WorldWideScience

Sample records for acoustic signature

  1. Acoustic Signature Monitoring and Management of Naval Platforms

    NARCIS (Netherlands)

    Basten, T.G.H.; Jong, C.A.F. de; Graafland, F.; Hof, J. van 't

    2015-01-01

    Acoustic signatures make naval platforms susceptible to detection by threat sensors. The variable operational conditions and lifespan of a platform cause variations in the acoustic signature. To deal with these variations, a real time signature monitoring capability is being developed, with advisory

  2. Study of Porous Materials Acoustic Signatures Behaviour in Dark Field

    Energy Technology Data Exchange (ETDEWEB)

    Bouhedja, S; Hamdi, F [Laboratoires des Hyperfrequences et Semi-conducteurs, Universite de Constantine, B.P. 125, DZ-25000 (Algeria); Doghmane, A; Hadjoub, Z, E-mail: bouhedja_samia@yahoo.fr, E-mail: a_doghmane@yahoo.fr [Laboratoire des Semi-Conducteurs, Departement de Physique, Faculte des Sciences, Universite Badji-Mokhtar, BP 12, Annaba, DZ-23000 (Algeria)

    2011-03-01

    Several kinds of lens-transducer system exist in the scanning acoustic microscope. In this work, annular lenses are chosen in order to quantify the occultation limiting angle to suppress Rayleigh mode generation. Hence, we have numerically simulated, through variable occultation of generated rays at the lens center, the porous silicon acoustic signatures at an operating frequency of 142 MHz. In non destructive control, this investigation is of a great importance in the measurement of the surface waves attenuation. The obtained results enabled us to evaluate the maximum relative occultation at Rayleigh waves.

  3. Acoustic ship signature measurements by cross-correlation method.

    Science.gov (United States)

    Fillinger, Laurent; Sutin, Alexander; Sedunov, Alexander

    2011-02-01

    Cross-correlation methods were applied for the estimation of the power spectral density and modulation spectrum of underwater noise generated by moving vessels. The cross-correlation of the signal from two hydrophones allows the separation of vessel acoustic signatures in a busy estuary. Experimental data recorded in the Hudson River are used for demonstration that cross-correlation method measured the same ship noise and ship noise modulation spectra as conventional methods. The cross-correlation method was then applied for the separation of the acoustic signatures of two ships present simultaneously. Presented methods can be useful for ship traffic monitoring and small ship classification, even in noisy harbor environments. PMID:21361436

  4. Ionospheric signatures of acoustic waves generated by transient tropospheric forcing

    Science.gov (United States)

    Zettergren, M. D.; Snively, J. B.

    2013-10-01

    Acoustic waves generated by tropospheric sources may attain significant amplitudes in the thermosphere and overlying ionosphere. Although they are weak precursors to gravity waves in the mesosphere below, acoustic waves may achieve temperature and vertical wind perturbations on the order of approximately tens of Kelvin and m/s throughout the E and F regions. Their perturbations to total electron content are predicted to be detectable by ground-based radar and GPS receivers; they also drive field-aligned currents that may be detectable in situ via magnetometers. Although transient and short lived, ionospheric signatures of acoustic waves may provide new and quantitative insight into the forcing of the upper atmosphere from below.

  5. Algorithm for classifying multiple targets using acoustic signatures

    Science.gov (United States)

    Damarla, Thyagaraju; Pham, Tien; Lake, Douglas

    2004-08-01

    In this paper we discuss an algorithm for classification and identification of multiple targets using acoustic signatures. We use a Multi-Variate Gaussian (MVG) classifier for classifying individual targets based on the relative amplitudes of the extracted harmonic set of frequencies. The classifier is trained on high signal-to-noise ratio data for individual targets. In order to classify and further identify each target in a multi-target environment (e.g., a convoy), we first perform bearing tracking and data association. Once the bearings of the targets present are established, we next beamform in the direction of each individual target to spatially isolate it from the other targets (or interferers). Then, we further process and extract a harmonic feature set from each beamformed output. Finally, we apply the MVG classifier on each harmonic feature set for vehicle classification and identification. We present classification/identification results for convoys of three to five ground vehicles.

  6. Feature extraction from time domain acoustic signatures of weapons systems fire

    Science.gov (United States)

    Yang, Christine; Goldman, Geoffrey H.

    2014-06-01

    The U.S. Army is interested in developing algorithms to classify weapons systems fire based on their acoustic signatures. To support this effort, an algorithm was developed to extract features from acoustic signatures of weapons systems fire and applied to over 1300 signatures. The algorithm filtered the data using standard techniques then estimated the amplitude and time of the first five peaks and troughs and the location of the zero crossing in the waveform. The results were stored in Excel spreadsheets. The results are being used to develop and test acoustic classifier algorithms.

  7. Mesospheric hydroxyl airglow signatures of acoustic and gravity waves generated by transient tropospheric forcing

    Science.gov (United States)

    Snively, J. B.

    2013-09-01

    Numerical model results demonstrate that acoustic waves generated by tropospheric sources may produce cylindrical "concentric ring" signatures in the mesospheric hydroxyl airglow layer. They may arrive as precursors to upward propagating gravity waves, generated simultaneously by the same sources, and produce strong temperature perturbations in the thermosphere above. Transient and short-lived, the acoustic wave airglow intensity and temperature signatures are predicted to be detectable by ground-based airglow imaging systems and may provide new insight into the forcing of the upper atmosphere from below.

  8. SIRAMIS : Preliminary analysis of acoustic and seismic ship signatures

    NARCIS (Netherlands)

    Fillinger, L.; Mantouka, A.; Jong, C.A.F. de; Gloza, I.; Sanchez, A.; Moya, E.; Schael, S.; Lennartsson, T.; Petit, G.; Fardal, R.; Hasenpflug, H.; Beckers, A.L.D.

    2014-01-01

    SIRAMIS is a project coordinated by the European Defence Agency standing for Signature Response Analysis on Multi Influence Sensors. As most of the international trade is carried out through marine routes, it is important to evaluate the vulnerability of the merchant vessel fleet to sea mines in ord

  9. Exploitation of Acoustic signature of Low flying Aircraft using Acoustic Vector Sensor

    Directory of Open Access Journals (Sweden)

    A. Saravanakumar

    2014-03-01

    Full Text Available Acoustics is emerging as a significant complementary modality to be explored and exploited in the development of Intelligence and surveillance systems that traditionally rely on technology rooted in electro-magnetic field phenomena. Acoustics is emerging as a significant complementary modality to be explored and exploited in the development of Intelligence and surveillance systems that traditionally rely on technology rooted in electro-magnetic field phenomena. An application of the current interest is the detection and localization of the sound sources on battlefield using Acoustic sensors in ground and on board unmanned aerial vehicle. In this work a nonlinear least-square cepstrum and auto correlation methods are made to estimate the motion parameters of a low flying aircraft whose narrowband acoustic energy emissions were received by a ground-based Acoustic vector sensor. The data obtained from the sensor were processed and analyzed using digital signal processing approach. This passive technique is applied to real acoustic sensor data under the condition that the vehicle flies at a constant velocity and the trajectory is a straight line. The performances of both methods are evaluated and compared using actual acoustic data.Defence Science Journal, 2014, 64(2, pp. 95-98. DOI: http://dx.doi.org/10.14429/dsj.64.3924 

  10. Mechanical and Acoustic Signature of Slow Earthquakes on Laboratory Faults

    Science.gov (United States)

    Scuderi, Marco Maria; Marone, Chris; Tinti, Elisa; Scognamiglio, Laura; Di Stefano, Giuseppe; Collettini, Cristiano

    2015-04-01

    Recent seismic and geodetic observations show that fault slip occurs via a spectrum of behaviors that range from seismic (fast dynamic) to aseismic (creep). Indeed faults can slip via a variety of quasi-dynamic processes such as Slow-Slip, Low Frequency Earthquakes (LFE), and Tremor. These transient modes of slip represent slow, but self-propagating acceleration of slip along fault zones. These phenomena have been observed worldwide in a variety of active tectonic environments, however the physics of quasi-dynamic rupture and the underlying fault zone processes are still poorly understood. Rate- and State- frictional constitutive equations predict that fast dynamic slip will occur when the stiffness of the loading system (k) is less than a critical stiffness (kc) characterizing the fault gouge. In order to investigate quasi-dynamic transients, we performed laboratory experiments on simulated fault gouge (silica powders) in the double direct shear configuration with a compliant central block allowing boundary conditions where k≈kc. In addition, PZTs were used to measure acoustical properties of the gouge layers during shear. We document an evolution of the fault mechanical properties as the σn is increased. For σn < 10 MPa we observe a steady state frictional type of shear. When σn ≥ 15 MPa we observe emergent slow-slip events from steady state shear with accumulated shear displacement of about 10 mm. The typical values of stress drop (Δτ) vary between 0.2 and 0.8 MPa, and have typical duration from 0.5 up to 3 seconds giving the characteristics of slow stick-slip. As σn is varied we observe different characteristics of slow slip. For σn = 15MPa a repetitive double period oscillation is observed with slow slip growing until a maximum stress drop and then self attenuating. When σn is increased to 20 and 25 MPa slow slip are characterized by larger Δτ with constant τmax and τmin, however still showing a co-seismic duration of ~2 seconds. Our results

  11. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    Science.gov (United States)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  12. The underwater acoustic signature of a nuclear explosion at the ocean surface. Interim technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bache, T.C.; Barker, T.G.; Brown, M.G.; Pyatt, K.D.; Swanger, H.J.

    1980-07-01

    The gross spectral character and duration of the acoustic wave signature of a nuclear explosion near the ocean surface is estimated by constructing theoretical pressure-time histories, using models for the explosion and wave propagation. The explosion is assumed to have a yield of 1 KT and the nominal range is 6600 km. The frequencies of interest are rather low, 50 Hz and less, so absorption is small and the estimates of spectral character and duration essentially decouple. The spectrum depends almost entirely on the source characteristics and the duration is controlled by characteristics of the travel path. The airblast-induced pressure loading on the ocean surface dominates the source, with the acoustic waves from direct coupling into the water being relatively small. At large distances, the spectrum for 1 KT peaks near 20 Hz and is band-limited between 5 and 50 Hz. For different energy yields these frequencies scale with the cube-root of the yield. Different assumptions about the (laterally homogeneous) oceanic sound profile lead to differing estimates for the signal duration. Values of 20 to 60 seconds seem most reasonable.

  13. Implementation of algorithms to discriminate chemical/biological airbursts from high explosive airbursts utilizing acoustic signatures

    Science.gov (United States)

    Hohil, Myron E.; Desai, Sachi; Morcos, Amir

    2006-05-01

    The Army is currently developing acoustic sensor systems that will provide extended range surveillance, detection, and identification for force protection and tactical security. A network of such sensors remotely deployed in conjunction with a central processing node (or gateway) will provide early warning and assessment of enemy threats, near real-time situational awareness to commanders, and may reduce potential hazards to the soldier. In contrast, the current detection of chemical/biological (CB) agents expelled into a battlefield environment is limited to the response of chemical sensors that must be located within close proximity to the CB agent. Since chemical sensors detect hazardous agents through contact, the sensor range to an airburst is the key-limiting factor in identifying a potential CB weapon attack. The associated sensor reporting latencies must be minimized to give sufficient preparation time to field commanders, who must assess if an attack is about to occur, has occurred, or if occurred, the type of agent that soldiers might be exposed to. The long-range propagation of acoustic blast waves from heavy artillery blasts, which are typical in a battlefield environment, introduces a feature for using acoustics and other sensor suite technologies for the early detection and identification of CB threats. Employing disparate sensor technologies implies that warning of a potential CB attack can be provided to the solider more rapidly and from a safer distance when compared to current conventional methods. Distinct characteristics arise within the different airburst signatures because High Explosive (HE) warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over immense areas, therefore utilizing a slower burning, less intensive explosion to mix and distribute their contents. Highly reliable discrimination (100%) has been demonstrated at the Portable Area Warning Surveillance System

  14. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    Science.gov (United States)

    Manela, A.

    2016-07-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  15. The acoustic signatures of ground acceleration, gas expansion, and spall fallback in experimental volcanic explosions

    Science.gov (United States)

    Bowman, Daniel C.; Taddeucci, Jacopo; Kim, Keehoon; Anderson, Jacob F.; Lees, Jonathan M.; Graettinger, Alison H.; Sonder, Ingo; Valentine, Greg A.

    2014-03-01

    Infrasound and high-speed imaging during a series of field-scale buried explosions suggest new details about the generation and radiation patterns of acoustic waves from volcanic eruptions. We recorded infrasound and high-speed video from a series of subsurface explosions with differing burial depths and charge sizes. Joint observations and modeling allow the extraction of acoustic energy related to the magnitude of initial ground deformation, the contribution of gas breakout, and the timing of the fallback of displaced material. The existence and relative acoustic amplitudes of these three phases depended on the size and depth of the explosion. The results motivate a conceptual model that relates successive contributions from ground acceleration, gas breakout, and spall fallback to the acoustic amplitude and waveform characteristics of buried explosions. We place the literature on infrasound signals at Santiaguito Volcano, Guatemala, and Sakurajima and Suwonosejima Volcanoes, Japan, in the context of this model.

  16. EFFECT OF COMBUSTOR INLET GEOMETRY ON ACOUSTIC SIGNATURE AND FLOW FIELD BEHAVIOUR OF THE LOW SWIRL INJECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter L.; Littlejohn, David; Cheng, Robert K.; Portillo, J. Enrique; Martin, Scott M.

    2009-11-30

    Low Swirl Injector (LSI) technology is a lean premixed combustion method that is being developed for fuel-flexible gas turbines. The objective of this study is to characterize the fuel effects and influences of combustor geometry on the LSI's overall acoustic signatures and flowfields. The experiments consist of 24 flames at atmospheric condition with bulk flows ranging between 10 and 18 m/s. The flames burn CH{sub 4} (at {phi} = 0.6 & 0.7) and a blend of 90% H{sub 2} - 10% CH{sub 4} by volume (at {phi} = 0.35 & 0.4). Two combustor configurations are used, consisting of a cylindrical chamber with and without a divergent quarl at the dump plane. The data consist of pressure spectral distributions at five positions within the system and 2D flowfield information measured by Particle Imaging Velocimetry (PIV). The results show that acoustic oscillations increase with U{sub 0} and {phi}. However, the levels in the 90% H{sub 2} flames are significantly higher than in the CH{sub 4} flames. For both fuels, the use of the quarl reduces the fluctuating pressures in the combustion chamber by up to a factor of 7. The PIV results suggest this to be a consequence of the quarl restricting the formation of large vortices in the outer shear layer. A Generalized Instability Model (GIM) was applied to analyze the acoustic response of baseline flames for each of the two fuels. The measured frequencies and the stability trends for these two cases are predicted and the triggered acoustic mode shapes identified.

  17. Acoustic communication and sound degradation: how do the individual signatures of male and female zebra finch calls transmit over distance?

    Directory of Open Access Journals (Sweden)

    Solveig C Mouterde

    Full Text Available BACKGROUND: Assessing the active space of the various types of information encoded by songbirds' vocalizations is important to address questions related to species ecology (e.g. spacing of individuals, as well as social behavior (e.g. territorial and/or mating strategies. Up to now, most of the previous studies have investigated the degradation of species-specific related information (species identity, and there is a gap of knowledge of how finer-grained information (e.g. individual identity can transmit through the environment. Here we studied how the individual signature coded in the zebra finch long distance contact call degrades with propagation. METHODOLOGY: We performed sound transmission experiments of zebra finches' distance calls at various propagation distances. The propagated calls were analyzed using discriminant function analyses on a set of analytical parameters describing separately the spectral and temporal envelopes, as well as on a complete spectrographic representation of the signals. RESULTS/CONCLUSION: We found that individual signature is remarkably resistant to propagation as caller identity can be recovered even at distances greater than a hundred meters. Male calls show stronger discriminability at long distances than female calls, and this difference can be explained by the more pronounced frequency modulation found in their calls. In both sexes, individual information is carried redundantly using multiple acoustical features. Interestingly, features providing the highest discrimination at short distances are not the same ones that provide the highest discrimination at long distances.

  18. Acoustic signatures of the phases and phase transitions in Yb2Ti2O7

    Science.gov (United States)

    Bhattacharjee, Subhro; Erfanifam, S.; Green, E. L.; Naumann, M.; Wang, Zhaosheng; Granovsky, S.; Doerr, M.; Wosnitza, J.; Zvyagin, A. A.; Moessner, R.; Maljuk, A.; Wurmehl, S.; Büchner, B.; Zherlitsyn, S.

    2016-04-01

    We report on measurements of the sound velocity and attenuation in a single crystal of the candidate quantum-spin-ice material Yb2Ti2O7 as a function of temperature and magnetic field. The acoustic modes couple to the spins magnetoelastically and, hence, carry information about the spin correlations that sheds light on the intricate magnetic phase diagram of Yb2Ti2O7 and the nature of spin dynamics in the material. Particularly, we find a pronounced thermal hysteresis in the acoustic data with a concomitant peak in the specific heat indicating a possible first-order phase transition at about 0.17 K. At low temperatures, the acoustic response to magnetic field saturates hinting at the development of magnetic order. The experimental data are consistent with a first-order phase transition from a cooperative paramagnet to a ferromagnet below T ≈0.17 K, as shown by fitting the data with a phenomenological mean-field theory.

  19. Low Mach number prediction of the acoustic signature of fractal-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Laizet, Sylvain, E-mail: s.laizet@imperial.ac.uk [Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Fortune, Veronique, E-mail: veronique.fortune@lea.univ-poitiers.fr [Department of Fluid Flow, Heat Transfer and Combustion, Institute PPRIME, Universite de Poitiers, ENSMA, CNRS, Teleport 2 - Bd. Marie et Pierre Curie, B.P. 30179, 86962 Futuroscope Chasseneuil Cedex (France); Lamballais, Eric, E-mail: lamballais@univ-poitiers.fr [Department of Fluid Flow, Heat Transfer and Combustion, Institute PPRIME, Universite de Poitiers, ENSMA, CNRS, Teleport 2 - Bd. Marie et Pierre Curie, B.P. 30179, 86962 Futuroscope Chasseneuil Cedex (France); Vassilicos, John Christos, E-mail: j.c.vassilicos@imperial.ac.uk [Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Acoustic properties of a fractal square grid and regular grid. Black-Right-Pointing-Pointer Hybrid approach based on Lighthill's analogy and Direct Numerical Simulation. Black-Right-Pointing-Pointer Noise reduction for the fractal square grid. Black-Right-Pointing-Pointer Well-defined peak at a Strouhal number between 0.2 and 0.3 for the fractal square grid, absent for the regular grid. - Abstract: In this work, we compare the acoustic properties of a fractal square grid with those of a regular grid by means of a hybrid approach based on Lighthill's analogy and Direct Numerical Simulation (DNS). Our results show that the sound levels corresponding to our fractal square grid of three fractal iterations are significantly reduced by comparison to a regular grid of same porosity and mesh-based Reynolds number. We also find a well-defined peak at a Strouhal number between 0.2 and 0.3 in the acoustic spectrum of our fractal square grid which is absent in the case of our regular grid. We explain this effect in terms of a new criterion for quasi-periodic vortex shedding from a regular or fractal grid.

  20. A comparison of methods for 3D target localization from seismic and acoustic signatures

    Energy Technology Data Exchange (ETDEWEB)

    ELBRING,GREGORY J.; GARBIN,H. DOUGLAS; LADD,MARK D.

    2000-04-03

    An important application of seismic and acoustic unattended ground sensors (UGS) is the estimation of the three dimensional position of an emitting target. Seismic and acoustic data derived from UGS systems provide the taw information to determine these locations, but can be processed and analyzed in a number of ways using varying amounts of auxiliary information. Processing methods to improve arrival time picking for continuous wave sources and methods for determining and defining the seismic velocity model are the primary variables affecting the localization accuracy. Results using field data collected from an underground facility have shown that using an iterative time picking technique significantly improves the accuracy of the resulting derived target location. Other processing techniques show little advantage over simple crosscorrelation along in terms of accuracy, but may improve the ease with which time picks can be made. An average velocity model found through passive listening or a velocity model determined from a calibration source near the target source both result in similar location accuracies, although the use of station correction severely increases the location error.

  1. Investigation of the ocean acoustic signatures from strong explosions at a long distance in the ocean sound channel by computer simulation

    International Nuclear Information System (INIS)

    The identification and location of ocean acoustic signatures are the principal objectives of a program to discourage clandestine testing of nuclear explosives. Difficulties arise primarily from variations in the water column. In turn, these variations affect acoustic propagation in the SOFAR channel. In this study, the path effects on the signals generated by strong explosions (1 and 10 kn) are investigated. The goal is to make a quantitative correlation between the initial source description and the final acoustical signatures received at a great distance under various conditions. The study is performed entirely by computer simulations applying two computer programs in succession. First, the explosions are simulated by a 2-D hydrodynamic computer program, CALE, which was originally developed to calculate astrophysical problems. The computed signals have reached more than 700 m deep approaching the SOFAR channel. At this point, the CALE output is linked to a hydro-acoustic computer program, the NPE code, by which wave propagation in the SOFAR channel is modeled. The NPE code was developed at the Naval Research Laboratory to study ocean acoustics. [Work supported by the U. S. Department of Energy under Contract No. W-7405-ENG-48.

  2. Non destructive testing by acoustic signature of damage level in 304L steel samples submitted to rolling, tensile test and thermal annealing treatments

    International Nuclear Information System (INIS)

    The aim of this work is to demonstrate the ability of acoustic signature technique to detect in a non-destructive way mechanical property variations due to damage of the internal material structure for 304L steel samples, provided by EDF company. For this purpose, the velocity and the attenuation of Rayleigh acoustic waves have been measured for rolled, drawn and thermally treated samples. Complementary information provided by echography have also been used to calculate the corresponding variations of the dynamic Young's modulus E

  3. Acoustic emission and acousto-ultrasonic signature analysis of failure mechanisms in carbon fiber reinforced polymer materials

    Science.gov (United States)

    Carey, Shawn Allen

    Fiber reinforced polymer composite materials, particularly carbon (CFRPs), are being used for primary structural applications, particularly in the aerospace and naval industries. Advantages of CFRP materials, compared to traditional materials such as steel and aluminum, include: light weight, high strength to weight ratio, corrosion resistance, and long life expectancy. A concern with CFRPs is that despite quality control during fabrication, the material can contain many hidden internal flaws. These flaws in combination with unseen damage due to fatigue and low velocity impact have led to catastrophic failure of structures and components. Therefore a large amount of research has been conducted regarding nondestructive testing (NDT) and structural health monitoring (SHM) of CFRP materials. The principal objective of this research program was to develop methods to characterize failure mechanisms in CFRP materials used by the U.S. Army using acoustic emission (AE) and/or acousto-ultrasonic (AU) data. Failure mechanisms addressed include fiber breakage, matrix cracking, and delamination due to shear between layers. CFRP specimens were fabricated and tested in uniaxial tension to obtain AE and AU data. The specimens were designed with carbon fibers in different orientations to produce the different failure mechanisms. Some specimens were impacted with a blunt indenter prior to testing to simulate low-velocity impact. A signature analysis program was developed to characterize the AE data based on data examination using visual pattern recognition techniques. It was determined that it was important to characterize the AE event , using the location of the event as a parameter, rather than just the AE hit (signal recorded by an AE sensor). A back propagation neural network was also trained based on the results of the signature analysis program. Damage observed on the specimens visually with the aid of a scanning electron microscope agreed with the damage type assigned by the

  4. Acoustic emission signature analysis. Technical progress report No. 2, 1 March 1979-29 February 1980

    International Nuclear Information System (INIS)

    Acoustic emission in plate glass and steel has been studied as a function of angle. The low frequency AE in glass (< 1 MHz) was studied in detail, and contributions from P, S and Rayleigh waves identified. These results are isotropic, as expected theoretically. Limited high frequency (5-20 MHz) results have been obtained in glass. This is the first time, that AE energy has been measured above 3 MHz. The measurement of AE on transgranular crack growth in steel during fatigue crack growth was accomplished by use of a low noise manual hydraulic loading system and an electronic gate to reject grip noise. The signals are complex, and not yet understood in detail. The concept of the wave momentum of an AE, first introduced during the previous year, was elaboratored and a measurement technique suggested. The theoretical study of this problem led to the discovery of an infinite, previously unknown, family of elastic surface (Rayleigh-like) waves, and to further cylindrical, radially propagating plate waves. It appears these waves may be useful in other areas of ultrasonics

  5. Ultrasonic thermometry simulation in a random fluctuating medium: Evidence of the acoustic signature of a one-percent temperature difference.

    Science.gov (United States)

    Nagaso, M; Moysan, J; Benjeddou, S; Massacret, N; Ploix, M A; Komatitsch, D; Lhuillier, C

    2016-05-01

    We study the development potential of ultrasonic thermometry in a liquid fluctuating sodium environment similar to that present in a Sodium-cooled Fast Reactor, and thus investigate if and how ultrasonic thermometry could be used to monitor the sodium flow at the outlet of the reactor core. In particular we study if small temperature variations in the sodium flow of e.g. about 1% of the sodium temperature, i.e., about 5°C, can have a reliably-measurable acoustic signature. Since to our knowledge no experimental setups are available for such a study, and considering the practical difficulties of experimentation in sodium, we resort to a numerical technique for full wave propagation called the spectral-element method, which is a highly accurate finite-element method owing to the high-degree basis functions it uses. We obtain clear time-of-flight variations in the case of a small temperature difference of one percent in the case of a static temperature gradient as well as in the presence of a random fluctuation of the temperature field in the turbulent flow. The numerical simulations underline the potential of ultrasonic thermometry in such a context. PMID:26921558

  6. DEMON-type algorithms for determination of hydro-acoustic signatures of surface ships and of divers

    Science.gov (United States)

    Slamnoiu, G.; Radu, O.; Rosca, V.; Pascu, C.; Damian, R.; Surdu, G.; Curca, E.; Radulescu, A.

    2016-08-01

    With the project “System for detection, localization, tracking and identification of risk factors for strategic importance in littoral areas”, developed in the National Programme II, the members of the research consortium intend to develop a functional model for a hydroacoustic passive subsystem for determination of acoustic signatures of targets such as fast boats and autonomous divers. This paper presents some of the results obtained in the area of hydroacoustic signal processing by using DEMON-type algorithms (Detection of Envelope Modulation On Noise). For evaluation of the performance of various algorithm variations we have used both audio recordings of the underwater noise generated by ships and divers in real situations and also simulated noises. We have analysed the results of processing these signals using four DEMON algorithm structures as presented in the reference literature and a fifth DEMON algorithm structure proposed by the authors of this paper. The algorithm proposed by the authors generates similar results to those obtained by applying the traditional algorithms but requires less computing resources than those and at the same time it has proven to be more resilient to random noise influence.

  7. Particle mesh simulations of the Lyman-alpha forest and the signature of Baryon Acoustic Oscillations in the intergalactic medium

    CERN Document Server

    White, Martin; Carlson, Jordan; Heitmann, Katrin; Habib, Salman; Fasel, Patricia; Daniel, David; Lukic, Zarija

    2009-01-01

    We present a set of ultra-large particle-mesh simulations of the LyA forest targeted at understanding the imprint of baryon acoustic oscillations (BAO) in the inter-galactic medium. We use 9 dark matter only simulations which can, for the first time, simultaneously resolve the Jeans scale of the intergalactic gas while covering the large volumes required to adequately sample the acoustic feature. Mock absorption spectra are generated using the fluctuating Gunn-Peterson approximation which have approximately correct flux probability density functions (PDFs) and small-scale power spectra. On larger scales there is clear evidence in the redshift space correlation function for an acoustic feature, which matches a linear theory template with constant bias. These spectra, which we make publicly available, can be used to test pipelines, plan future experiments and model various physical effects. As an illustration we discuss the basic properties of the acoustic signal in the forest, the scaling of errors with noise ...

  8. Constraint on the growth factor of the cosmic structure from the damping of the baryon acoustic oscillation signature

    OpenAIRE

    Nakamura, Gen; Huetsi, Gert; Sato, Takahiro; Yamamoto, Kazuhiro

    2009-01-01

    We determine a constraint on the growth factor by measuring the damping of the baryon acoustic oscillations in the matter power spectrum using the Sloan Digital Sky Survey luminous red galaxy sample. The damping of the BAO is detected at the one sigma level. We obtain \\sigma_8D_1(z=0.3) = 0.42^{+0.34}_{-0.28} at the 1\\sigma statistical level, where \\sigma_8 is the root mean square overdensity in a sphere of radius 8h^{-1}Mpc and D_1(z) is the growth factor at redshift z. The above result assu...

  9. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    Science.gov (United States)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  10. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    Science.gov (United States)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  11. Tracking and understanding the acoustic signature of fluido-fractures: a dual optical/micro-seismic study

    Science.gov (United States)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume; Jørgen Måløy, Knut; Grude Flekkøy, Eirik

    2015-04-01

    The characterization and comprehension of irreversible rock deformation processes due to fluid flow is a challenging problem with numerous applications in many fields. This phenomenon has received an ever-increasing attention in Earth Science, Physics, with many applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, control the mechanical stability of rock and soil formations during the injection or extraction of fluids, landslides with hydrological control, volcanic eruptions), or in the industry, as CO2 sequestration. In this study, analogue models are developed (similar to the previous work of Johnsen[1] but in rectangular shape) to study the instabilities developing during motion of fluid in dense porous materials: fracturing, fingering, channelling… We study these complex fluid/solid mechanical systems using two imaging techniques: fast optical imaging and high frequency resolution of acoustic emissions. Additionally, we develop physical models rendering for the fluid mechanics (similar to the work of Niebling[2] but with injection of fluid) in the channels and the propagation of microseismic waves around the fracture. We then confront a numerical resolution of this physical system with the observed experimental system. The experimental setup consists in a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. During the experiments, the fluid is injected into the system with a constant injection pressure from the point opposite to the semi-permeable boundary. The fluid penetrates into the solid using the pore network. At the large enough injection pressures, the fluid also makes its way via creating channels, fractures to the semi-permeable boundary. During the experiments acoustic signals are recorded using different sensors then, those signals are compared and investigated further in both time and frequency domains

  12. Acoustic network event classification using swarm optimization

    Science.gov (United States)

    Burman, Jerry

    2013-05-01

    Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

  13. Acoustic sniper localization system

    Science.gov (United States)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  14. CERTIFICATELESS SIGNATURE AND BLIND SIGNATURE

    Institute of Scientific and Technical Information of China (English)

    Zhang Lei; Zhang Futai

    2008-01-01

    Certificateless public key cryptography is a new paradigm introduced by AI-Riyami and Paterson. It eliminates the need of the certificates in traditional public key cryptosystems and the key escrow problem in IDentity-based Public Key Cryptography (ID-PKC). Due to the advantages of the certificateless public key cryptography,a new efficient certificateless pairing-based signature scheme is presented,which has some advantages over previous constructions in computational cost. Based on this new signature scheme,a certificateless blind signature scheme is proposed. The security of our schemes is proven based on the hardness of computational Diffie-Hellman problem.

  15. Violins characterization through vibro-acoustic experiments

    OpenAIRE

    RAVINA, Enrico

    2012-01-01

    International audience An approach of integrated vibratory and acoustic experiments oriented to identify the specific characteristics and peculiarities of violins is presented in the paper. Today the up-level luthery handicraft needs a scientific and methodical supports specifically oriented to underline the acoustic peculiarities of each musical instrument, able to define the “signature” of a specific instrument. The proposed approach integrates vibration and acoustic non destructive anal...

  16. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  17. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  18. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  19. Acoustic Transmitters for Underwater Neutrino Telescopes

    CERN Document Server

    Ardid, Miguel; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to...

  20. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  1. LY12铝合金试件拉伸声发射信号特征分析与状态识别%Acoustic Emission Signature Analysis and State Recognition for LY12 Tensile Aluminum Alloy Specimen

    Institute of Scientific and Technical Information of China (English)

    丁立伟

    2014-01-01

    Taking LY12 duralumin with high strength as the research object , the acoustic emission testing sys-tem was employed to investigate acoustic emission signal feature of the tensile aluminum alloy specimen in elas -tic, yield, plastic deformation and fracture stages so that the relationship between specimen and acoustic emis -sion signal feature can be found; meanwhile , the independent experiment on the operating conditions of the pressure-maintaining and the repeated load was implemented and the laws of acoustic emission signal with dif -ferent working conditions were analyzed .The test results show that good corresponding relationship between LY12 aluminum alloy specimen and acoustic emission signal feature can be found .%以高强度硬铝LY12为研究对象,利用声发射试验系统研究拉伸铝合金试件在弹性、屈服、塑性变形和断裂阶段的声发射信号特征,揭示了试件状态与声发射信号特征间的关系。同时对保压和重复加载典型工况进行独立试验,分析不同工况下声发射信号的规律。试验结果表明:LY12铝合金试件状态与声发射信号特征之间存在着良好的对应关系。

  2. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  3. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Science.gov (United States)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  4. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  5. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  6. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  7. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  8. Human signatures in urban environments using low cost sensors

    Science.gov (United States)

    Winston, Mark; Zong, Lei; Calcutt, Wade; Jones, Barry; Houser, Jeff

    2006-05-01

    McQ has produced a family of small (98 cm 3), inexpensive ($100), unattended ground sensors well suited for urban environments. As a result, a broad range of data has been collected in urban settings. This paper discusses human signatures in urban environments using low cost seismic, infrared, acoustic, and magnetic transducers. Transducer performance and the effects of orientation, building construction, and environmental noise will be focused on. Detection methods used to exploit signatures and resulting performance statistics will also be discussed.

  9. Interpreting underwater acoustic images of the upper ocean boundary layer

    International Nuclear Information System (INIS)

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of physical processes occurring simultaneously beneath the surface of the sea. Sonars are so sensitive that they detected a new acoustic signature at the breaking of surface gravity waves in deep water, which resembles oblique motion-like vortices

  10. Exotic signatures from supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J. (California Univ., Berkeley, CA (USA). Dept. of Physics Lawrence Berkeley Lab., CA (USA))

    1989-08-01

    Minor changes to the standard supersymmetric model, such as soft flavor violation and R parity violation, cause large changes in the signatures. The origin of these changes and the resulting signatures are discussed. 15 refs., 7 figs., 2 tabs.

  11. Qualified Mobile Server Signature

    OpenAIRE

    Orthacker, Clemens; Centner, Martin; Kittl, Christian

    2010-01-01

    International audience A legal basis for the use of electronic signatures exists since the introduction of qualified electronic signatures in EU Directive 1999/ 93/EC. Although considered as key enablers for e-Government and e-Commerce, qualified electronic signatures are still not widely used. Introducing amobile component addresses most of the shortcomings of existing qualified signature approaches but poses certain difficulties in the security reasoning. The proposed server based mobile...

  12. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  13. Acoustic emission

    International Nuclear Information System (INIS)

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  14. Quantum threshold group signature

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In most situations, the signer is generally a single person. However, when the message is written on behalf of an organization, a valid message may require the approval or consent of several persons. Threshold signature is a solution to this problem. Generally speaking, as an authority which can be trusted by all members does not exist, a threshold signature scheme without a trusted party appears more attractive. Following some ideas of the classical Shamir’s threshold signature scheme, a quantum threshold group signature one is proposed. In the proposed scheme, only t or more of n persons in the group can generate the group signature and any t-1 or fewer ones cannot do that. In the verification phase, any t or more of n signature receivers can verify the message and any t-1 or fewer receivers cannot verify the validity of the signature.

  15. Acoustic Transmitters for Underwater Neutrino Telescopes

    Directory of Open Access Journals (Sweden)

    Carlos D. Llorens

    2012-03-01

    Full Text Available In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars, high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters.

  16. Active vibration control for underwater signature reduction of a navy ship

    NARCIS (Netherlands)

    Basten, T.; Berkhoff, A.; Vermeulen, R.

    2010-01-01

    Dutch navy ships are designed and built to have a low underwater signature. For low frequencies however, tonal vibrations of a gearbox can occur, which might lead to increased acoustic signatures. These vibrations are hard to reduce by passive means. To investigate the possibilities of active vibrat

  17. Unconditionally Secure Quantum Signatures

    Directory of Open Access Journals (Sweden)

    Ryan Amiri

    2015-08-01

    Full Text Available Signature schemes, proposed in 1976 by Diffie and Hellman, have become ubiquitous across modern communications. They allow for the exchange of messages from one sender to multiple recipients, with the guarantees that messages cannot be forged or tampered with and that messages also can be forwarded from one recipient to another without compromising their validity. Signatures are different from, but no less important than encryption, which ensures the privacy of a message. Commonly used signature protocols—signatures based on the Rivest–Adleman–Shamir (RSA algorithm, the digital signature algorithm (DSA, and the elliptic curve digital signature algorithm (ECDSA—are only computationally secure, similar to public key encryption methods. In fact, since these rely on the difficulty of finding discrete logarithms or factoring large primes, it is known that they will become completely insecure with the emergence of quantum computers. We may therefore see a shift towards signature protocols that will remain secure even in a post-quantum world. Ideally, such schemes would provide unconditional or information-theoretic security. In this paper, we aim to provide an accessible and comprehensive review of existing unconditionally securesecure signature schemes for signing classical messages, with a focus on unconditionally secure quantum signature schemes.

  18. Blind Collective Signature Protocol

    Directory of Open Access Journals (Sweden)

    Nikolay A. Moldovyan

    2011-06-01

    Full Text Available Using the digital signature (DS scheme specified by Belarusian DS standard there are designed the collective and blind collective DS protocols. Signature formation is performed simultaneously by all of the assigned signers, therefore the proposed protocols can be used also as protocols for simultaneous signing a contract. The proposed blind collective DS protocol represents a particular implementation of the blind multisignature schemes that is a novel type of the signature schemes. The proposed protocols are the first implementations of the multisignature schemes based on Belarusian signature standard.

  19. Revocable Ring Signature

    Institute of Scientific and Technical Information of China (English)

    Dennis Y. W. Liu; Joseph K. Liu; Yi Mu; Willy Susilo; Duncan S. Wong

    2007-01-01

    Group signature allows the anonymity of a real signer in a group to be revoked by a trusted party called group manager. It also gives the group manager the absolute power of controlling the formation of the group. Ring signature, on the other hand, does not allow anyone to revoke the signer anonymity, while allowing the real signer to forma group (also known as a ring) arbitrarily without being controlled by any other party. In this paper, we propose a new variant for ring signature, called Revocable Ring Signature. The signature allows a real signer to form a ring arbitrarily while allowing a set of authorities to revoke the anonymity of the real signer. This new variant inherits the desirable properties from both group signature and ring signature in such a way that the real signer will be responsible for what it has signed as the anonymity is revocable by authorities while the real signer still has the freedom on ring formation. We provide a formal security model for revocable ring signature and propose an efficient construction which is proven secure under our security model.

  20. Are there molecular signatures?

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  1. THE ELECTRONIC SIGNATURE

    OpenAIRE

    Voiculescu Madalina Irena; Gramada Dragu Argentina

    2009-01-01

    Article refers to significance and the digital signature in electronic commerce. Internet and electronic commerce open up many new opportunities for the consumer, yet, the security (or perceived lack of security) of exchanging personal and financial data

  2. Advanced Missile Signature Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Missile Signature Center (AMSC) is a national facility supporting the Missile Defense Agency (MDA) and other DoD programs and customers with analysis,...

  3. Bottlenose dolphins exchange signature whistles when meeting at sea.

    Science.gov (United States)

    Quick, Nicola J; Janik, Vincent M

    2012-07-01

    The bottlenose dolphin, Tursiops truncatus, is one of very few animals that, through vocal learning, can invent novel acoustic signals and copy whistles of conspecifics. Furthermore, receivers can extract identity information from the invented part of whistles. In captivity, dolphins use such signature whistles while separated from the rest of their group. However, little is known about how they use them at sea. If signature whistles are the main vehicle to transmit identity information, then dolphins should exchange these whistles in contexts where groups or individuals join. We used passive acoustic localization during focal boat follows to observe signature whistle use in the wild. We found that stereotypic whistle exchanges occurred primarily when groups of dolphins met and joined at sea. A sequence analysis verified that most of the whistles used during joins were signature whistles. Whistle matching or copying was not observed in any of the joins. The data show that signature whistle exchanges are a significant part of a greeting sequence that allows dolphins to identify conspecifics when encountering them in the wild.

  4. Meteor signature interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  5. Stateless Transitive Signature Schemes

    Institute of Scientific and Technical Information of China (English)

    MA Chun-guang; CAI Man-chun; YANG Yi-xian

    2004-01-01

    A new practical method is introduced to transform the stateful transitive signature scheme to stateless one without the loss of security. According to the approach, two concrete stateless transitive signature schemes based on Factoring and RSA are presented respectively. Under the assumption of the hardness of factoring and one-more- RSA-inversion problem, both two schemes are secure under the adaptive chosen-message attacks in random oracle model.

  6. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available Educational Video Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video ... for pre- and post-treatment acoustic neuroma patients. Home What is an AN What is an Acoustic ...

  7. Acoustic cryocooler

    Science.gov (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  8. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  9. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  10. Potential Competitive Dynamics of Acoustic Ecology.

    Science.gov (United States)

    Radford, C A; Montgomery, J C

    2016-01-01

    The top predators in coastal marine ecosystems, such as whales, dolphins, seabirds, and large predatory fishes (including sharks), may compete with each other to exploit food aggregations. Finding these patchy food sources and being first to a food patch could provide a significant competitive advantage. Our hypothesis is that food patches have specific sound signatures that marine predators could detect and that acoustic sources and animal sensory capabilities may contribute to competition dynamics. Preliminary analysis shows that diving gannets have a distinct spectral signature between 80 and 200 Hz, which falls within the hearing sensitivity of large pelagic fishes. Therefore, we suggest that diving birds may contribute to the sound signatures of food aggregations, linking competition dynamics both above and below the water surface. PMID:26611047

  11. Acoustic dispersive prism

    OpenAIRE

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  12. Spectroscopic Signatures Related to a Sunquake

    CERN Document Server

    Matthews, Sarah A; Zharkov, Sergei; Green, Lucie M

    2015-01-01

    The presence of flare related acoustic emission (sunquakes) in some flares represents a severe challenge to our current understanding of flare energy transport processes. We present a comparison of new spectral observations from Hinode's EUV imaging Spectrometer (EIS) and the Interface Region Imaging Spectrograph (IRIS) of the atmosphere above a sunquake, and compare them to the spectra observed in a part of the flaring region with no acoustic signature. Evidence for the sunquake is determined using both time-distance and acoustic holography methods, and we find that, unlike many previous sunquake detections, the signal is rather dispersed, but that the time-distance and 6 and 7 mHz sources converge at the same spatial location. We also see some evidence for different evolution at different frequencies, with an earlier peak at 7 mHz than at 6 mHz. Using spectroscopic measurements we find that in this location at the time of the 7 mHz peak the spectral emission is significantly more intense, shows larger veloc...

  13. Actions for signature change

    CERN Document Server

    Embacher, F

    1995-01-01

    This is a contribution on the controversy about junction conditions for classical signature change. The central issue in this debate is whether the extrinsic curvature on slices near the hypersurface of signature change has to be continuous ({\\it weak} signature change) or to vanish ({\\it strong} signature change). Led by a Lagrangian point of view, we write down eight candidate action functionals S_1,...S_8 as possible generalizations of general relativity and investigate to what extent each of these defines a sensible variational problem, and which junction condition is implied. Four of the actions involve an integration over the total manifold. A particular subtlety arises from the precise definition of the Einstein-Hilbert Lagrangian density |g|^{1/2} R[g]. The other four actions are constructed as sums of integrals over singe-signature domains. The result is that {\\it both} types of junction conditions occur in different models, i.e. are based on different first principles, none of which can be claimed t...

  14. NATO TG-53: acoustic detection of weapon firing joint field experiment

    Science.gov (United States)

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  15. Seismic signatures of partial saturation on acoustic borehole modes

    NARCIS (Netherlands)

    Chao, G.E.; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2007-01-01

    We present an exact theory of attenuation and dispersion of borehole Stoneley waves propagating along porous rocks containing spherical gas bubbles by using the Biot theory. An effective frequency-dependent fluid bulk modulus is introduced to describe the dynamic (oscillatory) behavior of the gas bu

  16. Uncertainty in hydrological signatures

    Science.gov (United States)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  17. Practical quantum digital signature

    Science.gov (United States)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  18. Acoustic chemometric prediction of total solids in bioslurry

    DEFF Research Database (Denmark)

    Ihunegbo, Felicia; Madsen, Michael; Esbensen, Kim;

    2012-01-01

    several earlier dedicated attempts. A full-scale feasibility study based on standard addition experiments involving natural plant biomass was conducted using multivariate calibration (Partial Least Squares Regression, PLS-R) of acoustic signatures against dry matter content (total solids, TS). Prediction...

  19. Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    CERN Document Server

    Salomon, K; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Naumann, C

    2005-01-01

    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.

  20. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  1. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  2. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  3. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  4. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  5. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  6. The dark energy signature

    International Nuclear Information System (INIS)

    Though the concept of a dark energy driven accelerating universe was introduced by the author in 1997, to date dark energy itself, as described below has remained a paradigm. We quickly review these and find a second cosmological signature of the 1997 model, consistent with latest observations. (author)

  7. Signatures of the Invisible

    CERN Multimedia

    Strom, D

    2003-01-01

    On the Net it is possible to take a look at art from afar via Virtual Museums. One such exhibition was recently in the New York Museum of Modern Art's branch, PS1. Entitled 'Signatures of the Invisible' it was a collaborative effort between artists and physicists (1/2 page).

  8. UV missile plume signatures

    NARCIS (Netherlands)

    Neele, F.P.; Schleijpen, H.M.A.

    2002-01-01

    As a result of the deployment of UV missile warning systems, recent years have seen an increasing interest in threat assessment in the UV band. Unfortunately, due to the different nature of the physical processes that are needed to describe a missile signature in the UV, available codes for the IR c

  9. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew Ways to Give ANA Discussion Forum ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA.org Connect with us! Educational Video ...

  10. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and...

  11. Cystic acoustic neuromas

    OpenAIRE

    Chitkara, Naveen; Chanda, Rakesh; Yadav, S. P. S.; N.K. Sharma

    2002-01-01

    Predominantly cystic acoustic neuromas are rare and they usually present with clinical and radiological features different from their more common solid counterparts. Two cases of cystic acoustic neuromas are reported here.

  12. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ...

  13. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Resources Patient Surveys Related Links Clinical Trials.gov Health Care Insurance Toolkit Additional Resources ANA Public Webinars © 2016 Acoustic Neuroma Association Acoustic Neuroma Association ® • ...

  15. A PRACTICAL PROXY SIGNATURE SCHEME

    Directory of Open Access Journals (Sweden)

    Sattar Aboud

    2012-01-01

    Full Text Available A proxy signature scheme is a variation of the ordinary digital signature scheme which enables a proxy signer to generate signatures on behalf of an original signer. In this paper, we present two efficient types of proxy signature scheme. The first one is the proxy signature for warrant partial delegation combines an advantage of two well known warrant partial delegation schemes. This proposed proxy signature scheme is based on the difficulty of solving the discrete logarithm problem. The second proposed scheme is based on threshold delegation the proxy signer power to sign the message is share. We claim that the proposed proxy signature schemes meet the security requirements and more practical than the existing proxy signature schemes.

  16. Feature based passive acoustic detection of underwater threats

    Science.gov (United States)

    Stolkin, Rustam; Sutin, Alexander; Radhakrishnan, Sreeram; Bruno, Michael; Fullerton, Brian; Ekimov, Alexander; Raftery, Michael

    2006-05-01

    Stevens Institute of Technology is performing research aimed at determining the acoustical parameters that are necessary for detecting and classifying underwater threats. This paper specifically addresses the problems of passive acoustic detection of small targets in noisy urban river and harbor environments. We describe experiments to determine the acoustic signatures of these threats and the background acoustic noise. Based on these measurements, we present an algorithm for robustly discriminating threat presence from severe acoustic background noise. Measurements of the target's acoustic radiation signal were conducted in the Hudson River. The acoustic noise in the Hudson River was also recorded for various environmental conditions. A useful discriminating feature can be extracted from the acoustic signal of the threat, calculated by detecting packets of multi-spectral high frequency sound which occur repetitively at low frequency intervals. We use experimental data to show how the feature varies with range between the sensor and the detected underwater threat. We also estimate the effective detection range by evaluating this feature for hydrophone signals, recorded in the river both with and without threat presence.

  17. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  18. Two Improved Digital Signature Schemes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, two improved digital signature schemes are presented based on the design of directed signaturescheme [3]. The peculiarity of the system is that only if the scheme is specific recipient, the signature is authenticated.Since the scheme adds the screen of some information parameters, the difficulty of deciphered keys and the security ofdigital signature system are increased.

  19. An introduction to acoustic emission

    Science.gov (United States)

    Scruby, C. B.

    1987-08-01

    The technique of acoustic emission (AE) uses one or more sensors to 'listen' to a wide range of events that may take place inside a solid material. Depending on the source of this high frequency sound, there are broadly three application areas: structural testing and surveillance, process monitoring and control, and materials characterization. In the first case the source is probably a defect which radiates elastic waves as it grows. Provided these waves are detectable, AE can be used in conjunction with other NDT techniques to assess structural integrity. Advances in deterministic and statistical analysis methods now enable data to be interpreted in greater detail and with more confidence than before. In the second area the acoustic signature of processes is monitored, ranging from for instance the machining of metallic components to the mixing of foodstuffs, and changes correlated with variations in the process, with the potential for feedback and process control. In the third area, AE is used as an additional diagnostic technique for the study of, for instance, fracture, because it gives unique dynamic information on defect growth.

  20. Acoustic elliptical cylindrical cloaks

    Institute of Scientific and Technical Information of China (English)

    Ma Hua; Qu Shao-Bo; Xu Zhuo; Wang Jia-Fu

    2009-01-01

    By making a comparison between the acoustic equations and the 2-dimensional (2D) Maxwell equations, we obtain the material parameter equations (MPE) for acoustic elliptical cylindrical cloaks. Both the theoretical results and the numerical results indicate that an elliptical cylindrical cloak can realize perfect acoustic invisibility when the spatial distributions of mass density and bulk modulus are exactly configured according to the proposed equations. The present work is the meaningful exploration of designing acoustic cloaks that are neither sphere nor circular cylinder in shape, and opens up possibilities for making complex and multiplex acoustic cloaks with simple models such as spheres, circular or elliptic cylinders.

  1. ACOUSTICAL STANDARDS NEWS.

    Science.gov (United States)

    Stremmel, Neil; Struck, Christopher J

    2016-07-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27475185

  2. Acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Tribler, Peter Muller

    , the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...... work. Based on first- and second-order perturbation theory, assuming small acoustic amplitudes, we derived the time-dependent governing equations under adiabatic conditions. The adiabatic first- and second-order equations are solved analytically for the acoustic field between two orthogonally......-of-the-art in the field. Furthermore, the analytical solution for the acoustic streaming in rectangular channels with arbitrary large height-to-width ratios is derived. This accommodates the analytical theory of acoustic streaming to applications within acoustofluidics....

  3. Simulating acoustic waves in spotted stars

    CERN Document Server

    Papini, Emanuele; Gizon, Laurent; Hanasoge, Shravan M

    2015-01-01

    Acoustic modes of oscillation are affected by stellar activity, however it is unclear how starspots contribute to these changes. Here we investigate the non-magnetic effects of starspots on global modes with angular degree $\\ell \\leq 2$ in highly active stars, and characterize the spot seismic signature on synthetic light curves. We perform 3D time-domain simulations of linear acoustic waves to study their interaction with a model starspot. We model the spot as a 3D change in the sound speed stratification with respect to a convectively stable stellar background, built from solar Model S. We perform a parametric study by considering different depths and perturbation amplitudes. Exact numerical simulations allow investigation of the wavefield-spot interaction beyond first order perturbation theory. The interaction of the axisymmetric modes with the starspot is strongly nonlinear. As mode frequency increases, the frequency shifts for radial modes exceed the value predicted by linear theory, while the shifts for...

  4. Signal Classification for Acoustic Neutrino Detection

    CERN Document Server

    Neff, M; Enzenhöfer, A; Graf, K; Hößl, J; Katz, U; Lahmann, R; Richardt, C

    2011-01-01

    This article focuses on signal classification for deep-sea acoustic neutrino detection. In the deep sea, the background of transient signals is very diverse. Approaches like matched filtering are not sufficient to distinguish between neutrino-like signals and other transient signals with similar signature, which are forming the acoustic background for neutrino detection in the deep-sea environment. A classification system based on machine learning algorithms is analysed with the goal to find a robust and effective way to perform this task. For a well-trained model, a testing error on the level of one percent is achieved for strong classifiers like Random Forest and Boosting Trees using the extracted features of the signal as input and utilising dense clusters of sensors instead of single sensors.

  5. On Constructing Certificateless Proxy Signature from Certificateless Signature

    Institute of Scientific and Technical Information of China (English)

    WAN Zhong-mei; LAI Xue-jia; WENG Jian; HONG Xuan; LONG Yu; JIA Wei-wei

    2008-01-01

    In proxy signature schemes,an original signer A delegates its signing capability to a proxy signer B,in such a way that B can sign message on behalf of A.The recipient of the final message verifies at the same time that B computes the signature and that A has delegated its signing capability to B.Recently many identity-based (ID-based) proxy signature schemes have been proposed,however,the problem of key escrow is inherent in this setting.Certificateless cryptography can overcome the key escrow problem.In this paper,we present a general security model for certificateless proxy signature scheme.Then,we give a method to construct a secure certificateless proxy scheme from a secure certificateless signature scheme,and prove that the security of the construction can be reduced to the security of the original certificateless signature scheme.

  6. Signatures of nonthermal melting

    Directory of Open Access Journals (Sweden)

    Tobias Zier

    2015-09-01

    Full Text Available Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.

  7. The acoustic communities: Definition, description and ecological role.

    Science.gov (United States)

    Farina, Almo; James, Philip

    2016-09-01

    An acoustic community is defined as an aggregation of species that produces sound by using internal or extra-body sound-producing tools. Such communities occur in aquatic (freshwater and marine) and terrestrial environments. An acoustic community is the biophonic component of a soundtope and is characterized by its acoustic signature, which results from the distribution of sonic information associated with signal amplitude and frequency. Distinct acoustic communities can be described according to habitat, the frequency range of the acoustic signals, and the time of day or the season. Near and far fields can be identified empirically, thus the acoustic community can be used as a proxy for biodiversity richness. The importance of ecoacoustic research is rapidly growing due to the increasing awareness of the intrusion of anthropogenic sounds (technophonies) into natural and human-modified ecosystems and the urgent need to adopt more efficient predictive tools to compensate for the effects of climate change. The concept of an acoustic community provides an operational scale for a non-intrusive biodiversity survey and analysis that can be carried out using new passive audio recording technology, coupled with methods of vast data processing and storage. PMID:27262416

  8. The signature package on Witt spaces, II. Higher signatures

    CERN Document Server

    Albin, Pierre; Mazzeo, Rafe; Piazza, Paolo

    2009-01-01

    This is a sequel to the paper "The signature package on Witt spaces, I. Index classes" by the same authors. In the first part we investigated, via a parametrix construction, the regularity properties of the signature operator on a stratified Witt pseudomanifold, proving, in particular, that one can define a K-homology signature class. We also established the existence of an analytic index class for the signature operator twisted by a C^*_r\\Gamma Mischenko bundle and proved that the K-homology signature class is mapped to the signature index class by the assembly map. In this paper we continue our study, showing that the signature index class is invariant under rational Witt bordisms and stratified homotopies. We are also able to identify this analytic class with the topological analogue of the Mischenko symmetric signature recently defined by Banagl. Finally, we define Witt-Novikov higher signatures and show that our analytic results imply a purely topological theorem, namely that the Witt-Novikov higher sign...

  9. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  10. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  11. Signatures of AGN feedback

    Science.gov (United States)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1importantly, we find a negative correlation between W_{90} and sSFR in the AGN hosts with the highest star formation rates, i.e., with the highest gas content. This relationship implies that AGN with strong outflow signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  12. Indicators and signatures

    International Nuclear Information System (INIS)

    Full text: The goal of this presentation is to give an idea of the methodology used to deal with proliferation problems. It can be useful for chemical, biological, balistical proliferation. Here, we underline nuclear proliferation scenarios. Nevertheless, the overall approach is also similar to activities related to terrorism. Everyone knows that to strengthen the NPT/IAEA safeguards and similar treaties verification protocols, the organisations in charge need to build strong capabilities to assess known situations and also to prepare themselves to unknown, or undeclared events and activities. To accomplish this, to collect, analyze, build ad hoc knowledge, organisations have to select the information, to manage the enormous amount of available data. Rather recently, the emergence of new crisis has confirmed the central and vital role that information processing plays at each levels of the international or national non-proliferation community. It is why looking for indicators and signatures is so important, to focus on pertinent information, that could mean something from a nuclear proliferation perspective. This allows people dealing with nuclear proliferation not to be overwhelmed by tons of paper or G bites of memory. A strong need for expertise. Identifying, select and following indicators or looking for signatures is not an easy task. It requires strong expertise. From the development and maintenance of its nuclear deterrence, France acquired expertise in the design, production of fissile material, manufacture and testing of nuclear weapons. There is also in France a long history of nuclear achievements, with small or large scale facilities, both in civilian and military fields; each step of the nuclear fuel cycle can be very precisely described. French nuclear technical assessment relies on Commissariat a l'Energie Atomique (CEA, i.e. Atomic Energy Commission). Since 1958, CEA laboratories are in charge of nuclear civilian and military applications. Other

  13. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  14. Low frequency acoustic microscope

    Science.gov (United States)

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  15. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  16. Localized acoustic surface modes

    Science.gov (United States)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  17. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  18. Expressiveness considerations of XML signatures

    DEFF Research Database (Denmark)

    Jensen, Meiko; Meyer, Christopher

    2011-01-01

    more and more challenging. In this paper, we investigate this issue, describing how an attacker can still interfere with Web Services communication even in the presence of XML Signatures. Additionally, we discuss the interrelation of XML Signatures and XML Encryption, focussing on their security......XML Signatures are used to protect XML-based Web Service communication against a broad range of attacks related to man-in-the-middle scenarios. However, due to the complexity of the Web Services specification landscape, the task of applying XML Signatures in a robust and reliable manner becomes...... properties and expressiveness in different application scenarios. © 2011 IEEE....

  19. Parent-offspring communication in the Nile crocodile Crocodylus niloticus: do newborns' calls show an individual signature?

    Science.gov (United States)

    Vergne, Amélie L.; Avril, Alexis; Martin, Samuel; Mathevon, Nicolas

    2007-01-01

    Young Nile crocodiles Crocodylus niloticus start to produce calls inside the egg and carry on emitting sounds after hatching. These vocalizations elicit maternal care and influence the behaviour of other juveniles. In order to investigate the acoustic structure of these calls, focusing on a possible individual signature, we have performed acoustic analyses on 400 calls from ten young crocodiles during the first 4 days after hatching. Calls have a complex acoustic structure and are strongly frequency modulated. We assessed the differences between the calls of the individuals. We found a weak individual signature. An individual call-based recognition of young by the mother is thus unlikely. In other respects, the call acoustic structure changes from the first to the fourth day after hatching: fundamental frequency progressively decreases. These modifications might provide important information to the mother about her offspring—age and size—allowing her to customize her protective care to best suit the needs of each individual.

  20. What Is an Acoustic Neuroma

    Science.gov (United States)

    ... org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important Points ... Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, ...

  1. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might be explai......Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...... with surface scattering is presented. Each of the two scattering effects is modeled as frequency dependent functions....

  2. PROXY BLIND SIGNATURE BASED ON ECDLP

    Directory of Open Access Journals (Sweden)

    SATARUPA PRADHAN,

    2011-03-01

    Full Text Available Proxy blind signature combines the properties of both proxy signature and blind signature. In a proxy signature scheme, a signer delegates his signing power to a proxy, who signs a message on behalf of the original signer. In a blind signature scheme, the signer cannot link the relationship between the blind message and the signature of the chosen message. Therefore, it is very suitable for electronic commerceapplication. In this paper, a proxy blind signature scheme based on ECDLP (Elliptic Curve Discrete Logarithm Problem has been proposed, which satisfy the security properties of both the blind signature and the proxy signature. Analysis shows that our scheme is secure and efficient.

  3. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    Energy Technology Data Exchange (ETDEWEB)

    Amami, Souhail [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)], E-mail: souhail.amami@utc.fr; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)

    2010-05-15

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  4. A Secure Threshold Group Signature Scheme

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaoming; Fu Fangwei

    2003-01-01

    The threshold group signature is an important kind of signature. So far, many threshold group signature schemes have been proposed, but most of them suffer from conspiracy attack and are insecure. In this paper, a secure threshold group signature scheme is proposed. It can not only satisfy the properties of the threshold group signature, but also withstand the conspiracy attack

  5. Signatures de l'invisible

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    "Signatures of the Invisible" is an unique collaboration between contemporary artists and contemporary physicists which has the potential to help redefine the relationship between science and art. "Signatures of the Invisible" is jointly organised by the London Institute - the world's largest college of art and design and CERN*, the world's leading particle physics laboratory. 12 leading visual artists:

  6. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  7. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  8. Ocean acoustic hurricane classification.

    Science.gov (United States)

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  9. Cochlear bionic acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  10. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  11. Use of acoustic analogy for marine propeller noise characterisation

    OpenAIRE

    Lidtke, Artur; Turnock, Stephen; Humphrey, Victor

    2015-01-01

    Being able to predict shipborne noise is of significant importance to international maritime community. Porous Ffowcs-Williams Hawkings acoustic analogy is used with cavitation model by Sauer & Schnerr in order to predict the noise signature of the Potsdam Propeller operating in open water. The radiation pattern is shown to be predominantly affected by a dipole source, in addition to less prominent sources at the propeller plane and in the wake. It is shown that the predicted sound pressure l...

  12. A methodology for analyzing an acoustic scene in sensor arrays

    Science.gov (United States)

    Man, Hong; Hohil, Myron E.; Desai, Sachi

    2007-10-01

    Presented here is a novel clustering method for Hidden Markov Models (HMMs) and its application in acoustic scene analysis. In this method, HMMs are clustered based on a similarity measure for stochastic models defined as the generalized probability product kernel (GPPK), which can be efficiently evaluated according to a fast algorithm introduced by Chen and Man (2005) [1]. Acoustic signals from various sources are partitioned into small frames. Frequency features are extracted from each of the frames to form observation vectors. These frames are further grouped into segments, and an HMM is trained from each of such segments. An unknown segment is categorized with a known event if its HMM has the closest similarity with the HMM from the corresponding labeled segment. Experiments are conducted on an underwater acoustic dataset from Steven Maritime Security Laboratory, Data set contains a swimmer signature, a noise signature from the Hudson River, and a test sequence with a swimmer in the Hudson River. Experimental results show that the proposed method can successfully associate the test sequence with the swimmer signature at very high confidence, despite their different time behaviors.

  13. Flat acoustic lens by acoustic grating with curled slits

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  14. Simulating acoustic waves in spotted stars

    Science.gov (United States)

    Papini, Emanuele; Birch, Aaron C.; Gizon, Laurent; Hanasoge, Shravan M.

    2015-05-01

    Acoustic modes of oscillation are affected by stellar activity, however it is unclear how starspots contribute to these changes. Here we investigate the nonmagnetic effects of starspots on global modes with angular degree ℓ ≤ 2 in highly active stars, and characterize the spot seismic signature on synthetic light curves. We perform 3D time-domain simulations of linear acoustic waves to study their interaction with a model starspot. We model the spot as a 3D change in the sound speed stratification with respect to a convectively stable stellar background, built from solar Model S. We perform a parametric study by considering different depths and perturbation amplitudes. Exact numerical simulations allow the investigation of the wavefield-spot interaction beyond first order perturbation theory. The interaction of the axisymmetric modes with the starspot is strongly nonlinear. As mode frequency increases, the frequency shifts for radial modes exceed the value predicted by linear theory, while the shifts for the ℓ = 2,m = 0 modes are smaller than predicted by linear theory, with avoided-crossing-like patterns forming between the m = 0 and m = 1 mode frequencies. The nonlinear behavior increases with increasing spot amplitude and/or decreasing depth. Linear theory still reproduces the correct shifts for nonaxisymmetric modes. In the nonlinear regime the mode eigenfunctions are not pure spherical harmonics, but rather a mixture of different spherical harmonics. This mode mixing, together with the frequency changes, may lead to misidentification of the modes in the observed acoustic power spectra.

  15. Acoustic detection of coronary artery disease.

    Science.gov (United States)

    Semmlow, John; Rahalkar, Ketaki

    2007-01-01

    Coronary artery disease (CAD) occurs when the arteries to the heart (the coronary arteries) become blocked by deposition of plaque, depriving the heart of oxygen-bearing blood. This disease is arguably the most important fatal disease in industrialized countries, causing one-third to one-half of all deaths in persons between the ages of 35 and 64 in the United States. Despite the fact that early detection of CAD allows for successful and cost-effective treatment of the disease, only 20% of CAD cases are diagnosed prior to a heart attack. The development of a definitive, noninvasive test for detection of coronary blockages is one of the holy grails of diagnostic cardiology. One promising approach to detecting coronary blockages noninvasively is based on identifying acoustic signatures generated by turbulent blood flow through partially occluded coronary arteries. In fact, no other approach to the detection of CAD promises to be as inexpensive, simple to perform, and risk free as the acoustic-based approach. Although sounds associated with partially blocked arteries are easy to identify in more superficial vessels such as the carotids, sounds from coronary arteries are very faint and surrounded by noise such as the very loud valve sounds. To detect these very weak signals requires sophisticated signal processing techniques. This review describes the work that has been done in this area since the 1980s and discusses future directions that may fulfill the promise of the acoustic approach to detecting coronary artery disease.

  16. UTSig: A Persian Offline Signature Dataset

    OpenAIRE

    Soleimani, Amir; Fouladi, Kazim; Araabi, Babak N.

    2016-01-01

    The crucial role of datasets in signature verification systems has motivated researchers to collect signature samples. However, with regard to the distinct characteristics of Persian signature, existing offline signature datasets cannot be used in Persian systems. This paper presents a new and public Persian offline signature dataset, UTSig, which consists of 8280 images from 115 classes that each class has 27 genuine, 3 opposite-hand signatures of the genuine signer, and 42 skilled forgeries...

  17. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  18. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    OpenAIRE

    Schmidt, Anne Marie Due; KIRKEGAARD, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to inve...

  19. Harmonic 'signatures' of microorganisms.

    Science.gov (United States)

    Blake-Coleman, B C; Hutchings, M J; Silley, P

    1994-01-01

    The frequency/amplitude effect of various microorganisms exposed to periodic (time varying) electric fields, when proximate to immersed electrodes, has been studied using a novel analytical instrument. The harmonic distribution, in complex signals caused by cells exposed to harmonic free waveforms and occupying part of the electrode/suspension interface volume, was shown to be almost entirely due to the change in the standing interfacial transfer function by the (dielectrically nonlinear) presence of cells. Thus, the characteristic interfacial non-linearity is viewed as variable, being uniquely modulated by the presence of particular cells in the interfacial region. Little can be attributed to bulk (far field) effects. The tendency for subtle (characteristic) signal distortion to occur as a function of particulate (cell or molecular) occupancy of the near electrode interfacial region under controlled current conditions leads to the method of sample characterisation by harmonic (Fourier) analysis. We report here, as a sequel to our original studies (Hutchings et al., 1993; Hutchings and Blake-Coleman, 1993), preliminary results of the harmonic analysis of microbial suspensions under controlled signal conditions using a three-electrode configuration. These data provide three-dimensional graphical representations producing harmonic 'surfaces' for various microorganisms. Thus, cell type differences are characterised by their 'harmonic signature'. The visual distinction provided by these 'surface' forming three-dimensional plots is striking and gives a convincing impression of the ability to identify and enumerate specific microorganisms by acquisition of cell-modulated electrode interfacial Fourier spectra. PMID:8060593

  20. Statistical clumped isotope signatures.

    Science.gov (United States)

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  1. Paradigm Signature S8

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    不说不知道,Paradigm在北美市场可是占用率位居前列的品牌,而且产品在世界各地获奖连连.足以证明他的成功。但风光的背后,肯定离不开默默的耕耘。Paradigm工厂就在加拿大,全世界销售的Paradigm产品都出自这个地广人稀、资源丰富、风景优美的北美绿洲。Paradigm的产品线甚广,SignatureS8是其中的现役旗舰。和很多旗舰产品动不动就要价数十万的品牌相比,这个Paradigm的产品定位可是务实得多,

  2. Underwater Applications of Acoustical Holography

    Directory of Open Access Journals (Sweden)

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  3. Secure mediated certificateless signature scheme

    Institute of Scientific and Technical Information of China (English)

    YANG Chen; MA Wen-ping; WANG Xin-mei

    2007-01-01

    Ju et al proposed a certificateless signature scheme with instantaneous revocation by introducing security mediator (SEM) mechanism. This article presents a detailed cryptoanalysis of this scheme and shows that, in their proposed scheme, once a valid signature has been produced, the signer can recover his private key information and the instantaneous revocation property will be damaged. Furthermore, an improved mediated signature scheme, which can eliminate these disadvantages, is proposed, and security proof of the improved scheme under elliptic curve factorization problem (ECFP) assumption and bilinear computational diffie-hellman problem (BCDH) assumption is also proposed.

  4. The vocal imitation of bottlenose dolphin (Tursiops truncatus) signature whistles: their use in vocal matching interactions and their role as vocal labels

    OpenAIRE

    King, Stephanie Laura

    2012-01-01

    The bottlenose dolphin uses vocal learning to develop its own unique acoustic signal. This signal encodes the identity of the signaller, and is known as the animal’s signature whistle. The dolphin’s ability for vocal learning means that the signature whistle of one animal may be found in the vocal repertoire of other animals. This copying of signature whistle types may allow conspecifics to label or address one another. This thesis investigated the use of signature whistle copying in both cap...

  5. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Thurman E. Scott, Jr.; Younane Abousleiman

    2004-04-01

    The research during this project has concentrated on developing a correlation between rock deformation mechanisms and their acoustic velocity signature. This has included investigating: (1) the acoustic signature of drained and undrained unconsolidated sands, (2) the acoustic emission signature of deforming high porosity rocks (in comparison to their low porosity high strength counterparts), (3) the effects of deformation on anisotropic elastic and poroelastic moduli, and (4) the acoustic tomographic imaging of damage development in rocks. Each of these four areas involve triaxial experimental testing of weak porous rocks or unconsolidated sand and involves measuring acoustic properties. The research is directed at determining the seismic velocity signature of damaged rocks so that 3-D or 4-D seismic imaging can be utilized to image rock damage. These four areas of study are described in the report: (1) Triaxial compression experiments have been conducted on unconsolidated Oil Creek sand at high confining pressures. (2) Initial experiments on measuring the acoustic emission activity from deforming high porosity Danian chalk were accomplished and these indicate that the AE activity was of a very low amplitude. (3) A series of triaxial compression experiments were conducted to investigate the effects of induced stress on the anisotropy developed in dynamic elastic and poroelastic parameters in rocks. (4) Tomographic acoustic imaging was utilized to image the internal damage in a deforming porous limestone sample. Results indicate that the deformation damage in rocks induced during laboratory experimentation can be imaged tomographically in the laboratory. By extension the results also indicate that 4-D seismic imaging of a reservoir may become a powerful tool for imaging reservoir deformation (including imaging compaction and subsidence) and for imaging zones where drilling operation may encounter hazardous shallow water flows.

  6. The role of gravity in ocean acoustics propagation and its implication to early tsunami detection

    Science.gov (United States)

    Oliveira, Tiago; Lin, Ying-Tsong; Kadri, Usama

    2016-04-01

    Oceanic low frequency sound generated by submarine earthquake travels much faster than tsunamis and leaves pressure signatures that can act as tsunami precursors. In this regard, it is anticipated that the correct measurement and analysis of low frequency acoustics would enhance current early tsunami detection systems. In this work we model the low frequency acoustics generated by the 2004 Indian Ocean earthquake using the "Method of Normal Modes" and the "Acoustics-Gravity Wave" theory. Ocean acoustic theories usually neglect the effect of gravity. However, we show for rigid and elastic bottom conditions how gravity influences the acoustic normal mode propagation speed. Practically, our results can help in the real time characterization of low frequency sources in the ocean. This will enhance the robustness of early tsunami detection systems.

  7. Initial Semantics for Strengthened Signatures

    CERN Document Server

    Hirschowitz, André; 10.4204/EPTCS.77.5

    2012-01-01

    We give a new general definition of arity, yielding the companion notions of signature and associated syntax. This setting is modular in the sense requested by Ghani and Uustalu: merging two extensions of syntax corresponds to building an amalgamated sum. These signatures are too general in the sense that we are not able to prove the existence of an associated syntax in this general context. So we have to select arities and signatures for which there exists the desired initial monad. For this, we follow a track opened by Matthes and Uustalu: we introduce a notion of strengthened arity and prove that the corresponding signatures have initial semantics (i.e. associated syntax). Our strengthened arities admit colimits, which allows the treatment of the \\lambda-calculus with explicit substitution.

  8. Initial Semantics for Strengthened Signatures

    Directory of Open Access Journals (Sweden)

    André Hirschowitz

    2012-02-01

    Full Text Available We give a new general definition of arity, yielding the companion notions of signature and associated syntax. This setting is modular in the sense requested by Ghani and Uustalu: merging two extensions of syntax corresponds to building an amalgamated sum. These signatures are too general in the sense that we are not able to prove the existence of an associated syntax in this general context. So we have to select arities and signatures for which there exists the desired initial monad. For this, we follow a track opened by Matthes and Uustalu: we introduce a notion of strengthened arity and prove that the corresponding signatures have initial semantics (i.e. associated syntax. Our strengthened arities admit colimits, which allows the treatment of the λ-calculus with explicit substitution.

  9. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  10. Acoustic integrated extinction

    CERN Document Server

    Norris, Andrew N

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross-section as a function of wavelength. Sohl et al. [1] derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  11. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  12. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  13. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... treatment Summary Types Of Post-treatment Issues Resources Medical Resources Considerations When Selecting a Healthcare Professional Healthcare ... ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma ...

  15. Acoustics lecturing in Mexico

    Science.gov (United States)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  16. An acoustic invisible gateway

    CERN Document Server

    Zhu, Yi-Fan; Liang, Bin; Kan, Wei-Wei; Yang, Jun; Cheng, Jian-Chun

    2015-01-01

    The recently-emerged concept of "invisible gateway" with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of "restoring" a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the "gate" to mimic a rigid "wall" and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet ef...

  17. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  18. Object Recognition Using Spatiotemporal Signatures

    OpenAIRE

    James V Stone

    1998-01-01

    The sequence of images generated by motion between observer and object specifies a spatiotemporal signature for that object. Evidence is presented that such spatiotemporal signatures are used in object recognition. Subjects learned novel, three-dimensional, rotating objects from image sequences in a continuous recognition task. During learning, the temporal order of images of a given object was constant. During testing, the order of images in each sequence was reversed, relative to its order ...

  19. Visual identification by signature tracking

    OpenAIRE

    Munich, Mario E.; Perona, Pietro

    2003-01-01

    We propose a new camera-based biometric: visual signature identification. We discuss the importance of the parameterization of the signatures in order to achieve good classification results, independently of variations in the position of the camera with respect to the writing surface. We show that affine arc-length parameterization performs better than conventional time and Euclidean arc-length ones. We find that the system verification performance is better than 4 percent error on skilled fo...

  20. Contract Signature Using Quantum Information

    CERN Document Server

    De Sousa, P B M; Ramos, Rubens Viana; Sousa, Paulo Benicio Melo de

    2006-01-01

    This paper describes how to perform contract signature in a fair way using quantum information. The protocol proposed permits two partners, users of a communication network, to exchange their signatures with non-repudiation. For this, we assume that there is a trustable arbitrator, responsible for the authentication of the signers and that performs a central task in a quantum teleportation protocol of the XOR function between two classical bits.

  1. An arbitrated quantum signature scheme

    CERN Document Server

    Zeng, G; Zeng, Guihua; Keitel, Christoph H.

    2002-01-01

    The general principle for a quantum signature scheme is proposed and investigated based on ideas from classical signature schemes and quantum cryptography. The suggested algorithm is implemented by a symmetrical quantum key cryptosystem and Greenberger-Horne-Zeilinger (GHZ) triplet states and relies on the availability of an arbitrator. We can guarantee the unconditional security of the algorithm, mostly due to the correlation of the GHZ triplet states and the use of quantum one-time pads.

  2. Equiangular Frames and Signature Sets

    OpenAIRE

    Singh, Preeti

    2009-01-01

    We will present a relation between real equiangular frames and certain special sets in groups which we call signature sets and show that many equiangular frames arise in this manner. Then we will define quasi-signature sets and will examine equiangular frames associated to these subsets of groups. We will extend these results to complex equiangular frames where the inner product between any pair of vectors is a common multiple of a cube root of unity and exhibit equiangular frames that arise ...

  3. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  4. Acoustic surface cavitation

    OpenAIRE

    Zijlstra, Aaldert Geert

    2011-01-01

    Merely the presence of compressible entities, known as bubbles, greatly enriches the physical phenomena encountered when introducing ultrasound in a liquid. Mediated by the response of these bubbles, the otherwise diffuse and relatively low energy density of the acoustic field can induce strong, localized liquid motion, high internal temperatures and pressures as well as secondary acoustic emissions. In turn, these effects give rise to considerable stresses exerted on nearby objects and molec...

  5. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    Science.gov (United States)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  6. Acoustic vector sensor signal processing

    Institute of Scientific and Technical Information of China (English)

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  7. 76 FR 30542 - Adult Signature Services

    Science.gov (United States)

    2011-05-26

    ... 111 Adult Signature Services AGENCY: Postal Service\\TM\\. ACTION: Final rule. SUMMARY: The Postal... ) 503.8, to add a new extra service called Adult Signature. This new service has two available options: Adult Signature Required and Adult Signature Restricted Delivery. DATES: Effective July 5, 2011....

  8. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    Science.gov (United States)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  9. SIGNATURE: A workbench for gene expression signature analysis

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey T

    2011-11-01

    Full Text Available Abstract Background The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise. Results We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access. Conclusions SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

  10. Quantum messages with signatures forgeable in arbitrated quantum signature schemes

    Science.gov (United States)

    Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon

    2015-02-01

    Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme.

  11. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  12. Phononic crystals and acoustic metamaterials

    Directory of Open Access Journals (Sweden)

    Ming-Hui Lu

    2009-12-01

    Full Text Available Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surface evanescent waves have also been recognized to play key roles to reach acoustic subwavelength imaging and enhanced transmission.

  13. Signature molecular descriptor : advanced applications.

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Donald Patrick, Jr. (Tennessee Technological University, Cookeville, TN)

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  14. Wavefront Modulation and Subwavelength Diffractive Acoustics with an Acoustic Metasurface

    OpenAIRE

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-01-01

    Metasurfaces are a family of novel wavefront shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality as their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a desig...

  15. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    Science.gov (United States)

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  16. Signature Visualization of Software Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  17. Redshift uncertainties and baryonic acoustic oscillations

    CERN Document Server

    Chaves-Montero, Jonás; Hernández-Monteagudo, Carlos

    2016-01-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of uncertain redshift estimators on cosmological observables. In this paper we present a detailed exploration of the galaxy clustering and baryonic acoustic oscillation (BAO) signal under the presence of redshift errors. We provide analytic expressions for how the monopole and the quadrupole of the redshift-space power spectrum (together with their covariances) are affected. Additionally, we discuss the modifications in the shape, signal to noise, and cosmological constraining power of the BAO signature. We show how and why the BAO contrast is $\\mathit{enhanced}$ with small redshift uncertainties, and explore in detail how the cosmological information is modulated by the interplay of redshift-space distortions, redshift errors, and the number density of the sample. We validate our results by comparing them with measurements from a ensemble of $N$-body simulations with $8100h^{-3}\\text{Gpc}^3$ aggregated volume....

  18. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  19. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  20. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  1. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  2. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  3. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  4. Equiangular Frames and Signature Sets

    CERN Document Server

    Singh, Preeti

    2009-01-01

    We will present a relation between real equiangular frames and certain special sets in groups which we call signature sets and show that many equiangular frames arise in this manner. Then we will define quasi-signature sets and will examine equiangular frames associated to these subsets of groups. We will extend these results to complex equiangular frames where the inner product between any pair of vectors is a common multiple of a cube root of unity and exhibit equiangular frames that arise from groups in this manner.

  5. A Signature Scheme with Non-Repudiation

    Institute of Scientific and Technical Information of China (English)

    XIN Xiangjun; GUO Xiaoli; XIAO Guozhen

    2006-01-01

    Based on the Schnorr signature scheme, a new signature scheme with non-repudiation is proposed. In this scheme, only the signer and the designated receiver can verify the signature signed by the signer, and if necessary, both the signer and the designated receiver can prove and show the validity of the signature signed by the signer. The proof of the validity of the signature is noninteractive and transferable. To verify and prove the validity of the signature, the signer and the nominated receiver needn't store extra information besides the signature. At the same time, neither the signer nor the designated receiver can deny a valid signature signed. Then, there is no repudiation in this new signature scheme. According to the security analysis of this scheme, it is found the proposed scheme is secure against existential forgery on adaptive chosen message attack.

  6. Soldier/robot team acoustic detection

    Science.gov (United States)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated, autonomous, and semi-autonomous ground, air, and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  7. Densitometry By Acoustic Levitation

    Science.gov (United States)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  8. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... of descriptors, number of classes, and class intervals occurred between national schemes. However, a proposal “acoustic classification scheme for dwellings” has been developed recently in the European COST Action TU0901 with 32 member countries. This proposal has been accepted as an ISO work item. This paper...

  9. Strong acoustic wave action

    Science.gov (United States)

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  10. Structural Acoustics and Vibrations

    Science.gov (United States)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  11. Variable-Position Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  12. Verifiably Encrypted Signatures Without Random Oracles

    Institute of Scientific and Technical Information of China (English)

    LI Xiang-xue; CHEN Ke-fei; LIU Sheng-li; LI Shi-qun

    2006-01-01

    Verifiably encrypted signatures are employed when a signer wants to sign a message for a verifier but does not want the verifier to possess his signature on the message until some certain requirements of his are satisfied. This paper presented new verifiably encrypted signatures from bilinear pairings. The proposed signatures share the properties of simplicity and efficiency with existing verifiably encrypted signature schemes. To support the proposed scheme, it also exhibited security proofs that do not use random oracle assumption. For existential unforgeability, there exist tight security reductions from the proposed verifiably encrypted signature scheme to a strong but reasonable computational assumption.

  13. An Improved Proxy Multi-Signature Scheme

    Institute of Scientific and Technical Information of China (English)

    GU Li-ze; ZHANG Sheng; YANG Yi-xian

    2005-01-01

    Based on the Kim-like's proxy multi-signature scheme[1],an improved proxy multi-signature scheme is proposed.The new scheme overcomes the two problems in the Kim-like's proxy multi-signature scheme:(1)Security issue(every original signer can forge a valid proxy multi-signature for any message);(2)Efficiency issue(both the size of the proxy multi-signature and the efficiency of signature checking are dependent on the number of the original signers).

  14. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...

  15. Galaxy interactions : The HI signature

    NARCIS (Netherlands)

    Sancisi, R; Barnes, JE; Sanders, DB

    1999-01-01

    HI observations are an excellent tool for investigating tidal interactions. Ongoing major and minor interactions which can lead to traumatic mergers or to accretion and the triggering of star formation, show distinct HI signatures. Interactions and mergers in the recent past can also be recognized i

  16. Disaster relief through composite signatures

    Science.gov (United States)

    Hawley, Chadwick T.; Hyde, Brian; Carpenter, Tom; Nichols, Steve

    2012-06-01

    A composite signature is a group of signatures that are related in such a way to more completely or further define a target or operational endeavor at a higher fidelity. This paper builds on previous work developing innovative composite signatures associated with civil disasters, including physical, chemical and pattern/behavioral. For the composite signature approach to be successful it requires effective data fusion and visualization. This plays a key role in both preparedness and the response and recovery which are critical to saving lives. Visualization tools enhance the overall understanding of the crisis by pulling together and analyzing the data, and providing a clear and complete analysis of the information to the organizations/agencies dependant on it for a successful operation. An example of this, Freedom Web, is an easy-to-use data visualization and collaboration solution for use in homeland security, emergency preparedness, situational awareness, and event management. The solution provides a nationwide common operating picture for all levels of government through a web based, map interface. The tool was designed to be utilized by non-geospatial experts and is easily tailored to the specific needs of the users. Consisting of standard COTS and open source databases and a web server, users can view, edit, share, and highlight information easily and quickly through a standard internet browser.

  17. Acoustic-gravity waves, theory and application

    Science.gov (United States)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  18. Underwater Acoustic Networking Techniques

    CERN Document Server

    Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele

    2012-01-01

    This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.

  19. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  20. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  1. Portable acoustic myography

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Danneskiold-Samsøe, Bente; Bartels, Else Marie

    2013-01-01

    Muscle sound gives a local picture of muscles involved in a particular movement and is independent of electrical signals between nerve and muscle. Sound recording (acoustic myography) is a well-known noninvasive technique that has suffered from not being easily applicable, as well as not being ab...

  2. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  3. Holograms for acoustics

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  4. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  5. Elliptic Curve Blind Digital Signature Schemes

    Institute of Scientific and Technical Information of China (English)

    YOULin; YANGYixian; WENQiaoyan

    2003-01-01

    Blind signature schemes are important cryptographic protocols in guaranteeing the privacy or anonymity of the users.Three new blind signature schemes and their corresponding generalizations are pro-posed. Moreover, their securities are simply analyzed.

  6. Blind Signature Scheme Based on Chebyshev Polynomials

    Directory of Open Access Journals (Sweden)

    Maheswara Rao Valluri

    2011-12-01

    Full Text Available A blind signature scheme is a cryptographic protocol to obtain a valid signature for a message from a signer such that signer’s view of the protocol can’t be linked to the resulting message signature pair. This paper presents blind signature scheme using Chebyshev polynomials. The security of the given scheme depends upon the intractability of the integer factorization problem and discrete logarithms ofChebyshev polynomials.

  7. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    Science.gov (United States)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  8. Large-scale BAO signatures of the smallest galaxies

    CERN Document Server

    Dalal, Neal; Seljak, Uros

    2010-01-01

    Recent work has shown that at high redshift, the relative velocity between dark matter and baryonic gas is typically supersonic. This relative velocity suppresses the formation of the earliest baryonic structures like minihalos, and the suppression is modulated on large scales. This effect imprints a characteristic shape in the clustering power spectrum of the earliest structures, with significant power on 100 Mpc scales featuring highly pronounced baryon acoustic oscillations. The amplitude of these oscillations is orders of magnitude larger at z=20 than previously expected. This characteristic signature can allow us to distinguish the effects of minihalos on intergalactic gas at times preceding and during reionization. We illustrate this effect with the example of 21 cm emission and absorption from redshifts during and before reionization. This effect can potentially allow us to probe physics on kpc scales using observations on 100 Mpc scales. We present sensitivity forecasts for FAST and Arecibo. Depending...

  9. Frequency Analysis of Acoustic Emission - Application to machining and welding

    Science.gov (United States)

    Snoussi, A.

    1987-01-01

    Ultrasonic acoustic waves were seized and exploited within a bandwidth ranging from 30 kHz to 55 kHz for non-destructive control when boring three kinds of steel with a digitally programmed drill. In addition, these waves were considered in soldering two steels and one aluminum using T.I.G. process. Spectrum analysis of acoustic emissions produced during the drill is closely related to the extraction of turnings from the metal. Because of the wick's progressive wearing out, the spectrum tends to be close to the machine's own noise spectrum. Meanwhile in the soldering operation of test-tubes of 2 mm thickness, the frequency analysis shows a particular frequency called signature corresponding to the flow of protection gas. Other frequencies associated to some internal defects in the soldering process as a delay in the fissure and a lack in the fusion were detected.

  10. Combining passive thermography and acoustic emission for large area fatigue damage growth assessment of a composite structure

    Science.gov (United States)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-05-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.

  11. Sound signatures and production mechanisms of three species of pipefishes (Family: Syngnathidae).

    Science.gov (United States)

    Lim, Adam Chee Ooi; Chong, Ving Ching; Wong, Chiow San; Muniandy, Sithi Vinayakam

    2015-01-01

    Background. Syngnathid fishes produce three kinds of sounds, named click, growl and purr. These sounds are generated by different mechanisms to give a consistent signal pattern or signature which is believed to play a role in intraspecific and interspecific communication. Commonly known sounds are produced when the fish feeds (click, purr) or is under duress (growl). While there are more acoustic studies on seahorses, pipefishes have not received much attention. Here we document the differences in feeding click signals between three species of pipefishes and relate them to cranial morphology and kinesis, or the sound-producing mechanism. Methods. The feeding clicks of two species of freshwater pipefishes, Doryichthys martensii and Doryichthys deokhathoides and one species of estuarine pipefish, Syngnathoides biaculeatus, were recorded by a hydrophone in acoustic dampened tanks. The acoustic signals were analysed using time-scale distribution (or scalogram) based on wavelet transform. A detailed time-varying analysis of the spectral contents of the localized acoustic signal was obtained by jointly interpreting the oscillogram, scalogram and power spectrum. The heads of both Doryichthys species were prepared for microtomographical scans which were analysed using a 3D imaging software. Additionally, the cranial bones of all three species were examined using a clearing and double-staining method for histological studies. Results. The sound characteristics of the feeding click of the pipefish is species-specific, appearing to be dependent on three bones: the supraoccipital, 1st postcranial plate and 2nd postcranial plate. The sounds are generated when the head of the Dorichthyes pipefishes flexes backward during the feeding strike, as the supraoccipital slides backwards, striking and pushing the 1st postcranial plate against (and striking) the 2nd postcranial plate. In the Syngnathoides pipefish, in the absence of the 1st postcranial plate, the supraoccipital rubs

  12. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D.; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with “pancake” directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  13. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  14. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter.

  15. Polarization signatures of airborne particulates

    Science.gov (United States)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  16. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  17. Acoustic energy harvesting based on a planar acoustic metamaterial

    Science.gov (United States)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  18. Nonlinear control of magnetic signatures

    Science.gov (United States)

    Niemoczynski, Bogdan

    Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and

  19. Quantum signatures of Chimera states

    OpenAIRE

    Bastidas, V. M.; Omelchenko, I.; ZAKHAROVA, A.; Schöll, E.; Brandes, T.

    2015-01-01

    Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum ...

  20. Robust RSA for Digital Signature

    OpenAIRE

    Virendra Kumar; Puran Krishen Koul

    2011-01-01

    The RSA cryptosystem is currently used in a wide variety of products, platforms, and industries around the world. It is found in many commercial software products and is planned to be in many more. In hardware, the RSA algorithm can be found in secure telephones, on ethernet network cards, and on smart cards.It offers encryption and digital signatures (authentication). In this paper we will illustrate the application and problem associated with RSA Algorithm.

  1. Acoustics Discipline Overview

    Science.gov (United States)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.

  2. Acoustic Tractor Beam

    Science.gov (United States)

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  3. Acoustic absorption by sunspots

    Science.gov (United States)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  4. Acoustic absorption by sunspots

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.C.; Labonte, B.J.; Duvall, T.L. Jr.

    1987-08-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity. 10 references.

  5. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.

    2010-07-01

    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  6. The acoustics of snoring.

    Science.gov (United States)

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as judged by the bed partner, is due to an altered sound spectrum. Whether some acoustic aspects of snoring, such as changes in pitch, have predictive value for the presence of

  7. Enhance Confidentiality of Threshold Signature for MANET

    Institute of Scientific and Technical Information of China (English)

    GUO Wei; XIONG Zhongwei

    2006-01-01

    The participating wireless mobile node that mobile ad hoc network (MANET) communications need to forward may be malicious. That means not only adversary might be able to acquire some sensitive information of the threshold signatures from the compromised node, but also the partial signatures may be fabricated by malicious node, the advantages of threshold signatures would disappear. Signing and encrypting the sensitive information of the threshold signatures, and only the specified receiver can recover it, which will improve the confidentiality of threshold signatures. The security analysis shows the method is suitable for the secure characteristic of MANET that has the malicious nodes, and the message transmission is secure can against the attack.

  8. Comparison of MMW ground vehicle signatures

    Science.gov (United States)

    Saylor, Ph. D., Annie V.; Kissell, Ann

    2006-05-01

    A continuing question asked of MMW target signature and model providers is the applicability of data from one frequency band to another. Recent monopulse Ka-band ground target signature measurements made by US Army programs provide an opportunity to do an in-depth comparison of signatures of several ground vehicles. The vehicles measured correspond to those measured at W-band by another Army program. This paper provides a comparison of vehicle signatures produced by models derived by AMRDEC from the measurements. The results have implications for missile programs that do not have an extensive measurement budget but require target signatures and models for algorithm development.

  9. Signature Inversion in Odd-odd Nuclei

    Institute of Scientific and Technical Information of China (English)

    LIU Min-liang; ZHANG Yu-hu; ZHOU Xiao-hong; GUO Ying-xiang; LEI Xiang-guo; GUO Wen-tao

    2009-01-01

    Signature inversion in odd-odd nuclei is investigated by using a proton and a neutron coupling to the coherent state of the core.Two parameters are employed in the Hamiltonian to set the energy scales of rotation,neutron-proton coupling and their competition.Typical level staggering is extracted from the calculated level energies.The calculation can approximately reproduce experimental signature inversion.Signature inversion is attributed to the rotational motion and neutronproton residual interaction having reversed signature splitting rules.It is found signature inversion can appear at axially symmetric shape and high-K band.

  10. A New Signature Scheme with Shared Verification

    Institute of Scientific and Technical Information of China (English)

    JIA Xiao-yun; LUO Shou-shan; YUAN Chao-wei

    2006-01-01

    With expanding user demands, digital signature techniques are also being expanded greatly, from single signature and single verification techniques to techniques supporting multi-users. This paper presents a new digital signature scheme vith shared verification based on the fiat-shamir signature scheme. This scheme is suitable not only for digital signatures of one public key, but also for situations where multiple public keys are required. In addition, the scheme can resist all kinds of collusion, making it more practicable and safer. Additionally it is more efficient than other schemes.

  11. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  12. Acoustics, computers and measurements

    Science.gov (United States)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  13. Mesospheric airglow and ionospheric responses to upward-propagating acoustic and gravity waves above tropospheric sources

    Science.gov (United States)

    Snively, J. B.; Zettergren, M. D.

    2013-12-01

    The existence of acoustic waves (periods ~1-5 minutes) and gravity waves (periods >4 minutes) in the ionosphere above active tropospheric convection has been appreciated for more than forty years [e.g., Georges, Rev. Geophys. and Space Phys., 11(3), 1973]. Likewise, gravity waves exhibiting cylindrical symmetry and curvature of phase fronts have been observed via imaging of the mesospheric airglow layers [e.g., Yue et al., JGR, 118(8), 2013], clearly associated with tropospheric convection; gravity wave signatures have also recently been detected above convection in ionospheric total electron content (TEC) measurements [Lay et al., GRL, 40, 2013]. We here investigate the observable features of acoustic waves, and their relationship to upward-propagating gravity waves generated by the same sources, as they arrive in the mesosphere, lower-thermosphere, and ionosphere (MLTI). Numerical simulations using a nonlinear, cylindrically-axisymmetric, compressible atmospheric dynamics model confirm that acoustic waves generated by transient tropospheric sources may produce "concentric ring" signatures in the mesospheric hydroxyl airglow layer that precede the arrival of gravity waves. As amplitudes increase with altitude and decreasing neutral density, the modeled acoustic waves achieve temperature and vertical wind perturbations on the order of ~10s of Kelvin and m/s throughout the E- and F-region. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for low-latitudes using a 2D dipole magnetic field coordinate system, we investigate acoustic wave perturbations to the ionosphere in the meridional direction. Resulting perturbations are predicted to be detectable by ground-based radar and GPS TEC measurements, or via in situ instrumentation. Although transient and short-lived, the acoustic waves' airglow and ionospheric signatures are likely to in some cases be observable, and may provide important insight into the regional

  14. The electro-acoustic transition process of pulsed corona discharge in conductive water

    Science.gov (United States)

    Huang, Yifan; Yan, Hui; Wang, Bingzhe; Zhang, Xuming; Liu, Zhen; Yan, Keping

    2014-06-01

    A pulsed corona discharge in conductive water is studied theoretically and experimentally via pre-discharge analysis, thermodynamic and dynamic processes of a plasma-containing bubble, an acoustic signature and energy partitioning. The total particle density and electron density inside the bubble, internal temperature and pressure, bubble radius and bubble wall Mach number are simulated by solving a set of equations including the ideal gas equation, Rayleigh equation and energy balance equation. The bubble radius is also measured by a high-speed charge-coupled device camera on a homemade experimental device. The acoustic waveforms and their power spectral density are calculated indirectly. By using several diagnostic tools, the electrical parameters of the load, light emission from the plasma and acoustic waveforms are recorded simultaneously. Simulation and experimental results of the bubble radius and acoustic signature agree reasonably well over the range of energy inputs from 5 to 30 J per pulse. Different kinds of terminations or intermediates of the energy transition process are analysed through simulation and experimental data. The electro-acoustic efficiency varies from 0.8% to 1.9%, while most of the discharge energy is consumed by circuit loss, Joule heating and thermal radiation, or is transformed into kinetic energy in the water.

  15. TopSig: Topology Preserving Document Signatures

    CERN Document Server

    Geva, Shlomo

    2012-01-01

    Performance comparisons between File Signatures and Inverted Files for text retrieval have previously shown several significant shortcomings of file signatures relative to inverted files. The inverted file approach underpins most state-of-the-art search engine algorithms, such as Language and Probabilistic models. It has been widely accepted that traditional file signatures are inferior alternatives to inverted files. This paper describes TopSig, a new approach to the construction of file signatures. Many advances in semantic hashing and dimensionality reduction have been made in recent times, but these were not so far linked to general purpose, signature file based, search engines. This paper introduces a different signature file approach that builds upon and extends these recent advances. We are able to demonstrate significant improvements in the performance of signature file based indexing and retrieval, performance that is comparable to that of state of the art inverted file based systems, including Langu...

  16. Provably secure robust threshold partial blind signature

    Institute of Scientific and Technical Information of China (English)

    CAO Zhenfu; ZHU Haojin; LU Rongxing

    2006-01-01

    Threshold digital signature and blind signature are playing important roles in cryptography as well as in practical applications such as e-cash and e-voting systems.Over the past few years, many cryptographic researchers have made considerable headway in this field. However, to our knowledge, most of existing threshold blind signature schemes are based on the discrete logarithm problem. In this paper, we propose a new robust threshold partial blind signature scheme based on improved RSA cryptosystem.This scheme is the first threshold partial blind signature scheme based on factoring, and the robustness of threshold partial blind signature is also introduced. Moreover, in practical application, the proposed scheme will be especially suitable for blind signature-based voting systems with multiple administrators and secure electronic cash systems to prevent their abuse.

  17. Certificateless universal designated verifier signature schemes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Universal designated verifier signature schemes allows a signature holder to designate the signature to a desire designated verifier, in such a way that only designated verifier can verify this signature, but is unable to convince anyone else of this fact.The previous constructions of universal designated verifier signature rely on the underlying public key infrastructure, that needs both signers and verifiers to verify the authenticity of the public keys, and hence, the certificates are required.This article presents the first model and construction of the certificateless universal designated verifier signature scheme, in which the certificates are not needed.The proposed scheme satisfies all the requirements of the universal designated verifier signature in the certificateless system.Security proofs are provided for the scheme based on the random oracle model, assuming that the Bilinear diffie-hellman (BDH) problem is hard to solve.

  18. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  19. Latest Trends in Acoustic Sensing

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  20. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  1. Acoustical coupling of lizard eardrums

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob; Manley, Geoffrey A

    2008-01-01

    Lizard ears are clear examples of two-input pressure-difference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi- and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct...... is caused by the acoustic interaction of the two eardrums. The results can be largely explained by a simple acoustical model based on an electrical analog circuit....

  2. Room acoustic auralization with Ambisonics

    OpenAIRE

    Polack, Jean-Dominique; Leão Figueiredo, Fábio

    2012-01-01

    International audience During the year of 2009, the room acoustics group of the LAM (Équipe Lutheries, Acoustique, Musique de l’Institut Jean Le Rond d’Alembert - Université Pierre et Marie Curie, Paris) performed a series of acoustical measurements in music halls in Paris. The halls were chosen in regarding their importance to the historic, architectural or acoustic domains. The measured ensemble of fourteen rooms includes quite different architectural designs. The measurements were carri...

  3. Combined Environment Acoustic Chamber (CEAC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  4. An Identity Based Aggregate Signature from Pairings

    Directory of Open Access Journals (Sweden)

    Yike Yu

    2011-04-01

    Full Text Available An aggregate signature is a useful digital signature that supports aggregation: Given n signatures on n distinct messages from n distinct users, aggregate signature scheme is possible to aggregate all these signature into a single short signature. This single signature, along with the n original messages will convince any verifier that the n users did indeed sign the n original messages respectively (i.e., for i=1,...,n user i signed message  mi. In this paper, we propose an identity based aggregate signature scheme which requires constant pairing operations in the verification and the size of aggregate signature is independent of the number of signers. We prove that the proposed signature scheme is secure against existential forgery under adaptively chosen message and identity attack in the random oracle model assuming the intractability of the computational Diffie-Hellman problem.

  5. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  6. Genetic signatures of heroin addiction.

    Science.gov (United States)

    Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang

    2016-08-01

    Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study. PMID:27495086

  7. Genetic signatures of heroin addiction

    Science.gov (United States)

    Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang

    2016-01-01

    Abstract Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study. PMID:27495086

  8. Quantum signatures of chimera states

    Science.gov (United States)

    Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T.

    2015-12-01

    Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.

  9. Mesospheric, Thermospheric, and Ionospheric Responses to Acoustic and Gravity Waves Generated by Transient Forcing

    Science.gov (United States)

    Snively, J. B.; Zettergren, M. D.

    2014-12-01

    Strong acoustic waves with periods ~1-4 minutes have been confirmed to perturb the ionosphere following their generation by earthquakes [e.g., Garcia et al., GRL, 40(5), 2013] and volcanic eruption events [e.g., Heki, GRL, 33, L14303, 2006]. Clear acoustic and gravity wave signatures have also been reported in ionospheric data above strong tropospheric convection [Nishioka, GRL, 40(21), 2013], and prior modeling results suggest that convectively-generated acoustic waves with ~3-4 minute periods are readily detectable above their sources in TEC [Zettergren and Snively, GRL, 40(20), 2013]. These observations have provided quantitative insight into the coupling of processes occurring near Earth's surface with the upper atmosphere and ionosphere over short time-scales. Here, we investigate acoustic waves and short-period gravity waves generated by sources near ground level, and the observable responses of the mesosphere, lower-thermosphere, and ionosphere (MLTI) systems. Numerical simulations are performed using a nonlinear, compressible, atmospheric dynamics model, in cylindrically-axisymmetric coordinates, to investigate wave generation, upward propagation, steepening, and dissipation. Acoustic waves may produce observable signatures in the mesospheric hydroxyl airglow layer [e.g., Snively, GRL, 40(17), 2013], and can strongly perturb the lower-thermosphere and E- and F-region ionosphere, prior to the arrival of simultaneously-generated gravity waves. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for mid and low latitudes using a 2D dipole magnetic field coordinate system [Zettergren and Snively, GRL, 40(20), 2013], we investigate its response to realistic acoustic wave perturbations. In particular, we demonstrate that the MLT and ionospheric responses are significantly and nonlinearly determined by the acoustic wave source geometry, spectrum, and amplitude, in addition to the local ambient state of the

  10. Acoustic Mechanical Feedthroughs

    Science.gov (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  11. Quantum broadcasting multiple blind signature with constant size

    Science.gov (United States)

    Xiao, Min; Li, Zhenli

    2016-06-01

    Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.

  12. Quantum broadcasting multiple blind signature with constant size

    Science.gov (United States)

    Xiao, Min; Li, Zhenli

    2016-09-01

    Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.

  13. Taming Acoustic Cavitation

    CERN Document Server

    Rivas, David Fernandez; Enriquez, Oscar R; Versluis, Michel; Prosperetti, Andrea; Gardeniers, Han; Lohse, Detlef

    2012-01-01

    In this fluid dynamics video we show acoustic cavitation occurring from pits etched on a silicon surface. By immersing the surface in a liquid, gas pockets are entrapped in the pits which upon ultrasonic insonation, are observed to shed cavitation bubbles. Modulating the driving pressure it is possible to induce different behaviours based on the force balance that determines the interaction among bubbles and the silicon surface. This system can be used for several applications like sonochemical water treatment, cleaning of surfaces with deposited materials such as biofilms.

  14. Lecture Notes On Acoustics

    International Nuclear Information System (INIS)

    This book mentions string vibration and wave, one-dimension wave and wave equation, characteristic impedance, governing equation of string, and wave energy from string, wave equation of wave and basic physical quantity like one-dimension wave equation, sound unit, sound intensity and energy, sound movement in a surface of discontinuity with transmission loss of sound by partition, and Snell's law, radiation, scatter and diffraction and sound in closed space with Sabine's theory, sound characteristic of closed space and duct acoustics.

  15. Dynamic acoustic tractor beams

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology – ETC, Santa Fe, New Mexico 87508 (United States)

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  16. Dynamic acoustic tractor beams

    Science.gov (United States)

    Mitri, F. G.

    2015-03-01

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  17. Verifiable threshold signature schemes against conspiracy attack

    Institute of Scientific and Technical Information of China (English)

    GAN Yuan-ju(甘元驹)

    2004-01-01

    In this study, the author has designed new verifiable (t,n) threshold untraceable signature schemes. The proposed schemes have the following properties:(1) Verification: The shadows of the secret distributed by the trusted center can be verified by all of the participants;(2) Security: Even if the number of the dishonest member is over the value of the threshold, they cannot get the system secret parameters ,such as the group secret key, and forge other member's individual signature;(3) Efficient verification: The verifier can verify the group signature easily and the verification time of the group signature is equivalent to that of an individual signature; (4) Untraceability: The signers of the group signature cannot be traced.

  18. Verifiable threshold signature schemes against conspiracy attack

    Institute of Scientific and Technical Information of China (English)

    甘元驹

    2004-01-01

    In this study, the author has designed new verifiable (t, n) threshold untraceable signature schemes. The proposed schemes have the following properties: ( 1 ) Verification: The shadows of the secret distributed by the trusted center can be verified by all of the participants; (2) Security: Even if the number of the dishonest member is over the value of the threshold, they cannot get the system secret parameters , such as the group secret key, and forge other member's individual signature; (3) Efficient verification: The verifier can verify the group signature easily and the verification time of the group signature is equivalent to that of an individual signature; (4) Untraceability: The signers of the group signature cannot be traced.

  19. Passive acoustic derived bubble flux and applications to natural gas seepage in the Mackenzie Delta, NWT, Canada and Coal Oil Point, CA

    Science.gov (United States)

    Culling, D.; Leifer, I.; Dallimore, S.; Alcala, K.

    2012-12-01

    Methane is a prominent greenhouse gas that escapes naturally from thermogenic reservoirs as seepage from marine and lacustrine biogenic sources as bubble ebullition. Geologic methane emissions are critically important contributors to the global methane budget however, few quantitative flux measurements are available for shallow waters. This gap in knowledge is critical as in these settings gas can easily transit as bubbles through the water column and directly influence global atmospheric budgets. Video and active acoustic (sonar) measurements of bubble flux have spatial limitations requiring predictable bubble emission location. Passive acoustics are less affected by these limitations, in addition, they can provide data in water too shallow for effective sonar bubble observations. Lab tests were undertaken to quantify the acoustic signature of bubbles formed in non-cohesive sediments. specifically focusing on mechanisms that complicate interpretation of acoustic data. Lab tests then were compared to field data to provide measurement calibration/validation. The principles behind the acoustic analysis method are based on the Minnaert equation, which relates a bubble radius and acoustic frequency. Bubble size and the resultant acoustic frequency from known flows and capillary tube diameters are well documented; however changing sediment pathways adds to the complexity of bubble formation and the resultant bubble acoustic signal. These complex signals were investigated in a lab tank with a thick, cohesive fine-grained sediment bed, through which bubbles produced by a syringe pump migrated to the sediment-water interface. Then, the resultant bubbles were diverted into clear water and measured from high speed, high definition video, while the acoustic signature of bubble formation was recorded concurrently by a hydrophone. Bubble formation is influenced by currents, which shifts the acoustical signal towards a higher frequency with a more complex pattern than the

  20. Acoustic Similarity and Dichotic Listening.

    Science.gov (United States)

    Benson, Peter

    1978-01-01

    An experiment tests conjectures that right ear advantage (REA) has an auditory origin in competition or interference between acoustically similar stimuli and that feature-sharing effect (FSE) has its origin in assignment of features of phonetically similar stimuli. No effect on the REA for acoustic similarity, and a clear effect of acoustic…

  1. Acoustic Center or Time Origin?

    DEFF Research Database (Denmark)

    Staffeldt, Henrik

    1999-01-01

    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  2. Digital Controller For Acoustic Levitation

    Science.gov (United States)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  3. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  4. Collider Signatures of Goldstone Bosons

    CERN Document Server

    Cheung, Kingman; Yuan, Tzu-Chiang

    2014-01-01

    Recently Weinberg suggested that Goldstone bosons arising from the spontaneous breakdown of some global hidden symmetries can interact weakly in the early Universe and account for a fraction of the effective number of neutrino species N_{eff}, which has been reported persistently 2\\sigma away from its expected value of three. In this work, we study in some details a number of experimental constraints on this interesting idea based on the simplest possibility of a global U(1), as studied by Weinberg. We work out the decay branching ratios of the associated light scalar field \\sigma and suggest a possible collider signature at the Large Hadron Collider (LHC). In some corners of the parameter space, the scalar field \\sigma can decay into a pair of pions with a branching ratio of order 10% while the rest is mostly a pair of Goldstone bosons. The collider signature would be gluon fusion into the standard model Higgs boson gg -> H followed by H -> \\sigma \\sigma -> (\\pi\\pi) (\\alpha\\alpha) where \\alpha is the Goldsto...

  5. Theoretical Characterizaiton of Visual Signatures

    Science.gov (United States)

    Kashinski, D. O.; Chase, G. M.; di Nallo, O. E.; Scales, A. N.; Vanderley, D. L.; Byrd, E. F. C.

    2015-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled vibrational frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A full statistical analysis and reliability assessment of computational results is currently underway. A comparison of theoretical results to experimental values found in the literature is used to assess any affects of functional choice and basis set on calculation accuracy. The status of this work will be presented at the conference. Work supported by the ARL, DoD HPCMP, and USMA.

  6. Narrow terahertz attenuation signatures in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal

    2014-10-01

    Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection. PMID:23821459

  7. AN INSPECTION ON OFFLINE SIGNATURE AUTHENTICATION

    OpenAIRE

    Sapna Agrawal; Neelmani Verma

    2015-01-01

    In the era of emergent technology, security is that the foremost anxiety to avoid replicas and counterfeits. There are diverse Biometric systems that enable in personal identification, amongst those verification systems, one system is Signature Verification System. Signatures are substantiated discrimination on-line and offline systems. Every human being has their own writing style and hence their signature is used in the financial domain for identity verification. So it is necess...

  8. (Convertible) Undeniable Signatures Without Random Oracles

    Science.gov (United States)

    Yuen, Tsz Hon; Au, Man Ho; Liu, Joseph K.; Susilo, Willy

    We propose a convertible undeniable signature scheme without random oracles. Our construction is based on Waters' and Kurosawa and Heng's schemes that were proposed in Eurocrypt 2005. The security of our scheme is based on the CDH and the decision linear assumption. Comparing only the part of undeniable signatures, our scheme uses more standard assumptions than the existing undeniable signatures without random oracles due to Laguillamie and Vergnaud.

  9. Mediated Certificateless Signature without Random Oracles

    Directory of Open Access Journals (Sweden)

    Minghui Zheng

    2011-08-01

    Full Text Available It is worthwhile challenges to deal with the key escrow problem and key revocation in identity-based signatures. We first introduce the notion of security-mediated certificateless signature scheme and proves the scheme in the standard model. The mediated certificateless public key cryptography not only provides a fast revocation with fine granularity but also overcomes the key escrow property which exists in ID-based signature. The scheme is provably secure without random oracles.

  10. Cryptoschemes Based on New Signature Formation Mechanism

    Directory of Open Access Journals (Sweden)

    A.A.Moldovyan

    2006-12-01

    Full Text Available Several variants of new digital signature schemes (DSS based on the discrete logarithm and factorization problems have been proposed. Considered DSS are characterized in that a novel mechanism of the signature generation is used, in which two parameters of the (k,S or (R,S signature are defined after solving a system of two congruences. In the case of composite modulus additional restrictions conditions have been introduced for selection of the public key.

  11. Narrow terahertz attenuation signatures in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal

    2014-10-01

    Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection.

  12. MEMS Based Acoustic Array

    Science.gov (United States)

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  13. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  14. Acoustic data transmission method

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, A.

    1991-09-17

    This patent describes a method for transmitting time line data through a drillstring having drill pipe sections connected end-to-end by joints from a first location below the surface of the earth to a second location at or near the surface of the earth, the length and cross-sectional area of the drill pipe sections being different from the length and cross-sectional area of the joints. It comprises generating acoustic data signals having a single frequency content in at least one passband of the drillstring; transmitting the data signals through the drillstring from either the first location to the second location or from the second location to the first location during a time period prior to the onset of reflective interference caused by the data signals reflecting from along the length of the drillstring, the time period being equal to or less than the time for the data signals to travel three lengths of the drillstring; stopping the transmission of data signals at the onset of the reflective interference and allowing the acoustic signals to substantially attenuate; and detecting the data signals at the respective first or second location.

  15. On reliable discovery of molecular signatures

    Directory of Open Access Journals (Sweden)

    Björkegren Johan

    2009-01-01

    Full Text Available Abstract Background Molecular signatures are sets of genes, proteins, genetic variants or other variables that can be used as markers for a particular phenotype. Reliable signature discovery methods could yield valuable insight into cell biology and mechanisms of human disease. However, it is currently not clear how to control error rates such as the false discovery rate (FDR in signature discovery. Moreover, signatures for cancer gene expression have been shown to be unstable, that is, difficult to replicate in independent studies, casting doubts on their reliability. Results We demonstrate that with modern prediction methods, signatures that yield accurate predictions may still have a high FDR. Further, we show that even signatures with low FDR may fail to replicate in independent studies due to limited statistical power. Thus, neither stability nor predictive accuracy are relevant when FDR control is the primary goal. We therefore develop a general statistical hypothesis testing framework that for the first time provides FDR control for signature discovery. Our method is demonstrated to be correct in simulation studies. When applied to five cancer data sets, the method was able to discover molecular signatures with 5% FDR in three cases, while two data sets yielded no significant findings. Conclusion Our approach enables reliable discovery of molecular signatures from genome-wide data with current sample sizes. The statistical framework developed herein is potentially applicable to a wide range of prediction problems in bioinformatics.

  16. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  17. Secure Obfuscation for Encrypted Group Signatures.

    Directory of Open Access Journals (Sweden)

    Yang Shi

    Full Text Available In recent years, group signature techniques are widely used in constructing privacy-preserving security schemes for various information systems. However, conventional techniques keep the schemes secure only in normal black-box attack contexts. In other words, these schemes suppose that (the implementation of the group signature generation algorithm is running in a platform that is perfectly protected from various intrusions and attacks. As a complementary to existing studies, how to generate group signatures securely in a more austere security context, such as a white-box attack context, is studied in this paper. We use obfuscation as an approach to acquire a higher level of security. Concretely, we introduce a special group signature functionality-an encrypted group signature, and then provide an obfuscator for the proposed functionality. A series of new security notions for both the functionality and its obfuscator has been introduced. The most important one is the average-case secure virtual black-box property w.r.t. dependent oracles and restricted dependent oracles which captures the requirement of protecting the output of the proposed obfuscator against collision attacks from group members. The security notions fit for many other specialized obfuscators, such as obfuscators for identity-based signatures, threshold signatures and key-insulated signatures. Finally, the correctness and security of the proposed obfuscator have been proven. Thereby, the obfuscated encrypted group signature functionality can be applied to variants of privacy-preserving security schemes and enhance the security level of these schemes.

  18. Acoustic Remote Sensing of Rogue Waves

    Science.gov (United States)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  19. Tsunami and acoustic-gravity waves in water of constant depth

    Energy Technology Data Exchange (ETDEWEB)

    Hendin, Gali; Stiassnie, Michael [Faculty of Civil and Environmental Engineering, Technion – Israel institute of technology, Haifa 32000 (Israel)

    2013-08-15

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami.

  20. Analog Hawking radiation from an acoustic black hole in a flowing polariton superfluid

    OpenAIRE

    Gerace, Dario; Carusotto, Iacopo

    2012-01-01

    We theoretically study Hawking radiation processes from an analog acoustic black hole in a flowing superfluid of exciton-polaritons in a one-dimensional semiconductor microcavity. Polaritons are coherently injected into the microcavity by a laser pump with a suitably tailored spot profile. An event horizon with a large analog surface gravity is created by inserting a defect in the polariton flow along the cavity plane. Experimentally observable signatures of the analog Hawking radiation are i...

  1. First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background.

    Science.gov (United States)

    Follin, Brent; Knox, Lloyd; Millea, Marius; Pan, Zhen

    2015-08-28

    The unimpeded relativistic propagation of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the cosmic microwave background temperature power spectrum. PMID:26371637

  2. Application of Wavelet Packet Analysis to the Measurement of the Baryon Acoustic Oscillation

    Science.gov (United States)

    Kadowaki, Kevin; Garcia, Noel; Ford, Taurean; Pando, Jesus; SDSS-FAST Collaboration

    2016-03-01

    We develop a method of wavelet packet analysis to measure the Baryon Acoustic Oscillation (BAO) peak and apply this method to the CMASS galaxy catalog from the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) collaboration. We compare our results to a fiducial ?CDM flat cosmological model and detect a BAO signature in the power spectrum comparable to the previous consensus results of the BOSS collaboration. We find DA = 1365rd /rd , fid at z = . 54 . Member ID Forthcoming.

  3. Tsunami and acoustic-gravity waves in water of constant depth

    International Nuclear Information System (INIS)

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami

  4. Tsunami and acoustic-gravity waves in water of constant depth

    Science.gov (United States)

    Hendin, Gali; Stiassnie, Michael

    2013-08-01

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami.

  5. DESIGN OF INTELLIGENT CONTROL SYSTEM USING ACOUSTIC PARAMETERS FOR GRINDING MILL OPERATION

    Directory of Open Access Journals (Sweden)

    Sonali Sen

    2013-02-01

    Full Text Available This paper utilizes acoustic parameters such as FS,NC, N, P, INC, FL, FH, W for acoustic signals S of different running conditions of a ballmill to deriveout the acoustic signatures and hence control signals, which is to be used for designing the control systems of the mill. The parameters FS, NC, N, P, INC, FL, FH and W are represented by sample rate in Hz, number of cepstral coefficients, length of frame in samples, number of filters in filter bank, frame increment, low end of the lowest filter, high end of highest filter and the window over which the analysis is to be performed respectively. The work establishes an appropriate theoretical background that helps to predict dynamic breakage characteristics with respect to particle size distribution of materials, adequately supported by experimental data. The signatures of different running conditions of grinding mill have been extracted from the captured signal in time frame these have been used as feedback signal to monitor the grinding operation. Condenser based microphones have been used for capturing acoustic signals in time domain directly in computers and stored for further analysis. Matlab R2010b has been used for different analysis of the experiment. On analyzing the signatures, it has been observed whether the fines are produced progressively to attain the desired size range or the mill producing undesired products. Thus, the approach has been used in this paper has the ability to arrive in the stage of optimum grinding by tuning parameters of the mill in real time, and also it can prevent the mill to enter into an erroneous state. Moreover, on study it has found that the present scheme can be used more accurately in comparison to the earlier work of the author. This paper presents an implementation scheme to use acoustic signal as the control signal to regulate the operation of a grinding mill.

  6. High-fidelity simulation capability for virtual testing of seismic and acoustic sensors

    Science.gov (United States)

    Wilson, D. Keith; Moran, Mark L.; Ketcham, Stephen A.; Lacombe, James; Anderson, Thomas S.; Symons, Neill P.; Aldridge, David F.; Marlin, David H.; Collier, Sandra L.; Ostashev, Vladimir E.

    2005-05-01

    This paper describes development and application of a high-fidelity, seismic/acoustic simulation capability for battlefield sensors. The purpose is to provide simulated sensor data so realistic that they cannot be distinguished by experts from actual field data. This emerging capability provides rapid, low-cost trade studies of unattended ground sensor network configurations, data processing and fusion strategies, and signatures emitted by prototype vehicles. There are three essential components to the modeling: (1) detailed mechanical signature models for vehicles and walkers, (2) high-resolution characterization of the subsurface and atmospheric environments, and (3) state-of-the-art seismic/acoustic models for propagating moving-vehicle signatures through realistic, complex environments. With regard to the first of these components, dynamic models of wheeled and tracked vehicles have been developed to generate ground force inputs to seismic propagation models. Vehicle models range from simple, 2D representations to highly detailed, 3D representations of entire linked-track suspension systems. Similarly detailed models of acoustic emissions from vehicle engines are under development. The propagation calculations for both the seismics and acoustics are based on finite-difference, time-domain (FDTD) methodologies capable of handling complex environmental features such as heterogeneous geologies, urban structures, surface vegetation, and dynamic atmospheric turbulence. Any number of dynamic sources and virtual sensors may be incorporated into the FDTD model. The computational demands of 3D FDTD simulation over tactical distances require massively parallel computers. Several example calculations of seismic/acoustic wave propagation through complex atmospheric and terrain environments are shown.

  7. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    Science.gov (United States)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  8. Holographic signatures of cosmological singularities.

    Science.gov (United States)

    Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T

    2014-09-19

    To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity involves N=4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlators show a strong signature of the singularity around horizon scales and decay at large boundary separation at different rates in different directions. More generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in long-wavelength features of the boundary wave function.

  9. Preliminary theoretical acoustic and rf sounding calculations for MILL RACE

    International Nuclear Information System (INIS)

    As participant in DOE/ISA's Ionospheric Monitoring Program, LLNL has the responsibility of providing theoretical understanding and calculational support for experimental activities carried out by Los Alamos National Laboratory in using ionospheric sounders to remotely detect violent atmospheric phenomena. We have developed a system of interconnected computer codes which simulate the entire range of atmospheric and ionospheric processes involved in this remote detection procedure. We are able to model the acoustic pulse shape from an atmospheric explosion, the subsequent nonlinear transport of this energy to all parts of the immediate atmosphere including the ionosphere, and the propagation of high-frequency ratio waves through the acoustically perturbed ionosphere. Los Alamos' coverage of DNA's MILL RACE event provided an excellent opportunity to assess the credibility of the calculational system to correctly predict how ionospheric sounders would respond to a surface-based chemical explosion. In this experiment, 600 tons of high explosive were detonated at White Sands Missile Range at 12:35:40 local time on 16 September 1981. Vertical incidence rf phase sounders and bistatic oblique incidence rf sounders fielded by Los Alamos and SRI International throughout New Mexico and southern Colorado detected the ionospheric perturbation that ensued. A brief account of preliminary calculations of the acoustic disturbance and the predicted ionospheric sounder signatures for MILL RACE is presented

  10. Electrostatic supersolitons and double layers at the acoustic speed

    Energy Technology Data Exchange (ETDEWEB)

    Verheest, Frank, E-mail: frank.verheest@ugent.be [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2015-01-15

    Supersolitons are characterized by subsidiary extrema on the sides of a typical bipolar electric field signature or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It has been proven that supersolitons may exist in several plasmas having at least three constituent species, but they cannot be found in weakly nonlinear theory. Another recent aspect of pseudopotential theory is that in certain plasma models and parameter regimes solitons and/or double layers can exist at the acoustic speed, having no reductive perturbation counterparts. Importantly, they signal coexistence between solitons having positive and negative polarity, in that one solution can be realized at a time, depending on infinitesimal perturbations from the equilibrium state. Weaving the two strands together, we demonstrate here that one can even find supersolitons and double layers at the acoustic speed, as illustrated using the model of cold positive and negative ions, in the presence of nonthermal electrons following a Cairns distribution. This model has been discussed before, but the existence and properties of supersolitons at the acoustic speed were not established at the time of publication.

  11. Basic Principles of Solar Acoustic Holography - (Invited Review)

    Science.gov (United States)

    Lindsey, C.; Braun, D. C.

    2000-03-01

    We summarize the basic principles of holographic seismic imaging of the solar interior, drawing on familiar principles in optics and parallels with standard optical holography. Computational seismic holography is accomplished by the phase-coherent wave-mechanical reconstruction of the p-mode acoustic field into the solar interior based on helioseismic observations at the solar surface. It treats the acoustic field at the solar surface in a way broadly analogous to how the eye treats electromagnetic radiation at the surface of the cornea, wave-mechanically refocusing radiation from submerged sources to render stigmatic images that can be sampled over focal surfaces at any desired depth. Holographic diagnostics offer a straight-forward assessment of the informational content of the observed p-mode spectrum independent of prospective physical models of the local interior anomalies that it represents. Computational holography was proposed as the optimum approach whereby to address the severe diffraction effects that confront standard tomography in the solar p-mode environment. It has given us a number of remarkable discoveries in the last two years and now promises a new insight into solar interior structure and dynamics in the local perspective. We compare the diagnostic roles of simple acoustic-power holography and phase-sensitive holography, and anticipate approaches to solar interior modeling based on holographic signatures. We identify simple computational principles that, applied to high-quality helioseismic observations, make it easy for prospective analysts to produce high-quality holographic images for practical applications in local helioseismology.

  12. Fusing geophysical signatures of locally recorded surface explosions to improve blast detection

    Science.gov (United States)

    Carmichael, Joshua D.; Nemzek, Robert; Arrowsmith, Stephen; Sentz, Kari

    2016-03-01

    We recorded acoustic, seismic and radio-frequency signatures of 70 solid charge (˜2-12 kg) surface explosions (shots) at local distances (0.1-1.5 km) to determine if such signals could be fused for blast monitoring. We observed that each geophysical signature was sufficiently repeatable between similar shots to be identifiable with multichannel correlation detectors. Using template signals from a large explosion, we then processed heavily contaminated data recording a smaller shot with these detectors, and missed or marginally detected the resultant target signals. By then fusing the p-values of these statistics through Fisher's combined probability test, we clearly identified the same explosion signals at thresholds consistent with the false alarm on noise rates of the correlation detectors. This resulting Fisher test thereby provided high-probability detections, zero false alarms and higher theoretical detection capability.

  13. Evaluation of limiting occulted angles in acoustic lenses for Rayleigh mode suppression

    Energy Technology Data Exchange (ETDEWEB)

    Bouhedja, S; Doghmane, A; Hadjoub, Z, E-mail: Bouhedja_samia@yahoo.fr, E-mail: lsc_contact@yahoo.fr

    2010-11-15

    The generation and suppression of propagating modes in scanning acoustic microscopy play an important role in the determination of elastic parameters of materials. In this context, by placing successive absorbing stops of different diameters we suppressed the central beam of an acoustic lens to obtain dark field phenomena. Thus, using analytical and spectral methods, we investigated several rapid and medium materials characterised by Rayleigh velocities varying from 7850 m/s to 2730 m/s. Hence, we were able to put into evidence the influence of occulted angles on the behaviour of acoustic materials signatures, V(z), (periods, amplitude and attenuation) as well as the interdependence between Rayleigh velocity, attenuation and occulted angles is quantified via different chart curves.

  14. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    Science.gov (United States)

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  15. Acoustic Signal Feature Extraction of Vehicle Targets

    Institute of Scientific and Technical Information of China (English)

    蓝金辉; 马宝华; 李科杰

    2002-01-01

    Acoustic signal feature extraction is an important part of target recognition. The mechanisms for producing acoustic signals and their propagation are analyzed to extract the features of the radiated noise from different targets. Analysis of the acoustic spectra of typical vehicle targets acquired outdoors shows that the vehicles can be classified based on the acoustic spectra and amplitudes.

  16. Acoustic cavitation movies

    Science.gov (United States)

    Crum, Lawrence A.

    2003-04-01

    Acoustic cavitation is a phenomenon that occurs on microsecond time scales and micron length scales, yet, it has many macroscopic manifestations. Accordingly, it is often difficult, at least for the author, to form realistic physical descriptions of the specific mechanisms through which it expresses itself in our macroscopic world. For example, there are still many who believe that cavitation erosion is due to the shock wave that is emitted by bubble implosion, rather than the liquid jet created on asymmetric collapse...and they may be right. Over the years, the author has accumulated a number of movies and high-speed photographs of cavitation activity, which he uses to form his own visual references. In the time allotted, he will show a number of these movies and photographs and discuss their relevance to existing technological problems. A limited number of CDs containing the presented materials will be available to interested individuals. [Work supported in part by the NIH, USAMRMC, and the ONR.

  17. Acoustic emission testing

    CERN Document Server

    Grosse, Christian U

    2008-01-01

    Acoustic Emission (AE) techniques have been studied in civil engineering for a long time. The techniques are recently going to be more and more applied to practical applications and to be standardized in the codes. This is because the increase of aging structures and disastrous damages due to recent earthquakes urgently demand for maintenance and retrofit of civil structures in service for example. It results in the need for the development of advanced and effective inspection techniques. Thus, AE techniques draw a great attention to diagnostic applications and in material testing. The book covers all levels from the description of AE basics for AE beginners (level of a student) to sophisticated AE algorithms and applications to real large-scale structures as well as the observation of the cracking process in laboratory specimen to study fracture processes.

  18. 21 CFR 11.200 - Electronic signature components and controls.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Electronic signature components and controls. 11... SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Signatures § 11.200 Electronic signature components and controls. (a) Electronic signatures that are not based upon biometrics shall:...

  19. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    Science.gov (United States)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  20. Flow rate estimation using acoustic field distortions caused by turbulent flows: time-reversal approach

    Science.gov (United States)

    Zimmermann, A. L.; Pérez, N.; Adamowski, J. C.

    2011-05-01

    A new acoustic technique for flow rate estimation is proposed here. This technique is based on the traditional ultrasonic cross-correlation flow meter, but instead of using a continuous wave or pulse trains in each transmitter-receiver pair, the acoustic time-reversal technique is applied. The system relies on the principle that a turbulent flow with multiple vortices will cause random distortions in a given acoustic field; hence, analyzing this noise caused in the ultrasound signal by the turbulence over time allows a "signature" or "tag" of the flow to be defined. In other words, the vortices modify the frequency response function of the flowing system uniquely, since the distortion is assumed to be random. The use of the time-reversal procedure in the cross-correlation flow meter provides improvements in several aspects: it simplifies the signal processing needed after the reception of the signals, avoiding the use of a demodulator to obtain the signature of the vortex; the signal is focused at the position of the reception transducer and; the sensitivity is also increased because the wave travels twice in the acoustic channel. The method is theoretically discussed showing its limitations and improvements. Experimental results in a laboratory water tank are also presented.

  1. Molecular signatures of thyroid follicular neoplasia

    DEFF Research Database (Denmark)

    Borup, R.; Rossing, M.; Henao, Ricardo;

    2010-01-01

    The molecular pathways leading to thyroid follicular neoplasia are incompletely understood, and the diagnosis of follicular tumors is a clinical challenge. To provide leads to the pathogenesis and diagnosis of the tumors, we examined the global transcriptome signatures of follicular thyroid carci...... and robust genetic signature for the diagnosis of FA and FC. Endocrine-Related Cancer (2010) 17 691-708...

  2. Arbitrated Quantum Signature protocol using EPR pairs

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2012-11-01

    Full Text Available Arbitrated signature provides that the signatory signs a message with his private key by quantum cryptography, while the signature receiver verifies the signature with the arbitrator’s assistance. In this work, security analysis was given to the arbitrated quantum signature (AQS and results showed that the receiver Bob and the attacker can forge the signature. Then this paper gives a new quantum one-time pads encryption method, which is suit for the quantum signature. At last, a new AQS protocol using Einstein-Podoisky-Rosen (EPR pairs is proposed. By using of  quantum key distribution (QKD and new quantum one-time pads, the new scheme can resist Shor’s attack. The new scheme has following advantages: (1 The scheme reduces the complexity of implementation and provides a higher efficiency in transmission; (2 Compares with some AQS schemes, the scheme can avoid being disavowed by the receiver; (3 Compares with other AQS schemes, the scheme also guarantees the arbitrator cannot forge the signature and it also ensure the receiver and other attacker cannot forge the signature.

  3. Analysis of signature wrapping attacks and countermeasures

    DEFF Research Database (Denmark)

    Gajek, Sebastian; Jensen, Meiko; Liao, Lijun;

    2009-01-01

    In recent research it turned out that Boolean verification, of digital signatures in the context of WSSecurity, is likely to fail: If parts of a SOAP message, are signed and the signature verification applied to, the whole document returns true, then nevertheless the, document may have been...

  4. Does Social Work Have a Signature Pedagogy?

    Science.gov (United States)

    Earls Larrison, Tara; Korr, Wynne S.

    2013-01-01

    This article contributes to discourse on signature pedagogy by reconceptualizing how our pedagogies are understood and defined for social work education. We critique the view that field education is social work's signature pedagogy and consider what pedagogies are distinct about the teaching and learning of social work. Using Shulman's…

  5. Prediction of soil effects on GPR signatures

    NARCIS (Netherlands)

    Rhebergen, J.B.; Lensen, H.A.; Wijk, C.V. van; Hendrickx, J.M.H.; Dam, R. van; Borchers, B.

    2004-01-01

    In previous work we have shown that GPR signatures are affected by soil texture and soil water content. In this contribution we will use a three dimensional electromagnetic model and a hydrological soil model to explore in more detail the relationships between GPR signatures, soil physical condition

  6. Security Weaknesses in Arbitrated Quantum Signature Protocols

    Science.gov (United States)

    Liu, Feng; Zhang, Kejia; Cao, Tianqing

    2014-01-01

    Arbitrated quantum signature (AQS) is a cryptographic scenario in which the sender (signer), Alice, generates the signature of a message and then a receiver (verifier), Bob, can verify the signature with the help of a trusted arbitrator, Trent. In this paper, we point out there exist some security weaknesses in two AQS protocols. Our analysis shows Alice can successfully disavow any of her signatures by a simple attack in the first protocol. Furthermore, we study the security weaknesses of the second protocol from the aspects of forgery and disavowal. Some potential improvements of this kind of protocols are given. We also design a new method to authenticate a signature or a message, which makes AQS protocols immune to Alice's disavowal attack and Bob's forgery attack effectively.

  7. Real time gamma-ray signature identifier

    Science.gov (United States)

    Rowland, Mark; Gosnell, Tom B.; Ham, Cheryl; Perkins, Dwight; Wong, James

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  8. Robust Threshold Guillou-Quisquater Signature Scheme

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; ZHANG Zhen-feng; FENG Deng-guo

    2005-01-01

    The deficiencies of the first threshold GuillouQuisquater signature scheme presented by Li-San Liu, ChengKang Chu and Wen-Guey Tzeng are analysised at first, and then a new threshold Guillou-Quisquater signature scheme is presented. The new scheme is unforgeable and robust against any adaptive adversary if the base Guillou-Quisquater signature scheme is unforgeable under the chosen message attack and computing the discrete logarithm modulo a prime is hard.This scheme can also achieve optimal resilience. However,the new scheme does not need the assumption that N is the product of two safe primes. The basic signature scheme underlying the new scheme is exactly Guillou-Quisquater signature scheme, and the additional strong computation assumption introduced by the first threshold Guillou-Quisquater scheme is weaken.

  9. An ECC-Based Blind Signature Scheme

    Directory of Open Access Journals (Sweden)

    Fuh-Gwo Jeng

    2010-08-01

    Full Text Available Cryptography is increasingly applied to the E-commerce world, especially to the untraceable payment system and the electronic voting system. Protocols for these systems strongly require the anonymous digital signature property, and thus a blind signature strategy is the answer to it. Chaum stated that every blind signature protocol should hold two fundamental properties, blindness and intractableness. All blind signature schemes proposed previously almost are based on the integer factorization problems, discrete logarithm problems, or the quadratic residues, which are shown by Lee et al. that none of the schemes is able to meet the two fundamental properties above. Therefore, an ECC-based blind signature scheme that possesses both the above properties is proposed in this paper.

  10. DIGITAL SIGNATURE IN THE WAY OF LAW

    Directory of Open Access Journals (Sweden)

    Ruya Samlı

    2013-01-01

    Full Text Available Signature can be defined as a person’s name or special signs that he/she writes when he/she wants to indicate he/she wrote or confirm that writing. A person signs many times in his/her life. A person’s signature that is used for thousands of times for many things from formal documents to exams has importance for that person. Especially, signing in legal operations is an operation that can build important results. If a person’s signature is imitated by another person, he/she can become beholden, donate his/her whole wealth, commits offences or do some judicial operations. Today, because many operations can be done with digital environments and internet, signature operation that provides identity validation must also be carried to digital environment. In this paper digital signature concept that is approved for this reason and its situation in international areas and Turkish laws are investigated.

  11. Secure Undeniable Threshold Proxy Signature Scheme

    Directory of Open Access Journals (Sweden)

    Sattar J. Aboud

    2014-01-01

    Full Text Available the threshold proxy signature scheme allows the original signer to delegate a signature authority to the proxy group to cooperatively sign message on behalf of an original signer. In this paper, we propose a new scheme which includes the features and benefits of the RSA scheme. Also, we will evaluate the security of undeniable threshold proxy signature scheme with known signers. We find that the existing threshold proxy scheme is insecure against the original signer forgery. In this paper, we show the cryptanalysis of an existed scheme. Additional, we propose the secure, undeniable and known signers threshold proxy signature scheme which answers the drawback of an existed scheme. We also demonstrate that a threshold proxy signature suffers from a conspiracy of an original signer and a secret share dealer, that the scheme is commonly forgeable, and cannot offer undeniable. We claim that the proposed scheme offers the undeniable characteristic.

  12. Acoustic Remote Sensing of Extreme Sea States

    Science.gov (United States)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    Extreme sea states from storms, landslides, ice-quakes, meteorite fall, submarines explosions, and earthquakes, are associated with a sudden change in water pressure. Consequently, acoustic-gravity waves (AGWs) may radiate carrying information on those states at the speed of sound. Using remote sensing of AGWs, we propose an early detection system for such extreme sea states. We show that the AGW pressure signature for a small circularly symmetric sinusoidal component of oscillation of the free surface preserves the frequency but modifies the amplitude of the component. Further tests indicate that this amplitude is independent of the frequency but depends on the radial distance from the source, as expected. Therefore, an input spectrum for a sea state will give rise to a similar spectrum shape for the AGW pressure signal with an amplitude modulation function that can be estimated from the model. This then leads to a robust method to remote sense sea state spectra from measurements of their induced AGW pressure spectra.

  13. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    Science.gov (United States)

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species. PMID:26233026

  14. Hybrid optical and acoustic force based sorting

    Science.gov (United States)

    O'Mahoney, Paul; Brodie, Graham W.; Wang, Han; Demore, Christine E. M.; Cochran, Sandy; Spalding, Gabriel C.; MacDonald, Michael P.

    2014-09-01

    We report the combined use of optical sorting and acoustic levitation to give particle sorting. Differing sizes of microparticles are sorted optically both with and without the aid of acoustic levitation, and the results compared to show that the use of acoustic trapping can increase sorting efficiency. The use of a transparent ultrasonic transducer is also shown to streamline the integration of optics and acoustics. We also demonstrate the balance of optical radiation pressure and acoustic levitation to achieve vertical sorting.

  15. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is to fabricate, characterize, and verify performance of a new type of frequency steered acoustic...

  16. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is to develop, fabricate, and characterize a novel frequency steered acoustic transducer (FSAT) for the...

  17. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  18. Cryogenic Acoustic Suppression Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will explore and test the feasibility and effectiveness of using a cryogenic fluid (liquid nitrogen) to facilitate acoustic suppression in a...

  19. Maximizing biomarker discovery by minimizing gene signatures

    Directory of Open Access Journals (Sweden)

    Chang Chang

    2011-12-01

    Full Text Available Abstract Background The use of gene signatures can potentially be of considerable value in the field of clinical diagnosis. However, gene signatures defined with different methods can be quite various even when applied the same disease and the same endpoint. Previous studies have shown that the correct selection of subsets of genes from microarray data is key for the accurate classification of disease phenotypes, and a number of methods have been proposed for the purpose. However, these methods refine the subsets by only considering each single feature, and they do not confirm the association between the genes identified in each gene signature and the phenotype of the disease. We proposed an innovative new method termed Minimize Feature's Size (MFS based on multiple level similarity analyses and association between the genes and disease for breast cancer endpoints by comparing classifier models generated from the second phase of MicroArray Quality Control (MAQC-II, trying to develop effective meta-analysis strategies to transform the MAQC-II signatures into a robust and reliable set of biomarker for clinical applications. Results We analyzed the similarity of the multiple gene signatures in an endpoint and between the two endpoints of breast cancer at probe and gene levels, the results indicate that disease-related genes can be preferably selected as the components of gene signature, and that the gene signatures for the two endpoints could be interchangeable. The minimized signatures were built at probe level by using MFS for each endpoint. By applying the approach, we generated a much smaller set of gene signature with the similar predictive power compared with those gene signatures from MAQC-II. Conclusions Our results indicate that gene signatures of both large and small sizes could perform equally well in clinical applications. Besides, consistency and biological significances can be detected among different gene signatures, reflecting the

  20. NEAR-FIELD ACOUSTIC HOLOGRAPHY FOR SEMI-FREE ACOUSTIC FIELD BASED ON WAVE SUPERPOSITION APPROACH

    Institute of Scientific and Technical Information of China (English)

    LI Weibing; CHEN Jian; YU Fei; CHEN Xinzhao

    2006-01-01

    In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example,and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.

  1. Acoustic Rectification in Dispersive Media

    Science.gov (United States)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  2. Simplified Rotation In Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  3. Stable And Oscillating Acoustic Levitation

    Science.gov (United States)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  4. Study Acoustic Emissions from Composites

    Science.gov (United States)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  5. Spectral signatures of penumbral transients

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, K. [INAF-Osservatorio Astrofisico di Arcetri, I-50125 Firenze (Italy); Tritschler, A. [National Solar Observatory/Sacramento Peak, P.O. Box 62, Sunspot, NM 88349 (United States); Katsukawa, Y. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-12-20

    In this work we investigate the properties of penumbral transients observed in the upper photospheric and chromospheric region above a sunspot penumbra using two-dimensional spectroscopic observations of the Ca II 854.21 nm line with a 5 s cadence. In our 30 minutes of observations, we identify several penumbral-micro jets (PMJs) with cotemporal observations from Dunn Solar Telescope/IBIS and Hinode/SOT. We find that the line profiles of these PMJ events show emission in the two wings of the line (±0.05 nm), but little modification of the line core. These are reminiscent of the line profiles of Ellerman bombs observed in plage and network regions. Furthermore, we find evidence that some PMJ events have a precursor phase starting 1 minute prior to the main brightening that might indicate initial heating of the plasma prior to an acoustic or bow shock event. With the IBIS data, we also find several other types of transient brightenings with timescales of less than 1 minute that are not clearly seen in the Hinode/SOT data. The spectral profiles and other characteristics of these events are significantly different from those of PMJs. The different appearances of all these transients are an indicator of the general complexity of the chromospheric magnetic field and underscore the highly dynamic behavior above sunspots. It also highlights the care that is needed in interpreting broadband filter images of chromospheric lines, which may conceal very different spectral profiles, and the underlying physical mechanisms at work.

  6. Opto-acoustic cell permeation

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  7. Prediction of acoustic comfort and acoustic silence in Goan Catholic churches

    OpenAIRE

    Menino A. S. M. P. Tavares; S. Rajagopalan; Satish J. Sharma; António P. O. Carvalho

    2009-01-01

    Acoustic Comfort and Acoustic Silence are determinants of tranquility in a worship space. The results presented here are part of a study that investigates the behaviour of acoustically constituted worship parameters in six Catholic churches (Goa, India). Acoustic comfort is quantified through an Acoustic Comfort Impression Index which measures the net comfort induced through the optimization of the desired subjective acoustic impressions for different types of music and different music source...

  8. Multifractal signatures of infectious diseases.

    Science.gov (United States)

    Holdsworth, Amber M; Kevlahan, Nicholas K-R; Earn, David J D

    2012-09-01

    Incidence of infection time-series data for the childhood diseases measles, chicken pox, rubella and whooping cough are described in the language of multifractals. We explore the potential of using the wavelet transform maximum modulus (WTMM) method to characterize the multiscale structure of the observed time series and of simulated data generated by the stochastic susceptible-exposed-infectious-recovered (SEIR) epidemic model. The singularity spectra of the observed time series suggest that each disease is characterized by a unique multifractal signature, which distinguishes that particular disease from the others. The wavelet scaling functions confirm that the time series of measles, rubella and whooping cough are clearly multifractal, while chicken pox has a more monofractal structure in time. The stochastic SEIR epidemic model is unable to reproduce the qualitative singularity structure of the reported incidence data: it is too smooth and does not appear to have a multifractal singularity structure. The precise reasons for the failure of the SEIR epidemic model to reproduce the correct multiscale structure of the reported incidence data remain unclear. PMID:22442094

  9. Signature geometry and quantum engineering

    Science.gov (United States)

    Samociuk, Stefan

    2013-09-01

    As the operating frequency of electromagnetic based devices increase, physical design geometry is playing an ever more important role. Evidence is considered in support of a relationship between the dimensionality of primitive geometric forms, such as transistors, and corresponding electromagnetic coupling efficiency. The industry of electronics is defined as the construction of devices by the patterning of primitive forms to physical materials. Examples are given to show the evolution of these primitives, down to nano scales, are requiring exacting geometry and three dimensional content. Consideration of microwave monolithic integrated circuits,(MMIC), photonics and metamaterials,(MM), support this trend and also add new requirements of strict geometric periodicity and multiplicity. Signature geometries,(SG), are characterized by distinctive attributes and examples are given. The transcendent form transcode algorithm, (TTA) is introduced as a multi dimensional SG and its use in designing photonic integrated circuits and metamaterials is discussed . A creative commons licensed research database, TRANSFORM, containing TTA geometries in OASIS file formats is described. An experimental methodology for using the database is given. Multidimensional SG and extraction of three dimensional cross sections as primitive forms is discussed as a foundation for quantum engineering and the exploitation of phenomena other than the electromagnetic.

  10. Signature Based Intrusion Detection System Using SNORT

    Directory of Open Access Journals (Sweden)

    Vinod Kumar

    2012-11-01

    Full Text Available Now a day’s Intrusion Detection systems plays very important role in Network security. As the use of internet is growing rapidly the possibility of attack is also increasing in that ratio. People are using signature based IDS’s. Snort is mostly used signature based IDS because of it is open source software. World widely it is used in intrusion detection and prevention domain. Basic analysis and security engine (BASE is also used to see the alerts generated by Snort. In the paper we have implementation the signature based intrusion detection using Snort. Our work will help to novel user to understand the concept of Snort based IDS.

  11. Improved Quantum Signature Scheme with Weak Arbitrator

    Science.gov (United States)

    Su, Qi; Li, Wen-Min

    2013-09-01

    In this paper, we find a man-in-the-middle attack on the quantum signature scheme with a weak arbitrator (Luo et al., Int. J. Theor. Phys., 51:2135, 2012). In that scheme, the authors proposed a quantum signature based on quantum one way function which contains both verifying the signer phase and verifying the signed message phase. However, after our analysis we will show that Eve can adopt different strategies in respective phases to forge the signature without being detected. Then we present an improved scheme to increase the security.

  12. Arbitrated quantum signature with an untrusted arbitrator

    Science.gov (United States)

    Yang, Yu-Guang; Zhou, Zheng; Teng, Yi-Wei; Wen, Qiao-Yan

    2011-02-01

    In an arbitrated signature scheme, all communications involve a so called arbitrator who has access to the contents of the messages. The security of most arbitrated signature schemes depends heavily on the trustworthiness of the arbitrators. In this paper we show how to construct an arbitrated quantum signature protocol of classical messages with an untrusted arbitrator. Its security is analyzed and it is proved to be secure even if the arbitrator is compromised. In addition, the proposed protocol does not require a direct quantum link between any two communicating users, which is an appealing advantage in the implementation of a practical quantum distributed communication network.

  13. DIGITAL SIGNATURE IN THE WAY OF LAW

    OpenAIRE

    Ruya Samlı

    2013-01-01

    Signature can be defined as a person’s name or special signs that he/she writes when he/she wants to indicate he/she wrote or confirm that writing. A person signs many times in his/her life. A person’s signature that is used for thousands of times for many things from formal documents to exams has importance for that person. Especially, signing in legal operations is an operation that can build important results. If a person’s signature is imitated by another person, he/she can be...

  14. Reduction of a Ship's Magnetic Field Signatures

    CERN Document Server

    Holmes, John

    2008-01-01

    Decreasing the magnetic field signature of a naval vessel will reduce its susceptibility to detonating naval influence mines and the probability of a submarine being detected by underwater barriers and maritime patrol aircraft. Both passive and active techniques for reducing the magnetic signatures produced by a vessel's ferromagnetism, roll-induced eddy currents, corrosion-related sources, and stray fields are presented. Mathematical models of simple hull shapes are used to predict the levels of signature reduction that might be achieved through the use of alternate construction materials. Al

  15. Acoustic Signal Processing

    Science.gov (United States)

    Hartmann, William M.; Candy, James V.

    Signal processing refers to the acquisition, storage, display, and generation of signals - also to the extraction of information from signals and the re-encoding of information. As such, signal processing in some form is an essential element in the practice of all aspects of acoustics. Signal processing algorithms enable acousticians to separate signals from noise, to perform automatic speech recognition, or to compress information for more efficient storage or transmission. Signal processing concepts are the building blocks used to construct models of speech and hearing. Now, in the 21st century, all signal processing is effectively digital signal processing. Widespread access to high-speed processing, massive memory, and inexpensive software make signal processing procedures of enormous sophistication and power available to anyone who wants to use them. Because advanced signal processing is now accessible to everybody, there is a need for primers that introduce basic mathematical concepts that underlie the digital algorithms. The present handbook chapter is intended to serve such a purpose.

  16. Acoustics of the Intonarumori

    Science.gov (United States)

    Serafin, Stefania

    2005-04-01

    The Intonarumori were a family of musical instruments invented by the Italian futurist composer and painter Luigi Russolo. Each Intonarumori was made of a wooden parallelepiped sound box, inside which a wheel of different sizes and materials was setting into vibration a catgut or metal string. The pitch of the string was varied by using a lever, while the speed of the wheel was controlled by the performer using a crank. At one end of the string there was a drumhead that transmitted vibrations to the speaker. Unfortunately, all the original Intonarumori were destroyed after a fire during World War II. Since then, researchers have tried to understand the sound production mechanism of such instruments, especially by consulting the patents compiled by Russolo or by reading his book ``The art of noise.'' In this paper we describe the acoustics of the Intonarumori. Based on such description, we propose physical models that simulate such instruments. The intonarumori's string is modeled using a one dimensional waveguide, which is excited either by an impact or a friction model. The body of the instrument is modeled using a 3-D rectangular mesh, while the horn is considered as an omnidirectional radiator.

  17. An Improved Proxy Multi-Signature, Multi-Proxy Signature and Multi-Proxy Multi-Signature Scheme

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2011-08-01

    Full Text Available Zhou’s proxy multi-signature scheme was a safe and effective scheme, but this scheme was not safety enough. In this work, security analysis was given to the scheme and results showed that the scheme was very easy aggressed by the forgery attack. The paper proposed that any attacker can sign some certain unauthorized messages after the attacker knows a valid signature, and any original signer ally with his proxy signer can forge any unauthorized messages. Then, the paper gave two kinds of inside attacks and outside attacks to the scheme correspondingly. Finally this paper proposed a new improved proxy multi-signature, multi-proxy signature and multi-proxy multi-signature schemes which based on the difficulty of the discrete logarithm problem (DLP. With verifying all the signers’ public keys, the improved schemes can resist lots of outsider attack and insider attack. The validity of the new scheme can be verified, and they are secure signature schemes.

  18. Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter

    Energy Technology Data Exchange (ETDEWEB)

    Ceban, V., E-mail: victor.ceban@phys.asm.md; Macovei, M. A., E-mail: macovei@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of)

    2015-11-15

    The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.

  19. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  20. Isotopic signatures by bulk analyses

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally

  1. Acoustic communication in plant-animal interactions.

    Science.gov (United States)

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals. PMID:27423052

  2. Modelling of acoustic transmission through perforated layer

    Directory of Open Access Journals (Sweden)

    Lukeš V.

    2007-10-01

    Full Text Available The paper deals with modeling the acoustic transmission through a perforated interface plane separating two halfspaces occupied by the acoustic medium. We considered the two-scale homogenization limit of the standard acoustic problem imposed in the layer with the perforated periodic structure embedded inside. The homogenized transmission conditions govern the interface discontinuity of the acoustic pressure associated with the two halfspaces and the magnitude of the fictitious transversal acoustic velocity. By numerical examples we illustrate this novel approach of modeling the acoustic impedance of perforated interfaces.

  3. Secure quantum signatures using insecure quantum channels

    Science.gov (United States)

    Amiri, Ryan; Wallden, Petros; Kent, Adrian; Andersson, Erika

    2016-03-01

    Digital signatures are widely used in modern communication to guarantee authenticity and transferability of messages. The security of currently used classical schemes relies on computational assumptions. We present a quantum signature scheme that does not require trusted quantum channels. We prove that it is unconditionally secure against the most general coherent attacks, and show that it requires the transmission of significantly fewer quantum states than previous schemes. We also show that the quantum channel noise threshold for our scheme is less strict than for distilling a secure key using quantum key distribution. This shows that "direct" quantum signature schemes can be preferable to signature schemes relying on secret shared keys generated using quantum key distribution.

  4. Threshold Ring Signature Scheme Based on TPM

    Institute of Scientific and Technical Information of China (English)

    Gong Bei; Jiang Wei; Lin Li; Li Yu; Zhang Xing

    2012-01-01

    The conventional ring signature schemes cannot address the scenario where the rank of members of the ring needs to be distinguished, for example, in electronically commerce application. To solve this problem, we presented a Trusted Platform Module (TPM)-based threshold ring signature schen. Employing a reliable secret Share Distribution Center (SDC), the proposed approach can authenticate the TPM-based identity rank of members of the ring but not track a specific member's identity. A subset including t members with the same identity rank is built. With the signing cooperation of t members of the subset, the ring signature based on Chinese remainder theorem is generated. We proved the anonymity and unforgeability of the proposed scheme and compared it with the threshold ring signature based on Lagrange interpolation polynomial. Our scheme is relatively simpler to calculate.

  5. Probabilistic Model for Dynamic Signature Verification System

    Directory of Open Access Journals (Sweden)

    Chai Tong Yuen

    2011-11-01

    Full Text Available This study has proposed the algorithm for signature verification system using dynamic parameters of the signature: pen pressure, velocity and position. The system is proposed to read, analyze and verify the signatures from the SUSig online database. Firstly, the testing and reference samples will have to be normalized, re-sampled and smoothed through pre-processing stage. In verification stage, the difference between reference and testing signatures will be calculated based on the proposed thresholded standard deviation method. A probabilistic acceptance model has been designed to enhance the performance of the verification system. The proposed algorithm has reported False Rejection Rate (FRR of 14.8% and False Acceptance Rate (FAR of 2.64%. Meanwhile, the classification rate of the system is around 97%.

  6. Signature Region of Interest using Auto cropping

    Directory of Open Access Journals (Sweden)

    Bassam Al-Mahadeen

    2010-03-01

    Full Text Available A new approach for signature region of interest pre-processing was presented. It used new auto cropping preparation on the basis of the image content, where the intensity value of pixel is the source of cropping. This approach provides both the possibility of improving the performance of security systems based on signature images, and also the ability to use only the region of interest of the used image to suit layout design of biometric systems. Underlying the approach is a novel segmentation method which identifies the exact region of foreground of signature for feature extraction usage. Evaluation results of this approach shows encouraging prospects by eliminating the need for false region isolating, reduces the time cost associated with signature false points detection, and addresses enhancement issues. A further contribution of this paper is an automated cropping stage in bio-secure based systems.

  7. Electronic Signatures for Public Procurement across Europe

    Science.gov (United States)

    Ølnes, Jon; Andresen, Anette; Arbia, Stefano; Ernst, Markus; Hagen, Martin; Klein, Stephan; Manca, Giovanni; Rossi, Adriano; Schipplick, Frank; Tatti, Daniele; Wessolowski, Gesa; Windheuser, Jan

    The PEPPOL (Pan-European Public Procurement On-Line) project is a large scale pilot under the CIP programme of the EU, exploring electronic public procurement in a unified European market. An important element is interoperability of electronic signatures across borders, identified today as a major obstacle to cross-border procurement. PEPPOL will address use of signatures in procurement processes, in particular tendering but also post-award processes like orders and invoices. Signature policies, i.e. quality requirements and requirements on information captured in the signing process, will be developed. This as well as technical interoperability of e-signatures across Europe will finally be piloted in demonstrators starting late 2009 or early 2010.

  8. 15 CFR 908.16 - Signature.

    Science.gov (United States)

    2010-01-01

    ... SUBMITTING REPORTS ON WEATHER MODIFICATION ACTIVITIES § 908.16 Signature. All reports filed with the National... or intending to conduct the weather modification activities referred to therein by such...

  9. Acoustic wave propagation in austenitic stainless steel AISI 304L: Application examples

    Energy Technology Data Exchange (ETDEWEB)

    Dahmene, F., E-mail: fethidahmen@yahoo.fr [Laboratoire Roberval Unite Mixte 6066 CNRS, UTC, BP20592, 60205 Compiegne (France)] [Ecole des Mines de Douai, Departement Technologies des Polymeres et Composites and Ingenierie Mecanique, 941 rue Charles Bourseul, BP. 10838, 59508 Douai Cedex (France); Laksimi, A. [Laboratoire Roberval Unite Mixte 6066 CNRS, UTC, BP20592, 60205 Compiegne (France); Hariri, S. [Ecole des Mines de Douai, Departement Technologies des Polymeres et Composites and Ingenierie Mecanique, 941 rue Charles Bourseul, BP. 10838, 59508 Douai Cedex (France); Herve, C.; Jaubert, L.; Cherfaoui, M. [Pole EPI, Equipements sous Pression et Ingenierie d' Instrumentation, CETIM, 52, Avenue Felix-Lauat, BP80067, 60304 Senlis (France); Mouftiez, A. [Ecole des Mines de Douai, Departement Technologies des Polymeres et Composites and Ingenierie Mecanique, 941 rue Charles Bourseul, BP. 10838, 59508 Douai Cedex (France)

    2012-04-15

    Prior to the detection and monitoring by acoustic emission of defects in steel, this paper deals with the use of waveguide that avoids direct contact between the sensor and monitoring structure when working at high temperature. The study of the waveguide effect on elastic wave transmission shows that waveguide deforms the waveform but it does not affect its frequency. Waveguide length does not affect signal magnitude. An experimental example of compact tensile specimen monitoring by acoustic emission is given. The monitoring of the damage at low and high temperature '450 Degree-Sign C' by acoustic emission enables us to identify crack propagation stages and their acoustic signature. - Highlights: Black-Right-Pointing-Pointer This paper deals with the use of waveguide that avoids direct contact between the sensor and monitoring structure when working at high temperature. Black-Right-Pointing-Pointer The objective is the development of nondestructive testing by acoustic emission (AE) of pressure equipment (PE) operating at high temperature. Black-Right-Pointing-Pointer The use of AE in this work has underlined high temperature mechanical behavior in terms of damage and crack propagation.

  10. Electronic Seal Stamping Based on Group Signature

    OpenAIRE

    Girija Srikanth

    2011-01-01

    This paper describes a new electronic official seal stamping based on Group Signature, USB Key. Bill/Contract in E-commerce must be seal stamped to gain tamper proof and non-repudiation. The seal stamping control is designed based on the certificate-based public key. This technique is more efficient for generating and verifying individual/group signatures in terms of computational efforts and communication costs. Web page electronic seal-stamping system is implemented which has been adopted b...

  11. Kinematics of Signature Writing in Healthy Aging*

    OpenAIRE

    Caligiuri, Michael P.; Kim, Chi; Landy, Kelly M.

    2014-01-01

    Forensic document examiners (FDE) called upon to distinguish a genuine from a forged signature of an elderly person are often required to consider the question of age-related deterioration and whether the available exemplars reliably capture the natural effects of aging of the original writer. An understanding of the statistical relationship between advanced age and handwriting movements can reduce the uncertainty that may exist in an examiner’s approach to questioned signatures formed by eld...

  12. Damping signatures in future neutrino oscillation experiments

    OpenAIRE

    Blennow, Mattias; Ohlsson, Tommy; Winter, Walter

    2005-01-01

    We discuss the phenomenology of damping signatures in the neutrino oscillation probabilities, where either the oscillating terms or the probabilities can be damped. This approach is a possibility for tests of damping effects in future neutrino oscillation experiments, where we mainly focus on reactor and long-baseline experiments. We extensively motivate different damping signatures due to small corrections by neutrino decoherence, neutrino decay, oscillations into sterile neutrinos, or other...

  13. Signature-based store checking buffer

    Science.gov (United States)

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-06-02

    A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.

  14. Persistence of social signatures in human communication

    OpenAIRE

    Saramäki, Jari; Leicht, E. A.; López, Eduardo; Roberts, Sam G. B.; Reed-Tsochas, Felix; Robin I M Dunbar

    2014-01-01

    We combine cell phone data with survey responses to show that a person’s social signature, as we call the pattern of their interactions with different friends and family members, is remarkably robust. People focus a high proportion of their communication efforts on a small number of individuals, and this behavior persists even when there are changes in the identity of the individuals involved. Although social signatures vary between individuals, a given individual appears to retain a specific...

  15. Sonification of acoustic emission data

    Science.gov (United States)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  16. Acoustic constituents of prosodic typology

    Science.gov (United States)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The

  17. Assessing the Quality of Bioforensic Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Sego, Landon H.; Holmes, Aimee E.; Gosink, Luke J.; Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Anderson, Richard M.; Brothers, Alan J.; Corley, Courtney D.; Tardiff, Mark F.

    2013-06-04

    We present a mathematical framework for assessing the quality of signature systems in terms of fidelity, cost, risk, and utility—a method we refer to as Signature Quality Metrics (SQM). We demonstrate the SQM approach by assessing the quality of a signature system designed to predict the culture medium used to grow a microorganism. The system consists of four chemical assays designed to identify various ingredients that could be used to produce the culture medium. The analytical measurements resulting from any combination of these four assays can be used in a Bayesian network to predict the probabilities that the microorganism was grown using one of eleven culture media. We evaluated fifteen combinations of the signature system by removing one or more of the assays from the Bayes network. We demonstrated that SQM can be used to distinguish between the various combinations in terms of attributes of interest. The approach assisted in clearly identifying assays that were least informative, largely in part because they only could discriminate between very few culture media, and in particular, culture media that are rarely used. There are limitations associated with the data that were used to train and test the signature system. Consequently, our intent is not to draw formal conclusions regarding this particular bioforensic system, but rather to illustrate an analytical approach that could be useful in comparing one signature system to another.

  18. CALCULATION OF ACOUSTIC EFFICIENCY OF PORTABLE ACOUSTIC SCREEN

    Directory of Open Access Journals (Sweden)

    Aleksandr Skvortsov

    2016-03-01

    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  19. My 65 years in acoustics

    Science.gov (United States)

    Beranek, Leo L.

    2001-05-01

    My entry into acoustics began as research assistant to Professor F. V. Hunt at Harvard University. I received my doctorate in 1940 and directed the Electro-Acoustic Laboratory at Harvard from October 1940 until September 1945. In 1947, I became a tenured associate professor at MIT, and, with Richard H. Bolt, formed the consulting firm Bolt and Beranek, that later included Robert B. Newman, becoming BBN. My most significant contributions before 1970 were design of wedge-lined anechoic chambers, systemization of noise reduction in ventilation systems, design of the world's largest muffler for the testing of supersonic jet engines at NASA's Lewis Laboratory in Cleveland, speech interference level, NC noise criterion curves, heading New York Port Authority's noise study that resulted in mufflers on jet aircraft, and steep aircraft climb procedures, and publishing books titled, Acoustical Measurements, Acoustics, Noise Reduction, Noise and Vibration Control, and Music, Acoustics and Architecture. As President of BBN, I supervised the formation of the group that built and operated the ARPANET (1969), which, when split in two (using TCP/IP protocol) became the INTERNET (1984). Since then, I have written two books on Concert Halls and Opera Houses and have consulted on four concert halls and an opera house.

  20. The gravitational-wave signature of core-collapse supernovae

    International Nuclear Information System (INIS)

    We review the ensemble of anticipated gravitational-wave (GW) emission processes in stellar core collapse and postbounce core-collapse supernova evolution. We discuss recent progress in the modeling of these processes and summarize most recent GW signal estimates. In addition, we present new results on the GW emission from postbounce convective overturn and protoneutron star g-mode pulsations based on axisymmetric radiation-hydrodynamic calculations. Galactic core-collapse supernovae are very rare events, but within 3-5 Mpc from Earth, the rate jumps to 1 in ∼2 years. Using the set of currently available theoretical gravitational waveforms, we compute upper-limit optimal signal-to-noise ratios based on current and advanced LIGO/GEO600/VIRGO noise curves for the recent SN 2008bk which exploded at ∼3.9 Mpc. While initial LIGOs cannot detect GWs emitted by core-collapse events at such a distance, we find that advanced LIGO-class detectors could put significant upper limits on the GW emission strength for such events. We study the potential occurrence of the various GW emission processes in particular supernova explosion scenarios and argue that the GW signatures of neutrino-driven, magneto-rotational, and acoustically-driven core-collapse SNe may be mutually exclusive. We suggest that even initial LIGOs could distinguish these explosion mechanisms based on the detection (or non-detection) of GWs from a galactic core-collapse supernova. (topical review)

  1. Determination of the acoustic signature of GRP (Glass Reinforced Plastic) composite corrosion

    OpenAIRE

    Foulon, Anthony

    2015-01-01

    Since the 1980, Glass Reinforced Plastic (GRP) has been used for construction of pipes and tanks in the chemical industry, including the storage of mineral acids. This composite material offers superior and cost effective corrosion resistance. However, authors found accidental breakage of tanks (horizontal and vertical) containing mineral acids (hydrochloric and sulphuric). These failures are attributed to environmental stress-corrosion cracking (ESCC) mechanism. The corrosion of glass fibers...

  2. Kibble-Zurek Mechanism in Microscopic Acoustic Cracking Noises

    CERN Document Server

    Ghaffari, H O; Xia, K; Young, R P

    2014-01-01

    The fast evolution of microstructure is key to understanding crackling phenomena. It has been proposed that formation of a nonlinear zone around a moving crack tip controls the crack tip velocity. Progress in understanding the physics of this critical zone has been limited due to the lack of hard data describing the detailed complex physical processes that occur within. For the first time, we show that the signature of the non-linear elastic zone around a microscopic dynamic crack maps directly to generic phases of acoustic noises, supporting the formation of a strongly weak zone [2-3,5] near the moving crack tips. We additionally show that the rate of traversing to non-linear zone controls the rate of weakening, i.e. speed of global rupture propagation. We measure the power-law dependence of nonlinear zone size on the traversing rate, and show that our observations are in agreement with the Kibble-Zurek mechanism (KZM) .

  3. Ship Survivability (part II) Ship Infrared (IR) signatures

    NARCIS (Netherlands)

    Galle, L.F.; Schleijpen, H.M.A.

    1998-01-01

    A low lnfrared (lR) signature is of paramount importance for a warship's survivability, In this paper, basic IR theory will be addressed, next to the simulation of IR Signatures, to give insight to lR signature management. Possible lR Signature Suppression techniques will be presented and elaborated

  4. A Formal Model for the Security of Proxy Signature Schemes

    Institute of Scientific and Technical Information of China (English)

    GU Chun-xiang; ZHU Yue-fei; ZHANG Ya-juan

    2005-01-01

    This paper provides theoretical foundations for the secure proxy signature primitive. We present a formal model for the security of proxy signature schemes, which defines the capabilities of the adversary and the security goals to capture which mean for a proxy signature scheme to be secure. Then, we present an example of proxy signature scheme that can be proven secure in the standard model.

  5. Acoustic metasurface with hybrid resonances.

    Science.gov (United States)

    Ma, Guancong; Yang, Min; Xiao, Songwen; Yang, Zhiyu; Sheng, Ping

    2014-09-01

    An impedance-matched surface has the property that an incident wave generates no reflection. Here we demonstrate that by using a simple construction, an acoustically reflecting surface can acquire hybrid resonances and becomes impedance-matched to airborne sound at tunable frequencies, such that no reflection is generated. Each resonant cell of the metasurface is deep-subwavelength in all its spatial dimensions, with its thickness less than the peak absorption wavelength by two orders of magnitude. As there can be no transmission, the impedance-matched acoustic wave is hence either completely absorbed at one or multiple frequencies, or converted into other form(s) of energy, such as an electrical current. A high acoustic-electrical energy conversion efficiency of 23% is achieved. PMID:24880731

  6. Acoustic Localization with Infrasonic Signals

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  7. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)

    1997-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  8. Acoustic Communication for Medical Nanorobots

    CERN Document Server

    Hogg, Tad

    2012-01-01

    Communication among microscopic robots (nanorobots) can coordinate their activities for biomedical tasks. The feasibility of in vivo ultrasonic communication is evaluated for micron-size robots broadcasting into various types of tissues. Frequencies between 10MHz and 300MHz give the best tradeoff between efficient acoustic generation and attenuation for communication over distances of about 100 microns. Based on these results, we find power available from ambient oxygen and glucose in the bloodstream can readily support communication rates up to 10,000 bits/second between micron-sized robots. We discuss techniques, such as directional acoustic beams, that can increase this rate. The acoustic pressure fields enabling this communication are unlikely to damage nearby tissue, and short bursts at considerably higher power could be of therapeutic use.

  9. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...... is to investigate the field of application an acoustic simulation program can have during an architectural acoustics design process. A case study is carried out in order to represent the iterative working process of an architect. The working process is divided into five phases and represented by typical results...

  10. Acoustojet: acoustic analogue of photonic jet phenomenon

    CERN Document Server

    Minin, Igor V

    2016-01-01

    It has been demonstrated for the first time that an existence of acoustic analogue of photonic jet phenomenon, called acoustojet, providing for subwavelength localization of acoustic field in the shadow area of arbitrary 3D penetrable mesoscale particle, is possible.

  11. Golden Gate and Pt. Reyes Acoustic Detections

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...

  12. Vestibular Schwannoma (Acoustic Neuroma) and Neurofibromatosis

    Science.gov (United States)

    ... Home » Health Info » Hearing, Ear Infections, and Deafness Vestibular Schwannoma (Acoustic Neuroma) and Neurofibromatosis On this page: ... more information about vestibular schwannomas? What is a vestibular schwannoma (acoustic neuroma)? Inner ear with vestibular schwannoma ( ...

  13. On the Synchronization of Acoustic Gravity Waves

    Science.gov (United States)

    Lonngren, Karl E.; Bai, Er-Wei

    Using the model proposed by Stenflo, we demonstrate that acoustic gravity waves found in one region of space can be synchronized with acoustic gravity waves found in another region of space using techniques from modern control theory.

  14. CT findings of acoustic neuroma

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Do Choul; Lee, Jae Mun; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic Univ., Seoul (Korea, Republic of)

    1987-10-15

    Computed Tomography (CT) is very accurate in evaluating the location, size, shape and extension of acoustic neuroma. We analysed CT findings of 23 acoustic neuromas seen at Department of Radiology, Kangnam St. Mary's Hospital, Catholic University Medical College during the period of from January 1981 to June 1987. 1. Five (22%) were men and 18 (78%) were women with the high incidence occurring in the 4th and 5th decades. 2. Twenty two cases were diagnosed satisfactorily by CT examinations which included axial, coronal and reconstruction images. One with the smallest dimension of 8 mm in diameter could not be detected by the conventional CT scan. But is could be seen after metrizamide cisternography. mean size of the tumor masses was estimated 3.6 cm in diameter. 3. The shape of the tumor was oval in 50%, round in 27% and lobulated in 23%. The masses were presented as hypodense in 50%, isodense in 32% and hyperdense in 18%. All tumors were extended from the internal acoustic and toward the cerebellopontine angle. The internal acoustic canal was widened in 77%. Hydrocephalus was associated in 45%. Widening of cerebellopontine angle cistern was noted in 50%. 4. After contrast infusion the tumors were enhanced markedly in 45%, moderately in 32% and mildly in 23%. The enhanced pattern was homogeneous in 41%, mixed in 41% and rim in 18%. The margin of the tumors was sharply defined in 82%. The tumors were attached to the petrous bone with acute angle in 73%. Cystic change within the tumor was found in 27%. The peritumoral edema was noted in 45%. In conclusion, CT is of most effective modalities to evaluate size, shape, extent and internal architecture of acoustic neuroma as well as relationship with adjacent anatomic structures including the internal acoustic canal.

  15. Acoustically-Induced Electrical Signals

    Science.gov (United States)

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  16. Absorption boundary conditions for geomertical acoustics

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....

  17. Acoustic concerns related to multi cultural societies

    OpenAIRE

    Gade, Anders Christian

    2001-01-01

    Immigration has increased cultural diversity in western societies. The process of integrating immigrants into their host countries can be smoothed if acousticians learn to recognize (1) the acoustic traditions of immigrant cultures and (2) the specific acoustic needs of the new society members. Two related projects are discussed. The ``Cahrisma'' project (Conservation of Acoustical Heritage by the Revival and Identification of the Sinan's Mosque Acoustics) is sponsored by the European Commiss...

  18. Characterization of granular collapse onto hard substrates by acoustic emissions

    Science.gov (United States)

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien

    2013-04-01

    Brittle deformation in granular porous media can generate gravitational instabilities such as debris flows and rock avalanches. These phenomena constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what

  19. Acoustic design by topology optimization

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Jensen, Jakob Søndergaard; Sigmund, Ole

    2008-01-01

    To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions...... in the density and bulk modulus. The objective function is the squared sound pressure amplitude. First, room acoustic problems are considered and it is shown that the sound level can be reduced in a certain part of the room by an optimized distribution of reflecting material in a design domain along the ceiling...

  20. Physical foundations of technical acoustics

    CERN Document Server

    Malecki, I

    1969-01-01

    Physical Foundations of Technical Acoustics discusses theoretical foundations of acoustical engineering. It is not so much a technical compendium as a systematic statement of physical laws so conceived that technologists might find in it all the information they need to become acquainted with the physical meaning and mathematical expression of phenomena they encounter in their work. To facilitate the acquirement of notions, which lie beyond a layman's grasp, the plan of narration adopted consists in beginning with the simplest idealized cases and then gradually moving on to the truest possibl

  1. Acoustic characterization of rehabilitated cloisters

    OpenAIRE

    A. P. O. Carvalho; S. R. C. Vilela

    2008-01-01

    This paper presents the results of field measurements in eight rehabilitated cloisters of old monasteries in Portugal (length: 20 to 35 m and height: 3.3 to 6.3 m) regarding their acoustic behavior to two objective parameters: RT and RASTI. The goal is to characterize the acoustic effect of the rehabilitation done on theses spaces to adapt them to new uses. All these cloisters had recently their galleries#8217; openings to the central yard closed with glass panels. Simple formulas were obtain...

  2. Untraceable partially blind signature based on DLOG problem.

    Science.gov (United States)

    Huang, Zheng; Chen, Ke-fei; Kou, Wei-dong

    2004-01-01

    This paper proposes a new untraceable Partially Blind Signature scheme which is a cross between the traditional signature scheme and the blind signature scheme. In this proposed scheme, the message M that the signer signed can be divided into two parts. The first part can be known to the signer (like that in the traditional signature scheme) while the other part cannot be known to the signer (like that in the blind signature scheme). After having signed M, the signer cannot determine if he has made the signature of M except through the part that he knows. We draw ideas from Brands' "Restricted Blind Signature" to solve the Untraceable Partially Blind Signature problem. Our scheme is a probabilistic signature scheme and the security of our Untraceable Partially Blind Signature scheme relies on the difficulty of computing discrete logarithm. PMID:14663850

  3. Untraceable partially blind signature based on DLOG problem

    Institute of Scientific and Technical Information of China (English)

    HUANG Zheng(黄征); CHEN Ke-fei(陈克非); KOU Wei-dong(寇卫东)

    2004-01-01

    This paper proposes a new untraceable Partially Blind Signature scheme which is a cross between the traditional signature scheme and the blind signature scheme. In this proposed scheme, the message M that the signer signed can be divided into two parts. The first part can be known to the signer (like that in the traditional signature scheme) while the other part cannot be known to the signer (like that in the blind signature scheme). After having signed M, the signer cannot determine if he has made the signature of M except through the part that he knows. We draw ideas from Brands' "Restricted Blind Signature" to solve the Untraceable Partially Blind Signature problem. Our scheme is a probabilistic signature scheme and the security of our Untraceable Partially Blind Signature scheme relies on the difficulty of computing discrete logarithm.

  4. Does Twitter trigger bursts in signature collections?

    Directory of Open Access Journals (Sweden)

    Rui Yamaguchi

    Full Text Available INTRODUCTION: The quantification of social media impacts on societal and political events is a difficult undertaking. The Japanese Society of Oriental Medicine started a signature-collecting campaign to oppose a medical policy of the Government Revitalization Unit to exclude a traditional Japanese medicine, "Kampo," from the public insurance system. The signature count showed a series of aberrant bursts from November 26 to 29, 2009. In the same interval, the number of messages on Twitter including the keywords "Signature" and "Kampo," increased abruptly. Moreover, the number of messages on an Internet forum that discussed the policy and called for signatures showed a train of spikes. METHODS AND FINDINGS: In order to estimate the contributions of social media, we developed a statistical model with state-space modeling framework that distinguishes the contributions of multiple social media in time-series of collected public opinions. We applied the model to the time-series of signature counts of the campaign and quantified contributions of two social media, i.e., Twitter and an Internet forum, by the estimation. We found that a considerable portion (78% of the signatures was affected from either of the social media throughout the campaign and the Twitter effect (26% was smaller than the Forum effect (52% in total, although Twitter probably triggered the initial two bursts of signatures. Comparisons of the estimated profiles of the both effects suggested distinctions between the social media in terms of sustainable impact of messages or tweets. Twitter shows messages on various topics on a time-line; newer messages push out older ones. Twitter may diminish the impact of messages that are tweeted intermittently. CONCLUSIONS: The quantification of social media impacts is beneficial to better understand people's tendency and may promote developing strategies to engage public opinions effectively. Our proposed method is a promising tool to explore

  5. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  6. Calculating room acoustic parameters from pseudo-impulsive acoustic sources

    Science.gov (United States)

    San Martin, Maria L.; Vela, Antonio; San Martin, Ricardo; Arana, Miguel A.

    2002-11-01

    The impulse response function provides complete information to predict the acoustic response of a room to an acoustic input of arbitrary characteristics. At this job study, small explosions of firecrackers are proposed to be used as pseudo-impulsive acoustics sources to determine some acoustic parameters of a room such as reverberation time, definition, and clarity, comparing these results to those obtained with other techniques. A previous characterization of these sources allows us to state that they can be used for this purpose because they are, in practice, omnidirectional, their temporary pattern is highly repetitive and their spectral power is, as well, repetitive and with enough power in octave bands from 125 Hz to 8 kHz. If the linear time-invariant system impulse response h(t) is known, output signal s(t) regarding any arbitrary signal s(t) can be obtained. For our pseudo-impulsive sources, the output signal s(t) has been taken as impulse response h(t). Using the integrated impulse response method suggested by Schroeder, it has been stated that both the mean values and standard deviations for some parameters are practically identical to results obtained with other usual techniques. (To be presented in Spanish.)

  7. Design of acoustic devices by topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard

    2003-01-01

    The goal of this study is to design and optimize structures and devices that are subjected to acoustic waves. Examples are acoustic lenses, sound walls, waveguides and loud speakers. We formulate the design problem as a topology optimization problem, i.e. distribute material in a design domain...... such that the acoustic response is optimized....

  8. Aero-acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Michelsen, Jess; Sørensen, Jens Nørkær

    2002-01-01

    A numerical algorithm for acoustic noise generation is extended to 3D flows. The approach involves two parts comprising a viscous incompressible flow part and an inviscid acoustic part. In order to simulate noise generated from a wind turbine, the incompressible and acoustic equations are written...

  9. Predicting and auralizing acoustics in classrooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    2005-01-01

    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven...

  10. An Identity-Based Strong Designated Verifier Proxy Signature Scheme

    Institute of Scientific and Technical Information of China (English)

    WANG Qin; CAO Zhenfu

    2006-01-01

    In a strong designated verifier proxy signature scheme, a proxy signer can generate proxy signature on behalf of an original signer, but only the designated verifier can verify the validity of the proxy signature. In this paper, we first define the security requirements for strong designated verifier proxy signature schemes. And then we construct an identity-based strong designated verifier proxy signature scheme. We argue that the proposed scheme satisfies all of the security requirements.

  11. Characteristics of Constrained Handwritten Signatures: An Experimental Investigation

    OpenAIRE

    Donato, Impedovo; Pirlo, Giuseppe; Rizzi, Fabrizio

    2015-01-01

    Handwritten signatures are considered one of the most useful biometric traits for personal verification. In the networked society, in which a multitude of different devices can be used for signature acquisition, specific research is still needed to determine the extent to which features of an input signature depend on the characteristics of the signature apposition process. In this paper an experimental investigation was carried out on constrained signatures, which were acquired using writing...

  12. Segmental concatenation of individual signatures and context cues in banded mongoose (Mungos mungo close calls

    Directory of Open Access Journals (Sweden)

    Jansen David AWAM

    2012-12-01

    Full Text Available Abstract Background All animals are anatomically constrained in the number of discrete call types they can produce. Recent studies suggest that by combining existing calls into meaningful sequences, animals can increase the information content of their vocal repertoire despite these constraints. Additionally, signalers can use vocal signatures or cues correlated to other individual traits or contexts to increase the information encoded in their vocalizations. However, encoding multiple vocal signatures or cues using the same components of vocalizations usually reduces the signals' reliability. Segregation of information could effectively circumvent this trade-off. In this study we investigate how banded mongooses (Mungos mungo encode multiple vocal signatures or cues in their frequently emitted graded single syllable close calls. Results The data for this study were collected on a wild, but habituated, population of banded mongooses. Using behavioral observations and acoustical analysis we found that close calls contain two acoustically different segments. The first being stable and individually distinct, and the second being graded and correlating with the current behavior of the individual, whether it is digging, searching or moving. This provides evidence of Marler's hypothesis on temporal segregation of information within a single syllable call type. Additionally, our work represents an example of an identity cue integrated as a discrete segment within a single call that is independent from context. This likely functions to avoid ambiguity between individuals or receivers having to keep track of several context-specific identity cues. Conclusions Our study provides the first evidence of segmental concatenation of information within a single syllable in non-human vocalizations. By reviewing descriptions of call structures in the literature, we suggest a general application of this mechanism. Our study indicates that temporal segregation and

  13. New Extensions of Pairing-based Signatures into Universal (Multi) Designated Verifier Signatures

    CERN Document Server

    Vergnaud, Damien

    2008-01-01

    The concept of universal designated verifier signatures was introduced by Steinfeld, Bull, Wang and Pieprzyk at Asiacrypt 2003. These signatures can be used as standard publicly verifiable digital signatures but have an additional functionality which allows any holder of a signature to designate the signature to any desired verifier. This designated verifier can check that the message was indeed signed, but is unable to convince anyone else of this fact. We propose new efficient constructions for pairing-based short signatures. Our first scheme is based on Boneh-Boyen signatures and its security can be analyzed in the standard security model. We prove its resistance to forgery assuming the hardness of the so-called strong Diffie-Hellman problem, under the knowledge-of-exponent assumption. The second scheme is compatible with the Boneh-Lynn-Shacham signatures and is proven unforgeable, in the random oracle model, under the assumption that the computational bilinear Diffie-Hellman problem is untractable. Both s...

  14. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    CERN Document Server

    Nakamura, Satoshi; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  15. Aliasing Errours in Parallel Signature Analyzers

    Institute of Scientific and Technical Information of China (English)

    闵应骅; YashwantK.Malaiya

    1990-01-01

    A Linear Feedback Shift Register(LFSR)can be used to compress test response data as a Signature Analyzer(SA).Parallel Signature Analyzers(PSAs)implemented as multiple input LFSRs are faster and require less hardware overhead than Serial Signature Analyzers(SSAs) for compacting test response data for Built-In Self-Test(BIST)in IC of boare-testing environments.However,the SAs are prone to aliasing errors because of some specific types of error patterns.An alias is a faulty output signature that is identical to the fault-free signature.A penetrating analysis of detecting capability of SAs depends strongly on mathematical manipulations,instead of being aware of some special cases of examples.In addition,the analysis should not be restricted to a particular structure of LFSR,but be appropriate for various structures of LFSRs.This paper presents necessary and sufficient conditions for aliasing errors based on a complete mathematical description of various types of SAs.An LFSR reconfiguration scheme is suggested which will prevent any aliasing double errors.Such a prevention cannot be obtained by any extension of an LFSR.

  16. The signature package on Witt spaces

    CERN Document Server

    Albin, Pierre; Mazzeo, Rafe; Piazza, Paolo

    2011-01-01

    In this paper we prove a variety of results about the signature operator on Witt spaces. First, we give a parametrix construction for the signature operator on any compact, oriented, stratified pseudomanifold X which satisfies the Witt condition. This construction, which is inductive over the `depth' of the singularity, is then used to show that the signature operator is essentially self-adjoint and has discrete spectrum of finite multiplicity, so that its index -- the analytic signature of X -- is well-defined. This provides an alternate approach to some well-known results due to Cheeger. We then prove some new results. By coupling this parametrix construction to a C*_r\\Gamma-Mishchenko bundle associated to any Galois covering of X with covering group \\Gamma, we prove analogues of the same analytic results, from which it follows that one may define an analytic signature index class as an element of the K-theory of C*_r\\Gamma. We go on to establish in this setting and for this class the full range of conclusi...

  17. Mechanical property quantification of endothelial cells using scanning acoustic microscopy

    Science.gov (United States)

    Shelke, A.; Brand, S.; Kundu, T.; Bereiter-Hahn, J.; Blase, C.

    2012-04-01

    The mechanical properties of cells reflect dynamic changes of cellular organization which occur during physiologic activities like cell movement, cell volume regulation or cell division. Thus the study of cell mechanical properties can yield important information for understanding these physiologic activities. Endothelial cells form the thin inner lining of blood vessels in the cardiovascular system and are thus exposed to shear stress as well as tensile stress caused by the pulsatile blood flow. Endothelial dysfunction might occur due to reduced resistance to mechanical stress and is an initial step in the development of cardiovascular disease like, e.g., atherosclerosis. Therefore we investigated the mechanical properties of primary human endothelial cells (HUVEC) of different age using scanning acoustic microscopy at 1.2 GHz. The HUVECs are classified as young (tD 90 h) cells depending upon the generation time for the population doubling of the culture (tD). Longitudinal sound velocity and geometrical properties of cells (thickness) were determined using the material signature curve V(z) method for variable culture condition along spatial coordinates. The plane wave technique with normal incidence is assumed to solve two-dimensional wave equation. The size of the cells is modeled using multilayered (solid-fluid) system. The propagation of transversal wave and surface acoustic wave are neglected in soft matter analysis. The biomechanical properties of HUVEC cells are quantified in an age dependent manner.

  18. An examination of quantitative methods for Forensic Signature Analysis and the admissibility of signature verification system as legal evidence.

    OpenAIRE

    Chatzisterkotis, Thomas

    2015-01-01

    The experiments described in this thesis deal with handwriting characteristics which are involved in the production of forged and genuine signatures and complexity of signatures. The objectives of this study were (1) to provide sufficient details on which of the signature characteristics are easier to forge, (2) to investigate the capabilities of the signature complexity formula given by Found et al. based on a different signature database provided by University of Kent. This database includes ...

  19. Acoustics SIMOPS: managing the unnecessary

    Energy Technology Data Exchange (ETDEWEB)

    Hanton, Samuel John [Nautronix Marine Technology Solutions, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Time is money, and offshore operations are expensive. The desire therefore, is to increase efficiency through the condensing of schedules. This inevitably leads to SIMOPS of some degree, and this paper discusses SIMOPS along with, more specifically, the challenges they provide to acoustic positioning. (author)

  20. Topology optimization for acoustic problems

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2006-01-01

    In this paper a method to control acoustic properties in a room with topology optimization is presented. It is shown how the squared sound pressure amplitude in a certain part of a room can be minimized by distribution of material in a design domain along the ceiling in 2D and 3D. Nice 0-1 designs...

  1. Acoustics in the Martian Atmosphere

    Science.gov (United States)

    Williams, J.-P.

    2000-10-01

    With the advent of the first attempt to deliver an acoustic microphone to the Martian surface aboard the failed Mars Polar Lander, there has been growing interests in the development of acoustic sensors to compliment scientific payloads on future spacecraft. Terrestrial scientist have been very successful in using infrasound (sound at frequencies below human detection, detect and monitor atmospheric phenomena related to weather, tornadoes, mountain waves, microbaroms, ionospheric and auroral disturbances, and meteror/fireballs, as well as anthropogenic sources such as aircraft and nuclear explosions. Sounds on Mars at the audible frequencies (20 Hz to 20 kHz) will be severely attenuated due to viscous relaxation and thermal diffusion (collectively referred to as classical attenuation) which will be much more severe in the colder, less dense Martian atmosphere. Molecular relaxation of carbon dioxide will also contribute to the sound absorption in the lower audible frequencies. Since classical attenuation increases as a function of the frequency squared, at low infrasonic frequencies ( < 10 Hz), classical attenuation becomes less significant and sound absorption in the Martian atmosphere becomes more similar to that of the terrestrial atmosphere for the same frequencies. At these longer wavelengths, geometric spreading will dominate as the source of attenuation as the acoustic energy is spread out over an ever increasing spherical wave front. This implies that infrasound (10 to 0.01 Hz) will be a useful frequency range for future acoustic sensors developed for scientific payloads delivered to the Martian surface.

  2. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja;

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise i...

  3. Satellite and acoustic tracking device

    KAUST Repository

    Berumen, Michael L.

    2014-02-20

    The present invention relates a method and device for tracking movements of marine animals or objects in large bodies of water and across significant distances. The method and device can track an acoustic transmitter attached to an animal or object beneath the ocean surface by employing an unmanned surface vessel equipped with a hydrophone array and GPS receiver.

  4. SES and Acoustics at GSFC

    Science.gov (United States)

    Hogue, Patrick

    2008-01-01

    This paper presents air and surface cleanliness characterization of the acoustics test facility and large (SES) thermal vacuum chamber at Goddard Space flight Center in Greenbelt, MD during the New Horizons Pluto probe program. It is shown that slow back-fill of the SES chamber is necessary to prevent excessive particle redistribution.

  5. Acoustic counter-sniper system

    Science.gov (United States)

    Duckworth, Gregory L.; Gilbert, Douglas C.; Barger, James E.

    1997-02-01

    BBN has developed, tested, and fielded pre-production versions of a versatile acoustics-based counter-sniper system. This system was developed by BBN for the DARPA Tactical Technology Office to provide a low cost and accurate sniper detection and localization system. The system uses observations of the shock wave from supersonic bullets to estimate the bullet trajectory, Mach number, and caliber. If muzzle blast observations are also available from unsilenced weapons, the exact sniper location along the trajectory is also estimated. A newly developed and very accurate model of the bullet ballistics and acoustic radiation is used which includes bullet deceleration. This allows the use of very flexible acoustic sensor types and placements, since the system can model the bullet's flight, and hence the acoustic observations, over a wide area very accurately. System sensor configurations can be as simple as two small four element tetrahedral microphone arrays on either side of the area to be protected, or six omnidirectional microphones spread over the area to be monitored. Increased performance can be obtained by expanding the sensor field in size or density, and the system software is easily reconfigured to accommodate this at deployment time. Sensor nodes can be added using wireless network telemetry or hardwired cables to the command node processing and display computer. The system has been field tested in three government sponsored tests in both rural and simulated urban environments at the Camp Pendleton MOUT facility. Performance was characterized during these tests for various shot geometries and bullet speeds and calibers.

  6. Analysis of Acoustic Emission Signals using WaveletTransformation Technique

    Directory of Open Access Journals (Sweden)

    S.V. Subba Rao

    2008-07-01

    Full Text Available Acoustic emission (AE monitoring is carried out during proof pressure testing of pressurevessels to find the occurrence of any crack growth-related phenomenon. While carrying out AEmonitoring, it is often found that the background noise is very high. Along with the noise, thesignal includes various phenomena related to crack growth, rubbing of fasteners, leaks, etc. Dueto the presence of noise, it becomes difficult to identify signature of the original signals related to the above phenomenon. Through various filtering/ thresholding techniques, it was found that the original signals were getting filtered out along with noise. Wavelet transformation technique is found to be more appropriate to analyse the AE signals under such situations. Wavelet transformation technique is used to de-noise the AE data. The de-noised signal is classified to identify a signature based on the type of phenomena.Defence Science Journal, 2008, 58(4, pp.559-564, DOI:http://dx.doi.org/10.14429/dsj.58.1677

  7. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  8. Aerosol behaviour in an acoustic field

    International Nuclear Information System (INIS)

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finest particles on the largest ones. The mechanisms responsible for acoustic agglomeration are mentioned. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Finally, a dimensionless relationship was established between deposition rates and particle diameters as a function of experimental parameters (aeraulic and acoustic conditions, etc...)

  9. Determining Equilibrium Position For Acoustical Levitation

    Science.gov (United States)

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  10. Detecting acoustic events during thermal and mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Por, Gabor; Bereczki, Peter; Danka, Zsolt; Trampus, Peter [College of Dunaujvaros (Hungary)

    2014-11-01

    We examined Acoustic Emission (AE) events during combined heat and tensile test carried out in different steels (S235JRG2, TRIP and TWIP steels) on Gleeble simulator. The simulator enabled us to control parameters for fast heating and cooling parallel with pressing and tensile the sample until its real break. The aim was to investigate the structural change of the material, phase transformation in the steel at different temperatures, and connect them to signatures measured by acoustic emission sensors. During testing we noticed characteristics of Barkhausen noise. We demonstrate and prove definitely that we were facing Acoustic Barkhausen Noise (ABN) due to AC current used to heating and to maintaining the temperature in the cylindrical ferritic sample. It was observed, that the magnitude of the ABN dropped suddenly to the half when the tensile test started after preheating, and it was growing back when the tensile test went to plastic deformation with elongation of the tested sample. Localization of the ABN sources has been done showing the distribution of the sources along the whole material. ABN sources were observed all along the sample with interesting density growth in the section where the diameter was smaller, thus the tension was higher. Nevertheless, this was not the only observation, since the place of the densest sources was displaced from one position to another position until the break occurred near to the densest place of ANB and AE source. Off-line examination of the structure of material afterward using destructive test proved that we could register those cooling periods, where phase transition took place in the material. Ferrite-bainite and magnetite-bainite transitions were connected to some higher distribution of ANB and AE signals during the test. Rate of hits and sum of hit were connected to material transition during cooling. The first results of AE measurements during tensile test in TWIP materials showed that AE events are connected with

  11. Detection and tracking of drones using advanced acoustic cameras

    Science.gov (United States)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  12. Geometry of Killing spinors in neutral signature

    CERN Document Server

    Klemm, Dietmar

    2015-01-01

    We classify the supersymmetric solutions of minimal $N=2$ gauged supergravity in four dimensions with neutral signature. They are distinguished according to the sign of the cosmological constant and whether the vector field constructed as a bilinear of the Killing spinor is null or non-null. In neutral signature the bilinear vector field can be spacelike, which is a new feature not arising in Lorentzian signature. In the $\\Lambda0$ non-null case, the manifold is a fibration over a Lorentzian Gauduchon-Tod base space. Finally, in the $\\Lambda>0$ null class, the metric is contained in the Kundt family, and it turns out that the holonomy is reduced to ${\\rm Sim}(1)\\times{\\rm Sim}(1)$. There appear no self-dual solutions in the null class for either sign of the cosmological constant.

  13. Cryptanalysis of the arbitrated quantum signature protocols

    Science.gov (United States)

    Gao, Fei; Qin, Su-Juan; Guo, Fen-Zhuo; Wen, Qiao-Yan

    2011-08-01

    As a new model for signing quantum messages, arbitrated quantum signature (AQS) has recently received a lot of attention. In this paper we study the cryptanalysis of previous AQS protocols from the aspects of forgery and disavowal. We show that in these protocols the receiver, Bob, can realize existential forgery of the sender's signature under known message attack. Bob can even achieve universal forgery when the protocols are used to sign a classical message. Furthermore, the sender, Alice, can successfully disavow any of her signatures by simple attack. The attack strategies are described in detail and some discussions about the potential improvements of the protocols are given. Finally we also present several interesting topics on AQS protocols that can be studied in future.

  14. Cryptanalysis of the arbitrated quantum signature protocols

    CERN Document Server

    Gao, Fei; Guo, Fen-Zhuo; Wen, Qiao-Yan

    2011-01-01

    As a new model for signing quantum message, arbitrated quantum signature (AQS) has recently received a lot of attention. In this paper we study the cryptanalysis of previous AQS protocols from the aspects of forgery and disavowal. We show that in these protocols the receiver Bob can realize existential forgery of the sender's signature under known message attack. Bob can even achieve universal forgery when the protocols are used to sign a classical message. Furthermore, the sender Alice can successfully disavow any of her signatures by simple attack. The attack strategies are described in detail and some discussions about the potential improvements of the protocols are given. Finally we also present several interesting topics in future study on AQS protocols.

  15. A Methodology for Calculating Radiation Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilcox, Trevor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bathke, Charles G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); James, Michael R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-01

    A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.

  16. Explosives Detection: Exploitation of the Physical Signatures

    Science.gov (United States)

    Atkinson, David

    2010-10-01

    Explosives based terrorism is an ongoing threat that is evolving with respect to implementation, configuration and materials used. There are a variety of devices designed to detect explosive devices, however, each technology has limitations and operational constraints. A full understanding of the signatures available for detection coupled with the array of detection choices can be used to develop a conceptual model of an explosives screening operation. Physics based sensors provide a robust approach to explosives detection, typically through the identification of anomalies, and are currently used for screening in airports around the world. The next generation of detectors for explosives detection will need to be more sensitive and selective, as well as integrate seamlessly with devices focused on chemical signatures. An appreciation for the details of the physical signature exploitation in cluttered environments with time, space, and privacy constraints is necessary for effective explosives screening of people, luggage, cargo, and vehicles.

  17. Fluorescent taggants with temporally coded signatures.

    Science.gov (United States)

    Wang, Siyang; Vyas, Raul; Dwyer, Chris

    2016-07-11

    In this paper, resonance energy transfer (RET) networks between chromophores are used to implement fluorescent taggants with temporally coded signatures. Because the temporal signature of such a fluorescent taggant is a phase-type distribution defined by the geometry of its RET network, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the detection process becomes highly efficient when the signatures are coded in the time domain. The taggant identification method is based on the multinomial distribution of detected photons and Maximum Likelihood Estimation, which guarantees high accuracy even with only a few hundred photons and also applies to a mixture of taggants in multiplex detection. Therefore, these temporally coded fluorescent taggants have great potential for both in situ and Lidar applications. PMID:27410827

  18. Temporal shape analysis via the spectral signature.

    Science.gov (United States)

    Bernardis, Elena; Konukoglu, Ender; Ou, Yangming; Metaxas, Dimitris N; Desjardins, Benoit; Pohl, Kilian M

    2012-01-01

    In this paper, we adapt spectral signatures for capturing morphological changes over time. Advanced techniques for capturing temporal shape changes frequently rely on first registering the sequence of shapes and then analyzing the corresponding set of high dimensional deformation maps. Instead, we propose a simple encoding motivated by the observation that small shape deformations lead to minor refinements in the spectral signature composed of the eigenvalues of the Laplace operator. The proposed encoding does not require registration, since spectral signatures are invariant to pose changes. We apply our representation to the shapes of the ventricles extracted from 22 cine MR scans of healthy controls and Tetralogy of Fallot patients. We then measure the accuracy score of our encoding by training a linear classifier, which outperforms the same classifier based on volumetric measurements. PMID:23286031

  19. Quantum mechanical stabilization of Minkowski signature wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Visser, M.

    1989-05-19

    When one attempts to construct classical wormholes in Minkowski signature Lorentzian spacetimes violations of both the weak energy hypothesis and averaged weak energy hypothesis are encountered. Since the weak energy hypothesis is experimentally known to be violated quantum mechanically, this suggests that a quantum mechanical analysis of Minkowski signature wormholes is in order. In this note I perform a minisuperspace analysis of a simple class of Minkowski signature wormholes. By solving the Wheeler-de Witt equation for pure Einstein gravity on this minisuperspace the quantum mechanical wave function of the wormhole is obtained in closed form. The wormhole is shown to be quantum mechanically stabilized with an average radius of order the Planck length. 8 refs.

  20. Trace element ink spiking for signature authentication

    International Nuclear Information System (INIS)

    Signature authentication is a critical question in forensic document examination. Last years the evolution of personal computers made signature copying a quite easy task, so the development of new ways for signature authentication is crucial. In the present work a commercial ink was spiked with many trace elements in various concentrations. Inorganic and organometallic ink soluble compounds were used as spiking agents, whilst ink retained its initial properties. The spiked inks were used for paper writing and the documents were analyzed by a non destructive method, the energy dispersive X-ray fluorescence. The thin target model was proved right for quantitative analysis and a very good linear relationship of the intensity (X-ray signal) against concentration was estimated for all used elements. Intensity ratios between different elements in the same ink gave very stable results, independent on the writing alterations. The impact of time both to written document and prepared inks was also investigated. (author)

  1. Peripheral blood signatures of lead exposure.

    Directory of Open Access Journals (Sweden)

    Heather G LaBreche

    Full Text Available BACKGROUND: Current evidence indicates that even low-level lead (Pb exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. METHODOLOGY/PRINCIPAL FINDING: Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. CONCLUSIONS/SIGNIFICANCE: The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway.

  2. On architectural acoustic design using computer simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process. The emphasis is put on the first three out of five phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference to the design of Bagsværd Church by Jørn Utzon. The paper...

  3. Handbook of Signal Processing in Acoustics

    CERN Document Server

    Havelock, David; Vorländer, Michael

    2009-01-01

    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.

  4. State of the Art: Signature Biometrics Verification

    Directory of Open Access Journals (Sweden)

    Nourddine Guersi

    2010-04-01

    Full Text Available This paper presents a comparative analysis of the performance of three estimation algorithms: Expectation Maximization (EM, Greedy EM Algorithm (GEM and Figueiredo-Jain Algorithm (FJ - based on the Gaussian mixture models (GMMs for signature biometrics verification. The simulation results have shown significant performance achievements. The test performance of EER=5.49 % for "EM", EER=5.04 % for "GEM" and EER=5.00 % for "FJ", shows that the behavioral information scheme of signature biometrics is robust and has a discriminating power, which can be explored for identity authentication.

  5. Reflectance signature on sunlit crown of conifers

    Institute of Scientific and Technical Information of China (English)

    王锦地; 李小文; 项月琴

    1997-01-01

    Based on the field measurements of the reflected radiation distribution on sunlit crown surface and crown structure, the analytical approximation model of path-scattering of light in a homogeneous layer is applied to the calculation of the reflectance signature of sunlit crown. The reflectance on the sunlit crown surface is considered as the weighted sum of the direct-to-hemisphere reflectance and the hemisphere-to-hemisphere reflectance. The validation results show that the calculated reflectance signature fits the field measurement very well This paper presents details of the validation and the feasibility of the model application to nonuniform medium, such as tree crown canopies.

  6. Security problem on arbitrated quantum signature schemes

    Science.gov (United States)

    Choi, Jeong Woon; Chang, Ku-Young; Hong, Dowon

    2011-12-01

    Many arbitrated quantum signature schemes implemented with the help of a trusted third party have been developed up to now. In order to guarantee unconditional security, most of them take advantage of the optimal quantum one-time encryption based on Pauli operators. However, in this paper we point out that the previous schemes provide security only against a total break attack and show in fact that there exists an existential forgery attack that can validly modify the transmitted pair of message and signature. In addition, we also provide a simple method to recover security against the proposed attack.

  7. Security problem on arbitrated quantum signature schemes

    CERN Document Server

    Choi, Jeong Woon; Hong, Dowon

    2011-01-01

    Until now, there have been developed many arbitrated quantum signature schemes implemented with a help of a trusted third party. In order to guarantee the unconditional security, most of them take advantage of the optimal quantum one-time encryption method based on Pauli operators. However, we in this paper point out that the previous schemes only provides a security against total break and actually show that there exists a simple existential forgery attack to validly modify the transmitted pair of message and signature. In addition, we also provide a simple method to recover the security against the proposed attack.

  8. Self-Similarity Limits of Genomic Signatures

    CERN Document Server

    Wu, Z B

    2002-01-01

    It is shown that metric representation of DNA sequences is one-to-one. By using the metric representation method, suppression of nucleotide strings in the DNA sequences is determined. For a DNA sequence, an optimal string length to display genomic signature in chaos game representation is obtained by eliminating effects of the finite sequence. The optical string length is further shown as a self- similarity limit in computing information dimension. By using the method, self-similarity limits of bacteria complete genomic signatures are further determined.

  9. Electronic Seal Stamping Based on Group Signature

    Directory of Open Access Journals (Sweden)

    Girija Srikanth

    2011-05-01

    Full Text Available This paper describes a new electronic official seal stamping based on Group Signature, USB Key. Bill/Contract in E-commerce must be seal stamped to gain tamper proof and non-repudiation. The seal stamping control is designed based on the certificate-based public key. This technique is more efficient for generating and verifying individual/group signatures in terms of computational efforts and communication costs. Web page electronic seal-stamping system is implemented which has been adopted by CNBAB platform since Mar., 2008

  10. LHC Signatures Of Scalar Dark Energy

    CERN Document Server

    Brax, Philippe; Englert, Christoph; Spannowsky, Michael

    2016-01-01

    Scalar dark energy fields that couple to the Standard Model can give rise to observable signatures at the LHC. In this work we show that $t\\bar t+$missing energy and mono-jet searches are suitable probes in the limit where the dark energy scalar is stable on collider distances. We discuss the prospects of distinguishing the dark energy character of new physics signals from dark matter signatures and the possibility of probing the self-interactions of the dark energy sector.

  11. Threshold Signature Scheme Based on Discrete Logarithm and Quadratic Residue

    Institute of Scientific and Technical Information of China (English)

    FEI Ru-chun; WANG Li-na

    2004-01-01

    Digital signature scheme is a very important research field in computer security and modern cryptography.A(k,n) threshold digital signature scheme is proposed by integrating digital signature scheme with Shamir secret sharing scheme.It can realize group-oriented digital signature, and its security is based on the difficulty in computing discrete logarithm and quadratic residue on some special conditions.In this scheme, effective digital signature can not be generated by any k-1 or fewer legal users, or only by signature executive.In addition, this scheme can identify any legal user who presents incorrect partial digital signature to disrupt correct signature, or any illegal user who forges digital signature.A method of extending this scheme to an Abelian group such as elliptical curve group is also discussed.The extended scheme can provide rapider computing speed and stronger security in the case of using shorter key.

  12. Analysis of Fumarole Acoustics at Aso Volcano, Japan

    Science.gov (United States)

    McKee, K. F.; Yokoo, A.; Fee, D.; Huang, Y. C.; Yoshikawa, S.; Utsugi, M.; Minami, T.; Ohkura, T.

    2015-12-01

    The lowermost portion of large eruption columns is the momentum-driven, fluid flow portion known as a volcanic jet. The perturbation of the atmosphere from this region produces a sound known as jetting or jet noise. Recent work has shown that this volcanic jet noise produced by a volcano has similar characteristics as the sound from jet and rocket engines. The study of volcanic jet noise has gained much from laboratory jet engine studies; however, jet engines have been engineered to reduce noise thereby limiting their use as a comparison tool to the complex, ever-changing volcanic jet. Previous studies have noted that fumaroles produce jet noise without further detailed investigation. The goal of this work is to enhance our understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We aim to characterize the acoustic signature of fumaroles and evaluate if fumarolic jets scale to that of large volcanic jets. To investigate this, we deployed a 6-element acoustic array at two different locations along the edge of the crater wall at Aso Volcano, Japan from early July through mid-August 2015. Approximately two months before this deployment, the pyroclastic cone within Aso's crater partially collapsed into the vent. The cone was constructed during both ash venting and strombolian-style explosive activity in the last year. After the deployment, on July 13 a new small vent opened on the southwest flank of the pyroclastic cone. The vent is several meters in diameter and has consistent gas jetting which produces audible jet noise. To better capture the acoustic signature of the gas jetting we moved the array to the southwestern edge of the crater. The array is 230 meters from the vent and is positioned 54 degrees from the vertical jet axis, a recording angle usually not feasible in volcanic environments. Preliminary investigations suggest directionality at the source and the influence of topography along the propagation path as

  13. USE OF SCALE MODELING FOR ARCHITECTURAL ACOUSTIC MEASUREMENTS

    OpenAIRE

    ERÖZ, Ferhat

    2013-01-01

    In recent years, acoustic science and hearing has become important. Acoustic design used in tests of acoustic devices is crucial. Sound propagation is a complex subject, especially inside enclosed spaces. From the 19th century on, the acoustic measurements and tests were carried out using modeling techniques that are based on room acoustic measurement parameters.In this study, the effects of architectural acoustic design of modeling techniques and acoustic parameters were studied. In this con...

  14. Acoustic habitat and shellfish mapping and monitoring in shallow coastal water - Sidescan sonar experiences in The Netherlands

    Science.gov (United States)

    van Overmeeren, Ronnie; Craeymeersch, Johan; van Dalfsen, Jan; Fey, Frouke; van Heteren, Sytze; Meesters, Erik

    2009-11-01

    Sidescan sonar has been applied in a number of shallow water environments along the Dutch coast to map and monitor shellfish and seabed habitats. The littoral setting of these surveys may hamper data acquisition flying the towfish in zones of turbulence and waves, but also offers valuable opportunities for understanding, interpreting and validating sidescan sonar images because of the ability to ground-truth during low water periods, enabling easy identification and validation. Acoustical images of some of the mussel banks on the tidal flats of the Wadden Sea, recorded at high tide, show a marked resemblance with optical Google Earth images of the same banks. These sonar images may thus serve as ' acoustic type signatures' for the interpretation of sonar patterns recorded in deeper water where ground-truthing is more difficult and more expensive. Similarly, acoustic type signatures of (Japanese) oyster banks were obtained in the estuaries in the southwest of the Netherlands. Automated acoustic pattern recognition of different habitats and acoustical estimation of faunal cover and density are possible applications of sidescan sonar. Both require that the backscattering observed on the sidescan sonar images is directly caused by the biological component of the seafloor. Filtering offers a simple and effective pre-processing technique to separate the faunal signals from linear trends such as emanating from wave ripples or the central tracks of the towfish. Acoustically estimating the faunal density is approached by in-situ counting peaks in backscattering in unit squares. These counts must be calibrated by ground-truthing. Ground-truthing on littoral mussel banks in the Wadden Sea has been carried out by measuring their cover along lines during low tide. Due to its capacity of yielding full-cover, high resolution images of large surfaces, sidescan sonar proves to be an excellent, cost-effective tool for quantitative time-lapse monitoring of habitats.

  15. Quantum multi-signature protocol based on teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Wen Xiao-jun; Liu Yun; Sun Yu [Beijing Jiaotong Univ., Beijing (China). School of Electronic Information Engineering

    2007-03-15

    In this paper, a protocol which can be used in multi-user quantum signature is proposed. The scheme of signature and verification is based on the correlation of Greenberger-Horne-Zeilinger (GHZ) states and the controlled quantum teleportation. Different from the digital signatures, which are based on computational complexity, the proposed protocol has perfect security in the noiseless quantum channels. Compared to previous quantum signature schemes, this protocol can verify the signature independent of an arbitrator as well as realize multi-user signature together. (orig.)

  16. Feasibility analysis of two identity- based proxy ring signature schemes

    Institute of Scientific and Technical Information of China (English)

    Wang Huaqun; Zhang Lijun; Zhao Junxi

    2007-01-01

    Recently , proxy ring signature schemes have been shown to be useful in various applications , such as electronic polling, electronic payment, etc. Although many proxy ring signature schemes have been proposed, there are only two identity- based proxy ring signature schemes have been proposed until now, I.e., Cheng's scheme and Lang's scheme. It's unlucky that the two identity- based proxy ring signature schemes are unfeasible . This paper points out the reasons why the two identity- based proxy ring signature schemes are unfeasible. In order to design feasible and efficient identity-based proxy ring signature schemes from bilinear pairings , we have to search for other methods .

  17. A New Batch Verifying Scheme for Identifying Illegal Signatures

    Institute of Scientific and Technical Information of China (English)

    Adrian Atanasiu

    2013-01-01

    The concept of batch verifying multiple digital signatures is to find a method by which multiple digital signatures can be verified simultaneously in a lower time complexity than separately verifying all the signatures.In this article,we analyze the complexity of the batch verifying schemes defined by Li,Hwang and Chen in 2010,and propose a new batch verifying multiple digital signature scheme,in two variants:one for RSA-by completing the Harn's schema with an identifying illegal signatures algorithm,and the other adapted for a modified Elliptic Curve Digital Signature Algorithm protocol.

  18. A New ID-Based Proxy Blind Signature Scheme

    Institute of Scientific and Technical Information of China (English)

    LANG Wei-min; YANG Zong-kai; CHENG Wen-qing; TAN Yun-meng

    2005-01-01

    An identity-based proxy blind signature scheme from bilinear pairings is introduced, which combines the advantages of proxy signature and blind signature. Furthermore, our scheme can prevent the original signer from generating the proxy blind signature, thus the profits of the proxy signer are guaranteed. We introduce bilinear pairings to minimize computational overhead and to improve the related performance of our scheme. In addition, the proxy blind signature presented is non-repudiable and it fulfills perfectly the security requirements of a proxy blind signature.

  19. Estimation of low-altitude moving target trajectory using single acoustic array.

    Science.gov (United States)

    Tong, Jianfei; Xie, Wei; Hu, Yu-Hen; Bao, Ming; Li, Xiaodong; He, Wei

    2016-04-01

    An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. PMID:27106332

  20. Leak detection and localization system through acoustics; Sistema de deteccao e localizacao de vazamentos por acustica

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Julio [Aselco Automacao, Sao Paulo, SP (Brazil)

    2003-07-01

    Acoustic Leak Detection Systems (ALDS) are used on both liquid and gas pipelines as well as multi-phase flow pipelines to detect leaks quickly and provide a means of limiting product loss. The real-time acoustic signal is continuously compared against signature leak profiles for the particular operating and geometric conditions. These profiles were developed from a database established from over 20 years of experimental and field leak tests. This technique not only drastically reduces the false alarm rate, but also significantly improves the sensitivity and leak location accuracy. This system will also detect leaks with shut-in flow (zero flow rate in the pipeline). With the use of GPS (Global Positioning System) it not only improves leak location accuracy, but also allows for continuous leak detection during the loss of communications. (author)

  1. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Science.gov (United States)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P.

    2016-05-01

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  2. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  3. APPLICATION OF DOMAIN DECOMPOSITION IN ACOUSTIC AND STRUCTURAL ACOUSTIC ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Conventional element based methods for modeling acoustic problems are limited to low-frequency applications due to the huge computational efforts. For high-frequency applications, probabilistic techniques, such as statistical energy analysis (SEA), are used. For mid-frequency range, currently no adequate and mature simulation methods exist. Recently, wave based method has been developed which is based on the indirect TREFFTZ approach and has shown to be able to tackle problems in the mid-frequency range. In contrast with the element based methods, no discretization is required. A sufficient, but not necessary, condition for convergence of this method is that the acoustic problem domain is convex. Non-convex domains have to be partitioned into a number of (convex) subdomains. At the interfaces between subdomains, specific coupling conditions have to be imposed. The considered two-dimensional coupled vibro-acoustic problem illustrates the beneficial convergence rate of the proposed wave based prediction technique with high accuracy. The results show the new technique can be applied up to much higher frequencies.

  4. Blend uniformity analysis of pharmaceutical products by Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS).

    Science.gov (United States)

    Fitzpatrick, Dara; Scanlon, Eoin; Krüse, Jacob; Vos, Bastiaan; Evans-Hurson, Rachel; Fitzpatrick, Eileen; McSweeney, Seán

    2012-11-15

    Blend uniformity analysis (BUA) is a routine and highly regulated aspect of pharmaceutical production. In most instances, it involves quantitative determination of individual components of a blend in order to ascertain the mixture ratio. This approach often entails the use of costly and sophisticated instrumentation and complex statistical methods. In this study, a new and simple qualitative blend confirmatory test is introduced based on a well known acoustic phenomenon. Several over the counter (OTC) product powder blends are analysed and it is shown that each product has a unique and highly reproducible acoustic signature. The acoustic frequency responses generated during the dissolution of the product are measured and recorded in real time. It is shown that intra-batch and inter-batch variation for each product is either insignificant or non-existent when measured in triplicate. This study demonstrates that Broadband Acoustic Resonance Dissolution Spectroscopy or BARDS can be used successfully to determine inter-batch variability, stability and uniformity of powder blends. This is just one application of a wide range of BARDS applications which are more cost effective and time efficient than current methods.

  5. A compact array calibrator to study the feasibility of acoustic neutrino detection

    Science.gov (United States)

    Ardid, M.; Camarena, F.; Felis, I.; Herrero, A.; Llorens, C. D.; Martínez-Mora, J.; Saldaña, M.

    2016-04-01

    Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino "signature" that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  6. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model.

    Science.gov (United States)

    Buogo, Silvano; Cannelli, Giovanni B

    2002-06-01

    The growth, collapse, and rebound of a vapor bubble generated by an underwater spark is studied by means of high-speed cinematography, simultaneously acquiring the emitted acoustic signature. Video recordings show that the growth and collapse phases are nearly symmetrical during the first two or three cycles, the bubble shape being approximately spherical. After 2-3 cycles the bubble behavior changes from a collapsing/rebounding regime with sound-emitting implosions to a pulsating regime with no implosions. The motion of the bubble wall during the first collapses was found to be consistent with the Rayleigh model of a cavity in an incompressible liquid, with the inclusion of a vapor pressure term at constant temperature within each bubble cycle. An estimate of the pressure inside the bubble is obtained measuring the collapse time and maximum radius, and the amount of energy converted into acoustical energy upon each implosion is deduced. The resulting value of acoustic efficiency was found to be in agreement with measurements based on the emitted acoustic pulse.

  7. Fully polarimetric analysis of weather radar signatures

    OpenAIRE

    Galletti, Michele; Bebbington, David; Chandra, Madhukar; Börner, Thomas

    2008-01-01

    In this work the concept of depolarization response, namely the degree of polarization as a function of transmit polarization state, is investigated. Application examples are shown in the field of radar meteorology, namely for hydrometeor identification with fully polarimetric weather radar signatures. Data are from POLDIRAD, DLR research weather radar.

  8. Signatures of black holes at the LHC

    OpenAIRE

    Cavaglia, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.

    2007-01-01

    Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.

  9. The Pedagogic Signature of Special Needs Education

    Science.gov (United States)

    Weiß, Sabine; Kollmannsberger, Markus; Lerche, Thomas; Oubaid, Viktor; Kiel, Ewald

    2014-01-01

    The goal of the following study is to identify a pedagogic signature, according to LS Shulman, for working with students who have special educational needs. Special educational needs are defined as significant limitations in personal development and learning which require particular educational measures beyond regular education. The development of…

  10. Observational signatures of self-destructive civilizations

    Science.gov (United States)

    Stevens, Adam; Forgan, Duncan; James, Jack O'malley

    2016-10-01

    We address the possibility that intelligent civilizations that destroy themselves could present signatures observable by humanity. Placing limits on the number of self-destroyed civilizations in the Milky Way has strong implications for the final three terms in Drake's Equation, and would allow us to identify which classes of solution to Fermi's Paradox fit with the evidence (or lack thereof). Using the Earth as an example, we consider a variety of scenarios in which humans could extinguish their own technological civilization. Each scenario presents some form of observable signature that could be probed by astronomical campaigns to detect and characterize extrasolar planetary systems. Some observables are unlikely to be detected at interstellar distances, but some scenarios are likely to produce significant changes in atmospheric composition that could be detected serendipitously with next-generation telescopes. In some cases, the timing of the observation would prove crucial to detection, as the decay of signatures is rapid compared with humanity's communication lifetime. In others, the signatures persist on far longer timescales.

  11. Arbitrated quantum signature scheme with message recovery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwayean; Hong, Changho; Kim, Hyunsang; Lim, Jongin; Yang, Hyung Jin

    2004-02-16

    Two quantum signature schemes with message recovery relying on the availability of an arbitrator are proposed. One scheme uses a public board and the other does not. However both schemes provide confidentiality of the message and a higher efficiency in transmission.

  12. Quantum Signature Scheme with Weak Arbitrator

    Science.gov (United States)

    Luo, Ming-Xing; Chen, Xiu-Bo; Yun, Deng; Yang, Yi-Xian

    2012-07-01

    In this paper, we propose one quantum signature scheme with a weak arbitrator to sign classical messages. This scheme can preserve the merits in the original arbitrated scheme with some entanglement resources, and provide a higher efficiency in transmission and reduction the complexity of implementation. The arbitrator is costless and only involved in the disagreement case.

  13. An Arbitrated Quantum Signature with Bell States

    Science.gov (United States)

    Liu, Feng; Qin, Su-Juan; Huang, Wei

    2014-05-01

    Entanglement is the main resource in quantum communication. The main aims of the arbitrated quantum signature (AQS) scheme are to present an application of the entanglement in cryptology and to prove the possibility of the quantum signature. More specifically, the main function of quantum entangled states in the existing AQS schemes is to assist the signatory to transfer quantum states to the receiver. However, teleportation and the Leung quantum one-time pad (L-QOTP) algorithm are not enough to design a secure AQS scheme. For example, Pauli operations commute or anticommute with each other, which makes the implementation of attacks easily from the aspects of forgery and disavowal. To conquer this shortcoming, we construct an improved AQS scheme using a new QOTP algorithm. This scheme has three advantages: it randomly uses the Hadamard operation in the new QOTP to resist attacks by using the anticommutativity of nontrivial Pauli operators and it preserves almost all merits in the existing AQS schemes; even in the process of handling disputes, no party has chance to change the message and its signature without being discovered; the receiver can verify the integrity of the signature and discover the disavow of the signatory even in the last step of verification.

  14. SUSY with ATLAS Leptonic Signatures, Coannihilation Region

    CERN Document Server

    Comune, G

    2004-01-01

    In this work we present an initial study on how leptonic signatures can be used at ATLAS to constrain SUSY particle masses combinations for the first time in the so called "coannihilation region''. The analysis is carried out in the framework of mSUGRA constrained SUSY model using fast detector simulation and reconstruction exploiting an invariant mass endpoint technique.

  15. Nucleon-decay like signatures of Hylogenesis

    CERN Document Server

    Demidov, S V

    2015-01-01

    We consider nucleon-decay like signatures of the hylogenesis, a variant of antibaryonic dark matter model. For the interaction between visible and dark matter sectors through the neutron portal, we calculate rates of dark matter scatterings off neutron which mimic neutron-decay processes $n\\to \

  16. Exploring Signature Pedagogies in Undergraduate Leadership Education

    Science.gov (United States)

    Jenkins, Daniel M.

    2012-01-01

    This research explores the instructional strategies most frequently used by leadership educators who teach academic credit-bearing undergraduate leadership studies courses through a national survey and identifies signature pedagogies within the leadership discipline. Findings from this study suggest that class discussion--whether in the form of…

  17. CERN Member States signatures at LEP inauguration

    CERN Multimedia

    1989-01-01

    The signatures of the dignitaries who represented CERN's Member States on the occasion of the Inauguration of LEP on 13 November 1989. The Large Electron-Positron (LEP) collider was inaugurated in the presence of some 1500 guests, including Heads of State and Ministers from all of CERN's 14 Member States.

  18. New particles and their experimental signatures

    International Nuclear Information System (INIS)

    This report summarizes work done by our theoretical working group on exotic particles before, during and since the Lausanne meeting. We discuss the motivations, rates and experimental signatures for new physics and new particles in the 1 TeV mass range. (orig./HSI)

  19. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    Science.gov (United States)

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  20. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  1. A smart pattern recognition system for the automatic identification of aerospace acoustic sources

    Science.gov (United States)

    Cabell, R. H.; Fuller, C. R.

    1989-01-01

    An intelligent air-noise recognition system is described that uses pattern recognition techniques to distinguish noise signatures of five different types of acoustic sources, including jet planes, propeller planes, a helicopter, train, and wind turbine. Information for classification is calculated using the power spectral density and autocorrelation taken from the output of a single microphone. Using this system, as many as 90 percent of test recordings were correctly identified, indicating that the linear discriminant functions developed can be used for aerospace source identification.

  2. Signal processing for passive detection and classification of underwater acoustic signals

    Science.gov (United States)

    Chung, Kil Woo

    2011-12-01

    This dissertation examines signal processing for passive detection, classification and tracking of underwater acoustic signals for improving port security and the security of coastal and offshore operations. First, we consider the problem of passive acoustic detection of a diver in a shallow water environment. A frequency-domain multi-band matched-filter approach to swimmer detection is presented. The idea is to break the frequency contents of the hydrophone signals into multiple narrow frequency bands, followed by time averaged (about half of a second) energy calculation over each band. Then, spectra composed of such energy samples over the chosen frequency bands are correlated to form a decision variable. The frequency bands with highest Signal/Noise ratio are used for detection. The performance of the proposed approach is demonstrated for experimental data collected for a diver in the Hudson River. We also propose a new referenceless frequency-domain multi-band detector which, unlike other reference-based detectors, does not require a diver specific signature. Instead, our detector matches to a general feature of the diver spectrum in the high frequency range: the spectrum is roughly periodic in time and approximately flat when the diver exhales. The performance of the proposed approach is demonstrated by using experimental data collected from the Hudson River. Moreover, we present detection, classification and tracking of small vessel signals. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification and tracking. This dissertation presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise) acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship

  3. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2007-09-03

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  4. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    International Nuclear Information System (INIS)

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects

  5. Observational signatures of binary supermassive black holes

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, Constanze; Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Miller, M. Coleman [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2014-04-20

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ {sub n} at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λ{sub n}{sup 16/3}; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.

  6. Acoustic reflex and general anaesthesia.

    Science.gov (United States)

    Farkas, Z

    1983-01-01

    Infant and small children are not always able to cooperate in impedance measurements. For this reason it was decided, -in special cases, -to perform acoustic reflex examination under general anaesthesia. The first report on stapedius reflex and general anaesthesia was published by Mink et al. in 1981. Under the effect of Tiobutabarbital, Propanidid and Diazepam there is no reflex response. Acoustic reflex can be elicited with Ketamin-hydrochlorid and Alphaxalone-alphadolone acetate narcosis. The reflex threshold remains unchanged and the amplitude of muscle contraction is somewhat increased. The method was used: 1. to assess the type and degree of hearing loss in children with cleft palate and/or lip prior to surgery. 2. to exclude neuromuscular disorders with indication of pharyngoplasties. 3. to quantify hearing level in children--mostly multiply handicapped--with retarded speech development. The results of Behavioral Observation and Impedance Audiometry are discussed and evaluated.

  7. Cylindrical acoustic levitator/concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Kaduchak, Gregory (Los Alamos, NM); Sinha, Dipen N. (Los Alamos, NM)

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  8. Cooperative OFDM underwater acoustic communications

    CERN Document Server

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  9. Classifying Particles By Acoustic Levitation

    Science.gov (United States)

    Barmatz, Martin B.; Stoneburner, James D.

    1983-01-01

    Separation technique well suited to material processing. Apparatus with rectangular-cross-section chamber used to measure equilibrium positions of low-density spheres in gravitational field. Vertical acoustic forces generated by two opposing compression drivers exciting fundamental plane-wave mode at 1.2 kHz. Additional horizontal drivers centered samples along vertical axis. Applications in fusion-target separation, biological separation, and manufacturing processes in liquid or gas media.

  10. : FMRI in acoustic trauma sequelae

    OpenAIRE

    Job, Agnès; Pons, Yoann; Lamalle, Laurent; Jaillard, Assia; Buck, Karl; Segebarth, Christoph; Delon-Martin, Chantal

    2012-01-01

    International audience The most common consequences of acute acoustic trauma (AAT) are hearing loss at frequencies above 3 kHz and tinnitus. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to visualize neuronal activation patterns in military adults with AAT and various tinnitus sequelae during an auditory "oddball" attention task. AAT subjects displayed overactivities principally during reflex of target sound detection, in sensorimotor areas and in emotion-related...

  11. Acoustical coupling of lizard eardrums.

    Science.gov (United States)

    Christensen-Dalsgaard, Jakob; Manley, Geoffrey A

    2008-12-01

    Lizard ears are clear examples of two-input pressure-difference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi- and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct and indirect sound components on the eardrum. The ensuing pressure-difference characteristics generate the highest directionality of any similar-sized terrestrial vertebrate ear. The aim of the present study was to measure the gain of the direct and indirect sound components in three lizard species: Anolis sagrei and Basiliscus vittatus (iguanids) and Hemidactylus frenatus (gekkonid) by laser vibrometry, using either free-field sound or a headphone and coupler for stimulation. The directivity of the ear of these lizards is pronounced in the frequency range from 2 to 5 kHz. The directivity is ovoidal, asymmetrical across the midline, but largely symmetrical across the interaural axis (i.e., front-back). Occlusion of the contralateral ear abolishes the directionality. We stimulated the two eardrums with a coupler close to the eardrum to measure the gain of the sound pathways. Within the frequency range of maximal directionality, the interaural transmission gain (compared to sound arriving directly) is close to or even exceeds unity, indicating a pronounced acoustical transparency of the lizard head and resonances in the interaural cavities. Our results show that the directionality of the lizard ear is caused by the acoustic interaction of the two eardrums. The results can be largely explained by a simple acoustical model based on an electrical analog circuit. PMID:18648878

  12. Acoustic radiation stress in solids

    Science.gov (United States)

    Cantrell, John H.; Yost, William T.

    1986-01-01

    It is shown that the radiation-induced static strains associated with acoustic waves propagating in solids are obtained directly from the virial theorem for an elastic continuum and that the radiation stresses result from combining the virial theorem with the Boltzmann-Ehrenfest principle of adiabatic invariance. The experimental confirmation of critical theoretical predictions in solids is reported. The implications of the results for the fundamental thermal properties of crystals are addressed.

  13. Virtual Reality for Architectural Acoustics

    OpenAIRE

    Vorländer, Michael; Schröder, Dirk; PELZER, Sönke; Wefers, Frank

    2014-01-01

    Over the last decades, powerful prediction models have been developed in architectural acoustics, which are used for the calculation of sound propagation in indoor and/or outdoor scenarios. Sound insulation is predicted rather precisely by using direct and flanking transmission models of sound and vibration propagation. These prediction tools are already in use in architectural design and consulting. For the extension towards virtual reality (VR) systems, it is required to accelerate the pred...

  14. A New Proxy Blind Signature Scheme based on ECDLP

    Directory of Open Access Journals (Sweden)

    Daniyal M Alghazzawi

    2011-05-01

    Full Text Available A proxy blind signature scheme is a special form of blind signature which allows a designated person called proxy signer to sign on behalf of two or more original signers without knowing the content of the message or document. It combines the advantages of proxy signature, blind signature and multi-signature scheme and satisfies the security properties of both proxy and blind signature scheme. Most of the exiting proxy blind signature schemes were developed based on the mathematical hard problems integer factorization (IFP and simple discrete logarithm (DLP which take sub-exponential time to solve. This paper describes an secure simple proxy blind signature scheme based on Elliptic Curve Discrete Logarithm Problem (ECDLP takes fully-exponential time. This can be implemented in low power and small processor mobile devices such as smart card, PDA etc. Here also we describes implementation issues of various scalar multiplication for ECDLP.

  15. A new threshold proxy signature scheme from bilinear pairings

    Institute of Scientific and Technical Information of China (English)

    QIAN Haifeng; CAO Zhenfu; XUE Qingshui

    2004-01-01

    Based on the GDH signature (short signature scheme) a probabilistic signature scheme is proposed in this paper with security proof. Then a new threshold proxy signature from bilinear pairings is proposed as well by using the new probabilistic signature scheme and the properties of the Gap Diffie-Hellman (GDH) group (where the Computational Diffie-Hellman problem is hard but the Decisional Diffie-Hellman problem is easy to solve). Our constructions are based on the recently proposed GDH signature scheme of Bonel et al.'s article. Bilinear pairings could be built from Weil pairing or Tate pairing. So most our constructions would be simpler, but still with high security. The proposed threshold proxy signature is the first one which is built from bilinear pairings. At the end of this paper security and performance of the threshold proxy signature scheme is also analyzed.

  16. OFFLINE HANDWRITTEN SIGNATURE IDENTIFICATION USING ADAPTIVE WINDOW POSITIONING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Ghazali Sulong

    2014-10-01

    Full Text Available The paper presents to address this challenge, we have proposed the use of Adaptive Window Positioning technique which focuses on not just the meaning of the handwritten signature but also on the individuality of the writer. This innovative technique divides the handwritten signature into 13 small windows of size nxn (13x13. This size should be large enough to contain ample information about the style of the author and small enough to ensure a good identification performance. The process was tested with a GPDS datasetcontaining 4870 signature samples from 90 different writers by comparing the robust features of the test signature with that of the user’s signature using an appropriate classifier. Experimental results reveal that adaptive window positioning technique proved to be the efficient and reliable method for accurate signature feature extraction for the identification of offline handwritten signatures .The contribution of this technique can be used to detect signatures signed under emotional duress.

  17. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Institute of Scientific and Technical Information of China (English)

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  18. Acoustic effects of single electrostatic discharges

    Science.gov (United States)

    Orzech, Łukasz

    2015-10-01

    Electric discharges, depending on their character, can emit different types of energy, resulting in different effects. Single electrostatic discharges besides generation of electromagnetic pulses are also the source of N acoustic waves. Their specified parameters depending on amount of discharging charge enable determination of value of released charge in a function of acoustic descriptor (e.g. acoustic pressure). Presented approach is the basics of acoustic method for measurement of single electrostatic discharges, enabling direct and contactless measurement of value of charge released during ESD. Method for measurement of acoustic effect of impact of a single electrostatic discharge on the environment in a form of pressure shock wave and examples of acoustic descriptors in a form of equation Q=f(pa) are described. The properties of measuring system as well as the results of regression static analyses used to determine the described relationships are analysed in details.

  19. Acoustic levitation of a large solid sphere

    Science.gov (United States)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  20. Acoustic concerns related to multi cultural societies

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    2001-01-01

    Immigration has increased cultural diversity in western societies. The process of integrating immigrants into their host countries can be smoothed if acousticians learn to recognize (1) the acoustic traditions of immigrant cultures and (2) the specific acoustic needs of the new society members. Two...... related projects are discussed. The ``Cahrisma'' project (Conservation of Acoustical Heritage by the Revival and Identification of the Sinan's Mosque Acoustics) is sponsored by the European Commission and carried out in cooperation among researchers in Turkey, Malta, Italy, France, Switzerland......, and Denmark. Its purpose is to combine visual and acoustical concerns in the identification, conservation, and restoration of architectural heritage. It focuses on the famous Turkish mosques of the Osmannic architect Sinan. Some of the acoustic features of these large domed buildings and of muslim liturgy...

  1. Integration of Acoustic Detection Equipment into ANTARES

    CERN Document Server

    Lahmann, R; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Naumann, C; Salomon, K

    2005-01-01

    The ANTARES group at the University of Erlangen is working towards the integration of a set of acoustic sensors into the ANTARES Neutrino Telescope. With this setup, tests of acoustic particle detection methods and background studies shall be performed. The ANTARES Neutrino Telescope, which is currently being constructed in the Mediterranean Sea, will be equipped with the infrastructure to accommodate a 3-dimensional array of photomultipliers for the detection of Cherenkov light. Within this infrastructure, the required resources for acoustic sensors are available: Bandwidth for the transmission of the acoustic data to the shore, electrical power for the off-shore electronics and physical space to install the acoustic sensors and to route the connecting cables (transmitting signals and power) into the electronics containers. It will be explained how the integration will be performed with minimal modifications of the existing ANTARES design and which setup is foreseen for the acquisition of the acoustic data.

  2. Coupling between plate vibration and acoustic radiation

    Science.gov (United States)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  3. Enhancing the Security of He-Kiesler Signature Schemes

    Institute of Scientific and Technical Information of China (English)

    李春辉; 陈一宏

    2003-01-01

    Although the He-Kiesler signature is said to be proposed based on the discrete logarithm problem and the factorization problem, it has been proved that the signature is not as secure as it was stated to be. A new signature scheme is here proposed based on the discrete logarithm problem and the factorization problem to enhance the security of the He-Kiesler signature.

  4. A PROVABLY SECURE PROXY SIGNATURE SCHEME FROM BILINEAR PAIRINGS

    Institute of Scientific and Technical Information of China (English)

    Wang Aiqin; Li Jiguo; Wang Zhijian

    2010-01-01

    A proxy signature allows an entity,called original signer,to delegate its signing power to another entity,called proxy signer,to sign messages on its behalf. Proxy signatures have many practical applications and are very important cryptographic protocol. In this paper,we propose an efficient proxy signature scheme from bilinear pairings. We prove it secure in the random oracle model and analyze computation cost of our scheme. Our scheme satisfies all the properties required for proxy signatures.

  5. Verifiable (t, n) Threshold Signature Scheme Based on Elliptic Curve

    Institute of Scientific and Technical Information of China (English)

    WANG Hua-qun; ZHAO Jun-xi; ZHANG Li-jun

    2005-01-01

    Based on the difficulty of solving the ECDLP (elliptic curve discrete logarithm problem) on the finite field,we present a (t, n) threshold signature scheme and a verifiable key agreement scheme without trusted party. Applying a modified elliptic curve signature equation, we get a more efficient signature scheme than the existing ECDSA (elliptic curve digital signature algorithm) from the computability and security view. Our scheme has a shorter key, faster computation, and better security.

  6. Manipulation of biomimetic objects in acoustic levitation

    OpenAIRE

    Castro, Angelica

    2013-01-01

    This thesis contains 9 chapters making a total of 205 pages including articles. The articles are menctioned throughout the work and are listed as annexes. These articles were produced during the PhD.; Levitation is a promising tool for contactless guiding and non-toxic manipulation. Acoustic levitation by ultrasonic standing waves (USW) allows micron-scale particle manipulation in acoustic resonators. The main goal of this thesis is to explore the possibilities given by the acoustic levitatio...

  7. Memory-Effect on Acoustic Cavitation

    OpenAIRE

    Yavaṣ, Oğuz; Leiderer, Paul; Park, Hee K.; Grigoropoulos, Costas P.; Poon, Chie C.; Tam, Andrew C.

    1994-01-01

    The formation of bubbles at a liquid-solid interface due to acoustic cavitation depends particularly on the preconditions of the interface. Here, it wiIl be shown that following laser-induced bubble formation at the interface the acoustic cavitation efficiency is strongly enhanced. Optical reflectance measurements reveal that this observed enhancement of acoustic cavitation due to preceding laser-induced bubble formation, which could be termed as memory effect, decays in a few hundred microse...

  8. Detecting the Nonlinearity of Fish Acoustic Signals

    Institute of Scientific and Technical Information of China (English)

    REN Xinmin; YIN Li

    2006-01-01

    This paper discusses the nonlinearity of fish acoustic signals by using the surrogate data method.We compare the difference of three test statistics - time-irreversibility Trey, correlation dimension D2 and auto mutual information function Ⅰbetween the original data and the surrogate data.We come to the conclusion that there exists nonlinearity in the fish acoustic signals and there exist deterministic nonlinear components; therefore nonlinear dynamic theory can be used to analyze fish acoustic signals.

  9. Fado’s Voice: Acoustic Features

    OpenAIRE

    Mendes, Ana; Ibrahim, Soraia; Vaz, Inês

    2015-01-01

    Trabalho apresentado na 12th Western Pacific Acoustics Conference, Singapura, 6-9 de Dezembro 2015 Fado is a popular Portuguese singing style acoustically characterized by reduced fundamental frequency, jitter as well as shimmer and perceptually by a low pitch, hoarse and strained voice. This study aims to scientifically contribute to the acoustic understanding of Fado singer’s voice profile. 104 Fado singers participated on this study: 47 males, 57 females; 90 amateur and 14 prof...

  10. Acoustic resonance phase locked photoacoustic spectrometer

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  11. Acoustic resonance frequency locked photoacoustic spectrometer

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  12. Acoustic 3D imaging of dental structures

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Hume, W.R. [California Univ., Los Angeles, CA (United States); Douglass, G.D. [California Univ., San Francisco, CA (United States)

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  13. Ultrasound contrast agents : optical and acoustical characterization

    OpenAIRE

    Sijl, Jeroen

    2009-01-01

    This thesis describes the characterization of the dynamics and the acoustic responses of single BR14 (Bracco Research S.A., Geneva, Switzerland) ultra- sound contrast agent microbubbles under the in°uence of ultrasound. In Ch. 2 of this thesis we investigate the small amplitude behavior of isolated microbubbles acoustically. To ensure that the measured acoustic response orig- inates from one bubble only, it requires the isolation of a single microbubble within an ultrasound beam. Furthermore ...

  14. A Recursive Definition of the Holographic Standard Signature

    OpenAIRE

    Bradley, William F.

    2009-01-01

    We provide a recursive description of the signatures realizable on the standard basis by a holographic algorithm. The description allows us to prove tight bounds on the size of planar matchgates and efficiently test for standard signatures. Over finite fields, it allows us to count the number of n-bit standard signatures and calculate their expected sparsity.

  15. Infrared ship signature prediction, model validation and sky radiance

    NARCIS (Netherlands)

    Neele, F.P.

    2005-01-01

    The increased interest during the last decade in the infrared signature of (new) ships results in a clear need of validated infrared signature prediction codes. This paper presents the results of comparing an in-house developed signature prediction code with measurements made in the 3-5 μm band in b

  16. 76 FR 411 - Regulatory Guidance Concerning Electronic Signatures and Documents

    Science.gov (United States)

    2011-01-04

    ... June 30, 2000. E SIGN was designed to promote the use of electronic contract formation, signatures and... traditional paper or electronic form: (a) Contracts, (b) signatures, and (c) other legally-required documents... Federal Motor Carrier Safety Administration Regulatory Guidance Concerning Electronic Signatures...

  17. Radar micro-doppler signatures processing and applications

    CERN Document Server

    Chen, Victor C; Miceli, William J

    2014-01-01

    Radar Micro-Doppler Signatures: Processing and applications concentrates on the processing and application of radar micro-Doppler signatures in real world situations, providing readers with a good working knowledge on a variety of applications of radar micro-Doppler signatures.

  18. Integrated Optical, Acoustically Tunable Wavelength Filter

    Science.gov (United States)

    Frangen, J.; Herrmann, Harald; Ricken, Raimund; Seibert, Holger; Sohler, Wolfgang; Strake, E.

    1989-12-01

    An integrated optical, acoustically tunable wavelength filter, consisting of a combination of TM-TE converter and integrated polarizer in LiNbO3, is demonstrated. The filter bandwidth is 2.8 nm; the center wavelength can be tuned from λ = 1.45 pm to λ = 1.57 pm by adjusting the driving acoustic frequency. Due to the combined acoustical/optical strip guide structure, used in the mode converter, a very low acoustic drive power of only 9 mW is required.

  19. ACOUSTIC EMISSION DURING STRETCHING OF POLYMERS

    Institute of Scientific and Technical Information of China (English)

    QIAN Renyuan; WANG Tiangui; SHEN Jingshu

    1983-01-01

    Acoustic emission has been studied for a wide range of polymers including amorphous glasses,semi-crystalline polymers, copolymers, polymer blends and a crosslinked rubber during the course of uni-axial stretching at room temperature. For non-crystalline polymers acoustic emission occurred in rather small number of events accompanied by crazing and micro-crack formation. Strong acoustic activity appeared during yielding and necking of crystalline polymers. Rather small number or none of acoustic bursts occurred during the initial stage of neck drawing but numerous strong bursts appeared when drawing proceeded approaching specimen break. Specimens of the same polymer but of different fabrication history may be reflected in their acoustic emission behavior. Acoustic emission during stretching crosslinked polybutadiene rubber was very weak but observable when the force-elongation curve started to deviate from the linear region. No Kaiser effect was observed for the rubber. Very strong and numerous acoustic emission was observed during stretching specimens of polymer blends.High impact resistant polymer modifications showed no sharp increase of acoustic activity before specimen break. So long as the polymer and conditions of specimen fabrication are the same quite reproducible acoustic emission behavior could be observed.

  20. Propagation behavior of acoustic wave in wood

    Institute of Scientific and Technical Information of China (English)

    Huadong Xu; Guoqi Xu; Lihai Wang; Lei Yu

    2014-01-01

    We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in wood. The timber specimens were first tested in unmodified condition and then tested after introduction of cavity defects of varying sizes to quantify the transmitting time of acoustic waves in laboratory conditions. Two-dimensional acoustic wave contour maps on the radial section of specimens were then simulated and analyzed based on the experimental data. We tested the relationship between wood grain and acoustic wave velocity as waves passed in various directions through wood. Wood anisotropy has significant effects on both velocity and travel path of acoustic waves, and the velocity of waves passing longitudinally through timbers exceeded the radial velocity. Moreover, cavity defects altered acoustic wave time contours on radial sections of timbers. Acous-tic wave transits from an excitation point to the region behind a cavity in defective wood more slowly than in intact wood.