our 3D procedure via limiting cases described in terms of effectively 1D theoretical approaches.

  8. Beneficial Autoimmunity at Body Surfaces – Immune Surveillance and Rapid Type 2 Immunity Regulate Tissue Homeostasis and Cancer

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis. PMID:25101088

  9. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  10. A unified view of acoustic-electrostatic solitons in complex plasmas

    Science.gov (United States)

    McKenzie, J. F.; Doyle, T. B.

    2003-03-01

    A fluid dynamic approach is used in a unified fully nonlinear treatment of the properties of the dust-acoustic, ion-acoustic and Langmuir-acoustic solitons. The analysis, which is carried out in the wave frame of the soliton, is based on total momentum conservation and Bernoulli-like energy equations for each of the particle species in each wave type, and yields the structure equation for the `heavy' species flow speed in each case. The heavy (cold or supersonic) species is always compressed in the soliton, requiring concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave. The treatment clearly elucidates the crucial role played by the heavy species sonic point in limiting the collective species Mach number, which determines the upper limit for the existence of the soliton and its amplitude, and also shows the essentially similar nature of each soliton type. An exact solution, which highlights these characteristic properties, shows that the three acoustic solitons are in fact the same mathematical entity in different physical disguises.

  11. A unified view of acoustic-electrostatic solitons in complex plasmas

    International Nuclear Information System (INIS)

    McKenzie, J F; Doyle, T B

    2003-01-01

    A fluid dynamic approach is used in a unified fully nonlinear treatment of the properties of the dust-acoustic, ion-acoustic and Langmuir-acoustic solitons. The analysis, which is carried out in the wave frame of the soliton, is based on total momentum conservation and Bernoulli-like energy equations for each of the particle species in each wave type, and yields the structure equation for the 'heavy' species flow speed in each case. The heavy (cold or supersonic) species is always compressed in the soliton, requiring concomitant constraints on the potential and on the flow speed of the electrons and protons in the wave. The treatment clearly elucidates the crucial role played by the heavy species sonic point in limiting the collective species Mach number, which determines the upper limit for the existence of the soliton and its amplitude, and also shows the essentially similar nature of each soliton type. An exact solution, which highlights these characteristic properties, shows that the three acoustic solitons are in fact the same mathematical entity in different physical disguises

  12. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  13. Acoustics an introduction

    CERN Document Server

    Kuttruff, Heinrich

    2006-01-01

    This definitive textbook provides students with a comprehensive introduction to acoustics. Beginning with the basic physical ideas, Acoustics balances the fundamentals with engineering aspects, applications and electroacoustics, also covering music, speech and the properties of human hearing. The concepts of acoustics are exposed and applied in:room acousticssound insulation in buildingsnoise controlunderwater sound and ultrasoundScientifically thorough, but with mathematics kept to a minimum, Acoustics is the perfect introduction to acoustics for students at any level of mechanical, electrical or civil engineering courses and an accessible resource for architects, musicians or sound engineers requiring a technical understanding of acoustics and their applications.

  14. Distributed feedback guided surface acoustic wave microresonator

    Science.gov (United States)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1989-08-01

    Surface acoustic wave resonators have been used in a number of applications: high-Q frequency filtering, very accurate frequency sources, etc. A major disadvantage of conventional resonators is their large dimensions, which makes them inadequate for integrated acoustics applications. In order to overcome these size limitations a new type of microresonator was designed, developed, and tested. In this paper, theoretical calculations and measurements on two kinds of such devices (a corrugated waveguide filter and a microresonator structure) are presented and their possible applications are discussed.

  15. Interior acoustic cloak

    OpenAIRE

    Wael Akl; A. Baz

    2014-01-01

    Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which a...

  16. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    Science.gov (United States)

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei

    2013-01-01

    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  18. Nonlinear ion-acoustic waves and solitons in a magnetized plasma

    International Nuclear Information System (INIS)

    Lee, L.C.; Kan, J.R.

    1981-01-01

    A unified formulation is presented to study the nonlinear low-frequency electrostatic waves in a magnetized low-β plasma. It is found that there exist three types of nonlinear waves; (1) nonlinear ion-cyclotron periodic waves with a wave speed V/sub p/ > C/sub s/ (ion-acoustic velocity); (2) nonlinear ion-acoustic periodic waves with V/sub p/ < C/sub s/ costheta; and (3) ion-acoustic solitons with C/sub s/ costheta < V/sub p/ < C/sub s/, where theta is the angle between the wave vector and the magnetic field

  19. Acoustic energy harvesting based on a planar acoustic metamaterial

    Science.gov (United States)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  20. Panel acoustic contribution analysis.

    Science.gov (United States)

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  1. The current status of research and development concerning steam generator acoustic leak detection for the demonstration FBR plant

    International Nuclear Information System (INIS)

    Higuchi, Masahisa

    1990-01-01

    The Japan Atomic Power Co. (JAPC) started the research and development into Acoustic Leak Detection for the Demonstration FBR (D-FBR) plant in 1989. Acoustic Leak Detection is expected as a water leak detection system in the Steam Generator for the first D-FBR plant. JAPC is presently analyzing data on Acoustic Leak Detection in order to form some basic concepts and basic specifications about leak detection. Both low frequency types and high frequency types are selected as candidates for Acoustic Leak Detection. After a review of both types, either one will be selected for the D-FBT plant. A detailed Research and Development plan on Acoustic Leak Detection, which should be carried out prior to starting the construction of the D-FBR plant, is under review. (author). 3 figs, 2 tabs

  2. Acoustic emission measurement during instrumented impact tests

    International Nuclear Information System (INIS)

    Crostack, H.A.; Engelhardt, A.H.

    1983-01-01

    Results of instrumented impact tests are discussed. On the one hand the development of the loading process at the hammer tup was recorded by means of a piezoelectric transducer. This instrumentation supplied a better representation of the load versus time than the conventional strain gauges. On the other hand the different types of acoustic emission occurring during a test could be separated. The acoustic emission released at the impact of the hammer onto the specimen is of lower frequency and its spectrum is strongly decreasing with increasing frequency. Plastic deformation also emits signals of lower frequency that are of quasi-continuous character. Both signal types can be discriminated by filtering. As a consequence typical burst signal were received afterwards that can be correlated with crack propagation. Their spectra exhibit considerable portions up to about 1.9 MHz. The development in time of the burst signals points to the kind of crack propagation resp. its sequence of appearance. However, definitive comparison between load and acoustic emission should become possible, only when the disadvantages of the common load measurement can be reduced, e.g. by determining the load directly at the specimen instead of the hammer tup

  3. Multi-tissue computational modeling analyzes pathophysiology of type 2 diabetes in MKR mice.

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    Full Text Available Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective.

  4. A tunable acoustic barrier based on periodic arrays of subwavelength slits

    Directory of Open Access Journals (Sweden)

    Constanza Rubio

    2015-05-01

    Full Text Available The most usual method to reduce undesirable enviromental noise levels during its transmission is the use of acoustic barriers. A novel type of acoustic barrier based on sound transmission through subwavelength slits is presented. This system consists of two rows of periodic repetition of vertical rigid pickets separated by a slit of subwavelength width and with a misalignment between them. Here, both the experimental and the numerical analyses are presented. The acoustic barrier proposed can be easily built and is frequency tunable. The results demonstrated that the proposed barrier can be tuned to mitigate a band noise without excesive barrier thickness. The use of this system as an environmental acoustic barrier has certain advantages with regard to the ones currently used both from the constructive and the acoustical point of view.

  5. A tunable acoustic barrier based on periodic arrays of subwavelength slits

    Science.gov (United States)

    Rubio, Constanza; Uris, Antonio; Candelas, Pilar; Belmar, Francisco; Gomez-Lozano, Vicente

    2015-05-01

    The most usual method to reduce undesirable enviromental noise levels during its transmission is the use of acoustic barriers. A novel type of acoustic barrier based on sound transmission through subwavelength slits is presented. This system consists of two rows of periodic repetition of vertical rigid pickets separated by a slit of subwavelength width and with a misalignment between them. Here, both the experimental and the numerical analyses are presented. The acoustic barrier proposed can be easily built and is frequency tunable. The results demonstrated that the proposed barrier can be tuned to mitigate a band noise without excesive barrier thickness. The use of this system as an environmental acoustic barrier has certain advantages with regard to the ones currently used both from the constructive and the acoustical point of view.

  6. Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation

    Science.gov (United States)

    Dark, Marta L.; Perelman, Lev T.; Itzkan, Irving; Schaffer, Jonathan L.; Feld, Michael S.

    2000-02-01

    Knee meniscus is a hydrated tissue; it is a fibrocartilage of the knee joint composed primarily of water. We present results of interferometric surface monitoring by which we measure physical properties of human knee meniscal cartilage. The physical response of biological tissue to a short laser pulse is primarily thermomechanical. When the pulse is shorter than characteristic times (thermal diffusion time and acoustic relaxation time) stresses build and propagate as acoustic waves in the tissue. The tissue responds to the laser-induced stress by thermoelastic expansion. Solving the thermoelastic wave equation numerically predicts the correct laser-induced expansion. By comparing theory with experimental data, we can obtain the longitudinal speed of sound, the effective optical penetration depth and the Grüneisen coefficient. This study yields information about the laser-tissue interaction and determines properties of the meniscus samples that could be used as diagnostic parameters.

  7. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  8. Statistics of the acoustic emission signals parameters from Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Oliveto, Maria E.; Lopez Pumarega, Maria I.; Ruzzante, Jose E.

    2000-01-01

    Statistic analysis of acoustic emission signals parameters: amplitude, duration and risetime was carried out. CANDU type Zircaloy-4 fuel claddings were pressurized up to rupture, one set of five normal pieces and six with defects included, acoustic emission was used on-line. Amplitude and duration frequency distributions were fitted with lognormal distribution functions, and risetime with an exponential one. Using analysis of variance, acoustic emission was appropriated to distinguish between defective and non-defective subsets. Clusters analysis applied on mean values of acoustic emission signal parameters were not effective to distinguish two sets of fuel claddings studied. (author)

  9. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression

    OpenAIRE

    Tsai, Shih-Jen

    2017-01-01

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Fur...

  10. Human Innate Lymphoid Cell Subsets Possess Tissue-Type Based Heterogeneity in Phenotype and Frequency

    DEFF Research Database (Denmark)

    Simoni, Yannick; Fehlings, Michael; Kloverpris, Henrik N.

    2017-01-01

    Animal models have highlighted the importance of innate lymphoid cells (ILCs) in multiple immune responses. However, technical limitations have hampered adequate characterization of ILCs in humans. Here, we used mass cytometry including a broad range of surface markers and transcription factors...... to accurately identify and profile ILCs across healthy and inflamed tissue types. High dimensional analysis allowed for clear phenotypic delineation of ILC2 and ILC3 subsets. We were not able to detect ILC1 cells in any of the tissues assessed, however, we identified intra-epithelial (ie)ILC1-like cells...... that represent a broader category of NK cells in mucosal and non-mucosal pathological tissues. In addition, we have revealed the expression of phenotypic molecules that have not been previously described for ILCs. Our analysis shows that human ILCs are highly heterogeneous cell types between individuals...

  11. Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers.

    Science.gov (United States)

    Lata, James P; Guo, Feng; Guo, Jinshan; Huang, Po-Hsun; Yang, Jian; Huang, Tony Jun

    2016-10-01

    By exploiting surface acoustic waves and a coupling layer technique, cells are patterned within a photosensitive hydrogel fiber to mimic physiological cell arrangement in tissues. The aligned cell-polymer matrix is polymerized with short exposure to UV light and the fiber is extracted. These patterned cell fibers are manipulated into simple and complex architectures, demonstrating feasibility for tissue-engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Human papillomavirus in normal conjunctival tissue and in conjunctival papilloma: types and frequencies in a large series.

    Science.gov (United States)

    Sjö, Nicolai Christian; von Buchwald, Christian; Cassonnet, Patricia; Norrild, Bodil; Prause, Jan Ulrik; Vinding, Troels; Heegaard, Steffen

    2007-08-01

    To examine conjunctival papilloma and normal conjunctival tissue for the presence of human papillomavirus (HPV). Archival paraffin wax-embedded tissue from 165 conjunctival papillomas and from 20 histological normal conjunctival biopsy specimens was analysed for the presence of HPV by PCR. Specimens considered HPV positive using consensus primers, but with a negative or uncertain PCR result using type-specific HPV probes, were analysed with DNA sequencing. HPV was present in 86 of 106 (81%) beta-globin-positive papillomas. HPV type 6 was positive in 80 cases, HPV type 11 was identified in 5 cases and HPV type 45 was present in a single papilloma. All the 20 normal conjunctival biopsy specimens were beta-globin positive and HPV negative. There is a strong association between HPV and conjunctival papilloma. The study presents the largest material of conjunctival papilloma investigated for HPV and the first investigation of HPV in normal conjunctival tissue. HPV types 6 and 11 are the most common HPV types in conjunctival papilloma. This also is the first report of HPV type 45 in conjunctival papilloma.

  13. Histological evaluation of thyroid lesions using a scanning acoustic microscope

    Directory of Open Access Journals (Sweden)

    Miura K

    2014-02-01

    Full Text Available Katsutoshi Miura,1 Hiroyuki Mineta2 1Department of Health Science, Pathology, and Anatomy, 2Department of Otorhinolaryngology, Hamamatsu University School of Medicine, Hamamatsu, Japan Purpose: A scanning acoustic microscope (SAM uses an ultrasound to image an object by plotting the speed-of-sound (SOS through tissues on screen. Because hard tissues result in great SOS, SAM can provide data on the tissue elasticity. This paper investigated the utility of SAM in evaluating thyroid lesions. Methods: Formalin-fixed, paraffin sections were scanned with a 120 MHz transducer. SOS through each area was calculated and plotted on the screen to provide histological images, and SOS of each lesion was compared and statistically analyzed. Results: High-concentrated colloids, red blood cells, and collagen fibers showed great SOS, while low-concentrated colloids, parathyroids, lymph follicles, and epithelial tissues including carcinomas demonstrated lower SOS. SAM clearly discriminated structure of thyroid components corresponding to low magnification of light microscopy. Thyroid tumors were classified into three groups by average SOS: the fast group consisted of follicular adenomas/carcinomas and malignant lymphomas; the slow group contained poorly differentiated/undifferentiated carcinomas; and the intermediate group comprised papillary/medullary carcinomas. Fragmented colloids, irregular-shaped follicles, and desmoplastic reactions were observed in the invasive area of surrounding carcinomas. Conclusion: The SAM imaging method had the following benefits: 1 precise images were acquired in a few minutes without special staining; 2 structural irregularity and desmoplastic reactions, which indicated malignancy, were detected; 3 images reflected tissue elasticity, which was statistically comparable among lesions by SOS; 4 follicular functional activity was predictable by converting colloid concentration to SOS; and 5 tumor classification was predictable by SOS

  14. Design and simulation of a microfluidic device for acoustic cell separation.

    Science.gov (United States)

    Shamloo, Amir; Boodaghi, Miad

    2018-03-01

    Experimental acoustic cell separation methods have been widely used to perform separation for different types of blood cells. However, numerical simulation of acoustic cell separation has not gained enough attention and needs further investigation since by using numerical methods, it is possible to optimize different parameters involved in the design of an acoustic device and calculate particle trajectories in a simple and low cost manner before spending time and effort for fabricating these devices. In this study, we present a comprehensive finite element-based simulation of acoustic separation of platelets, red blood cells and white blood cells, using standing surface acoustic waves (SSAWs). A microfluidic channel with three inlets, including the middle inlet for sheath flow and two symmetrical tilted angle inlets for the cells were used to drive the cells through the channel. Two interdigital transducers were also considered in this device and by implementing an alternating voltage to the transducers, an acoustic field was created which can exert the acoustic radiation force to the cells. Since this force is dependent to the size of the cells, the cells are pushed towards the midline of the channel with different path lines. Particle trajectories for different cells were obtained and compared with a theoretical equation. Two types of separations were observed as a result of varying the amplitude of the acoustic field. In the first mode of separation, white blood cells were sorted out through the middle outlet and in the second mode of separation, platelets were sorted out through the side outlets. Depending on the clinical needs and by using the studied microfluidic device, each of these modes can be applied to separate the desired cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Acoustic and aerodynamic measures of the voice during pregnancy.

    Science.gov (United States)

    Hancock, Adrienne B; Gross, Heather E

    2015-01-01

    Known influences of sex hormones on the voice would suggest pregnancy hormones could have an effect, yet studies using acoustic measures have not indicated changes. Additionally, no examination of the voice before the third trimester has been reported. Effect of pregnancy on the voice is relatively unexplored yet could be quite relevant to female speakers and singers. It is possible that spectral and aerodynamic measures would be more sensitive to tissue-level changes caused by pregnancy hormones. In this first longitudinal study of a 32-year-old woman's pregnancy, weekly voice samples were analyzed for acoustic (fundamental frequency, perturbation ratios of shimmer and jitter, Harmonic-to-Noise Ratio, spectral measures, and maximum phonation time) and aerodynamic (average airflow, peak flow, AC/DC ratio, open quotient, and speed quotient) parameters. All measures appeared generally stable during weeks 11-39 of pregnancy compared with 21 weeks postpartum. Slight decrease in minimum airflow and open speed quotient may reflect suspected vocal fold tissue changes. It is recommended that future studies monitor and test correlations among hormone levels, visual analyses of vocal fold mucosa, aerodynamic function, and glottal efficiency. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  16. Acoustic Neuroma Association

    Science.gov (United States)

    ... EVENTS DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Brain Freeze ? READ MORE Read More What is acoustic neuroma? Identifying an AN Learn More Get Info ...

  17. Development of ion-acoustic double layers through ion-acoustic fluctuations

    International Nuclear Information System (INIS)

    Sekar, A.N.; Saxena, Y.C.

    1985-01-01

    Experimental results on the formation of ion acoustic double layers resembling asymmetric ion-holes are presented. In a double plasma device, modified suitably to inject electron beam into the target plasma, modulation of the beam through step potential leads to excitation of ion-acoustic fluctuation. The ion-acoustic fluctuation, growing away from the grids separating source and target plasmas, developed into weak asymmetric ion-acoustic double layer. The observations are in qualitative agreement with theoretical models and computer simulations. (author)

  18. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  19. Tissue response to a new type of biomaterial implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Boennelycke, Marie; Christensen, Lise; Nielsen, Lene Feldskov

    2011-01-01

    -cellular matrix (ECM) or estrogen. Methods Ten implants of each type were tested for 3 and 8 weeks, respectively. Histological assessment of connective tissue organization, inflammation, vascularization, and thickness of regenerated tissue was undertaken. Results All implants had a high degree of biocompatibility....... ECM-enriched implants had significantly higher inflammatory scores compared to pure implants at 3 weeks. At 8 weeks, neither of the parameters differed significantly. No trace of the implants remained. Conclusions The MPEG-PLGA is highly biocompatible, degrades quickly, and seems inert in the process...

  20. On measurement of the acoustic nonlinearity parameter using the finite amplitude insertion substitution (FAIS) technique

    Science.gov (United States)

    Zeqiri, Bajram; Cook, Ashley; Rétat, Lise; Civale, John; ter Haar, Gail

    2015-04-01

    The acoustic nonlinearity parameter, B/A, is an important parameter which defines the way a propagating finite amplitude acoustic wave progressively distorts when travelling through any medium. One measurement technique used to determine its value is the finite amplitude insertion substitution (FAIS) method which has been applied to a range of liquid, tissue and tissue-like media. Importantly, in terms of the achievable measurement uncertainties, it is a relative technique. This paper presents a detailed study of the method, employing a number of novel features. The first of these is the use of a large area membrane hydrophone (30 mm aperture) which is used to record the plane-wave component of the acoustic field. This reduces the influence of diffraction on measurements, enabling studies to be carried out within the transducer near-field, with the interrogating transducer, test cell and detector positioned close to one another, an attribute which assists in controlling errors arising from nonlinear distortion in any intervening water path. The second feature is the development of a model which estimates the influence of finite-amplitude distortion as the acoustic wave travels from the rear surface of the test cell to the detector. It is demonstrated that this can lead to a significant systematic error in B/A measurement whose magnitude and direction depends on the acoustic property contrast between the test material and the water-filled equivalent cell. Good qualitative agreement between the model and experiment is reported. B/A measurements are reported undertaken at (20 ± 0.5) °C for two fluids commonly employed as reference materials within the technical literature: Corn Oil and Ethylene Glycol. Samples of an IEC standardised agar-based tissue-mimicking material were also measured. A systematic assessment of measurement uncertainties is presented giving expanded uncertainties in the range ±7% to ±14%, expressed at a confidence level close to 95

  1. MR-guided noninvasive thermal coagulation of in-vivo liver tissue using ultrasonic phased array

    Science.gov (United States)

    Daum, Douglas R.; Smith, Nadine; McDannold, Nathan; Hynynen, Kullervo H.

    1999-05-01

    Magnetic resonance (MR) imaging was used to guide and monitor the thermal tissue coagulation of in vivo porcine tissue using a 256 element ultrasonic phased array. The array could coagulate tissue volumes greater than 2 cm3 in liver and 0.5 cm3 in kidney using a single 20 second sonication. This sonication used multiple focus fields which were temporally cycled to heat large tissue volumes simultaneously. Estimates of the coagulated tissue using a thermal dose threshold compare well with T2-weighted images of post sonication lesions. The overlapping large focal volumes could aid in the treatment of large tumor volumes which require multiple overlapping sonications. The ability of MR to detect the presence and undesirable thermal increases at acoustic obstacle such as cartilaginous and bony ribs is demonstrated. This could have a significant impact on the ability to monitor thermal treatments of the liver and other organs which are acoustically blocked.

  2. Acoustic radiation force impulse imaging with Virtual Touch™ tissue quantification: mean shear wave velocity of malignant and benign breast masses

    Directory of Open Access Journals (Sweden)

    Wojcinski S

    2013-09-01

    Full Text Available Sebastian Wojcinski,1 Kathrin Brandhorst,2 Gelareh Sadigh,3 Peter Hillemanns,1 Friedrich Degenhardt2 1Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany; 2Department of Obstetrics and Gynecology, Franziskus Hospital, Bielefeld, Germany; 3Department of Radiology, Emory University, Atlanta, GA, USA Abstract: Acoustic radiation force impulse imaging (ARFI with Virtual Touch™ tissue quantification (VTTQ enables the determination of shear wave velocity (SWV in meters per second (m/s. The aim of our study was to describe the mean SWV in normal breast tissue and various breast masses. We performed measurements of SWV with ARFI VTTQ in 145 breast masses (57 malignant, 88 benign and in the adjacent breast parenchyma and adipose tissue. The mean SWV as well as the rate of successful measurements were analyzed. The difference between adipose tissue and parenchyma was statistically significant (3.05 versus 3.65 m/s (P < 0.001. Focusing on breast masses, numerous measurements exceeded the upper limit of possible measurement (≥9.10 m/s, indicated as "X.XX m/s". Nevertheless, the difference between the malignant and benign masses was statistically significant (8.38 ± 1.99 m/s versus 5.39 ± 2.95 m/s (P < 0.001. The best diagnostic accuracy (75.9% was achieved when the cutoff point for malignancy was set to 9.10 m/s in ARFI VTTQ. This implies that the SWV was regarded as suspicious when the upper limit of possible measurement was exceeded and the machine returned the value X.XX m/s. In conclusion, ARFI VTTQ is a feasible method for measurement of SWV in a region of interest. Furthermore, we propose the event of a highly elevated SWV as a significant criterion for malignancy. However, the method is technically not yet fully developed, and the problem of unsuccessful measurements must still be solved. Keywords: ARFI VTTQ, elastography, ultrasound, breast imaging

  3. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  4. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    Science.gov (United States)

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  5. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall

    2014-01-01

    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  6. On the acoustics of ancient Greek and Roman theaters.

    Science.gov (United States)

    Farnetani, Andrea; Prodi, Nicola; Pompoli, Roberto

    2008-09-01

    The interplay of architecture and acoustics is remarkable in ancient Greek and Roman theaters. Frequently they are nowadays lively performance spaces and the knowledge of the sound field inside them is still an issue of relevant importance. Even if the transition from Greek to Roman theaters can be described with a great architectural detail, a comprehensive and objective approach to the two types of spaces from the acoustical point of view is available at present only as a computer model study [P. Chourmouziadou and J. Kang, "Acoustic evolution of ancient Greek and Roman theaters," Appl. Acoust. 69, re (2007)]. This work addresses the same topic from the experimental point of view, and its aim is to provide a basis to the acoustical evolution from Greek to Roman theater design. First, by means of in situ and scale model measurements, the most important features of the sound field in ancient theaters are clarified and discussed. Then it has been possible to match quantitatively the role of some remarkable architectural design variables with acoustics, and it is seen how this criterion can be used effectively to define different groups of ancient theaters. Finally some more specific wave phenomena are addressed and discussed.

  7. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  8. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  9. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    Science.gov (United States)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  10. Processing of acoustic signal in rock desintegration

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-12-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  11. The effect of high level multi-tone excitation on the acoustic properties of perforates and liner samples

    OpenAIRE

    Bodén, Hans

    2012-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates and liner samples. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perforates at other frequencies, thereby changing the boundary condition seen by the acoustic waves. Thi...

  12. Internal Acoustics of the ISS and Other Spacecraft

    Science.gov (United States)

    Allen, Christopher S.

    2017-01-01

    It is important to control the acoustic environment inside spacecraft and space habitats to protect for astronaut communications, alarm audibility, and habitability, and to reduce astronauts' risk for sleep disturbance, and hear-ing loss. But this is not an easy task, given the various design trade-offs, and it has been difficult, historically, to achieve. Over time it has been found that successful control of spacecraft acoustic levels is achieved by levying firm requirements at the system-level, using a systems engineering approach for design and development, and then validating these requirements with acoustic testing. In the systems engineering method, the system-level requirements must be flowed down to sub-systems and component noise sources, using acoustic analysis and acoustic modelling to develop allocated requirements for the sub-systems and components. Noise controls must also be developed, tested, and implemented so the sub-systems and components can achieve their allocated limits. It is also important to have management support for acoustics efforts to maintain their priority against the various trade-offs, including mass, volume, power, cost, and schedule. In this extended abstract and companion presentation, the requirements, approach, and results for controlling acoustic levels in most US spacecraft since Apollo will be briefly discussed. The approach for controlling acoustic levels in the future US space vehicle, Orion Multipurpose Crew Vehicle (MPCV), will also be briefly discussed. These discussions will be limited to the control of continuous noise inside the space vehicles. Other types of noise, such as launch, landing, and abort noise, intermittent noise, Extra-Vehicular Activity (EVA) noise, emergency operations/off-nominal noise, noise exposure, and impulse noise are important, but will not be discussed because of time limitations.

  13. Calculation of the acoustical properties of triadic harmonies.

    Science.gov (United States)

    Cook, Norman D

    2017-12-01

    The author reports that the harmonic "tension" and major/minor "valence" of pitch combinations can be calculated directly from acoustical properties without relying on concepts from traditional harmony theory. The capability to compute the well-known types of harmonic triads means that their perception is not simply a consequence of learning an arbitrary cultural "idiom" handed down from the Italian Renaissance. On the contrary, for typical listeners familiar with diatonic music, attention to certain, definable, acoustical features underlies the perception of the valence (modality) and the inherent tension (instability) of three-tone harmonies.

  14. Acoustic Metamaterials in Aeronautics

    Directory of Open Access Journals (Sweden)

    Giorgio Palma

    2018-06-01

    Full Text Available Metamaterials, man-made composites that are scaled smaller than the wavelength, have demonstrated a huge potential for application in acoustics, allowing the production of sub-wavelength acoustic absorbers, acoustic invisibility, perfect acoustic mirrors and acoustic lenses for hyper focusing, and acoustic illusions and enabling new degrees of freedom in the control of the acoustic field. The zero, or even negative, refractive sound index of metamaterials offers possibilities for the control of acoustic patterns and sound at sub-wavelength scales. Despite the tremendous growth in research on acoustic metamaterials during the last decade, the potential of metamaterial-based technologies in aeronautics has still not been fully explored, and its utilization is still in its infancy. Thus, the principal concepts mentioned above could very well provide a means to develop devices that allow the mitigation of the impact of civil aviation noise on the community. This paper gives a review of the most relevant works on acoustic metamaterials, analyzing them for their potential applicability in aeronautics, and, in this process, identifying possible implementation areas and interesting metabehaviors. It also identifies some technical challenges and possible future directions for research with the goal of unveiling the potential of metamaterials technology in aeronautics.

  15. Vibration and acoustic noise emitted by dry-type air-core reactors under PWM voltage excitation

    Science.gov (United States)

    Li, Jingsong; Wang, Shanming; Hong, Jianfeng; Yang, Zhanlu; Jiang, Shengqian; Xia, Shichong

    2018-05-01

    According to coupling way between the magnetic field and the structural order, structure mode is discussed by engaging finite element (FE) method and both natural frequency and modal shape for a dry-type air-core reactor (DAR) are obtained in this paper. On the basis of harmonic response analysis, electromagnetic force under PWM (Pulse Width Modulation) voltage excitation is mapped with the structure mesh, the vibration spectrum is gained and the consequences represents that the whole structure vibration predominates in the radial direction, with less axial vibration. Referring to the test standard of reactor noise, the rules of emitted noise of the DAR are measured and analyzed at chosen switching frequency matches the sample resonant frequency and the methods of active vibration and noise reduction are put forward. Finally, the low acoustic noise emission of a prototype DAR is verified by measurement.

  16. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    Science.gov (United States)

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics.

  17. Synchrotron FTIR Imaging For The Identification Of Cell Types Within Human Tissues

    International Nuclear Information System (INIS)

    Walsh, Michael J.; Pounder, F. Nell; Nasse, Michael J.; Macias, Virgilia; Kajdacsy-Balla, Andre; Hirschmugl, Carol; Bhargava, Rohit

    2010-01-01

    The use of synchrotron Fourier Transform Infrared spectroscopy (S-FTIR) has been shown to be a very promising tool for biomedical research. S-FTIR spectroscopy allows for the fast acquisition of infrared (IR) spectra at a spatial resolution approaching the IR diffraction limit. The development of the Infrared Environmental Imaging (IRENI) beamline at the Synchrotron Radiation Center (SRC) at the University of Wisconsin-Madison has allowed for diffraction limited imaging measurements of cells in human prostate and breast tissues. This has allowed for the identification of cell types within tissues that would otherwise not have been resolvable using conventional FTIR sources.

  18. Calibration of acoustic emission transducers

    International Nuclear Information System (INIS)

    Leschek, W.C.

    1976-01-01

    A method is described for calibrating an acoustic emission transducer to be used in a pre-set frequency range. The absolute reception sensitivity of a reference transducer is determined at frequencies selected within the frequency range. The reference transducer and the acoustic emission transducer are put into acoustic communication with the surface of a limited acoustic medium representing an equivalent acoustic load appreciably identical to that of the medium in which the use of the acoustic emission transducer is intended. A blank random acoustic noise is emitted in the acoustic medium in order to establish a diffuse and reverberating sound field, after which the output responses of the reference transducer and of the acoustic emission transducer are obtained with respect to the diffuse and reverberating field, for selected frequencies. The output response of the acoustic emission transducer is compared with that of the reference transducer for the selected frequencies, so as to determine the reception sensitivity of the acoustic emission transducer [fr

  19. Testing cosmic transparency with the latest baryon acoustic oscillations and type Ia supernovae data

    International Nuclear Information System (INIS)

    Chen Jun; Yu Hong-Wei; Li Zheng-Xiang; Wu Pu-Xun

    2013-01-01

    Observations show that Type Ia supernovae (SNe Ia) are dimmer than expected from a matter dominated Universe. It has been suggested that this observed phenomenon can also be explained using light absorption instead of dark energy. However, there is a serious degeneracy between the cosmic absorption parameter and the present matter density parameter Ω m when one tries to place constraints on the cosmic opacity using SNe Ia data. We combine the latest baryon acoustic oscillation (BAO) and Union2 SNe Ia data in order to break this degeneracy. Assuming a flat ΛCDM model, we find that, although an opaque Universe is favored by SNe Ia+BAO since the best fit value of the cosmic absorption parameter is larger than zero, Ω m = 1 is ruled out at the 99.7% confidence level. Thus, cosmic opacity is not sufficient to account for the present observations and dark energy or modified gravity is still required.

  20. Electron-acoustic solitary waves in the Earth's inner magnetosphere

    Science.gov (United States)

    Dillard, C. S.; Vasko, I. Y.; Mozer, F. S.; Agapitov, O. V.; Bonnell, J. W.

    2018-02-01

    The broadband electrostatic turbulence observed in the inner magnetosphere is produced by large-amplitude electrostatic solitary waves of generally two types. The solitary waves with symmetric bipolar parallel (magnetic field-aligned) electric field are electron phase space holes. The solitary waves with highly asymmetric bipolar parallel electric field have been recently shown to correspond to the electron-acoustic plasma mode (existing due to two-temperature electron population). Through theoretical and numerical analysis of hydrodynamic and modified Korteweg-de Vries equations, we demonstrate that the asymmetric solitary waves appear due to the steepening of initially quasi-monochromatic electron-acoustic perturbation arrested at some moment by collisionless dissipation (Landau damping). The typical steepening time is found to be from a few to tens of milliseconds. The steepening of the electron-acoustic waves has not been reproduced in self-consistent kinetic simulations yet, and factors controlling the formation of steepened electron-acoustic waves, rather than electron phase space holes, remain unclear.

  1. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    International Nuclear Information System (INIS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-01-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers. - Highlights: • Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. • Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. • However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. • Optical tweezers can trap, move and positioned micron size particles with subnanometer accuracy in three dimensions. • One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. • Acoustical tweezers overcome this limitation since the force scales as the field intensity divided by its propagation speed. • However, the feasibility of single beam acoustical tweezers was demonstrated only recently. • We propose a review of the strong similarities but also the specificities of acoustical

  2. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    OpenAIRE

    Hai Jiang; Jianfang Liu; Qingqing Lv; Shoudong Gu; Xiaoyang Jiao; Minjiao Li; Shasha Zhang

    2016-01-01

    The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radi...

  3. Prediction and near-field observation of skull-guided acoustic waves.

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  4. Prediction and near-field observation of skull-guided acoustic waves

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  5. Sound field simulation and acoustic animation in urban squares

    Science.gov (United States)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  6. Processing of acoustic and phonological information of lexical tones in Mandarin Chinese revealed by mismatch negativity.

    Science.gov (United States)

    Yu, Keke; Wang, Ruiming; Li, Li; Li, Ping

    2014-01-01

    The accurate perception of lexical tones in tonal languages involves the processing of both acoustic information and phonological information carried by the tonal signal. In this study we evaluated the relative role of the two types of information in native Chinese speaker's processing of tones at a preattentive stage with event-related potentials (ERPs), particularly the mismatch negativity (MNN). Specifically, we distinguished the acoustic from the phonological information by manipulating phonological category and acoustic interval of the stimulus materials. We found a significant main effect of phonological category for the peak latency of MMN, but a main effect of both phonological category and acoustic interval for the mean amplitude of MMN. The results indicated that the two types of information, acoustic and phonological, play different roles in the processing of Chinese lexical tones: acoustic information only impacts the extent of tonal processing, while phonological information affects both the extent and the time course of tonal processing. Implications of these findings are discussed in light of neurocognitive processes of phonological processing.

  7. LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues

    Science.gov (United States)

    Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.

    2002-11-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.

  8. Radiation acoustics and its applications

    International Nuclear Information System (INIS)

    Lyamshev, L.M.

    1992-01-01

    Radiation acoustics is a new branch of acoustics, developing on the boundary of acoustics, nuclear physics, elementary particles and high-energy physics. Its fundamentals are laying in the research of acoustical effects due to the interaction of penetrating radiation with matter. The study of radiation-acoustical effects leads to the new opportunities in the penetration radiation research (acoustical detection, radiation-acoustical dosimetry), study of the physical parameters of matter, in a solution of some applied problems of nondestructive testing, and also for the radiation-acoustical influence on physical and chemical structure of the matter. Results of theoretical and experimental investigations are given. Different mechanisms of the sound generation by penetrating radiation of liquids and solids are considered. Some applications - the radiation acoustical microscopy and visualisation, the acoustical detection of high energy X-ray particles and possibility of using of high energy neutrino beams in geoacoustics - are discussed

  9. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  10. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow?

    Science.gov (United States)

    Asano, Kenichiro; Ogata, Ai; Tanaka, Keiko; Ide, Yoko; Sankoda, Akiko; Kawakita, Chieko; Nishikawa, Mana; Ohmori, Kazuyoshi; Kinomura, Masaru; Shimada, Noriaki; Fukushima, Masaki

    2014-05-01

    The aim of this study was to identify the main influencing factor of the shear wave velocity (SWV) of the kidneys measured by acoustic radiation force impulse elastography. The SWV was measured in the kidneys of 14 healthy volunteers and 319 patients with chronic kidney disease. The estimated glomerular filtration rate was calculated by the serum creatinine concentration and age. As an indicator of arteriosclerosis of large vessels, the brachial-ankle pulse wave velocity was measured in 183 patients. Compared to the degree of interobserver and intraobserver deviation, a large variance of SWV values was observed in the kidneys of the patients with chronic kidney disease. Shear wave velocity values in the right and left kidneys of each patient correlated well, with high correlation coefficients (r = 0.580-0.732). The SWV decreased concurrently with a decline in the estimated glomerular filtration rate. A low SWV was obtained in patients with a high brachial-ankle pulse wave velocity. Despite progression of renal fibrosis in the advanced stages of chronic kidney disease, these results were in contrast to findings for chronic liver disease, in which progression of hepatic fibrosis results in an increase in the SWV. Considering that a high brachial-ankle pulse wave velocity represents the progression of arteriosclerosis in the large vessels, the reduction of elasticity succeeding diminution of blood flow was suspected to be the main influencing factor of the SWV in the kidneys. This study indicates that diminution of blood flow may affect SWV values in the kidneys more than the progression of tissue fibrosis. Future studies for reducing data variance are needed for effective use of acoustic radiation force impulse elastography in patients with chronic kidney disease.

  11. [Acoustic and aerodynamic characteristics of the oesophageal voice].

    Science.gov (United States)

    Vázquez de la Iglesia, F; Fernández González, S

    2005-12-01

    The aim of the study is to determine the physiology and pathophisiology of esophageal voice according to objective aerodynamic and acoustic parameters (quantitative and qualitative parameters). Our subjects were comprised of 33 laryngectomized patients (all male) that underwent aerodynamic, acoustic and perceptual protocol. There is a statistical association between acoustic and aerodynamic qualitative parameters (phonation flow chart type, sound spectrum, perceptual analysis) among quantitative parameters (neoglotic pressure, phonation flow, phonation time, fundamental frequency, maximum intensity sound level, speech rate). Nevertheles, not always such observations bring practical resources to clinical practice. We consider that the facts studied may enable us to add, pragmatically, new resources to the more effective vocal rehabilitation to these patients. The physiology of esophageal voice is well understood by the method we have applied, also seeking for rehabilitation, improving oral communication skills in the laryngectomee population.

  12. Influence of collagen type II and nucleus pulposus cells on aggregation and differentiation of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Lu, Z.F.; Zandieh Doulabi, B.; Wuisman, P.I.; Bank, R.A.; Helder, M.N.

    2008-01-01

    Tissue microenvironment plays a critical role in guiding local stem cell differentiation. Within the intervertebral disc, collagen type II and nucleus pulposus (NP) cells are two major components. This study aimed to investigate how collagen type II and NP cells affect adipose tissue-derived stem

  13. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography.

    Science.gov (United States)

    Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing

    2011-04-11

    Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America

  14. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  15. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  16. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting.

    Science.gov (United States)

    Park, Ju Young; Choi, Jong-Cheol; Shim, Jin-Hyung; Lee, Jung-Seob; Park, Hyoungjun; Kim, Sung Won; Doh, Junsang; Cho, Dong-Woo

    2014-09-01

    Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration.

  17. Acoustic Impedance Inversion To Identify Oligo-Miocene Carbonate Facies As Reservoir At Kangean Offshore Area

    Science.gov (United States)

    Zuli Purnama, Arif; Ariyani Machmud, Pritta; Eka Nurcahya, Budi; Yusro, Miftahul; Gunawan, Agung; Rahmadi, Dicky

    2018-03-01

    Model based inversion was applied to inversion process of 2D seismic data in Kangean Offshore Area. Integration acoustic impedance from wells and seismic data was expected showing physical property, facies separation and reservoir quality of carbonate rock, particularly in Kangean Offshore Area. Quantitative and qualitative analysis has been conducted on the inversion results to characterize the carbonate reservoir part of Kujung and correlate it to depositional facies type. Main target exploration in Kangean Offshore Area is Kujung Formation (Oligo-Miocene Carbonate). The type of reservoir in this area generate from reef growing on the platform. Carbonate rock is a reservoir which has various type and scale of porosity. Facies determination is required to to predict reservoir quality, because each facies has its own porosity value. Acoustic impedance is used to identify and characterize Kujung carbonate facies, also could be used to predict the distribution of porosity. Low acoustic impedance correlated with packstone facies that has acoustic impedance value below 7400 gr/cc*m/s. In other situation, high acoustic impedance characterized by wackestone facies above 7400 gr/cc*m/s. The interpretation result indicated that Kujung carbonate rock dominated by packstone facies in the upper part of build-up and it has ideal porosity for hydrocarbon reservoir.

  18. Flow-excited acoustic resonance excitation mechanism, design guidelines, and counter measures

    International Nuclear Information System (INIS)

    Ziada, Samir; Lafon, Philippe

    2014-01-01

    The excitation mechanism of acoustic resonances has long been recognized, but the industry continues to be plagued by its undesirable consequences, manifested in severe vibration and noise problems in a wide range of industrial applications. This paper focuses on the nature of the excitation mechanism of acoustic resonances in piping systems containing impinging shear flows, such as flow over shallow and deep cavities. Since this feedback mechanism is caused by the coupling between acoustic resonators and shear flow instabilities, attention is focused first on the nature of various types of acoustic resonance modes and then on the aero-acoustic sound sources, which result from the interaction of the inherently unstable shear flow with the sound field generated by the resonant acoustic modes. Various flow-sound interaction patterns are discussed, in which the resonant sound field can be predominantly parallel or normal to the mean flow direction and the acoustic wavelength can be an order of magnitude longer than the length scale of the separated shear flow or as short as the cavity length scale. Since the state of knowledge in this field has been recently reviewed by Tonon et al. (2011, 'Aero-acoustics of Pipe Systems With Closed Branches', Int. J. Aeroacoust., 10(2), pp. 201-276), this article focuses on the more practical aspects of the phenomenon, including various flow sound interaction patterns and the resulting aero-acoustic sources, which are relevant to industrial applications. A general design guide proposal and practical means to alleviate the excitation mechanism are also presented. These are demonstrated by two examples of recent industrial case histories dealing with acoustic fatigue failure of the steam dryer in a boiling water reactor (BWR) due to acoustic resonance in the main steam piping and acoustic resonances in the roll posts of the Short Take-Off and Vertical Lift Joint Strike Fighter (JSF). (authors)

  19. Real-time temperature estimation and monitoring of HIFU ablation through a combined modeling and passive acoustic mapping approach

    International Nuclear Information System (INIS)

    Jensen, C R; Cleveland, R O; Coussios, C C

    2013-01-01

    Passive acoustic mapping (PAM) has been recently demonstrated as a method of monitoring focused ultrasound therapy by reconstructing the emissions created by inertially cavitating bubbles (Jensen et al 2012 Radiology 262 252–61). The published method sums energy emitted by cavitation from the focal region within the tissue and uses a threshold to determine when sufficient energy has been delivered for ablation. The present work builds on this approach to provide a high-intensity focused ultrasound (HIFU) treatment monitoring software that displays both real-time temperature maps and a prediction of the ablated tissue region. This is achieved by determining heat deposition from two sources: (i) acoustic absorption of the primary HIFU beam which is calculated via a nonlinear model, and (ii) absorption of energy from bubble acoustic emissions which is estimated from measurements. The two sources of heat are used as inputs to the bioheat equation that gives an estimate of the temperature of the tissue as well as estimates of tissue ablation. The method has been applied to ex vivo ox liver samples and the estimated temperature is compared to the measured temperature and shows good agreement, capturing the effect of cavitation-enhanced heating on temperature evolution. In conclusion, it is demonstrated that by using PAM and predictions of heating it is possible to produce an evolving estimate of cell death during exposure in order to guide treatment for monitoring ablative HIFU therapy. (paper)

  20. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  1. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis

    Energy Technology Data Exchange (ETDEWEB)

    Liang, S. M., E-mail: liangsm@cc.feu.edu.tw; Yang, Z. Y. [Department of Industrial Design, Far East University, No. 49, Zhonghua Road, Xinshi District, Tainan City 744, Taiwan (China); Chang, M. H. [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, University Road, East District, Tainan City 701, Taiwan (China)

    2014-01-15

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm{sup 2} (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  2. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis.

    Science.gov (United States)

    Liang, S M; Chang, M H; Yang, Z Y

    2014-01-01

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm(2) (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  3. Reversal of Type 1 Diabetes in Mice by Brown Adipose Tissue Transplant

    Science.gov (United States)

    Gunawardana, Subhadra C.; Piston, David W.

    2012-01-01

    Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized glucose tolerance, reduced tissue inflammation, and reversal of clinical diabetes markers such as polyuria, polydipsia, and polyphagia. These effects are independent of insulin but correlate with recovery of the animals’ white adipose tissue. BAT transplants lead to significant increases in adiponectin and leptin, but with levels that are static and not responsive to glucose. Pharmacological blockade of the insulin receptor in BAT transplant mice leads to impaired glucose tolerance, similar to what is seen in nondiabetic animals, indicating that insulin receptor activity plays a role in the reversal of diabetes. One possible candidate for activating the insulin receptor is IGF-1, whose levels are also significantly elevated in BAT transplant mice. Thus, we propose that the combined action of multiple adipokines establishes a new equilibrium in the animal that allows for chronic glycemic control without insulin. PMID:22315305

  4. Novel Cranial Implants of Yttria-Stabilized Zirconia as Acoustic Windows for Ultrasonic Brain Therapy.

    Science.gov (United States)

    Gutierrez, Mario I; Penilla, Elias H; Leija, Lorenzo; Vera, Arturo; Garay, Javier E; Aguilar, Guillermo

    2017-11-01

    Therapeutic ultrasound can induce changes in tissues by means of thermal and nonthermal effects. It is proposed for treatment of some brain pathologies such as Alzheimer's, Parkinson's, Huntington's diseases, and cancer. However, cranium highly absorbs ultrasound reducing transmission efficiency. There are clinical applications of transcranial focused ultrasound and implantable ultrasound transducers proposed to address this problem. In this paper, biocompatible materials are proposed for replacing part of the cranium (cranial implants) based on low porosity polycrystalline 8 mol% yttria-stabilized-zirconia (8YSZ) ceramics as acoustic windows for brain therapy. In order to assess the viability of 8YSZ implants to effectively transmit ultrasound, various 8YSZ ceramics with different porosity are tested; their acoustic properties are measured; and the results are validated using finite element models simulating wave propagation to brain tissue through 8YSZ windows. The ultrasound attenuation is found to be linearly dependent on ceramics' porosity. Results for the nearly pore-free case indicate that 8YSZ is highly effective in transmitting ultrasound, with overall maximum transmission efficiency of ≈81%, compared to near total absorption of cranial bone. These results suggest that 8YSZ polycrystals could be suitable acoustic windows for ultrasound brain therapy at 1 MHz. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Increased lipids in non-lipogenic tissues are indicators of the severity of type 2 diabetes in mice

    DEFF Research Database (Denmark)

    Campbell-Tofte, J.; Hansen, H.S.; Mu, Huiling

    2007-01-01

    We hypothesised that the molecular changes triggered in type 2 diabetes might cause phenotypic changes in the lipid fraction of tissues. We compared tissue lipid profiles of inbred lean B6-Bom with those of the obese B6-ob/ob and diabetic BKS-db/db mice and found that genetically diabetic mice...... significantly accumulate fat (especially monounsaturated fatty acids, MUFA) in non-lipogenic tissues such as the eye (MUFA, 2-fold), skeletal muscle (MUFA, 13-fold) and pancreas (MUFA, 16-fold). In contrast, the B6-ob/ob mice which manifest a milder form of type 2 diabetes use the liver as their predominant...

  6. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  7. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, Annika; Siegmund, Birte J. [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany); Grüttner, Cordula [Micromod Partikeltechnologie GmbH, Warnemünde, D-18115 Rostock (Germany); Kühn, Jens-Peter [Department of Radiology and Neuroradiology, Greifswald University Medical Center, D-17475 Greifswald (Germany); Frerich, Bernhard, E-mail: bernhard.frerich@med.uni-rostock.de [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany)

    2015-04-15

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time. - Highlights: • Adipose tissue-derived stem cells (ASC) were labeled with magnetic iron oxide nanoparticles. • Nanoparticles influenced the adipogenic differentiation of ASC. • Labeled cells were seeded onto collagen scaffolds and implanted in SCID mice. • Nanoparticle-labeled cells were visualized in vivo using T2-weighted sequences. • Volume of collagen scaffolds was decreased over time after implantation.

  8. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    International Nuclear Information System (INIS)

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-01-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time. - Highlights: • Adipose tissue-derived stem cells (ASC) were labeled with magnetic iron oxide nanoparticles. • Nanoparticles influenced the adipogenic differentiation of ASC. • Labeled cells were seeded onto collagen scaffolds and implanted in SCID mice. • Nanoparticle-labeled cells were visualized in vivo using T2-weighted sequences. • Volume of collagen scaffolds was decreased over time after implantation

  9. Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7

    Science.gov (United States)

    Walker, R.

    1984-12-01

    The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.

  10. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  11. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-21

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s -1 ) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  12. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pyshnyi, Michael Ph. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)], E-mail: kuznetsov_oa@yahoo.com; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)

    2009-05-15

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  13. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    International Nuclear Information System (INIS)

    Pyshnyi, Michael Ph.; Kuznetsov, Oleg A.; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A.

    2009-01-01

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  14. Acoustic richness modulates the neural networks supporting intelligible speech processing.

    Science.gov (United States)

    Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E

    2016-03-01

    The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier

  15. Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA-cryogel phantom with optimal acoustic and mechanical properties.

    Science.gov (United States)

    Cournane, S; Cannon, L; Browne, J E; Fagan, A J

    2010-10-07

    The accuracy of a transient elastography liver-scanning ultrasound system was assessed using a novel application of PVA-cryogel as a tissue-mimicking material with acoustic and shear elasticity properties optimized to best represent those of liver tissue. Although the liver-scanning system has been shown to offer a safer alternative for diagnosing liver cirrhosis through stiffness measurement, as compared to the liver needle biopsy exam, the scanner's accuracy has not been fully established. Young's elastic modulus values of 5-6 wt% PVA-cryogel phantoms, also containing glycerol and 0.3 µm Al(2)O(3) and 3 µm Al(2)O(3), were measured using a 'gold standard' mechanical testing technique and transient elastography. The mechanically measured values and acoustic velocities of the phantoms ranged between 1.6 and 16.1 kPa and 1540 and 1570 m s(-1), respectively, mimicking those observed in liver tissue. The values reported by the transient elastography system overestimated Young's elastic modulus values representative of the progressive stages of liver fibrosis by up to 32%. These results were attributed to the relative rather than absolute nature of the measurement arising from the single-point acoustic velocity calibration of the system, rendering the measurements critically dependent on the speed of sound of the sample under investigation. Given the wide range of acoustic velocities which exist in the liver, spanning healthy tissue to cirrhotic pathology, coupled with the system's assumption that the liver is approximately elastic when it is rather highly viscoelastic, care should be exercised when interpreting the results from this system in patient groups.

  16. CALCULATION OF ACOUSTIC EFFICIENCY OF PORTABLE ACOUSTIC SCREEN

    Directory of Open Access Journals (Sweden)

    Aleksandr Skvortsov

    2016-03-01

    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  17. Band Width of Acoustic Resonance Frequency Relatively Natural Frequency of Fuel Rod Vibration

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, Konstantin Nicolaevich; Moukhine, V.S.; Novikov, K.S.; Galivets, E.Yu. [MPEI - TU, 14, Krasnokazarmennaya str., Moscow, 111250 (Russian Federation)

    2009-06-15

    In flow induced vibrations the fluid flow is the energy source that causes vibration. Acoustic resonance in piping may lead to severe problems due to over-stressing of components or significant losses of efficiency. Steady oscillatory flow in NPP primary loop can be induced by the pulsating flow introduced by reactor circulating pump or may be set up by self-excitation. Dynamic forces generated by the turbulent flow of coolant in reactor cores cause fuel rods (FR) and fuel assembly (FA) to vibrate. Flow-induced FR and FA vibrations can generally be broken into three groups: large amplitude 'resonance type' vibrations, which can cause immediate rod failure or severe damage to the rod and its support structure, middle amplitude 'within bandwidth of resonance frequency type' vibrations responsible for more gradual wear and fatigue at the contact surface between the fuel cladding and rod support and small amplitude vibrations, 'out of bandwidth of resonance frequency type' responsible for permissible wear and fatigue at the contact surface between the fuel cladding and rod support. Ultimately, these vibration types can result in a cladding breach, and therefore must be accounted for in the thermal hydraulic design of FR and FA and reactor internals. In paper the technique of definition of quality factor (Q) of acoustic contour of the coolant is presented. The value of Q defines a range of frequencies of acoustic fluctuations of the coolant within which the resonance of oscillations of the structure and the coolant is realized. Method of evaluation of so called band width (BW) of acoustic resonance frequency is worked out and presented in the paper. BW characterises the range of the frequency of coolant pressure oscillations within which the frequency of coolant pressure oscillations matches the fuel assembly's natural frequency of vibration (its resonance frequency). Paper show the way of detuning acoustic resonance from natural

  18. Determination of thermal and acoustic comfort inside a vehicle's cabin

    Science.gov (United States)

    Ene, Alexandra; Catalina, Tiberiu; Vartires, Andreea

    2018-02-01

    Thermal and acoustic comfort, inside a vehicle's cabin, are highly interconnected and can greatly influence the health of the passengers. On one hand, the H.V.A.C. system brings the interior air parameters to a comfortable value while on the other hand, it is the main source of noise. It is an intriguing task to find a balance between the two. In this paper, several types of air diffusers were used in order to optimize the ratio between thermal and acoustic interior comfort. Using complex measurements of noise and thermal comfort parameters we have determined for each type of air diffuser the sound pressure level and its impact on air temperature and air velocity.

  19. A cytogenetic analysis of 2 cases of phosphaturic mesenchymal tumor of mixed connective tissue type.

    Science.gov (United States)

    Graham, Rondell P; Hodge, Jennelle C; Folpe, Andrew L; Oliveira, Andre M; Meyer, Kevin J; Jenkins, Robert B; Sim, Franklin H; Sukov, William R

    2012-08-01

    Phosphaturic mesenchymal tumor of mixed connective tissue type is a rare, histologically distinctive mesenchymal neoplasm associated with tumor-induced osteomalacia resulting from production of the phosphaturic hormone fibroblast growth factor 23. Because of its rarity, specific genetic alterations that contribute to the pathogenesis of these tumors have yet to be elucidated. Herein, we report the abnormal karyotypes from 2 cases of confirmed phosphaturic mesenchymal tumor of mixed connective tissue type. G-banded analysis demonstrated the first tumor to have a karyotype of 46,Y,t(X;3;14)(q13;p25;q21)[15]/46XY[5], and the second tumor to have a karyotype of 46, XY,add(2)(q31),add(4)(q31.1)[2]/92,slx2[3]/46,sl,der(2)t(2;4)(q14.2;p14),der(4)t(2;4)(q14.2;p14),add(4)(q31.1)[10]/46,sdl,add(13)(q34)[4]/92,sdl2x2[1]. These represent what is, to our knowledge, the first examples of abnormal karyotypes obtained from phosphaturic mesenchymal tumor of mixed connective tissue type. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  1. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    Science.gov (United States)

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  2. Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms

    Science.gov (United States)

    Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.

    2011-01-01

    Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828

  3. Anti-sound and Acoustical Cloaks

    Directory of Open Access Journals (Sweden)

    Veturia CHIROIU

    2016-12-01

    Full Text Available The principles by which the acoustics can be mimicked in order to reduce or cancel the vibrational field are based on anti-sound concept which can be materialized by acoustic cloaks. Geometric transformations open an elegant way towards the unconstrained control of sound through acoustic metamaterials. Acoustic cloaks can be achieved through geometric transformations which bring exotic metamaterial properties into the acoustic equations. Our paper brings new ideas concerning the technological keys for manufacturing of novel metamaterials based on the spatial compression of Cantor structures, and the architecture of 3D acoustic cloaks in a given frequency band, with application to architectural acoustics.

  4. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    Science.gov (United States)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  5. Managing Measurement Uncertainty in Building Acoustics

    Directory of Open Access Journals (Sweden)

    Chiara Scrosati

    2015-12-01

    Full Text Available In general, uncertainties should preferably be determined following the principles laid down in ISO/IEC Guide 98-3, the Guide to the expression of uncertainty in measurement (GUM:1995. According to current knowledge, it seems impossible to formulate these models for the different quantities in building acoustics. Therefore, the concepts of repeatability and reproducibility are necessary to determine the uncertainty of building acoustics measurements. This study shows the uncertainty of field measurements of a lightweight wall, a heavyweight floor, a façade with a single glazing window and a façade with double glazing window that were analyzed by a Round Robin Test (RRT, conducted in a full-scale experimental building at ITC-CNR (Construction Technologies Institute of the National Research Council of Italy. The single number quantities and their uncertainties were evaluated in both narrow and enlarged range and it was shown that including or excluding the low frequencies leads to very significant differences, except in the case of the sound insulation of façades with single glazing window. The results obtained in these RRTs were compared with other results from literature, which confirm the increase of the uncertainty of single number quantities due to the low frequencies extension. Having stated the measurement uncertainty for a single measurement, in building acoustics, it is also very important to deal with sampling for the purposes of classification of buildings or building units. Therefore, this study also shows an application of the sampling included in the Italian Standard on the acoustic classification of building units on a serial type building consisting of 47 building units. It was found that the greatest variability is observed in the façade and it depends on both the great variability of window’s typologies and on workmanship. Finally, it is suggested how to manage the uncertainty in building acoustics, both for one single

  6. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  7. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  8. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue

    Directory of Open Access Journals (Sweden)

    Colin J. Palmer

    2017-10-01

    Conclusions: Cdkal1 is necessary for normal mitochondrial morphology and function in adipose tissue. These results suggest that the type 2 diabetes susceptibility gene CDKAL1 has novel functions in regulating mitochondrial activity.

  9. Numerical simulation of single bubble dynamics under acoustic travelling waves.

    Science.gov (United States)

    Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu

    2018-04-01

    The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  11. A new type of surface acoustic waves in solids due to nonlinear elasticity

    International Nuclear Information System (INIS)

    Mozhaev, V.G.

    1988-12-01

    It is shown that in nonlinear elastic semi-infinite medium possessing a property of self focusing of shear waves, besides bulk non-linear shear waves, new surface acoustic waves exist, localization of which near the boundary is entirely due to nonlinear effects. (author). 8 refs

  12. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting

    International Nuclear Information System (INIS)

    Park, Ju Young; Choi, Jong-Cheol; Lee, Jung-Seob; Park, Hyoungjun; Doh, Junsang; Cho, Dong-Woo; Shim, Jin-Hyung; Kim, Sung Won

    2014-01-01

    Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration. (paper)

  13. Sediment acoustic index method for computing continuous suspended-sediment concentrations

    Science.gov (United States)

    Landers, Mark N.; Straub, Timothy D.; Wood, Molly S.; Domanski, Marian M.

    2016-07-11

    Suspended-sediment characteristics can be computed using acoustic indices derived from acoustic Doppler velocity meter (ADVM) backscatter data. The sediment acoustic index method applied in these types of studies can be used to more accurately and cost-effectively provide time-series estimates of suspended-sediment concentration and load, which is essential for informed solutions to many sediment-related environmental, engineering, and agricultural concerns. Advantages of this approach over other sediment surrogate methods include: (1) better representation of cross-sectional conditions from large measurement volumes, compared to other surrogate instruments that measure data at a single point; (2) high temporal resolution of collected data; (3) data integrity when biofouling is present; and (4) less rating curve hysteresis compared to streamflow as a surrogate. An additional advantage of this technique is the potential expansion of monitoring suspended-sediment concentrations at sites with existing ADVMs used in streamflow velocity monitoring. This report provides much-needed standard techniques for sediment acoustic index methods to help ensure accurate and comparable documented results.

  14. Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator

    KAUST Repository

    Elayouch, A.

    2017-01-05

    We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties. Our study reveals that the phenomenon of acoustically induced transparency is accompanied by an effect of near-zero density. Indeed, the dynamic effective parameters obtained from experimental data show the presence of a frequency band where the effective mass density is close to zero, with high transmission levels reaching 0.7. Furthermore, we demonstrate that such effective parameters lead to wave guiding in a 90-degrees-bent channel. This kind of acoustic metamaterial can, therefore, give rise to acoustic functions like controlling the wavefront, which may lead to very promising applications in acoustic cloacking or imaging.

  15. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Science.gov (United States)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  16. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  17. The dynamics of the microcirculation in the subcutaneous adipose tissue is impaired in the postprandial state in type 2 diabetes

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, Jens

    2011-01-01

    that the postprandial adipose tissue blood flow (ATBF) increase is accompanied by capillary recruitment in healthy subjects. The aim of the present study was to investigate whether the postprandial capillary recruitment in adipose tissue is affected in type 2 diabetes mellitus. Eight type 2 diabetic overweight male....... No significant changes were found in the ATBF or in capillary recruitment in the type 2 diabetic subjects. There was no significant blood flow or microvascular blood volume changes in forearm skeletal muscle in either of the groups. CONCLUSION: After an oral glucose load, the abdominal ATBF and microvascular...... blood volume changes in abdominal subcutaneous adipose tissue are impaired in overweight type 2 diabetic subjects compared to weight-matched healthy subjects....

  18. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  19. Ion acoustic solitary waves in a dusty plasma obliquely propagating to an external magnetic field

    International Nuclear Information System (INIS)

    Choi, Cheong Rim; Ryu, Chang-Mo; Lee, Nam C.; Lee, D.-Y.

    2005-01-01

    The nonlinear ion acoustic solitary wave in a magnetized dusty plasma, obliquely propagating to the embedding external magnetic field, is revisited. It is found that when the charge density of dust particles is high, the Sagdeev potential needs to be expanded up to δn 4 near n=1. In this case, it is shown that there could exist rarefactive ion acoustic solitary waves as well as the kink-type double layer solutions, in addition to the conventional hump-type ones found in the δn 3 expansion. The amplitude variations of ion acoustic solitary waves in a magnetized dusty plasma are also examined with respect to the change of the dust charge density and the wave directional angle

  20. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  1. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  2. Acoustic anisotropy of acoustooptic TI(3)AsS(4) crystals.

    Science.gov (United States)

    Martynyuk-Lototska, Iryna; Kushnirevych, Marian; Zapeka, Bohdan; Krupych, Oleh; Kokhan, Oleksandr; Pogodin, Artem; Peresh, Eugen; Mys, Oksana; Vlokh, Rostyslav

    2015-02-20

    We present comprehensive experimental measurements and analysis of anisotropy of the acoustic wave velocities for TI(3)AsS(4) crystals, including the obliquity and nonorthogonality of the acoustic waves, and the deviations from purely longitudinal and transverse polarization types. We have found that the crystals under analysis are characterized by rather low transverse wave velocities v(23) and v(32), which are both equal to 630 m/s. It is shown that the efficiency of acoustooptic (AO) interactions in TI(3)AsS(4) can be notably increased when providing anisotropic interaction with the slowest transverse acoustic wave. Under the previously mentioned conditions, the AO figure-of-merit can be estimated to be extremely high, i.e., approximately 3×10(-12) s(3)/kg.

  3. Optical-Thermal Response of Laser-Irradiated Tissue

    CERN Document Server

    Welch, Ashley J

    2011-01-01

    The second edition of 'Optical-Thermal Response of Laser-Irradiated Tissue' maintains the standard of excellence established in the first edition, while adjusting the content to reflect changes in tissue optics and medical applications since 1995. The material concerning light propagation now contains new chapters devoted to electromagnetic theory for coherent light. The material concerning thermal laser-tissue interactions contains a new chapter on pulse ablation of tissue. The medical applications section now includes several new chapters on Optical Coherent Tomography, acoustic imaging, molecular imaging, forensic optics and nerve stimulation. A detailed overview is provided of the optical and thermal response of tissue to laser irradiation along with diagnostic and therapeutic examples including fiber optics. Sufficient theory is included in the book so that it is suitable for a one or two semester graduate or for senior elective courses. Material covered includes: 1. light propagation and diagnostic appl...

  4. Acoustic insulator for combined well equipment of acoustic and radioactivity logging

    International Nuclear Information System (INIS)

    Arkad'ev, E.A.; Gorbachev, Yu.I.; Dseban', I.P.; Yagodov, G.I.

    1977-01-01

    The design of an acoustic insulator for cobined well equipment of acoustic and radioactivity logaing made on the basis of studying the velocity of elastic waves propagation and attenuation in cable structures of various marks is described. It is shown that the cable probe of electric loggign equipment which is recommended as an acoustic insulator for combined well equipment has the necessary sound-insulating properties

  5. Wavelet-based ground vehicle recognition using acoustic signals

    Science.gov (United States)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  6. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    Science.gov (United States)

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  7. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    Science.gov (United States)

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  8. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  9. Four-jet impingement: Noise characteristics and simplified acoustic model

    International Nuclear Information System (INIS)

    Brehm, C.; Housman, J.A.; Kiris, C.C.; Barad, M.F.; Hutcheson, F.V.

    2017-01-01

    Highlights: • Large eddy simulation of unique four jet impingement configuration. • Characterization of flow features using POD, FFT, and wavelet decomposition. • Noise source identification utilizing causality method. • Development of simplified acoustic model utilizing equivalent source method. • Comparison with experimental data from BENS experiment. - Abstract: The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order weighted essentially non-oscillatory scheme. Although these types of impinging jet configurations have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortical flow structures in the center of the four-jet impingement region. The causality method based on Lighthills acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a simplified acoustic model of the four-jet impingement device by utilizing the equivalent source method. Finally, three linear acoustic four-jet impingement models of the four-jet impingement device are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data.

  10. Education in acoustics in Argentina

    Science.gov (United States)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  11. Acoustic streaming enhanced electrodeposition of nickel

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl; Møller, Per

    2003-01-01

    Electrochemical deposition of Ni from a Watts-type electrolyte under the influence of high frequency ultrasound at both high (250 W) and low (5–10 W) power sonication was investigated. An improvement in the material distribution of the deposited Ni in millimeter-sized groove-features on the catho......-patterns on the surface of the deposit and near-boundary acoustic streaming....

  12. Interstitial Matrix Prevents Therapeutic Ultrasound From Causing Inertial Cavitation in Tumescent Subcutaneous Tissue.

    Science.gov (United States)

    Koulakis, John P; Rouch, Joshua; Huynh, Nhan; Dubrovsky, Genia; Dunn, James C Y; Putterman, Seth

    2018-01-01

    We search for cavitation in tumescent subcutaneous tissue of a live pig under application of pulsed, 1-MHz ultrasound at 8 W cm -2 spatial peak and pulse-averaged intensity. We find no evidence of broadband acoustic emission indicative of inertial cavitation. These acoustic parameters are representative of those used in external-ultrasound-assisted lipoplasty and in physical therapy and our null result brings into question the role of cavitation in those applications. A comparison of broadband acoustic emission from a suspension of ultrasound contrast agent in bulk water with a suspension injected subcutaneously indicates that the interstitial matrix suppresses cavitation and provides an additional mechanism behind the apparent lack of in-vivo cavitation to supplement the absence of nuclei explanation offered in the literature. We also find a short-lived cavitation signal in normal, non-tumesced tissue that disappears after the first pulse, consistent with cavitation nuclei depletion in vivo. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  13. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    Science.gov (United States)

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for

  14. Physics of tissue harmonic imaging by ultrasound

    Science.gov (United States)

    Jing, Yuan

    Tissue Harmonic Imaging (THI) is an imaging modality that is currently deployed on diagnostic ultrasound scanners. In THI the amplitude of the ultrasonic pulse that is used to probe the tissue is large enough that the pulse undergoes nonlinear distortion as it propagates into the tissue. One result of the distortion is that as the pulse propagates energy is shifted from the fundamental frequency of the source pulse into its higher harmonics. These harmonics will scatter off objects in the tissue and images formed from the scattered higher harmonics are considered to have superior quality to the images formed from the fundamental frequency. Processes that have been suggested as possibly responsible for the improved imaging in THI include: (1) reduced sensitivity to reverberation, (2) reduced sensitivity to aberration, and (3) reduction in side lobes. By using a combination of controlled experiments and numerical simulations, these three reasons have been investigated. A single element transducer and a clinical ultrasound scanner with a phased array transducer were used to image a commercial tissue-mimicking phantom with calibrated targets. The higher image quality achieved with THI was quantified in terms of spatial resolution and "clutter" signals. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed. A time-domain code for solving the KZK equation was validated with measurements of the acoustic field generated by the single element transducer and the phased array transducer. The code was used to investigate the impact of aberration using tissue-like media with three-dimensional variations in all acoustic properties. The three-dimensional maps of tissue properties were derived from the datasets available through the Visible Female project. The experiments and simulations demonstrated that second harmonic imaging (1) suffers less clutter associated with

  15. Acoustics of native-American ceremonial sites in prehispanic America (Acustica en los espacios escenios rituales prehispanicos)

    Science.gov (United States)

    Martinez, Maria Isabel

    2003-11-01

    This thesis establishes a methodology that incorporates the latest procedures used in architectural acoustics for the study of open spaces of this general type, and definitions are given for the acoustic variables of interest. The ``Juego de Pelota'' (ball game) sites are the only ceremonial sites built specifically for the performance of a fertility ritual, and are ideal for the study of prehispanic architectural topographies. Analysis of the acoustic properties of such sites revealed that the topographical characteristics of the elevation profiles of these architectural structures determine the acoustic behavior of these spaces. Such profiles are classified into three basic types: (i) inclined profile, (ii) terraced profile, and (iii) mixed profile. The terraced profiles are the most efficient, and the mixed profiles are the least efficient, in regard to acoustics. The consideration of the acoustic behavior of architectural structures intended for the ``Ball Game,'' as the designs evolved over time, leads to the conclusion that acoustical sensations that contributed effectively to the characteristic mystical atmosphere of the ceremonial rituals were characteristic only of those sites constructed in the ``classical'' period. Thesis advisors: Jaime Navarro and Juan J. Sendra Copies of this thesis written in Spanish may be obtained by contacting the advisor, Jaime Navarro, E.T.S. de Arquitectura de Sevilla, Dpto. de Construcciones Arquitectonicas I, Av. Reina Mercedes, 2, 41012 Sevilla, Spain. E-mail address: jnavarro@us.es

  16. Optimizing signal output: effects of viscoelasticity and difference frequency on vibroacoustic radiation of tissue-mimicking phantoms

    Science.gov (United States)

    Namiri, Nikan K.; Maccabi, Ashkan; Bajwa, Neha; Badran, Karam W.; Taylor, Zachary D.; St. John, Maie A.; Grundfest, Warren S.; Saddik, George N.

    2018-02-01

    Vibroacoustography (VA) is an imaging technology that utilizes the acoustic response of tissues to a localized, low frequency radiation force to generate a spatially resolved, high contrast image. Previous studies have demonstrated the utility of VA for tissue identification and margin delineation in cancer tissues. However, the relationship between specimen viscoelasticity and vibroacoustic emission remains to be fully quantified. This work utilizes the effects of variable acoustic wave profiles on unique tissue-mimicking phantoms (TMPs) to maximize VA signal power according to tissue mechanical properties, particularly elasticity. A micro-indentation method was utilized to provide measurements of the elastic modulus for each biological replica. An inverse relationship was found between elastic modulus (E) and VA signal amplitude among homogeneous TMPs. Additionally, the difference frequency (Δf ) required to reach maximum VA signal correlated with specimen elastic modulus. Peak signal diminished with increasing Δf among the polyvinyl alcohol specimen, suggesting an inefficient vibroacoustic response by the specimen beyond a threshold of resonant Δf. Comparison of these measurements may provide additional information to improve tissue modeling, system characterization, as well as insights into the unique tissue composition of tumors in head and neck cancer patients.

  17. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool......-A. Remarkably, transplantation of BM-derived tPA-mobilized CD11b(+) cells and VEGFR-1(+) cells, but not carrier-mobilized cells or CD11b(-) cells, accelerates neovascularization and ischemic tissue regeneration. Inhibition of VEGF signaling suppresses tPA-induced neovascularization in a model of hind limb...... and mobilizes CD45(+)CD11b(+) proangiogenic, myeloid cells, a process dependent on vascular endothelial growth factor-A (VEGF-A) and Kit ligand signaling. tPA improves the incorporation of CD11b(+) cells into ischemic tissues and increases expression of neoangiogenesis-related genes, including VEGF...

  18. Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA-cryogel phantom with optimal acoustic and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cournane, S; Fagan, A J [Department of Medical Physics and Bioengineering, St James' s Hospital, Dublin 8 (Ireland); Cannon, L; Browne, J E [Medical Ultrasound Physics and Technology Group, School of Physics, Dublin Institute of Technology, Kevin' s Street, Dublin 8 (Ireland)

    2010-10-07

    The accuracy of a transient elastography liver-scanning ultrasound system was assessed using a novel application of PVA-cryogel as a tissue-mimicking material with acoustic and shear elasticity properties optimized to best represent those of liver tissue. Although the liver-scanning system has been shown to offer a safer alternative for diagnosing liver cirrhosis through stiffness measurement, as compared to the liver needle biopsy exam, the scanner's accuracy has not been fully established. Young's elastic modulus values of 5-6 wt% PVA-cryogel phantoms, also containing glycerol and 0.3 {mu}m Al{sub 2}O{sub 3} and 3 {mu}m Al{sub 2}O{sub 3}, were measured using a 'gold standard' mechanical testing technique and transient elastography. The mechanically measured values and acoustic velocities of the phantoms ranged between 1.6 and 16.1 kPa and 1540 and 1570 m s{sup -1}, respectively, mimicking those observed in liver tissue. The values reported by the transient elastography system overestimated Young's elastic modulus values representative of the progressive stages of liver fibrosis by up to 32%. These results were attributed to the relative rather than absolute nature of the measurement arising from the single-point acoustic velocity calibration of the system, rendering the measurements critically dependent on the speed of sound of the sample under investigation. Given the wide range of acoustic velocities which exist in the liver, spanning healthy tissue to cirrhotic pathology, coupled with the system's assumption that the liver is approximately elastic when it is rather highly viscoelastic, care should be exercised when interpreting the results from this system in patient groups.

  19. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    Science.gov (United States)

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. A Survey of Sound Source Localization Methods in Wireless Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Maximo Cobos

    2017-01-01

    Full Text Available Wireless acoustic sensor networks (WASNs are formed by a distributed group of acoustic-sensing devices featuring audio playing and recording capabilities. Current mobile computing platforms offer great possibilities for the design of audio-related applications involving acoustic-sensing nodes. In this context, acoustic source localization is one of the application domains that have attracted the most attention of the research community along the last decades. In general terms, the localization of acoustic sources can be achieved by studying energy and temporal and/or directional features from the incoming sound at different microphones and using a suitable model that relates those features with the spatial location of the source (or sources of interest. This paper reviews common approaches for source localization in WASNs that are focused on different types of acoustic features, namely, the energy of the incoming signals, their time of arrival (TOA or time difference of arrival (TDOA, the direction of arrival (DOA, and the steered response power (SRP resulting from combining multiple microphone signals. Additionally, we discuss methods not only aimed at localizing acoustic sources but also designed to locate the nodes themselves in the network. Finally, we discuss current challenges and frontiers in this field.

  1. Acoustic Research on the Damage Mechanism of Carbon Fiber Composite Materials

    Science.gov (United States)

    Wang, Bing; Liu, Yanlei; Sheng, Shuiping

    This thesis involves the study about different processes including the tensile fracture, inter-layer tear or avulsion, as well as the interlaminar shear or split regarding carbon fiber composite materials with the aid of acoustic emission technique. Also, various acoustic emission signals that are released by composite samples in the process of fracture are analyzed. As is indicated by the test results, different acoustic emissive signals that are released by carbon fiber layers in various stages of damage and fracture bear different characteristics. Acoustic detection can effectively monitor the whole stage of elastic deformation, the damage development, and even the accumulation process while figuring out in an efficient manner about the internal activities of the composites, plus the diverse types of damages. In addition, its fabulous application value lies in its relevant structural evaluation as well as the evaluation of integrity with regard to carbon fiber composite.

  2. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    Science.gov (United States)

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  3. The Assembly of Cell-Encapsulating Microscale Hydrogels Using Acoustic Waves

    Science.gov (United States)

    Xu, Feng; Finley, Thomas Dylan; Turkaydin, Muge; Sung, Yuree; Gurkan, Umut Atakan; Yavuz, Ahmet Sinan; Guldiken, Rasim; Demirci, Utkan

    2011-01-01

    Microscale hydrogels find widespread applications in medicine and biology, e.g., as building blocks for tissue engineering and regenerative medicine. In these applications, these microgels are assembled to fabricate large complex 3D constructs. The success of this approach requires non-destructive and high throughput assembly of the microgels. Although various assembly methods have been developed based on modifying interfaces, and using microfluidics, so far, none of the available assembly technologies have shown the ability to assembly microgels using non-invasive fields rapidly within seconds in an efficient way. Acoustics has been widely used in biomedical area to manipulatedroplets, cells and biomolecules. In this study, we developed a simple, non-invasiveacoustic assembler for cell-encapsulating microgels with maintained cell viability (>93%). We assessed the assembler for both microbeads (with diameter of 50 µm and 100 µm) and microgels of different sizes and shapes (e.g., cubes, lock-and-key shapes, tetris, saw) in microdroplets (with volume of 10 µL, 20 µL, 40 µL, 80 µL). The microgels were assembled in second sin a non-invasive manner. These results indicate that the developed acoustic approach could become an enabling biotechnology tool for tissue engineering, regenerative medicine, pharmacology studies and high throughput screening applications. PMID:21820734

  4. Prediction and control of acoustically induced vibrations of high-precision equipment

    NARCIS (Netherlands)

    Roozen, N.B.

    2007-01-01

    With the accuracy of metrology frame applications entering the nanometer-range, the necessity arises to tackle all types of disturbances. In the process of estimating the relative importance of the different types of disturbances on the machine accuracy, also called dynamic error budgeting, acoustic

  5. Acoustic Evidence for Phonologically Mismatched Speech Errors

    Science.gov (United States)

    Gormley, Andrea

    2015-01-01

    Speech errors are generally said to accommodate to their new phonological context. This accommodation has been validated by several transcription studies. The transcription methodology is not the best choice for detecting errors at this level, however, as this type of error can be difficult to perceive. This paper presents an acoustic analysis of…

  6. Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor

    Directory of Open Access Journals (Sweden)

    Veronika Y. Sysoeva

    2017-12-01

    Full Text Available Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS. Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs. We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII receptor type 1 (AT1. Using the analysis of Ca2+ mobilization in single cells we found that only 5.2 ± 2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2, which was responsible for increased adipose competency of this ADSC subpopulation.

  7. Injection locking of optomechanical oscillators via acoustic waves

    Science.gov (United States)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-01

    Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  8. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering

    International Nuclear Information System (INIS)

    Gautam, Sneh; Chou, Chia-Fu; Dinda, Amit K.; Potdar, Pravin D.; Mishra, Narayan C.

    2014-01-01

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2–1.5 wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. - Highlights: • PCL/gelatin/collagen type I scaffold was fabricated for skin tissue engineering. • PCL/gelatin/collagen type I scaffold showed higher fibroblast growth than PCL/gelatin one. • PCL/gelatin/collagen type I might be one of the ideal scaffold for

  9. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    Science.gov (United States)

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Human Non-linguistic Vocal Repertoire: Call Types and Their Meaning.

    Science.gov (United States)

    Anikin, Andrey; Bååth, Rasmus; Persson, Tomas

    2018-01-01

    Recent research on human nonverbal vocalizations has led to considerable progress in our understanding of vocal communication of emotion. However, in contrast to studies of animal vocalizations, this research has focused mainly on the emotional interpretation of such signals. The repertoire of human nonverbal vocalizations as acoustic types, and the mapping between acoustic and emotional categories, thus remain underexplored. In a cross-linguistic naming task (Experiment 1), verbal categorization of 132 authentic (non-acted) human vocalizations by English-, Swedish- and Russian-speaking participants revealed the same major acoustic types: laugh, cry, scream, moan, and possibly roar and sigh. The association between call type and perceived emotion was systematic but non-redundant: listeners associated every call type with a limited, but in some cases relatively wide, range of emotions. The speed and consistency of naming the call type predicted the speed and consistency of inferring the caller's emotion, suggesting that acoustic and emotional categorizations are closely related. However, participants preferred to name the call type before naming the emotion. Furthermore, nonverbal categorization of the same stimuli in a triad classification task (Experiment 2) was more compatible with classification by call type than by emotion, indicating the former's greater perceptual salience. These results suggest that acoustic categorization may precede attribution of emotion, highlighting the need to distinguish between the overt form of nonverbal signals and their interpretation by the perceiver. Both within- and between-call acoustic variation can then be modeled explicitly, bringing research on human nonverbal vocalizations more in line with the work on animal communication.

  11. A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Juul Rasmussen, Jens

    1985-01-01

    Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means...... of a positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....

  12. Connective Tissue Disorders

    Science.gov (United States)

    ... of connective tissue. Over 200 disorders that impact connective tissue. There are different types: Genetic disorders, such as Ehlers-Danlos syndrome, Marfan syndrome, and osteogenesis imperfecta Autoimmune disorders, such as lupus and scleroderma Cancers, like some types of soft tissue sarcoma Each ...

  13. Determination of thermal and acoustic comfort inside a vehicle’s cabin

    Directory of Open Access Journals (Sweden)

    2018-01-01

    Full Text Available Thermal and acoustic comfort, inside a vehicle’s cabin, are highly interconnected and can greatly influence the health of the passengers. On one hand, the H.V.A.C. system brings the interior air parameters to a comfortable value while on the other hand, it is the main source of noise. It is an intriguing task to find a balance between the two. In this paper, several types of air diffusers were used in order to optimize the ratio between thermal and acoustic interior comfort. Using complex measurements of noise and thermal comfort parameters we have determined for each type of air diffuser the sound pressure level and its impact on air temperature and air velocity.

  14. Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response.

    Science.gov (United States)

    Fazenda, Bruno; Scarre, Chris; Till, Rupert; Pasalodos, Raquel Jiménez; Guerra, Manuel Rojo; Tejedor, Cristina; Peredo, Roberto Ontañón; Watson, Aaron; Wyatt, Simon; Benito, Carlos García; Drinkall, Helen; Foulds, Frederick

    2017-09-01

    During the 1980 s, acoustic studies of Upper Palaeolithic imagery in French caves-using the technology then available-suggested a relationship between acoustic response and the location of visual motifs. This paper presents an investigation, using modern acoustic measurement techniques, into such relationships within the caves of La Garma, Las Chimeneas, La Pasiega, El Castillo, and Tito Bustillo in Northern Spain. It addresses methodological issues concerning acoustic measurement at enclosed archaeological sites and outlines a general framework for extraction of acoustic features that may be used to support archaeological hypotheses. The analysis explores possible associations between the position of visual motifs (which may be up to 40 000 yrs old) and localized acoustic responses. Results suggest that motifs, in general, and lines and dots, in particular, are statistically more likely to be found in places where reverberation is moderate and where the low frequency acoustic response has evidence of resonant behavior. The work presented suggests that an association of the location of Palaeolithic motifs with acoustic features is a statistically weak but tenable hypothesis, and that an appreciation of sound could have influenced behavior among Palaeolithic societies of this region.

  15. The effects of two counterpropagating surface acoustic wave beams on single electron acoustic charge transport

    International Nuclear Information System (INIS)

    He Jianhong; Guo Huazhong; Song Li; Zhang Wei; Gao Jie; Lu Chuan

    2010-01-01

    We present a comprehensive study of the effects of two counterpropagating surface acoustic waves on the acoustoelectric current of single electron transport devices. A significant improvement in the accuracy of current quantization is achieved as a result of an additional surface acoustic wave beam. The experiments reveal the sinusoidally periodical modulation in the acoustoelectric current characteristic as a function of the relative phase of the two surface acoustic wave beams. Besides, by using standing surface acoustic waves, the acoustoelectric current is detected which we consider as the so-called anomalous acoustoelectric current produced by acoustic wave mechanical deformations. This kind current is contributed to one component of the acoustoelectric current in surface acoustic wave device, which could enable us to establish a more adequate description of acoustoelectric effects on single-electron acoustic charge transport.

  16. International Space Station Crew Quarters Ventilation and Acoustic Design Implementation

    Science.gov (United States)

    Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.

    2010-01-01

    The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  17. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  18. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  19. On Mass Loading and Dissipation Measured with Acoustic Wave Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Marina V. Voinova

    2009-01-01

    Full Text Available We summarize current trends in the analysis of physical properties (surface mass density, viscosity, elasticity, friction, and charge of various thin films measured with a solid-state sensor oscillating in a gaseous or liquid environment. We cover three different types of mechanically oscillating sensors: the quartz crystal microbalance with dissipation (QCM-D monitoring, surface acoustic wave (SAW, resonators and magnetoelastic sensors (MESs. The fourth class of novel acoustic wave (AW mass sensors, namely thin-film bulk acoustic resonators (TFBARs on vibrating membranes is discussed in brief. The paper contains a survey of theoretical results and practical applications of the sensors and includes a comprehensive bibliography.

  20. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    OpenAIRE

    Nakamura, Satoshi; Furusawa, Toshiaki; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  1. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    Science.gov (United States)

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  2. Acoustic radiation due to gust-airfoil and blade-vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, R.K. [Wichita State Univ., KS (United States). National Inst. for Aviation Research

    2001-07-01

    An accurate and efficient method for computing acoustic radiation due to gust-airfoil and blade-vortex interactions is developed. In these types of problems, sound is generated as a result of interaction between the unsteadiness in the flow and the body. The acoustic governing equations are derived by linearizing the compressible unsteady Euler equations about the steady mean flow. From these equations, the frequency domain acoustic equations are obtained assuming a single frequency disturbance. The equations are solved by employing a multi-stage Runge-Kutta finite-volume time-stepping scheme with a fourth-order compact spatial discretization. In the farfield, both the Giles' nonreflecting boundary condition and the perfectly matched layer (PML) absorbing boundary conditions are employed. This report describes the technical approach and shows the results calculated for the interactions. (orig.)

  3. Acoustic Structure and Contextual Use of Calls by Captive Male and Female Cheetahs (Acinonyx jubatus).

    Science.gov (United States)

    Smirnova, Darya S; Volodin, Ilya A; Demina, Tatyana S; Volodina, Elena V

    2016-01-01

    The vocal repertoire of captive cheetahs (Acinonyx jubatus) and the specific role of meow vocalizations in communication of this species attract research interest about two dozen years. Here, we expand this research focus for the contextual use of call types, sex differences and individual differences at short and long terms. During 457 trials of acoustic recordings, we collected calls (n = 8120) and data on their contextual use for 13 adult cheetahs (6 males and 7 females) in four Russian zoos. The cheetah vocal repertoire comprised 7 call types produced in 8 behavioural contexts. Context-specific call types (chirr, growl, howl and hiss) were related to courting behaviour (chirr) or to aggressive behaviour (growl, howl and hiss). Other call types (chirp, purr and meow) were not context-specific. The values of acoustic variables differed between call types. The meow was the most often call type. Discriminant function analysis revealed a high potential of meows to encode individual identity and sex at short terms, however, the vocal individuality was unstable over years. We discuss the contextual use and acoustic variables of call types, the ratios of individual and sex differences in calls and the pathways of vocal ontogeny in the cheetah with relevant data on vocalization of other animals.

  4. Acoustic Structure and Contextual Use of Calls by Captive Male and Female Cheetahs (Acinonyx jubatus.

    Directory of Open Access Journals (Sweden)

    Darya S Smirnova

    Full Text Available The vocal repertoire of captive cheetahs (Acinonyx jubatus and the specific role of meow vocalizations in communication of this species attract research interest about two dozen years. Here, we expand this research focus for the contextual use of call types, sex differences and individual differences at short and long terms. During 457 trials of acoustic recordings, we collected calls (n = 8120 and data on their contextual use for 13 adult cheetahs (6 males and 7 females in four Russian zoos. The cheetah vocal repertoire comprised 7 call types produced in 8 behavioural contexts. Context-specific call types (chirr, growl, howl and hiss were related to courting behaviour (chirr or to aggressive behaviour (growl, howl and hiss. Other call types (chirp, purr and meow were not context-specific. The values of acoustic variables differed between call types. The meow was the most often call type. Discriminant function analysis revealed a high potential of meows to encode individual identity and sex at short terms, however, the vocal individuality was unstable over years. We discuss the contextual use and acoustic variables of call types, the ratios of individual and sex differences in calls and the pathways of vocal ontogeny in the cheetah with relevant data on vocalization of other animals.

  5. Acoustic Emission Technology and Application

    International Nuclear Information System (INIS)

    Joo, Y. S.; Lim, S. H.; Eom, H. S.; Kim, J. H.; Jung, H. K.

    2003-10-01

    Acoustic emission is the elastic wave that is generated by the rapid release of energy from the localized sources within a material. After the observation of acoustic emission phenomenon in 1950, the research and further investigation had been performed. Acoustic emission examination becomes a rapidly matured nondestructive testing method with demonstrated capabilities for characterizing material behavior and for detecting the defect. It is of interest as a possible passive monitoring technique for detecting, locating and characterizing the defects in component and structure. Acoustic emission technology has recently strengthened the on-line monitoring application for the detection of incipient failures and the assurance of structural integrity. The field of acoustic emission testing is still growing vigorously and presents many challenges. Especially, acoustic emission has been successfully applied in the leak detection of primary pressure boundary of nuclear power plants. In this state-of-art report, the principle, measurement and field applications of acoustic emission technique is reviewed and summarized. Acoustic emission technology will contribute to the assurance of nuclear safety as the on-line monitoring technique of structural integrity of NSSS components and structures

  6. PASSIVE CAVITATION DETECTION DURING PULSED HIFU EXPOSURES OF EX VIVO TISSUES AND IN VIVO MOUSE PANCREATIC TUMORS

    Science.gov (United States)

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-01-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rarefactional focal pressures (1–12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms, pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KPC mice and closely recapitulate human disease in their morphology. The cavitation threshold, defined at 50 % cavitation probability, was found to vary broadly among the investigated tissues (within 2.5–10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but ex vivo it decreased rapidly and stopped over the first few pulses

  7. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.

    Science.gov (United States)

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-07-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped

  8. Cognitive Routing in Software-Defined Underwater Acoustic Networks

    Directory of Open Access Journals (Sweden)

    Huma Ghafoor

    2017-12-01

    Full Text Available There are two different types of primary users (natural acoustic and artificial acoustic, and there is a long propagation delay for acoustic links in underwater cognitive acoustic networks (UCANs. Thus, the selection of a stable route is one of the key design factors for improving overall network stability, thereby reducing end-to-end delay. Software-defined networking (SDN is a novel approach that improves network intelligence. To this end, we propose a novel SDN-based routing protocol for UCANs in order to find a stable route between source and destination. A main controller is placed in a surface buoy that is responsible for the global view of the network, whereas local controllers are placed in different autonomous underwater vehicles (AUVs that are responsible for a localized view of the network. The AUVs have fixed trajectories, and sensor nodes within transmission range of the AUVs serve as gateways to relay the gathered information to the controllers. This is an SDN-based underwater communications scheme whereby two nodes can only communicate when they have a consensus about a common idle channel. To evaluate our proposed scheme, we perform extensive simulations and improve network performance in terms of end-to-end delay, delivery ratio, and overhead.

  9. Acoustic analog of monolayer graphene and edge states

    International Nuclear Information System (INIS)

    Zhong, Wei; Zhang, Xiangdong

    2011-01-01

    Acoustic analog of monolayer graphene has been designed by using silicone rubber spheres of honeycomb lattices embedded in water. The dispersion of the structure has been studied theoretically using the rigorous multiple-scattering method. The energy spectra with the Dirac point have been verified and zigzag edge states have been found in ribbons of the structure, which are analogous to the electronic ones in graphene nanoribbons. The guided modes along the zigzag edge excited by a point source have been numerically demonstrated. The open cavity and 'Z' type edge waveguide with 60 o corners have also been realized by using such edge states. -- Highlights: → Acoustic analog of monolayer graphene has been designed. → The energy spectra with the Dirac point have been verified. → The zigzag edge states have been found in ribbons of the structure. → The guided modes excited by a point source have been demonstrated. → The open cavity and 'Z' type edge waveguide have been realized.

  10. Tissue-engineered cartilaginous constructs for the treatment of caprine cartilage defects, including distribution of laminin and type IV collagen.

    Science.gov (United States)

    Jeng, Lily; Hsu, Hu-Ping; Spector, Myron

    2013-10-01

    The purpose of this study was the immunohistochemical evaluation of (1) cartilage tissue-engineered constructs; and (2) the tissue filling cartilage defects in a goat model into which the constructs were implanted, particularly for the presence of the basement membrane molecules, laminin and type IV collagen. Basement membrane molecules are localized to the pericellular matrix in normal adult articular cartilage, but have not been examined in tissue-engineered constructs cultured in vitro or in tissue filling cartilage defects into which the constructs were implanted. Cartilaginous constructs were engineered in vitro using caprine chondrocyte-seeded type II collagen scaffolds. Autologous constructs were implanted into 4-mm-diameter defects created to the tidemark in the trochlear groove in the knee joints of skeletally mature goats. Eight weeks after implantation, the animals were sacrificed. Constructs underwent immunohistochemical and histomorphometric evaluation. Widespread staining for the two basement membrane molecules was observed throughout the extracellular matrix of in vitro and in vivo samples in a distribution unlike that previously reported for cartilage. At sacrifice, 70% of the defect site was filled with reparative tissue, which consisted largely of fibrous tissue and some fibrocartilage, with over 70% of the reparative tissue bonded to the adjacent host tissue. A novel finding of this study was the observation of laminin and type IV collagen in in vitro engineered cartilaginous constructs and in vivo cartilage repair samples from defects into which the constructs were implanted, as well as in normal caprine articular cartilage. Future work is needed to elucidate the role of basement membrane molecules during cartilage repair and regeneration.

  11. Comparative effects on type 2 diabetes of mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Li ZANG

    2016-08-01

    Full Text Available Objective  To compare the effects on type 2 diabetes of mesenchymal stem cells (MSCs derived from bone marrow and adipose tissue. Methods  Thirty type 2 diabetic rat models were established by an eight weeks high-fat diet (HFD with a low dose streptozotocin (STZ, 25mg/kg, and randomly assigned into three groups (10 each: diabetes group (T2DM, bone marrow MSCs transplantation group (BMSC and adipose tissue MSCs transplantation group (ADSC. Ten normal rats were set as control. MSCs were isolated from bone marrow or inguinal adipose tissue of normal rats. One week after STZ injection, 3×10 6 MSCs suspended in 1ml PBS were infused into rats via tail vein. The blood glucose was measured every day after MSCs transplantation, the intraperitoneal glucose tolerance test (IPGTT and intraperitoneal insulin tolerance test (IPITT were performed the 7th day after transplantation to evaluate the effects of MSCs on diabetic rats. Pancreatic tissues were collected for insulin/glucagon immunofluorescence staining. Results  After MSCs transplantation, the blood glucose decreased gradually and continuously in type 2 diabetic rats, with glucose tolerance and insulin sensitivity improved greatly. The improved insulin sensitivity was further confirmed by a decreased HOMA-IR (homeostasis model of assessment for insulin resistance index and increased pancreas islet β-cells (P<0.05. However, no significant differences were observed between BMSC and ADSC group. Conclusion  Both BMSC and ADSC have the same effect on type 2 diabetic rats, so the ADSC will be the ideal stem cells for treatment of type 2 diabetes. DOI: 10.11855/j.issn.0577-7402.2016.07.03

  12. Acoustic building infiltration measurement system

    Science.gov (United States)

    Muehleisen, Ralph T.; Raman, Ganesh

    2018-04-10

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  13. Phase control of electromagnetically induced acoustic wave transparency in a diamond nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Evangelou, Sofia, E-mail: Evangelousof@gmail.com

    2017-05-10

    Highlights: • A high-Q single-crystal diamond nanomechanical resonator embedded with nitrogen-vacancy (NV) centers is studied. • A Δ-type coupling configuration is formed. • The spin states of the ground state triplet of the NV centers interact with a strain field and two microwave fields. • The absorption and dispersion properties of the acoustic wave field are controlled by the use of the relative phase of the fields. • Phase-dependent acoustic wave absorption, transparency, and gain are obtained. • “Slow sound” and negative group velocities are also possible. - Abstract: We consider a high-Q single-crystal diamond nanomechanical resonator embedded with nitrogen-vacancy (NV) centers. We study the interaction of the transitions of the spin states of the ground state triplet of the NV centers with a strain field and two microwave fields in a Δ-type coupling configuration. We use the relative phase of the fields for the control of the absorption and dispersion properties of the acoustic wave field. Specifically, we show that by changing the relative phase of the fields, the acoustic field may exhibit absorption, transparency, gain and very interesting dispersive properties.

  14. The accidental (acoustical) tourist

    Science.gov (United States)

    Van Kirk, Wayne

    2002-11-01

    The acoustical phenomenon observed at an ancient temple in the Great Ball Court at Chichen Itza was described as ''little short of amazing--an ancient whispering gallery'' by Silvanus G. Morley, leader of the Carnegie Institute's archaeological team that excavated and restored these structures in the 1920s. Since then, many others have experienced the extraordinary acoustics at Chichen Itza and other Maya sites. Despite these reports, archaeologists and acousticians have until recently shown little interest in understanding these phenomena. After experiencing Chichen Itza's remarkable acoustics as a tourist in 1994, the author commenced collecting and disseminating information about acoustical phenomena there and at other Mayan sites, hoping to stimulate interest among archaeologists and acousticians. Were these designs accidental or intentional? If intentional, how was the knowledge obtained? How were acoustical features used? This paper highlights the author's collection of anecdotal reports of mysterious Mayan acoustics (http://http://www.ianlawton.com/pa1.htm), recommended reading for scientists and engineers who wish to pursue this fascinating study. Also recounted are some of the reactions of archaeologists-ranging from curious, helpful, and insightful to humorous and appalling--to outsiders' efforts to bring serious scientific attention to the new field of acoustical archaeology.

  15. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  16. Effects of temperature and tissue type on Chrysomya rufifacies (Diptera: Calliphoridae) (Macquart) development.

    Science.gov (United States)

    Flores, Micah; Longnecker, Michael; Tomberlin, Jeffery K

    2014-12-01

    The hairy maggot blow fly, Chrysomya rufifacies (Diptera: Calliphoridae), is a forensically important fly often encountered on human and other vertebrate remains in temperate and tropic regions throughout the world including Australia, Asia, Central America and North America. C. rufifacies was reared under controlled laboratory conditions on three muscle types (i.e., porcine, equine and canine) at three temperatures (i.e., 20.8, 24.8 and 28.3°C). Rate of larval weight gain across time was statistically significant between muscle types (P≤0.0001) and approaching significance across time between temperatures (P=0.0511). This research represents the first development study for C. rufifacies from central Texas, USA and the first study to examine the impact of tissue type on its development. Furthermore, these data, when compared to those available in the literature, indicate developmental differences that could be due to genetic differences in populations or possibly methods employed during the studies. Caution should be emphasized when applying development data for this species from one region to forensic investigations in other ecoregions as such differences in development based on tissue fed upon by larvae, population genetics, and methodologies used in the studies could represent error in estimating the time of colonization. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Agorá Acoustics - Effects of arcades on the acoustics of public squares

    DEFF Research Database (Denmark)

    Paini, Dario; Gade, Anders Christian; Rindel, Jens Holger

    2005-01-01

    This paper is part of a PhD work, dealing with the acoustics of the public squares (‘Agorá Acoustics’), especially when music (amplified or not) is played. Consequently, our approach will be to evaluate public squares using the same set of acoustics concepts for subjective evaluation and objective...... measurements as applied for concert halls and theatres. In this paper the acoustical effects of arcades will be studied, in terms of reverberation (EDT and T30), clarity (C80), intelligibility (STI) and other acoustical parameters. For this purpose, also the theory of coupled rooms is applied and compared...... with results. An acoustic modelling program, ODEON 7.0, was used for this investigation. Three different sizes of public squares were considered. In order to evaluate the ‘real’ effects of the arcades on the open square, models of all three squares were designed both with and without arcades. The sound source...

  18. Understanding acoustics an experimentalist’s view of acoustics and vibration

    CERN Document Server

    Garrett, Steven L

    2017-01-01

    This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chap...

  19. Selecting "saviour siblings": reconsidering the regulation in Australia of pre-implantation genetic diagnosis in conjunction with tissue typing.

    Science.gov (United States)

    Taylor-Sands, Michelle

    2007-05-01

    In recent years, pre-implantation genetic diagnosis (PGD) has been developed to enable the selection of a tissue type matched "saviour sibling" for a sick child. This article examines the current regulatory framework governing PGD in Australia. The availability of PGD in Australia to create a saviour sibling depends on the regulation of ART services by each State and Territory. The limitations on the use of PGD vary throughout Australia, according to the level of regulation of ART in each jurisdiction. This article considers the limitations on the use of PGD for tissue typing in Australia and argues that some of these should be removed for a more consistent national approach. In particular, the focus in ART legislation on the "paramount interests" of the child to be born is inappropriate for the application of tissue typing, which necessarily involves the interests of other family members.

  20. Vascular and metabolic effects of adrenaline in adipose tissue in type 2 diabetes

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Galbo, H

    2012-01-01

    Objective:The aim was to investigate adipose tissue vascular and metabolic effects of an adrenaline infusion in vivo in subjects with and without type 2 diabetes mellitus (T2DM).Design:Clinical intervention study with 1-h intravenous adrenaline infusion.Subjects:Eight male overweight T2DM subjects...... and eight male weight-matched, non-T2DM subjects were studied before, during and after an 1-h intravenous adrenaline infusion. Adipose tissue blood flow (ATBF) was determined by Xenon wash-out technique, and microvascular volume in the adipose tissue was studied by contrast-enhanced ultrasound imaging...... infusion. One hour post adrenaline, ATBF was still increased in overweight T2DM subjects. Adrenaline increased microvascular volume in non-T2DM subjects while this response was impaired in overweight T2DM subjects. Adrenaline-induced increase in lipolysis was similar in both groups, but NEFA output from...

  1. Acoustic fine structure may encode biologically relevant information for zebra finches.

    Science.gov (United States)

    Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J

    2018-04-18

    The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.

  2. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  3. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Science.gov (United States)

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  4. Analytical coupled modeling of a magneto-based acoustic metamaterial harvester

    Science.gov (United States)

    Nguyen, H.; Zhu, R.; Chen, J. K.; Tracy, S. L.; Huang, G. L.

    2018-05-01

    Membrane-type acoustic metamaterials (MAMs) have demonstrated unusual capacity in controlling low-frequency sound transmission, reflection, and absorption. In this paper, an analytical vibro-acoustic-electromagnetic coupling model is developed to study MAM harvester sound absorption, energy conversion, and energy harvesting behavior under a normal sound incidence. The MAM harvester is composed of a prestressed membrane with an attached rigid mass, a magnet coil, and a permanent magnet coin. To accurately capture finite-dimension rigid mass effects on the membrane deformation under the variable magnet force, a theoretical model based on the deviating acoustic surface Green’s function approach is developed by considering the acoustic near field and distributed effective shear force along the interfacial boundary between the mass and the membrane. The accuracy and capability of the theoretical model is verified through comparison with the finite element method. In particular, sound absorption, acoustic-electric energy conversion, and harvesting coefficient are quantitatively investigated by varying the weight and size of the attached mass, prestress and thickness of the membrane. It is found that the highest achievable conversion and harvesting coefficients can reach up to 48%, and 36%, respectively. The developed model can serve as an efficient tool for designing MAM harvesters.

  5. Registration and processing of acoustic signal in rock drilling

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-03-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  6. Deep Water Acoustics

    Science.gov (United States)

    2016-06-28

    the Deep Water project and participate in the NPAL Workshops, including Art Baggeroer (MIT), J. Beron- Vera (UMiami), M. Brown (UMiami), T...Kathleen E . Wage. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea. J. Acoust. Soc. Am., 134(4...estimate of the angle α during PhilSea09, made from ADCP measurements at the site of the DVLA. Sim. A B1 B2 B3 C D E F Prof. # 0 4 4 4 5 10 16 20 α

  7. Acoustic Levitation With Less Equipment

    Science.gov (United States)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  8. Anisotropy of acoustic properties in paratellurite

    International Nuclear Information System (INIS)

    Parygin, Vladimir N.

    1996-01-01

    One of the peculiarities of the TeO 2 crystal consists of its strong acoustic anisotropy. This anisotropy demonstrates itself by acoustic energy walk-off and anisotropic distortion of an acoustic beam. Four constants completely characterise the acoustic anisotropy of the medium. In this paper these constants are calculated for various directions of the acoustic beam in crystal. (authors)

  9. Variable-Position Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  10. An acoustic eikonal equation for attenuating VTI media

    KAUST Repository

    Hao, Qi

    2016-09-06

    We present an acoustic eikonal equation governing the complex-valued travel time of P-waves in attenuating, transversely isotropic media with a vertical symmetry axis (VTI). This equation is based on the assumption that the Pwave complex-valued travel time is independent of the Swave velocity parameter v in Thomsen\\'s notation and the attenuation coefficient A in the Thomsen-type notation for attenuating VTI media. We combine perturbation theory and Shanks transform to develop practical approximations to the attenuating acoustic eikonal equation, capable of admitting analytical description of the attenuation in homogeneous media. For a horizontal, attenuating VTI layer, we also derive non-hyperbolic approximations for the real and imaginary parts of the complex-valued reflection travel time.

  11. Magnetoactive Acoustic Metamaterials.

    Science.gov (United States)

    Yu, Kunhao; Fang, Nicholas X; Huang, Guoliang; Wang, Qiming

    2018-04-11

    Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli-responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields. It is shown for the first time that effective modulus can be reversibly switched between positive and negative within controlled frequency regimes through lattice buckling modulated by theoretically predicted magnetic fields. The magnetically triggered negative-modulus and cavity-induced negative density are integrated to achieve flexible switching between single-negative and double-negative. This strategy opens promising avenues for remote, rapid, and reversible modulation of acoustic transportation, refraction, imaging, and focusing in subwavelength regimes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.

    1987-01-01

    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  13. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  14. Injection locking of optomechanical oscillators via acoustic waves.

    Science.gov (United States)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-02

    Injection locking is an effective technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators. As such, exploring new mechanisms for injection locking of emerging oscillators is important for their usage in various systems. Here, we present the first demonstration of injection locking of a radiation pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can be easily implemented on various platforms to lock different types of OMOs independent of their size and structure. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance, matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity, and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology, and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  15. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying

    2017-12-15

    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric

  16. Canada Basin Acoustic Propagation Experiment (CANAPE)

    Science.gov (United States)

    2015-09-30

    acoustic communications, acoustic navigation, or acoustic remote sensing of the ocean interior . RELATED PROJECTS The 2015 CANAPE pilot study was a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Canada Basin Acoustic Propagation Experiment (CANAPE...ocean structure. Changes in sea ice and the water column affect both acoustic propagation and ambient noise. This implies that what was learned

  17. Transmission acoustic microscopy investigation

    Science.gov (United States)

    Maev, Roman; Kolosov, Oleg; Levin, Vadim; Lobkis, Oleg

    The nature of acoustic contrast, i.e. the connection of the amplitude and phase of the output signal of the acoustic microscope with the local values of the acoustic parameters of the sample (density, elasticity, viscosity) is a central problem of acoustic microscopy. A considerable number of studies have been devoted to the formation of the output signal of the reflection scanning acoustic microscope. For the transmission acoustic microscope (TAM) this problem has remained almost unstudied. Experimental investigation of the confocal system of the TAM was carried out on an independently manufactured laboratory mockup of the TAM with the working frequency of the 420 MHz. Acoustic lenses with the radius of curvature of about 500 microns and aperture angle of 45 deg were polished out in the end faces of two cylindrical sound conductors made from Al2O3 single crystals with an axis parallel to the axis C of the crystal (the length of the sound conductor is 20 mm; diameter, 6 mm). At the end faces of the sound conductor, opposite to the lenses, CdS transducers with a diameter of 2 mm were disposed. The electric channel of the TAM provided a possibility for registering the amplitude of the microscope output signal in the case of the dynamic range of the 50 dB.

  18. Auralisations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence...... impulse response, because more directional information is available with acoustical radiosity. Small rooms with absorbing surfaces are tested, because this is the room type that PARISM is particularly useful for....

  19. What Is an Acoustic Neuroma

    Science.gov (United States)

    ... CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Italian Japanese Korean Portuguese Romanian Spanish What is Acoustic Neuroma? Each heading slides to reveal information. Important ...

  20. Apparatus for ultrasonic visualization in sodium (VISUS) and acoustic detection in the Phenix reactor

    International Nuclear Information System (INIS)

    Lions, M.; Berger, R.; Bret, A.; Buis, H.; Barton, J.

    A description is given of two acoustic monitoring systems studied at the Fast Neutron Reactor Department at CEN/Cadarache and used in the Phenix reactor. The first is the active type, and the second, passive. The active apparatus is based on the sonar principle and permits visualizing objects inside a reactor tank, especially the heads of assemblies during handling. The passive apparatus, the acoustic detector, observes the reactor core by analyzing the acoustic noise produced in the reactor core. The electroacoustic converters are in both cases located outside, and the acoustic vibrations are transmitted by wave guides. The two pieces of apparatus can operate in a hostile environment, such as liquid metal at high temperature in the presence of high neutron and gamma fluxes

  1. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  2. Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels.

    Science.gov (United States)

    Casciaro, Sergio; Conversano, Francesco; Musio, Stefano; Casciaro, Ernesto; Demitri, Christian; Sannino, Alessandro

    2009-04-01

    Tissue mimicking phantoms have been widely reported to be an important tool for development, optimisation and performance testing of ultrasound-based diagnostic techniques. In particular, modern applications of tissue mimicking phantoms often include characterisation of the nonlinear behaviour of experimental ultrasound contrast agents. In such cases, the tissue-mimicking materials should be chosen not only based on the values of their density, speed of sound and attenuation coefficient, but also considering their effect on the appearance of "native harmonics" due to nonlinear distortion of ultrasound signal during propagation. In a previous paper it was demonstrated that a cellulose-based hydrogel is suitable to simulate nonlinear acoustical behaviour of liver tissue for thicknesses up to 8 cm. In this paper we present the experimental characterisation of the nonlinear acoustical behaviour of a different polyethylene glycol diacrylate (PEGDA)-based hydrogel, in order to assess whether and how it can improve the performances and overcome some limitations of the cellulose-based hydrogel as liver tissue-mimicking material. Samples of pig liver tissue, cellulose-based hydrogel and PEGDA-based hydrogel were insonified in a through-transmission set-up, employing 2.25-MHz pulses with different mechanical index (MI) values. Second harmonic and first harmonic amplitudes were extracted from the spectra of received signals and their difference was then used to compare sample behaviours. Obtained results show how a new more accurate and combined experimental model of linear and nonlinear acoustical behaviour of liver tissue is feasible. In fact, a further confirmation of the cellulose-based hydrogel effectiveness to precisely simulate the liver tissue for penetration depths up to 8 cm was provided, and it was also shown that the employment of the PEGDA-based hydrogel can extend the range of useful tissue-mimicking material thicknesses up to 11 cm, moreover allowing a

  3. Spectral estimation for characterization of acoustic aberration.

    Science.gov (United States)

    Varslot, Trond; Angelsen, Bjørn; Waag, Robert C

    2004-07-01

    Spectral estimation based on acoustic backscatter from a motionless stochastic medium is described for characterization of aberration in ultrasonic imaging. The underlying assumptions for the estimation are: The correlation length of the medium is short compared to the length of the transmitted acoustic pulse, an isoplanatic region of sufficient size exists around the focal point, and the backscatter can be modeled as an ergodic stochastic process. The motivation for this work is ultrasonic imaging with aberration correction. Measurements were performed using a two-dimensional array system with 80 x 80 transducer elements and an element pitch of 0.6 mm. The f number for the measurements was 1.2 and the center frequency was 3.0 MHz with a 53% bandwidth. Relative phase of aberration was extracted from estimated cross spectra using a robust least-mean-square-error method based on an orthogonal expansion of the phase differences of neighboring wave forms as a function of frequency. Estimates of cross-spectrum phase from measurements of random scattering through a tissue-mimicking aberrator have confidence bands approximately +/- 5 degrees wide. Both phase and magnitude are in good agreement with a reference characterization obtained from a point scatterer.

  4. Evaluation of peripheral vasodilative indices in skin tissue of type 1 diabetic rats by use of RGB images

    Science.gov (United States)

    Tanaka, Noriyuki; Nishidate, Izumi; Nakano, Kazuya; Aizu, Yoshihisa; Niizeki, Kyuichi

    2016-04-01

    We investigated a method to evaluate the arterial inflow and the venous capacitance in the skin tissue of streptozotocin-induced type 1 diabetic rats from RGB digital color images. The arterial inflow and the venous capacitance in the dorsal reversed McFarlane skin flap are calculated based on the responses of change in the total blood concentration to occlusion of blood flow to and from the flap tissues at a pressure of 50 mmHg. The arterial inflow and the venous capacitance in the skin flap tissue were significantly reduced in type 1 diabetic rat group compared with the non-diabetic rat group. The results of the present study indicate the possibility of using the proposed method for evaluating the peripheral vascular dysfunctions in diabetes mellitus.

  5. Acoustic emission characteristics of stress corrosion cracks in a type 304 stainless steel tube

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woong Gi; Bae, Seung Gi; Lee, Bo Young [School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang (Korea, Republic of); Kim, Jae Seong [Center for Robot Technology and Manufacturing, Institute for Advanced Engineering, Yongin (Korea, Republic of); Kang, Sung Sik [Dept. of Nuclear Safety Research, Daejeon (Korea, Republic of); Kwag, Nog Won [Ultrasonic Division, RM910, Byucksan Digital Valley II, Seoul (Korea, Republic of)

    2015-06-15

    Acoustic emission (AE) is one of the promising methods for detecting the formation of stress corrosion cracks (SCCs) in laboratory tests. This method has the advantage of online inspection. Some studies have been conducted to investigate the characteristics of AE parameters during SCC propagation. However, it is difficult to classify the distinct features of SCC behavior. Because the previous studies were performed on slow strain rate test or compact tension specimens, it is difficult to make certain correlations between AE signals and actual SCC behavior in real tube-type specimens. In this study, the specimen was a AISI 304 stainless steel tube widely applied in the nuclear industry, and an accelerated test was conducted at high temperature and pressure with a corrosive environmental condition. The study result indicated that intense AE signals were mainly detected in the elastic deformation region, and a good correlation was observed between AE activity and crack growth. By contrast, the behavior of accumulated counts was divided into four regions. According to the waveform analysis, a specific waveform pattern was observed during SCC development. It is suggested that AE can be used to detect and monitor SCC initiation and propagation in actual tubes.

  6. Interaction of vortices with ultrasound and the acoustic Faraday effect in type-II superconductors

    International Nuclear Information System (INIS)

    Dominguez, D.; Bulaevskii, L.; Ivlev, B.; Maley, M.; Bishop, A.R.

    1996-01-01

    We study the interaction of sound waves with vortices in type-II superconductors, taking into account pinning and electrodynamic forces between vortices and crystal displacements. We propose ultrasound techniques as a method for obtaining information about vortex dynamics. This is particularly appropiate at low temperatures where transport measurements are ineffective. The changes in sound velocity and attenuation due to vortices, can provide information on the elastic constants of the vortex system and on vortex dissipation, respectively. At low temperatures the Magnus force acting on vortices leads to the acoustic Faraday effect: there is a rotation of the polarization plane of tranverse sound waves propagating along the magnetic field. This effect is linear in the Magnus force and magnetic field in crystals with equivalent a and b axes for a field parallel to the c axis. We discuss how this effect can be measured by means of either pulse-echo techniques or standing sound waves. Also, we show that an ac electromagnetic field acting on the vortex system can generate ultrasound. We calculate the amplitude of the generated sound waves in the linear regime and compare with recent experiments. copyright 1996 The American Physical Society

  7. Tissue elasticity displayed by elastography and its correlation with the characteristics of collagen type I and type III in prostatic stroma

    Directory of Open Access Journals (Sweden)

    Jie Tang

    2014-04-01

    Full Text Available We investigated the prostate elasticity displayed by elastography and its correlation with the content and distribution of collagen type I (Col1 and type III (Col3. A total of 62 patients underwent transrectal real-time tissue elastography (TRTE examinations. Targeted biopsies were performed after 12-core systematic biopsy. The tissues corresponding to the elastograms were stained with picric acid-sirius red. The distribution of Col1 and type Col3 was observed, and the collagen volume fraction (CVF of these two types of collagen fibers was calculated. The CVFs of Col1 in the stiff and soft groups were 0.05 ± 0.02 and 0.02 ± 0.01 (P = 0.002, respectively. The CVFs of Col3 in the stiff and soft groups were 0.05 ± 0.04 and 0.07 ± 0.03 (P = 0.13, respectively. The circular analysis results showed that collagen fibers were disorganized both in the soft and stiff groups. Col1 and Col3 were mainly cross-linked, and some parallelization was observed in the sections. The distributions of Col1 and Col3 were different between the stiff and soft groups (P = 0.03. In conclusion, the texture of the prostate is due to the content of Col1 and its relative correlation with Col3.

  8. Tissue elasticity displayed by elastography and its correlation with the characteristics of collagen type I and type III in prostatic stroma.

    Science.gov (United States)

    Tang, Jie; Zhang, Yan; Zhang, Ming-Bo; Li, Yan-Mi; Fei, Xiang; Song, Zhi-Gang

    2014-01-01

    We investigated the prostate elasticity displayed by elastography and its correlation with the content and distribution of collagen type I (Col1) and type III (Col3). A total of 62 patients underwent transrectal real-time tissue elastography (TRTE) examinations. Targeted biopsies were performed after 12-core systematic biopsy. The tissues corresponding to the elastograms were stained with picric acid-sirius red. The distribution of Col1 and type Col3 was observed, and the collagen volume fraction (CVF) of these two types of collagen fibers was calculated. The CVFs of Col1 in the stiff and soft groups were 0.05 ± 0.02 and 0.02 ± 0.01 (P = 0.002), respectively. The CVFs of Col3 in the stiff and soft groups were 0.05 ± 0.04 and 0.07 ± 0.03 (P = 0.13), respectively. The circular analysis results showed that collagen fibers were disorganized both in the soft and stiff groups. Col1 and Col3 were mainly cross-linked, and some parallelization was observed in the sections. The distributions of Col1 and Col3 were different between the stiff and soft groups (P = 0.03). In conclusion, the texture of the prostate is due to the content of Col1 and its relative correlation with Col3.

  9. Acoustic and thermal properties of tissue

    Science.gov (United States)

    Retat, L.; Rivens, I.; ter Haar, G. R.

    2012-10-01

    Differences in ultrasound (US) and thermal properties of abdominal soft tissues may affect the delivery of thermal therapies such as high intensity focused ultrasound and may provide a basis for US monitoring of such therapies. 21 rat livers were obtained, within one hour of surgical removal. For a single liver, 3 lobes were selected and each treated in one of 3 ways: maintained at room temperature, water bath heated to 50°C ± 1°C for 10 ± 0.5 minutes, or water bath heated to 60°C ± 1°C for 10 ± 0.6 minutes. The attenuation coefficient, speed of sound and thermal conductivity of fresh rat liver was measured. The attenuation coefficients and speed of sound were measured using the finite-amplitude insertion-substitution (FAIS) method. For each rat liver, the control and treated lobes were scanned using a pair of weakly focused 2.5 MHz Imasonic transducers over the range 1.8 to 3 MHz. The conductivity measurement apparatus was designed to provide one-dimensional heat flow through each specimen using a combination of insulation, heat source and heat sink. Using 35 MHz US images to determine the volume of air trapped in the system, the thermal conductivity was corrected using a simulation based on the Helmhotz bio-heat equation. The process of correlating these results with biological properties is discussed.

  10. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  11. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  12. Ion-acoustic plasma turbulence

    International Nuclear Information System (INIS)

    Bychenkov, V.Y.; Silin, V.P.

    1982-01-01

    A theory is developed of the nonlinear state that is established in a plasma as a result of development of ion-acoustic instability. Account is taken simultaneously of the linear induced scattering of the waves by the ions and of the quasilinear relaxation of the electrons by the ion-acoustic pulsations. The distribution of the ion-acoustic turbulence in frequency and in angle is obtained. An Ohm's law is established and expressions are obtained for the electronic heat flux and for the relaxation time of the electron temperature in a turbulent plasma. Anomalously large absorption and scattering of the electromagnetic waves by the ion-acoustic pulsations is predicted

  13. State of the art in acoustic energy harvesting

    Science.gov (United States)

    Ullah Khan, Farid; Izhar

    2015-02-01

    For portable and embedded smart, wireless electronic systems, energy harvesting from the ambient energy sources has gained immense interest in recent years. Several ambient energies exist in the environment of wireless sensor nodes (WSNs) that include thermal, solar, vibration and acoustic energy. This paper presents the recent development in the field of acoustic energy harvesters (AEHs). AEHs convert the acoustic energy into useful electrical energy for the operation of autonomous wireless sensors. Mainly, two types of AEHs (electromagnetic and piezoelectric based) have been developed and reported in literature. The power produced by the reported piezoelectric AEHs ranges from 0.68 pW to 30 mW however, the power generation of the developed electromagnetic AEHs is in the range of 1.5-1.96 mW. The overall size of most of the developed piezoelectric and electromagnetic AEHs are quite comparable and in millimeter scale. The resonant frequencies of electromagnetic AEHs are on the lower side (143-470 Hz), than that of piezoelectric AEHs (146 Hz-16.7 kHz).

  14. State of the art in acoustic energy harvesting

    International Nuclear Information System (INIS)

    Khan, Farid Ullah; Izhar

    2015-01-01

    For portable and embedded smart, wireless electronic systems, energy harvesting from the ambient energy sources has gained immense interest in recent years. Several ambient energies exist in the environment of wireless sensor nodes (WSNs) that include thermal, solar, vibration and acoustic energy. This paper presents the recent development in the field of acoustic energy harvesters (AEHs). AEHs convert the acoustic energy into useful electrical energy for the operation of autonomous wireless sensors. Mainly, two types of AEHs (electromagnetic and piezoelectric based) have been developed and reported in literature. The power produced by the reported piezoelectric AEHs ranges from 0.68 pW to 30 mW; however, the power generation of the developed electromagnetic AEHs is in the range of 1.5–1.96 mW. The overall size of most of the developed piezoelectric and electromagnetic AEHs are quite comparable and in millimeter scale. The resonant frequencies of electromagnetic AEHs are on the lower side (143–470 Hz), than that of piezoelectric AEHs (146 Hz–16.7 kHz). (topical review)

  15. Storability evaluation of Golab apple with acoustic and penetration methods

    Directory of Open Access Journals (Sweden)

    M. R Bayati

    2016-04-01

    Full Text Available Introduction: Apple fruit (Mauls domestica Borkh, Rosaceae after citrus fruits, grape and banana, is the fourth important fruit in the world and is considered the most important fruit of temperate regions. In terms of trade volume, Iran is fourth producer and 17th exporter in the world. Among Iranian cultivars of apple fruit, known as “Golab apple”. Golab apple is one of the fragrant and tasty varieties and meanwhile is very sensitive and also its period of the postharvest shelf life is very short. In a study, the firmness of pear fruit during 4 weeks of storage was monitored using non-destructive impulse response (I-R and destructive Magness-Taylor (M-T puncture tests. The results of this study showed that the dominant frequency, stiffness coefficient and elasticity coefficient as a function of time could be expressed as a decreasing linear function (Gómez et al., 2005. Tiplica et al., (2010, showed that acoustic measurement can be a useful tool to discriminate different apple batches with a low error rate. Starting from the spectrum of the signal recorded by a microphone after the impact of a small hammer on the fruit, 18 key features were identified and used for the classification of apples belonging to 10 different varieties. The study aimed to evaluate apple firmness measured using both the penetrometer and acoustic methods. The methodologies were applied to Royal Gaya and Golden Smoothee apples harvested from 12 different orchards in Catalonia (Spain, on six different dates, and over three seasons. The results obtained showed a noticeable correlation between Magness Taylor firmness and acoustic measurements in Royal Gala, but no correlation was found for Golden Smoothee. In this study, also, acoustic measurements seemed to be a good tool for evaluating changes in tissue firmness during long-term storage (Molina-Delgado et al., 2009. In another study, it was presented a novel approach based on the simultaneous profiling of the

  16. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  17. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  18. Select Internet Resources on Acoustics

    Directory of Open Access Journals (Sweden)

    Angela R. Davis

    2016-12-01

    Full Text Available Merriam-Webster (2016 defines acoustics as, “a science that deals with the production, control, transmission, reception, and effects of sounds.” According to Rossing (2014, the study of acoustics began in ancient Greece with Pythagoras’ study of vibrating strings on musical instruments. Since those early beginnings, famous scientists including Rayleigh, Alexander Graham Bell, and Thomas Edison, have helped expand the field of acoustics to include architectural, physical, engineering, structural, underwater, physiological and psychological, musical acoustics, and speech. Acoustics is a highly interdisciplinary field and researchers may need resources from physics, medicine, and engineering to understand all aspects of their research.

  19. Indirect Low-Intensity Ultrasonic Stimulation for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hyoungshin Park

    2010-01-01

    Full Text Available Low-intensity ultrasound (LIUS treatment has been shown to increase mass transport, which could benefit tissue grafts during the immediate postimplant period, when blood supply to the implanted tissue is suboptimal. In this in vitro study, we investigated effects of LIUS stimulation on dye diffusion, proliferation, metabolism, and tropomyosin expression of muscle cells (C2C12 and on tissue viability and gene expression of human adipose tissue organoids. We found that LIUS increased dye diffusion within adjacent tissue culture wells and caused anisotropic diffusion patterns. This effect was confirmed by a hydrophone measurement resulting in acoustic pressure 150–341 Pa in wells. Cellular studies showed that LIUS significantly increased proliferation, metabolic activity, and expression of tropomyosin. Adipose tissue treated with LIUS showed significantly increased metabolic activity and the cells had similar morphology to normal unilocular adipocytes. Gene analysis showed that tumor necrosis factor-alpha expression (a marker for tissue damage was significantly lower for stimulated organoids than for control groups. Our data suggests that LIUS could be a useful modality for improving graft survival in vivo.

  20. Controllable transmission and total reflection through an impedance-matched acoustic metasurface

    KAUST Repository

    Mei, Jun; Wu, Ying

    2014-01-01

    supplies the functionalities of reflection-type acoustic metasurfaces, but also exhibits unprecedented flexibility and efficiency in various domains of wave manipulation for possible applications in fields like refracting, collimating, focusing or absorbing

  1. Handbook of Signal Processing in Acoustics

    CERN Document Server

    Havelock, David; Vorländer, Michael

    2009-01-01

    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.

  2. A passive acoustic monitor of treatment effectiveness during extracorporeal lithotripsy

    Science.gov (United States)

    Fedele, F.; Thomas, K.; Leighton, T. G.; Ryves, S.; Phillips, D.; Coleman, A. J.

    2011-02-01

    Although extracorporeal shockwave lithotripsy (ESWL) has now been in the clinic for at least three decades, there has been little advance in efforts (i) to estimate the efficacy of the treatment whilst it is in progress, or (ii) to determine the end-point of a treatment session in terms of the degree of stone fragmentation achieved. Previous in vitro experimentation and clinical trials have shown that a passive acoustic monitor has the potential to provide evidence of the effectiveness and end-point of lithotripsy. The system exploits secondary emissions generated during shock-tissue interaction, whose features depend on the quality of tissue at the beam focus. This prototype was developed into the first commercially available clinical ESWL treatment monitor (Precision Acoustic Ltd, Dorchester, UK), and a unit has been acquired and tested in the clinical routine by urologists at Guy's and St Thomas NHS Trust in March 2009. This paper critically assesses the performance of the new system for the first 25 treatments monitored. The ESWL monitor correctly predicted the treatment outcome of 15 of the 18 treatments that were followed-up clinically. In addition, it was noted that the measure of treatment effectiveness provided by the monitor after 500 shocks was predictive of the final treatment outcome (p ESWL or if the patient should be sent for surgery.

  3. The Feasibility of Generalized Acoustic Sensor Operator Training. Final Report for Period February 1974-February 1975.

    Science.gov (United States)

    Daniels, Richard W.; Alden, David G.

    The feasibility of generalized approaches to training military personnel in the use of different types of sonar/acoustic warfare systems was explored. The initial phase of the project consisted of the analysis of representative sonar and acoustic equipment to identify training areas and operator performance requirements that could be subjected to…

  4. Auralizations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence...... of the PARISM impulse response, because more directional information is available with acoustical radiosity. Small rooms with absorbing surfaces are tested, because this is the room type that PARISM is particularly useful for....

  5. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  6. Low Frequency Acoustic Intensity Propagation Modeling in Shallow Water Waveguides

    Science.gov (United States)

    2016-06-01

    planar interfacial two-fluid transmission and reflection are used to benchmark the commercial software package COMSOL. Canonical Pekeris-type... interfacial two-fluid transmission and reflection are used to benchmark the commercial software package COMSOL. Canonical Pekeris-type waveguides are used as...source of reflections, and second, it provides a natural separation of scales that allow for better conditioned numerics. In general structural acoustics

  7. Conservative treatment of bone tissue metabolic disorders among patients with vitamin D-dependent rickets type II with genetic abnormality of type I collagen formation

    Directory of Open Access Journals (Sweden)

    S.M. Martsyniak

    2017-08-01

    Full Text Available Background. The purpose of the article is to determine the effect of conservative therapy on genetically caused disorders of bone tissue metabolism in patients with vitamin D-dependent rickets type II and genetic abnormality of type I collagen formation (VDDR(COL1. Materials and methods. At the premises of consulting and outpatient department of SI “Institute of Traumatology and Orthopaedics of the NAMS of Ukraine”, 13 patients having VDDR type II and genetic damage of type I collagen formation were examined and treated. The medical treatment was conducted in four stages. The first stage included full examination of patients (calcium and phosphorus levels in the blood serum and their urinary excretion, as well as determination of calcidiol and calcitriol serum levels, indicators of parathyroid hormone and osteocalcin, and a marker of bone formation P1NP and osteoresorption b-CTx. At this stage, children were obligated to undergo a genetic test to detect changes (polymorphism in alleles of receptors to vitamin D and type I collagen. Besides genetic tests, examinations at the other stages were conducted in full. Results. The study has shown the following. The genetically caused abnormality of reception to vitamin D results into substantial accumulation of vitamin D active metabolite in the blood serum. When combined with gene­tic abnormality of type I collagen formation, it significantly affected bone formation and destruction processes that causes development of osteomalacia (parathormone — vitamin D — osteocalcin system. The comprehensive study of vitamin D metabolism and biochemical vitals of bone tissue in patients having VDDR (COL1 brought us to understanding of some issues related to pathogenesis and nature of osteomalacia and, in future, osteoporotic changes on different levels, ensured us to express these changes by corresponding indices in the biochemical research and, finally, to develop appropriate schemes for the treatment of

  8. Relaxation time of acoustically disturbed plasma

    International Nuclear Information System (INIS)

    Mkrtchyan, K.S.; Abrahamyan, A.S.

    2005-01-01

    The conservation time of an acoustic structure in plasma after relieving of external acoustic influence is investigated. Dependences of the conservation time on discharge parameters are presented. It is asserted that the plasma becomes an anisotropic uniaxial medium with an acoustic superlattice under the acoustic influence

  9. Airy acoustical-sheet spinner tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  10. Department of Cybernetic Acoustics

    Science.gov (United States)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  11. Dynamic rayed aurora and enhanced ion-acoustic radar echoes

    Directory of Open Access Journals (Sweden)

    E. M. Blixt

    2005-01-01

    Full Text Available The generation mechanism for naturally enhanced ion-acoustic echoes is still debated. One important issue is how these enhancements are related to auroral activity. All events of enhanced ion-acoustic echoes observed simultaneously with the EISCAT Svalbard Radar (ESR and with high-resolution narrow field-of-view auroral imagers have been collected and studied. Characteristic of all the events is the appearance of very dynamic rayed aurora, and some of the intrinsic features of these auroral displays are identified. Several of these identified features are directly related to the presence of low energy (10-100eV precipitating electrons in addition to the higher energy population producing most of the associated light. The low energy contribution is vital for the formation of the enhanced ion-acoustic echoes. We argue that this type of aurora is sufficient for the generation of naturally enhanced ion-acoustic echoes. In one event two imagers were used to observe the auroral rays simultaneously, one from the radar site and one 7km away. The data from these imagers shows that the auroral rays and the strong backscattering filaments (where the enhanced echoes are produced are located on the same field line, which is in contrast to earlier statements in the litterature that they should be separated.

  12. Using Approximate Bayesian Computation to infer sex ratios from acoustic data.

    Science.gov (United States)

    Lehnen, Lisa; Schorcht, Wigbert; Karst, Inken; Biedermann, Martin; Kerth, Gerald; Puechmaille, Sebastien J

    2018-01-01

    Population sex ratios are of high ecological relevance, but are challenging to determine in species lacking conspicuous external cues indicating their sex. Acoustic sexing is an option if vocalizations differ between sexes, but is precluded by overlapping distributions of the values of male and female vocalizations in many species. A method allowing the inference of sex ratios despite such an overlap will therefore greatly increase the information extractable from acoustic data. To meet this demand, we developed a novel approach using Approximate Bayesian Computation (ABC) to infer the sex ratio of populations from acoustic data. Additionally, parameters characterizing the male and female distribution of acoustic values (mean and standard deviation) are inferred. This information is then used to probabilistically assign a sex to a single acoustic signal. We furthermore develop a simpler means of sex ratio estimation based on the exclusion of calls from the overlap zone. Applying our methods to simulated data demonstrates that sex ratio and acoustic parameter characteristics of males and females are reliably inferred by the ABC approach. Applying both the ABC and the exclusion method to empirical datasets (echolocation calls recorded in colonies of lesser horseshoe bats, Rhinolophus hipposideros) provides similar sex ratios as molecular sexing. Our methods aim to facilitate evidence-based conservation, and to benefit scientists investigating ecological or conservation questions related to sex- or group specific behaviour across a wide range of organisms emitting acoustic signals. The developed methodology is non-invasive, low-cost and time-efficient, thus allowing the study of many sites and individuals. We provide an R-script for the easy application of the method and discuss potential future extensions and fields of applications. The script can be easily adapted to account for numerous biological systems by adjusting the type and number of groups to be

  13. Nonlinear acoustic waves in partially ionized collisional plasmas

    International Nuclear Information System (INIS)

    Rao, N.N.; Kaup, D.J.; Shukla, P.K.

    1991-01-01

    Nonlinear propagation of acoustic-type waves in a partially ionized three-component collisional plasma consisting of electrons, ions and neutral particles is investigated. For bidirectional propagation, it is shown that the small- but finite-amplitude waves are governed by the Boussinesq equation, which for unidirectional propagation near the acoustic speed reduces to the usual Korteweg-de Vries equation. For large-amplitude waves, it is demonstrated that the relevant fluid equations are integrable in a stationary frame, and the parameter values for the existence of finite-amplitude solutions are explicitly obtained. In both cases, the different temperatures of the individual species, are taken into account. The relevance of the results to the earth's ionospheric plasma in the lower altitude ranges is pointed out. (author)

  14. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors.

    Science.gov (United States)

    Qin, Lei; Ren, Hong-Wei; Dong, Bi-Qin; Xing, Feng

    2014-10-02

    Acoustic emission (AE) is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1-3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  15. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers

    OpenAIRE

    Chen, Kejie; Wu, Mengxi; Guo, Feng; Li, Peng; Chan, Chung-Yu; Mao, Zhangming; Li, Sixing; Ren, Liqiang; Zhang, Rui; Huang, Tony Jun

    2016-01-01

    The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed ...

  16. Acoustic detection for water/steam leak from a tube of LMFBR steam generator

    International Nuclear Information System (INIS)

    Sonoda, Masataka; Shindo, Yoshihisa

    1989-01-01

    Acoustic leak detector is useful for detecting more quickly intermediate leak than the existing hydrogen detector and is available for identification of leak location on the accident of water/steam leak from a tube of LMFBR steam generator. This paper presents the overview of HALD (High frequency Acoustics Leak Detection) system, which is more sensitive for leak detection and lower cost of equipment for identification of leak location than a low frequency type detector. (author)

  17. Acoustic Liners for Turbine Engines

    Science.gov (United States)

    Jones, Michael G (Inventor); Grady, Joseph E (Inventor); Kiser, James D. (Inventor); Miller, Christopher (Inventor); Heidmann, James D. (Inventor)

    2016-01-01

    An improved acoustic liner for turbine engines is disclosed. The acoustic liner may include a straight cell section including a plurality of cells with straight chambers. The acoustic liner may also include a bent cell section including one or more cells that are bent to extend chamber length without increasing the overall height of the acoustic liner by the entire chamber length. In some cases, holes are placed between cell chambers in addition to bending the cells, or instead of bending the cells.

  18. Aero-acoustics noise assessment for Wind-Lens turbine

    International Nuclear Information System (INIS)

    Hashem, I.; Mohamed, M.H.; Hafiz, A.A.

    2017-01-01

    This paper introduces an aero-acoustic computational study that investigates the noise caused by one of the most promising wind energy conversion concepts, namely the 'Wind-Lens' technology. The hybrid method - where the flow field and acoustic field are solved separately, was deemed to be an appropriate tool to compute this study. The need to investigate this phenomenon increased gradually, since the feasibility of utilizing Wind-Lens turbine within densely populated cities and urban areas depends largely on their noise generation. Ffowcs Williams-Hawkings (FW-H) equation and its integral solution are used to predict the noise radiating to the farfield. CFD Simulations of transient three-dimensional flow field using (URANS) unsteady Reynolds-averaged Navier-Stokes equations are computed to acquire the acoustic sources location and sound intensity. Then, the noise propagates from the before-mentioned sources to pre-defined virtual microphones positioned in different locations. ANSYS-FLUENT is used to calculate the flow field on and around such turbines which is required for the FW-H code. Some effective parameters are investigated such as Wind-Lens shape, brim height and tip speed ratio. Comparison of the noise emitted from the bare wind turbine and different types of Wind-Lens turbine reveals that, the Wind-Lens generates higher noise intensity. - Highlights: • Aero-acoustic noise generated by wind turbines are one of the major challenges. • Noise from wind turbine equipped with a brimmed diffuser is investigated. • A computational aero-acoustic study using the hybrid method is introduced. • Effective parameters are studied such Wind-Lens shape, brim height and speed ratio. • The optimal shape has a moderate power coefficient and the less noise generation.

  19. A signal amplification assay for HSV type 1 viral DNA detection using nanoparticles and direct acoustic profiling

    Directory of Open Access Journals (Sweden)

    Hammond Richard

    2010-02-01

    Full Text Available Abstract Background Nucleic acid based recognition of viral sequences can be used together with label-free biosensors to provide rapid, accurate confirmation of viral infection. To enhance detection sensitivity, gold nanoparticles can be employed with mass-sensitive acoustic biosensors (such as a quartz crystal microbalance by either hybridising nanoparticle-oligonucleotide conjugates to complimentary surface-immobilised ssDNA probes on the sensor, or by using biotin-tagged target oligonucleotides bound to avidin-modified nanoparticles on the sensor. We have evaluated and refined these signal amplification assays for the detection from specific DNA sequences of Herpes Simplex Virus (HSV type 1 and defined detection limits with a 16.5 MHz fundamental frequency thickness shear mode acoustic biosensor. Results In the study the performance of semi-homogeneous and homogeneous assay formats (suited to rapid, single step tests were evaluated utilising different diameter gold nanoparticles at varying DNA concentrations. Mathematical models were built to understand the effects of mass transport in the flow cell, the binding kinetics of targets to nanoparticles in solution, the packing geometries of targets on the nanoparticle, the packing of nanoparticles on the sensor surface and the effect of surface shear stiffness on the response of the acoustic sensor. This lead to the selection of optimised 15 nm nanoparticles that could be used with a 6 minute total assay time to achieve a limit of detection sensitivity of 5.2 × 10-12 M. Larger diameter nanoparticles gave poorer limits of detection than smaller particles. The limit of detection was three orders of magnitude lower than that observed using a hybridisation assay without nanoparticle signal amplification. Conclusions An analytical model was developed to determine optimal nanoparticle diameter, concentration and probe density, which allowed efficient and rapid optimisation of assay parameters

  20. Acoustic communication for Maya Autonomous Underwater Vehicle - performance evaluation of acoustic modem

    Digital Repository Service at National Institute of Oceanography (India)

    Afzulpurkar, S.; Maurya, P.; Navelkar, G.S.; Desa, E.S.; Mascarenhas, A.A.M.Q.; Dabholkar, N.A.; Madhan, R.; Prabhudesai, S.P.

    traffic. This necessitates monitoring the AUV status and data quality through an acoustic link which needs to perform reliably under such conditions, at long range. To address these situations partially, acoustic communication capability is planned...

  1. Acoustical and optical radiation pressures and the development of single beam acoustical tweezers

    OpenAIRE

    Thomas , Jean-Louis; Marchiano , Régis; Baresch , Diego

    2017-01-01

    International audience; Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and positioned micron size particles, biological samples or even atoms with subnanometer accuracy in three dimens...

  2. Heavy Metal Content in Chilean Fish Related to Habitat Use, Tissue Type and River of Origin.

    Science.gov (United States)

    Copaja, S V; Pérez, C A; Vega-Retter, C; Véliz, D

    2017-12-01

    In this study, we analyze the concentration of ten metals in two freshwater fish-the benthic catfish Trichomycterus areolatus and the limnetic silverside Basilichthys microlepidotus-in order to detect possible accumulation differences related to fish habitat (benthic or pelagic), tissue type (gill, liver and muscle), and the river of origin (four different rivers) in central Chile. The MANOVA performed with all variables and metals, revealed independent effects of fish, tissue and river. In the case of the fish factor, Cu, Cr, Mo and Zn showed statistically higher concentrations in catfish compared with silverside for all tissues and in all rivers (p food sources and respiration.

  3. Development of acoustic particle detector

    International Nuclear Information System (INIS)

    Matsuyama, Tadayoshi; Hinode, Fujio; Konno, Osamu

    1999-01-01

    To detect acoustic sign from electron, determination of acoustic radiation from high energy electron and detector were studied. When charge particles pass through medium, energy loss generates local expansion and contraction of medium and pressure compression wave. We need caustic element with 10 -5 Pa the minimum acoustic receive sensitivity and from 10 to 100 kHz frequency sensitivity characteristic. Elements were made by Low-Q materials, piezoelectric materials (PZT). Various sharp of elements were constructed and measured. 50 mm spherical element showed 38 m V/Pa, the best sensitivity. Our developed acoustic element could detect acoustic radiation generated by electron beam from accelerator. The wave sharp detected proved the same as bipolar wave, which was given theoretically. The pressure generated by beam was proportional to the energy loss E. 200 MeV electron beam existed about 95% particles on the incident axis. So that acoustic detector on the axis proved to detect sound wave generated on the beam axis. (S.Y.)

  4. Increased p50/p50 NF-κB Activation in Human Papillomavirus Type 6- or Type 11-Induced Laryngeal Papilloma Tissue

    Science.gov (United States)

    Vancurova, Ivana; Wu, Rong; Miskolci, Veronika; Sun, Shishinn

    2002-01-01

    We have observed elevated NF-κB DNA-binding activity in nuclear extracts from human papillomavirus type 6- and 11-infected laryngeal papilloma tissues. The predominant DNA-binding species is the p50/p50 homodimer. The elevated NF-κB activity could be correlated with a reduced level of cytoplasmic IκBβ and could be associated with the overexpression of p21CIP1/WAF1 in papilloma cells. Increased NF-κB activity and cytoplasmic accumulation of p21CIP1/WAF1 might counteract death-promoting effects elicited by overexpressed PTEN and reduced activation of Akt and STAT3 previously noted in these tissues. PMID:11773428

  5. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  6. International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation

    Science.gov (United States)

    Broyan, James Lee, Jr.

    2009-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  7. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  8. Volume growth rate of acoustic neurinomas

    International Nuclear Information System (INIS)

    Laasonen, E.M.; Troupp, H.

    1986-01-01

    Of 79 acoustic neurinomas seen between June 1980 and June 1984, at least two CT scans were available for each of 23 tumours (21 patients); the scans were performed at intervals of at least 6 months. The volume growth rate of the tumours was either moderate, with a volume doubling time ranging from 205 to 545 days, or slow, with a doubling time ranging from 1090 days to no observable growth. No single clinical, radiological or histological feature correlated with any type of growth rate. However, some conclusions were drawn. If a primary CT scan is negative, at least 1 year should elapse before it is worthwhile taking another scan, even though audiological findings suggest growth; after an apparently radical removal, at least 3 years should elapse before a check CT scan is worthwhile; and if a small acoustic neurinoma is diagnosed, but for some reason not operated upon, a second CT scan should be carried out 1 year later in order to reassess the case. (orig.)

  9. Acoustic communication in plant-animal interactions.

    Science.gov (United States)

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Lightweight acoustic treatments for aerospace applications

    Science.gov (United States)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their

  11. Electrostatic ion acoustic waves

    International Nuclear Information System (INIS)

    Hasegawa, A.

    1983-01-01

    In this paper, certain aspects of plasma physics are illustrated through a study of electrostatic ion acoustic waves. The paper consists of three Sections. Section II deals with linear properties of the ion acoustic wave including derivation of the dispersions relation with the effect of Landau damping and of an ambient magnetic field. The section also introduces the excitation processes of the ion acoustic wave due to an electron drift or to a stimulated Brillouin scattering. The nonlinear properties are introduced in Section III and IV. In Section III, incoherent nonlinear effects such as quasilinear and mode-coupling saturations of the instability are discussed. The coherent nonlinear effects such as the generation of ion acoustic solitons, shocks and weak double layers are presented in Section IV. (Auth.)

  12. Pulp and periodontal tissue repair - regeneration or tissue metaplasia after dental trauma. A review

    DEFF Research Database (Denmark)

    Andreasen, Jens O

    2012-01-01

    Healing subsequent to dental trauma is known to be very complex, a result explained by the variability of the types of dental trauma (six luxations, nine fracture types, and their combinations). On top of that, at least 16 different cellular systems get involved in more severe trauma types each o...... of tissue replaces the injured). In this study, a review is given of the impact of trauma to various dental tissues such as alveolar bone, periodontal ligament, cementum, Hertvigs epithelial root sheath, and the pulp....... of them with a different potential for healing with repair, i.e. (re-establishment of tissue continuity without functional restitution) and regeneration (where the injured or lost tissue is replaced with new tissue with identical tissue anatomy and function) and finally metaplasia (where a new type...

  13. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  14. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  15. Coupled Acoustic-Mechanical Bandgaps

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Kook, Junghwan

    2016-01-01

    medium and the presence of acoustic resonances. It is demonstrated that corrugation of the plate structure can introduce bending wave bandgaps and bandgaps in the acoustic domain in overlapping and audible frequency ranges. This effect is preserved also when taking the physical coupling between the two...... domains into account. Additionally, the coupling is shown to introduce extra gaps in the band structure due to modal interaction and the appearance of a cut-on frequency for the fundamental acoustic mode....

  16. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  17. Quantification of petroleum-type hydrocarbons in avian tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gay, M.L.; Belisle, A.A.; Patton, J.F.

    1980-01-04

    Methods were developed for the analysis of 16 hydrocarbons in avian tissue. Mechanical extraction with pentane was followed by clean-up on Florisil and Silicar. Residues were determined by gas-liquid chromatography and gas-liquid, chromatography-mass spectrometry. The method was applied to the analysis of liver, kidney, fat, and brain tissue of mallard ducks (Anas platyrhynchos) fed a mixture of hydrocarbons. Measurable concentrations of all compounds analyzed were present in all tissues except brain. Highest concentrations were in fat.

  18. Comparison of Species and Cell-Type Differences in Fraction Unbound of Liver Tissues, Hepatocytes, and Cell Lines.

    Science.gov (United States)

    Riccardi, Keith; Ryu, Sangwoo; Lin, Jian; Yates, Phillip; Tess, David; Li, Rui; Singh, Dhirender; Holder, Brian R; Kapinos, Brendon; Chang, George; Di, Li

    2018-04-01

    Fraction unbound ( f u ) of liver tissue, hepatocytes, and other cell types is an essential parameter used to estimate unbound liver drug concentration and intracellular free drug concentration. f u,liver and f u,cell are frequently measured in multiple species and cell types in drug discovery and development for various applications. A comparison study of 12 matrices for f u,liver and f u,cell of hepatocytes in five different species (mouse, rat, dog, monkey, and human), as well as f u,cell of Huh7 and human embryonic kidney 293 cell lines, was conducted for 22 structurally diverse compounds with the equilibrium dialysis method. Using an average bioequivalence approach, our results show that the average difference in binding to liver tissue, hepatocytes, or different cell types was within 2-fold of that of the rat f u,liver Therefore, we recommend using rat f u,liver as a surrogate for liver binding in other species and cell types in drug discovery. This strategy offers the potential to simplify binding studies and reduce cost, thereby enabling a more effective and practical determination of f u for liver tissues, hepatocytes, and other cell types. In addition, f u under hepatocyte stability incubation conditions should not be confused with f u,cell , as one is a diluted f u and the other is an undiluted f u Cell density also plays a critical role in the accurate measurement of f u,cell . Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Using of acoustic technologies for detection of explosives in gas, liquid and solid medium

    International Nuclear Information System (INIS)

    Valyaev, A. N.; Yanushkevich, V.A.

    2004-01-01

    Full text: Some industrial nuclear power objects are very attractive for the realization of radiological and chemical terrorism acts with using of explosives. Although up today this type of terrorism is not revealed itself, but the problem of detection of explosives at these objects is becoming very actual one, for example, in connection with the implementation of the urgent decommissioning of nuclear powered vessels. Such decommissioning includes the utilization the dangerous radioactive and chemical elements, contained in submarines and vessels. This actual problem is existed not only in Russia, but also in abroad. It is noticed that catastrophes at these objects will have in addition the great negative mental effect on population of all over the world, as it was after the Chernobyl accident. The using of the modern nuclear physics methods for detection and analysis of explosives is connected with the following difficulties: (1) we have to have the unique and the expensive equipment; (2) the special preparation of sample probes; (3) a long time is often necessary for analysis; (4) the high qualification of service personal is needed. We proposed to use for these purposes the complex of acoustic techniques, that are based on the high sensitivity of acoustic characteristics of any matter to their physical and chemical properties.Any acoustic signal has the following main parameters: (1) frequency (ω); (2) amplitude of pressure (ρ); (3) wave and amplitude bands; (4) velocity of acoustic wave propagation (sound velocity) (C); (5) space and temporal signal evolution, that is determined by the values of coefficients of temporal attenuation (α), space adsorption (β) and sound dispersion on obstacles and impurities. Our acoustic analysis is included the determination of C, α and β values for solid and liquid explosives. The exact measurements of these parameters and their dependences from frequency and temperature are conducted in the special acoustic cells, that

  20. Transition section for acoustic waveguides

    International Nuclear Information System (INIS)

    Karplus, H.H.B.

    1975-01-01

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation

  1. Tunable coupled surface acoustic cavities

    Science.gov (United States)

    de Lima, M. M.; Santos, P. V.; Kosevich, Yu. A.; Cantarero, A.

    2012-06-01

    We demonstrate the electric tuning of the acoustic field in acoustic microcavities (MCs) defined by a periodic arrangement of metal stripes within a surface acoustic delay line on LiNbO3 substrate. Interferometric measurements show the enhancement of the acoustic field distribution within a single MC, the presence of a "bonding" and "anti-bonding" modes for two strongly coupled MCs, as well as the positive dispersion of the "mini-bands" formed by five coupled MCs. The frequency and amplitude of the resonances can be controlled by the potential applied to the metal stripes.

  2. Spatial Hedonic Pricing Models for Testing the Adequacy of Acoustic Areas in Madrid, Spain

    Directory of Open Access Journals (Sweden)

    José-María Montero

    2011-01-01

    Full Text Available Road traffic noise is one of the main concerns of large cities. Most of them have classified their territory in acoustic areas and have constructed strategic noise maps. From both sources we have elaborated seven types of acoustic neighbourhoods according to both their noise gap in regard to the legal standard and the percentage of population exposed to noise. A spatial Durbin model has been selected as the strategy that best models the impact of noise on housing prices. However, results for Madrid do not confirm the hedonic theory and indicate, as one of the possibilities, that the official acoustic areas in Madrid could be incorrectly designed.

  3. Porosity, Mineralization, Tissue Type and Morphology Interactions at the Human Tibial Cortex

    Science.gov (United States)

    Hampson, Naomi A.

    Prior research has shown a relationship between tibia robustness (ratio of cross-sectional area to bone length) and stress fracture risk, with less robust bones having a higher risk, which may indicate a compensatory increase in elastic modulus to increase bending strength. Previous studies of human tibiae have shown higher ash content in slender bones. In this study, the relationships between variations in volumetric porosity, ash content, tissue mineral density, secondary bone tissue, and cross sectional geometry, were investigated in order to better understand the tissue level adaptations that may occur in the establishment of cross-sectional properties. In this research, significant differences were found between porosity, ash content, and tissue type around the cortex between robust and slender bones, suggesting that there was a level of co-adaption occurring. Variation in porosity correlated with robustness, and explained large parts of the variation in tissue mineral density. The nonlinear relationship between porosity and ash content may support that slender bones compensate for poor geometry by increasing ash content through reduced remodeling, while robust individuals increase porosity to decrease mass, but only to a point. These results suggest that tissue level organization plays a compensatory role in the establishment of adult bone mass, and may contribute to differences in bone aging between different bone phenotypes. The results suggest that slender individuals have significantly less remodeled bone, however the proportion of remodeled bone was not uniform around the tibia. In the complex results of the study of 38% vs. 66% sites the distal site was subject to higher strains than the 66% site, indicating both local and global regulators may be affecting overall remodeling rates and need to be teased apart in future studies. This research has broad clinical implications on the diagnosis and treatment of fragility fractures. The relationships that

  4. Tethys Acoustic Metadata Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tethys database houses the metadata associated with the acoustic data collection efforts by the Passive Acoustic Group. These metadata include dates, locations...

  5. Electron acoustic solitary waves in unmagnetized two electron population dense plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Masood, W.

    2008-01-01

    The electron acoustic solitary waves are studied in unmagnetized two population electron quantum plasmas. The quantum hydrodynamic model is employed with the Sagdeev potential approach to describe the arbitrary amplitude electron acoustic waves in a two electron population dense Fermi plasma. It is found that hot electron density hump structures are formed in the subsonic region in such type of quantum plasmas. The wave amplitude as well as the width of the soliton are increased with the increase of percentage presence of cold (thinly populated) electrons in a multicomponent quantum plasma. It is found that an increase in quantum diffraction parameter broadens the nonlinear structure. Furthermore, the amplitude of the nonlinear electron acoustic wave is found to increase with the decrease in Mach number. The numerical results are also presented to understand the formation of solitons in two electron population Fermi plasmas.

  6. Aerosol behaviour in an acoustic field

    International Nuclear Information System (INIS)

    Malherbe, C.

    1985-01-01

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finest particles on the largest ones. The mechanisms responsible for acoustic agglomeration are mentioned. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Finally, a dimensionless relationship was established between deposition rates and particle diameters as a function of experimental parameters (aeraulic and acoustic conditions, etc...) [fr

  7. The effects of acoustic vibration on fibroblast cell migration.

    Science.gov (United States)

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Relationships of mercury concentrations across tissue types, muscle regions and fins for two shark species

    KAUST Repository

    O'Bryhim, Jason R.

    2017-01-31

    Mercury (Hg) exposure poses a threat to both fish and human health. Sharks are known to bioaccumulate Hg, however, little is known regarding how Hg is distributed between different tissue groups (e.g. muscle regions, organs). Here we evaluated total mercury (THg) concentrations from eight muscle regions, four fins (first dorsal, left and right pectorals, caudal-from both the inner core and trailing margin of each fin), and five internal organs (liver, kidney, spleen, heart, epigonal organ) from two different shark species, bonnethead (Sphyrna tiburo) and silky shark (Carcharhinus falciformis) to determine the relationships of THg concentrations between and within tissue groups. Total Hg concentrations were highest in the eight muscle regions with no significant differences in THg concentrations between the different muscle regions and muscle types (red and white). Results from tissue collected from any muscle region would be representative of all muscle sample locations. Total Hg concentrations were lowest in samples taken from the fin inner core of the first dorsal, pectoral, and caudal (lower lobe) fins. Mercury concentrations for samples taken from the trailing margin of the dorsal, pectoral, and caudal fins (upper and lower lobe) were also not significantly different from each other for both species. Significant relationships were found between THg concentrations in dorsal axial muscle tissue and the fin inner core, liver, kidney, spleen and heart for both species as well as the THg concentrations between the dorsal fin trailing margin and the heart for the silky shark and all other sampled tissue types for the bonnethead shark. Our results suggest that biopsy sampling of dorsal muscle can provide data that can effectively estimate THg concentrations in specific organs without using more invasive, or lethal methods.

  9. Geological formation characterisation by acoustic waves

    International Nuclear Information System (INIS)

    Mari, J.L.; Gaudiani, P.; Delay, J.

    2010-01-01

    Document available in extended abstract form only. For many years, the transmission of a sonic wave through formations has been used for drilling measurements. The tools used are of monopole or dipole type. Monopole-type tools are the most commonly used. Sources and receivers are multidirectional. In the fluid, sources generate a compression wave which creates in the formation a compression wave (P wave) and a shear wave (S wave) at the refraction limit angles. In a vertical well, such tools permit the recording of five propagation modes: the refracted compression wave, the refracted shear wave (only in fast formations), the fluid wave, two dispersive guided modes which are the pseudo Rayleigh waves (only in fast formations) and the Stoneley waves. Full waveform acoustic measurements are represented as constant-offset sections or as common source point gathers, similar to those used in seismic operations. For the different modes, the acoustic parameters which are usually measured are: picked time, amplitude and frequency. The acoustic parameters allow one to determine the propagation velocities of the various modes and some petro-physical parameters and to obtain lithologic and mechanical information if the shear velocity of the formation has been measured. Usually the picking of the refracted S wave is difficult due to the interferences of different wave trains such as leaky modes associated with the refracted P waves and the pseudo Rayleigh. To compute a continuous log of shear velocity, we propose an hybrid method based on the local measurement of the shear velocity (picking of the arrival time of the refracted S wave) and on the analysis of the dispersion curve of the Stoneley modes ( Biot 1956, White 1965). We also show the benefit of using a shape index parameter named Ic, computed from the amplitudes (A1, A2 and A3) of the first refracted P wave to detect acoustic anomalies specially in fractured formation. The Ic parameter is independent of the energy of

  10. Broadband unidirectional acoustic cloak based on phase gradient metasurfaces with two flat acoustic lenses

    Science.gov (United States)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Song, Ai-Ling; Wang, Fang

    2016-07-01

    Narrow bandwidth and bulky configuration are the main obstacles for the realization and application of invisible cloaks. In this paper, we present an effective method to achieve broadband and thin acoustic cloak by using an acoustic metasurface (AMS). In order to realize this cloak, we use slitted unit cells to design the AMS due to the advantage of less energy loss, broad operation bandwidth, and subwavelength thickness. According to the hyperboloidal phase profile along the AMS, the incident plane waves can be focused at a designed focal spot by the flat lens. Furthermore, broadband acoustic cloak is obtained by combining two identical flat lenses. The incident plane waves are focused at the center point in between of the two lenses by passing through one lens, and then recovered by passing through the other one. However, they cannot reach the cloaked regions in between of the two lenses. The simulation results can verify the non-detectability effect of the acoustic cloak. Our study results provide an available and simple approach to experimentally achieve the acoustic cloak, which can be used in acoustic non-detectability for large objects.

  11. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus–infected macaques

    Science.gov (United States)

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A.; Veazey, Ronald S.

    2015-01-01

    Innate lymphoid cells (ILCs) type 3, also known as lymphoid tissue inducer cells, plays a major role in both the development and remodeling of organized lymphoid tissues and the maintenance of adaptive immune responses. HIV/simian immunodeficiency virus (SIV) infection causes breakdown of intestinal barriers resulting in microbial translocation, leading to systemic immune activation and disease progression. However, the effects of HIV/SIV infection on ILC3 are unknown. Here, we analyzed ILC3 from mucosal and systemic lymphoid tissues in chronically SIV-infected macaques and uninfected controls. ILC3 cells were defined and identified in macaque lymphoid tissues as non-T, non-B (lineage-negative), c-Kit+IL-7Rα+ (CD117+CD127+) cells. These ILC3 cells highly expressed CD90 (∼63%) and aryl hydrocarbon receptor and produced IL-17 (∼63%), IL-22 (∼36%), and TNF-α (∼72%) but did not coexpress CD4 or NK cell markers. The intestinal ILC3 cell loss correlated with the reduction of total CD4+ T cells and T helper (Th)17 and Th22 cells in the gut during SIV infection (P lymphoid tissues in SIV-infected macaques, further contributing to the HIV-induced impairment of gut-associated lymphoid tissue structure and function, especially in mucosal tissues.—Xu, H., Wang, X., Lackner, A. A., Veazey, R. S. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus–infected macaques. PMID:26283536

  12. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    Science.gov (United States)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  13. IMPACTS OF TISSUE-TYPE PLASMINOGEN ACTIVATOR (TPA ON NEURONAL SURVIVAL

    Directory of Open Access Journals (Sweden)

    Arnaud eChevilley

    2015-10-01

    Full Text Available Tissue-type plasminogen activator (tPA a serine protease is constituted of five functional domains through which it interacts with different substrates, binding proteins and receptors. In the last years, great interest has been given to the clinical relevance of targeting tPA in different diseases of the central nervous system, in particular stroke. Among its reported functions in the central nervous system, tPA displays both neurotrophic and neurotoxic effects. How can the protease mediate such opposite functions remain unclear but several hypotheses have been proposed. These include an influence of the degree of maturity and/or the type of neurons, of the level of tPA, of its origin (endogenous or exogenous or of its form (single chain tPA versus two chain tPA. In this review, we will provide a synthetic snapshot of our current knowledge regarding the natural history of tPA and discuss how it sustains its pleiotropic functions with focus on excitotoxic/ischemic neuronal death and neuronal survival.

  14. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    Science.gov (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  15. Measurement of the Acoustic Nonlinearity Parameter for Biological Media.

    Science.gov (United States)

    Cobb, Wesley Nelson

    In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.

  16. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    International Nuclear Information System (INIS)

    Zhang, Ting; Xu, Jian-yi; Cheng, Ying; Liu, Xiao-jun; Guo, Jian-zhong

    2015-01-01

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations

  17. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    Science.gov (United States)

    Jiang, Hai; Liu, Jianfang; Lv, Qingqing; Gu, Shoudong; Jiao, Xiaoyang; Li, Minjiao; Zhang, Shasha

    2016-09-01

    The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.

  18. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    Directory of Open Access Journals (Sweden)

    Hai Jiang

    2016-09-01

    Full Text Available The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.

  19. Physical acoustics principles and methods

    CERN Document Server

    Mason, Warren P

    1964-01-01

    Physical Acoustics: Principles and Methods, Volume l-Part A focuses on high frequency sound waves in gases, liquids, and solids that have been proven as powerful tools in analyzing the molecular, defect, domain wall, and other types of motions. The selection first tackles wave propagation in fluids and normal solids and guided wave propagation in elongated cylinders and plates. Discussions focus on fundamentals of continuum mechanics; small-amplitude waves in a linear viscoelastic medium; representation of oscillations and waves; and special effects associated with guided elastic waves in plat

  20. A case of acoustic neurinoma associated with chronic subdural hematoma after gamma knife radiosurgery

    International Nuclear Information System (INIS)

    Sho, Atsuko; Asaeda, Masahiro; Ohtake, Minoru

    2002-01-01

    A 72-year-old female presented with a unique case of acoustic neurinoma with a cystic component followed by the chronic subdural hematoma manifesting as trigeminal neuralgia, facial palsy and trunchal ataxia 7 months after gamma knife radiosurgery. Magnetic resonance imaging demonstrated a loss of central contrast enhancement at the postoperative residual tumor mass and a large cyst associated with a hematoma in the subdural space. A right suboccipital craniectomy was performed. A biopsy of the mass and the membrane was performed following aspiration of the brown-reddish fluid collection. The histological diagnosis was acoustic neurinoma with a hemorrhagic necrosis. The membranous tissue mimicked an outer membrane obtained from chronic subdural hematoma. The postoperative course was satisfactory and preoperative symptom have been alleviated. In this case, the chronic subdural hematoma occurred at posterior fossa during the development of cysts caused by the radiosurgery, because the subdural space had been connected with the subarachnoid space after the first operation. The development of cysts or hematoma should be taken into consideration as possible complications following treatment with gamma knife radiosurgery for acoustic neurinomas. (author)

  1. A case of acoustic neurinoma associated with chronic subdural hematoma after gamma knife radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Sho, Atsuko; Asaeda, Masahiro; Ohtake, Minoru [Tottori Univ., Yonago (Japan). Inst. of Neurological Sciences] [and others

    2002-09-01

    A 72-year-old female presented with a unique case of acoustic neurinoma with a cystic component followed by the chronic subdural hematoma manifesting as trigeminal neuralgia, facial palsy and trunchal ataxia 7 months after gamma knife radiosurgery. Magnetic resonance imaging demonstrated a loss of central contrast enhancement at the postoperative residual tumor mass and a large cyst associated with a hematoma in the subdural space. A right suboccipital craniectomy was performed. A biopsy of the mass and the membrane was performed following aspiration of the brown-reddish fluid collection. The histological diagnosis was acoustic neurinoma with a hemorrhagic necrosis. The membranous tissue mimicked an outer membrane obtained from chronic subdural hematoma. The postoperative course was satisfactory and preoperative symptom have been alleviated. In this case, the chronic subdural hematoma occurred at posterior fossa during the development of cysts caused by the radiosurgery, because the subdural space had been connected with the subarachnoid space after the first operation. The development of cysts or hematoma should be taken into consideration as possible complications following treatment with gamma knife radiosurgery for acoustic neurinomas. (author)

  2. Acoustic wave filter based on periodically poled lithium niobate.

    Science.gov (United States)

    Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain

    2012-09-01

    Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

  3. Use of acoustic field in gas cleaning

    International Nuclear Information System (INIS)

    Boulaud, D.; Madelaine, G.; Malherbe, C.

    1985-01-01

    The use of acoustic field in gas cleaning can be done in two ways: the first is the conditioning of an aerosol by acoustic agglomeration before filtration by conventional methods (cyclones, granular beds, etc.), the second is the collection efficiency improvement of granular bed filters exposed to an acoustic field. In a first part, experimental results are given on the acoustic agglomeration of a polydisperse aerosol of mass concentration between 0.5 and 1 g/m 3 . An important effect of wall precipitation of particles is described and deposition velocity due to the presence of an acoustic field are measured as a function of particle diameter, sound pressure level and acoustic frequency. A dimensionless relationship between the deposition velocity and particle relaxation time is established for these results. At the end of this part energetic criteria for the use of acoustic agglomeration in a gas cleaning train is given. In a second part, experimental results are given to the influence of acoustic field on the collection efficiency of monodispersed aerosols ranging from 0.1 to 1 μm. For these both uses of acoustic field in industrial gas cleaning the different alternatives for the acoustic field generation are discussed

  4. Acoustic methods for cavitation mapping in biomedical applications

    Science.gov (United States)

    Wan, M.; Xu, S.; Ding, T.; Hu, H.; Liu, R.; Bai, C.; Lu, S.

    2015-12-01

    In recent years, cavitation is increasingly utilized in a wide range of applications in biomedical field. Monitoring the spatial-temporal evolution of cavitation bubbles is of great significance for efficiency and safety in biomedical applications. In this paper, several acoustic methods for cavitation mapping proposed or modified on the basis of existing work will be presented. The proposed novel ultrasound line-by-line/plane-by-plane method can depict cavitation bubbles distribution with high spatial and temporal resolution and may be developed as a potential standard 2D/3D cavitation field mapping method. The modified ultrafast active cavitation mapping based upon plane wave transmission and reception as well as bubble wavelet and pulse inversion technique can apparently enhance the cavitation to tissue ratio in tissue and further assist in monitoring the cavitation mediated therapy with good spatial and temporal resolution. The methods presented in this paper will be a foundation to promote the research and development of cavitation imaging in non-transparent medium.

  5. Sinusoidal Representation of Acoustic Signals

    Science.gov (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  6. Molecular cloning and tissue-specific expression analysis of mouse spinesin, a type II transmembrane serine protease 5

    International Nuclear Information System (INIS)

    Watanabe, Yoshihisa; Okui, Akira; Mitsui, Shinichi; Kawarabuki, Kentaro; Yamaguchi, Tatsuyuki; Uemura, Hidetoshi; Yamaguchi, Nozomi

    2004-01-01

    We have previously reported novel serine proteases isolated from cDNA libraries of the human and mouse central nervous system (CNS) by PCR using degenerate oligodeoxyribonucleotide primers designed on the basis of the serine protease motifs, AAHC and DSGGP. Here we report a newly isolated serine protease from the mouse CNS. This protease is homologous (77.9% identical) to human spinesin type II transmembrane serine protease 5. Mouse spinesin (m-spinesin) is also composed of (from the N-terminus) a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger-receptor-like domain, and a serine protease domain, as is h-spinesin. We also isolated type 1, type 2, and type 3 variant cDNAs of m-spinesin. Full-length spinesin (type 4) and type 3 contain all the domains, whereas type 1 and type 2 variants lack the cytoplasmic, transmembrane, and scavenger-receptor-like domains. Subcellular localization of the variant forms was analyzed using enhanced green fluorescent protein (EGFP) fusion proteins. EGFP-type 4 fusion protein was predominantly localized to the ER, Golgi apparatus, and plasma membrane, whereas EGFP-type 1 was localized to the cytoplasm, reflecting differential classification of m-spinesin variants into transmembrane and cytoplasmic types. We analyzed the distribution of m-spinesin variants in mouse tissues, using RT-PCR with variant-specific primer sets. Interestingly, transmembrane-type spinesin, types 3 and 4, was specifically expressed in the spinal cord, whereas cytoplasmic type, type 1, was expressed in multiple tissues, including the cerebrum and cerebellum. Therefore, m-spinesin variants may have distinct biological functions arising from organ-specific variant expression

  7. Tissue distribution and developmental expression of type XVI collagen in the mouse.

    Science.gov (United States)

    Lai, C H; Chu, M L

    1996-04-01

    The expression of a recently identified collagen, alpha 1 (XVI), in adult mouse tissue and developing mouse embryo was examined by immunohistochemistry and in situ hybridization. A polyclonal antiserum was raised against a recombinant fusion protein, which contained a segment of 161 amino acids in the N-terminal noncollagenous domain of the human alpha 1 (XVI) collagen. Immunoprecipitation of metabolically labelled human or mouse fibroblast cell lysates with this antibody revealed a major, bacterial collagenase sensitive polypeptide of approximately 210 kDa. The size agrees with the prediction from the full-length cDNA. Immunofluorescence examination of adult mouse tissues using the affinity purified antibody revealed a rather broad distribution of the protein. The heart, kidney, intestine, ovary, testis, eye, arterial walls and smooth muscles all exhibited significant levels of expression, while the skeletal muscle, lung and brain showed very restricted and low signals. During development, no significant expression of the mRNA or protein was observed in embryo of day 8 of gestation, but strong signals was detected in placental trophoblasts. Expression in embryos was detectable first after day 11 of gestation with weak positive signals appearing in the heart. In later stages of development, stronger RNA hybridizations were observed in a variety of tissues, particularly in atrial and ventricular walls of the developing heart, spinal root neural fibers and skin. These data demonstrate that type XVI collagen represents another collagenous component widely distributed in the extracellular matrix and may contribute to the structural integrity of various tissues.

  8. Acoustic loading effects on oscillating rod bundles

    International Nuclear Information System (INIS)

    Lin, W.H.

    1980-01-01

    An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed

  9. Acoustic neuroma: predominance of Antoni type B cells in tumors of patients with vestibular paresis.

    NARCIS (Netherlands)

    Stipkovits, E.M.; Graamans, K.; Jansen, G.H.; Velthof, M.A.

    2001-01-01

    OBJECTIVE: This study aimed to investigate whether in patients with acoustic neuroma (AN), the presence or absence of vestibular symptoms is related to the histologic characteristics of the tumor. STUDY DESIGN: The study design was a retrospective clinical study. SETTING: The study was conducted at

  10. Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.

    Science.gov (United States)

    Vihvelin, Hugo; Leadbetter, Jeff; Bance, Manohar; Brown, Jeremy A; Adamson, Robert B A

    2016-04-01

    Ultrasonic power transfer using piezoelectric devices is a promising wireless power transfer technology for biomedical implants. However, for sub-dermal implants where the separation between the transmitter and receiver is on the order of several acoustic wavelengths, the ultrasonic power transfer efficiency (PTE) is highly sensitive to the distance between the transmitter and receiver. This sensitivity can cause large swings in efficiency and presents a serious limitation on battery life and overall performance. A practical ultrasonic transcutaneous energy transfer (UTET) system design must accommodate different implant depths and unpredictable acoustic changes caused by tissue growth, hydration, ambient temperature, and movement. This paper describes a method used to compensate for acoustic separation distance by varying the transmit (Tx) frequency in a UTET system. In a benchtop UTET system we experimentally show that without compensation, power transfer efficiency can range from 9% to 25% as a 5 mm porcine tissue sample is manipulated to simulate in situ implant conditions. Using an active frequency compensation method, we show that the power transfer efficiency can be kept uniformly high, ranging from 20% to 27%. The frequency compensation strategy we propose is low-power, non-invasive, and uses only transmit-side measurements, making it suitable for active implanted medical device applications.

  11. Dynamic culture induces a cell type-dependent response impacting on the thickness of engineered connective tissues.

    Science.gov (United States)

    Fortier, Guillaume Marceau; Gauvin, Robert; Proulx, Maryse; Vallée, Maud; Fradette, Julie

    2013-04-01

    Mesenchymal cells are central to connective tissue homeostasis and are widely used for tissue-engineering applications. Dermal fibroblasts and adipose-derived stromal cells (ASCs) allow successful tissue reconstruction by the self-assembly approach of tissue engineering. This method leads to the production of multilayered tissues, devoid of exogenous biomaterials, that can be used as stromal compartments for skin or vesical reconstruction. These tissues are formed by combining cell sheets, generated through cell stimulation with ascorbic acid, which favours the cell-derived production/organization of matrix components. Since media motion can impact on cell behaviour, we investigated the effect of dynamic culture on mesenchymal cells during tissue reconstruction, using the self-assembly method. Tissues produced using ASCs in the presence of a wave-like movement were nearly twice thicker than under standard conditions, while no difference was observed for tissues produced from dermal fibroblasts. The increased matrix deposition was not correlated with an increased proliferation of ASCs, or by higher transcript levels of fibronectin or collagens I and III. A 30% increase of type V collagen mRNA was observed. Interestingly, tissues engineered from dermal fibroblasts featured a four-fold higher level of MMP-1 transcripts under dynamic conditions. Mechanical properties were similar for tissues reconstructed using dynamic or static conditions. Finally, cell sheets produced using ASCs under dynamic conditions could readily be manipulated, resulting in a 2 week reduction of the production time (from 5 to 3 weeks). Our results describe a distinctive property of ASCs' response to media motion, indicating that their culture under dynamic conditions leads to optimized tissue engineering. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  13. Acoustic phonon dispersion of CoSi2

    International Nuclear Information System (INIS)

    Weiss, L.; Rumyantsev, A.Yu.; Ivanov, A.S.

    1985-01-01

    The acoustical phonon dispersion curves of CoSi 2 are measured at room temperature along the main symmetry directions by means of coherent one-phonon scattering of thermal neutrons. The dispersion curves are compared with those of Ge, Si, and the fluorite structure types as CaF 2 and UO 2 . From the slope of the phonon dispersion curves at the GAMMA-point the elastic constants have been obtained

  14. How do males of Hypsiboas goianus (Hylidae: Anura respond to conspecific acoustic stimuli?

    Directory of Open Access Journals (Sweden)

    Alessandro R. Morais

    2015-12-01

    Full Text Available ABSTRACT Acoustic communication plays an important role in the social behavior of anurans. Acoustic signals, which can be used in different contexts such as mate attraction and territory defense, may mediate social interactions among individuals. Herein, we used playback experiments to test whether males of Hypsiboas goianus (Lutz, 1968 change their vocal behavior in response to conspecific advertisement calls. Specifically, we used different field playback experiments in which we modified the time interval between advertisement calls to simulate males with distinct states of motivation (Sequence A and B. We did not observe differences in the acoustic response of males of H. goianus between the two types of field playback experiments. On the other hand, we observed that H. goianus males reduce the dominant frequency of the advertisement call and increase the rate of aggressive calls in response to a conspecific competitor. Our results suggest that the acoustic plasticity observed in males of H. goianus represents an aggressive response that allows repelling conspecific individuals.

  15. ISAT: The mega-fauna acoustic tracking system

    KAUST Repository

    De la Torre, Pedro; Smith, Egan Lloyd; Sancheti, Ajay; Salama, Khaled N.; Berumen, Michael L.

    2013-01-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic

  16. A passive acoustic monitor of treatment effectiveness during extracorporeal lithotripsy

    International Nuclear Information System (INIS)

    Fedele, F; Coleman, A J; Thomas, K; Ryves, S; Phillips, D; Leighton, T G

    2011-01-01

    Although extracorporeal shockwave lithotripsy (ESWL) has now been in the clinic for at least three decades, there has been little advance in efforts (i) to estimate the efficacy of the treatment whilst it is in progress, or (ii) to determine the end-point of a treatment session in terms of the degree of stone fragmentation achieved. Previous in vitro experimentation and clinical trials have shown that a passive acoustic monitor has the potential to provide evidence of the effectiveness and end-point of lithotripsy. The system exploits secondary emissions generated during shock-tissue interaction, whose features depend on the quality of tissue at the beam focus. This prototype was developed into the first commercially available clinical ESWL treatment monitor (Precision Acoustic Ltd, Dorchester, UK), and a unit has been acquired and tested in the clinical routine by urologists at Guy's and St Thomas NHS Trust in March 2009. This paper critically assesses the performance of the new system for the first 25 treatments monitored. The ESWL monitor correctly predicted the treatment outcome of 15 of the 18 treatments that were followed-up clinically. In addition, it was noted that the measure of treatment effectiveness provided by the monitor after 500 shocks was predictive of the final treatment outcome (p < 0.001). This suggests that the system could be used in pre-assessment; indicating if the stone is susceptible to ESWL or if the patient should be sent for surgery.

  17. A passive acoustic monitor of treatment effectiveness during extracorporeal lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Fedele, F; Coleman, A J [Medical Physics Department, Guy' s and St Thomas NHS Foundation Trust, Westminster Bridge Road, SE1 7EH, London (United Kingdom); Thomas, K; Ryves, S; Phillips, D [Urology Department, Guy' s and St Thomas NHS Foundation Trust, Great Maze Pond, SE1 9RT, London (United Kingdom); Leighton, T G, E-mail: fiammetta.fedele@gstt.nhs.uk [Institute of Sound and Vibration Research, University of Southampton, Highfield, S017 1BJ, Southampton (United Kingdom)

    2011-02-01

    Although extracorporeal shockwave lithotripsy (ESWL) has now been in the clinic for at least three decades, there has been little advance in efforts (i) to estimate the efficacy of the treatment whilst it is in progress, or (ii) to determine the end-point of a treatment session in terms of the degree of stone fragmentation achieved. Previous in vitro experimentation and clinical trials have shown that a passive acoustic monitor has the potential to provide evidence of the effectiveness and end-point of lithotripsy. The system exploits secondary emissions generated during shock-tissue interaction, whose features depend on the quality of tissue at the beam focus. This prototype was developed into the first commercially available clinical ESWL treatment monitor (Precision Acoustic Ltd, Dorchester, UK), and a unit has been acquired and tested in the clinical routine by urologists at Guy's and St Thomas NHS Trust in March 2009. This paper critically assesses the performance of the new system for the first 25 treatments monitored. The ESWL monitor correctly predicted the treatment outcome of 15 of the 18 treatments that were followed-up clinically. In addition, it was noted that the measure of treatment effectiveness provided by the monitor after 500 shocks was predictive of the final treatment outcome (p < 0.001). This suggests that the system could be used in pre-assessment; indicating if the stone is susceptible to ESWL or if the patient should be sent for surgery.

  18. A passive acoustic monitor of treatment effectiveness during extracorporeal lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Fedele, F; Coleman, A J [Medical Physics Department, Guy' s and St Thomas NHS Foundation Trust, Westminster Bridge Road, SE1 7EH, London (United Kingdom); Thomas, K; Ryves, S; Phillips, D [Urology Department, Guy' s and St Thomas NHS Foundation Trust, Great Maze Pond, SE1 9RT, London (United Kingdom); Leighton, T G, E-mail: fiammetta.fedele@gstt.nhs.uk [Institute of Sound and Vibration Research, University of Southampton, Highfield, S017 1BJ, Southampton (United Kingdom)

    2011-02-01

    Although extracorporeal shockwave lithotripsy (ESWL) has now been in the clinic for at least three decades, there has been little advance in efforts (i) to estimate the efficacy of the treatment whilst it is in progress, or (ii) to determine the end-point of a treatment session in terms of the degree of stone fragmentation achieved. Previous in vitro experimentation and clinical trials have shown that a passive acoustic monitor has the potential to provide evidence of the effectiveness and end-point of lithotripsy. The system exploits secondary emissions generated during shock-tissue interaction, whose features depend on the quality of tissue at the beam focus. This prototype was developed into the first commercially available clinical ESWL treatment monitor (Precision Acoustic Ltd, Dorchester, UK), and a unit has been acquired and tested in the clinical routine by urologists at Guy's and St Thomas NHS Trust in March 2009. This paper critically assesses the performance of the new system for the first 25 treatments monitored. The ESWL monitor correctly predicted the treatment outcome of 15 of the 18 treatments that were followed-up clinically. In addition, it was noted that the measure of treatment effectiveness provided by the monitor after 500 shocks was predictive of the final treatment outcome (p < 0.001). This suggests that the system could be used in pre-assessment; indicating if the stone is susceptible to ESWL or if the patient should be sent for surgery.

  19. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions to ask Choosing a healthcare provider ... Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation ...

  20. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords World Language Videos Questions to ask Choosing ... Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation ...