Inverse acoustic problem of N homogeneous scatterers
Berntsen, Svend
2002-01-01
The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...
Inverse potential scattering in duct acoustics.
Forbes, Barbara J; Pike, E Roy; Sharp, David B; Aktosun, Tuncay
2006-01-01
The inverse problem of the noninvasive measurement of the shape of an acoustical duct in which one-dimensional wave propagation can be assumed is examined within the theoretical framework of the governing Klein-Gordon equation. Previous deterministic methods developed over the last 40 years have all required direct measurement of the reflectance or input impedance but now, by application of the methods of inverse quantum scattering to the acoustical system, it is shown that the reflectance can be algorithmically derived from the radiated wave. The potential and area functions of the duct can subsequently be reconstructed. The results are discussed with particular reference to acoustic pulse reflectometry.
Novel Acoustic Scattering Processes for Target Discrimination
2014-12-31
Scattering Processes for Target Discrimination 5a. CONTRACT NUMBER 5b. GRANT NUMBER N000141010093 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Marston...10-1-0093 December 2014 Novel Acoustic Scattering Processes for Target Discrimination Philip L. Marston, Principal Investigator Physics and...Target Discrimination (2010) Philip L. Marston Physics and Astronomy Dept., Washington State University, Pullman, WA 99164-2814 phone: (509) 335
Nonlinear ion acoustic waves scattered by vortexes
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
Nonlinear ion acoustic waves scattered by vortexes
Ohno, Yuji
2015-01-01
The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...
Scattering from objects and surfaces in room acoustical simulations
Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho;
2016-01-01
been implemented in the simulation tool PARISM (Phased Acoustical Radiosity and Image Source Method). Scattering from objects and surfaces is likely to be strongly frequency dependent and the frequency dependence can depend on their sizes, shapes and structure. The importance of the frequency......In room acoustical simulations, scattering objects are often modeled as impenetrable boxes with high scattering coefficients assigned to the surfaces. In some cases, a cluster of objects is modeled as a virtual impenetrable box, such that no sound propagation can take place between the objects....... Thus, the scattering only takes place on the boundary surfaces of the box and the acoustic volume of the room is reduced. Another challenge with representing scattering objects by reflecting surfaces is that it increases the number of surfaces, which greatly increases the calculation complexity...
Investigation on acoustic holography reconstruction of scattering field of target
BAO Xuemei; HE Zuoyong
2000-01-01
The BEM-based (Boundary EIement Method) scattering near field acoustic holography technique, which can be used to reconstruct the scattering sound field on the surface of a target and predict the whole scattering field from measured scattering near field, is described.First, the fundamental equations of this method and the related separation method for scattering field are brought forward. Then the problems such as the affect of different hologram to reconstructed result, the availability of singular value filter method and the applicability of separation method for scattering field are analyzed by means of numerical simulation.
Shape recognition of acoustic scatterers using the singularity expansion method
Cao, Pei; Wu, Jiu Hui
2017-03-01
Acoustic target recognition for two-dimensional (2D) acoustic scatterers is investigated using the singularity expansion method (SEM). Based on the Watson transformation series of the scattering field, the SEM poles can be calculated and their physical interpretation given, along with the exact normal mode for any acoustic scattering problem. Typical oscillatory phenomena appear as a series of damped sinusoidal signals in the time domain and as a standing-wave distribution in the space. These external oscillation modes are associated with the SEM poles. We note that the positions of these poles in the complex frequency plane are uniquely determined by the shape and flexible characteristics of the target regardless of the waveforms and positions of the incident signals. We then infer that SEM poles can be used as the characteristic parameters for target shape recognition. The relationship between the positions of SEM poles and the geometrical characters of 2D scatterers has been established not only for cylinders but also for other general 2D scatterers. The new method and the related calculation results provide an effective way to perform shape recognition using an acoustic scattering field, with potential applications in non-destructive testing and acoustic imaging.
Acoustic scattering reduction using layers of elastic materials
Dutrion, Cécile; Simon, Frank
2017-02-01
Making an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles. These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This paper examines the possibility of designing an acoustic cloak using a bi-layer elastic cylindrical shell to eliminate the acoustic field scattered from a rigid cylinder hit by plane waves. This field depends on the dimensional and mechanical characteristics of the elastic layers. It is computed by a semi-analytical code modelling the vibrations of the coating under plane wave excitation. Optimization by genetic algorithm is performed to determine the characteristics of a bi-layer material minimizing the scattering. Considering an external fluid consisting of air, realistic configurations of elastic coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or over a larger frequency band.
Kouri, Donald J; Vijay, Amrendra
2003-04-01
The most robust treatment of the inverse acoustic scattering problem is based on the reversion of the Born-Neumann series solution of the Lippmann-Schwinger equation. An important issue for this approach to inversion is the radius of convergence of the Born-Neumann series for Fredholm integral kernels, and especially for acoustic scattering for which the interaction depends on the square of the frequency. By contrast, it is well known that the Born-Neumann series for the Volterra integral equations in quantum scattering are absolutely convergent, independent of the strength of the coupling characterizing the interaction. The transformation of the Lippmann-Schwinger equation from a Fredholm to a Volterra structure by renormalization has been considered previously for quantum scattering calculations and electromagnetic scattering. In this paper, we employ the renormalization technique to obtain a Volterra equation framework for the inverse acoustic scattering series, proving that this series also converges absolutely in the entire complex plane of coupling constant and frequency values. The present results are for acoustic scattering in one dimension, but the method is general. The approach is illustrated by applications to two simple one-dimensional models for acoustic scattering.
ANALYSIS ON ACOUSTICAL SCATTERING BY A CRACKED ELASTIC STRUCTURE
ZhongWeffang; WuYongdong; WuGuorong; LiangYide
2003-01-01
The acoustical scattering by a cracked elastic structure is studied. The mixed method of boundary element and fractal finite element is adopted to solve the cracked structure-acoustic coupling problem. The fractal two-level finite element method is employed for the cracked structure, which can reduce the degree of freedoms (DOFs) greatly, and the boundary element method is used for the exterior acoustic field which can automatically satisfy Sommerfeld's radiation condition. Numerical examples show that the resonance frequency is lower with the crack's depth increase, and that the effect on the acoustical field by the crack is particularly pronounced in the vicinity of the crack tip. This mixed method of boundary element and finite element is effective in solving the scattering problem by a cracked structure.
Scattering of Acoustic Waves from Ocean Boundaries
2015-09-30
from the interface roughness and volume heterogeneities and propagation within the sediment. The model will aid in the detection and classification ...of buried mines and improve SONAR performance in shallow water. OBJECTIVES 1) Determination of the correct physical model of acoustic propagation... algorithms for AUV sonars based on the measurements and models previously developed by this program. Additionally, the models developed in this research
Broadband acoustic scattering measurements of underwater unexploded ordnance (UXO).
Bucaro, J A; Houston, B H; Saniga, M; Dragonette, L R; Yoder, T; Dey, S; Kraus, L; Carin, L
2008-02-01
In order to evaluate the potential for detection and identification of underwater unexploded ordnance (UXO) by exploiting their structural acoustic response, we carried out broadband monostatic scattering measurements over a full 360 degrees on UXO's (two mortar rounds, an artillery shell, and a rocket warhead) and false targets (a cinder block and a large rock). The measurement band, 1-140 kHz, includes a low frequency structural acoustics region in which the wavelengths are comparable to or larger than the target characteristic dimensions. In general, there are aspects that provide relatively high target strength levels ( approximately -10 to -15 dB), and from our experience the targets should be detectable in this structural acoustics band in most acoustic environments. The rigid body scattering was also calculated for one UXO in order to highlight the measured scattering features involving elastic responses. The broadband scattering data should be able to support feature-based separation of UXO versus false targets and identification of various classes of UXO as well.
Scattering as a key to improved room acoustic computer modelling
Rindel, Jens Holger; Christensen, Claus Lynge
1996-01-01
It has been known for a long time that surface scattering plays a very important role in room acoustics. With room acoustic computer models like ODEON it is possible to study the influence of scattering coefficients, which can be assigned to the surfaces of the room. In the latest version...... of the program an additional effect has been modelled, namely the attenuation of sound due to diffraction, which is particularly pronounced for small surfaces, low frequencies and long reflecting paths. The present paper describes a parameter study of how to optimize the choice of the number of rays...... room acoustic parameters. Results from two different halls have shown that a relative low number of rays are sufficient for reliable and stable calculation results. The optimum value of the transition order is two or three. The inclusion of diffraction effect leads to clearly improved results....
A time domain sampling method for inverse acoustic scattering problems
Guo, Yukun; Hömberg, Dietmar; Hu, Guanghui; Li, Jingzhi; Liu, Hongyu
2016-06-01
This work concerns the inverse scattering problems of imaging unknown/inaccessible scatterers by transient acoustic near-field measurements. Based on the analysis of the migration method, we propose efficient and effective sampling schemes for imaging small and extended scatterers from knowledge of time-dependent scattered data due to incident impulsive point sources. Though the inverse scattering problems are known to be nonlinear and ill-posed, the proposed imaging algorithms are totally "direct" involving only integral calculations on the measurement surface. Theoretical justifications are presented and numerical experiments are conducted to demonstrate the effectiveness and robustness of our methods. In particular, the proposed static imaging functionals enhance the performance of the total focusing method (TFM) and the dynamic imaging functionals show analogous behavior to the time reversal inversion but without solving time-dependent wave equations.
Acoustic scattering from mud volcanoes and carbonate mounds.
Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe
2006-12-01
Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.
Flow velocity measurement with the nonlinear acoustic wave scattering
Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay
2015-10-01
A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.
Flow velocity measurement with the nonlinear acoustic wave scattering
Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)
2015-10-28
A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.
Axisymmetric acoustic scattering from submerged prolate spheroidal shells
Boisvert, Jeffrey E.; Hayek, Sabih I.
2005-09-01
The equations of motion for nonaxisymmetric vibration of prolate spheroidal shells of constant thickness were derived using Hamilton's principle [S. I. Hayek and J. E. Boisvert, J. Acoust. Soc. Am. 114, 2799-2811 (2003)]. The shell theory used in this derivation includes shear deformations and rotatory inertias. The shell displacements and rotations were expanded in infinite series of comparison functions. These include associated Legendre functions in terms of the prolate spheroidal angular coordinate and circular functions in the azimuthal angle coordinate. The shell is insonified by a plane wave incident along the major axis. The external (heavy) fluid loading impedance was computed using an eigenfunction expansion of prolate spheroidal wavefunctions. Far-field scattered acoustic pressure spectra are presented for several shell thickness-to-half-length ratios ranging from 0.005 to 0.1, and for various shape parameters, a, ranging from an elongated spheroidal shell (a=1.01) to a spherical shell (a~100). The far-field directivity of acoustic scattering is presented at selected frequencies. [Work supported by the ONR/ASEE Summer Faculty Research Program.
Light scattering from acoustic vibrational modes in confined structures
Bandhu, Rudra Shyam
The acoustic vibrational modes and their light scattering intensities in confined structures such as supported films, double layer free-standing membrane and sub-micron sized wires on a free-standing membrane have been studied using Brillouin Light Scattering (BLS). Standing wave type acoustic phonons were recently observed in supported thin films of silicon oxy-nitride. We build upon this finding to study the acoustic modes in thin zinc selenide (ZnSe) films on gallium arsenide (GaAs). The surprising behaviour of the Brillouin intensities of the standing wave modes in ZnSe are explained in terms of interference of the elasto-optic scattering amplitudes from the film and substrate. Numerical calculations of the scattering cross-section, which takes into account ripple and elasto-optic scattering mechanism, agrees well with the experimental data. Light scattering studies of standing wave type modes in free-standing polymethyl methacrylate (PMMA) layer on Si3N4 were carried out. In these bilayer structures PMMA is much softer than Si3N 4, a property that leads to confinement of low frequency modes associated with the PMMA layer to within its boundaries. In addition, the flexural and the dilatational modes from the Si3N4 layer are observed and are found to hybridize with the standing wave modes from the PMMA layer. Our study of phonon modes in PMMA wires supported on a free-standing Si3N4 membrane extends our work on free-standing double layer membranes. In recent years there is much interest in the study of phonon modes in nano-scale structures such as wires or dots. Although much theoretical work has been carried out in this direction, no experiments exist that explore the dispersion of the phonon modes in such structures. Brillouin Light scattering is ideally suited for studying phonons in such reduced dimensions and our work represents the first effort in this direction. The spectra reveal modes which are quantized both along the width, as well along the thickness
Topics in electromagnetic, acoustic, and potential scattering theory
Nuntaplook, Umaporn
With recent renewed interest in the classical topics of both acoustic and electromagnetic aspects for nano-technology, transformation optics, fiber optics, metamaterials with negative refractive indices, cloaking and invisibility, the topic of time-independent scattering theory in quantum mechanics is becoming a useful field to re-examine in the above contexts. One of the key areas of electromagnetic theory scattering of plane electromagnetic waves --- is based on the properties of the refractive indices in the various media. It transpires that the refractive index of a medium and the potential in quantum scattering theory are intimately related. In many cases, understanding such scattering in radially symmetric media is sufficient to gain insight into scattering in more complex media. Meeting the challenge of variable refractive indices and possibly complicated boundary conditions therefore requires accurate and efficient numerical methods, and where possible, analytic solutions to the radial equations from the governing scalar and vector wave equations (in acoustics and electromagnetic theory, respectively). Until relatively recently, researchers assumed a constant refractive index throughout the medium of interest. However, the most interesting and increasingly useful cases are those with non-constant refractive index profiles. In the majority of this dissertation the focus is on media with piecewise constant refractive indices in radially symmetric media. The method discussed is based on the solution of Maxwell's equations for scattering of plane electromagnetic waves from a dielectric (or "transparent") sphere in terms of the related Helmholtz equation. The main body of the dissertation (Chapters 2 and 3) is concerned with scattering from (i) a uniform spherical inhomogeneity embedded in an external medium with different properties, and (ii) a piecewise-uniform central inhomogeneity in the external medium. The latter results contain a natural generalization of
Multiscale analysis of the acoustic scattering by many scatterers of impedance type
Challa, Durga Prasad; Sini, Mourad
2016-06-01
We are concerned with the acoustic scattering problem, at a frequency {κ}, by many small obstacles of arbitrary shapes with impedance boundary condition. These scatterers are assumed to be included in a bounded domain {Ω} in {{R}^3} which is embedded in an acoustic background characterized by an eventually locally varying index of refraction. The collection of the scatterers {D_m, m=1,ldots,M} is modeled by four parameters: their number M, their maximum radius a, their minimum distance d and the surface impedances {λ_m, m=1,ldots,M}. We consider the parameters M, d and {λ_m}'s having the following scaling properties: {M:=M(a)=O(a^{-s}), d:=d(a)≈ a^t} and {λ_m:=λ_m(a)=λ_{m,0}a^{-β}}, as {a→ 0}, with non negative constants s, t and {β} and complex numbers {λ_{m, 0}}'s with eventually negative imaginary parts. We derive the asymptotic expansion of the far-fields with explicit error estimate in terms of a, as {a→ 0}. The dominant term is the Foldy-Lax field corresponding to the scattering by the point-like scatterers located at the centers {z_m}'s of the scatterers {D_m}'s with {λ_m \\vert partial D_m\\vert} as the related scattering coefficients. This asymptotic expansion is justified under the following conditions a ≤ a_0, \\vert Re (λ_{m,0})\\vert ≥ λ_-,quad \\vertλ_{m,0}\\vert ≤ λ_+,quad β quad 0 ≤ s ≤2-β,quads/3 ≤ t and the error of the approximation is {C a^{3-2β-s}}, as {a → 0}, where the positive constants {a_0, λ_-,λ_+} and C depend only on the a priori uniform bounds of the Lipschitz characters of the obstacles {D_m}'s and the ones of {M(a)a^s} and {d(a)/a^t}. We do not assume the periodicity in distributing the small scatterers. In addition, the scatterers can be arbitrary close since t can be arbitrary large, i.e., we can handle the mesoscale regime. Finally, for spherical scatterers, we can also allow the limit case {β=1} with a slightly better error of the approximation.
Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.
Groby, J-P; Dazel, O; Depollier, C; Ogam, E; Kelders, L
2012-07-01
Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. For planar configurations, the wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently: first in the case of rigid frame inhomogeneous porous materials and then in the case of inhomogeneous poroelastic materials in the framework of Biot's theory. This paper focuses on the solution of the full wave equation in cylindrical coordinates for poroelastic tubes in which the acoustic and elastic properties of the poroelastic tube vary in the radial direction. The reflection coefficient is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method in the case of a two-layer poroelastic tube. As an example, a long bone excited in the sagittal plane is considered. Finally, a discussion is given of ultrasonic time domain scattered field for various inhomogeneity profiles, which could lead to the prospect of long bone characterization.
Global effects of moon phase on nocturnal acoustic scattering layers
Prihartato, PK
2016-01-18
© Inter-Research 2016. The impact of moon phase on the global nocturnal vertical distribution of acoustic scattering layers (SLs) in the upper 200 m was studied during the Malaspina expedition that circumnavigated the world. We assessed the nocturnal weighted mean depths and the vertical extension of the SL (the range between the upper 25th percentile and lower 75th percentile of the backscatter) and used a generalized additive model to reveal the relationship between the nocturnal vertical distribution of the SL and moon phase, as well as other environmental factors. Moon phase significantly affected the SL distribution on a global scale, in contrast to other factors such as dissolved oxygen, temperature and fluorescence, which each correlated with nocturnal SL distribution during the large geographic coverage. Full moon caused a deepening effect on the nocturnal SL. Contrary to expectations, the shallowest distribution was not observed during the darkest nights (new moon) and there was no difference in vertical distribution between new moon and intermediate moon phases. We conclude that the trend of deepening SL during approximately full moon (bright nights) is a global phenomenon related to anti-predator behavior.
THE LIMITING ABSORPTION METHOD FOR A TRANSMISSION PROBLEM IN ACOUSTIC SCATTERING
Messaoud SOUILAH
2006-01-01
The limiting absorption principle is used to solve the scattering problem of time harmonic acoustic waves by penetrable objects in Sobolev spaces. The method is based on integral representation of the solution using the Green's kernel of the Helmholtz equation.
Numerical Studies on the Statistics of Acoustic Scattering from Rock Outcrops
2013-06-17
Results, Kos, Greece, eds. John S. Papadakis and Leif Bjorno. Olson, D.R. and A.P. Lyons, 2013, Numerical simulation of acoustic scattering from very rough...glacially- plucked surfaces using the boundary element method, in Proceedings of 5th Underwater Acoustic Measurements Conference: Technologies and Results, Corfu, Greece, eds. John S. Papadakis and Leif Bjorno.
Basin Acoustic Seamount Scattering Experiment (BASSEX) Data Analysis and Modeling
2016-06-07
Kauai source at various ranges and bearings. OBJECTIVES The primary objective of this work is to measure aspects of acoustic propagation that...range-dependent environments. The primary goal is to understand the physics of the acoustic propagation in complex environments. Three specific...During the test acoustic transmissions from sources used in the SPICEX and LOAPEX experiments (PI: Dr. Peter Worcester, SIO and Dr. Jim Mercer, APL-UW
Acoustic characteristics of urban streets in relation to scattering caused by building facades
Onaga, Hiroshi; Rindel, Jens Holger
2007-01-01
The relationship between scattering and the acoustic characteristics of urban streets is examined by computer simulation. The simulation method is a combination of the image method for specular reflection and the radiosity method for scattering reflection. The findings are as follows: (1...
Air bubbles in water: a strongly multiple scattering medium for acoustic waves.
Kafesaki, M; Penciu, R S; Economou, E N
2000-06-26
Using a newly developed multiple scattering scheme, we calculate band structure and transmission properties for acoustic waves propagating in bubbly water. We prove that the multiple scattering effects are responsible for the creation of wide gaps in the transmission even in the presence of strong positional and size disorder.
McLaren, Alexander
2011-11-01
Due to their great ecological significance, mesopelagic fishes are attracting a wider audience on account of the large biomass they represent. Data from the National Marine Fisheries Service (NMFS) provided the opportunity to explore an unknown region of the North-West Atlantic, adjacent to one of the most productive fisheries in the world. Acoustic data collected during the cruise required the identification of acoustically distinct scattering types to make inferences on the migrations, distributions and biomass of mesopelagic scattering layers. Six scattering types were identified by the proposed method in our data and traces their migrations and distributions in the top 200m of the water column. This method was able to detect and trace the movements of three scattering types to 1000m depth, two of which can be further subdivided. This process of identification enabled the development of three physically-derived target-strength models adapted to traceable acoustic scattering types for the analysis of biomass and length distribution to 1000m depth. The abundance and distribution of acoustic targets varied closely in relation to varying physical environments associated with a warm core ring in the New England continental Shelf break region. The continental shelf break produces biomass density estimates that are twice as high as the warm core ring and the surrounding continental slope waters are an order of magnitude lower than either estimate. Biomass associated with distinct layers is assessed and any benefits brought about by upwelling at the edge of the warm core ring are shown not to result in higher abundance of deepwater species. Finally, asymmetric diurnal migrations in shelf break waters contrasts markedly with the symmetry of migrating layers within the warm ring, both in structure and density estimates, supporting a theory of predatorial and nutritional constraints to migrating pelagic species.
Acoustic Scattering by Near-Surface Inhomogeneities in Porous Media
1990-02-21
solution for the cor- responding problem with a locally reacting boundary has been given by Ingard [72], Thomasson [73], and Wenzel [74]. Ingard [72...68:1493-1501, 1980. [72] U. Ingard . On the reflection of a spherical wave from an infinite plane. Journal of the Acoustical Society of America, 23:329...1985. [83] L.N. Brekhovskikh. Waves in layered media. Academic, 1960. [84] P.M. Morse and K.U. Ingard . Theoretical Acoustics. Mc-Graw-Hill, 1968. [85
Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media
Baev, A. V.
2016-12-01
A three-dimensional inverse scattering problem for the acoustic wave equation is studied. The task is to determine the density and acoustic impedance of a medium. A necessary and sufficient condition for the unique solvability of this problem is established in the form of an energy conservation law. The interpretation of the solution to the inverse problem and the construction of medium images are discussed.
Practical methods to define scattering coefficients in a room acoustics computer model
Zeng, Xiangyang; Christensen, Claus Lynge; Rindel, Jens Holger
2006-01-01
To predict acoustics of rooms using computer programs based on geometrical assumptions, it is important that scattering is included in the calculations. Therefore scattering is usually included in terms of scattering coefficients which are assigned to each surface telling the software the ratio...... between the part of the reflected energy which is not being reflected specularily and the total reflected energy. However the effective scattering coefficient of a surface depends not only on the roughness of the surface material indeed diffraction caused by limited dimensions of the surface as well...
Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles.
1983-06-01
usual to simplify Eq. (14) under the assumption of adiabatic compressibility. According to Morse & Ingard [41], adiabatic compressibility is achieved...standard 58 acoustic text, such as Morse and Ingard [44]. They are w r cc r P Po[Jo(-R-) + 2 mcosOJa( T) , (107) 0 2ll 0 a D( 1 ) w r i Pscatt Am ) pt...Comments on the Interaction of Sound With Sound," presentation at 98th Mtg. of Acoust. Soc. Am., Nov 1979. 29. P.M. Morse & K.U. Ingard , Theoretical
Abel Palafox
2014-01-01
Full Text Available We address a prototype inverse scattering problem in the interface of applied mathematics, statistics, and scientific computing. We pose the acoustic inverse scattering problem in a Bayesian inference perspective and simulate from the posterior distribution using MCMC. The PDE forward map is implemented using high performance computing methods. We implement a standard Bayesian model selection method to estimate an effective number of Fourier coefficients that may be retrieved from noisy data within a standard formulation.
Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.
2016-11-01
Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.
Palasantzas, G.
2008-01-01
In this work we study the quality factor associated with dissipation due to scattering of shear horizontal surface acoustic waves by random self-affine roughness. It is shown that the quality factor is strongly influenced by both the surface roughness exponent H and the roughness amplitude w to late
Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects
Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.
2008-01-01
This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.
Nikolaeva, Anastasiia V., E-mail: niko200707@mail.ru; Kryzhanovsky, Maxim A.; Tsysar, Sergey A. [Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Kreider, Wayne [Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St. Seattle WA 98105 (United States); Sapozhnikov, Oleg A. [Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St. Seattle WA 98105 (United States)
2015-10-28
Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.
Conditions for the Observation of Two Ion-Acoustic Waves via Thomson Scattering
郑坚; 胡广月; 王哲斌; 俞昌旋; 刘万东
2003-01-01
Observation of two ion-acoustic waves via Thomson scattering can provide precise measurements of plasma parameters. The conditions for the observation of two ion-acoustic modes in a two-ion plasmaare discussed.The ratio of electron temperature Te to ion temperature Ti is the critical parameter for the presence of two ion-acoustic modes, which should be in the range of 4/ZL(＜～)Te/Ti(＜～)2AH/ZHAL, where ZL,H are the charge states of light and heavy ions, and AL,H are the atomic numbers of light and heavy ions, respectively. As the temperature ratio varies in this range, the concentration of heavy ions must increase with the ratio Te/Ti so that the two ion-acoustic modes can have the same fluctuation levels.
Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.
2016-01-01
Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter. PMID:27147775
Thalmayr, Florian; Hashimoto, Ken-Ya; Omori, Tatsuya; Yamaguchi, Masatsune
2010-07-01
This paper demonstrates a novel frequency domain analysis (FDA) to evaluate the scattering behavior of a waveguide mode at arbitrary scattering geometries by a time harmonic simulation based on the finite element method (FEM). To this end, we add an injection-damping mechanism (IDM) to avoid interference at the acoustic input port. The IDM can be easily constructed by a numerical operation. Our approach offers improved time consumption and calculation power necessary over the established method in the time domain. After checking the validity of the proposed method, we discuss the importance of considering wave scattering phenomena in film bulk acoustic wave resonator (FBAR) devices by applying the proposed method to two simplified models of an FBAR device.
Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements
Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui
2017-01-01
Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm‑1.
Acoustic scattering for 3D multi-directional periodic structures using the boundary element method.
Karimi, Mahmoud; Croaker, Paul; Kessissoglou, Nicole
2017-01-01
An efficient boundary element formulation is proposed to solve three-dimensional exterior acoustic scattering problems with multi-directional periodicity. The multi-directional periodic acoustic problem is represented as a multilevel block Toeplitz matrix. By exploiting the Toeplitz structure, the computational time and storage requirements to construct and to solve the linear system of equations arising from the boundary element formulation are significantly reduced. The generalized minimal residual method is implemented to solve the linear system of equations. To efficiently calculate the matrix-vector product in the iterative algorithm, the original matrix is embedded into a multilevel block circulant matrix. A multi-dimensional discrete Fourier transform is then employed to accelerate the matrix-vector product. The proposed approach is applicable to a periodic acoustic problem for any arbitrary shape of the structure in both full space and half space. Two case studies involving sonic crystal barriers are presented. In the first case study, a sonic crystal barrier comprising rigid cylindrical scatterers is modeled. To demonstrate the effectiveness of the proposed technique, periodicity in one, two, or three directions is examined. In the second case study, the acoustic performance of a sonic crystal barrier with locally resonant C-shaped scatterers is studied.
Near-specular acoustic scattering from a buried submarine mud volcano.
Gerig, Anthony L; Holland, Charles W
2007-12-01
Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected.
Experiment Observation on Acoustic Forward Scattering for Underwater Moving Object Detection
LEI Bo; MA Yuan-Liang; YANG Kun-De
2011-01-01
The problem of detecting an object in shallow water by observing changes in the acoustic field as the object passes between an acoustic source and receiver is addressed. A signal processing scheme based on forward scattering is proposed to detect the perturbed field in the presence of the moving object. The periodic LFM wideband signal is transmitted and a sudden change of field is acquired using a normalized median filter. The experimental results on the lake show that the proposed scheme is successful for the detection of a slowly moving object in the bistatic blind zone.
Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics
Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.
2016-10-01
We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50 000 W-1m-1 for backward and forward Brillouin scattering, respectively.
Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water
ANDRÉ G. SIMÃO
2016-06-01
Full Text Available Abstract The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert’s period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium.
Fischell, Erin M; Schmidt, Henrik
2015-12-01
One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].
Ankita D. Jain
2013-12-01
Full Text Available Recently reported declines in the population of Atlantic cod have led to calls for additional survey methods for stock assessments. In combination with conventional line-transect methods that may have ambiguities in sampling fish populations, Ocean Acoustic Waveguide Remote Sensing (OAWRS has been shown to have a potential for providing accurate stock assessments (Makris N.C., et al. Science 2009, 323, 1,734–1,737; 54th Northeast Regional Stock Assessment Workshop (54th SAW US Department of Commerce, Northeast Fisheries Science Center, 2012. The use of OAWRS technology enables instantaneous wide-area sensing of fish aggregations over thousands of square kilometers. The ratio of the intensity of scattered returns from fish versus the seafloor in any resolution cell typically determines the maximum fish detection range of OAWRS, which then is a function of fish population density, scattering amplitude and depth distribution, as well as the level of seafloor scattering. With the knowledge of oceanographic parameters, such as bathymetry, sound speed structure and attenuation, we find that a Rayleigh–Born volume scattering approach can be used to efficiently and accurately estimate seafloor scattering over wide areas. From hundreds of OAWRS measurements of seafloor scattering, we determine the Rayleigh–Born scattering amplitude of the seafloor, which we find has a ƒ2,4 frequency dependence below roughly 2 kHz in typical continental shelf environments along the US northeast coast. We then find that it is possible to robustly detect cod aggregations across frequencies at and near swim bladder resonance for observed spawningconfigurations along the U.S. northeast coast, roughly the two octave range 150–600 Hzfor water depths up to roughly 100 m. This frequency range is also optimal for long-rangeocean acoustic waveguide propagation, because it enables multimodal acoustic waveguidepropagation with minimal acoustic absorption and forward
Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix
Chaigne, T; Boccara, A C; Fink, M; Bossy, E; Gigan, S
2013-01-01
Optical wavefront-shaping has emerged as a powerful tool to manipulate light in strongly scattering media. It enables diffraction-limited focusing and imaging at depths where conventional microscopy techniques fail. However, while most wavefront-shaping works to-date exploited direct access to the target or implanted probes, the challenge is to apply it non-invasively inside complex samples. Ultrasonic-tagging techniques have been recently demonstrated but these require a sequential point-by- point acquisition, a major drawback for imaging applications. Here, we introduce a novel approach to non-invasively measure the optical transmission-matrix inside a scattering medium, exploiting the photo-acoustic effect. Our approach allows for the first time to simultaneously discriminate, localize, and selectively focus light on multiple targets inside a scattering sample, as well as to recover and exploit the scattering medium properties. Combining the powerful approach of the transmission-matrix with the advantages ...
Representation theorems and Green's function retrieval for scattering in acoustic media.
Vasconcelos, Ivan; Snieder, Roel; Douma, Huub
2009-09-01
Reciprocity theorems for perturbed acoustic media are provided in the form of convolution- and correlation-type theorems. These reciprocity relations are particularly useful in the general treatment of both forward and inverse-scattering problems. Using Green's functions to describe perturbed and unperturbed waves in two distinct wave states, representation theorems for scattered waves are derived from the reciprocity relations. While the convolution-type theorems can be manipulated to obtain scattering integrals that are analogous to the Lippmann-Schwinger equation, the correlation-type theorems can be used to retrieve the scattering response of the medium by cross correlations. Unlike previous formulations of Green's function retrieval, the extraction of scattered-wave responses by cross correlations does not require energy equipartitioning. Allowing for uneven energy radiation brings experimental advantages to the retrieval of fields scattered by remote lossless and/or attenuative scatterers. These concepts are illustrated with a number of examples, including analytic solutions to a one-dimensional scattering problem, and a numerical example in the context of seismic waves recorded on the ocean bottom.
Depolarized guided acoustic wave Brillouin scattering in hollow-core photonic crystal fibers
Zhong, Wenjia Elser née; Elser, Dominique; Heim, Bettina; Marquardt, Christoph; Leuchs, Gerd
2015-01-01
By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an increase of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure.
Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid
Mitri, F G
2015-01-01
Based on the partial-wave series expansion (PWSE) method in spherical coordinates, a formal analytical solution for the acoustic scattering of a zeroth-order Bessel acoustic beam centered on a rigid fixed (oblate or prolate) spheroid is provided. The unknown scattering coefficients of the spheroid are determined by solving a system of linear equations derived for the Neumann boundary condition. Numerical results for the modulus of the backscattered pressure (\\theta = \\pi) in the near-field and the backscattering form function in the far-field for both prolate and oblate spheroids are presented and discussed, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle of the Bessel beam \\beta, and the dimensionless frequency. The plots display periodic oscillations (versus the dimensionless frequency) due to the interference of specularly reflected waves in the backscattering direction with circumferential Franz' waves circumnavigati...
Ariza, A.; Landeira, J. M.; Escánez, A.; Wienerroither, R.; Aguilar de Soto, N.; Røstad, A.; Kaartvedt, S.; Hernández-León, S.
2016-05-01
Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400-500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500-600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s - 1 and the long-range ones at 11.5 ± 3.8 cm s - 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.
Ariza, A.
2016-01-21
Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400–500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500–600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s − 1 and the long-range ones at 11.5 ± 3.8 cm s − 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.
Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers
Elser, D; Gloeckl, O; Korn, A; Leuchs, G; Lorenz, S; Marquardt, C; Marquardt, Ch.
2005-01-01
Guided Acoustic Wave Brillouin Scattering (GAWBS) generates phase and polarization noise of light propagating in glass fibers. This excess noise affects the performance of various experiments operating at the quantum noise limit. We experimentally demonstrate the reduction of GAWBS noise in a photonic crystal fiber in a broad frequency range using cavity sound dynamics. We compare the noise spectrum to the one of a standard fiber and observe a roughly 10-fold noise reduction in the frequency range up to 200 MHz.
Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid
Mitri, F. G.
2015-12-01
Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.
Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering
Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.
2014-01-01
Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).
Characteristic analysis of underwater acoustic scattering echoes in the wavelet transform domain
Yang, Mei; Li, Xiukun; Yang, Yang; Meng, Xiangxia
2017-01-01
Underwater acoustic scattering echoes have time-space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.
A Computational Method to Calculate the Exact Solution for Acoustic Scattering by Liquid Spheroids
González, Juan D; Blanc, Silvia
2016-01-01
The problem of scattering of harmonic plane acoustic waves by liquid spheroids (prolate and oblate) is addressed from an analytical approach. Mathematically, it consists in solving the Helmholtz equation in an unbounded domain with Sommerfeld radiation condition at infinity. The domain where propagation takes place is characterised by density and sound speed values $\\rho_0$ and $c_0$, respectively, while $\\rho_1$ and $c_1$ are the corresponding density and sound speed values of an inmersed object that is responsible of the scattered field. Since Helmholtz equation is separable in prolate (oblate) spheroidal coordinates, its exact solution for the scattered field can be expressed as an expansion on prolate (oblate) spheroidal functions multiplied by coefficients whose values depend upon the boundary conditions verified at the medium-inmersed fluid obstacle interface. The general case ($c_0 \
1988-07-01
of Texas at Austin 3(ARL:UT). 3 A. Background The problem of the scattering of sound by sound, as well as the terminology, was introduced3 by Ingard ...Texas at Austin, June 1987. [2] U. Ingard and D. C. Pridmore-Brown, "Scattering of Sound by Sound," J. Acoust. Soc. Am. 28, 367-369 (1956). [3] R. T
Rajabi, Majid; Behzad, Mehdi
2014-04-01
In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces.
Control of acoustic absorption in 1D scattering by indirect coupled resonant scatterers
Merkel, A; Richoux, O; Romero-García, V; Pagneux, V
2015-01-01
We experimentally report perfect acoustic absorption through the interplay of the inherent losses and transparent modes with high $Q$ factor. These modes are generated in a two-port, one-dimensional waveguide which is side-loaded by isolated resonators of moderate $Q$ factor. In symmetric structures, we show that in the presence of small inherent losses, these modes lead to coherent perfect absorption associated with one-sided absorption slightly larger than 0.5. In asymmetric structures, near perfect one-sided absorption is possible (96 \\%) with a deep sub-wavelength sample ($\\lambda/28$). The control of strong absorption by the proper tuning of few resonators with weak losses will open new possibilities in various wave-control devices.
Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel
2016-04-01
The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials.
El Boudouti, E H; Zelmat, R; Bailich, R [LDOM, Departement de Physique, Faculte des Sciences, Universite Mohamed I, 60000 Oujda (Morocco); Hassouani, Y El [Universite de Bordeaux, Laboratoire de Mecanique Physique, Talence F-33405 (France); Djafari-Rouhani, B, E-mail: elboudouti@yahoo.f [Institut d' Electronique, de Microelectronique et de Nanotechnologie, UMR CNRS 8520, UFR de Physique, Universite de Lille 1, 59655 Villeneuve d' Ascq (France)
2010-03-01
Using a Green's function method, we present a theoretical analysis of the propagation of acoustic waves in multilayer structures. The structure studied consists of a finite superlattice (SL) made of a periodic repetition of N unit cells deposited on a substrate. Such a structure exhibits extended modes constituting the allowed bands separated by forbidden bands where localized modes associated to free surfaces, defect layers, ... may exist. These modes can be observed either by Raman scattering when an incident light is launched from vacuum towards the multilayer, or by the reflection delay time when an incident acoustic wave is launched from the substrate. Specific applications of our results are given for some available experiments in the literature (e.g., Si/Ge{sub x}Si{sub 1-x}, GaSb-AlSb) and a good agreement has been obtained between our theoretical results and the experimental data.
Buscombe, D.; Grams, P. E.; Kaplinski, M. A.
2014-12-01
Bed sediment classification using high-frequency hydroacoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain scale roughness. Here a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel, and rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from georeferenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed "stochastic geometries." Backscatter aggregated over small spatial scales have spectra that obey a power law. This apparently self-affine behavior could instead arise from morphological scale and grain scale roughnesses over multiple overlapping scales or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed sediment observations (which is the subject of part two of this manuscript).
Brillouin-scattering measurements of the acoustic absorption coefficient in liquid CS2
Coakley, R. W.; Detenbeck, R. W.
1975-01-01
High-resolution Brillouin spectra were recorded for light scattered at small angles from liquid CS2. The use of a single-mode He-Ne laser, locked in frequency to a Fabry-Perot interferometer, permitted measurements of line widths of the order of 10 MHz for frequencies in the range 300-1000 MHz. These measurements extend previous Brillouin line-width measurements at higher frequencies into the region where relaxation effects are dominant and connect the optical measurements with lower-frequency acoustical data.
Ostrovsky, Lev A; Sutin, Alexander M; Soustova, Irina A; Matveyev, Alexander L; Potapov, Andrey I; Kluzek, Zigmund
2003-02-01
The paper describes nonlinear effects due to a biharmonic acoustic signal scattering from air bubbles in the sea. The results of field experiments in a shallow sea are presented. Two waves radiated at frequencies 30 and 31-37 kHz generated backscattered signals at sum and difference frequencies in a bubble layer. A motorboat propeller was used to generate bubbles with different concentrations at different times, up to the return to the natural subsurface layer. Theoretical consideration is given for these effects. The experimental data are in a reasonably good agreement with theoretical predictions.
Ion-Acoustic Wave Scattering description using Case-Van Kampen modes
Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Skiff, Fred
2016-10-01
We present an experimental characterization of the ion acoustic wave scattering using Case-Van Kampen modes. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n 109cm-3 Te 7 eV and B 1 kG. A 5 ring antenna with diameter similar to the plasma diameter is used for launching the waves. A survey of the ion velocity distribution function's zeroth and first order as well as density fluctuations at different frequencies is done using Laser-Induced Fluorescence (LIF) as the main diagnostics method. Analysis of the scattering of the waves and its dependence on wave frequency is done utilizing Case-Van Kampen modes and the use of Morrison's G-transform. This research is supported by the Department of Energy under Grant No. DOE DE-FG02-99ER54543.
Analysis of acoustic scattering from fluid bodies using a multipoint source model.
Boag, A; Leviatan, Y
1989-01-01
A moment-method solution is presented for the problem of acoustic scattering from homogeneous fluid bodies. It uses fictitious isotropic point sources to simulate both the field scattered by the body and the field inside the body and, in turn, point-matches the continuity conditions for the normal component of the velocity and for the pressure across the surface of the body. The procedure is simple to execute and is general in that bodies of arbitrary smooth shape can be handled effectively. Perfectly rigid bodies are treated as reduced cases of the general procedure. Results are given and compared with available analytic solutions, which demonstrate the very good performance of the procedure.
Measurements of high-frequency acoustic scattering from glacially-eroded rock outcrops
Olson, Derek R; Sæbo, Torstein
2016-01-01
Measurements of acoustic backscattering from glacially-eroded rock outcrops were made off the coast of Sandefjord, Norway using a high-frequency synthetic aperture sonar (SAS) system. A method by which scattering strength can be estimated from data collected by a SAS system is detailed, as well as a method to estimate an effective calibration parameter for the system. Scattering strength measurements from very smooth areas of the rock outcrops agree with predictions from both the small-slope approximation and perturbation theory, and range between -33 and -26 dB at 20$^\\circ$ grazing angle. Scattering strength measurements from very rough areas of the rock outcrops agree with the sine-squared shape of the empirical Lambertian model and fall between -30 and -20 dB at 20$^\\circ$ grazing angle. Both perturbation theory and the small-slope approximation are expected to be inaccurate for the very rough area, and overestimate scattering strength by 8 dB or more for all measurements of very rough surfaces. Supportin...
Stevens, Lewis L.; Orler, E. Bruce; Dattelbaum, Dana M.; Ahart, Muhtar; Hemley, Russell J.
2007-09-01
The acoustic properties of three polymer elastomers, a cross-linked poly(dimethylsiloxane) (Sylgard® 184), a cross-linked terpolymer poly(ethylene-vinyl acetate-vinyl alcohol), and a segmented thermoplastic poly(ester urethane) copolymer (Estane® 5703), have been measured from ambient pressure to approximately 12GPa by using Brillouin scattering in high-pressure diamond anvil cells. The Brillouin-scattering technique is a powerful tool for aiding in the determination of equations of state for a variety of materials, but to date has not been applied to polymers at pressures exceeding a few kilobars. For the three elastomers, both transverse and longitudinal acoustic modes were observed, though the transverse modes were observed only at elevated pressures (>0.7GPa) in all cases. From the Brillouin frequency shifts, longitudinal and transverse sound speeds were calculated, as were the C11 and C12 elastic constants, bulk, shear, and Young's moduli, and Poisson's ratios, and their respective pressure dependencies. P-V isotherms were then constructed, and fit to several empirical/semiempirical equations of state to extract the isothermal bulk modulus and its pressure derivative for each material. Finally, the lack of shear waves observed for any polymer at ambient pressure, and the pressure dependency of their appearance is discussed with regard to instrumental and material considerations.
a Numerical Method for Scattering from Acoustically Soft and Hard Thin Bodies in Two Dimensions
YANG, S. A.
2002-03-01
This paper presents a numerical method for predicting the acoustic scattering from two-dimensional (2-D) thin bodies. Both the Dirichlet and Neumann problems are considered. Applying the thin-body formulation leads to the boundary integral equations involving weakly singular and hypersingular kernels. Completely regularizing these kinds of singular kernels is thus the main concern of this paper. The basic subtraction-addition technique is adopted. The purpose of incorporating a parametric representation of the boundary surface with the integral equations is two-fold. The first is to facilitate the numerical implementation for arbitrarily shaped bodies. The second one is to facilitate the expansion of the unknown function into a series of Chebyshev polynomials. Some of the resultant integrals are evaluated by using the Gauss-Chebyshev integration rules after moving the series coefficients to the outside of the integral sign; others are evaluated exactly, including the modified hypersingular integral. The numerical implementation basically includes only two parts, one for evaluating the ordinary integrals and the other for solving a system of algebraic equations. Thus, the current method is highly efficient and accurate because these two solution procedures are easy and straightforward. Numerical calculations consist of the acoustic scattering by flat and curved plates. Comparisons with analytical solutions for flat plates are made.
Near-Field Acoustic Resonance Scattering of a Finite Bessel Beam by an Elastic Sphere
Mitri, F G
2014-01-01
The near-field acoustic scattering from a sphere centered on the axis of a finite Bessel acoustic beam is derived stemming from the Rayleigh-Sommerfeld diffraction surface integral and the addition theorems for the spherical wave and Legendre functions. The beam emerges from a finite circular disk vibrating according to one of its radial modes corresponding to the fundamental solution of a Bessel beam J0. The incident pressure field's expression is derived analytically as a partial-wave series expansion taking into account the finite size and the distance from the center of the disk transducer. Initially, the scattered pressure by a rigid sphere is evaluated, and backscattering pressure moduli plots as well as 3-D directivity patterns for an elastic PMMA sphere centered on a finite Bessel beam with appropriate tuning of its half-cone angle, reveal possible resonance suppression of the sphere only in the zone near the Bessel transducer. Moreover, the analysis is extended to derive the mean spatial incident and...
Analysis of a Cartesian PML approximation to acoustic scattering problems in and
Bramble, James H.
2013-08-01
We consider the application of a perfectly matched layer (PML) technique applied in Cartesian geometry to approximate solutions of the acoustic scattering problem in the frequency domain. The PML is viewed as a complex coordinate shift ("stretching") and leads to a variable complex coefficient equation for the acoustic wave posed on an infinite domain, the complement of the bounded scatterer. The use of Cartesian geometry leads to a PML operator with simple coefficients, although, still complex symmetric (non-Hermitian). The PML reformulation results in a problem whose solution coincides with the original solution inside the PML layer while decaying exponentially outside. The rapid decay of the PML solution suggests truncation to a bounded domain with a convenient outer boundary condition and subsequent finite element approximation (for the truncated problem). This paper provides new stability estimates for the Cartesian PML approximations both on the infinite and the truncated domain. We first investigate the stability of the infinite PML approximation as a function of the PML strength σ0. This is done for PML methods which involve continuous piecewise smooth stretching as well as piecewise constant stretching functions. We next introduce a truncation parameter M which determines the size of the PML layer. Our analysis shows that the truncated PML problem is stable provided that the product of Mσ0 is sufficiently large, in which case the solution of the problem on the truncated domain converges exponentially to that of the original problem in the domain of interest near the scatterer. This justifies the simple computational strategy of selecting a fixed PML layer and increasing σ0 to obtain the desired accuracy. The results of numerical experiments varying M and σ0 are given which illustrate the theoretically predicted behavior. © 2013 Elsevier B.V. All rights reserved.
Kim, Seungil
2010-01-01
In this paper, we study the spectrum of the operator which results when the Perfectly Matched Layer (PML) is applied in Cartesian geometry to the Laplacian on an unbounded domain. This is often thought of as a complex change of variables or "complex stretching." The reason that such an operator is of interest is that it can be used to provide a very effective domain truncation approach for approximating acoustic scattering problems posed on unbounded domains. Stretching associated with polar or spherical geometry lead to constant coefficient operators outside of a bounded transition layer and so even though they are on unbounded domains, they (and their numerical approximations) can be analyzed by more standard compact perturbation arguments. In contrast, operators associated with Cartesian stretching are non-constant in unbounded regions and hence cannot be analyzed via a compact perturbation approach. Alternatively, to show that the scattering problem PML operator associated with Cartesian geometry is stable for real nonzero wave numbers, we show that the essential spectrum of the higher order part only intersects the real axis at the origin. This enables us to conclude stability of the PML scattering problem from a uniqueness result given in a subsequent publication. © 2009 Elsevier Inc. All rights reserved.
Kaina, Nadège; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy
2015-09-03
Metamaterials, man-made composite media structured on a scale much smaller than a wavelength, offer surprising possibilities for engineering the propagation of waves. One of the most interesting of these is the ability to achieve superlensing--that is, to focus or image beyond the diffraction limit. This originates from the left-handed behavior--the property of refracting waves negatively--that is typical of negative index metamaterials. Yet reaching this goal requires the design of 'double negative' metamaterials, which act simultaneously on the permittivity and permeability in electromagnetics, or on the density and compressibility in acoustics; this generally implies the use of two different kinds of building blocks or specific particles presenting multiple overlapping resonances. Such a requirement limits the applicability of double negative metamaterials, and has, for example, hampered any demonstration of subwavelength focusing using left-handed acoustic metamaterials. Here we show that these strict conditions can be largely relaxed by relying on media that consist of only one type of single resonant unit cell. Specifically, we show with a simple yet general semi-analytical model that judiciously breaking the symmetry of a single negative metamaterial is sufficient to turn it into a double negative one. We then demonstrate that this occurs solely because of multiple scattering of waves off the metamaterial resonant elements, a phenomenon often disregarded in these media owing to their subwavelength patterning. We apply our approach to acoustics and verify through numerical simulations that it allows the realization of negative index acoustic metamaterials based on Helmholtz resonators only. Finally, we demonstrate the operation of a negative index acoustic superlens, achieving subwavelength focusing and imaging with spot width and resolution 7 and 3.5 times better than the diffraction limit, respectively. Our findings have profound implications for the
Inverse acoustic scattering problem in half-space with anisotropic random impedance
Helin, Tapio; Lassas, Matti; Päivärinta, Lassi
2017-02-01
We study an inverse acoustic scattering problem in half-space with a probabilistic impedance boundary value condition. The Robin coefficient (surface impedance) is assumed to be a Gaussian random function with a pseudodifferential operator describing the covariance. We measure the amplitude of the backscattered field averaged over the frequency band and assume that the data is generated by a single realization of λ. Our main result is to show that under certain conditions the principal symbol of the covariance operator of λ is uniquely determined. Most importantly, no approximations are needed and we can solve the full non-linear inverse problem. We concentrate on anisotropic models for the principal symbol, which leads to the analysis of a novel anisotropic spherical Radon transform and its invertibility.
Scattering reduction of an acoustically hard cylinder covered with layered pentamode metamaterials.
Boisvert, Jeffrey E; Scandrett, Clyde L; Howarth, Thomas R
2016-06-01
Transformational acoustics offers the theoretical possibility of cloaking obstacles within fluids, provided metamaterials having continuously varying bulk moduli and densities can be found or constructed. Realistically, materials with the proper, continuously varying anisotropies do not presently exist. However, discretely layered cloaks having constant material parameters within each layer may be a viable alternative in practice. The present work considers a range of cloaks, from those comprised of fluid layers that are isotropic in bulk moduli with anisotropic density (inertial cloaks) to those having anisotropic bulk moduli and isotropic density (pentamode cloaks). In this paper an analytical solution is obtained for the case of plane wave scattering from a submerged rigid cylinder covered with a multilayered cylindrical cloak composed of discrete anisotropic fluid layers. An investigation of the parameter space defining such cloaks is undertaken with the goal of minimizing the far-field scattered pressure, using layer constituent anisotropic properties (density and bulk modulus) constrained to lie within reasonable ranges relative to those of water.
Yin, Jie [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Department of Automation, Nanjing Polytechnic Institute, 210048 Nanjing (China); Tao, Chao, E-mail: taochao@nju.edu.cn; Cai, Peng; Liu, Xiaojun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
2015-06-08
Acoustically inhomogeneous mediums with multiple scattering are often the nightmare of photoacoustic tomography. In order to break this limitation, a photoacoustic tomography scheme combining ultrasound interferometry and time reversal is proposed to achieve images in acoustically scattering medium. An ultrasound interferometry is developed to determine the unknown Green's function of strong scattering tissue. Using the determined Greens' function, a time-reversal process is carried out to restore images behind an acoustically inhomogeneous layer from the scattering photoacoustic signals. This method effectively decreases the false contrast, noise, and position deviation of images induced by the multiple scattering. Phantom experiment is carried out to validate the method. Therefore, the proposed method could have potential value in extending the biomedical applications of photoacoustic tomography in acoustically inhomogeneous tissue.
Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes.
Frinking, Peter J A; Brochot, Jean; Arditi, Marcel
2010-08-01
Subharmonic scattering of phospholipid-shell microbubbles excited at relatively low acoustic pressure amplitudes (<30 kPa) has been associated with echo responses from compression-only bubbles having initial surface tension values close to zero. In this work, the relation between sbharmonics and compression-only behavior of phospholipid-shell microbubbles was investigated, experimentally and by simulation, as a function of the initial surface tension by applying ambient overpressures of 0 and 180 mmHg. The microbubbles were excited using a 64-cycle transmit burst with a center frequency of 4 MHz and peak-negative pressure amplitudes ranging from 20 of 150 kPa. In these conditions, an increase in subharmonic response of 28.9 dB (P < 0.05) was measured at 50 kPa after applying an overpressure of 180 mmHg. Simulations using the Marmottant model, taking into account the effect of ambient overpressure on bubble size and initial surface tension, confirmed the relation between subharmonics observed in the pressure-time curves and compression-only behavior observed in the radius-time curves. The trend of an increase in subharmonic response as a function of ambient overpressure, i.e., as a function of the initial surface tension, was predicted by the model. Subharmonics present in the echo responses of phospholipid-shell microbubbles excited at low acoustic pressure amplitudes are indeed related to the echo responses from compression-only bubbles. The increase in subharmonics as a function of ambient overpressure may be exploited for improving methods for noninvasive pressure measurement in heart cavities or big vessels in the human body.
Risk of a second cancer from scattered radiation in acoustic neuroma treatment
Yoon, Myonggeun; Lee, Hyunho; Sung, Jiwon [Korea University, Seoul (Korea, Republic of); Shin, Dongoh [Kyung Hee University Medical Center, Seoul (Korea, Republic of); Park, Sungho [Ulsan University Hospital, Ulsan (Korea, Republic of); Chung, Weonkuu; Jahng, Geonho; Kim, Dongwook [Kyung Hee University Hospital at Gangdong, Seoul (Korea, Republic of)
2014-06-15
The present study aimed to compare the risk of a secondary cancer from scattered and leakage doses in patients receiving intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) of a secondary cancer were estimated using the corresponding secondary doses measured at various organs by using radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalent doses (OED) at the thyroid, lung, liver, bowel, bladder, prostate (or ovary), and rectum were 14.6, 1.7, 0.9, 0.8, 0.6, 0.6, and 0.6 cGy, respectively, for IMRT whereas they were 19.1, 1.8, 2.0, 0.6, 0.4, 0.4, and 0.4 cGy, respectively, for VMAT, and 22.8, 4.6, 1.4, 0.7, 0.5, 0.5, and 0.5 cGy, respectively, for SRS. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A lifetime attributable risk evaluation estimated that more than 0.03% of acoustic neuroma (AN) patients would get radiation-induced cancer within 20 years of receiving radiation therapy. The organ with the highest radiation-induced cancer risk after radiation treatment for AN was the thyroid. We found that the LAR could be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.
WU Jiuhui; WANG Yaojun; LI Taibao
2004-01-01
A kind of addition formulae for the spherical wave functions is generated by using the bicentric expansion of Green function in spherical coordinates. For an acoustical system with multiple spheres, the addition formulae permit the field expansions all referred to the center of one of the spheres, whose boundary conditions can be consequently used to study the multiple scattering easily. The two-sphere acoustical system with different boundary conditions is considered and the field scattered by each sphere can be obtained by solving an infinite set of two linear, complex, algebraic equations, whose coefficients are coupled through double sums in the spherical wave functions. Finally, the form functions of two spheres insonified by a plane wave at arbitrary angles of incidence are calculated and the addition formulae presented are validated by comparing the corresponding numerical results with those of the existing literature.
Malhotra, M. [Stanford Univ., CA (United States)
1996-12-31
Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.
Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.
Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre
2012-01-01
The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer.
Na, Seong-Won; Kallivokas, Loukas F.
2008-03-01
In this article we discuss a formal framework for casting the inverse problem of detecting the location and shape of an insonified scatterer embedded within a two-dimensional homogeneous acoustic host, in terms of a partial-differential-equation-constrained optimization approach. We seek to satisfy the ensuing Karush-Kuhn-Tucker first-order optimality conditions using boundary integral equations. The treatment of evolving boundary shapes, which arise naturally during the search for the true shape, resides on the use of total derivatives, borrowing from recent work by Bonnet and Guzina [1-4] in elastodynamics. We consider incomplete information collected at stations sparsely spaced at the assumed obstacle’s backscattered region. To improve on the ability of the optimizer to arrive at the global optimum we: (a) favor an amplitude-based misfit functional; and (b) iterate over both the frequency- and wave-direction spaces through a sequence of problems. We report numerical results for sound-hard objects with shapes ranging from circles, to penny- and kite-shaped, including obstacles with arbitrarily shaped non-convex boundaries.
Neutron scattering investigation of the acoustic-mode Grüneisen parameters in RbBr
Ernst, G.; Krexner, G.; Quittner, G.;
1984-01-01
The microscopic Grüneisen parameters in RbBr have been determined for 44 acoustic modes in the main symmetry directions Δ, Σ, and Λ by inelastic neutron scattering under hydrostatic pressure. The experimental data are well described within the framework of a breathing-shell model, which includes...... third-order anharmonic contributions. The thermal-expansion coefficient has been calculated in the temperature range 0-300 K. The results are in good agreement with the experimental data....
Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang
2016-09-01
A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.
Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong
2014-02-01
Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects.
Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology, ETC, Santa Fe, New Mexico 87508 (United States)
2015-11-14
Using the partial-wave series expansion method in cylindrical coordinates, a formal analytical solution for the acoustical scattering of a 2D cylindrical quasi-Gaussian beam with an arbitrary angle of incidence θ{sub i}, focused on a rigid elliptical cylinder in a non-viscous fluid, is developed. The cylindrical focused beam expression is an exact solution of the Helmholtz equation. The scattering coefficients for the elliptical cylinder are determined by forcing the expression of the total (incident + scattered) field to satisfy the Neumann boundary condition for a rigid immovable surface, and performing the product of matrices involving an inversion procedure. Computations for the matrices elements require a single numerical integration procedure for each partial-wave mode. Numerical results are performed with particular emphasis on the focusing properties of the incident beam and its angle of incidence with respect to the major axis a of the ellipse as well as the aspect ratio a/b where b is the minor axis (assuming a > b). The method is validated and verified against previous results obtained via the T-matrix for plane waves. The present analysis is the first to consider an acoustical beam on an elliptic cylinder of variable cross-section as opposed to plane waves of infinite extent. Other 2D non-spherical and Chebyshev surfaces are mentioned that may be examined throughout this analytical formalism assuming a small deformation parameter ε.
Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.
2004-05-01
Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.
Zimmerman, Robert Allen
Zooplankton and micronekton which cause a density discontinuity with the surrounding seawater reflect acoustic energy. This acoustic backscatter intensity (ABI) was measured using a vessel mounted 153 kHz acoustic Doppler current profiler. The ABI was used to describe vertical migration and distribution of sound scatterers in several mesoscale hydrographic features commonly found in the Gulf of Mexico: cold-core rings (CCRs), warm-core Loop Current eddies (LCEs) and the Loop Current (LC). The present paradigm contends that cold- core (cyclonic) features are mesoscale areas of enhanced production due to an influx of new nitrogen to surface waters as a result of divergent flow. The null hypothesis which was tested in this study was that the acoustic signatures of these features were not significantly different from one another. Clear diel differences in all of the features and a robust, positive correlation between ABI and plankton and micronekton wet displacement volume collected in MOCNESS tows in the upper 100 m of the water column were observed. During the day, ABI in CCRs was significantly greater than in LCEs and in the LC with regards to the upper 200 m. However, ABI in the LCEs and LC were not significantly different from each other. During the night, the ABI in the upper 50 m of the CCRs was significantly greater than that in the LCEs and the LC. However, there were no differences between features when ABI at night was summed for the entire upper 200 m, due to substantial vertical migrations of organisms into the upper 200 m of the water column at night. Two LCEs were revisited at an age of 8-9 months after their initial acoustic transects. The null hypothesis that there would be no significant difference in integrated ABI when the LCEs were resampled was rejected: both LCEs showed a reduction in integrated ABI over the upper 200 m. Further investigations into the faunal changes of these features are warranted, but the ADCP should continue to be a useful
Buscombe, D.; Grams, P. E.; Kaplinski, M. A.
2013-12-01
Bed sediment classification using backscatter intensities from multibeam echosounder (MBES) systems in rivers is attractive due to its high coverage and resolution, limited costs compared to conventional sampling, and the potential combination of bathymetric and bottom sediment mapping in one instrument. Sediment classification by means of hydro-acoustic remote sensing is becoming an established discipline in oceanography. A number of techniques have been proposed, none of which has become the preferred method. In rivers, however, the field is relatively new and faces challenges not typically encountered in deep ocean settings. For example, river beds tend to have larger mean and maximum slopes than typical seabeds. Shallow water depths not only make MBES deployments more difficult, but also make the size of the beam footprint on the bed small which can lead to relatively noisy backscatter data. In particular, sediments can more heterogeneous in terms of: 1) range of particle sizes (both in a given area and over an entire mapped reach); 2) range of grain size over proximal bedform fields; 3) superimposed bedforms; and 4) abrupt sedimentological transitions over small scales. This sediment heterogeneity means grain-size usually changes along swath, which has a number of implications for existing sediment classification methods which use the distribution of backscatter intensities over all acoustic beams. We discuss these implications with reference to MBES data collected from the Colorado River in Grand Canyon, Arizona. We analyze the scale-dependence of probability density functions (PDF) of measured elevations in different sedimentological settings, which reveals the appropriate spatial scale at which to apply acoustic scattering theories. We also discuss the joint PDF of elevation and backscatter over different scales as a means by which to create an adaptive gridding scheme in which each grid is scaled appropriately, in situations with rapidly changing
Isogeometric finite element analysis of time-harmonic exterior acoustic scattering problems
Khajah, Tahsin; Bordas, Stéphane P A
2016-01-01
We present an isogeometric analysis of time-harmonic exterior acoustic problems. The infinite space is truncated by a fictitious boundary and (simple) absorbing boundary conditions are applied. The truncation error is included in the exact solution so that the reported error is an indicator of the performance of the isogeometric analysis, in particular of the related pollution error. Numerical results performed with high-order basis functions (third or fourth orders) showed no visible pollution error even for very high frequencies. This property combined with exact geometrical representation makes isogeometric analysis a very promising platform to solve high-frequency acoustic problems.
Nero, R. W.; Magnuson, J. J.; Brandt, S. B.; Stanton, T. K.; Jech, J. M.
1990-06-01
The spatial distribution of biological scatterers within the Gulf Stream front is inferred from an analysis of patch statistics obtained from digitally recorded backscattering data. Acoustic data were collected along 10 transects perpendicular to the front using a downward-looking 70 kHz echosounder. Patches were defined using an algorithm selected to search for finescale patches from within 200 × 900 element (approx. 200 m depth × 24 km length) integrated echo data. Based on principal component analyses of 17 patch parameters, we identified the third most important component as a measure of "acoustic roughness" (containing the coefficient of variance and coefficient of roughness of the integrated echo independent of echo intensity). This third component was a good descriptor of differences among patches within scattering layers and between water masses. It is independent of echo strength and patch size which constitute the first two components. We interpret higher acoustic roughness within patches to indicate a more contagious (clumped) distribution of animals within those patches. Classification of patches on acoustic roughness showed that patches were often acoustically different from distant neighbors but more similar to neighbors within the same scattering layer or region. We infer that finescale layers are made up of small patches of like animals exhibiting a similar spatial arrangement throughout the layer. Cross-stream differences in acoustic roughness indicate a greater number of solitary scatterers occur within the slope water than within the Gulf Stream. Acoustic roughness is also reduced at night when compared with day, indicating that the ascent of vertical migrators into the near-surface waters (dispersed spatial pattern.
Acoustic modeling of fan noise generation and scattering in a modular duct system
Nijhof, Marten; Beltman, Marco; Wijnant, Ysbrand; Boer, de André
2005-01-01
Fan noise is an important noise source in computers. The noise spectrum of fans contains tonal noise, found at the so-called Blade Passing Frequency (BPF) and its higher harmonics, that plays an important role in the perceived sound quality. An acoustic resonator integrated in the duct of an in-duct
Titovich, Alexey S
2014-01-01
A thin infinitely long elastic shell is stiffened by $J$ in number identical lengthwise ribs distributed uniformly around the circumference and joined to a rod in the center. The 2D model of the substructure is a rigid central mass supported by $J$ axisymmetrically placed linear springs. The response of the shell-spring-mass system is quite different from a fluid filled shell or that of a solid cylinder due to the discrete number of contact points which couple the displacement of the shell at different locations. Exterior acoustic scattering due to normal plane wave incidence is solved in closed form for arbitrary $J$. The scattering matrix associated with the normal mode solution displays a simple structure, composed of distinct sub-matrices which decouple the incident and scattered fields into $J$ families. The presence of a springs-mass substructure causes resonances which are shown to be related to the subsonic shell flexural waves, and an approximate analytic expression is derived for the quasi-flexural ...
Alireza Bolghasi; Parviz Ghadimi; Mohammad A. Feizi Chekab
2016-01-01
The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz–Kirchhoff–Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall–Novarini model and optimized HKF method. The extended Hall–Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.
Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi
2016-09-01
The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.
Elhanaoui, Abdelkader; Aassif, Elhoucein; Maze, Gérard; Décultot, Dominique
2016-02-01
The present paper studies the acoustic signal backscattered by an air-filled copper–solid polymer two-layer cylindrical tube immersed in water. The work is done from the calculation of the backscattered pressure, an inverse Fourier Transform, which allows us to obtain an impulse signal. Smoothed pseudo Wigner–Ville and Concentrated spectrogram representations have been chosen to analyze the scattering phenomenon. For reduced frequencies ranging from 0.1 to 200, the resonance trajectories and time–frequency images have shown the presence of the guided waves. The bifurcation of the A0 wave into the A0(-) and the A0(+) waves has also been observed. The authors provide the phase and the group velocities of guided waves and investigate the differences between curves. The findings are then compared with those obtained for the copper and the solid polymer one-layer cylindrical tubes. Group velocity values have also been extracted from smoothed pseudo Wigner–Ville and Concentrated spectrogram time–frequency images. A good agreement with the theory has, therefore, been observed. The study of acoustic backscattering by a copper–solid polymer two-layer tube has revealed the interaction and the coupling of guided waves, specially the presence of a pseudo A1 wave; which is a very interesting, remarkable phenomenon.
2015-09-30
mechanisms in these animals. Stony Brook University’s Imaging Center has a “mouse CT” scanner which provides very high resolution (~70 micron) slices...data suggest that the school dynamics create a large amount of variability as to whether multiple scattering processes are likely to occur
1969-01-01
REFERENCE SIGNA TYPE 564BADAS OSCILLOSCOPE AMLFE I TRIGGER KROHN- HIITE GENERAL RADIO CO. MODEL 4100 TYPE 1396-A OSCILLATOR TONE BURST GENE RATOR...size of the insonified area (-3 d.B) for a grazing angle of 40 deg. The active scattering area for each of the ten data runs is confined to a
2006-06-01
sech2 wave form is used because the amplitude and horizontal displacement are solutions of the Korteweg de Vries ( KdV ) non linear wave equation which...a solution to the KDV wave equation . After making the frozen field approximation, the soliton can be represented by the following mathematical...scattering. 3. The Gaussian Soliton As discussed, the sech2 form of a soliton is chosen because it is an exact solution to the KDV wave equation . For
Swearingen, Michelle Elaine
2003-10-01
This thesis is a presentation of an analytic model, developed in cylindrical coordinates, for the scattering of a spherical wave off a semi infinite right cylinder placed normal to a ground surface. The model is developed to simulate a single tree and is developed as a first piece to creating a model for estimating attenuation in a forest based on scattering from individual tree trunks. Comparisons are made to the plane wave case, the transparent cylinder case, and the rigid and soft ground cases as a method of theoretically verifying the model. Agreement is excellent for these benchmark cases. Model sensitivity to five parameters is determined, which aids in error analysis, particularly when comparing the model results to experimental data, and offers insight into the inner workings of the model. An experiment was performed to collect real-world data on scattering from a cylinder normal to a ground surface. The data from the experiment is analyzed with a transfer function method into frequency and impulse responses. The model results are compared to the experimental data.
Røstad, Anders
2016-03-31
We make a comparison of the mesopelagic sound scattering layers (SLs) in two contrasting optical environments; the clear Red Sea and in murkier coastal waters of Norway (Masfjorden). The depth distributions of the SL in Masfjorden are shallower and narrower than those of the Red Sea. This difference in depth distribution is consistent with the hypothesis that the organisms of the SL distribute according to similar light comfort zones (LCZ) in the two environments. Our study suggest that surface and underwater light measurements ranging more than10 orders of magnitude is required to assess the controlling effects of light on SL structure and dynamics.
Low and high frequency asymptotics acoustic, electromagnetic and elastic wave scattering
Varadan, VK
2013-01-01
This volume focuses on asymptotic methods in the low and high frequency limits for the solution of scattering and propagation problems. Each chapter is pedagogical in nature, starting with the basic foundations and ending with practical applications. For example, using the Geometrical Theory of Diffraction, the canonical problem of edge diffraction is first solved and then used in solving the problem of diffraction by a finite crack. In recent times, the crack problem has been of much interest for its applications to Non-Destructive Evaluation (NDE) of flaws in structural materials.
Liu, Yuxiang; Barnett, Alex H.
2016-11-01
We present a high-order accurate boundary-based solver for three-dimensional (3D) frequency-domain scattering from a doubly-periodic grating of smooth axisymmetric sound-hard or transmission obstacles. We build the one-obstacle solution operator using separation into P azimuthal modes via the FFT, the method of fundamental solutions (with N proxy points lying on a curve), and dense direct least-squares solves; the effort is O (N3 P) with a small constant. Periodizing then combines fast multipole summation of nearest neighbors with an auxiliary global Helmholtz basis expansion to represent the distant contributions, and enforcing quasiperiodicity and radiation conditions on the unit cell walls. Eliminating the auxiliary coefficients, and preconditioning with the one-obstacle solution operator, leaves a well-conditioned square linear system that is solved iteratively. The solution time per incident wave is then O (NP) at fixed frequency. Our scheme avoids singular quadratures, periodic Green's functions, and lattice sums, and its convergence rate is unaffected by resonances within obstacles. We include numerical examples such as scattering from a grating of period 13 λ × 13 λ comprising highly-resonant sound-hard "cups" each needing NP = 64800 surface unknowns, to 10-digit accuracy, in half an hour on a desktop.
Ressler, Patrick H.
2002-11-01
A 153 kHz narrowband acoustic Doppler current profiler (ADCP) was used to measure volume backscattering strength ( Sv) during a deepwater oceanographic survey of cetacean and seabird habitat in the northeastern Gulf of Mexico. Sv was positively related to zooplankton and micronekton biomass (wet displacement volume) in 'sea-truth' net hauls made with a 1 m 2 Multiple Opening-Closing Net Environmental Sensing System (MOCNESS). A subset of these MOCNESS tows was used to explore the relationship between the numerical densities of various taxonomic categories of zooplankton and the ADCP backscatter signal. Crustaceans, small fish, and fragments of non-gas-bearing siphonophores in the net samples all showed significant, positive correlations with the acoustic signal, while other types of gelatinous zooplankton, pteropod and atlantid molluscs, and gas-filled siphonophore floats showed no significant correlation with Sv. Previously published acoustic scattering models for zooplankton were used to calculate expected scattering for several general zooplankton types and sizes for comparison with the field data. Even though gelatinous material often made up a large fraction of the total biomass, crustaceans, small fish, and pteropods were most likely the important scatterers. Since only crustacean and small fish densities were significantly correlated with Sv, it is suggested that Sv at 153 kHz can be used as a relative proxy for the abundance of these organisms in the Gulf of Mexico.
Vladimir V. Arabadzhi
2009-03-01
Full Text Available An algorithm for the suppression of the radiation and scattering fields created by vibration of the smooth closed surface of a body of arbitrary shape placed in a liquid is designed and analytically explored. The frequency range of the suppression allows for both large and small wave sizes on the protected surface. An active control system is designed that consists of: (a a subsystem for fast formation of a desired distribution of normal oscillatory velocities or displacements (on the basis of pulsed Huygens' sources and (b a subsystem for catching and targeting of incident waves on the basis of a grid (one layer of monopole microphones, surrounding the surface to be protected. The efficiency and stability of the control algorithm are considered. The algorithm forms the control signal during a time much smaller than the minimum time scale of the waves to be damped. The control algorithm includes logical and nonlinear operations, thus excluding interpretation of the control system as a traditional combination of linear electric circuits, where all parameters are constant (in time. This algorithm converts some physical body placed in a liquid into one that is transparent to a special class of incident waves. The active control system needs accurate information on its geometry, but does not need either prior or current information about the vibroacoustical characteristics of the protected surface, which in practical cases represents a vast amount of data.
Raczkowska, A.; Gorska, N.
2012-12-01
Puck Bay is an area of high species biodiversity belonging to the Coastal Landscape Park of Baltic Sea Protected Areas (BSPA) and is also included in the list of the World Wide Fund for Nature (WWF) and covered by the protection program "Natura 2000". The underwater meadows of the Puck Bay are important for Europe's natural habitats due to their role in enhancing the productivity of marine ecosystems and providing shelter and optimal feeding conditions for many marine organisms. One of the dominant species comprising the underwater meadows of the Southern Baltic Sea is the seagrass Zostera marina. The spatial extent of underwater seagrass meadows is altered by pollution and eutrophication; therefore, to properly manage the area one must monitor its ecological state. Remote acoustic methods are useful tools for the monitoring of benthic habitats in many marine areas because they are non-invasive and allow researchers to obtain data from a large area in a short period of time. Currently there is a need to apply these methods in the Baltic Sea. Here we present an analysis of the mechanism of scattering of acoustic waves on seagrass in the Southern Baltic Sea based on the numerical modeling of acoustic wave scattering by the biological tissues of plants. The study was conducted by adapting a model developed on the basis of DWBA (Distorted Wave Born Approximation) developed by Stanton and Chu (2005) for fluid-like objects, including the characteristics of the Southern Baltic seagrass. Input data for the model, including the morphometry of seagrass leaves, their angle of inclination and the density plant cover, was obtained through the analysis of biological materials collected in the Puck Bay in the framework of a research project financed by the Polish Government (Development of hydroacoustic methods for studies of underwater meadows of Puck Bay, 6P04E 051 20). On the basis of the developed model, we have analyzed the dependence of the target strength of a single
Laboratory for Structural Acoustics
Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...
Shallow Water Acoustic Laboratory
Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...
Biswas, Tutul; Ghosh, Tarun Kanti
2013-01-23
We study the interaction between electron and acoustic phonons in a Rashba spin-orbit coupled two-dimensional electron gas using Boltzmann transport theory. Both the deformation potential and piezoelectric scattering mechanisms are considered in the Bloch-Grüneisen (BG) regime as well as in the equipartition (EP) regime. The effect of the Rashba spin-orbit interaction on the temperature dependence of the resistivity in the BG and EP regimes is discussed. We find that the effective exponent of the temperature dependence of the resistivity in the BG regime decreases due to spin-orbit coupling.
声波与弹性体相互作用的有限元研究%On the FEM for the Acoustic Scattering and the Elastic Interaction
宗志雄; 潘文峰; 赵登虎
2011-01-01
研究了流-固耦合相互作用的声散射问题.基于DtN映射方法,将无界区域化为有界区域,证明了等价性；基于变分原理,证明了求解这类声散射问题的一种自然边界元与有限元耦合的求解方法,并证明了解的存在性和惟一性.%The paper is concerned with the acoustic scattering problem by a elastic obstacle immersed in a fluid. Based on DtN mapping, the equivalence is proved between a original external and limitless filed and a limitary field. Based on the variational principle, a coupling method of the finite-element and natural boundary-element was analyzed and presented for solving numerically the acoustic scattering problem, and the existence and uniqueness are proved.
2014-09-30
Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 annulus offset from the origin in the complex plane. The phase distributions are found to...Complex field, (b) amplitude and (c) phase distributions of ocean acoustic signal propagated over small source-receiver separations in the Gulf of
YANG Chenghao; LIAO Guanghong; YUAN Yaochu; CHEN Hong; ZHU Xiaohua
2013-01-01
Acoustic Doppler current profiler (ADCP) receives echoes from sound scatterers, then their speed is calcu-lated by the Doppler effect. In the open ocean, most of these backscatterers are from the plankton. The sound scatterers descend down to depth at around dawn, their mean speed is 2.9 cm/s, then they ascend up to the surface layer at around dusk with a mean speed of 2.1 cm/s, in the Luzon Strait. The descending speed is faster, which suggests that this zooplankton population may accelerate its downward migration under the action of the gravity. The vertical distribution of a mean volume backscattering strength (MVB-S) in the nighttime has two peaks, which locate near the upper and lower boundary layers of halocline, respectively. However, the backscatterers only aggregate near the surface layer in the daytime. The diel ver-tical migration (DVM) of sound scatterers has several characteristic patterns, it is stronger in summer, but weaker in winter, and the maximum peak occurs in September. The DVM occurrence is synchronous with the seawater temperature increasing at around dawn and dusk, it may affect the ocean mixing and water stratification.
2012-09-30
obtained, all below resonance. Fig. 5. The 1-D acoustic resonator with live zebra fish (Danio rerio). Fig. 6. Preliminary measured...of one of the zebra fish used in the resonator measurements is shown. This data was processed to show bones in reddish/pink/white colors and the...DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Laboratory Studies of the Impact of Fish School Density and
Nakayama, Masaaki, E-mail: nakayama@a-phys.eng.osaka-cu.ac.jp; Ohno, Tatsuya; Furukawa, Yoshiaki [Department of Applied Physics, Graduate School of Engineering, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)
2015-04-07
We have systematically investigated the photoluminescence (PL) dynamics of free excitons in GaAs/Al{sub 0.3}Ga{sub 0.7}As single quantum wells, focusing on the energy relaxation process due to exciton–acoustic-phonon scattering under non-resonant and weak excitation conditions as a function of GaAs-layer thickness from 3.6 to 12.0 nm and temperature from 30 to 50 K. The free exciton characteristics were confirmed by observation that the PL decay time has a linear dependence with temperature. We found that the free exciton PL rise rate, which is the reciprocal of the rise time, is inversely linear with the GaAs-layer thickness and linear with temperature. This is consistent with a reported theoretical study of the exciton–acoustic-phonon scattering rate in the energy relaxation process in quantum wells. Consequently, it is conclusively verified that the PL rise rate is dominated by the exciton–acoustic-phonon scattering rate. In addition, from quantitative analysis of the GaAs-layer thickness and temperature dependences, we suggest that the PL rise rate reflects the number of exciton–acoustic-phonon scattering events.
Seo, Jung Hee; Mittal, Rajat
2011-02-20
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented.
Zimmerman, Robert A.; Biggs, Douglas C.
1999-03-01
The acoustic backscatter intensity (ABI) reflected from epipelagic zooplankton communities in the central Gulf of Mexico was measured during June 1995 with a vessel-mounted, narrowband-153-kHz acoustic Doppler current profiler (ADCP). Horizontal and vertical variations in ABI were documented in three kinds of mesoscale hydrographic features commonly found in the Gulf of Mexico: the warm-core Loop Current (LC), a warm-core Loop Current eddy (LCE), and a cold-core region that separated the two warm-core features. Since new nitrogen domes close to surface waters in cold-core features whereas surface waters of warm-core features are nutrient depleted, the cold-core region was expected to have higher biological stocks as a result of locally higher primary production. Both ABI and net tow data confirmed that the cold-core region was in fact a zone of local aggregation of zooplankton and micronekton. During both day and night, ABI when integrated for the upper 50 and 100 m in the cold-core region was significantly greater than in the LC or in the LCE, and ABI was positively correlated with standing stock biomass taken by the net tows. Further investigations into the biological differences between Gulf of Mexico divergence and convergence regimes are warranted, and the ADCP will be a useful tool for examination of the distribution of sound scatterers in such features.
Goryachev, Maxim; Creedon, Daniel L; Galliou, Serge; Tobar, Michael E
2013-08-23
The confinement of high frequency phonons approaching 1 GHz is demonstrated in phonon-trapping acoustic cavities at cryogenic temperatures using a low-coupled network approach. The frequency range is extended by nearly an order of magnitude, with excitation at greater than the 200th overtone achieved for the first time. Such a high frequency operation reveals Rayleigh-type phonon scattering losses due to highly diluted lattice impurities and corresponding glasslike behavior, with a maximum Q(L)×f product of 8.6×10(17) at 3.8 K and 4×10(17) at 15 mK. This suggests a limit on the Q×f product due to unavoidable crystal disorder. Operation at 15 mK is high enough in frequency that the average phonon occupation number is less than unity, with a loaded quality factor above half a billion. This work represents significant progress towards the utilization of such acoustic cavities for hybrid quantum systems.
2010-05-27
1996; Nero et al, 1998; Love et al, 2004). The broadband system developed for this project was used to measure high-frequency broadband acoustic...Wilson, M. A., and Nero , R.W. (2004). "Unusual swimbladder behavior offish in the Cariaco Trench," Deep-Sea Research 151(1): 1-16. Lundgren B., and...propagating shoreward over the continental shelf," J. Phys. Oceanogr. 33, 2093-2112. Nero , R.W., Thompson, C.H., and Love, R.H. (1998). "Low-frequency
Anand, Akash; Pandey, Ambuj; Rathish Kumar, B. V.; Paul, Jagabandhu
2016-04-01
This text proposes a fast, rapidly convergent Nyström method for the solution of the Lippmann-Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by inhomogeneous obstacles, while allowing the material properties to jump across the interface. The method works with overlapping coordinate charts as a description of the given scatterer. In particular, it employs "partitions of unity" to simplify the implementation of high-order quadratures along with suitable changes of parametric variables to analytically resolve the singularities present in the integral operator to achieve desired accuracies in approximations. To deal with the discontinuous material interface in a high-order manner, a specialized quadrature is used in the boundary region. The approach further utilizes an FFT based strategy that uses equivalent source approximations to accelerate the evaluation of large number of interactions that arise in the approximation of the volumetric integral operator and thus achieves a reduced computational complexity of O (Nlog N) for an N-point discretization. A detailed discussion on the solution methodology along with a variety of numerical experiments to exemplify its performance are presented in this paper.
2015-09-30
and near the swim bladder resonance frequency, including multiple scattering and coherent interaction effects between the fish. The aim has been to...1) Each diagonal term [i.e., Mnn] describes the resonance behavior of an individual swim bladder. The quantities mn , bn , kn , etc., are varied to...which is represented by the conical volume shown behind it. If there are neighbors within this volume, they are not incorporated in 4 Figure 2
Homentcovschi, Dorel; Miles, Ronald N.
2010-01-01
The paper gives a new method for analyzing planar discontinuities in rectangular waveguides. The method consists of a re-expansion of the normal modes in the two ducts at the junction plane into a system of functions accounting for the velocity singularities at the corner points. As the new expansion has an exponential convergence, only a few terms have to be considered for obtaining the solution of most practical problems. To see how the method works some closed form solutions, obtained by the conformal mapping method, are used to discuss the convergence of the re-expanded series when the number of retained terms increases. The equivalent impedance accounting for nonplanar waves into a plane-wave analysis is determined. Finally, the paper yields the scattering matrix which describes the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both parts of the duct. PMID:20707432
Buscombe, D.; Grams, P. E.; Kaplinski, M. A.
2014-12-01
In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length and amplitude scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by georeferenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum and the intercept and slope from a power law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration and surveys made at calibration sites at different times were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well-understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.
Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.
2014-01-01
In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.
Localized acoustic surface modes
Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan
2016-04-01
We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.
Localized Acoustic Surface Modes
Farhat, Mohamed
2015-08-04
We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.
Modelling Hyperboloid Sound Scattering
Burry, Jane; Davis, Daniel; Peters, Brady;
2011-01-01
The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...
High-Frequency Seafloor Acoustics
Jackson, Darrell R
2007-01-01
High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.
Fundamentals of Shallow Water Acoustics
Katsnelson, Boris; Lynch, James
2012-01-01
Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.
1989-08-01
Frisk, whose key advice as well as encouragement, were intrumental in keeping me on course. To my thesis committee members Uno Ingard , Henrik Schmidt...Vibration and Sound. McGraw-Hill, New York, 1948. [58] P.M. Morse and K.U. Ingard . Theoretical Acoustics. McGraw-Hill, New York, 1964. [59] B. Noble. The
2014-09-30
SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report ( SAR ) 18. NUMBER OF...arbitrary orientation with respect to the fish school, and for any bistatic angle with respect to the acoustic source, including both back and forward
Klieber, Christoph; Hecksher, Tina; Pezeril, Thomas;
2013-01-01
of the shear acoustic relaxation time agrees well with literature data for dielectric measurements. In DC704, combining the new data with data from measurements obtained previously by piezo-ceramic transducers yields figures showing the longitudinal and shear sound velocities at frequencies from mHz to GHz...
文立华; 张京妹; 孙进才
2001-01-01
Traditional methods for solving acoustic problems in engineering often require the solution of non-symmetric full matrix, whose dimension may be even higher than 10 000 and thus computational cost becomes quite high. To overcome this serious shortcoming, we propose a new periodic wavelet approach for the Helmholtz integral-equation solution of two-dimensional acoustic radiation and scattering over curved computation domain. We expand the boundary quantities in terms of periodic and orthogonal wavelets and we obtain the algebraic equations needed for solving the acoustic problems with Dirichlet, Neumann and mixed conditions. We evaluate the coefficients with fast wavelet transform. The advantage of the new approach is a highly sparse matrix system. We compare the numerical results obtained with our new approach, boundary element method or analytical solutions; the numerical results, as given in Table 1, show that our new approach converges rapidly and is of good accuracy.%提出了一种新的求解二维Helmholtz积分方程的方法。它通过将边界量用周期子波展开，将Helmholtz积分方程化为一组代数方程求解。即可求解Dirichlet、Neumann问题，也可求解混合边值问题。方程的系数形成可用快速子波变换。用该方法形成的Helmholtz积分方程的系数矩阵是一稀疏矩阵。这样大大提高了计算效率。本文算例表明：该方法收敛快，精度高，相同的精度下，本文方法求解的未知量大大少于边界元所用未知量。
North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea
2014-09-30
acoustic predictions and for understanding the local ocean dynamics, (iii) improving our understanding of the physics of scattering by internal waves ...the scattering of the acoustic signals by ocean internal waves and/or spice (Dzieciuch, 2014). The procedure consisted of pulse compression of the...ambient noise field, and (v) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor for both
Blauert, Jens
Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....
National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...
Afeyan, Bedros; Won, K; Montgomery, D S; Hammer, J; Kirkwood, R K; Schmitt, A J
2012-01-01
In a series of experiments on the Omega laser facility at LLE, we have demonstrated the suppression of SRS in prescribed spectral windows due to the presence of externally controlled levels of ion acoustic waves (IAW, by crossing two blue beams at the Mach -1 surface) and electron plasma waves (EPW, by crossing a blue and a green beam around a tenth critical density plasma) generated via optical mixing. We have further observed SRS backscattering of a green beam when crossed with a blue pump beam, in whose absence, that (green beam) backscattering signature was five times smaller. This is direct evidence for green beam amplification when crossed with the blue. Additional proof comes from transmitted green beam measurements. A combination of these techniques may allow the suppression of unacceptable levels of SRS near the light entrance hole of large-scale hohlraums on the NIF or LMJ.
Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging
2012-01-01
The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging
Nayak, Rajkishore
2016-01-01
This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.
Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.
2016-01-01
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...
Bursting behaviours in cascaded stimulated Brillouin scattering
Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang
2012-01-01
Stimulated Brillouin scattering is studied by numerically solving the Vlasov-Maxwell system.A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma.It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light,as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction.The bursting time in the reflectivity is found to be less than half the ion acoustic period.The ion temperature can affect the stimulated Brillouin scattering cascade,which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures.For stimulated Brillouin scattering saturation,higher-harmonic generation and wave-wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter.In addition,stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light.
Inversion assuming weak scattering
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2013-01-01
The study of weak scattering from inhomogeneous media or interface roughness has long been of interest in sonar applications. In an acoustic backscattering model of a stationary field of volume inhomogeneities, a stochastic description of the field is more useful than a deterministic description...... due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...
Acoustics of finite-aperture vortex beams
Mitri, F G
2014-01-01
A method based on the Rayleigh-Sommerfeld surface integral is provided, which makes it feasible to rigorously model, evaluate and compute the acoustic scattering and other mechanical effects of finite-aperture vortex beams such as the acoustic radiation force and torque on a viscoelastic sphere in various applications in acoustic tweezers and microfluidics, particle entrapment, manipulation and rotation. Partial-wave series expansions are derived for the incident field of acoustic spiraling (vortex) beams, comprising high-order Bessel and Bessel-Gauss beams.
Generalizations of Karp's theorem to elastic scattering theory
Tuong, Ha-Duong
Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.
Acoustic signal analysis of underwater elastic cylinder
LI Xiukun; YANG Shi'e
2001-01-01
The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets. And the discrete wavelet transform of amplitude spectrum is presented and used to identify the resonant components of underwater targets.PACS numbers: 43.30, 43.60
Microfabricated bulk wave acoustic bandgap device
Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol
2010-06-08
A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).
Lyamshev, Leonid M
2004-01-01
Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...
LU, B.
2011-11-07
This study takes place in the framework of tools development for the telemetry simulation. Telemetry is a possible technology applied to monitoring the sodium-cooled fast reactors (SFR) and consists in positioning in the reactor core a transducer to generate an ultrasonic beam. This beam propagates through an inhomogeneous random medium since temperature fluctuations occur in the liquid sodium and consequently the sound velocity fluctuates as well, which modifies the bream propagation. Then the beam interacts with a reactor structure immersed in sodium. By measuring the time of flight of the backscattered echo received by the same transducer, one can determine the precise location of the structure. The telemetry simulation therefore requires modeling of both the acoustic wave propagation in an inhomogeneous random medium and the interaction of this wave with structures of various shapes; this is the objective of this work. A stochastic model based on a Monte Carlo algorithm is developed in order to take into account the random fluctuations of the acoustic field. The acoustic field through an inhomogeneous random medium is finally modeled from the field calculated in a mean homogeneous medium by modifying the travel times of rays in the homogeneous medium, using a correction provided by the stochastic model. This stochastic propagation model has been validated by comparison with a deterministic model and is much simpler to integrate in the CIVA software platform for non destructive evaluation simulation and less time consuming than the deterministic model. In order to model the interaction between the acoustic wave and the immersed structures, classical diffraction models have been evaluated for rigid structures, including the geometrical theory of diffraction (GTD) and the Kirchhoff approximation (KA). These two approaches appear to be complementary. Combining them so as to retain only their advantages, we have developed a hybrid model (the so-called refined KA
Akiyama, Iwaki
2009-01-01
The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...
Damarla, Thyagaraju
2015-01-01
This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...
National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....
Kuttruff, Heinrich; Mommertz, Eckard
The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.
Fogel, Ronen; Seshia, Ashwin A.
2016-01-01
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040
Acoustic Scattering Kernels from Arctic Sea Ice.
1986-10-01
84-C-0180 S. PErfORMING ORGANIZATION NAME AND AOMRSSS 10. PROGRAM ELEMENT. PROJECT . TASK Science Applications International Corp. AREA & WORK UNIT...al. (1986) described an implementation of SISM/ICE for the ASTRAL and PE models. The concepts are also relevant to other models, including FACT, FFP...Even if the ice field contains keels of only a single size, the projected keel width intercepted by any particular track will take on a range of
Bayesian Inversion of Seabed Scattering Data
2014-09-30
Bayesian Inversion of Seabed Scattering Data (Special Research Award in Ocean Acoustics) Gavin A.M.W. Steininger School of Earth & Ocean...project are to carry out joint Bayesian inversion of scattering and reflection data to estimate the in-situ seabed scattering and geoacoustic parameters...valid OMB control number. 1. REPORT DATE 30 SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Bayesian
Dahan, Raphael; Carmon, Tal
2015-01-01
Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.
侯尚林; 薛乐梅; 黎锁平; 刘延君; 徐永钊
2012-01-01
推导了光子晶体光纤中声波微小位移波动方程;研究了泵浦波长以及纤芯折射率对声波模式的影响;应用石英圆柱模型研究了小芯径光子晶体光纤中纤芯直径对布里渊声波模式色散的影响.结果表明在光子晶体光纤中,纵向声波和横向声波共同作用产生质点声场,两者相互耦合将产生混合声波模式;可以通过改变泵浦波长或光子晶体光纤纤芯折射率来改变参与布里渊散射（BS）过程的声波模式的传播常数;随着光子晶体光纤（PCF）纤芯直径的增大,声波模式耦合程度得到加强,相速度呈减小趋势,且同一传播常数下,声波模式数呈增多趋势;随着泵浦波频率的增大,声波相速度减小.%The effects of optical fiber parameters, pump wavelength and the fiber core refractive index in small-core photonic crystal fibers on characteristics of acoustic modes and the dependency of the acoustic modes coupling are investigated by the effective index method. The results indicate that both the mixed longitudinal acoustic mode and transverse acoustic mode jointly produce the acoustic fields, and their coupling forms the mixed acoustic mode; the propagation constant of acoustic mode can be changed by tailoring the pump wavelength or the PCF core refractive index in the process of SBS; the acoustic mode coupling increase and the phase velocity of the acoustic mode decreases with the increase of the PCF core diameter, and there is also a growing trend of the number of the acoustic modes at the same propagation constant. The velocity decreases with the increase of the frequency of the pump wave.
Acoustic properties of a porous glass (vycor) at hypersonic frequencies.
Levelut, C; Pelous, J
2007-10-17
Brillouin scattering experiments have been performed from 5 to 1600 K in vycor, a porous silica glass. The acoustic velocity and attenuation at hypersonic frequencies are compared to those of bulk silica and others porous silica samples. The experimental evidence for the influence of porosity on the scattering by acoustic waves is compared to calculations. The correlation between internal friction and thermal conductivity at low temperature is discussed.
Scattering problems in elastodynamics
Diatta, Andre; Kadic, Muamer; Wegener, Martin; Guenneau, Sebastien
2016-09-01
In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general elastodynamic wave problems in continuum mechanics. In this Rapid Communication, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasistatic regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof.
Scattering problems in elastodynamics
Diatta, Andre; Wegener, Martin; Guenneau, Sebastien
2016-01-01
In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general elastodynamic wave problems in continuum mechanics. In this paper, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasi-static regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof.
Scattering fidelity in elastodynamics
Gorin, T.; Seligman, T. H.; Weaver, R. L.
2006-01-01
The recent introduction of the concept of scattering fidelity causes us to revisit the experiment by Lobkis and Weaver [Phys. Rev. Lett. 90, 254302 (2003)]. There, the “distortion” of the coda of an acoustic signal is measured under temperature changes. This quantity is, in fact, the negative logarithm of scattering fidelity. We reanalyze their experimental data for two samples, and we find good agreement with random matrix predictions for the standard fidelity. Usually, one may expect such an agreement for chaotic systems, only. While the first sample may indeed be assumed chaotic, for the second sample, a perfect cuboid, such an agreement is surprising. For the first sample, the random matrix analysis yields perturbation strengths compatible with semiclassical predictions. For the cuboid, the measured perturbation strengths are by a common factor of (5)/(3) too large. Apart from that, the experimental curves for the distortion are well reproduced.
Integrated Model for the Acoustics of Sediments
2014-09-30
the solid material. This model has been associated with seismic wave propagation in essentially dry soil. A second loss mechanism in fluid-saturated...multiple scattering (MS). [The left panel shows wave attenuations as functions of frequency with measured and modeled data points. The right panels...acoustic interaction with the ocean floor including penetration, reflection and scattering in support of MCM and ASW needs. OBJECTIVES The
Acoustic interaction forces between small particles in an ideal fluid
Silva, Glauber T
2014-01-01
We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair-interaction potentials with no restriction on the inter-particle distance. The theory is applied to studies of the acoustic interaction force on a particle suspension in either standing or traveling plane waves. The results show aggregation regions along the wave propagation direction, while particles may attract or repel each other in the transverse direction. In addition, a mean-field approximation is developed to describe ...
Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)
1996-12-31
While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.
Acoustic dose and acoustic dose-rate.
Duck, Francis
2009-10-01
Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.
Constructing acoustic timefronts using random matrix theory
Hegewisch, Katherine C
2012-01-01
In a recent letter [Europhys. Lett. {\\bf 97}, 34002 (2012)], random matrix theory is introduced for long-range acoustic propagation in the ocean. The theory is expressed in terms of unitary propagation matrices that represent the scattering between acoustic modes due to sound speed fluctuations induced by the ocean's internal waves. The scattering exhibits a power-law decay as a function of the differences in mode numbers thereby generating a power-law, banded, random unitary matrix ensemble. This work gives a more complete account of that approach and extends the methods to the construction of an ensemble of acoustic timefronts. The result is a very efficient method for studying the statistical properties of timefronts at various propagation ranges that agrees well with propagation based on the parabolic equation. It helps identify which information about the ocean environment survives in the timefronts and how to connect features of the data to the surviving environmental information. It also makes direct c...
Brillouin scattering self-cancellation
Florez, O.; Jarschel, P. F.; Espinel, Y. A. V.; Cordeiro, C. M. B.; Mayer Alegre, T. P.; Wiederhecker, G. S.; Dainese, P.
2016-06-01
The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it.
Unified Description of Scattering and Propagation FY14 Annual Report
2014-09-30
scattering and propagation FY14 Annual Report David Paul Knobles Applied Research Laboratories The University of Texas at Austin PO Box 8029 Austin...www.onr.navy.mil/sci_tech/32/321/ocean_acoustics.asp LONG-TERM GOALS The long-term goal of the research is to increase the physical understanding of acoustic ...with a thick mud sediment where the acoustic data result from multiple SUS deployments. A second case is for a shallow water environment with a sandy
Potential of acoustic emissions from three point bending tests as rock failure precursors
Agioutantis Z.; Kaklis K.; Mavrigiannakis S.; Verigakis M.; Vallianatos F.; Saltas V.
2016-01-01
Development of failure in brittle materials is associated with microcracks, which release energy in the form of elastic waves called acoustic emissions. This paper presents results from acoustic emission mea-surements obtained during three point bending tests on Nestos marble under laboratory conditions. Acoustic emission activity was monitored using piezoelectric acoustic emission sensors, and the potential for accurate prediction of rock damage based on acoustic emission data was investigated. Damage local-ization was determined based on acoustic emissions generated from the critically stressed region as scat-tered events at stresses below and close to the strength of the material.
Fish Acoustics: Physics-Based Modeling and Measurement
2011-01-01
physical scattering mechanisms. To demonstrate this point, the target strength of a canonical gas-filled sphere is computed using a standard...high-frequency sound scattering by swimbladdered fish,” Journal of the Acoustical Society of America, Vol. 78, pp. 688-700 (1985). 9. Gauss , R. C
Soft acoustic mode in ferroelastic BiVO4
Benyuan, Gu; Copic, M.; Cummins, H. Z.
1981-10-01
Brillouin scattering spectroscopy of bismuth vanadate has revealed a soft acoustic mode which is characteristic of a proper ferroelastic phase transition. Raman scattering has revealed an optic mode which is doubly degenerate Eg in the paraelastic phase and splits into two Bg modes in the ferroelastic phase. The temperature dependence of the splitting is also consistent with a proper ferroelastic transition.
New acoustics, based on lefthanded media
Gan, Woon S.
2012-05-01
Metamaterials are materials with artificial properties defined by their sub-wavelength structure rather than their chemical composition. With the arrival of photonic crystals and phononic crystals, the fabrication of metamaterials which do not exist in nature become a reality. We discovered parity invariance in acoustical field equation. We also show that negative refraction is a special case of coordinates transformation (used in acoustical cloaking) when the determinant of the direction cosines matrix equals -1 and we develop a unifed theory for negative refraction and cloaking. Gauge invariance approach also removes the ambiguity problem of positive sign and negative sign when using the dispersion relation for the negative refractive index. Lefthanded materials produce Poynting vector in opposite direction to wave propagation. This gives rise to new phenomena in refraction, diffraction, and scattering of acoustic waves in the material‥ These three are the basic mechanisms of sound propagation in medium. Hence we call this new acoustics.
Broadband acoustic cloak for ultrasound waves.
Zhang, Shu; Xia, Chunguang; Fang, Nicholas
2011-01-14
Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely, serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Because of the nonresonant nature of the building elements, this low-loss (∼6 dB/m) cylindrical cloak exhibits invisibility over a broad frequency range from 52 to 64 kHz. Furthermore, our experimental study indicates that this design approach should be scalable to different acoustic frequencies and offers the possibility for a variety of devices based on coordinate transformation.
Time-Reversal Acoustics and Maximum-Entropy Imaging
Berryman, J G
2001-08-22
Target location is a common problem in acoustical imaging using either passive or active data inversion. Time-reversal methods in acoustics have the important characteristic that they provide a means of determining the eigenfunctions and eigenvalues of the scattering operator for either of these problems. Each eigenfunction may often be approximately associated with an individual scatterer. The resulting decoupling of the scattered field from a collection of targets is a very useful aid to localizing the targets, and suggests a number of imaging and localization algorithms. Two of these are linear subspace methods and maximum-entropy imaging.
Use of acoustic vortices in acoustic levitation
Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller
2009-01-01
Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...
Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray
1990-01-01
An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.
Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.
2003-08-01
Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.
Seafloor Scattering in Shallow Water Environments
2013-03-18
altogether. This work was primarily concerned with accurately modeling scattering at close range . However, mud volcanoes are also demonstrated sources of...Topographical information for the seabed was obtained by Anthony Lyons using the NURC photogrammetry system [5], where surface height fields for an...acoustic backscatter was derived. Photographs captured using the NURC photogrammetry system were calibrated and processed according to standard
Thomson Scattering Process in Laser-Produced Plasmas
YU Quan-Zhi; JIANG Xiao-Hua; LI Wen-Hong; LIU Shen-Ye; ZHENG Zhi-Jian; ZHANG Jie; LI Yu-Tong; ZHENG Jun; YAN Fei; LU Xin; WANG Zhe-Bin; ZHENG Jian; YU Chang-Xuan
2005-01-01
@@ We present the evolutions of the electron temperature and plasma expansion velocity with Thomson scattering experiment. The observed time-resolved ion-acoustic image is reproduced by a numerical code which couples the Thomson scattering theory with the output parameters of the one-dimensional hydrocode MEDUSA.
Long-Wavelength Phonon Scattering in Nonpolar Semiconductors
Lawætz, Peter
1969-01-01
The long-wavelength acoustic- and optical-phonon scattering of carriers in nonpolar semiconductors is considered from a general point of view. The deformation-potential approximation is defined and it is shown that long-range electrostatic forces give a nontrivial correction to the scattering. Fo...
Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics
1996-12-31
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.
Engineering acoustic lenses with help from evolution
Ha˚Kansson, Andreas; Sánchez-Dehesa, José; Sánchis, Lorenzo
2004-05-01
Optimization engineering through evolutionary algorithms have proven to be very efficient, especially in hard problems containing a large set of optimization parameters. Like evolution this family of algorithms is able to tackle enormous complex problems with fairly simple means. Here, a simple genetic algorithm [J. H. Holland, Adaptation in Natural and Artificial Systems (Univ. of Michigan, Ann Arbor, 1975)] is used in conjunction with the multiple scattering theory [L. Sánchis et al., Phys. Rev. B 67, 035422 (2003)] to fabricate a new generation of acoustic devices based on a discrete number of cylindrical scatterers. In particular, acoustic lenses [F. Cervera et al., Phys. Rev. Lett. 88, 023902 (2002)] with flat surfaces have been designed to focus the sound in a fixed focal point for one or multiple frequencies. Each scatterer is carefully placed using the optimization method within the preset boundary conditions, to maximize the pressure contribution in the chosen focal spot. With this method acoustic lenses with very low f-numbers of the order 0.3 and with amplifications over 12 dB have been estimated using a reduced number of scatterers (~60). Preliminary results obtained from the experimental realization of the designed devices confirm our predictions.
Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;
2011-01-01
Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....
Springer Handbook of Acoustics
Rossing, Thomas D
2007-01-01
Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...
Brandon LaBelle
2012-06-01
Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.
Mohammad Faraji Rad
2011-01-01
Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment. In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.
Acoustic source for generating an acoustic beam
Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian
2016-05-31
An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.
Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials
Shen, Jian Qi
2016-08-01
In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.
The Fast Scattering Code (FSC): Validation Studies and Program Guidelines
Tinetti, Ana F.; Dunn, Mark H.
2011-01-01
The Fast Scattering Code (FSC) is a frequency domain noise prediction program developed at the NASA Langley Research Center (LaRC) to simulate the acoustic field produced by the interaction of known, time harmonic incident sound with bodies of arbitrary shape and surface impedance immersed in a potential flow. The code uses the equivalent source method (ESM) to solve an exterior 3-D Helmholtz boundary value problem (BVP) by expanding the scattered acoustic pressure field into a series of point sources distributed on a fictitious surface placed inside the actual scatterer. This work provides additional code validation studies and illustrates the range of code parameters that produce accurate results with minimal computational costs. Systematic noise prediction studies are presented in which monopole generated incident sound is scattered by simple geometric shapes - spheres (acoustically hard and soft surfaces), oblate spheroids, flat disk, and flat plates with various edge topologies. Comparisons between FSC simulations and analytical results and experimental data are presented.
Rajabi, Majid; Mojahed, Alireza
2016-11-01
In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.
Fast Scattering Code (FSC) User's Manual: Version 2
Tinetti, Ana F.; Dun, M. H.; Pope, D. Stuart
2006-01-01
The Fast Scattering Code (version 2.0) is a computer program for predicting the three-dimensional scattered acoustic field produced by the interaction of known, time-harmonic, incident sound with aerostructures in the presence of potential background flow. The FSC has been developed for use as an aeroacoustic analysis tool for assessing global effects on noise radiation and scattering caused by changes in configuration (geometry, component placement) and operating conditions (background flow, excitation frequency).
Atlantic Herring Acoustic Surveys
National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...
An overview of acoustic telemetry
Drumheller, D.S.
1992-01-01
Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quire low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested; existing field test data need to be analyzed for transmission bandwidth and attenuation; and the new and less expensive methods of collecting data on transmission path quality need to be incorporated into this effort. 11 refs.
Acoustic radiation force and torque on an absorbing particle
Silva, Glauber T
2013-01-01
Exact formulas of the radiation force and torque exerted on an absorbing particle in the Rayleigh scattering limit caused by an arbitrary harmonic acoustic wave are presented. They are used to analyze the trapping conditions by a single-beam acoustical tweezer based on a spherically focused ultrasound beam. Results reveal that particle's absorption has a pivotal role in single-beam trapping. Furthermore, we obtain the radiation torque induced by a Bessel beam in an on-axis particle.
Acoustic and optical phonons in metallic diamond
M. Hoesch, T. Fukuda, T. Takenouchi, J.P. Sutter, S. Tsutsui, A.Q.R. Baron, M. Nagao, Y. Takano, H. Kawarada and J. Mizuki
2006-01-01
Full Text Available The dispersion of acoustic and optical phonons in highly boron-doped diamond has been measured by inelastic X-ray scattering at an energy resolution of 6.4 meV. The sample is doped in the metallic regime and shows superconductivity below 4.2 K (midpoint. The data are compared to pure and nitrogen-doped diamond that represent the non-metallic state. No difference is found for the acoustic phonons in the three samples, while the optical phonons show a shift of the dispersion (softening in qualitative agreement with earlier results from Raman spectroscopy. The presence of boron and nitrogen incorporated into the diamond lattice leads to structural disorder. Evidence for this is found both in the observation of otherwise symmetry-forbidded Bragg intensity at (0 0 2 and intensity from acoustic phonon modes in the vicinity of (0 0 2.
Acoustic Communications (ACOMMS) ATD
2016-06-14
develop and demonstrate emerging undersea acoustic communication technologies at operationally useful ranges and data rates. The secondary objective...Technology Demonstration program (ACOMMS ATD) was to demonstrate long range and moderate data rate underwater acoustic communications between a submarine...moderate data rate acoustic communications capability for tactical use between submarines, surface combatants, unmanned undersea vehicles (UUVs), and other
Tutorial on architectural acoustics
Shaw, Neil; Talaske, Rick; Bistafa, Sylvio
2002-11-01
This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).
Thomson scattering from laser plasmas
Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H; Jadaud, J P; MacGowan, B J; Rozmus, W; Suter, L J; Williams, E A
1999-01-12
Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
Localization of acoustic sensors from passive Green's function estimation.
Nowakowski, Thibault; Daudet, Laurent; de Rosny, Julien
2015-11-01
A number of methods have recently been developed for passive localization of acoustic sensors, based on the assumption that the acoustic field is diffuse. This article presents the more general case of equipartition fields, which takes into account reflections off boundaries and/or scatterers. After a thorough discussion on the fundamental differences between the diffuse and equipartition models, it is shown that the method is more robust when dealing with wideband noise sources. Finally, experimental results show, for two types of boundary conditions, that this approach is especially relevant when acoustic sensors are close to boundaries.
Acoustic radiation force analysis using finite difference time domain method.
Grinenko, A; Wilcox, P D; Courtney, C R P; Drinkwater, B W
2012-05-01
Acoustic radiation force exerted by standing waves on particles is analyzed using a finite difference time domain Lagrangian method. This method allows the acoustic radiation force to be obtained directly from the solution of nonlinear fluid equations, without any assumptions on size or geometry of the particles, boundary conditions, or acoustic field amplitude. The model converges to analytical results in the limit of small particle radii and low field amplitudes, where assumptions within the analytical models apply. Good agreement with analytical and numerical models based on solutions of linear scattering problems is observed for compressible particles, whereas some disagreement is detected when the compressibility of the particles decreases.
Acoustic elliptical cylindrical cloaks
Ma Hua; Qu Shao-Bo; Xu Zhuo; Wang Jia-Fu
2009-01-01
By making a comparison between the acoustic equations and the 2-dimensional (2D) Maxwell equations, we obtain the material parameter equations (MPE) for acoustic elliptical cylindrical cloaks. Both the theoretical results and the numerical results indicate that an elliptical cylindrical cloak can realize perfect acoustic invisibility when the spatial distributions of mass density and bulk modulus are exactly configured according to the proposed equations. The present work is the meaningful exploration of designing acoustic cloaks that are neither sphere nor circular cylinder in shape, and opens up possibilities for making complex and multiplex acoustic cloaks with simple models such as spheres, circular or elliptic cylinders.
Concha-Abarca, Justo Andres
2002-11-01
The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.
Scattering of sound waves by a compressible vortex
Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz
1991-01-01
Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.
Rayleigh scattering of a spherical sound wave.
Godin, Oleg A
2013-02-01
Acoustic Green's functions for a homogeneous medium with an embedded spherical obstacle arise in analyses of scattering by objects on or near an interface, radiation by finite sources, sound attenuation in and scattering from clouds of suspended particles, etc. An exact solution of the problem of diffraction of a monochromatic spherical sound wave on a sphere is given by an infinite series involving products of Bessel functions and Legendre polynomials. In this paper, a simple, closed-form solution is obtained for scattering by a sphere with a radius that is small compared to the wavelength. Soft, hard, impedance, and fluid obstacles are considered. The solution is valid for arbitrary positions of the source and receiver relative to the scatterer. Low-frequency scattering is shown to be rather sensitive to boundary conditions on the surface of the obstacle. Low-frequency asymptotics of the scattered acoustic field are extended to transient incident waves. The asymptotic expansions admit an intuitive interpretation in terms of image sources and reduce to classical results in appropriate limiting cases.
Cascaded forward Brillouin scattering to all Stokes orders
Wolff, Christian; Eggleton, Benjamin J; Steel, Michael J; Poulton, Christopher G
2016-01-01
Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and this is likely to occur in certain integrated opto-acoustic devices. We develop a Hamiltonian formalism for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin scattering as the interaction of a single acoustic envelope and a single optical envelope that covers all Stokes and anti-Stokes orders, we obtain a compact model that is well suited for numerical implementation, extension to include other optical nonlinearities or short pulses, and application in the quantum-optics domain. We then theoretically analyze intra-mode forward Brillouin scattering (FBS) for arbitrary waveguides with and without optical dispersion. In the absence of optical dispersion, we find an exact analytical solution. With a perturbative approach, we furthermore solve the case of weak optical dispersion. Our work leads to several key results on intra-mode FBS. For negligible dispersion, we...
Homogenization scheme for acoustic metamaterials
Yang, Min
2014-02-26
We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.
Brillouin Scattering Self-Cancellation
Florez, Omar; Espinel, Yovanny A V; Cordeiro, Cristiano M B; Alegre, Thiago P Mayer; Wiederhecker, Gustavo S; Dainese, Paulo
2016-01-01
The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result proper material and structure engineering allows one to control each contribution individually. In this paper, we experimentally demonstrate the perfect cancellation of Brillouin scattering by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancin...
Friedrich, Harald
2016-01-01
This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...
Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department
2013-08-01
Written by the author of the widely acclaimed textbook. Theoretical Atomic Physics Includes sections on quantum reflection, tunable Feshbach resonances and Efimov states. Useful for advanced students and researchers. This book presents a concise and modern coverage of scattering theory. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. The level of abstraction is kept as low as at all possible, and deeper questions related to mathematical foundations of scattering theory are passed by. The book should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. It is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.
Yao, Jie, E-mail: yjie2@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Lesage, Anne-Cécile; Hussain, Fazle [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Bodmann, Bernhard G. [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States); Kouri, Donald J. [Department of Physics, University of Houston, Houston, Texas 77204 (United States)
2014-12-15
The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptotic form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.
Elastic wave scattering to characterize heterogeneities in the borehole environment
Tang, Xiao-Ming; Li, Zhen; Hei, Chuang; Su, Yuan-Da
2016-04-01
Scattering due to small-scale heterogeneities in the rock formation surrounding a wellbore can significantly change the acoustic waveform from a logging measurement which in turn can be used to characterize the formation heterogeneities. This study simulates the elastic heterogeneity scattering in monopole and dipole acoustic logging and analyse the resulting effects on the waveforms. The results show that significant coda waves are generated in both monopole and dipole waveforms and the dipole coda is dominated by S-to-S scattering, which can be effectively utilized to diagnose the heterogeneity in the rock formation. The coda wave modelling and analysis were used to characterize dipole acoustic data logged before and after fracturing a reservoir interval, with significant coda wave in the after-fracturing data indicating fracturing-induced heterogeneous property change in the rock volume surrounding the borehole.
Nilsson, Anders
2015-01-01
This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...
Springer handbook of acoustics
2014-01-01
Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays and acoustic emission. Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...
2016-04-30
OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-043016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to...improve our understanding. During the past few years, the physics effects studied have been three-dimensional propagation on global scales, deep water
Nearfield Acoustical Holography
Hayek, Sabih I.
Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.
Guided-wave Brillouin scattering in air
Renninger, William H; Rakich, Peter T
2016-01-01
Here we identify a new form of optomechanical coupling in gas-filled hollow-core fibers. Stimulated forward Brillouin scattering is observed in air in the core of a photonic bandgap fiber. A single resonance is observed at 35 MHz, which corresponds to the first excited axial-radial acoustic mode in the air-filled core. The linewidth and coupling strengths are determined by the acoustic loss and electrostrictive coupling in air, respectively. A simple analytical model, refined by numerical simulations, is developed that accurately predicts the Brillouin coupling strength and frequency from the gas and fiber parameters. Since this form of Brillouin coupling depends strongly on both the acoustic and dispersive optical properties of the gas within the fiber, this new type of optomechanical interaction is highly tailorable. These results allow for forward Brillouin spectroscopy in dilute gases, could be useful for sensing and will present a power and noise limitation for certain applications.
Sound Scattering and Its Reduction by a Janus Sphere Type
Deliya Kim
2014-01-01
Full Text Available Sound scattering by a Janus sphere type is considered. The sphere has two surface zones: a soft surface of zero acoustic impedance and a hard surface of infinite acoustic impedance. The zones are arranged such that axisymmetry of the sound field is preserved. The equivalent source method is used to compute the sound field. It is shown that, by varying the sizes of the soft and hard zones on the sphere, a significant reduction can be achieved in the scattered acoustic power and upstream directivity when the sphere is near a free surface and its soft zone faces the incoming wave and vice versa for a hard ground. In both cases the size of the sphere’s hard zone is much larger than that of its soft zone. The boundary location between the two zones coincides with the location of a zero pressure line of the incoming standing sound wave, thus masking the sphere within the sound field reflected by the free surface or the hard ground. The reduction in the scattered acoustic power diminishes when the sphere is placed in free space. Variations of the scattered acoustic power and directivity with the sound frequency are also given and discussed.
Low-Field Mobility and Galvanomagnetic Properties of Holes in Germanium with Phonon Scattering
Lawætz, Peter
1968-01-01
A theoretical calculation of the low-field galvanomagnetic properties of holes in Ge has been carried out incorporating all relevant details of the band structure. The scattering is limited to acoustic and optical phonons and is described by the deformation potentials a, b, d, and d0. For pure...... acoustic scattering, no overall consistency is found between available galvanomagnetic data and deformation potentials derived directly from experiments on strained Ge. The discrepancies may be ascribed to ionized-impurity scattering, but at higher temperatures where optical phonon scattering is operative...
Handbook of Engineering Acoustics
Möser, Michael
2013-01-01
This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.
Acoustic Technology Laboratory
Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...
2008-01-01
The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...
Stimulated Brillouin scattering enhancement in silicon inverse opal waveguides
Smith, M J A; de Sterke, C Martijn; Lapine, M; Kuhlmey, B T; Poulton, C G
2016-01-01
Silicon is an ideal material for on-chip applications, however its poor acoustic properties limit its performance for important optoacoustic applications, particularly for Stimulated Brillouin Scattering (SBS). We theoretically show that silicon inverse opals exhibit a strongly improved acoustic performance that enhances the bulk SBS gain coefficient by more than two orders of magnitude. We also design a waveguide that incorporates silicon inverse opals and which has SBS gain values that are comparable with chalcogenide glass waveguides. This research opens new directions for opto-acoustic applications in on-chip material systems.
Superradiant Forward Scattering in Multiple Scattering
Chabe, Julien; Bienaime, Tom; Bachelard, Romain; Piovella, Nicola; Kaiser, Robin
2012-01-01
We report on an interference effect in multiple scattering by resonant scatterers resulting in enhanced forward scattering, violating Ohm's law for photons. The underlying mechanism of this wave effect is superradiance, which we have investigated using cold atoms as a toy model. We present numerical and experimental evidences for this superradiant forward scattering, which is robust against disorder and configuration averaging.
Radiative decay of the one-dimensional large acoustic polaron
Ivic, Zoran; Zekovic, Slobodan; Przulj, Zeljko
2002-12-30
Finite temperature dynamics and stability of the adiabatic large acoustic polaron in one-dimensional systems have been examined by means of the perturbation method based upon the inverse scattering transform. Polaron life-time was estimated in dependence of temperature and electron (exciton)-phonon coupling constant.
Integrating Sound Scattering Measurements in the Design of Complex Architectural Surfaces
Peters, Brady
2010-01-01
Digital tools present the opportunity for incorporating performance analysis into the architectural design process. Acoustic performance is an important criterion for architectural design. There is much known about sound absorption but little about sound scattering, even though scattering...... of computational design tools, geometry generation, fabrication of test surfaces, measurement of acoustic performance, and the incorporation of this data into the generative tool. The Hexagon Wall is included and discussed as an illustrative design study....
Scattering and/or diffusing elements in a variety of recently completed music auditoria
McKay, Ronald L.
2002-11-01
Architectural elements which provide effective acoustic scattering and/or diffusion in a variety of recently completed auditoria for music performance will be presented. Color slides depicting the various elements will be shown. Each will be discussed with respect to its acoustic performance and architectural logic. Measured time-energy reflection patterns will be presented in many cases.
Identifying ultrasonic scattering sites from three-dimensional impedance maps
Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.
2005-01-01
Ultrasonic backscattered signals contain frequency-dependent information that is usually discarded to produce conventional B-mode images. It is hypothesized that parametrization of the quantitative ultrasound frequency-dependent information (i.e., estimating scatterer size and acoustic concentration) may be related to discrete scattering anatomic structures in tissues. Thus, an estimation technique is proposed to extract scatterer size and acoustic concentration from the power spectrum derived from a three-dimensional impedance map (3DZM) of a tissue volume. The 3DZM can be viewed as a computational phantom and is produced from a 3D histologic data set. The 3D histologic data set is constructed from tissue sections that have been appropriately stained to highlight specific tissue features. These tissue features are assigned acoustic impedance values to yield a 3DZM. From the power spectrum, scatterer size and acoustic concentration estimates were obtained by optimization. The 3DZM technique was validated by simulations that showed relative errors of less than 3% for all estimated parameters. Estimates using the 3DZM technique were obtained and compared against published ultrasonically derived estimates for two mammary tumors, a rat fibroadenoma and a 4T1 mouse mammary carcinoma. For both tumors, the relative difference between ultrasonic and 3DZM estimates was less than 10% for the average scatterer size. .
Acoustic cloaking and mirages with flying carpets
Diatta, Andre; Guenneau, Sebastien; Enoch, Stefan
2009-01-01
Carpets under consideration here, in the context of pressure acoustic waves propagating in a compressible fluid, do not touch the ground: they levitate in mid-air (or float in mid-water), which leads to approximate cloaking for an object hidden underneath, or touching either sides of a square cylinder on, or over, the ground. The tentlike carpets attached to the sides of a square cylinder illustrate how the notion of a carpet on a wall naturally generalizes to sides of other small compact objects. We then extend the concept of flying carpets to circular cylinders. However, instead of reducing its scattering cross-section like in acoustic cloaks, we rather mimic that of another obstacle, say a square rigid cylinder. For instance, show that one can hide any type of defects under such circular carpets, and yet they still scatter waves just like a smaller cylinder on its own. Interestingly, all these carpets are described by non-singular acoustic parameters. To exemplify this important aspect, we propose a multi-...
Acoustic measuring techniques for suspended sediment
Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.
2016-11-01
Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.
Constructing acoustic timefronts using random matrix theory.
Hegewisch, Katherine C; Tomsovic, Steven
2013-10-01
In a recent letter [Hegewisch and Tomsovic, Europhys. Lett. 97, 34002 (2012)], random matrix theory is introduced for long-range acoustic propagation in the ocean. The theory is expressed in terms of unitary propagation matrices that represent the scattering between acoustic modes due to sound speed fluctuations induced by the ocean's internal waves. The scattering exhibits a power-law decay as a function of the differences in mode numbers thereby generating a power-law, banded, random unitary matrix ensemble. This work gives a more complete account of that approach and extends the methods to the construction of an ensemble of acoustic timefronts. The result is a very efficient method for studying the statistical properties of timefronts at various propagation ranges that agrees well with propagation based on the parabolic equation. It helps identify which information about the ocean environment can be deduced from the timefronts and how to connect features of the data to that environmental information. It also makes direct connections to methods used in other disordered waveguide contexts where the use of random matrix theory has a multi-decade history.
Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate
Nunes, O. A. C.
2014-06-01
We study the interaction of Dirac Fermions in monolayer graphene on a GaAs substrate in an applied electric field by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (piezoelectric acoustical (PA)) and of the intrinsic deformation potential of acoustical phonons in graphene (deformation acoustical (DA)). We find that provided the dc field exceeds a threshold value, emission of piezoelectric (PA) and deformation (DA) acoustical phonons can be obtained in a wide frequency range up to terahertz at low and high temperatures. We found that the phonon amplification rate RPA ,DA scales with TBGS -1 (S =PA,DA), TBGS being the Block -Gru¨neisen temperature. In the high-T Block -Gru¨neisen regime, extrinsic PA phonon scattering is suppressed by intrinsic DA phonon scattering, where the ratio RPA/RDA scales with ≈1/√n , n being the carrier concentration. We found that only for carrier concentration n ≤1010cm-2, RPA/RDA>1. In the low-T Block -Gru¨neisen regime, and for n =1010cm-2, the ratio RPA/RDA scales with TBGDA/TBGPA≈7.5 and RPA/RDA>1. In this regime, PA phonon dominates the electron scattering and RPA/RDA<1 otherwise. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as an acoustical phonon amplifier and a frequency-tunable acoustical phonon device.
An Overview of Acoustic Telemetry
Drumheller, D.S.
1992-03-24
Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The oil and gas industry has led in most of the attempts to develop this type of telemetry system; however, very substantial efforts have also been made through government sponsored work in the geothermal industry. None of these previous attempts have lead to a commercial telemetry system. Conceptually, the problem looks easy. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quite low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal Waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested
Channel Modeling and Threshold Signal Processing in Underwater Acoustics: An Analytical Overview
1986-12-19
Introduction to Statistical Communication Theory, McGraw-Hill (New York), 1960, (Part IV). [21]. J. R. Breton and D. Middleton, "General Theory of Acoustic Prop...5), pp. 1245-1260, May 1981. See also, Breton , J. R., A General Theory of Acoustic Propaation and Applications to Strong Acoustic Scattering in the...IV, ibid., Vol. IT-18, 35-67; 68-90 (1972). [32]. , Invited lectures, at Acoustics Institute N.N. Andr ~ev, Acad. Sci. USSR (Moscow), 1973, 1976, 1979
Three-dimensional broadband acoustic illusion cloak for sound-hard boundaries of curved geometry
Kan, Weiwei; Liang, Bin; Li, Ruiqi; Jiang, Xue; Zou, Xin-Ye; Yin, Lei-Lei; Cheng, Jianchun
2016-11-01
Acoustic illusion cloaks that create illusion effects by changing the scattered wave have many potential applications in a variety of scenarios. However, the experimental realization of generating three-dimensional (3D) acoustic illusions under detection of broadband signals still remains challenging despite the paramount importance for practical applications. Here we report the design and experimental demonstration of a 3D broadband cloak that can effectively manipulate the scattered field to generate the desired illusion effect near curved boundaries. The designed cloak simply comprises positive-index anisotropic materials, with parameters completely independent of either the cloaked object or the boundary. With the ability of manipulating the scattered field in 3D space and flexibility of applying to arbitrary geometries, our method may take a major step toward the real world application of acoustic cloaks and offer the possibilities of building advanced acoustic devices with versatile functionalities.
2008-09-30
and onshore waters. A unique acoustic scattering source was identified during the experiment as dense, monotypic aggregations of a pelagic gastropod ...can often reveal hidden coherent structure. IMPACT/ APPLICATIONS The distribution of fish and the variability in their distribution has...direct and waveguide scattering for application to fish. REFERENCES Pitcher, T. J., and J. K. Parrish. 1993. Function of shoaling behavior in teleosts
Acoustic fluidization for earthquakes?
Sornette, D.; Sornette, A.
2000-01-01
Melosh [1996] has suggested that acoustic fluidization could provide an alternative to theories that are invoked as explanations for why some crustal faults appear to be weak. We show that there is a subtle but profound inconsistency in the theory that unfortunately invalidates the results. We propose possible remedies but must acknowledge that the relevance of acoustic fluidization remains an open question.
Acoustic method for levitation of small living animals
Xie, W. J.; Cao, C. D.; Lü, Y. J.; Hong, Z. Y.; Wei, B.
2006-11-01
Ultrasonic levitation of some small living animals such as ant, ladybug, and young fish has been achieved with a single-axis acoustic levitator. The vitality of ant and ladybug is not evidently influenced during the acoustic levitation, whereas that of the young fish is reduced because of the inadequacy of water supply. Numerical analysis shows that the sound pressures on the ladybug's surface almost reach the incident pressure amplitude p0 due to sound scattering. It is estimated that 99.98% of the acoustic energy is reflected away from the ladybug. The acoustic radiation pressure pa on the ladybug's surface is only 1%-3% of p0, which plays a compression role on the central region and a suction role on the peripheral region.
Péronne, Emmanuel; Chuecos, Nicolas; Thevenard, Laura; Perrin, Bernard
2017-02-01
Solitons are self-preserving traveling waves of great interest in nonlinear physics but hard to observe experimentally. In this report an experimental setup is designed to observe and characterize acoustic solitons in a GaAs(001) substrate. It is based on careful temperature control of the sample and an interferometric detection scheme. Ultrashort acoustic solitons, such as the one predicted by the Korteweg-de Vries equation, are observed and fully characterized. Their particlelike nature is clearly evidenced and their unique properties are thoroughly checked. The spatial averaging of the soliton wave front is shown to account for the differences between the theoretical and experimental soliton profile. It appears that ultrafast acoustic experiments provide a precise measurement of the soliton velocity. It allows for absolute calibration of the setup as well as the response function analysis of the detection layer. Moreover, the temporal distribution of the solitons is also analyzed with the help of the inverse scattering method. It shows how the initial acoustic pulse profile which gives birth to solitons after nonlinear propagation can be retrieved. Such investigations provide a new tool to probe transient properties of highly excited matter through the study of the emitted acoustic pulse after laser excitation.
Acoustic ground impedance meter
Zuckerwar, A. J. (Inventor)
1984-01-01
A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.
Cochlear bionic acoustic metamaterials
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan
2014-11-01
A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.
Jensen, Finn B; Porter, Michael B; Schmidt, Henrik
2011-01-01
Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...
Ocean acoustic reverberation tomography.
Dunn, Robert A
2015-12-01
Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.
Acoustic simulations of Mudejar-Gothic churches.
Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara
2009-09-01
In this paper, an iterative process is used in order to estimate the values of absorption coefficients of those materials of which little is known in the literature, so that an acoustic simulation can be carried out in Mudejar-Gothic churches. The estimation of the scattering coefficients, which is even less developed, is based on the size of the irregularities. This methodology implemented is applied to six Mudejar-Gothic churches of Seville (southern Spain). The simulated monophonic acoustic parameters, both in the frequency domain and as a function of source-receiver distance (spatial distribution), are analyzed and compared with the in situ measures. Good agreement has been found between these sets of values, whereby each parameter is discussed in terms of the just noticeable difference. This procedure for existing buildings, especially for those which are rich in heritage, enables a reliable evaluation of the effect on the maintenance, restoration, and conditioning for new uses, as well as the recreation of the acoustic environment of ancient times. Along these lines, the acoustic influence of the timber roof and the presence of the public in these churches have also been studied.
Acoustic effects analysis utilizing speckle pattern with fixed-particle Monte Carlo
Vakili, Ali; Hollmann, Joseph A.; Holt, R. Glynn; DiMarzio, Charles A.
2016-03-01
Optical imaging in a turbid medium is limited because of multiple scattering a photon undergoes while traveling through the medium. Therefore, optical imaging is unable to provide high resolution information deep in the medium. In the case of soft tissue, acoustic waves unlike light, can travel through the medium with negligible scattering. However, acoustic waves cannot provide medically relevant contrast as good as light. Hybrid solutions have been applied to use the benefits of both imaging methods. A focused acoustic wave generates a force inside an acoustically absorbing medium known as acoustic radiation force (ARF). ARF induces particle displacement within the medium. The amount of displacement is a function of mechanical properties of the medium and the applied force. To monitor the displacement induced by the ARF, speckle pattern analysis can be used. The speckle pattern is the result of interfering optical waves with different phases. As light travels through the medium, it undergoes several scattering events. Hence, it generates different scattering paths which depends on the location of the particles. Light waves that travel along these paths have different phases (different optical path lengths). ARF induces displacement to scatterers within the acoustic focal volume, and changes the optical path length. In addition, temperature rise due to conversion of absorbed acoustic energy to heat, changes the index of refraction and therefore, changes the optical path length of the scattering paths. The result is a change in the speckle pattern. Results suggest that the average change in the speckle pattern measures the displacement of particles and temperature rise within the acoustic wave focal area, hence can provide mechanical and thermal properties of the medium.
Flat acoustic lens by acoustic grating with curled slits
Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa
2014-10-03
We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.
Predicting Acoustics in Class Rooms
Christensen, Claus Lynge; Rindel, Jens Holger
2005-01-01
Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...
Underwater Applications of Acoustical Holography
P. C. Mehta
1984-01-01
Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.
Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.
2016-05-01
Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.
Point sources and multipoles in inverse scattering theory
Potthast, Roland
2001-01-01
Over the last twenty years, the growing availability of computing power has had an enormous impact on the classical fields of direct and inverse scattering. The study of inverse scattering, in particular, has developed rapidly with the ability to perform computational simulations of scattering processes and led to remarkable advances in a range of applications, from medical imaging and radar to remote sensing and seismic exploration. Point Sources and Multipoles in Inverse Scattering Theory provides a survey of recent developments in inverse acoustic and electromagnetic scattering theory. Focusing on methods developed over the last six years by Colton, Kirsch, and the author, this treatment uses point sources combined with several far-reaching techniques to obtain qualitative reconstruction methods. The author addresses questions of uniqueness, stability, and reconstructions for both two-and three-dimensional problems.With interest in extracting information about an object through scattered waves at an all-ti...
Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors
Meng, Chong; Tang, Suet To; Yang, Min; Yang, Zhiyu
2016-01-01
We report the experimental realization of acoustic coherent perfect absorption (CPA) of four symmetric scatterers of very different structures. The only conditions necessary for these scatterers to exhibit CPA are that both the reflection and transmission amplitudes of the scatterers are 0.5 under one incident wave, and there are two collinear and counter-propagating incident waves with appropriate relative amplitude and phase. Nearly 1000 times in the modulation of output power has been demonstrated by changing the relative phase of the incident waves over 180{\\deg}. We further demonstrate that these scatterers are sensitive devices to detect the small differences between two nearly equal incident waves. A 27 % change in the strength of the scattering wave has been demonstrated for every degree of phase deviation from the optimum condition between the incident waves.
On scattered subword complexity
Kása, Zoltán
2011-01-01
Special scattered subwords, in which the gaps are of length from a given set, are defined. The scattered subword complexity, which is the number of such scattered subwords, is computed for rainbow words.
Formation of high-order acoustic Bessel beams by spiral diffraction gratings
Jiménez, Noé; Sánchez-Morcillo, Víctor; Romero-García, Vicent; García-Raffi, Lluis M; Staliunas, Kestutis
2016-01-01
The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically and experimentally reported in this work. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on-axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow to obtain Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.
Multi-resonance tunneling of acoustic waves in two-dimensional locally-resonant phononic crystals
Yang, Aichao; He, Wei; Zhang, Jitao; Zhu, Liang; Yu, Lingang; Ma, Jian; Zou, Yang; Li, Min; Wu, Yu
2017-03-01
Multi-resonance tunneling of acoustic waves through a two-dimensional phononic crystal (PC) is demonstrated by substituting dual Helmholtz resonators (DHRs) for acoustically-rigid scatterers in the PC. Due to the coupling of the incident waves with the acoustic multi-resonance modes of the DHRs, acoustic waves can tunnel through the PC at specific frequencies which lie inside the band gaps of the PC. This wave tunneling transmission can be further broadened by using the multilayer Helmholtz resonators. Thus, a PC consisting of an array of dual/multilayer Helmholtz resonators can serve as an acoustic band-pass filter, used to pick out acoustic waves with certain frequencies from noise.
Cai, Xuan; Wang, Lei; Zhao, Zhigao; Zhao, Aiguo; Zhang, Xiangdong; Wu, Tao; Chen, Hong
2016-09-01
The effective mechanical and acoustic properties of two-dimensional pentamode metamaterials (PMs) with different structural parameters are investigated in this paper. It is found that with varying structural parameters, the effective bulk modulus and density remain constant as the same as those of water, while the figure of merit, i.e., the ratio of the bulk modulus to the shear modulus (B/G) gradually increases due to the decrease of the shear modulus. However, full wave simulations reveal that with the increase of B/G, the acoustic scattering becomes more and more intense, which indicates that the acoustic properties of pentamode metamaterials gradually deviate from those of water. These anomalous acoustic behaviors are proposed to arise from the existence of the bending modes in pentamode microstructures. Our results show that for pentamode metamaterials, the mechanical properties cannot be simply translated to their acoustic properties, and the structural parameters affect the mechanical and acoustic properties in much different ways.
Formation of high-order acoustic Bessel beams by spiral diffraction gratings
Jiménez, Noé; Picó, R.; Sánchez-Morcillo, V.; Romero-García, V.; García-Raffi, L. M.; Staliunas, K.
2016-11-01
The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically, and experimentally reported in this paper. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow for obtaining Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.
van Capel, P.J.S.; Turchinovich, D.; Porte, H.P.; Lahmann, S.; Rossow, U.; Dijkhuis, J.I.
2011-01-01
We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals
All Photons Imaging Through Volumetric Scattering
Satat, Guy; Heshmat, Barmak; Raviv, Dan; Raskar, Ramesh
2016-01-01
Imaging through thick highly scattering media (sample thickness ≫ mean free path) can realize broad applications in biomedical and industrial imaging as well as remote sensing. Here we propose a computational “All Photons Imaging” (API) framework that utilizes time-resolved measurement for imaging through thick volumetric scattering by using both early arrived (non-scattered) and diffused photons. As opposed to other methods which aim to lock on specific photons (coherent, ballistic, acoustically modulated, etc.), this framework aims to use all of the optical signal. Compared to conventional early photon measurements for imaging through a 15 mm tissue phantom, our method shows a two fold improvement in spatial resolution (4db increase in Peak SNR). This all optical, calibration-free framework enables widefield imaging through thick turbid media, and opens new avenues in non-invasive testing, analysis, and diagnosis. PMID:27683065
Bidirectional optical scattering facility
Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...
Bidirectional optical scattering facility
Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI) The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from...
AXISYMMETRIC SCATTERING OF p MODES BY THIN MAGNETIC TUBES
Hindman, Bradley W. [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309-0440 (United States); Jain, Rekha, E-mail: hindman@solarz.colorado.edu [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom)
2012-02-10
We examine the scattering of acoustic p-mode waves from a thin magnetic fibril embedded in a gravitationally stratified atmosphere. The scattering is mediated through the excitation of slow sausage waves on the magnetic tube, and only the scattering of the monopole component of the wave field is considered. Since such tube waves are not confined by the acoustic cavity and may freely propagate along the field lines removing energy from the acoustic wave field, the excitation of fibril oscillations is a source of acoustic wave absorption as well as scattering. We compute the mode mixing that is achieved and the absorption coefficients and phase shifts. We find that for thin tubes the mode mixing is weak and the absorption coefficient is small and is a smooth function of frequency over the physically relevant band of observed frequencies. The prominent absorption resonances seen in previous studies of unstratified tubes are absent. Despite the relatively small absorption, the phase shift induced can be surprisingly large, reaching values as high as 15 Degree-Sign for f modes. Further, the phase shift can be positive or negative depending on the incident mode order and the frequency.
Low-Frequency Scattering from Heterogeneous Sea Beds
2012-09-30
4th Internat. Conf. Underwater Acoustic Measurements: Technology and Results (UAM2011), J.S. Papadakis and L. Bjorno (Eds), pp. 1615-1622. 14. A.N...Measurements: Technology and Results (UAM2011), J.S. Papadakis and L. Bjorno (Eds), pp. 1615-1622. A. N. Ivakin (2011), “Sound scattering from the ocean
Axisymmetric Scattering of p Modes by Thin Magnetic Tubes
Hindman, Bradley W
2011-01-01
We examine the scattering of acoustic p-mode waves from a thin magnetic fibril embedded in a gravitationally stratified atmosphere. The scattering is mediated through the excitation of slow sausage waves on the magnetic tube, and only the scattering of the monopole component of the wavefield is considered. Since such tube waves are not confined by the acoustic cavity and may freely propagate along the field lines removing energy from the acoustic wavefield, the excitation of fibril oscillations is a source of acoustic wave absorption as well as scattering. We compute the mode mixing that is achieved and the absorption coefficients and phase shifts that would be measured in a Fourier-Hankel decomposition. We find that for thin tubes the mode mixing is weak and the absorption coefficient is small and is a smooth function of frequency over the physically relevant band of observed frequencies. The prominent absorption resonances seen in previous studies of unstratified tubes are absent. Despite the relatively sma...
Naturally enhanced ion-acoustic lines at high altitudes
Y. Ogawa
2006-12-01
Full Text Available Naturally enhanced ion-acoustic lines (NEIALs between 1200 and 1900 km altitude are investigated. The NEIALs were found in the background gates of data from the European Incoherent Scatter (EISCAT Svalbard radar (ESR at 78° N looking field-aligned. Only strongly enhanced lines are detected at such high altitudes. The estimated enhancement above incoherent scattering integrated over the antenna beam and preintegration time of 10 s reaches about 10 000. Both lines are always enhanced above 1000 km altitude, and the downshifted line, corresponding to upward propagating ion-acoustic waves, is always stronger than the upshifted line, for downgoing waves. The ratio of the downshifted and upshifted peaks is often remarkably constant along a profile. Using the line positions as indicators of the ion-acoustic speeds and the bulk drift velocity, we find that the bulk drift does not exceed the ion-acoustic (sound speed, but extrapolation of the profiles suggests that the sound barrier is reached around 2000 km in one event. The highest ion-acoustic speed is seen near 600 km, above the density peak, indicating that electrons are heated not only by ionizing precipitation but significantly also by upgoing waves. Upflow continues to speed up above the estimated temperature maximum. A certain qualitative similarity to the solar corona seems to be the case.
Research on micro-sized acoustic bandgap structures.
Fleming, James Grant; McCormick, Frederick Bossert; Su, Mehmet F.; El-Kady, Ihab Fathy; Olsson, Roy H., III; Tuck, Melanie R.
2010-01-01
Phononic crystals (or acoustic crystals) are the acoustic wave analogue of photonic crystals. Here a periodic array of scattering inclusions located in a homogeneous host material forbids certain ranges of acoustic frequencies from existence within the crystal, thus creating what are known as acoustic (or phononic) bandgaps. The vast majority of phononic crystal devices reported prior to this LDRD were constructed by hand assembling scattering inclusions in a lossy viscoelastic medium, predominantly air, water or epoxy, resulting in large structures limited to frequencies below 1 MHz. Under this LDRD, phononic crystals and devices were scaled to very (VHF: 30-300 MHz) and ultra (UHF: 300-3000 MHz) high frequencies utilizing finite difference time domain (FDTD) modeling, microfabrication and micromachining technologies. This LDRD developed key breakthroughs in the areas of micro-phononic crystals including physical origins of phononic crystals, advanced FDTD modeling and design techniques, material considerations, microfabrication processes, characterization methods and device structures. Micro-phononic crystal devices realized in low-loss solid materials were emphasized in this work due to their potential applications in radio frequency communications and acoustic imaging for medical ultrasound and nondestructive testing. The results of the advanced modeling, fabrication and integrated transducer designs were that this LDRD produced the 1st measured phononic crystals and phononic crystal devices (waveguides) operating in the VHF (67 MHz) and UHF (937 MHz) frequency bands and established Sandia as a world leader in the area of micro-phononic crystals.
Stimulated low frequency Raman scattering in cupric oxide nanoparticles water suspension
Averyushkin, A. S.; Baranov, A. N.; Bulychev, N. A.; Kazaryan, M. A.; Kudryavtseva, A. D.; Strokov, M. A.; Tcherniega, N. V.; Zemskov, K. I.
2017-04-01
Cupric oxide nanoparticles with average size of 213.2 nm, were synthesized in acoustoplasma discharge for investigating their vibrational properties. The low-frequency acoustic mode in cupric oxide (CuO) nanoparticles has been studied by stimulated low-frequency Raman scattering (SLFRS). SLFRS conversion efficiency, threshold and frequency shift of the scattered light are measured.
National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...
Kendall, J. M., Jr.
1977-01-01
Tool detects noise sources by scanning sound "scene" and displaying relative location of noise-producing elements in area. System consists of ellipsoidal acoustic mirror and microphone and a display device.
Smith, Richard W.
1979-01-01
An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.
Zhu, Yi-Fan; Liang, Bin; Kan, Wei-Wei; Yang, Jun; Cheng, Jian-Chun
2015-01-01
The recently-emerged concept of "invisible gateway" with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of "restoring" a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the "gate" to mimic a rigid "wall" and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet ef...
Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...
Thermal Acoustic Fatigue Apparatus
Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...
Autonomous Acoustic Receiver System
Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...
Principles of musical acoustics
Hartmann, William M
2013-01-01
Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...
... Programs & Services Search ANAUSA.org Connect with us! Symptoms of Acoustic Neuroma Each heading slides to reveal more information. Early Symptoms Early Symptoms Early symptoms are easily overlooked, thus making diagnosis ...
Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;
2011-01-01
Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....
Bowen, Patrick T.; Urzhumov, Yaroslav A.
2016-04-01
Acoustic metamaterial structures with discrete and continuous rotational symmetries attract interest of theorists and engineers due to the relative simplicity of their design and fabrication. They are also likely candidates for omnidirectional acoustic cloaking and other transformation-acoustical novelties. In this paper, we employ a stratified description of such structures, and develop the theory and an efficient symbolic/numerical algorithm for analyzing the scattering properties of such structures immersed in homogeneous fluid environments. The algorithm calculates the partial scattering amplitudes and the related scattering phases for an arbitrary layered distribution of acoustic material properties. The efficiency of the algorithm enables us to find approximate solutions to certain inverse scattering problems through quasi-global optimization. The scattering problems addressed here are the three forms of cloaking: (1) extinction cross-section suppression, the canonical form of cloaking, (2) monostatic sonar invisibility (backscattering suppression), and (3) acoustic force cloaking (transport cross-section suppression). We also address the efficiency-bandwidth tradeoff and design approximate cloaks with wider bandwidth using a new optimization formulation.
Acoustic vector sensor signal processing
SUN Guiqing; LI Qihu; ZHANG Bin
2006-01-01
Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
Marston, Philip L
2014-03-01
The phase and group velocities of elastic guided waves are important in the physical interpretation of high frequency scattering by fluid-loaded elastic shells. Outside the context of scattering, those properties are also important for understanding the energy flow in acoustic metamaterials. In a recent investigation of acoustic metamaterials exhibiting anomalous wave propagation [J. Acoust. Soc. Am. 132, 2887-2895 (2012)] criticism of negative group velocity terminology was generalized to elastic waves guided on ordinary materials. Some context and justification for retaining the identification of negative group velocities associated with a type of backscattering enhancement for shells are explained here. The phase evolution direction is determined by the boundary conditions.
Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene
Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads
2017-01-01
Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons. We examine the effect of the gate-induced one-phonon scattering on the mobility for several gate geometries and dielectric environments using first-principles calculations based on density functional theory and the Boltzmann equation. We demonstrate that this scattering mechanism can be a mobility-limiting factor, and show how the carrier density and temperature scaling of the mobility depends on the electrostatic environment. Our findings may explain the high deformation potential for in-plane acoustic phonons extracted from experiments and, furthermore, suggest a direct relation between device symmetry and resulting mobility.
Acoustic comfort in eating establishments
Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas
2014-01-01
The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...
Interactions in an acoustic world
Simaciu, Ion; Borsos, Zoltan; Bradac, Mariana
2016-01-01
The present paper aims to complete an earlier paper where the acoustic world was introduced. This is accomplished by analyzing the interactions which occur between the inhomogeneities of the acoustic medium, which are induced by the acoustic vibrations traveling in the medium. When a wave packet travels in a medium, the medium becomes inhomogeneous. The spherical wave packet behaves like an acoustic spherical lens for the acoustic plane waves. According to the principle of causality, there is an interaction between the wave and plane wave packet. In specific conditions the wave packet behaves as an acoustic black hole.
Transformational Acoustics Applied to Scattering from a Thin Elastic Shell
2011-06-01
Equations (3.9) and (3.10), we derive: 0 = ∫∫ ∂B0 N̂dS = ∫∫ ∂B n̂·(J−1F)ds (3.11) Employing again the Gauss Theorem: 0 = ∫∫ ∂B n̂·(J−1F)ds = ∫∫∫ B ∇x·(J−1F...Moreover, we employ the definition of the stiffness matrix stated in [8] as the canonical expres- sion for a PM material: C = KQ⊗Q as a 4th order tensor...QT ) = C11 + C22 + C33. Inserting the canonical expression Equation (3.40) into the stress strain relationship Equation (3.24) where the stress are
Acoustic Inverse Scattering for Breast Cancer Microcalcification Detection
2009-09-01
ultrasound imaging Ravi Shankar Vaidyanathan*a, Matthew A. Lewis*a, Gaik Ambartsoumianb, Tuncay Aktosunb aGraduate Program in Biomedical Engineering...using a three-dimensional reconstruction algorithm”, IEEE J. Sel. Top. Quantum Electronics, 7, 918-923, (2001). [2] Oraevsky A.A., Andreev V.A...EXTERIOR SPHERICAL RADON TRANSFORM- BASED ULTRASOUND IMAGING Ravi Shankar Vaidyanathan, Matthew A. Lewis, Advanced Radiological Sciences UT Southwestern
Acoustic Inverse Scattering for Breast Cancer Microcalcification Detection. Addendum
2011-12-01
wave equation in even dimensions. SIAM J Appl Math, 68(2):392, 2007. 14 [6] Ravi Shankar Vaidyanathan. Advanced array imaging for breast and prostate...2009. 20 ADVANCED ARRAY IMAGING FOR BREAST AND PROSTATE SONOGRAPHY By RAVI SHANKAR VAIDYANATHAN MASTER OF SCIENCE IN BIOMEDICAL...1990. A review of the optical-properties of biological tissues. IEEE J. Quantum Electron. 26 (12):2166–85. 5. Kruger, R.A., P.Y. Liu, Y.R. Fang, and
Determination of Turbulent Velocities by Nonlinear Acoustic Scattering
1992-05-08
COMMAND. WITHOUT THE DELAYS. THý L-- jG; AM WILL CRASH ’ 98 REM 1300 - TURNS ON IEEE 1600 - TURNS OFF I•EE "WT" - COMMAND TO IEEE "RD" - IEEE ODTPUT TO...34PR#1’" ia6f ’rP IN’f "SCAN POS= "’JJ `7 0 PRINT "’P CURSOR- " 7-86 •PRINT -0 CURSO - ;C’ 8 REM XF IS THE VOLTAGE ATTENuJAT!ON FACFCR WHIC• IS
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
Imaging with Scattered Neutrons
Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.
2006-01-01
We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...
Broadband Acoustic Cloak for Ultrasound Waves
Zhang, Shu; Fang, Nicholas
2010-01-01
Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. Such a device is proposed to render the hidden object undetectable under the flow of light or sound, by guiding and controlling the wave path through an engineered space surrounding the object. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Due to the non-resonant nature of the building elements, this low loss (~6dB/m) cylindrical cloak exhibits excellent invisibility over a broad frequency range from 52 to 64 kHz in the measurements. The low visibility of the cloaked object for underwater ultrasound shed a light on the fundamental understanding of ma...
Dynamics of acoustically levitated disk samples.
Xie, W J; Wei, B
2004-10-01
The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gammafield for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.
A Wave Scattering Theory of Solar Seismic Power Haloes
Hanasoge, Shravan M
2009-01-01
Spatial maps of the high-pass frequency filtered time-averaged root-mean-squared (RMS) Doppler velocities tend to show substantial decrements within regions of strong field and curiously, randomly distributed patches of enhancement in the vicinity. We propose that these haloes or enhancements are a consequence of magnetic-field-induced mode mixing (scattering), resulting in the preferential powering of waves that possess strong surface velocity signatures (i.e. scattering from low to high wavenumbers). Evidently, this process can occur in the reverse, and therefore in order to determine if the haloes are indeed caused by mode mixing, we must answer the question: {\\it how are acoustic waves scattered by magnetic fields?} Through simulations of the interactions between waves and sunspots and models of plage, we demonstrate that the high to low modal order scattering channels are favoured. With increasing frequency and consequently, decreasing wavelength, a growing number of modes are scattered by the sunspot, t...
Joshi, Aditya; Lindsey, Brooks; Dayton, Paul; Pinton, Gianmarco; Muller, Marie
2017-03-07
- Ultrasound contrast agents (UCA), such as microbubbles, enhance the scattering properties of blood, which is otherwise hypoechoic. The multiple scattering interactions of the acoustic field with UCA's are poorly understood due to the complexity of the multiple scattering theories and the nonlinear microbubble response. The majority of bubble models describe the behavior of UCA's as single, isolated microbubbles suspended in infinite medium. Multiple scattering models such as the Independent Scattering Approximation can approximate phase velocity and attenuation for low scatterer volume fraction. However, all current models and simulations approach only describe multiple scattering and nonlinear bubble dynamics separately. Here we present an approach that combines two existing models: 1) a full-wave model that describes nonlinear propagation and scattering interactions in a heterogeneous attenuating medium and 2) a Paul-Sarkar model that describes the nonlinear interactions between an acoustic field and microbubbles. These two models were solved numerically and combined with an iterative approach. The convergence of this combined model was explored in silico for 0.5%, 1% and 2% bubble concentration by volume. The backscattering predicted by our modeling approach was verified experimentally with water tank measurements performed with a 128-element linear array transducer. An excellent agreement in terms of the fundamental and harmonic acoustic fields is shown. Additionally, our model correctly predicts the phase velocity and attenuation measured using through transmission and predicted by the Independent Scattering Approximation.
A Century of Acoustic Metrology
Rasmussen, Knud
1998-01-01
The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....
Advanced Active Acoustics Lab (AAAL)
Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...
Transmission Characteristics in Tubular Acoustic Metamaterials Studied with Fluid Impedance Theory
FAN Li; ZHANG Shu-Yi; ZHANG Hui
2011-01-01
Tubular acoustic metamaterials with negative densities composed of periodical membranes set up along pipes are studied with the fluid impedance theory. In addition to the conventional forbidden bands induced by the Bragg-scattering due to the periodic distributions of different acoustic impedances, the low-frequency forbidden band (LFB) with the low-frequency limit of zero Hertz is studied, in which the LFB is explained with acoustic impedance matching and the Bloch theory. Furthermore, the influences of the structural parameters of the tubular acoustic metamaterials on the transmission characteristics, such as the transmission coefficients, dispersion curves, widths of forbidden and pass bands, fluctuations in pass bands, etc., are evaluated, which can be used in the optimization of the acoustic insulation ability of the metamaterials.%Tubular acoustic metamaterials with negative densities composed of periodical membranes set up along pipes are studied with the fluid impedance theory.In addition to the conventional forbidden bands induced by the Bragg-scattering due to the periodic distributions of different acoustic impedances,the low-frequency forbidden band (LFB) with the low-frequency limit of zero Hertz is studied,in which the LFB is explained with acoustic impedance matching and the Bloch theory.Furthermore,the influences of the structural parameters of the tubular acoustic metamaterials on the transmission characteristics,such as the transmission coefficients,dispersion curves,widths of forbidden and pass bands,fluctuations in pass bands,etc.,are evaluated,which can be used in the optimization of the acoustic insulation ability of the metamaterials.Like electromagnetic metamaterials,acoustic metamaterials have been presented with different structures,which have negative constitutive parameters of acoustic propagation and can realize unique acoustic characteristics and applications.[1-5] Recently,acoustic metamaterials were introduced into acoustic resonance
Acoustic detection of pneumothorax
Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.
2003-04-01
This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.
Practical acoustic emission testing
2016-01-01
This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.
Passive broadband acoustic thermometry
Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.
2016-04-01
The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.
Acoustics of courtyard theatres
WANG Jiqing
2008-01-01
The traditional Chinese theatre was often built with a courtyard. In such open-top space, the absence of a roof would mean little reverberation and non-diffused sound field.Acoustically the situation is quite different from that of any enclosed space. The refore, theclassic room acoustics, such as Sabine reverberation formula, would no longer be applicable due to the lack of sound reflections from the ceiling. As the parameter of reverberation time T30 shows the decay rate only, it would not properly characterize the prominent change in the fine structure of the echogram, particularly in case of a large reduction of reflections during the decay process. The sense of reverbrance in a courtyard space would differ noticeably from that of the equivalent 3D-T30 in an enclosed space. Based upon the characteristic analysis of the sound field in an open-top space, this paper presents a preliminary study on the acoustics of the courtyard theatres.
Acoustics waves and oscillations
Sen, S.N.
2013-01-01
Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...
Achieving acoustic cloak by using compressible background flow
Zhang, Ruo-Yang; Zhao, Qing; Ge, Mo-Lin
2016-08-01
We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid. The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach. The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation (or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475088 and 11275024) and the Fund from the Ministry of Science and Technology of China (Grant No. 2013YQ030595-3).
Combination of acoustical radiosity and the image source method
Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho;
2013-01-01
A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part....... The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated...... allows for a dynamic control of the image source production, so that no fixed maximum reflection order is required. The model is optimized for energy impulse response predictions in arbitrary polyhedral rooms. The predictions are validated by comparison with published measured data for a real music...
Achieving acoustic cloak by using compressible background flow
Zhang, Ruo-Yang; Ge, Mo-Lin
2016-01-01
We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid. The background flow forms a virtual curved spacetime and guides the sound waves bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach. The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation (or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section.
Cloaking an acoustic sensor with single-negative materials
Cai, Chen [Key Laboratory of Modern Acoustics, MOE, Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Zhu, Xue-Feng [Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Xu, Tao [Key Laboratory of Modern Acoustics, MOE, Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Zou, Xin-Ye, E-mail: xyzou@nju.edu.cn [Key Laboratory of Modern Acoustics, MOE, Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Liang, Bin; Cheng, Jian-Chun [Key Laboratory of Modern Acoustics, MOE, Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
2015-07-15
In this review, a brief introduction is given to the development of acoustic superlens cloaks that allow the cloaked object to receive signals while its presence is not sensed by the surrounding, which can be regarded as “cloaking an acoustic sensor”. Remarkably, the designed cloak consists of single-negative materials with parameters independent of the background medium or the sensor system, which is proven to be a magnifying superlens. This has facilitated significantly the design and fabrication of acoustic cloaks that generally require double-negative materials with customized parameters. Such innovative design has then been simplified further as a multi-layered structure comprising of two alternately arranged complementary media with homogeneous isotropic single-negative materials. Based on this, a scattering analyses method is developed for the numerical simulation of such multi-layered cloak structures, which may serve as an efficient approach for the investigation on such devices.
Characterizing Tissue with Acoustic Parameters Derived from Ultrasound Data
Littrup, P; Duric, N; Leach, R R; Azevedo, S G; Candy, J V; Moore, T; Chambers, D H; Mast, J E; Johnson, S A; Holsapple, E
2002-01-23
In contrast to standard reflection ultrasound (US), transmission US holds the promise of more thorough tissue characterization by generating quantitative acoustic parameters. We compare results from a conventional US scanner with data acquired using an experimental circular scanner operating at frequencies of 0.3 - 1.5 MHz. Data were obtained on phantoms and a normal, formalin-fixed, excised breast. Both reflection and transmission-based algorithms were used to generate images of reflectivity, sound speed and attenuation.. Images of the phantoms demonstrate the ability to detect sub-mm features and quantify acoustic properties such as sound speed and attenuation. The human breast specimen showed full field evaluation, improved penetration and tissue definition. Comparison with conventional US indicates the potential for better margin definition and acoustic characterization of masses, particularly in the complex scattering environments of human breast tissue. The use of morphology, in the context of reflectivity, sound speed and attenuation, for characterizing tissue, is discussed.
Characterizing tissue with acoustic parameters derived from ultrasound data
Littrup, Peter J.; Duric, Nebojsa; Leach, Richard, Jr.; Azevedo, Steve G.; Candy, James V.; Moore, Thomas; Chambers, David H.; Mast, Jeffrey E.; Holsapple, Earle
2002-04-01
In contrast to standard reflection ultrasound (US), transmission US holds the promise of more thorough tissue characterization by generating quantitative acoustic parameters. We compare results from a conventional US scanner with data acquired using an experimental circular scanner operating at frequencies of 0.3 - 1.5 MHz. Data were obtained on phantoms and a normal, formalin-fixed, excised breast. Both reflection and transmission-based algorithms were used to generate images of reflectivity, sound speed and attenuation.. Images of the phantoms demonstrate the ability to detect sub-mm features and quantify acoustic properties such as sound speed and attenuation. The human breast specimen showed full field evaluation, improved penetration and tissue definition. Comparison with conventional US indicates the potential for better margin definition and acoustic characterization of masses, particularly in the complex scattering environments of human breast tissue. The use of morphology, in the context of reflectivity, sound speed and attenuation, for characterizing tissue, is discussed.
Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing
Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.
2009-01-01
Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in
Mechel, Fridolin
2013-01-01
This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields. The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.
Visser, M
1999-01-01
Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.
ACOUSTIC MEASUREMENTS BUBBLES IN BIOLOGICAL TIESSURE
CHAHINE Georges L.; TANGUAY Michel; LORAINE Greg
2009-01-01
An acoustic based instrument,the ABS Acoustic Bubble Spectrometer(R)(C)(ABS),was investigated for the detection and quantification of bubbles in biological media.These include viscoelastic media(blood),materials of varying density(bone in tissue),non-homogenous distribution of bubbles(intravenous bubbly flow),and bubbles migrating in tissue(decompression sickness,DCS).The performance of the ABS was demonstrated in a series of laboratory experiments.Validation of the code was performed using a viscoelastic polymer solution,Polyox,in which the bubble size distribution and void fraction were determined by ABS measurements and with image analysis of high speed videos.These tests showed that the accuracy of the ABS was not significantly affected by viscoelasticity for bubbles smaller than 200 microns.The ABS detection and measurement of non-homogenous bubble distributions was demonstrated using a bubbly flow through a simulated vein surrounded by tissue.The scatter of acoustic signals due to bones in the acoustic pathway was also investigated.These in-vitro experiments were done using meat(beef)as a tissue simulant.Decompression experiments were done using beef meat which was held underwater at high pressure(9.9 atm)then rapidly decompressed.Bubble size distributions and void fraction calculations in these experiments were then validated using image analysis of high speed video.In addition,preliminary experiments were performed with the US Navy Medical Research Center,demonstrating the utility of the modified ABS system in detecting the evolution of bubbles in swine undergoing decompression sickness(DCS).These results indicate that the ABS may be used to detect and quantify the evolution of bubbles in-vivo and aid in the monitoring of DCS.
CHEN Yan; TANG Weilin; FAN Wei; FAN Jun
2012-01-01
A geometrical acoustic method based on image-source method and physicM acoustic method was developed to calculate the echo of targets submerged in the shallow water waveguide. The incident rays and the scattering rays are reflected by two boundaries for many times, and then the back rays become countless. The total backscattering field is obtained through summing up the scattering field produced by each combination of incident rays and back rays. The echo of the 10m-radius pressure release sphere in Pekeris waveguide with the range is calculated by the geometrical acoustic method. Compared with the results calculated by the wave acoustic method in the available literature, it shows that both are in accordance on average value and descend trend. The following results indicate that the difference between Effective Target Strength （ETS） in shallow water and the Target Strength （TS） in free space for spheres and certain other rounded objects is small. However, the ETS of some targets such as cone-shaped is quite different from TS in free space, which can lead to large errors in estimating a target＇s scattering property using traditional sonar equation. Compared with the method of wave acoustics, the geometrical acoustic method not only has the definite physical meaning but also can calculate the echo of complex objects in shallow water waveguide.
Modal analysis of the scattering coefficients of an open cavity in a waveguide
Tong, Yuhui
2016-01-01
The characteristics of an acoustic scatterer are often described by scattering coefficients. The understanding of the mechanisms involved in the frequency dependent features of the coefficients has been a challenge task, owing to the complicated coupling between the waves in open space and the modes inside the finite scatterer. In this paper, a frequency-dependent modal description of the scattering coefficient is utilized to study the modal properties of the scatterer. The important role that eigenmodes play in defining the features of the scattering coefficients is revealed via an expansion of the coefficients by the eigenmodes. The results show the local extrema of the scattering coefficients can be attributed to the constructive/destructive interference of resonant and non-resonant modes. In particular, an approximated equation, which is equivalent to the standard Fano formula, is obtained to describe the sharp anti-symmetric Fano characteristics of the scattering coefficients. The special cases where sca...
Wave scattering from statistically rough surfaces
Bass, F G; ter Haar, D
2013-01-01
Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a
From Architectural Acoustics to Acoustical Architecture Using Computer Simulation
Schmidt, Anne Marie Due; Kirkegaard, Poul Henning
2005-01-01
Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...
Cascaded forward Brillouin scattering to all Stokes orders
Wolff, C.; Stiller, B.; Eggleton, B. J.; Steel, M. J.; Poulton, C. G.
2017-02-01
Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and this is likely to occur in certain integrated opto-acoustic devices. We develop a Hamiltonian formalism for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin scattering as the interaction of a single acoustic envelope and a single optical envelope that covers all Stokes and anti-Stokes orders, we obtain a compact model that is well suited for numerical implementation, extension to include other optical nonlinearities or short pulses, and application in the quantum-optics domain. We then theoretically analyze intra-mode forward Brillouin scattering (FBS) for arbitrary waveguides with and without optical dispersion. In the absence of optical dispersion, we find an exact analytical solution. With a perturbative approach, we furthermore solve the case of weak optical dispersion. Our work leads to several key results on intra-mode FBS. For negligible dispersion, we show that cascaded intra-mode FBS results in a pure phase modulation and discuss how this necessitates specific experimental methods for the observation of fiber-based and integrated FBS. Further, we discuss how the descriptions that have been established in these two classes of waveguides connect to each other and to the broader context of cavity opto-mechanics and Raman scattering. Finally, we draw an unexpected striking similarity between FBS and discrete diffraction phenomena in waveguide arrays, which makes FBS an interesting candidate for future research in quantum-optics.
Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho;
2015-01-01
A phased combination of acoustical radiosity and the image source method (PARISM) has been developed in order to be able to model both specular and diffuse reflections with angle-dependent and complex-valued acoustical descriptions of the surfaces. It is of great interest to model both specular...... and diffuse reflections when simulating the acoustics of small rooms with non-diffuse sound fields, since scattering from walls add to the diffuseness in the room. This room type is often seen in class rooms and offices, as they are often small rectangular rooms with most of the absorption placed...
A combination of the acoustic radiosity and the image source method
Koutsouris, Georgios I.; Brunskog, Jonas; Jeong, Cheol-Ho;
2012-01-01
A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part....... The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated...... allows for a dynamic control of the image source production, so that no fixed maximum order is required....
Mitri, F G
2015-09-01
The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque.
Neutron scattering from fractals
Kjems, Jørgen; Freltoft, T.; Richter, D.;
1986-01-01
The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent smal...
di Francia, Giuliano Toraldo
1973-01-01
The art of deriving information about an object from the radiation it scatters was once limited to visible light. Now due to new techniques, much of the modern physical science research utilizes radiation scattering. (DF)
Elberling, C; Parbo, J; Johnsen, N J;
1985-01-01
Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...
Elberling, C; Parbo, J; Johnsen, N J;
1985-01-01
Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...
Indigenous Acoustic Detection.
1982-01-26
considerable distances, and they act as good sensors of human presence. Though singing insects are ubiquitous in warm areas, even in the desert ( Nevo and...methodology. DTIC. CD-58-PL. Lloyd, J. E. 1981. Personnel communication. Nevo , E. and S. A. Blondheim. 1972. Acoustic isolation in the speciation of
2015-04-15
sound speed profile is range-independent; since there is little expectation there will be significant mesoscale phenomenon given the lack of solar ...34 Journal of the Acoustical Society of America 93 (4), 1736-1742 (1993). 2 Chris H. Harrison and Martin Siderius, "Effective Parameters for Matched
Non-Reciprocal Brillouiin Scattering Induced Transparency
Kim, JunHwan; Han, Kewen; Wang, Hailin; Bahl, Gaurav
2014-01-01
Electromagnetically induced transparency (EIT) [1, 2] provides a powerful mechanism for controlling light propagation in a dielectric medium, and for producing both slow and fast light. EIT traditionally arises from destructive interference induced by a nonradiative coherence in an atomic system. Stimulated Brillouin scattering (SBS) of light from propagating hypersonic acoustic waves [3] has also been used successfully for the generation of slow and fast light [4-7]. However, EIT-type processes based on SBS were considered infeasible because of the short coherence lifetime of hypersonic phonons. Here, we demonstrate a new Brillouin scattering induced transparency (BSIT) phenomenon generated by acousto-optic interaction of light with long-lived propagating phonons [8, 9]. This transparency is intrinsically non-reciprocal due to the stringent phase-matching requirements. We demonstrate BSIT in a silica microresonator having a specific, naturally occurring, forward-SBS phase-matched modal configuration [8, 9]. ...
Andersson, N
2000-01-01
This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.
Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer
2016-09-01
Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.
Acoustic field modulation in regenerators
Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.
2016-12-01
The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.
Controlling sound with acoustic metamaterials
Cummer, Steven A. ; Christensen, Johan; Alù, Andrea
2016-01-01
Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...
Scattering Cross Section of Sound Waves by the Modal Element Method
Baumeister, Kenneth J.; Kreider, Kevin L.
1994-01-01
#he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.
Bubble nonlinear dynamics and stimulated scattering process
Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu
2016-02-01
A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).
Ainslie, M.A.; Leighton, T.G.
2011-01-01
Perhaps the most familiar concepts when discussing acoustic scattering by bubbles are the resonance frequency for bubble pulsation, the bubbles' damping, and their scattering and extinction cross-sections, all of which are used routinely in oceanography, sonochemistry, and biomedicine. The apparent
The DtN nonreflecting boundary condition for multiple scattering problems in the half-plane
Acosta, Sebastian; Malone, Bruce
2013-01-01
The multiple-Dirichlet-to-Neumann (multiple-DtN) non-reflecting boundary condition is adapted to acoustic scattering from obstacles embedded in the half-plane. The multiple-DtN map is coupled with the method of images as an alternative model for multiple acoustic scattering in the presence of acoustically soft and hard plane boundaries. As opposed to the current practice of enclosing all obstacles with a large semicircular artificial boundary that contains portion of the plane boundary, the proposed technique uses small artificial circular boundaries that only enclose the immediate vicinity of each obstacle in the half-plane. The adapted multiple-DtN condition is simultaneously imposed in each of the artificial circular boundaries. As a result the computational effort is significantly reduced. A computationally advantageous boundary value problem is numerically solved with a finite difference method supported on boundary-fitted grids. Approximate solutions to problems involving two scatterers of arbitrary geo...
Flat acoustic lens by acoustic grating with curled slits
Peng, Pai
2014-10-01
We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.
Manipulate acoustic waves by impedance matched acoustic metasurfaces
Wu, Ying; Mei, Jun; Aljahdali, Rasha
We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.
Particle-like wave packets in complex scattering systems
Gérardin, Benoît; Ambichl, Philipp; Prada, Claire; Rotter, Stefan; Aubry, Alexandre
2016-01-01
A wave packet undergoes a strong spatial and temporal dispersion while propagating through a complex medium. This wave scattering is often seen as a nightmare in wave physics whether it be for focusing, imaging or communication purposes. Controlling wave propagation through complex systems is thus of fundamental interest in many areas, ranging from optics or acoustics to medical imaging or telecommunications. Here, we study the propagation of elastic waves in a cavity and a disordered waveguide by means of laser interferometry. We demonstrate how the direct experimental access to the information stored in the scattering matrix of these systems allows us to selectively excite scattering states and wave packets that travel along individual classical trajectories. Due to their limited dispersion, these particle-like scattering states will be crucially relevant for all applications involving selective wave focusing and efficient information transfer through complex media.
2011-06-01
Leibniz ’ rule are necessary to derive the first and second order shape derivatives in this setting. Following [12, 13], we represent the shape by its...2π 0 ( ∂f ∂er + f r ) rr̂r̃ dθ = − ∫ Γs ( ∂f ∂er + f r ) rr̂r̃√ r2 + r′2 ds, (7b) for all r̂, r̃ ∈ C1 ([0, 2π]). Proof. We use the Leibniz rule
A Martian acoustic anemometer.
Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W
2016-08-01
An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions.
Acoustic absorption by sunspots
Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.
1987-01-01
The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.
J. J. Almeida-Pérez
2004-12-01
Full Text Available In this paper appears a solution for acoustic emission analysis commonly known as noise. For the accomplishmentof this work a personal computer is used, besides sensors (microphones and boards designed and built for signalconditioning. These components are part of a virtual instrument used for monitoring the acoustical emission. Themain goal of this work is to develop a virtual instrument that supplies many important data as the result of ananalysis allowing to have information in an easy and friendly way. Moreover this information is very useful forstudying and resolving several situations in planning, production and testing areas.The main characteristics of the virtual instrument are: signal analysis in time, effective power measurement inDecibels (dB, average intensity taken from the principle of paired microphones, as well as the data analysis infrequency. These characteristics are included to handle two information channels.
Electromagnetic acoustic imaging.
Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A
2013-02-01
Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.
Acoustic emission source modeling
Hora P.
2010-07-01
Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.
Acoustic Characterization of Soil
2007-11-02
ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Dept. of Electrical & Computer Enginnering Dept Natural Resources...same transduction device is used for transmit and receive, and the broad-band mechanical matching between the transduction device and the acoustic...has a direct influence over the imaging depth for a given dynamic range. Figure 10 demonstrated the influence of the roundtrip propagation loss as a
Acoustic Communications for UUVs
2016-06-07
through use of high-gain, error-control coding coupled with a modified decision feedback equalizer (DFE) which allows the gain to be exploited prior to...finished it wait for feedback from the receiver. At the host each packet is decoded and displayed if it is correct, or added to a list of bad packets if it...Systems Laboratory, Florida Alantic University, July 1998. L. Freitag el al: ‘A Bidriectional Coherent Acoustic Communications Systems for Underwater
Acoustically enhanced heat transport
Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)
2016-01-15
We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.
Acoustics, computers and measurements
Truchard, James J.
2003-10-01
The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.
Acoustically enhanced heat transport
Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.
2016-01-01
We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.
Rakotonarivo, S T; Walker, S C; Kuperman, W A; Roux, P
2011-12-01
A method to actively localize a small perturbation in a multiple scattering medium using a collection of remote acoustic sensors is presented. The approach requires only minimal modeling and no knowledge of the scatterer distribution and properties of the scattering medium and the perturbation. The medium is ensonified before and after a perturbation is introduced. The coherent difference between the measured signals then reveals all field components that have interacted with the perturbation. A simple single scatter filter (that ignores the presence of the medium scatterers) is matched to the earliest change of the coherent difference to localize the perturbation. Using a multi-source/receiver laboratory setup in air, the technique has been successfully tested with experimental data at frequencies varying from 30 to 60 kHz (wavelength ranging from 0.5 to 1 cm) for cm-scale scatterers in a scattering medium with a size two to five times bigger than its transport mean free path.
Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering
Trigo, M.; Chen, J.; Vishwanath, V.H.; /SLAC; Sheu, Y.M.; /Michigan U.; Graber, T.; Henning, R.; /U. Chicago; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.
2011-03-03
We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.
Neutron scattering study of protonated and deuterated potassium phosphate glasses
Yamamuro, Osamu; Madokoro, Yasushi; Obara, Hideki; Harabe, Kouji; Matsuo, Takasuke [Department of Chemistry, Graduate School of Science, Osaka Univ., Toyonaka, Osaka (Japan); Kamiyama, Takashi [Graduate School of Engineering, Hokkaido Univ., Sappro, Hokkaido (Japan); Fukazawa, Hiroshi; Ikeda, Susumu [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan)
2001-03-01
The incoherent inelastic neutron scattering from protonated potassium phosphate glass was measured on CAT at KENS and AGNES at ISSP (JRR-3M) over a wide energy range of 0.1-300 meV. The measurement of coherent inelastic scattering was also performed for the deuterated analogue in the energy range 3-90 meV and momentum transfer range 1-13 A{sup -1} by using MARI at ISIS. We have found a boson peak at around 4 meV and some interesting features of the acoustic and localized vibrations characteristic to the amorphous structure of the present materials. (author)
Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene
Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads
2017-01-01
.We examine the effect of the gate-induced one-phonon scattering on the mobility for several gate geometries and dielectric environments using first-principles calculations based on density functional theory and the Boltzmann equation. We demonstrate that this scattering mechanism can be a mobility......-limiting factor, and show how the carrier density and temperature scaling of the mobility depends on the electrostatic environment. Our findings may explain the high deformation potential for in-plane acoustic phonons extracted from experiments and, furthermore, suggest a direct relation between device symmetry...
Collective hypersonic excitations in strongly multiple scattering colloids.
Still, T; Gantzounis, G; Kiefer, D; Hellmann, G; Sainidou, R; Fytas, G; Stefanou, N
2011-04-29
Unprecedented low-dispersion high-frequency acoustic excitations are observed in dense suspensions of elastically hard colloids. The experimental phononic band structure for SiO(2) particles with different sizes and volume fractions is well represented by rigorous full-elastodynamic multiple-scattering calculations. The slow phonons, which do not relate to particle resonances, are localized in the surrounding liquid medium and stem from coherent multiple scattering that becomes strong in the close-packing regime. Such rich phonon-matter interactions in nanostructures, being still unexplored, can open new opportunities in phononics.
Scattering from inclusions in Marine Sediments: SAX04 Data/Model Comparisons
2008-07-14
spheres can be found, e.g., in [Hickling 1962, Morse and Ingard 1968, Medwin and Clay 1998]. There is no exact solution for non-spherical particles of...H. Medwin and C.S. Clay (1998), Fundamentals of Acoustical Oceanography, Academic Press, Boston. [28] P.M. Morse and K.U. Ingard (1968...from discrete scatterers on the ocean bottom, Sov.Phys.Acoust., 35, 5-11 (1989). 11. P.M. Morse and K.U. Ingard , Theoretical acoustics, McGraw-Hill
Latest Trends in Acoustic Sensing
Cinzia Caliendo
2014-03-01
Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.
Wave scattering theory a series approach based on the Fourier transformation
Eom, Hyo J
2001-01-01
The book provides a unified technique of Fourier transform to solve the wave scattering, diffraction, penetration, and radiation problems where the technique of separation of variables is applicable. The book discusses wave scattering from waveguide discontinuities, various apertures, and coupling structures, often encountered in electromagnetic, electrostatic, magnetostatic, and acoustic problems. A system of simultaneous equations for the modal coefficients is formulated and the rapidly-convergent series solutions amenable to numerical computation are presented. The series solutions find practical applications in the design of microwave/acoustic transmission lines, waveguide filters, antennas, and electromagnetic interference/compatibilty-related problems.
Spacecraft Internal Acoustic Environment Modeling
Chu, S. Reynold; Allen, Chris
2009-01-01
The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.
Acoustic Imaging of Combustion Noise
Ramohalli, K. N.; Seshan, P. K.
1984-01-01
Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.
Acoustic streaming with heat exchange
Gubaidullin, A. A.; Pyatkova, A. V.
2016-10-01
Acoustic streaming in a cylindrical cavity with heat exchange is numerically investigated. The cavity is filled with air. The boundaries of the cavity are maintained at constant temperature. The features of acoustic streaming manifesting with the decrease in the frequency of vibration in comparison with the resonant frequency are determined. The influence of the nonlinearity of process on acoustic streaming is shown. The nonlinearity is caused by the increase of the vibration amplitude.
Cosmic Microwave Background Acoustic Peak Locations
Pan, Zhen; Mulroe, Brigid; Narimani, Ali
2016-01-01
The Planck collaboration has measured the temperature and polarization of the cosmic microwave background well enough to determine the locations of eight peaks in the temperature (TT) power spectrum, five peaks in the polarization (EE) power spectrum and twelve extrema in the cross (TE) power spectrum. The relative locations of these extrema give a striking, and beautiful, demonstration of what we expect from acoustic oscillations in the plasma; e.g., that EE peaks fall half way between TT peaks. We expect this because the temperature map is predominantly sourced by temperature variations in the last scattering surface, while the polarization map is predominantly sourced by gradients in the velocity field, and the harmonic oscillations have temperature and velocity 90 degrees out of phase. However, there are large differences in expectations for extrema locations from simple analytic models vs. numerical calculations. Here we quantitatively explore the origin of these differences in gravitational potential tr...
Silveirinha, Mario G
2016-01-01
In time-reversal invariant electronic systems the scattering matrix is anti-symmetric. This property enables an effect, designated here as "scattering anomaly", such that the electron transport does not suffer from back reflections, independent of the specific geometry of the propagation path or the presence of time-reversal invariant defects. In contrast, for a generic time-reversal invariant photonic system the scattering matrix is symmetric and there is no similar anomaly. Here, it is theoretically proven that despite these fundamental differences there is a wide class of photonic platforms - in some cases formed only by time-reversal invariant media - in which the scattering anomaly can occur. It is shown that an optical system invariant under the action of the composition of the time-reversal, parity and duality operators is characterized by an anti-symmetric scattering matrix. Specific examples of photonic platforms wherein the scattering anomaly occurs are given, and it is demonstrated with full wave n...
Combined Environment Acoustic Chamber (CEAC)
Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...
Acoustic Communications Measurement Systems (ACOMMS)
Federal Laboratory Consortium — FUNCTION: Design and develop adaptive signal processing techniques to improve underwater acoustic communications and networking. Phase coherent and incoherent signal...
Stevenson, A C; Araya-Kleinsteuber, B; Sethi, R S; Mehta, H M; Lowe, C R
2003-10-01
A measurement technique similar to optical absorption spectroscopy but based on evanescent acoustic waves is described in this paper. This format employs a planar spiral coil to vibrate a single crystal of quartz from 6 to 400 MHz, in order to measure multifrequency acoustic spectra. Consistency with the defined Sauerbrey and Kanazawa terms K1 and K2 when applied to multiple frequencies was found for these specific operating conditions in terms of a significant fit between the measured and calculated values: For an IgG surface density of 13.5 ng mm(-2) the measured value of K1 is 22.5 x 10(-6) and the calculated value is 20.4 x 10(-6), whilst for glycerol viscous loadings of 5.131 cP the measured value of K2 is 0.47 and the calculated value is 0.54. Thus for these specific surface loadings the multifrequency data fits to the predictions of the Sauerbrey model to within 10% and to Kanazawa model within 13%. However collective frequency shifts for 5.131 cP solutions of sucrose, dextran and glucose were found to exhibit an unanticipated additional variability (R2 solution was found to be significantly below the other isoviscous solutions, with a substantially reduced frequency shift and K2 value than would be expected from its bulk viscosity. In comparison with these viscous solutions, IgG protein films consistently produced linear frequency shifts with little scatter (R2 > 0.96) that were proportional to the operating frequency, and fully consistent with the Sauerbrey model under these specific conditions. A t-test value of 14.52 was calculated from the variance and mean of the two groups, and demonstrates that the acoustic spectrophonometer can be used to distinguish between the acoustic impedance characteristics of two chemical systems that are not clearly differentiable at a single operating frequency.
Introduction to neutron scattering
Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-11-01
We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.
Nonlinear ultrasound imaging of nanoscale acoustic biomolecules
Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.
2017-02-01
Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.
2009-09-30
deck of the R/V Alliance and on the sea surface . Figure 2 shows 1600-3500 Hz seabed scattering data from the 0.21m aperture with a source-receiver... surface reflection. The direct blast is seen on the forward end-fire beam (heading is approx northeast). Scattering from a MV is shown in Fig. 3...Guillon L. and C.W. Holland, Coherence of signals reflected by the seafloor: numerical modeling vs. experimental data, Traitement du Signal (French
Impedance-Matched Reduced Acoustic Cloaking with Realizable Mass and Its Layered Design
CHEN Huan-Yang; YANG Tao; LUO Xu-Dong; MA Hong-Ru
2008-01-01
We present an impedance-matched reduced version of acoustic cloaking whose mass is in a reasonable range. A layered cloak design with isotropic material is also proposed for the reduced cloak. Numerical calculations from the transfer matrix methods show that the present layered cloak can reduce the scattering of an air cylinder substantially.
Evaluation of performance of Son Tek Argonaut acoustic doppler velocity log in tow tank and sea
Joseph, A; Madhan, R.; Mascarenhas, A.A; Desai, R.G.P.; VijayKumar, K.; Dias, M.; Tengali, S.; Methar, A
Performance of a 500-kHz, 3-beam downward-looking Sontex Argonaut acoustic Doppler velocity log (DVL) based on measurements at tow-tank and sea is addressed. Its accuracy and linearity under tow-tank measurements were largely scattered...
Acoustic Localization in Weakly Compressible Elastic Media Permeated with Air Bubbles
LIANG Bin; ZHU Zhe-Min; CHENG Jian-Chun
2006-01-01
@@ The propagation of longitudinal acoustic waves in weakly compressible elastic media permeated with air bubbles is investigated on the basis of the radial pulsation equation of a single bubble. The multiple scattering of waves in such media is rigorously described by using a self-consistent approach.
Acoustic transparency and slow sound using detuned acoustic resonators
Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.
2011-01-01
We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...
The Frequency and Damping of Ion Acoustic Waves in Collisional and Collisionless Two-species Plasma
R.L. Berger; E.J. Valeo
2004-08-18
The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub th} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub th} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.
The frequency and damping of ion acoustic waves in collisional and collisionless two-species plasma
Berger, R L; Valeo, E J
2004-07-15
The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub lh} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub lh} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.
Influence of Oceanic Synoptic Eddies on the Duration of Modal Acoustic Pulses
Makarov, D. V.; Kon'kov, L. E.; Petrov, P. S.
2016-12-01
We consider the problem of scattering of the modal acoustic pulses from synoptic eddies with allowance for the influence of the field of internal waves. The ray formalism in terms of the action-angle variables is used. The synoptic-eddy induced distortion of the sound-speed profile is shown to enhance the scattering of certain ray bundles from internal waves. The formulas allowing one to identify the modal pulses corresponding to such ray bundles are derived. These pulses differ from the other ones by increased duration. This fact can be used for obtaining additional information during acoustic tomography. The model of the underwater acoustic channel in the Sea of Japan is considered as an example.
Acoustic interaction forces and torques acting on suspended spheres in an ideal fluid
Lopes, J Henrique; Silva, G T
2014-01-01
In this paper, the acoustic interaction forces and torques exerted by an arbitrary time-harmonic wave on a set of N spheres suspended in an inviscid fluid are theoretically analyzed. In so doing, we utilize the partial-wave expansion method to solve the related multiple scattering problem. The acoustic interaction force and torque are computed for a sphere using the farfield radiation force and torque formulas. To exemplify the method, we calculate the interaction forces exerted by an external traveling and standing plane wave on an arrangement of two and three olive-oil droplets in water. The droplets radii are comparable to the wavelength (i.e. Mie scattering regime). The results show that the radiation force may considerably deviates from that exerted solely by the external incident wave. In addition, we find that acoustic interaction torques arise on the droplets when a nonsymmetric effective incident wave interacts with the droplets.
Mitri, F G
2016-04-01
One of the fundamental theorems in (optical, acoustical, quantum, gravitational) wave scattering is the optical theorem for plane waves, which relates the extinction cross-section to the forward scattering complex amplitude function. In this analysis, the optical theorem is extended for the case of 3D-beams of arbitrary character in a cylindrical coordinates system for any angle of incidence and any scattering angle. Generalized analytical expressions for the extinction, absorption, scattering cross-sections and efficiency factors are derived in the framework of the scalar resonance scattering theory for an object of arbitrary shape. The analysis reveals the presence of an interference scattering cross-section term, which describes interference between the diffracted or specularly reflected inelastic (Franz) waves with the resonance elastic waves. Moreover, an alternate expression for the extinction cross-section, which relates the resonance cross-section with the scattering cross-section for an impenetrable object, is obtained, suggesting an improved method for particle characterization. Cross-section expressions are also derived for known acoustical wavefronts centered on the object, defined as the on-axis case. The extended optical theorem in cylindrical coordinates can be applied to evaluate the extinction efficiency from any object of arbitrary geometry placed on or off the axis of the incident beam. Applications in acoustics, optics, and quantum mechanics should benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by many particles, as well as the radiation force and torque.
Hashimoto, Hiroshi; Kim, Min-Geun; Abe, Kazuhisa; Cho, Seonho
2013-10-01
This paper presents a level set-based topology optimization method for noise barriers formed from an assembly of scatterers. The scattering obstacles are modeled by elastic bodies arranged periodically along the wall. Due to the periodicity, the problem can be reduced to that in a unit cell. The interaction between the elastic scatterers and the acoustic field is described in the context of the level set analysis. The semi-infinite acoustic wave regions located on the both sides of the barrier are represented by impedance matrices. The objective function is defined by the energy transmission passing the barrier. The design sensitivity is evaluated analytically by the aid of adjoint equations. The dependency of the optimal profile on the stiffness of scatterers and on the target frequency band is examined. The feasibility of the developed optimization method is proved through numerical examples.
Stover, John C.
1991-12-01
Optical scatter is a bothersome source of optical noise, limits resolution and reduces system throughput. However, it is also an extremely sensitive metrology tool. It is employed in a wide variety of applications in the optics industry (where direct scatter measurement is of concern) and is becoming a popular indirect measurement in other industries where its measurement in some form is an indicator of another component property - like roughness, contamination or position. This paper presents a brief review of the current state of this technology as it emerges from university and government laboratories into more general industry use. The bidirectional scatter distribution function (or BSDF) has become the common format for expressing scatter data and is now used almost universally. Measurements made at dozens of laboratories around the country cover the spectrum from the uv to the mid- IR. Data analysis of optical component scatter has progressed to the point where a variety of analysis tools are becoming available for discriminating between the various sources of scatter. Work has progressed on the analysis of rough surface scatter and the application of these techniques to some challenging problems outside the optical industry. Scatter metrology is acquiring standards and formal test procedures. The available scatter data base is rapidly expanding as the number and sophistication of measurement facilities increases. Scatter from contaminants is continuing to be a major area of work as scatterometers appear in vacuum chambers at various laboratories across the country. Another area of research driven by space applications is understanding the non-topographic sources of mid-IR scatter that are associated with Beryllium and other materials. The current flurry of work in this growing area of metrology can be expected to continue for several more years and to further expand to applications in other industries.
Frequency steerable acoustic transducers
Senesi, Matteo
Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing
Acoustic Mechanical Feedthroughs
Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea
2013-01-01
Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be
Rivas, David Fernandez; Enriquez, Oscar R; Versluis, Michel; Prosperetti, Andrea; Gardeniers, Han; Lohse, Detlef
2012-01-01
In this fluid dynamics video we show acoustic cavitation occurring from pits etched on a silicon surface. By immersing the surface in a liquid, gas pockets are entrapped in the pits which upon ultrasonic insonation, are observed to shed cavitation bubbles. Modulating the driving pressure it is possible to induce different behaviours based on the force balance that determines the interaction among bubbles and the silicon surface. This system can be used for several applications like sonochemical water treatment, cleaning of surfaces with deposited materials such as biofilms.
Hubbard, Harvey H.; Shepherd, Kevin P.
1990-12-01
Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.
Van Capel, P.J.S.; Turchinovich, D.; Porte, H.P.; Lahmann, S.; Rossow, U.; Dijkhuis, J.I.
2011-01-01
We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlated with electromagnetic THz generation, and both types of emission find their o...
Van Capel, P.J.S.; Turchinovich, Dmitry; Porte, Henrik; Lahmann, S.; Rossow, U.; Hangleiter, A.; Dijkhuis, J.I.
2011-01-01
We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlatedwith electromagnetic THz generation, and both types of emission find their or...
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
Agaltsov, A. D., E-mail: agalets@gmail.com [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr [CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau (France); IEPT RAS, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation)
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
Acoustic Ground-Impedance Meter
Zuckerwar, A. J.
1983-01-01
Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.
Propagation of Ion Acoustic Perturbations
Pécseli, Hans
1975-01-01
Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....
Acoustic Center or Time Origin?
Staffeldt, Henrik
1999-01-01
The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....
Feng Yu-Lin; Liu Xiao-Zhou; Liu Jie-Hui; Ma Li
2009-01-01
Based on an equivalent medium approach,this paper presents a model describing the nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores. The influences of pores' nonlinear oscillations on sound attenuation,sound dispersion and an equivalent acoustic nonlinearity parameter are discussed. The calculated results show that the attenuation increases with an increasing volume fraction of mieropores. The peak of sound velocity and attenuation occurs at the resonant frequency of the micropores while the peak of the equivalent acoustic nonlinearity parameter occurs at the half of the resonant frequency of the micropores. Furthermore,multiple scattering has been taken into account,which leads to a modification to the effective wave number in the equivalent medium approach. We find that these linear and nonlinear acoustic parameters need to be corrected when the volume fraction of micropores is larger than 0.1%.
Model of Light Scattering in Cavitation Area
S. P. Skvortsov
2015-01-01
Full Text Available The offered work presents analysis of extinction mechanisms and justification of light scattering model in ultrasonic cavitation area to justify a control method of ultrasonic cavitation through its optical sounding by low-intensity laser radiation and through photo-detector record of last radiation.The analysis of the extinction mechanisms has shown that the most essential mechanism causing a change of the transmission coefficient with time is dispersion on pulsating cavitation bubbles. Other extinction mechanisms lead to the time-constant reduction of last radiation intensity and can be taken into consideration by normalizing a recorded transmission coefficient for a previously measured liquid transmission coefficient when there is no cavitation.The feature of light scattering on the cavitation bubbles is primary dispersion in a forward direction that is connected with great values of bubbles radius from units to hundreds of micrometers. In case of single bubbles, dispersion can be described by Mi's theory, and, as to the cavitation area, it is reasonable to use the theory of V. Tversky for multiple light scattering. Thus, dispersion section, according to the paradox of extinction, can be considered to be equal to doubled geometrical section of a bubble. With increasing bubble radius the transmission coefficient monotonically decreases. So, the law of bubble pulsations and the model of light scattering define the law of changing transmission coefficient.Therefore, the cavitation area with its optical sounding acts as a peculiar opto-acoustic modulator. Thus, the demodulated signal of a photo-detector comprises information on pulsations of bubbles.The paper examines the influence of cavitation area thickness and bubbles concentration on the transmission coefficient. It shows a type of transmission coefficient dependence on the radius of cavitation bubbles.The optical sounding method is attractive because it allows us to obtain data on the
Acoustic Absorption in Porous Materials
Kuczmarski, Maria A.; Johnston, James C.
2011-01-01
An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.
Inelastic Light Scattering Processes
Fouche, Daniel G.; Chang, Richard K.
1973-01-01
Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.
Damaske, Peter
2008-01-01
When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...
Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)
2006-01-01
Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.
Acoustic data transmission method
Duckworth, A.
1991-09-17
This patent describes a method for transmitting time line data through a drillstring having drill pipe sections connected end-to-end by joints from a first location below the surface of the earth to a second location at or near the surface of the earth, the length and cross-sectional area of the drill pipe sections being different from the length and cross-sectional area of the joints. It comprises generating acoustic data signals having a single frequency content in at least one passband of the drillstring; transmitting the data signals through the drillstring from either the first location to the second location or from the second location to the first location during a time period prior to the onset of reflective interference caused by the data signals reflecting from along the length of the drillstring, the time period being equal to or less than the time for the data signals to travel three lengths of the drillstring; stopping the transmission of data signals at the onset of the reflective interference and allowing the acoustic signals to substantially attenuate; and detecting the data signals at the respective first or second location.
Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan
2016-12-01
As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell’s law. However, the critical angle that derived from the generalized Snell’s law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device.
Suzumura, Yukio
2003-08-01
Convex tilted rear walls in a stage enclosure, an array of circular columns installed in front of walls, and triangular reflectors above the stage were newly adopted as scattering obstacles in an acoustic design of Tsuyama Music Cultural Hall, called ``Bell Fole‸t Tsuyama.'' The fundamental shape of the hall was designed using the theory of subjective preference. To calculate the effects of scattered reflections on a sound field in a real concert hall is extremely laborious. For this reason, the evaluation of effects of scattered reflections on the sound field in the hall was made experimentally by use of a 110 acoustical scale. After construction of the hall, therefore, sound fields of the hall, which involves scattered reflections caused by the tilted convex rear, by the array of circular columns, and by the triangular reflectors, were measured using four orthogonal physical factors (LL, Δt1, Tsub, IACC) described in the theory and the acoustical character of these scattering obstacles was clarified. Results clearly showed that these new attempts on scattered reflections substantially improved the quality of the sound field in the hall. Thesis advisor: Yoichi Ando Copies of this thesis written in English can be obtained from Yukio Suzumura. E-mail address: ysuzu11@lapis.plala.or.jp
Gallaudet, Timothy C.; deMoustier, Christian P.
2002-08-01
Multibeam volume acoustic backscatter imagery and reverberation measurements are derived from data collected in 200-m-deep waters in the northeastern Gulf of Mexico, with the Toroidal Volume Search Sonar (TVSS), a 68-kHz cylindrical sonar operated by the U.S. Navy's Coastal System Station. The TVSS's 360-degree vertical imaging plane allows simultaneous identification of multiple volume scattering sources and their discrimination from backscatter at the sea surface or the seafloor. This imaging capability is used to construct a three-dimensional representation of a pelagic fish school near the bottom. Scattering layers imaged in the mixed layer and upper thermocline are attributed to assemblages of epipelagic zooplankton. The fine scale patchiness of these scatterers is assessed with the two-dimensional variance spectra of vertical volume scattering strength images in the upper and middle water column. Mean volume reverberation levels exhibit a vertical directionality which is attributed to the volume scattering layers. Boundary echo sidelobe interference and reverberation is shown to be the major limitation in obtaining bioacoustic data with the TVSS. Because net tow and trawl samples were not collected with the acoustic data, the analysis presented is based upon comparison to previous biologic surveys in the northeastern Gulf of Mexico and reference to the bioacoustic literature. copyright 2002 Acoustical Society of America.
Taller, Daniel; Go, David B.; Chang, Hsueh-Chia
2013-05-01
The exponentially decaying acoustic pressure of scattered surface acoustic waves (SAWs) at the contact line of a liquid film pinned to filter paper is shown to sustain a high curvature conic tip with micron-sized modulations whose dimension grows exponentially from the tip. The large negative capillary pressure in the film, necessary for offsetting the large positive acoustic pressure at the contact line, also creates significant negative hydrodynamic pressure and robust wicking action through the paper. An asymptotic analysis of this intricate pressure matching between the quasistatic conic film and bulk drop shows that the necessary SAW power to pump liquid from the filter paper and aerosolize, expressed in terms of the acoustic pressure scaled by the drop capillary pressure, grows exponentially with respect to twice the acoustic decay constant multiplied by the drop length, with a universal preexponential coefficient. Global rapid aerosolization occurs at a SAW power twice as high, beyond which the wicking rate saturates.
Super-resolution photoacoustic imaging through a scattering wall
Conkey, Donald B; Dove, Jacob D; Ju, Hengyi; Murray, Todd W; Piestun, Rafael
2013-01-01
Imaging through opaque, highly scattering walls is a long sought after capability with potential applications in a variety of fields. The use of wavefront shaping to compensate for scattering has brought a renewed interest as a potential solution to this problem. A key to the practicality of any imaging technique is the capability to focus light without direct access behind the scattering wall. Here, we address this problem using photoacoustic feedback for wavefront optimization. By combining the spatially non-uniform sensitivity of the ultrasound transducer to the generated photoacoustic waves with an evolutionary competition among optical modes, the speckle field develops a single, high intensity focus significantly smaller than the acoustic focus used for feedback. Notably, this method is not limited by the size of the absorber to form a sub-acoustic optical focus. We demonstrate imaging behind a scattering medium with up to ten times improvement in signal-to-noise ratio (SNR) and five to six times sub-aco...
Coste, C; Lund, F; Coste, Christophe; Umeki, Makoto; Lund, Fernando
1999-01-01
When a surface wave interacts with a vertical vortex in shallow water the latter induces a dislocation in the incident wavefronts that is analogous to what happens in the Aharonov-Bohm effect for the scattering of electrons by a confined magnetic field. In addition to this global similarity between these two physical systems there is scattering. This paper reports a detailed calculation of this scattering, which is quantitatively different from the electronic case in that a surface wave penetrates the inside of a vortex while electrons do not penetrate a solenoid. This difference, together with an additional difference in the equations that govern both physical systems lead to a quite different scattering in the case of surface waves, whose main characteristic is a strong asymmetry in the scattering cross section. The assumptions and approximations under which these effects happen are carefully considered, and their applicability to the case of scattering of acoustic waves by vorticity is noted.
High Resolution Acoustical Imaging
1989-05-01
1028 (September 1982). 26 G. Arfken , Mathematical Methods for Physicists (Academic Press, New York, 1971), 2nd printing, pp.662-666. 27 W. R. Hahn...difference in the approach used by the two methods , as noted in the previous paragraph, forming a direct mathematical com- parison may be impossible...examines high resolution methods which use a linear array to locate stationary objects which have scattered the fressure waves. Several;- new methods
Scattering and; Delay, Scale, and Sum Migration
Lehman, S K
2011-07-06
How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes an object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine
Polonyi, Janos
2011-01-01
The cross section of elastic electron-proton scattering taking place in an electron gas is calculated within the Closed Time Path method. It is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. The other term is due to the scattering particles-electron gas entanglement. This term dominates the usual one when the exchange energy is in the vicinity of the Fermi energy. Furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime.
Manipulating scattering features by metamaterials
Lu Cui
2016-01-01
Full Text Available We present a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces. Several approaches in controlling the scattered fields of objects are presented, including invisibility cloaks and radar illusions based on transformation optics, carpet cloak using gradient metamaterials, dc cloaks, mantle cloaks based on scattering cancellation, “skin” cloaks using phase compensation, scattering controls with coding/programmable metasurfaces, and scattering reductions by multilayered structures. Finally, the future development of metamaterials on scattering manipulation is predicted.
Acoustic Signal Feature Extraction of Vehicle Targets
蓝金辉; 马宝华; 李科杰
2002-01-01
Acoustic signal feature extraction is an important part of target recognition. The mechanisms for producing acoustic signals and their propagation are analyzed to extract the features of the radiated noise from different targets. Analysis of the acoustic spectra of typical vehicle targets acquired outdoors shows that the vehicles can be classified based on the acoustic spectra and amplitudes.
Scattering matrices in non-uniformly lined ducts
Demir, Ahmet
2017-02-01
Sudden area expansion and sudden area contraction in an infinitely long duct with discontinuous locally reacting lining are defined by respective mixed boundary value problems. In the absence of a sudden area change, a separate problem with an infinite duct having bifid lining on its wall is described. Introducing Fourier transform along the duct axis boundary value problems is solved by the well-known Wiener-Hopf technique, and then, corresponding scattering matrices are constructed. To show the proper use of scattering matrices in the case of several discontinuities and also validation and comparison purposes, transmitted field in a duct with an inserted expansion chamber whose walls are treated by acoustically absorbent material is derived by the help of the relevant scattering matrices. A perfect agreement is observed when the transmitted fields are compared numerically with a similar work exists in the literature.
Phonon Scattering Dynamics of Thermophoretic Motion in Carbon Nanotube Oscillators.
Prasad, Matukumilli V D; Bhattacharya, Baidurya
2016-04-13
Using phonon wave packet molecular dynamics simulations, we find that anomalous longitudinal acoustic (LA) mode phonon scattering in low to moderate energy ranges is responsible for initiating thermophoretic motion in carbon nanotube oscillators. The repeated scattering of a single mode LA phonon wave packet near the ends of the inner nanotube provides a net unbalanced force that, if large enough, initiates thermophoresis. By applying a coherent phonon pulse on the outer tube, which generalizes the single mode phonon wave packet, we are able to achieve thermophoresis in a carbon nanotube oscillator. We also find the nature of the unbalanced force on end-atoms to be qualitatively similar to that under an imposed thermal gradient. The thermodiffusion coefficient obtained for a range of thermal gradients and core lengths suggest that LA phonon scattering is the dominant mechanism for thermophoresis in longer cores, whereas for shorter cores, it is the highly diffusive mechanism that provides the effective force.
High resolution inverse scattering in two dimensions using recursive linearization
Borges, Carlos; Greengard, Leslie
2016-01-01
We describe a fast, stable algorithm for the solution of the inverse acoustic scattering problem in two dimensions. Given full aperture far field measurements of the scattered field for multiple angles of incidence, we use Chen's method of recursive linearization to reconstruct an unknown sound speed at resolutions of thousands of square wavelengths in a fully nonlinear regime. Despite the fact that the underlying optimization problem is formally ill-posed and non-convex, recursive linearization requires only the solution of a sequence of linear least squares problems at successively higher frequencies. By seeking a suitably band-limited approximation of the sound speed profile, each least squares calculation is well-conditioned and involves the solution of a large number of forward scattering problems, for which we employ a recently developed, spectrally accurate, fast direct solver. For the largest problems considered, involving 19,600 unknowns, approximately one million partial differential equations were ...
A discrete-time channel simulator driven by measured scattering functions
Walree, P.A. van; Jenserud, T.; Smedsrud, M.
2008-01-01
In-situ measurements of the scattering function are used to drive a channel simulator developed in the context of underwater acoustic telemetry. Two operation modes of the simulator are evaluated. A replay mode is accomplished by interpolation of measured impulse responses. A second, stochastic mode
Acoustic classification of dwellings
Berardi, Umberto; Rasmussen, Birgit
2014-01-01
Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on soun...... exchanging experiences about constructions fulfilling different classes, reducing trade barriers, and finally increasing the sound insulation of dwellings.......Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on sound...... insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...
Crum, Lawrence A.
2003-04-01
Acoustic cavitation is a phenomenon that occurs on microsecond time scales and micron length scales, yet, it has many macroscopic manifestations. Accordingly, it is often difficult, at least for the author, to form realistic physical descriptions of the specific mechanisms through which it expresses itself in our macroscopic world. For example, there are still many who believe that cavitation erosion is due to the shock wave that is emitted by bubble implosion, rather than the liquid jet created on asymmetric collapse...and they may be right. Over the years, the author has accumulated a number of movies and high-speed photographs of cavitation activity, which he uses to form his own visual references. In the time allotted, he will show a number of these movies and photographs and discuss their relevance to existing technological problems. A limited number of CDs containing the presented materials will be available to interested individuals. [Work supported in part by the NIH, USAMRMC, and the ONR.
Acoustic/Magnetic Stress Sensor
Heyman, J. S.; Namkung, M.
1986-01-01
High-resolution sensor fast, portable, does not require permanent bonding to structure. Sensor measures nondestructively type (compressive or tensile) and magnitude of stresses and stress gradients present in class of materials. Includes precise high-resolution acoustic interferometer, sending acoustic transducer, receiving acoustic transducer, electromagnet coil and core, power supply, and magnetic-field-measuring device such as Hall probe. This measurement especially important for construction and applications where steel is widely used. Sensor useful especially for nondestructive evaluation of stress in steel members because of portability, rapid testing, and nonpermanent installation.
Akay, Adnan
2002-04-01
This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of
Applied electromagnetic scattering theory
Osipov, Andrey A
2017-01-01
Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...
Dremin, I M
2012-01-01
When colliding, the high energy hadrons can either produce new particles or scatter elastically without change of their quantum num- bers and other particles produced. Namely elastic scattering of hadrons is considered in this review paper. Even though the inelastic processes dominate at high energies, the elastic scattering constitutes the notice- able part of the total cross section ranging between 18 and 25% with some increase at higher energies. The scattering proceeds mostly at small angles and reveals peculiar dependences at larger angles disclos- ing the geometrical structure of the colliding particles and di?erent dynamical mechanisms. The fast decreasing Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoul- ders and dips and then by the power-like decrease. Results of various theoretical approaches are compared with exper- imental data. Phenomenological models pretending to describe this process are reviewed. The unitarity condition requires the exponen- tial re...
Dremin, I. M.
2013-01-01
Colliding high-energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18-25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features can be seen that provide information on the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law decrease. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.
Lifetimes of confined acoustic phonons in ultrathin silicon membranes.
Cuffe, J; Ristow, O; Chávez, E; Shchepetov, A; Chapuis, P-O; Alzina, F; Hettich, M; Prunnila, M; Ahopelto, J; Dekorsy, T; Sotomayor Torres, C M
2013-03-01
We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultrathin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from ~4.7 ns to 5 ps with decreasing membrane thickness from ~194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures.
Padé approximants and their application to scattering from fluid media.
Denis, Max; Tsui, Jing; Thompson, Charles; Chandra, Kavitha
2010-11-01
In this work, a numerical method for modeling the scattered acoustic pressure from fluid occlusions is described. The method is based on the asymptotic series expansion of the pressure expressed in terms of sound speed contrast between the host medium and entrained fluid occlusions. Padé approximants are used to extend the applicability of the result for larger values of sound speed contrast. For scattering from a circular cylinder, an improvement in convergence between the exact and numerical solutions is demonstrated. In the case of scattering from an inhomogeneous medium, a numerical solution with reduced order of Padé approximants is presented.
The significance of multiple scattering in bubble measurements near the sea surface
Jensen, Leif Bjørnø; Bjørnø, Irina K.
1996-01-01
improvement of the scattering theory [C. Feuillade, J. Acoust. Soc. Am. 98, 1178–1190 (1995)], predicts a downward frequency shift and a suppression of the attenuation peak. His results emphasize the importance of the still unsolved problem on proximity thresholds for influence of multiple scattering in terms...... of bubble plume qualities. Available, but still unconfirmed, experimental data show the significance of multiple scattering in bubble plumes having void fractions >~0.22%. This paper forms an attempt to illuminate and solve the proximity threshold question, forming the basis for the significance...
NEAR-FIELD ACOUSTIC HOLOGRAPHY FOR SEMI-FREE ACOUSTIC FIELD BASED ON WAVE SUPERPOSITION APPROACH
LI Weibing; CHEN Jian; YU Fei; CHEN Xinzhao
2006-01-01
In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example,and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.
Reverberant Acoustic Test Facility (RATF)
Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...
Frequency Steered Acoustic Transducer Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is to develop, fabricate, and characterize a novel frequency steered acoustic transducer (FSAT) for the...
Cryogenic Acoustic Suppression Testing Project
National Aeronautics and Space Administration — The proposed project will explore and test the feasibility and effectiveness of using a cryogenic fluid (liquid nitrogen) to facilitate acoustic suppression in a...
ADAPTIVE ELLIPSOIDAL ACOUSTIC INFINITE ELEMENT
Yang Ruiliang; Wang Hongzhen
2004-01-01
It is shown that the basis of the ellipsoidal acoustic infinite element Burnett method,the multipole expansion,cannot represent real ellipsoidal acoustic field exactly.To solve the problem,a weight of angular direction is added to the multipole expansion.The comparison of the modified method and the prime method shows that the modified method can describe and solve the ellipsoidal acoustic field more accurately than ever.A dilating sphere is used to test the new method further.Unlike other infinite element methods,varied ratio of the ellipsoidal artificial boundary instead of sphere is used.The pressure value of the artificial boundary is utilized as the initial value of the new method.Then the radiating phenomena of the ellipsoidal acoustic field can be researched using the new method.These examples show the feasibility of the adaptive method.
Frequency Steered Acoustic Transducer Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is to fabricate, characterize, and verify performance of a new type of frequency steered acoustic transducer...
Acoustically-driven microfluidic systems
Wang, A W; Benett, W J; Tarte, L R
2000-06-23
We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.
Biological Effects of Acoustic Cavitation
2007-11-02
rectified diffusion. 56 III. STABLE CAVITATION A. Introduction There are manv areas associated with the biological effects of ultrasound in which the...used said as cavitation indicators. Further, if clinical ultrasound systems are found to be inducing cavitation , either stable or transient, it will...O BIOLOGICAL EFFECTS OF ACOUSTIC CAVITATION by Lawrence A. Crum -- Physical Acoustics Research Laboratory Department of Physics and Astronomy ’ CTE
Autonomous Adaptive Acoustic Relay Positioning
2013-09-01
equipment construction and repair tasks [51]. Commercial ROVs range from large, versatile work-class vehicles like Soil Machine Dynamics (SMD) QUANTUM and...range-only formation control using teams of heterogeneous vehicles with wifi and acoustic communications. Shankar and Chitre formulated the multi-armed...acoustic communication and sensing by marine robots. IEEE Journal of Oceanographic Engineering, 38:522–533, 2013. [43] S. Shankar and Chitre. Tuning
Acoustic Multipurpose Cargo Transfer Bag
Baccus, Shelley
2015-01-01
The Logistics Reduction (LR) project within the Advanced Exploration Systems (AES) program is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) are designed to be the same external volume as a regular cargo transfer bag, the common logistics carrier for the International Space Station. After use as a cargo bag, the MCTB can be unzipped and unfolded to be reused. This Acoustic MCTBs transform into acoustic blankets after the initial logistics carrying objective is complete.
Acoustic Rectification in Dispersive Media
Cantrell, John H.
2008-01-01
It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.
Study Acoustic Emissions from Composites
Walker, James; Workman,Gary
1998-01-01
The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.
Visuri, S R; Heredia, N
2000-03-09
Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.
Uncertainty of input data for room acoustic simulations
Jeong, Cheol-Ho; Marbjerg, Gerd; Brunskog, Jonas
2016-01-01
summarizes potential advanced absorption measurement techniques that can improve the quality of input data for room acoustic simulations. Lastly, plenty of uncertain input data are copied from unreliable sources. Software developers and users should be careful when spreading such uncertain input data. More...... and scattering coefficients are insufficient when simulating highly non-diffuse rooms. More detailed information, such as the phase and angle dependence, can greatly improve the simulation results of pressure-based geometrical and wave-based models at frequencies well below the Schroeder frequency. Phase......, the current measurement techniques produce uncertain input data. For example, Sabine absorption coefficients according to ISO 354 measured in reverberation chambers have a poor reproducibility. The same happens for sound scattering and transmission, which depend greatly on the test chamber. This study...
Létourneau, Pierre-David
2016-09-19
We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we mean that no assumption (e.g. Rayleigh scattering, geometrical optics, weak scattering, Born single scattering, etc.) is necessary regarding the properties of the scatterers, their distribution or the background medium. The algorithm is also fast in the sense that it scales linearly with the number of unknowns. We use this algorithm to study the phenomenon of super-resolution in time-reversal refocusing in highly-scattering media recently observed experimentally (Lemoult et al., 2011), and provide numerical arguments towards the fact that such a phenomenon can be explained through a homogenization theory.
Mamou, Jonathan M.
This dissertation investigated how three-dimensional (3D) tissue models can be used to improve ultrasonic tissue characterization (UTC) techniques. Anatomic sites in tissue responsible for ultrasonic scattering are unknown, which limits the potential applications of ultrasound for tumor diagnosis. Accurate 3D models of tumor tissues may help identify the scattering sites. Three mammary tumors were investigated: a rat fibroadenoma, a mouse carcinoma, and a mouse sarcoma. A 3D acoustic tissue model, termed 3D impedance map (3DZM), was carefully constructed from consecutive histologic sections for each tumor. Spectral estimates (scatterer size and acoustic concentration) were obtained from the 3DZMs and compared to the same estimates obtained with ultrasound. Scatterer size estimates for three tumors were found to be similar (within 10%). The 3DZMs were also used to extract tissue-specific scattering models. The scattering models were found to allow clear distinction between the three tumors. This distinction demonstrated that UTC techniques may be helpful for noninvasive clinical tumor diagnosis.
Waters, Z J; Simpson, H J; Sarkissian, A; Dey, S; Houston, B H; Bucaro, J A; Yoder, T J
2012-11-01
Laboratory grade bistatic scattering measurements are conducted in order to examine the acoustic response of realistic fully buried unexploded ordnance (UXO) from above-critical angle insonification, between 2 and 40 kHz. A 127 mm diameter rocket UXO, a 155 mm diameter artillery shell, a natural rock of approximately the same size, and a cinder block are fully buried in water-saturated medium grained sand (mean grain diameter, 240 μm) at depths of 10 cm below the water-sediment interface. A two-dimensional array of bistatic scattering measurements is generated synthetically by scanning a single hydrophone in steps of 3 cm over a 1 m × 1 m patch directly above the targets at a height of 20 cm above the water-sediment interface. Three-dimensional volumetric acoustic images generated from the return waveforms reveal scattering components attributed to geometric and elastic scattering, as well as multiple-scattering interactions of returns between the sediment-water interface and the buried objects. The far-field target strength of the objects is estimated through extrapolation of the angular spectrum. Agreement is found between experimental data and simulated data generated from a finite-element-based, three-dimensional time-harmonic model (2-25 kHz). Separation of the measured UXO from the clutter objects is demonstrated through exploitation of structural-acoustics-based features.
Non-Hermitian Acoustic Metamaterials: the role of Exceptional Points in sound absorption
Achilleos, V; Richoux, O; Pagneux, V
2016-01-01
Effective non-Hermitian Hamiltonians are obtained to describe coherent perfect absorbing and lasing boundary conditions. PT -symmetry of the Hamiltonians enables to design configurations which perfectly absorb at multiple frequencies. Broadened and flat perfect absorption is predicted at the exceptional point of PT -symmetry breaking while, for a particular case, absorption is enhanced with the use of gain. The aforementioned phenomena are illustrated for acoustic scattering through Helmholtz resonators revealing how tailoring the non-Hermiticity of acoustic metamaterials leads to novel mechanisms for enhanced absorption.
Acoustic and thermal anomalies in a liquid-glass transition of racemic S(+)-R(-) ketoprofen
Shibata, Tomohiko; Takayama, Haruki; Kim, Tae Hyun; Kojima, Seiji
2014-01-01
Acoustic and thermal properties of pharmaceutical racemic S(+)-R(-) ketoprofen were investigated in wide temperature range including glassy, supercooled liquid and liquid states by Brillouin scattering and temperature modulated DSC. Sound velocity and acoustic attenuation exhibited clear changes at 265 K indicating a liquid-glass transition and showed the typical structural relaxation above Tg. The high value of the fragility index m = 71 was determined by the dispersion of the complex heat capacity. New relaxation map was suggested in combination with previous study of dielectric measurement.
High-pressure acoustic properties of glycerol studied by Brillouin spectroscopy
Jeong, Min-Seok; Ko, Jae-Hyeon; Ko, Young Ho; Kim, Kwang Joo
2015-12-01
Acoustic properties of glycerol was investigated in a wide pressure range from ambient pressure to 30.9 GPa by using a multi-pass Fabry-Perot interferometer and a diamond anvil cell. Pressure dependences of the sound velocity and the Brillouin linewidth showed substantial changes at low pressures below ~4 GPa. This was attributed to the coupling between the main structural relaxation process and the longitudinal acoustic waves. The pressure dependence of the refractive index and the density of glycerol could be obtained by using two scattering geometries and the Lorentz-Lorenz relation.
High-pressure acoustic properties of glycerol studied by Brillouin spectroscopy
Jeong, Min-Seok [Department of Physics, Hallym University, Chuncheon, Gangwondo 200-702 (Korea, Republic of); Ko, Jae-Hyeon, E-mail: hwangko@hallym.ac.kr [Department of Physics, Hallym University, Chuncheon, Gangwondo 200-702 (Korea, Republic of); Ko, Young Ho; Kim, Kwang Joo [Agency for Defense Development, 4-2-2, P.O. Box 35, Yuseong, Daejeon 305-600 (Korea, Republic of)
2015-12-01
Acoustic properties of glycerol was investigated in a wide pressure range from ambient pressure to 30.9 GPa by using a multi-pass Fabry–Perot interferometer and a diamond anvil cell. Pressure dependences of the sound velocity and the Brillouin linewidth showed substantial changes at low pressures below ~4 GPa. This was attributed to the coupling between the main structural relaxation process and the longitudinal acoustic waves. The pressure dependence of the refractive index and the density of glycerol could be obtained by using two scattering geometries and the Lorentz–Lorenz relation.
Synthetic aperture acoustic imaging of canonical targets with a 2-15 kHz linear FM chirp
Vignola, Joseph F.; Judge, John A.; Good, Chelsea E.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad
2011-06-01
Synthetic aperture image reconstruction applied to outdoor acoustic recordings is presented. Acoustic imaging is an alternate method having several military relevant advantages such as being immune to RF jamming, superior spatial resolution, capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to 0.5 - 3 GHz ground penetrating radar technologies. Synthetic aperture acoustic imaging is similar to synthetic aperture radar, but more akin to synthetic aperture sonar technologies owing to the nature of longitudinal or compressive wave propagation in the surrounding acoustic medium. The system's transceiver is a quasi mono-static microphone and audio speaker pair mounted on a rail 5meters in length. Received data sampling rate is 80 kHz with a 2- 15 kHz Linear Frequency Modulated (LFM) chirp, with a pulse repetition frequency (PRF) of 10 Hz and an inter-pulse period (IPP) of 50 milliseconds. Targets are positioned within the acoustic scene at slant range of two to ten meters on grass, dirt or gravel surfaces, and with and without intervening metallic chain link fencing. Acoustic image reconstruction results in means for literal interpretation and quantifiable analyses. A rudimentary technique characterizes acoustic scatter at the ground surfaces. Targets within the acoustic scene are first digitally spotlighted and further processed, providing frequency and aspect angle dependent signature information.
Kim, Jaehwan; Jung, Eunmi; Choi, Seung-Bok
2002-07-01
This paper presents a numerical modeling technique of piezoelectric transducers by taking into account wave radiation and scattering. It is based on the finite element modeling. Coupling problems between piezoelectric and elastic materials as well as fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Wave Envelop Element) is adopted to take into account the infinite domain. The IWEE code is added to an in-house finite element program, and commercial pre and post-processor are used for mesh generation and to see the output. The validation of the numerical modeling is proved through an example, and scattering and radiation analysis of Tonpilz transducer is performed. The scattered wave on the sensor is calculated, and the sensor response, so called RVS (Receiving Voltage Sensitivity) is predicted.
Scattering of ultrasonic shock waves in suspensions of silica nanoparticles.
Baudoin, Michael; Thomas, Jean-Louis; Coulouvrat, François; Chanéac, Corinne
2011-03-01
Experiments are carried out to assess, for the first time, the validity of a generalized Burgers' equation, introduced first by Davidson [J. Acoust. Soc. Am. 54, 1331-1342 (1973)] to compute the nonlinear propagation of finite amplitude acoustical waves in suspensions of "rigid" particles. Silica nanoparticles of two sizes (33 and 69 nm) have been synthesized in a water-ethanol mixture and precisely characterized via electron microscopy. An acoustical beam of high amplitude is generated at 1 MHz inside a water tank, leading to the formation of acoustical shock waves through nonlinear steepening. The signal is then measured after propagation in a cylinder containing either a reference solution or suspensions of nanoparticles. In this way, a "nonlinear attenuation" is obtained and compared to the numerical solution of a generalized Burgers' equation adapted to the case of hydrosols. An excellent agreement (corresponding to an error on the particles size estimation of 3 nm) is achieved in the frequency range from 1 to 40 MHz. Both visco-inertial and thermal scattering are significant in the present case, whereas thermal effects can generally be neglected for most hydrosols. This is due to the value of the specific heat ratio of water-ethanol mixture which significantly differs from unity.
Miller, Erin A; Caggiano, Joseph A; Runkle, Robert C; White, Timothy A; Bevill, Aaron M
2011-03-01
As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding, in addition to screening for items such as drugs or contraband. Radiographic detection of such threat objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beam in the cargo, the radiographic system itself, and the surrounding environment, which degrades image contrast. Here, we estimate the extent to which scatter plays a role in radiographic imaging of cargo containers. Stochastic transport simulations were performed to determine the details of the radiography equipment and surrounding environment, which are important in reproducing measured data and to investigate scatter magnitudes for typical cargo. We find that scatter plays a stronger role in cargo radiography than in typical medical imaging scenarios, even for low-density cargo, with scatter-to-primary ratios ranging from 0.14 for very low density cargo, to between 0.20 and 0.40 for typical cargo, and higher yet for dense cargo.
Covert underwater acoustic communications.
Ling, Jun; He, Hao; Li, Jian; Roberts, William; Stoica, Petre
2010-11-01
Low probability of detection (LPD) communications are conducted at a low received signal-to-noise ratio (SNR) to deter eavesdroppers to sense the presence of the transmitted signal. Successful detection at intended receiver heavily relies on the processing gain achieved by employing the direct-sequence spread-spectrum (DSSS) technique. For scenarios that lack a sufficiently low SNR to maintain LPD, another metric, referred to as low probability of interception (LPI), is of interest to protect the privacy of the transmitted information. If covert communications take place in underwater acoustic (UWA) environments, then additional challenges are present. The time-varying nature of the UWA channel prevents the employment of a long spreading waveform. Furthermore, UWA environments are frequency-selective channels with long memory, which imposes challenges to the design of the spreading waveform. In this paper, a covert UWA communication system that adopts the DSSS technique and a coherent RAKE receiver is investigated. Emphasis is placed on the design of a spreading waveform that not only accounts for the transceiver structure and frequency-selective nature of the UWA channel, but also possesses a superior LPI. The proposed techniques are evaluated using both simulated and SPACE'08 in-water experimental data.
Passive Acoustic Vessel Localization
Suwal, Pasang Sherpa
This thesis investigates the development of a low-cost passive acoustic system for localizing moving vessels to monitor areas where human activities such as fishing, snorkeling and poaching are restricted. The system uses several off-the-shelf sensors with unsynchronized clocks where the Time Difference of Arrival (TDOA) or time delay is extracted by cross-correlation of the signal between paired sensors. The cross-correlation function uses phase correlation or Phase Transform (PHAT) which whitens the cross-spectrum in order to de-emphasize dominant frequency components. Using the locations of pairs of sensors as foci, hyperbolic equations can be defined using the time delay between them. With three or more sensors, multiple hyperbolic functions can be calculated which intersect at a unique point: the boat's location. It is also found that increasing separation distances between sensors decreased the correlation between the signals. However larger separation distances have better localization capability than with small distances. Experimental results from the Columbia and Willamette Rivers are presented to demonstrate performance.
Hartmann, William M.; Candy, James V.
Signal processing refers to the acquisition, storage, display, and generation of signals - also to the extraction of information from signals and the re-encoding of information. As such, signal processing in some form is an essential element in the practice of all aspects of acoustics. Signal processing algorithms enable acousticians to separate signals from noise, to perform automatic speech recognition, or to compress information for more efficient storage or transmission. Signal processing concepts are the building blocks used to construct models of speech and hearing. Now, in the 21st century, all signal processing is effectively digital signal processing. Widespread access to high-speed processing, massive memory, and inexpensive software make signal processing procedures of enormous sophistication and power available to anyone who wants to use them. Because advanced signal processing is now accessible to everybody, there is a need for primers that introduce basic mathematical concepts that underlie the digital algorithms. The present handbook chapter is intended to serve such a purpose.
Virtual neutron scattering experiments
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2017-01-01
We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...
Invariant Scattering Convolution Networks
Bruna, Joan
2012-01-01
A wavelet scattering network computes a translation invariant image representation, which is stable to deformations and preserves high frequency information for classification. It cascades wavelet transform convolutions with non-linear modulus and averaging operators. The first network layer outputs SIFT-type descriptors whereas the next layers provide complementary invariant information which improves classification. The mathematical analysis of wavelet scattering networks explains important properties of deep convolution networks for classification. A scattering representation of stationary processes incorporates higher order moments and can thus discriminate textures having the same Fourier power spectrum. State of the art classification results are obtained for handwritten digits and texture discrimination, using a Gaussian kernel SVM and a generative PCA classifier.
$\\Lambda$ Scattering Equations
Gomez, Humberto
2016-01-01
The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter $\\Lambda$ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting $\\Lambda$ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the $\\Lambda$ algorithm.
ZALIZNYAK,I.A.; LEE,S.H.
2004-07-30
Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern
Quaglioni, S; Navratil, P; Roth, R
2009-12-15
The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.
Quantum Optical Multiple Scattering
Ott, Johan Raunkjær
. In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... embedded in an arbitrary dielectric environment. By considering the two different models for dipole interaction known as the minimal-coupling and electric-dipole interaction Hamiltonians, we find exact relations between the electric field and the dipole operators in the Heisenberg picture, while keeping...... for the dipoles while treating them as quantum two-level systems and using the Born–Markov and rotating-wave approximations. Postponing the rotating-wave approximation to the very end of the formal calculations allows us to identify the different physical parameters of the dipole evolution in terms of physical...
Reverberant acoustic energy in auditoria that comprise systems of coupled rooms
Summers, Jason E.
2003-11-01
A frequency-dependent model for reverberant energy in coupled rooms is developed and compared with measurements for a 1:10 scale model and for Bass Hall, Ft. Worth, TX. At high frequencies, prior statistical-acoustics models are improved by geometrical-acoustics corrections for decay within sub-rooms and for energy transfer between sub-rooms. Comparisons of computational geometrical acoustics predictions based on beam-axis tracing with scale model measurements indicate errors resulting from tail-correction assuming constant quadratic growth of reflection density. Using ray tracing in the late part corrects this error. For mid-frequencies, the models are modified to account for wave effects at coupling apertures by including power transmission coefficients. Similarly, statical-acoustics models are improved through more accurate estimates of power transmission measurements. Scale model measurements are in accord with the predicted behavior. The edge-diffraction model is adapted to study transmission through apertures. Multiple-order scattering is theoretically and experimentally shown inaccurate due to neglect of slope diffraction. At low frequencies, perturbation models qualitatively explain scale model measurements. Measurements confirm relation of coupling strength to unperturbed pressure distribution on coupling surfaces. Measurements in Bass Hall exhibit effects of the coupled stage house. High frequency predictions of statistical acoustics and geometrical acoustics models and predictions of coupling apertures all agree with measurements.
Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures
Xiao, Bingmu
2013-05-01
In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.
Haïat, G; Naili, S
2011-02-01
Speed of sound measurements are used clinically to assess bone strength. Trabecular bone is an attenuating composite material in which negative values of velocity dispersion have been measured; this behavior remaining poorly explained physically. The aim of this work is to describe the ultrasonic propagation in trabecular bone modeled by infinite cylinders immersed in a saturating matrix and to derive the physical determinants of velocity dispersion. An original homogenization model accounting for the coupling of independent scattering and absorption phenomena allows the computation of phase velocity and of dispersion while varying bone properties. The first step of the model consists in the computation of the attenuation coefficient at all frequencies. The second step of the model corresponds to the application of the general Kramers-Krönig relationship to derive the frequency dependence of phase velocity. The model predicts negative values of velocity dispersion in agreement with experimental results obtained in phantoms mimicking trabecular bone. In trabecular bone, only negative values of velocity dispersion are predicted by the model, which span within the range of values measured experimentally. However, the comparison of the present results with results obtained in Haiat et al. (J Acoust Soc Am 124:4047-4058, 2008) assuming multiple scattering indicates that accounting for multiple scattering phenomena leads to a better prediction of velocity dispersion in trabecular bone.
Low frequency seabed scattering at low grazing angles.
Zhou, Ji-Xun; Zhang, Xue-Zhen
2012-04-01
Low-frequency (LF) seabed scattering at low grazing angles (LGA) is almost impossible to directly measure in shallow water (SW), except through inversion from reverberation. The energy flux method for SW reverberation is briefly introduced in this paper. The closed-form expressions of reverberation in an isovelocity waveguide, derived from this method, indicate that in the three-halves law range interval multimode/ray sea bottom scattering with different incident and scattering angles in forming the reverberation may equivalently be represented by the bottom backscattering at a single range-dependent angle. This equivalent relationship is used to derive the bottom backscattering strength (BBS) as a function of angle and frequency. The LF&LGA BBS is derived in a frequency band of 200-2500 Hz and in a grazing angle range of 1.1°-14.0° from reverberation measurements at three sites with sandy bottoms. This is based on three previous works: (1) The closed-form expressions of SW reverberation [Zhou, (Chinese) Acta Acustica 5, 86-99 (1980)]; (2) the effective geo-acoustic model of sandy bottoms that follows the Biot model [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)] and (3) A quality database of wideband reverberation level normalized to source level [Zhou and Zhang, IEEE J. Oceanic Eng. 30, 832-842 (2005)].
Acoustic loading effects on oscillating rod bundles
Lin, W.H.
1980-01-01
An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed.
Reflective echo tomographic imaging using acoustic beams
Kisner, Roger; Santos-Villalobos, Hector J
2014-11-25
An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.
Modelling of acoustic transmission through perforated layer
Lukeš V.
2007-10-01
Full Text Available The paper deals with modeling the acoustic transmission through a perforated interface plane separating two halfspaces occupied by the acoustic medium. We considered the two-scale homogenization limit of the standard acoustic problem imposed in the layer with the perforated periodic structure embedded inside. The homogenized transmission conditions govern the interface discontinuity of the acoustic pressure associated with the two halfspaces and the magnitude of the fictitious transversal acoustic velocity. By numerical examples we illustrate this novel approach of modeling the acoustic impedance of perforated interfaces.
A study of nondiffracting Lommel beams propagating in a medium containing spherical scatterers
Belafhal, A.; Ez-zariy, L.; Hricha, Z.
2016-11-01
By means of the expansion of the nondiffracting beams on plane waves with help of the Whittaker integral, an exact analytical expression of the far-field form function of the scattering of the acoustic and optical nondiffracting Lommel beams propagating in a medium containing spherical particles, considered as rigid and single spheres, is investigated in this work. The form function of the scattering of the high order Bessel beam by a rigid and isolated sphere is deduced, from our finding, as a special case. The effects of the wave number-sphere radius product (ka) , the polar angle (φ) , the propagation half-cone angle (β) and the scattering angle (θ) on the far-field form function of the scattered wave have been analyzed and discussed numerically. The numerical results show that the illumination of a rigid sphere by Lommel beams produces asymmetrical scattering.
McCabe, David J; Austin, Dane R; Bondareff, Pierre; Walmsley, Ian A; Gigan, Sylvain; Chatel, Béatrice
2011-01-01
The multiple scattering of coherent light is a problem of both fundamental and applied importance. In optics, phase conjugation allows spatial focussing and imaging through a multiply scattering medium; however, temporal control is nonetheless elusive, and multiple scattering remains a challenge for femtosecond science. Here, we report on the spatially and temporally resolved measurement of a speckle field produced by the propagation of an ultrafast optical pulse through a thick strongly scattering medium. Using spectral pulse shaping, we demonstrate the spatially localized temporal recompression of the output speckle to the Fourier-limit duration, offering an optical analogue to time-reversal experiments in the acoustic regime. This approach shows that a multiply scattering medium can be put to profit for light manipulation at the femtosecond scale, and has a diverse range of potential applications that includes quantum control, biological imaging and photonics.
Neutron scattering. Experiment manuals
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
Neutron scattering. Experiment manuals
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2014-07-01
The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
Tuning Mie scattering resonances in soft materials with magnetic fields.
Brunet, Thomas; Zimny, Kevin; Mascaro, Benoit; Sandre, Olivier; Poncelet, Olivier; Aristégui, Christophe; Mondain-Monval, Olivier
2013-12-27
An original approach is proposed here to reversibly tune Mie scattering resonances occurring in random media by means of external low induction magnetic fields. This approach is valid for both electromagnetic and acoustic waves. The experimental demonstration is supported by ultrasound experiments performed on emulsions made of fluorinated ferrofluid spherical droplets dispersed in a Bingham fluid. We show that the electromagnet-induced change of droplet shape into prolate spheroids, with a moderate aspect ratio of 2.5, drastically affects the effective properties of the disordered medium. Its effective acoustic attenuation coefficient is shown to vary by a factor of 5, by controlling both the flux density and orientation of the applied magnetic field.
Phase-locking in cascaded stimulated Brillouin scattering
Büttner, Thomas F S; Steel, M J; Hudson, Darren D; Eggleton, Benjamin J
2015-01-01
Cascaded stimulated Brillouin scattering (SBS) is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary.
Phase-locking in cascaded stimulated Brillouin scattering
Büttner, Thomas F. S.; Poulton, Christopher G.; Steel, M. J.; Hudson, Darren D.; Eggleton, Benjamin J.
2016-02-01
Cascaded stimulated Brillouin scattering is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary.
Sonification of acoustic emission data
Raith, Manuel; Große, Christian
2014-05-01
While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training
Acoustic constituents of prosodic typology
Komatsu, Masahiko
Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The
Excess attenuation of an acoustic beam by turbulence.
Pan, Naixian
2003-12-01
A theory based on the concept of a spatial sinusoidal diffraction grating is presented for the estimation of the excess attenuation in an acoustic beam. The equation of the excess attenuation coefficient shows that the excess attenuation of acoustic beam not only depends on the turbulence but also depends on the application parameters such as the beam width, the beam orientation and whether for forward propagation or back scatter propagation. Analysis shows that the excess attenuation appears to have a frequency dependence of cube-root. The expression for the excess attenuation coefficient has been used in the estimations of the temperature structure coefficient, C(T)2, in sodar sounding. The correction of C(T)2 values for excess attenuation reduces their errors greatly. Published profiles of temperature structure coefficient and the velocity structure coefficient in convective conditions are used to test our theory, which is compared with the theory by Brown and Clifford. The excess attenuation due to scattering from turbulence and atmospheric absorption are both taken into account in sodar data processing for deducing the contribution of the lower atmosphere to seeing, which is the sharpness of a telescope image determined by the degree of turbulence in the Earth's atmosphere. The comparison between the contributions of the lowest 300-m layer to seeing with that of the whole atmosphere supports the reasonableness of our estimation of excess attenuation.
A purely flexible lightweight membrane-type acoustic metamaterial
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Zhang, Weiquan; Zhang, Siwen
2015-05-01
This paper proposes a purely flexible lightweight membrane-type acoustic structure, wherein one kind of flexible lightweight rubber material takes the roles of mass and stiffness and another type of lightweight flexible EVA (ethylene-vinyl acetate copolymer) or plastic material functions as the localized stiffness for each unit. Because both the scatterers and base are constituted by the same material, this type of structure breaks the limitation that the metamaterials and phononic crystals need different materials with relatively large density and elasticity modulus ratios to play the roles of the scatterers and base respectively. Based on the band structures with different units, mass block shapes and size parameters, it is suggested that the shapes of the mass block can significantly affect the band structure. In addition, this type of structure could not only open a full band gap in the low-frequency range below 500 Hz, but also obtain an ultra-low-frequency bending wave band gap in the range below 100 Hz. Finally, we take into account the semi-infinite medium as a component, and calculate the sound transmission loss (STL) to evaluate the interaction between the structure and air. An experimental validation employing the cylindrical mass structure was developed to directly support the simulation results. Since the structures proposed in this study have achieved a purely flexible lightweight design, there exists an important promotion effect to realize the engineering applications of the acoustic metamaterials in practice.
CALCULATION OF ACOUSTIC EFFICIENCY OF PORTABLE ACOUSTIC SCREEN
Aleksandr Skvortsov
2016-03-01
Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.
Wenzel, Elizabeth M.
1991-01-01
A 3D auditory display can potentially enhance information transfer by combining directional and iconic information in a quite naturalistic representation of dynamic objects in the interface. Another aspect of auditory spatial clues is that, in conjunction with other modalities, it can act as a potentiator of information in the display. For example, visual and auditory cues together can reinforce the information content of the display and provide a greater sense of presence or realism in a manner not readily achievable by either modality alone. This phenomenon will be particularly useful in telepresence applications, such as advanced teleconferencing environments, shared electronic workspaces, and monitoring telerobotic activities in remote or hazardous situations. Thus, the combination of direct spatial cues with good principles of iconic design could provide an extremely powerful and information-rich display which is also quite easy to use. An alternative approach, recently developed at ARC, generates externalized, 3D sound cues over headphones in realtime using digital signal processing. Here, the synthesis technique involves the digital generation of stimuli using Head-Related Transfer Functions (HRTF's) measured in the two ear-canals of individual subjects. Other similar approaches include an analog system developed by Loomis, et. al., (1990) and digital systems which make use of transforms derived from normative mannikins and simulations of room acoustics. Such an interface also requires the careful psychophysical evaluation of listener's ability to accurately localize the virtual or synthetic sound sources. From an applied standpoint, measurement of each potential listener's HRTF's may not be possible in practice. For experienced listeners, localization performance was only slightly degraded compared to a subject's inherent ability. Alternatively, even inexperienced listeners may be able to adapt to a particular set of HRTF's as long as they provide adequate
Robert de Mello Koch
2017-05-01
Full Text Available We study the worldsheet S-matrix of a string attached to a D-brane in AdS5×S5. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the su(2|3 sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter and inelastic (when magnons at the endpoint of an open string participate scattering. Both of these S-matrices are determined (up to an overall phase by the su(2|22 global symmetry of the theory. In this note we study the S-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the su(2 sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a unique solution to the crossing equation is to be selected.
Koch, Robert de Mello
2016-01-01
We study the worldsheet S-matrix of a string attached to a D-brane in AdS$_5\\times$S$^5$. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the $su(2|3)$ sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter) and inelastic (when magnons at the endpoint of an open string participate) scattering. Both of these $S$-matrices are determined (up to an overall phase) by the $su(2|2)^2$ global symmetry of the theory. In this note we study the $S$-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the $su(2)$ sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a uniq...
Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department
2016-07-01
This corrected and updated second edition of ''Scattering Theory'' presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.
Bahcivan, H.; Cosgrove, R. B.; Tsunoda, R. T.
2006-07-01
This article investigates the combined electron heating and streaming effects of low-frequency parallel electric fields on the incoherent scatter measurements of the high-latitude E region. The electric fields distort the electron distribution function, inducing changes on the amplitude and frequency of the ion-acoustic line in the measured incoherent scatter spectrum. If one assumes Maxwellian electrons, the measurements of electron and ion temperatures and electron density are subject to significant percentage errors during geomagnetically active conditions.
Radiative transfer of acoustic waves in continuous complex media: Beyond the Helmholtz equation
Baydoun, Ibrahim; Pierrat, Romain; Derode, Arnaud
2016-01-01
Heterogeneity can be accounted for by a random potential in the wave equation. For acoustic waves in a fluid with fluctuations of both density and compressibility (as well as for electromagnetic waves in a medium with fluctuation of both permittivity and permeability) the random potential entails a scalar and an operator contribution. For simplicity, the latter is usually overlooked in multiple scattering theory: whatever the type of waves, this simplification amounts to considering the Helmholtz equation with a sound speed $c$ depending on position $\\mathbf{r}$. In this work, a radiative transfer equation is derived from the wave equation, in order to study energy transport through a multiple scattering medium. In particular, the influence of the operator term on various transport parameters is studied, based on the diagrammatic approach of multiple scattering. Analytical results are obtained for fundamental quantities of transport theory such as the transport mean-free path $\\ell^*$, scattering phase functi...
Small angle neutron scattering
Cousin Fabrice
2015-01-01
Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of
On Architectural Acoustics Design using Computer Simulation
Schmidt, Anne Marie Due; Kirkegaard, Poul Henning
2004-01-01
is to investigate the field of application an acoustic simulation program can have during an architectural acoustics design process. A case study is carried out in order to represent the iterative working process of an architect. The working process is divided into five phases and represented by typical results......The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...
Acoustic remote sensing of ocean flows
Joseph, A.; Desa, E.
Acoustic techniques have become powerful tools for measurement of ocean circulation mainly because of the ability of acoustic signals to travel long distances in water, and the inherently non-invasive nature of measurement. The satellite remote...
Golden Gate and Pt. Reyes Acoustic Detections
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...
Acoustic network event classification using swarm optimization
Burman, Jerry
2013-05-01
Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.
Acoustic Localization with Infrasonic Signals
Threatt, Arnesha; Elbing, Brian
2015-11-01
Numerous geophysical and anthropogenic events emit infrasonic frequencies (wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.
Classroom acoustics: Three pilot studies
Smaldino, Joseph J.
2005-04-01
This paper summarizes three related pilot projects designed to focus on the possible effects of classroom acoustics on fine auditory discrimination as it relates to language acquisition, especially English as a second language. The first study investigated the influence of improving the signal-to-noise ratio on the differentiation of English phonemes. The results showed better differentiation with better signal-to-noise ratio. The second studied speech perception in noise by young adults for whom English was a second language. The outcome indicated that the second language learners required a better signal-to-noise ratio to perform equally to the native language participants. The last study surveyed the acoustic conditions of preschool and day care classrooms, wherein first and second language learning occurs. The survey suggested an unfavorable acoustic environment for language learning.
Acoustic Communication for Medical Nanorobots
Hogg, Tad
2012-01-01
Communication among microscopic robots (nanorobots) can coordinate their activities for biomedical tasks. The feasibility of in vivo ultrasonic communication is evaluated for micron-size robots broadcasting into various types of tissues. Frequencies between 10MHz and 300MHz give the best tradeoff between efficient acoustic generation and attenuation for communication over distances of about 100 microns. Based on these results, we find power available from ambient oxygen and glucose in the bloodstream can readily support communication rates up to 10,000 bits/second between micron-sized robots. We discuss techniques, such as directional acoustic beams, that can increase this rate. The acoustic pressure fields enabling this communication are unlikely to damage nearby tissue, and short bursts at considerably higher power could be of therapeutic use.
Acoustic multivariate condition monitoring - AMCM
Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)
1997-12-31
In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.
Light scattering reviews 8 radiative transfer and light scattering
Kokhanovsky, Alexander A
2013-01-01
Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.
Particle analysis in an acoustic cytometer
Kaduchak, Gregory; Ward, Michael D
2012-09-18
The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.
Absorption boundary conditions for geomertical acoustics
Jeong, Cheol-Ho
2012-01-01
Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....
A Wide Band Strong Acoustic Absorption in a Locally Network Anechoic Coating
JIANG Heng; ZHANG Mi-Lin; WANG Yu-Ren; HU Yan-Ping; LAN Ding; WEI Bing-Chen
2009-01-01
Composite materials with interpenetrating network structures usually exhibit unexpected merit due to the cooperative interaction.Locally resonant phononic crystals (LRPC) exhibit excellent sound attenuation performance based on a periodical arrangement of sound wave scatters.Inspired by the interpenetrating network structure and the LRPC concept, we develop a locally network anechoic coating (LNAC) that can achieve a wide band of underwater strong acoustic absorption.The experimental results show that the LNAC possesses an excellent underwater acoustic absorbing capacity in a wide frequency range.Moreover, in order to investigate the impact of the interpenetrating network structure, we fabricate a faultage structure sample and the network is disconnected by hard polyurethane (PU).The experimental comparison between the LNAC and the faultage structure sample shows that the interpenetrating network structure of the LNAC plays an important role in achieving a wide band strong acoustic absorption.
Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae
Maksymov, Ivan S
2015-01-01
Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...
Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco
2011-10-12
High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths.
Acoustic behaviors of unsaturated soils
Lu, Z.
2011-12-01
Soils are unconsolidated granular materials, consisting of solid particles, water and air. Their mechanical and dynamic behaviors are determined by the discrete nature of the media as well as external and inter-particle forces. For unsaturated soils, two factors significantly affect soils acoustic/seismic responses: external pressure and internal water potential/matric suction. In triaxial cell tests, unsaturated soils were subjected to predefined stress paths to undergo stages of normal consolidation, unload-reload cycles, and failure. The stress deformation curve and stress-P-wave velocity were measured and compared. The study revealed that soil's dynamic response to external pressure are similar to those of the load-deformation behaviors and demonstrated that acoustic velocity can be used to monitor the state of stress of soils. In a long term field soil survey, the P-wave velocities were found to be correlated with water potential as expressed as a power-law relationship. The above phenomena can be understood by using the Terzaghi' s the principle of effective stress. The measured results were in good agreement with Brutsaert theory. The effective stress concept can also be applied to explain the observations in a soil pipe flow study in which soil internal erosion processes were monitored and interpreted by the temporal evolution of the P-wave velocity. In addition to above linear acoustic behaviors, soils, like other earth materials, exhibit astonishing non-classical nonlinear behaviors such as end-point memory, hysteresis, strain -dependent shear modulus, resonant frequency shift, and phase shift, harmonics generation, etc. A nonlinear acoustic study of a soil as a function of water content showed that the nonlinear acoustic parameter are much sensitive to the variations of soil water content than that of the acoustic velocity.
CT findings of acoustic neuroma
Sim, Do Choul; Lee, Jae Mun; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic Univ., Seoul (Korea, Republic of)
1987-10-15
Computed Tomography (CT) is very accurate in evaluating the location, size, shape and extension of acoustic neuroma. We analysed CT findings of 23 acoustic neuromas seen at Department of Radiology, Kangnam St. Mary's Hospital, Catholic University Medical College during the period of from January 1981 to June 1987. 1. Five (22%) were men and 18 (78%) were women with the high incidence occurring in the 4th and 5th decades. 2. Twenty two cases were diagnosed satisfactorily by CT examinations which included axial, coronal and reconstruction images. One with the smallest dimension of 8 mm in diameter could not be detected by the conventional CT scan. But is could be seen after metrizamide cisternography. mean size of the tumor masses was estimated 3.6 cm in diameter. 3. The shape of the tumor was oval in 50%, round in 27% and lobulated in 23%. The masses were presented as hypodense in 50%, isodense in 32% and hyperdense in 18%. All tumors were extended from the internal acoustic and toward the cerebellopontine angle. The internal acoustic canal was widened in 77%. Hydrocephalus was associated in 45%. Widening of cerebellopontine angle cistern was noted in 50%. 4. After contrast infusion the tumors were enhanced markedly in 45%, moderately in 32% and mildly in 23%. The enhanced pattern was homogeneous in 41%, mixed in 41% and rim in 18%. The margin of the tumors was sharply defined in 82%. The tumors were attached to the petrous bone with acute angle in 73%. Cystic change within the tumor was found in 27%. The peritumoral edema was noted in 45%. In conclusion, CT is of most effective modalities to evaluate size, shape, extent and internal architecture of acoustic neuroma as well as relationship with adjacent anatomic structures including the internal acoustic canal.