WorldWideScience

Sample records for acoustic phonon modes

  1. 2-D modeling of dual-mode acoustic phonon excitation of a triangular nanoplate

    International Nuclear Information System (INIS)

    Tai, Po-Tse; Yu, Pyng; Tang, Jau

    2010-01-01

    Graphical abstract: Modeling the lattice dynamics of a triangular plate with the arrows indicating the direction of impulsive thermal stress. We investigated ultrafast structural dynamics of triangular nanoplates based on 2-D Fermi-Pasta-Ulam model to explain coherent acoustic phonon excitation in nanoprisms. - Abstract: In this theoretical work, we investigated coherent phonon excitation of a triangular nanoplate based on 2-D Fermi-Pasta-Ulam lattice model. Based on the two-temperature model commonly used in description of laser heating of metals, we considered two kinds of forces related to electronic and lattice stresses. Based on extensive simulation and analysis, we identified two major planar phonon modes, namely, a standing wave mode related to the triangle bisector and another mode corresponding to half of the side length. This work elucidates the roles of laser-induced electronic stress and lattice stress in controlling the initial phase and the amplitude ratio between these two phonon modes.

  2. Acoustic modes of the phonon dispersion relation of NbD/sub x/ alloys

    International Nuclear Information System (INIS)

    Rowe, J.M.; Vagelatos, N.; Rush, J.J.; Flotow, H.E.

    1975-01-01

    The acoustic modes of the phonon dispersion relation in Nb, NbD 0 . 15 , and NbD 0 . 45 were measured at 473 0 K for phonons with wave vectors along the [100], [110], and [111] axes by coherent neutron scattering. The observed neutron groups for both alloys were well defined, with little or no apparent broadening. Results are compared to similar data for Nb--Mo alloys and with previous lattice-dynamics results for PdD 0 . 63 . This comparison shows that despite differences in detail, the general features of the dispersion relations of NbD/sub x/ and Nb--Mo are similar after allowing for the differences in lattice parameters for the two alloys. The measured dispersion curves and derived phonon frequency distributions for the Nb--D alloys are quite different from the analogous results for PdD 0 . 63 in that the average acoustic phonon frequencies increase with increasing deuterium concentration and lattice parameter

  3. Electrical modulation and switching of transverse acoustic phonons

    Science.gov (United States)

    Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.

    2016-07-01

    We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.

  4. Confinement of acoustical modes due to the electron-phonon interaction within 2D-electron gas

    International Nuclear Information System (INIS)

    Kochelap, V.A.; Gulseren, O.

    1992-09-01

    We study the confinement of acoustical modes within 2DEG due only to the electron-phonon interaction. The confined modes split out from the bulk phonons even at uniform lattice parameters, when the 2DEG is created by means of modulation doping. The effect is more pronounced when the wave vector q of the modes increases and is maximum at q = 2 k F (k F is the Fermi wave vector). In the case of several electron sheets the additional features of the confinement effect appear. In the limit of the strong electron-phonon coupling and high surface concentration of the electrons the considered system can suffer Peierls-type phase transition. In this case periodical deformation of the lattice and charge density wave are confined within the electron sheet. (author). 18 refs, 2 figs

  5. Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses

    OpenAIRE

    Hudert, Florian; Bruchhausen, Axel; Issenmann, Daniel; Schecker, Olivier; Waitz, Reimar; Erbe, Artur; Scheer, Elke; Dekorsy, Thomas; Mlayah, Adnen; Huntzinger, Jean-Roch

    2009-01-01

    In this Rapid Communication we report the first time-resolved measurements of confined acoustic phonon modes in free-standing Si membranes excited by fs laser pulses. Pump-probe experiments using asynchronous optical sampling reveal the impulsive excitation of discrete acoustic modes up to the 19th harmonic order for membranes of two different thicknesses. The modulation of the membrane thickness is measured with fm resolution. The experimental results are compared with a theoretical model in...

  6. Optical and acoustic phonon modes in strained InGaAs/GaAs rolled up tubes

    Science.gov (United States)

    Angelova, T.; Shtinkov, N.; Ivanov, Ts.; Donchev, V.; Cantarero, A.; Deneke, Ch.; Schmidt, O. G.; Cros, A.

    2012-05-01

    Rolled-up semiconductor tubes of various diameters made of alternating In0.215Ga0.785As/GaAs layers have been investigated by means of Raman scattering. The optical and acoustic phonon modes of individual tubes have been studied and compared with the characteristics of the surrounding material. After tube formation, the frequency of the phonon modes shifts with respect to the as-grown material and disorder activated modes are observed. The frequency shifts are related to the residual strain in the tubes through the deformation potential approximation. Good agreement with atomistic valence force field simulations and x-ray micro-diffraction measurements is found. By comparison with x-ray data, a Raman strain constant K = 0.65 is proposed for In0.215Ga0.785As. In the low frequency range, acoustic mode doublets are observed on the tubes that are absent in the surrounding material. They show clear evidence of the formation of periodic superlattices after the rolling-up process, and give insight into the quality of their interfaces.

  7. Polarization dependent behavior of CdS around the first and second LO-phonon modes

    International Nuclear Information System (INIS)

    Frausto-Reyes, C.; Molina-Contreras, J.R.; Lopez-Alvarez, Y.F.; Medel-Ruiz, C.I.; Perez Ladron de Guevara, H.; Ortiz-Morales, M.

    2010-01-01

    The present work report studies on resonant Raman experimental line shape for CdS around the first and second LO-phonon modes. The application of our method to the study of LO-phonon modes of CdS suggests that the scattered intensity is dominated by the surface and dependent on polarization. Results showed that the Raman spectra for CdS, roughly fall into three groups: a broad line-wing with apparent maxima around 194 cm -1 in the range of 140 and 240 cm -1 which can be ascribed to overtone scattering from acoustic phonons; a band near the 1LO phonon mode which can be attributed to a combination of one-phonon scattering and peak acoustic phonon and finally, a band near the 2LO phonon mode which can be attributed to a combination of two-phonon scattering and peak acoustic phonon.

  8. Effect of magnon-phonon interaction on transverse acoustic phonon excitation at finite temperature

    International Nuclear Information System (INIS)

    Cheng Taimin; Li Lin; Xianyu Ze

    2007-01-01

    A magnon-phonon interaction model is developed on the basis of two-dimensional square Heisenberg ferromagnetic system. By using Matsubara Green function theory transverse acoustic phonon excitation is studied and transverse acoustic phonon excitation dispersion curves is calculated on the main symmetric point and line in the first Brillouin zone. On line Σ it is found that there is hardening for transverse acoustic phonon on small wave vector zone (nearby point Γ), there is softening for transverse acoustic phonon on the softening zone and there is hardening for transverse acoustic phonon near point M. On line Δ it is found there is no softening and hardening for transverse acoustic phonon. On line Z it is found that there is softening for transverse acoustic phonon on small wave vector zone (nearby point X) and there is hardening for transverse acoustic phonon nearby point M. The influences of various parameters on transverse acoustic phonon excitation are also explored and it is found that the coupling of the magnon-phonon and the spin wave stiffness constant play an important role for the softening of transverse acoustic phonon

  9. Specularity of longitudinal acoustic phonons at rough surfaces

    Science.gov (United States)

    Gelda, Dhruv; Ghossoub, Marc G.; Valavala, Krishna; Ma, Jun; Rajagopal, Manjunath C.; Sinha, Sanjiv

    2018-01-01

    The specularity of phonons at crystal surfaces is of direct importance to thermal transport in nanostructures and to dissipation in nanomechanical resonators. Wave scattering theory provides a framework for estimating wavelength-dependent specularity, but experimental validation remains elusive. Widely available thermal conductivity data presents poor validation since the involvement of the infinitude of phonon wavelengths in thermal transport presents an underconstrained test for specularity theory. Here, we report phonon specularity by measuring the lifetimes of individual coherent longitudinal acoustic phonon modes excited in ultrathin (36-205 nm) suspended silicon membranes at room temperature over the frequency range ˜20 -118 GHz. Phonon surface scattering dominates intrinsic Akhiezer damping at frequencies ≳60 GHz, enabling measurements of phonon boundary scattering time over wavelengths ˜72 -140 nm . We obtain detailed statistics of the surface roughness at the top and bottom surfaces of membranes using HRTEM imaging. We find that the specularity of the excited modes are in good agreement with solutions of wave scattering only when the TEM statistics are corrected for projection errors. The often-cited Ziman formula for phonon specularity also appears in good agreement with the data, contradicting previous results. This work helps to advance the fundamental understanding of phonon scattering at the surfaces of nanostructures.

  10. Unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Zhong Lin

    2015-01-01

    A unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials is presented whereby the lattice displacement vector and the internal ionic displacement vector are found simultaneously. It is shown that phonon couplings exist in pairs only; either between the electric...... piezoelectricity in a cubic structured material slab. First, it is shown that isolated optical phonon modes generally cannot exist in piezoelectric cubic slabs. Second, we prove that confined acousto-optical phonon modes only exist for a discrete set of in-plane wave numbers in piezoelectric cubic slabs. Third...... potential and the lattice displacement coordinate perpendicular to the phonon wave vector or between the two other lattice displacement components. The former leads to coupled acousto-optical phonons by virtue of the piezoelectric effect. We then establish three new conjectures that entirely stem from...

  11. 2-D modeling of dual-mode acoustic phonon excitation of a triangular nanoplate

    Science.gov (United States)

    Tai, Po-Tse; Yu, Pyng; Tang, Jau

    2010-08-01

    In this theoretical work, we investigated coherent phonon excitation of a triangular nanoplate based on 2-D Fermi-Pasta-Ulam lattice model. Based on the two-temperature model commonly used in description of laser heating of metals, we considered two kinds of forces related to electronic and lattice stresses. Based on extensive simulation and analysis, we identified two major planar phonon modes, namely, a standing wave mode related to the triangle bisector and another mode corresponding to half of the side length. This work elucidates the roles of laser-induced electronic stress and lattice stress in controlling the initial phase and the amplitude ratio between these two phonon modes.

  12. Phononic fluidics: acoustically activated droplet manipulations

    Science.gov (United States)

    Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.

    2011-02-01

    Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.

  13. Negative refraction imaging of solid acoustic waves by two-dimensional three-component phononic crystal

    International Nuclear Information System (INIS)

    Li Jing; Liu Zhengyou; Qiu Chunyin

    2008-01-01

    By using of the multiple scattering methods, we study the negative refraction imaging effect of solid acoustic waves by two-dimensional three-component phononic crystals composed of coated solid inclusions placed in solid matrix. We show that localized resonance mechanism brings on a group of flat single-mode bands in low-frequency region, which provides two equivalent frequency surfaces (EFS) close to circular. The two constant frequency surfaces correspond to two Bloch modes, a right-handed and a left-handed, whose leading mode are respectively transverse (T) and longitudinal (L) modes. The negative refraction behaviors of the two kinds of modes have been demonstrated by simulation of a Gaussian beam through a finite system. High-quality far-field imaging by a planar lens for transverse or longitudinal waves has been realized separately. This three-component phononic crystal may thus serve as a mode selector in negative refraction imaging of solid acoustic waves

  14. Subterahertz Longitudinal Phonon Modes Propagating in a Lipid Bilayer Immersed in an Aqueous Medium

    Science.gov (United States)

    Zakhvataev, V. E.

    2018-04-01

    The properties of subterahertz longitudinal acoustic phonon modes in the hydrophobic region of a lipid bilayer immersed in a compressible viscous aqueous medium are investigated theoretically. An approximate expression is obtained for the Mandelstam-Brillouin components of the dynamic structure factor of a bilayer. The analysis is based on a generalized hydrodynamic model of the "two-dimensional lipid bilayer + three-dimensional fluid medium" system, as well as on known sharp estimates for the frequencies and lifetimes of long-wavelength longitudinal acoustic phonons in a free hydrated lipid bilayer and in water, obtained from inelastic X-ray scattering experiments and molecular dynamics simulations. It is shown that, for characteristic values of the parameters of the membrane system, subterahertz longitudinal phonon-like excitations in the hydrophobic part of the bilayer are underdamped. In this case, the contribution of the viscous flow of the aqueous medium to the damping of a longitudinal membrane mode is small compared with the contribution of the lipid bilayer. Quantitative estimates of the damping ratio agree well with the experimental results for the vibration mode of the enzyme lysozyme in aqueous solution [1]. It is also shown that a coupling between longitudinal phonon modes of the bilayer and relaxation processes in its fluid environment gives rise to an additional peak in the scattering spectrum, which corresponds to a non-propagating mode.

  15. Acoustic phonon dynamics in thin-films of the topological insulator Bi2Se3

    International Nuclear Information System (INIS)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2015-01-01

    Transient reflectivity traces measured for nanometer-sized films (6–40 nm) of the topological insulator Bi 2 Se 3 revealed GHz-range oscillations driven within the relaxation of hot carriers photoexcited with ultrashort (∼100 fs) laser pulses of 1.51 eV photon energy. These oscillations have been suggested to result from acoustic phonon dynamics, including coherent longitudinal acoustic phonons in the form of standing acoustic waves. An increase of oscillation frequency from ∼35 to ∼70 GHz with decreasing film thickness from 40 to 15 nm was attributed to the interplay between two different regimes employing traveling-acoustic-waves for films thicker than 40 nm and the film bulk acoustic wave resonator (FBAWR) modes for films thinner than 40 nm. The amplitude of oscillations decays rapidly for films below 15 nm thick when the indirect intersurface coupling in Bi 2 Se 3 films switches the FBAWR regime to that of the Lamb wave excitation. The frequency range of coherent longitudinal acoustic phonons is in good agreement with elastic properties of Bi 2 Se 3

  16. Topological phononic insulator with robust pseudospin-dependent transport

    Science.gov (United States)

    Xia, Bai-Zhan; Liu, Ting-Ting; Huang, Guo-Liang; Dai, Hong-Qing; Jiao, Jun-Rui; Zang, Xian-Guo; Yu, De-Jie; Zheng, Sheng-Jie; Liu, Jian

    2017-09-01

    Topological phononic states, which facilitate unique acoustic transport around defects and disorders, have significantly revolutionized our scientific cognition of acoustic systems. Here, by introducing a zone folding mechanism, we realize the topological phase transition in a double Dirac cone of the rotatable triangular phononic crystal with C3 v symmetry. We then investigate the distinct topological edge states on two types of interfaces of our phononic insulators. The first one is a zigzag interface which simultaneously possesses a symmetric mode and an antisymmetric mode. Hybridization of the two modes leads to a robust pseudospin-dependent one-way propagation. The second one is a linear interface with a symmetric mode or an antisymmetric mode. The type of mode is dependent on the topological phase transition of the phononic insulators. Based on the rotatability of triangular phononic crystals, we consider several complicated contours defined by the topological zigzag interfaces. Along these contours, the acoustic waves can unimpededly transmit without backscattering. Our research develops a route for the exploration of the topological phenomena in experiments and provides an excellent framework for freely steering the acoustic backscattering-immune propagation within topological phononic structures.

  17. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    International Nuclear Information System (INIS)

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-01-01

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons

  18. Generation of acoustic phonons from quasi-two-dimensional hole gas

    International Nuclear Information System (INIS)

    Singh, J.; Oh, I.K.

    2002-01-01

    Full text: Generation of phonons from two dimensional electron and hole gases in quantum wells has attracted much attraction recently. The mechanism of phonon emission plays an important role in the phonon spectroscopy which enables us to study the angular and polarization dependence of phonon emission. The acoustic phonon emission from a quasi-two-dimensional hole gas (2DHG) in quantum wells is influenced by the anisotropic factors in the valence band structure, screening, elastic property, etc. The anisotropy in the valence band structure gives rise to anisotropic effective mass and deformation potential and that in the elastic constants leads to anisotropic sound velocity. Piezoelectric coupling in non-centrosymmetric materials such as GaAs is also anisotropic. In this paper, considering the anisotropy in the effective mass, deformation potential, piezoelectric coupling and screening effect, we present a theory to study the angular and polarization dependence of acoustic phonon emission from a quasi-2DHG in quantum wells. The theory is finally applied to calculate the rate of acoustic phonon emission in GaAs quantum wells

  19. Acoustic phonon dispersion of CoSi2

    International Nuclear Information System (INIS)

    Weiss, L.; Rumyantsev, A.Yu.; Ivanov, A.S.

    1985-01-01

    The acoustical phonon dispersion curves of CoSi 2 are measured at room temperature along the main symmetry directions by means of coherent one-phonon scattering of thermal neutrons. The dispersion curves are compared with those of Ge, Si, and the fluorite structure types as CaF 2 and UO 2 . From the slope of the phonon dispersion curves at the GAMMA-point the elastic constants have been obtained

  20. Polariton-acoustic-phonon interaction in a semiconductor microcavity

    Science.gov (United States)

    Cassabois, G.; Triques, A. L. C.; Bogani, F.; Delalande, C.; Roussignol, Ph.; Piermarocchi, C.

    2000-01-01

    The broadening of polariton lines by acoustic phonons is investigated in a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond resolution. A decrease of the polariton-acoustic phonon coupling is clearly observed for the lower polariton branch as one approaches the resonance between exciton and photon states. This behavior cannot be explained in terms of a semiclassical linear dispersion theory but requires a full quantum description of the microcavity in the strong-coupling regime.

  1. Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides

    International Nuclear Information System (INIS)

    Zou, Qiushun; Yu, Tianbao; Liu, Jiangtao; Wang, Tongbiao; Liao, Qinghua; Liu, Nianhua

    2015-01-01

    We report an acoustic multimode interference effect and self-imaging phenomena in an acoustic multimode waveguide system which consists of M parallel phononic crystal waveguides (M-PnCWs). Results show that the self-imaging principle remains applicable for acoustic waveguides just as it does for optical multimode waveguides. To achieve the dispersions and replicas of the input acoustic waves produced along the propagation direction, we performed the finite element method on M-PnCWs, which support M guided modes within the target frequency range. The simulation results show that single images (including direct and mirrored images) and N-fold images (N is an integer) are identified along the propagation direction with asymmetric and symmetric incidence discussed separately. The simulated positions of the replicas agree well with the calculated values that are theoretically decided by self-imaging conditions based on the guided mode propagation analysis. Moreover, the potential applications based on this self-imaging effect for acoustic wavelength de-multiplexing and beam splitting in the acoustic field are also presented. (paper)

  2. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars

    DEFF Research Database (Denmark)

    Jin, Yabin; Fernez, Nicolas; Pennec, Yan

    2016-01-01

    We investigate the properties of a phononic crystal plate with hollow pillars and introduce the existence of whispering-gallery modes (WGMs). We show that by tuning the inner radius of the hollow pillar, these modes can merge inside both Bragg and low frequency band gaps, deserving phononic crystal...... and acoustic metamaterial applications. These modes can be used as narrow pass bands for which the quality factor can be greatly enhanced by the introduction of an additional cylinder between the hollow cylinder and the plate. We discuss some functionalities of these confined WGM in both Bragg and low...

  3. Soft phonon modes driven huge difference on lattice thermal conductivity between topological semimetal WC and WN

    Science.gov (United States)

    Guo, San-Dong; Chen, Peng

    2018-04-01

    Topological semimetals are currently attracting increasing interest due to their potential applications in topological qubits and low-power electronics, which are closely related to their thermal transport properties. Recently, the triply degenerate nodal points near the Fermi level of WC are observed by using angle-resolved photoemission spectroscopy. In this work, by solving the Boltzmann transport equation based on first-principles calculations, we systematically investigate the phonon transport properties of topological semimetals WC and WN. The predicted room-temperature lattice thermal conductivities of WC (WN) along the a and c directions are 1140.64 (7.47) W m-1 K-1 and 1214.69 (5.39) W m-1 K-1. Considering the similar crystal structure of WC and WN, it is quite interesting to find that the thermal conductivity of WC is more than two orders of magnitude higher than that of WN. It is found that, different from WN, the large acoustic-optical (a-o) gap prohibits the acoustic+acoustic → optical (aao) scattering, which gives rise to very long phonon lifetimes, leading to ultrahigh lattice thermal conductivity in WC. For WN, the lack of an a-o gap is due to soft phonon modes in optical branches, which can provide more scattering channels for aao scattering, producing very short phonon lifetimes. Further deep insight can be attained from their different electronic structures. Distinctly different from that in WC, the density of states of WN at the Fermi level becomes very sharp, which leads to destabilization of WN, producing soft phonon modes. It is found that the small shear modulus G and C44 limit the stability of WN, compared with WC. Our studies provide valuable information for phonon transports in WC and WN, and motivate further experimental studies to study their lattice thermal conductivities.

  4. Acoustic phonons in the hexagonal perovskite CsNiCl3 around the Gamma-point

    DEFF Research Database (Denmark)

    Visser, D.; Monteith, A.R.; Rønnow, H.M.

    2000-01-01

    The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared with the ......The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared...

  5. Renormalisation of Nonequilibrium Phonons Under Strong Perturbative Influences.

    Science.gov (United States)

    Mehta, Sushrut Madhukar

    Effects of strong perturbative influences, namely the presence of a narrow distribution of acoustic phonons, and the presence of an electron plasma, on the dynamics of nonequilibrium, near zone center, longitudinal optical phonons in GaP have been investigated in two separate experiments. The study of the effects of the interaction between the LO phonons and a heavily populated, narrow distribution of acoustic phonons lead to the observation of a new optically driven nonequilibrium phonon state. Time Resolved Coherent Antistokes Raman Scattering (TR-CARS), with picosecond resolution, was used to investigate the new mode. In order to achieve high occupation numbers in the acoustic branch, the picosecond laser pulses used were amplified up to 1.0 GW/cm^2 peak power per laser beam. An important characteristic property of the new state which differentiates it from the well known LO phonon state is the fact that rather than having the single decay rate observed under thermal equilibrium, the new state has two decay rates. Moreover, these two decay rates depend strongly on the distribution of the acoustic phonon occupation number. The coupling of the LO phonons with an electron plasma, on the other hand, was investigated by measurements of the shape of the Raman scattered line associated with the phonon-plasmon coupled mode. The plasma was generated by thermal excitation of carriers in doped samples. It was possible to study a large variety of plasma excitations by controlling the concentration of the dopant and the ambient temperature. A complete, self consistant model based on standard dielectric response theory is presented, and applied to the measurements of the phonon-plasmon coupled mode. It is possible to recover, via this model, the effective coupled mode damping rate, the plasma damping rate, and the plasma frequency as functions of ambient temperature, or the carrier concentration.

  6. Unraveling the acoustic electron-phonon interaction in graphene

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    Using a first-principles approach we calculate the electron-phonon couplings in graphene for the transverse and longitudinal acoustic phonons. Analytic forms of the coupling matrix elements valid in the long-wavelength limit are found to give an almost quantitative description of the first...... that the intrinsic effective acoustic deformation potential of graphene is Ξeff=6.8 eV and that the temperature dependence of the mobility μ~T-α in the Bloch-Gru¨neisen regime increases beyond an α=4 dependence even in the absence of screening when the true coupling matrix elements are considered. The α>4...

  7. Phonon Self-Energy Corrections to Nonzero Wave-Vector Phonon Modes in Single-Layer Graphene

    Science.gov (United States)

    Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S.

    2012-07-01

    Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q=0) wave vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene originating from a double-resonant Raman process with q≠0. The observed phonon renormalization effects are different from what is observed for the zone-center q=0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with nonzero wave vectors (q≠0) in single-layer graphene in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q=0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G⋆ Raman feature at 2450cm-1 to include the iTO+LA combination modes with q≠0 and also the 2iTO overtone modes with q=0, showing both to be associated with wave vectors near the high symmetry point K in the Brillouin zone.

  8. Low frequency phononic band structures in two-dimensional arc-shaped phononic crystals

    International Nuclear Information System (INIS)

    Xu, Zhenlong; Wu, Fugen; Guo, Zhongning

    2012-01-01

    The low frequency phononic band structures of two-dimensional arc-shaped phononic crystals (APCs) were studied by the transfer matrix method in cylindrical coordinates. The results showed the first phononic band gaps (PBGs) of APCs from zero Hz with low modes. Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials. These properties can be efficiently used in a structure for low frequencies that are forbidden, or in a device that permits a narrow window of frequencies. -- Highlights: ► We report a new class of quasi-periodic hetero-structures, arc-shaped phononic crystals (APCs). ► The results show the first PBGs start with zero Hz with low modes. ► Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials.

  9. Correlation between phonon anomaly along [211] and the Fermi surface nesting features with associated electron-phonon interactions in Ni2FeGa: A first principles study

    International Nuclear Information System (INIS)

    Chabungbam, Satyananda; Sahariah, Munima B.

    2015-01-01

    First principles calculation reaffirms the presence of phonon anomaly along [211] direction in Ni 2 FeGa shape memory alloy supporting the experimental findings of J. Q. Li et al. Fermi surface scans have been performed in both austenite and martensite phase to see the possible Fermi nesting features in this alloy. The magnitude of observed Fermi surface nesting vectors in (211) plane exactly match the phonon anomaly wavevectors along [211] direction. Electron-phonon calculation in the austenite phase shows that there is significant electron-phonon coupling in this alloy which might arise out of the lattice coupling between lower acoustic modes and higher optical modes combined with the observed strong Fermi nesting features in the system. - Highlights: • Transverse acoustic (TA 2 ) modes show anomaly along [211] direction in Ni 2 FeGa. • The phonon anomaly wavevector has been correlated with the Fermi nesting vectors. • Electron-phonon coupling calculation shows significant coupling in this system. • Max. el-ph coupling occurs in transition frequencies from acoustic to optical modes

  10. Phonon self-energy corrections to non-zero wavevector phonon modes in single-layer graphene

    Science.gov (United States)

    Araujo, Paulo; Mafra, Daniela; Sato, Kentaro; Saito, Richiiro; Kong, Jing; Dresselhaus, Mildred

    2012-02-01

    Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the frequency range from 2350 to 2750 cm-1, which shows the G* and the G'-band features originating from a double-resonant Raman process with q 0. The observed phonon renormalization effects are different from what is observed for the zone-center q = 0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with non-zero wave-vectors (q 0) in 1LG in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q = 0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G* Raman feature at 2450 cm-1 to include the iTO+LA combination modes with q 0 and the 2iTO overtone modes with q = 0, showing both to be associated with wave-vectors near the high symmetry point K in the Brillouin zone.

  11. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.

    Science.gov (United States)

    Ash, B J; Worsfold, S R; Vukusic, P; Nash, G R

    2017-08-02

    Surface acoustic wave (SAW) devices are widely used for signal processing, sensing and increasingly for lab-on-a-chip applications. Phononic crystals can control the propagation of SAW, analogous to photonic crystals, enabling components such as waveguides and cavities. Here we present an approach for the realisation of robust, tailorable SAW phononic crystals, based on annular holes patterned in a SAW substrate. Using simulations and experiments, we show that this geometry supports local resonances which create highly attenuating phononic bandgaps at frequencies with negligible coupling of SAWs into other modes, even for relatively shallow features. The enormous bandgap attenuation is up to an order-of-magnitude larger than that achieved with a pillar phononic crystal of the same size, enabling effective phononic crystals to be made up of smaller numbers of elements. This work transforms the ability to exploit phononic crystals for developing novel SAW device concepts, mirroring contemporary progress in photonic crystals.The control and manipulation of propagating sound waves on a surface has applications in on-chip signal processing and sensing. Here, Ash et al. deviate from standard designs and fabricate frequency tailorable phononic crystals with an order-of-magnitude increase in attenuation.

  12. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene

    International Nuclear Information System (INIS)

    Gu, Xiaokun; Yang, Ronggui

    2015-01-01

    There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides

  13. Observation of soft phonon mode in TbFe3(BO3)4 by inelastic neutron scattering

    Science.gov (United States)

    Pavlovskiy, M. S.; Shaykhutdinov, K. A.; Wu, L. S.; Ehlers, G.; Temerov, V. L.; Gudim, I. A.; Shinkorenko, A. S.; Podlesnyak, A.

    2018-02-01

    The phonon dispersion in terbium iron borate TbFe3(BO3)4 has been measured by inelastic neutron scattering in a temperature range 180 acoustic (TA) branch has been observed at the corner of the Brillouin zone (Λ point) at temperatures T ⪆TS , in full agreement with theoretical calculations. The TA soft mode undergoes considerable broadening at the Λ point near the transition temperature that can be attributed to the anharmonic interference between transverse acoustic and optical modes.

  14. Acousto-optical phonon excitation in cubic piezoelectric slabs and crystal growth orientation effects

    DEFF Research Database (Denmark)

    Willatzen, Morten; Duggen, Lars

    2017-01-01

    In this paper we investigate theoretically the influence of piezoelectric coupling on phonon dispersion relations. Specifically we solve dispersion relations for a fully coupled zinc-blende freestanding quantum well for different orientations of the crystal unit cell. It is shown that the phonon...... mode density in GaAs can change by a factor of approximately 2–3 at qx a = 1 for different crystal-growth directions relative to the slab thickness direction. In particular, it is found that optical and acoustic phonon modes are always piezoelectrically coupled, independent of the crystal...... that the piezoelectric effect leads to a drastically enhanced coupling of acoustic and optical phonon modes and increase in the local phonon density of states near the plasma frequency where the permittivity approaches zero....

  15. Phonon dynamics of graphene on metals

    Science.gov (United States)

    Taleb, Amjad Al; Farías, Daniel

    2016-03-01

    The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate‧s Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.

  16. Phonon-impurity relaxation and acoustic wave absorption in yttrium-aluminium garnet crystals with impurities

    International Nuclear Information System (INIS)

    Ivanov, S.N.; Kotelyanskij, I.M.; Medved', V.V.

    1983-01-01

    The experimental results of investigations of the influence of substitution impurities in the yttrium-aluminium garnet lattice on absorption of high-frequency acoustic waves are presented. It is shown that the phonon-impurity relaxation processses affect at most the wave absorption and have resonance character when the acoustic wave interacts with the thermal phonon group in the vicinity of the perturbed part of the phonon spectrum caused by the impurity. The differences of time values between inelastic and elastic thermal phonons relaxations determined from the data on longitudinal and shear waves in pure and impurity garnet crystals are discussed

  17. Controlling competing electronic orders via non-equilibrium acoustic phonons

    Science.gov (United States)

    Schuett, Michael; Orth, Peter; Levchenko, Alex; Fernandes, Rafael

    The interplay between multiple electronic orders is a hallmark of strongly correlated systems displaying unconventional superconductivity. While doping, pressure, and magnetic field are the standard knobs employed to assess these different phases, ultrafast pump-and-probe techniques opened a new window to probe these systems. Recent examples include the ultrafast excitation of coherent optical phonons coupling to electronic states in cuprates and iron pnictides. In this work, we demonstrate theoretically that non-equilibrium acoustic phonons provide a promising framework to manipulate competing electronic phases and favor unconventional superconductivity over other states. In particular, we show that electrons coupled to out-of-equilibrium anisotropic acoustic phonons enter a steady state in which the effective electronic temperature varies around the Fermi surface. Such a momentum-dependent temperature can then be used to selectively heat electronic states that contribute primarily to density-wave instabilities, reducing their competition with superconductivity. We illustrate this phenomenon by computing the microscopic steady-state phase diagram of the iron pnictides, showing that superconductivity is enhanced with respect to the competing antiferromagnetic phase.

  18. Transverse acoustic phonon anomalies at intermediate wave vectors in MgV2O4

    Science.gov (United States)

    Weber, T.; Roessli, B.; Stock, C.; Keller, T.; Schmalzl, K.; Bourdarot, F.; Georgii, R.; Ewings, R. A.; Perry, R. S.; Böni, P.

    2017-11-01

    Magnetic spinels (with chemical formula A X2O4 , with X a 3 d transition metal ion) that also have an orbital degeneracy are Jahn-Teller active and hence possess a coupling between spin and lattice degrees of freedom. At high temperatures, MgV2O4 is a cubic spinel based on V3 + ions with a spin S =1 and a triply degenerate orbital ground state. A structural transition occurs at TOO=63 K to an orbitally ordered phase with a tetragonal unit cell followed by an antiferromagnetic transition of TN=42 K on cooling. We apply neutron spectroscopy in single crystals of MgV2O4 to show an anomaly for intermediate wave vectors at TOO associated with the acoustic phonon sensitive to the shear elastic modulus (C11-C12)/2 . On warming, the shear mode softens for momentum transfers near close to half the Brillouin zone boundary, but recovers near the zone center. High resolution spin-echo measurements further illustrate a temporal broadening with increased temperature over this intermediate range of wave vectors, indicative of a reduction in phonon lifetime. A subtle shift in phonon frequencies over the same range of momentum transfers is observed with magnetic fields. We discuss this acoustic anomaly in context of coupling to orbital and charge fluctuations.

  19. Enhancement of coherent acoustic phonons in InGaN multiple quantum wells

    Science.gov (United States)

    Hafiz, Shopan D.; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    Enhancement of coherent zone folded longitudinal acoustic phonon (ZFLAP) oscillations at terahertz frequencies was demonstrated in InGaN multiple quantum wells (MQWs) by using wavelength degenerate time resolved differential transmission spectroscopy. Screening of the piezoelectric field in InGaN MQWs by photogenerated carriers upon femtosecond pulse excitation gave rise to terahertz ZFLAPs, which were monitored at the Brillouin zone center in the transmission geometry. MQWs composed of 10 pairs InxGa1-xN wells and In0.03Ga0.97N barriers provided coherent phonon frequencies of 0.69-0.80 THz depending on the period of MQWs. Dependences of ZFLAP amplitude on excitation density and wavelength were also investigated. Possibility of achieving phonon cavity, incorporating a MQW placed between two AlN/GaN phonon mirrors designed to exhibit large acoustic gaps at the zone center, was also explored.

  20. Cavity-polariton interaction mediated by coherent acoustic phonons in semiconductor microcavities

    DEFF Research Database (Denmark)

    de Lima, Mauricio; Hey, Rudolf; Santos, Paul

    The strong coupling between excitons in a quantum well (QW) and photons in a semiconductor microcavity leads to the formation of quasi-particles known as cavity-polaritons. In this contribution, we investigate their interaction with coherent acoustic phonons in the form of surface acoustic waves...

  1. Integrated phononic crystal resonators based on adiabatically-terminated phononic crystal waveguides

    Directory of Open Access Journals (Sweden)

    Razi Dehghannasiri

    2016-12-01

    Full Text Available In this letter, we demonstrate a new design for integrated phononic crystal (PnC resonators based on confining acoustic waves in a heterogeneous waveguide-based PnC structure. In this architecture, a PnC waveguide that supports a single mode at the desired resonance frequencies is terminated by two waveguide sections with no propagating mode at those frequencies (i.e., have mode gap. The proposed PnC resonators are designed through combining the spatial-domain and the spatial-frequency domain (i.e., the k-domain analysis to achieve a smooth mode envelope. This design approach can benefit both membrane-based and surface-acoustic-wave-based architectures by confining the mode spreading in k-domain that leads to improved electromechanical excitation/detection coupling and reduced loss through propagating bulk modes.

  2. Probing thermomechanics at the nanoscale: impulsively excited pseudosurface acoustic waves in hypersonic phononic crystals.

    Science.gov (United States)

    Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco

    2011-10-12

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths.

  3. Phonons and their dispersion in model ferroelastics Hg2Hal2

    Science.gov (United States)

    Roginskii, E. M.; Kvasov, A. A.; Markov, Yu. F.; Smirnov, M. B.

    2012-05-01

    Dispersion relations of the acoustic and optical phonon frequencies have been calculated and plotted, and the density of states of the phonon spectrum of Hg2Cl2 and Hg2Br2 crystals has been derived. The effect of hydrostatic pressure on the frequencies of acoustic and optical phonons and their dispersion has been theoretically analyzed. It has been found that an increase in the pressure leads to a strong softening of the slowest acoustic TA branch (the soft mode) at the X point of the Brillouin zone boundary, which is consistent with the phenomenological Landau theory and correlates with experiment.

  4. Non-equilibrium phonon generation and detection in microstructure devices

    KAUST Repository

    Hertzberg, J. B.

    2011-01-01

    We demonstrate a method to excite locally a controllable, non-thermal distribution of acoustic phonon modes ranging from 0 to ∼200 GHz in a silicon microstructure, by decay of excited quasiparticle states in an attached superconducting tunnel junction (STJ). The phonons transiting the structure ballistically are detected by a second STJ, allowing comparison of direct with indirect transport pathways. This method may be applied to study how different phonon modes contribute to the thermal conductivity of nanostructures. © 2011 American Institute of Physics.

  5. Material and Phonon Engineering for Next Generation Acoustic Devices

    Science.gov (United States)

    Kuo, Nai-Kuei

    This thesis presents the theoretical and experimental work related to micromachining of low intrinsic loss sapphire and phononic crystals for engineering new classes of electroacoustic devices for frequency control applications. For the first time, a low loss sapphire suspended membrane was fabricated and utilized to form the main body of a piezoelectric lateral overtone bulk acoustic resonator (LOBAR). Since the metalized piezoelectric transducer area in a LOBAR is only a small fraction of the overall resonant cavity (made out of sapphire), high quality factor (Q) overtones are attained. The experiment confirms the low intrinsic mechanical loss of the transferred sapphire thin film, and the resonators exhibit the highest Q of 5,440 at 2.8 GHz ( f·Q of 1.53.1013 Hz). This is also the highest f·Q demonstrated for aluminum-nitride-(AIN)-based Lamb wave devices to date. Beyond demonstrating a low loss device, this experimental work has laid the foundation for the future development of new micromechanical devices based on a high Q, high hardness and chemically resilient material. The search for alternative ways to more efficiently perform frequency control functionalities lead to the exploration of Phononic Crystal (PnC) structures in AIN thin films. Four unit cell designs were theoretically and experimentally investigated to explore the behavior of phononic bandgaps (PBGs) in the ultra high frequency (UHF) range: (i) the conventional square lattice with circular air scatterer, (ii) the inverse acoustic bandgap (IABG) structure, (iii) the fractal PnC, and (iv) the X-shaped PnC. Each unit cell has its unique frequency characteristic that was exploited to synthesize either cavity resonators or improve the performance of acoustic delay lines. The PBGs operate in the range of 770 MHz to 1 GHz and exhibit a maximum acoustic rejection of 40 dB. AIN Lamb wave transducers (LWTs) were employed for the experimental demonstration of the PBGs and cavity resonances. Ultra

  6. Phonon excitations in multicomponent amorphous solids

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.; Migal', V.M.; Tkachuk, V.M.

    1988-01-01

    The method of two-time temperature-dependent Green's functions is used to investigate phonon excitations in multicomponent amorphous solids. The equation obtained for the energy spectrum of the phonon excitations takes into account the damping associated with scattering of phonons by structure fluctuations. The quasicrystal approximation is considered, and as an example explicit expressions are obtained for the case of a two-component amorphous solid for the frequencies of the acoustical and optical modes and for the longitudinal and transverse velocities of sound. The damping is investigated

  7. Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals

    Energy Technology Data Exchange (ETDEWEB)

    Kubakaddi, S. S., E-mail: sskubakaddi@gmail.com [Department of Physics, Karnatak University, Dharwad 580 003, Karnataka (India)

    2016-05-21

    Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd{sub 3}As{sub 2} in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity v{sub d} is greater than the sound velocity v{sub s}. This occurs at small E (∼few V/cm) due to large mobility. Frequency (ω{sub q}) and angular (θ) distribution of phonon emission spectrum P(ω{sub q}, θ) are studied for different electron drift velocities v{sub d} (i.e., different E) and electron concentrations n{sub e}. The frequency dependence of P(ω{sub q}, θ) shows a maximum P{sub m}(ω{sub q}, θ) at about ω{sub m} ≈ 1 THz and is found to increase with the increasing v{sub d} and n{sub e}. The value of ω{sub m} shifts to higher region for larger n{sub e}. It is found that ω{sub m}/n{sub e}{sup 1/3} and P{sub m}(ω{sub q}, θ)/n{sub e}{sup 2/3} are nearly constants. The latter is in contrast with the P{sub m}(ω{sub q}, θ)n{sub e}{sup 1/2 }= constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly “2k{sub f} cutoff,” where k{sub f} is the Fermi wave vector. Angular dependence of P(ω{sub q}, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing v{sub d}. P(θ) is found to increase linearly with n{sub e} giving the ratio P(θ)/(n{sub e}v{sub d}) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and n{sub e}. 3DDS with large n{sub e} and mobility can be a good source of acoustic phonon generation in ∼THz regime.

  8. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    Energy Technology Data Exchange (ETDEWEB)

    Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Moiseyenko, Rayisa [Department of Physics, Technical University of Denmark, DTU Physics, Building 309, DK-2800 Kongens Lyngby (Denmark); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Rouhani, Bahram Djafari [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, l' UNAM, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, P.O. Box 4120, D-39016 Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2016-03-21

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.

  9. Engineering dissipation with phononic spectral hole burning

    Science.gov (United States)

    Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.

    2017-03-01

    Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.

  10. Experimental Study of Electron and Phonon Dynamics in Nanoscale Materials by Ultrafast Laser Time-Domain Spectroscopy

    Science.gov (United States)

    Shen, Xiaohan

    less than 100 nm was observed. The longitudinal acoustic phonon transport in silicon (Si) nanorod with confined diameter and length was investigated. The guided phonon modes in Si nanorod with different frequencies and wave vectors were observed. The mean-free-path of the guided phonons in Si nanorod was found to be larger than the effective phonon mean-free-path in Si film, because of the limited phonon scattering channels in Si nanorod. The phonon density of states and dispersion relation strongly depend on the size and boundary conditions of nanorod. Our work demonstrates the possibility of modifying the phonon transport properties in nanoscale materials by designing the size and boundary conditions, hence the control of thermal conductivity. In addition, the periodicity effect of nanostructures on acoustic phonon transport was investigated in silicon dioxide (SiO2) nanorod arrays. The lattice modes and mechanical eigenmodes were observed, and the pitch effect on lattice modes was discussed. A narrowband acoustic phonon spectroscopic technique with tunable frequency and spectral width throughout GHz frequency range has been developed to investigate the frequency-dependent acoustic phonon transport in nanoscale materials. The quadratic frequency dependence of acoustic attenuation of SiO2 and indium tin oxide (ITO) thin films was observed, and the acoustic attenuation of ITO was found to be larger than SiO2. Moreover, the acoustic control on mechanical resonance of nanoscale materials using the narrowband acoustic phonon source was demonstrated in tungsten thin film.

  11. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    Science.gov (United States)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  12. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    DEFF Research Database (Denmark)

    Amoudache, Samira; Moiseyenko, Rayisa; Pennec, Yan

    2016-01-01

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defi...... of standing waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.......-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation...

  13. Lumped model for rotational modes in phononic crystals

    KAUST Repository

    Peng, Pai

    2012-10-16

    We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.

  14. Lumped model for rotational modes in phononic crystals

    KAUST Repository

    Peng, Pai; Mei, Jun; Wu, Ying

    2012-01-01

    We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.

  15. In-plane confinement and waveguiding of surface acoustic waves through line defects in pillars-based phononic crystal

    Directory of Open Access Journals (Sweden)

    Abdelkrim Khelif

    2011-12-01

    Full Text Available We present a theoretical analysis of an in-plane confinement and a waveguiding of surface acoustic waves in pillars-based phononic crystal. The artificial crystal is made up of cylindrical pillars placed on a semi-infinite medium and arranged in a square array. With a well-chosen of the geometrical parameters, this pillars-based system can display two kinds of complete band gaps for guided waves propagating near the surface, a low frequency gap based on locally resonant mode of pillars as well as a higher frequency gap appearing at Bragg scattering regime. In addition, we demonstrate a waveguiding of surface acoustic wave inside an extended linear defect created by removing rows of pillars in the perfect crystal. We discuss the transmission and the polarization of such confined mode appearing in the higher frequency band gap. We highlight the strong similarity of such defect mode and the Rayleigh wave of free surface medium. An efficient finite element analysis is used to simulate the propagation of guided waves through silicon pillars on a silicon substrate.

  16. Acoustic phonon emission by two dimensional plasmons

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig

  17. The Importance of Phonons with Negative Phase Quotient in Disordered Solids.

    Science.gov (United States)

    Seyf, Hamid Reza; Lv, Wei; Rohskopf, Andrew; Henry, Asegun

    2018-02-08

    Current understanding of phonons is based on the phonon gas model (PGM), which is best rationalized for crystalline materials. However, most of the phonons/modes in disordered materials have a different character and thus may contribute to heat conduction in a fundamentally different way than is described by PGM. For the modes in crystals, which have sinusoidal character, one can separate the modes into two primary categories, namely acoustic and optical modes. However, for the modes in disordered materials, such designations may no longer rigorously apply. Nonetheless, the phase quotient (PQ) is a quantity that can be used to evaluate whether a mode more so shares a distinguishing property of acoustic vibrations manifested as a positive PQ, or a distinguishing property of an optical vibrations manifested as negative PQ. In thinking about this characteristic, there is essentially no intuition regarding the role of positive vs. negative PQ vibrational modes in disordered solids. Given this gap in understanding, herein we studied the respective contributions to thermal conductivity for several disordered solids as a function of PQ. The analysis sheds light on the importance of optical like/negative PQ modes in structurally/compositionally disordered solids, whereas in crystalline materials, the contributions of optical modes are usually small.

  18. Frequency degeneracy of acoustic waves in two-dimensional phononic crystals

    International Nuclear Information System (INIS)

    Darinskii, A N; Le Clezio, E; Feuillard, G

    2007-01-01

    Degeneracies of acoustic wave spectra in 2D phononic crystals (PC) and PC slabs are studied. A PC structure is constituted of parallel steel rods immersed into water and forming the quadratic lattice. Given the projection k z of the wave vector on the direction of rods, the bulk wave spectrum of the infinite PC is a set of frequency surfaces f i (k x , k y ), i = 1,2,..., where k x,y are the components of the wave vector in the plane perpendicular to the rods. An investigation is performed of the shape of frequency surfaces in the vicinity of points (k dx , k dy ), where these surfaces fall into contact. In addition, the evolution of the degeneracy with changing rod radius and cross-section shape is examined. Degeneracy in the spectrum of leaky modes propagating along a single waveguide in a PC slab is also investigated

  19. Goldstone-like phonon modes in a (111)-strained perovskite

    Science.gov (United States)

    Marthinsen, A.; Griffin, S. M.; Moreau, M.; Grande, T.; Tybell, T.; Selbach, S. M.

    2018-01-01

    Goldstone modes are massless particles resulting from spontaneous symmetry breaking. Although such modes are found in elementary particle physics as well as in condensed-matter systems like superfluid helium, superconductors, and magnons, structural Goldstone modes are rare. Epitaxial strain in thin films can induce structures and properties not accessible in bulk and has been intensively studied for (001)-oriented perovskite oxides. Here we predict Goldstone-like phonon modes in (111)-strained SrMn O3 by first-principles calculations. Under compressive strain the coupling between two in-plane rotational instabilities gives rise to a Mexican hat-shaped energy surface characteristic of a Goldstone mode. Conversely, large tensile strain induces in-plane polar instabilities with no directional preference, giving rise to a continuous polar ground state. Such phonon modes with U (1) symmetry could emulate structural condensed-matter Higgs modes. The mass of this Higgs boson, given by the shape of the Mexican hat energy surface, can be tuned by strain through proper choice of substrate.

  20. Controlling competing orders via nonequilibrium acoustic phonons: Emergence of anisotropic effective electronic temperature

    Science.gov (United States)

    Schütt, Michael; Orth, Peter P.; Levchenko, Alex; Fernandes, Rafael M.

    2018-01-01

    Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.

  1. Effective electron mass and phonon modes in n-type hexagonal InN

    Science.gov (United States)

    Kasic, A.; Schubert, M.; Saito, Y.; Nanishi, Y.; Wagner, G.

    2002-03-01

    Infrared spectroscopic ellipsometry and micro-Raman scattering are used to study vibrational and electronic properties of high-quality hexagonal InN. The 0.22-μm-thick highly n-conductive InN film was grown on c-plane sapphire by radio-frequency molecular-beam epitaxy. Combining our results from the ellipsometry data analysis with Hall-effect measurements, the isotropically averaged effective electron mass in InN is determined as 0.14m0. The resonantly excited zone center E1 (TO) phonon mode is observed at 477 cm-1 in the ellipsometry spectra. Despite the high electron concentration in the film, a strong Raman mode occurs in the spectral range of the unscreened A1(LO) phonon. Because an extended carrier-depleted region at the sample surface can be excluded from the ellipsometry-model analysis, we assign this mode to the lower branch of the large-wave-vector LO-phonon-plasmon coupled modes arising from nonconserving wave-vector scattering processes. The spectral position of this mode at 590 cm-1 constitutes a lower limit for the unscreened A1(LO) phonon frequency.

  2. Phonon dispersion relations for caesium thiocyanate

    International Nuclear Information System (INIS)

    Irving, M.A.; Smith, T.F.; Elcombe, M.M.

    1984-01-01

    Room temperature phonon dispersion relations for frequencies below 2 THz have been measured, along the three orthorhombic axes and selected diagonal directions by neutron inelastic scattering, for caesium thiocyanate. These curves, which represent 13 acoustic modes and 11 optic modes of vibration, do not agree with the dispersion behaviour calculated from the rigid-ion model developed by Ti and Ra to describe their Raman scattering observations

  3. Frequency degeneracy of acoustic waves in two-dimensional phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Darinskii, A N [Institute of Crystallography RAS, Leninskiy pr. 59, Moscow, 119333 (Russian Federation); Le Clezio, E [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France); Feuillard, G [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France)

    2007-12-15

    Degeneracies of acoustic wave spectra in 2D phononic crystals (PC) and PC slabs are studied. A PC structure is constituted of parallel steel rods immersed into water and forming the quadratic lattice. Given the projection k{sub z} of the wave vector on the direction of rods, the bulk wave spectrum of the infinite PC is a set of frequency surfaces f{sub i}(k{sub x}, k{sub y}), i = 1,2,..., where k{sub x,y} are the components of the wave vector in the plane perpendicular to the rods. An investigation is performed of the shape of frequency surfaces in the vicinity of points (k{sub dx}, k{sub dy}), where these surfaces fall into contact. In addition, the evolution of the degeneracy with changing rod radius and cross-section shape is examined. Degeneracy in the spectrum of leaky modes propagating along a single waveguide in a PC slab is also investigated.

  4. Phonon-magnon resonant processes with relevance to acoustic spin pumping

    KAUST Repository

    Deymier, P. A.

    2014-12-23

    The recently described phenomenon of resonant acoustic spin pumping is due to resonant coupling between an incident elastic wave and spin waves in a ferromagnetic medium. A classical one-dimensional discrete model of a ferromagnet with two forms of magnetoelastic coupling is treated to shed light on the conditions for resonance between phonons and magnons. Nonlinear phonon-magnon interactions in the case of a coupling restricted to diagonal terms in the components of the spin degrees of freedom are analyzed within the framework of the multiple timescale perturbation theory. In that case, one-phonon-two-magnon resonances are the dominant mechanism for pumping. The effect of coupling on the dispersion relations depends on the square of the amplitude of the phonon and magnon excitations. A straightforward analysis of a linear phonon-magnon interaction in the case of a magnetoelastic coupling restricted to off-diagonal terms in the components of the spins shows a one-phonon to one-magnon resonance as the pumping mechanism. The resonant dispersion relations are independent of the amplitude of the waves. In both cases, when an elastic wave with a fixed frequency is used to stimulate magnons, application of an external magnetic field can be used to approach resonant conditions. Both resonance conditions exhibit the same type of dependency on the strength of an applied magnetic field.

  5. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, S.; Bourquin, R. [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe, 25000, Besançon (France)

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  6. Peierls transition with acoustic phonons and twist deformation in carbon nanotubes

    NARCIS (Netherlands)

    Figge, M. T.; Mostovoy, M. V.; Knöster, J.

    1999-01-01

    Submitted to: Phys. Rev. Lett. Abstract: We consider the Peierls instability due to the interaction of electrons with both acoustic and optical phonons. We suggest that such a transition takes place in carbon nanotubes with small radius. The topological excitations and the temperature dependence of

  7. On the interplay between phonon-boundary scattering and phonon-point-defect scattering in SiGe thin films

    Science.gov (United States)

    Iskandar, A.; Abou-Khalil, A.; Kazan, M.; Kassem, W.; Volz, S.

    2015-03-01

    This paper provides theoretical understanding of the interplay between the scattering of phonons by the boundaries and point-defects in SiGe thin films. It also provides a tool for the design of SiGe-based high-efficiency thermoelectric devices. The contributions of the alloy composition, grain size, and film thickness to the phonon scattering rate are described by a model for the thermal conductivity based on the single-mode relaxation time approximation. The exact Boltzmann equation including spatial dependence of phonon distribution function is solved to yield an expression for the rate at which phonons scatter by the thin film boundaries in the presence of the other phonon scattering mechanisms. The rates at which phonons scatter via normal and resistive three-phonon processes are calculated by using perturbation theories with taking into account dispersion of confined acoustic phonons in a two dimensional structure. The vibrational parameters of the model are deduced from the dispersion of confined acoustic phonons as functions of temperature and crystallographic direction. The accuracy of the model is demonstrated with reference to recent experimental investigations regarding the thermal conductivity of single-crystal and polycrystalline SiGe films. The paper describes the strength of each of the phonon scattering mechanisms in the full temperature range. Furthermore, it predicts the alloy composition and film thickness that lead to minimum thermal conductivity in a single-crystal SiGe film, and the alloy composition and grain size that lead to minimum thermal conductivity in a polycrystalline SiGe film.

  8. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    Science.gov (United States)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  9. Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot

    Science.gov (United States)

    Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang

    2015-01-01

    In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.

  10. Theoretical approach to the phonon modes and specific heat of germanium nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Trejo, A.; López-Palacios, L.; Vázquez-Medina, R.; Cruz-Irisson, M., E-mail: irisson@ipn.mx

    2014-11-15

    The phonon modes and specific heat of Ge nanowires were computed using a first principles density functional theory scheme with a generalized gradient approximation and finite-displacement supercell algorithms. The nanowires were modeled in three different directions: [001], [111], and [110], using the supercell technique. All surface dangling bonds were saturated with Hydrogen atoms. The results show that the specific heat of the GeNWs at room temperature increases as the nanowire diameter decreases, regardless the orientation due to the phonon confinement and surface passivation. Also the phonon confinement effects could be observed since the highest optical phonon modes in the Ge vibration interval shifted to a lower frequency compared to their bulk counterparts.

  11. Phononic crystals of spherical particles: A tight binding approach

    Energy Technology Data Exchange (ETDEWEB)

    Mattarelli, M., E-mail: maurizio.mattarelli@fisica.unipg.it [NiPS Laboratory, Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06100 Perugia (Italy); Secchi, M. [CMM - Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Trento (Italy); Montagna, M. [Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Trento (Italy)

    2013-11-07

    The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.

  12. Pump-probe studies of travelling coherent longitudinal acoustic phonon oscillations in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Qi, J.; Tolk, Norman [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235 (United States); Miller, J. [Naval air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Cho, Y.J.; Liu, X.; Furdyna, J.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Shahbazyan, T.V. [Department of Physics, Jackson State University, MS 39217 (United States)

    2008-07-01

    We report comprehensive studies of long-lived oscillations in femtosecond optical pump-probe measurements on GaAs based systems. The oscillations arise from a photo-generated coherent longitudinal acoustic phonon wave at the sample surface, which subsequently travels from the surface into the GaAs substrate, thus providing information on the optical properties of the material as a function of time/depth. Wavelength-dependent studies of the oscillations near the bandgap of GaAs indicate strong correlations to the optical properties of GaAs. We also use the coherent longitudinal acoustic phonon waves to probe a thin buried Ga{sub 0.1}In{sub 0.9}As layers non-invasively. The observed phonon oscillations experience a reduction in amplitude and a phase change at wavelengths near the bandgap of the GaAs, when it passes through the thin Ga{sub x}In{sub 1-x}As layer. The layer depth and thicknesses can be extracted from the oscillation responses. A model has been developed that satisfactorily characterizes the experimental results. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Raman analysis of phonon modes in a short period AlN/GaN superlattice

    Science.gov (United States)

    Sarkar, Ketaki; Datta, Debopam; Gosztola, David J.; Shi, Fengyuan; Nicholls, Alan; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    AlN/GaN-based optoelectronic devices have been the subject of intense research underlying the commercialization of efficient devices. Areas of considerable interest are the study of their lattice dynamics, phonon transport, and electron-phonon interactions specific to the interface of these heterostructures which results in additional optical phonon modes known as interface phonon modes. In this study, the framework of the dielectric continuum model (DCM) has been used to compare and analyze the optical phonon modes obtained from experimental Raman scattering measurements on AlN/GaN short-period superlattices. We have observed the localized E2(high), A1(LO) and the E1(TO) modes in superlattice measurements at frequencies shifted from their bulk values. To the best of our knowledge, the nanostructures used in these studies are among the smallest yielding useful Raman signatures for the interface modes. In addition, we have also identified an additional spread of interface phonon modes in the TO range resulting from the superlattice periodicity. The Raman signature contribution from the underlying AlxGa1-xN ternary has also been observed and analyzed. A temperature calibration was done based on Stokes/anti-Stokes ratio of A1(LO) using Raman spectroscopy in a broad operating temperature range. Good agreement between the experimental results and theoretically calculated calibration plot predicted using Bose-Einstein statistics was obtained.

  14. Electron - polar acoustical phonon interactions in nitride based diluted magnetic semiconductor quantum well via hot electron magnetotransport

    International Nuclear Information System (INIS)

    Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.

    2015-01-01

    In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering

  15. Dominant phonon polarization conversion across dimensionally mismatched interfaces: Carbon-nanotube-graphene junction

    Science.gov (United States)

    Shi, Jingjing; Lee, Jonghoon; Dong, Yalin; Roy, Ajit; Fisher, Timothy S.; Ruan, Xiulin

    2018-04-01

    Dimensionally mismatched interfaces are emerging for thermal management applications, but thermal transport physics remains poorly understood. Here we consider the carbon-nanotube-graphene junction, which is a dimensionally mismatched interface between one- and two-dimensional materials and is the building block for carbon-nanotube (CNT)-graphene three-dimensional networks. We predict the transmission function of individual phonon modes using the wave packet method; surprisingly, most incident phonon modes show predominantly polarization conversion behavior. For instance, longitudinal acoustic (LA) polarizations incident from CNTs transmit mainly into flexural transverse (ZA) polarizations in graphene. The frequency stays the same as the incident mode, indicating elastic transmission. Polarization conversion is more significant as the phonon wavelength increases. We attribute such unique phonon polarization conversion behavior to the dimensional mismatch across the interface, and it opens significantly new phonon transport channels as compared to existing theories where polarization conversion is neglected.

  16. Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3

    DEFF Research Database (Denmark)

    Holm, S. L.; Kreisel, A.; Schaeffer, T. K.

    2018-01-01

    Inelastic neutron scattering has been used to study the magnetoelastic excitations in the multiferroic manganite hexagonal YMnO3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a,b) plane. Neutron polarization analysis reveals that this m......Inelastic neutron scattering has been used to study the magnetoelastic excitations in the multiferroic manganite hexagonal YMnO3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a,b) plane. Neutron polarization analysis reveals...... that this mode has mixed magnon-phonon character. An external magnetic field along the c axis is observed to cause a linear field-induced splitting of one of the spin-wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes, and a magnetoelastic...... coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magnetoelastic coupling. The combined information, including the field...

  17. Non-equilibrium phonon generation and detection in microstructure devices

    KAUST Repository

    Hertzberg, J. B.; Otelaja, O. O.; Yoshida, N. J.; Robinson, R. D.

    2011-01-01

    We demonstrate a method to excite locally a controllable, non-thermal distribution of acoustic phonon modes ranging from 0 to ∼200 GHz in a silicon microstructure, by decay of excited quasiparticle states in an attached superconducting tunnel

  18. Dephasing of LO-phonon-plasmon hybrid modes in n-type GaAs

    Science.gov (United States)

    Vallée, F.; Ganikhanov, F.; Bogani, F.

    1997-11-01

    The relaxation dynamics of coherent phononlike LO-phonon-plasmon hybrid modes is investigated in n-doped GaAs using an infrared time-resolved coherent anti-Stokes Raman scattering technique. Measurements performed for different crystal temperatures in the range 10-300 K as a function of the electron density injected by doping show a large reduction of the hybrid mode dephasing time compared to the bare LO-phonon one for densities larger than 1016 cm-3. The results are interpreted in terms of coherent decay of the LO-phonon-plasmon mixed mode in the weak-coupling regime and yield information on the plasmon and electron relaxation. The estimated average electron momentum relaxation times are smaller than those deduced from Hall mobility measurements, as expected from our theoretical model.

  19. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal

    Science.gov (United States)

    Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le

    2016-08-01

    The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.

  20. Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation

    KAUST Repository

    Yi, Yuanping

    2012-01-01

    There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing. © 2012 American Institute of Physics.

  1. Optical phonon modes of wurtzite InP

    Science.gov (United States)

    Gadret, E. G.; de Lima, M. M.; Madureira, J. R.; Chiaramonte, T.; Cotta, M. A.; Iikawa, F.; Cantarero, A.

    2013-03-01

    Optical vibration modes of InP nanowires in the wurtzite phase were investigated by Raman scattering spectroscopy. The wires were grown along the [0001] axis by the vapor-liquid-solid method. The A1(TO), E2h, and E1(TO) phonon modes of the wurtzite symmetry were identified by using light linearly polarized along different directions in backscattering configuration. Additionally, forbidden longitudinal optical modes have also been observed. Furthermore, by applying an extended 11-parameter rigid-ion model, the complete dispersion relations of InP in the wurtzite phase have been calculated, showing a good agreement with the Raman experimental data.

  2. Air-coupled method to investigate the lowest-order antisymmetric Lamb mode in stubbed and air-drilled phononic plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongbo; Zhao, Jinfeng, E-mail: jinfeng.zhao@tongji.edu.cn; Li, Libing; Pan, Yongdong; Zhong, Zheng [School of Aerospace Engineering and Applied Mechanics, Tongji University, 100 Zhangwu Road, 200092, Shanghai (China); Bonello, Bernard [CNRS, UMR 7588, Institut des NanoSciences de Paris, F-75005, Paris (France); Wei, Jianxin [State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, 18 Xuefu Road, 102249, Pekin (China)

    2016-08-15

    In this work, we applied a robust and fully air-coupled method to investigate the propagation of the lowest-order antisymmetric Lamb (A{sub 0}) mode in both a stubbed and an air-drilled phononic-crystal (PC) plate. By measuring simply the radiative acoustic waves of A{sub 0} mode close to the plate surface, we observed the band gaps for the stubbed PC plate caused by either the local resonance or the Bragg scattering, in frequency ranges in good agreement with theoretical predictions. We measured then the complete band gap of A{sub 0} mode for the air-drilled PC plate, in good agreement with the band structures. Finally, we compared the measurements made using the air-coupled method with those obtained by the laser ultrasonic technique.

  3. Air-coupled method to investigate the lowest-order antisymmetric Lamb mode in stubbed and air-drilled phononic plates

    Directory of Open Access Journals (Sweden)

    Dongbo Zhang

    2016-08-01

    Full Text Available In this work, we applied a robust and fully air-coupled method to investigate the propagation of the lowest-order antisymmetric Lamb (A0 mode in both a stubbed and an air-drilled phononic-crystal (PC plate. By measuring simply the radiative acoustic waves of A0 mode close to the plate surface, we observed the band gaps for the stubbed PC plate caused by either the local resonance or the Bragg scattering, in frequency ranges in good agreement with theoretical predictions. We measured then the complete band gap of A0 mode for the air-drilled PC plate, in good agreement with the band structures. Finally, we compared the measurements made using the air-coupled method with those obtained by the laser ultrasonic technique.

  4. Designing broad phononic band gaps for in-plane modes

    Science.gov (United States)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  5. Three-mode coupling interference patterns in the dynamic structure factor of a relaxor ferroelectric

    Science.gov (United States)

    Manley, M. E.; Abernathy, D. L.; Sahul, R.; Stonaha, P. J.; Budai, J. D.

    2016-09-01

    A longstanding controversy for relaxor ferroelectrics has been the origin of the "waterfall" effect in the phonon dispersion curves, in which low-energy transverse phonons cascade into vertical columns. Originally interpreted as phonons interacting with polar nanoregions (PNRs), it was later explained as an interference effect of coupling damped optic and acoustic phonons. In light of a recently discovered PNR vibrational mode near the "waterfall" wave vector [M. E. Manley, J. W. Lynn, D. L. Abernathy, E. D. Specht, O. Delaire, A. R. Bishop, R. Sahul, and J. D. Budai, Nat. Commun. 5, 3683 (2014), 10.1038/ncomms4683], we have reexamined this feature using neutron scattering on [100]-poled PMN-30%PT [0.6 Pb (M g1 /3N b2 /3 ) O3-0.3 PbTi O3] . We find that the PNR mode couples to both optic and acoustic phonons and that this results in complex patterns in the dynamic structure factor, including intensity pockets and peaks localized in momentum-energy space. These features are fully explained by extending the mode-coupling model to include three coupled damped harmonic oscillators representing the transverse optic, acoustic, and PNR modes.

  6. CO{sub 2} INFRARED PHONON MODES IN INTERSTELLAR ICE MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Ilsa R. [Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, VA 22904 (United States); Fayolle, Edith C.; Öberg, Karin I., E-mail: irc5zb@virginia.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-11-20

    CO{sub 2} ice is an important reservoir of carbon and oxygen in star- and planet-forming regions. Together with water and CO, CO{sub 2} sets the physical and chemical characteristics of interstellar icy grain mantles, including desorption and diffusion energies for other ice constituents. A detailed understanding of CO{sub 2} ice spectroscopy is a prerequisite to characterize CO{sub 2} interactions with other volatiles both in interstellar ices and in laboratory experiments of interstellar ice analogs. We report laboratory spectra of the CO{sub 2} longitudinal optical (LO) phonon mode in pure CO{sub 2} ice and in CO{sub 2} ice mixtures with H{sub 2}O, CO, and O{sub 2} components. We show that the LO phonon mode position is sensitive to the mixing ratio of various ice components of astronomical interest. In the era of the James Webb Space Telescope , this characteristic could be used to constrain interstellar ice compositions and morphologies. More immediately, LO phonon mode spectroscopy provides a sensitive probe of ice mixing in the laboratory and should thus enable diffusion measurements with higher precision than has been previously possible.

  7. Lattice instability and soft phonons in single-crystal La/sub 2-//sub x/Sr/sub x/CuO4

    International Nuclear Information System (INIS)

    Boeni, P.; Axe, J.D.; Shirane, G.

    1988-01-01

    The dispersion of the low-lying phonon branches of several doped and undoped single crystals of La/sub 2-//sub x/Sr/sub x/CuO 4 have been investigated by using inelastic-neutron-scattering techniques. The zone-center modes are in good agreement with Raman measurements. The reported peaks in the phonon density of states show up at energies that correspond to extrema in the dispersion curves of the transverse and longitudinal acoustic branches near the zone boundary. The tetragonal-to-orthorhombic phase transition is caused by a softening of transverse-optic-phonon mode at the X point. The rotational nature of the soft mode leads to moderate weak electron-phonon coupling and the mode is unlikely to enhance significantly conventional phonon mediated superconductivity. We did not observe any evidence for the predicted breathing-mode instability near the zone boundary

  8. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.

    Science.gov (United States)

    Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing

    2014-11-17

    Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.

  9. Surface dependent behaviour of CdS LO-phonon mode

    International Nuclear Information System (INIS)

    Molina-Contreras, J R; Medina-Gutierrez, C; Frausto-Reyes, C; Trejo-Vazquez, R; Villalobos-Pina, F J; Romo-Luevano, G; Calixto, S

    2007-01-01

    In this paper, we develop a sensitive optical method to monitor the surface roughness in the investigation of surfaces. By applying this method to measure the RMS surface roughness of various surfaces, we found RMS values which are comparable to those obtained by atomic force microscopy measurements. In addition, we present a simple empirical model to calculate the RMS surface roughness which shows very good agreement with the surface roughness measurements taken by the method reported in this paper. Finally, the application of our method to the study of the LO-phonon mode of CdS suggests that its intensity is dominated by the surface roughness. This roughness dependent behaviour of the CdS LO-phonon mode is experimentally confirmed by using an excitation wavelength near its E 0 transition

  10. Beam paths of flexural Lamb waves at high frequency in the first band within phononic crystal-based acoustic lenses

    Directory of Open Access Journals (Sweden)

    J. Zhao

    2014-12-01

    Full Text Available This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.

  11. Electron-longitudinal-acoustic-phonon scattering in double-quantum-dot based quantum gates

    International Nuclear Information System (INIS)

    Zhao Peiji; Woolard, Dwight L.

    2008-01-01

    We propose a nanostructure design which can significantly suppress longitudinal-acoustic-phonon-electron scattering in double-quantum-dot based quantum gates for quantum computing. The calculated relaxation rates vs. bias voltage exhibit a double-peak feature with a minimum approaching 10 5 s -1 . In this matter, the energy conservation law prohibits scattering contributions from phonons with large momenta; furthermore, increasing the barrier height between the double quantum dots reduces coupling strength between the dots. Hence, the joint action of the energy conservation law and the decoupling greatly reduces the scattering rates. The degrading effects of temperatures can be reduced simply by increasing the height of the barrier between the dots

  12. Magnetic ground state and magnon-phonon interaction in multiferroic h -YMnO3

    Science.gov (United States)

    Holm, S. L.; Kreisel, A.; Schäffer, T. K.; Bakke, A.; Bertelsen, M.; Hansen, U. B.; Retuerto, M.; Larsen, J.; Prabhakaran, D.; Deen, P. P.; Yamani, Z.; Birk, J. O.; Stuhr, U.; Niedermayer, Ch.; Fennell, A. L.; Andersen, B. M.; Lefmann, K.

    2018-04-01

    Inelastic neutron scattering has been used to study the magnetoelastic excitations in the multiferroic manganite hexagonal YMnO3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a ,b ) plane. Neutron polarization analysis reveals that this mode has mixed magnon-phonon character. An external magnetic field along the c axis is observed to cause a linear field-induced splitting of one of the spin-wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes, and a magnetoelastic coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magnetoelastic coupling. The combined information, including the field-induced magnon splitting, allows us to exclude several of the earlier proposed models and point to the correct magnetic ground state symmetry, and provides an effective dynamic model relevant for the multiferroic hexagonal manganites.

  13. Enhanced photoelastic modulation in silica phononic crystal cavities

    Science.gov (United States)

    Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-04-01

    The enhanced photoelastic modulation in quasi-one-dimensional (1D) phononic crystal (PnC) cavities made of fused silica is experimentally demonstrated. A confined acoustic wave in the cavity can induce a large birefringence through the photoelastic effect and enable larger optical modulation amplitude at the same acoustic power. We observe a phase retardation of ∼26 mrad of light passing through the cavity when the exciting acoustic frequency is tuned to the cavity mode resonance of ∼500 kHz at 2.5 V. In the present experiment, a 16-fold enhancement of retardation in the PnC cavity is demonstrated compared with that in a bar-shaped silica structure. Spatially resolved optical retardation measurement reveals that the large retardation is realized only around the cavity reflecting the localized nature of the acoustic cavity mode. The enhanced interactions between acoustic waves and light can be utilized to improve the performance of acousto-optic devices such as photoelastic modulators.

  14. Light scattering by surface phonons in crystals

    International Nuclear Information System (INIS)

    Albuquerque, D.L.

    1980-01-01

    Theory of inelastic light scattering by surface acoustic phonons homogeneous crystals is presented. The Green functions are determined by the use of a classical linear response method and used to evaluate the Brillouin cross section. The acoustic modes are found from solutions to the acoustical-wave equation and boundary conditions appropriated. Two light-scattering mechanisms, amely the surface corrugation and bulk elasto-optic effect are analyzed by deriving optical fields which satisfy both the acousto-optically driven wave equation and the electromagnetic boundary conditions. No restrictions are imposed concerning the angle of incidence of the light. Some representative computed Brillouin ineshapes are also presented and their features discussed. (author) [pt

  15. Acoustic rotation modes in complex plasmas

    International Nuclear Information System (INIS)

    Bai Dongxue; Wang Zhengxiong; Wang Xiaogang

    2004-01-01

    Acoustic rotation modes in complex plasmas are investigated in a cylindrical system with an axial symmetry. The linear mode solution is derived. The mode in an infinite area is reduced to a classical dust acoustic wave in the region away from the centre. When the dusty plasma is confined in a finite region, the breathing and rotating-void behaviour are observed. Vivid structures of different mode number solutions are illustrated

  16. Coherent heat transport in 2D phononic crystals with acoustic impedance mismatch

    International Nuclear Information System (INIS)

    Arantes, A; Anjos, V

    2016-01-01

    In this work we have calculated the cumulative thermal conductivities of micro-phononic crystals formed by different combinations of inclusions and matrices at a sub-Kelvin temperature regime. The low-frequency phonon spectra (up to tens of GHz) were obtained by solving the generalized wave equation for inhomogeneous media with the plane wave expansion method. The thermal conductivity was calculated from Boltzmann transport theory highlighting the role of the low-frequency thermal phonons and neglecting phonon–phonon scattering. A purely coherent thermal transport regime was assumed throughout the structures. Our findings show that the cumulative thermal conductivity drops dramatically when compared with their bulk counterpart. Depending on the structural composition this reduction may be attributed to the phonon group velocity due to a flattening of the phonon dispersion relation, the extinction of phonon modes in the density of states or due to the presence of complete band gaps. According to the contrast between the inclusions and the matrices, three types of two dimensional phononic crystals were considered: carbon/epoxy, carbon/polyethylene and tungsten/silicon, which correspond respectively to a moderate, strong and very strong mismatch in the mechanical properties of these materials. (paper)

  17. Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate

    International Nuclear Information System (INIS)

    Huang Ping-Ping; Yao Yuan-Wei; Zhang Xin; Li Jing; Hu Ai-Zhen; Wu Fu-Gen

    2015-01-01

    We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is composed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid–fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate. (paper)

  18. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  19. RAMAN SCATTERING BY ACOUSTIC PHONONS AND STRUCTURAL PROPERTIES OF FIBONACCI, THUE-MORSE AND RANDOM SUPERLATTICES

    OpenAIRE

    Merlin , R.; Bajema , K.; Nagle , J.; Ploog , K.

    1987-01-01

    We report structural studies of incommensurate and random GaAs-AlAs superlattices using Raman scattering by acoustic phonons. Properties of the structure factor of Fibonacci and Thue-Morse superlattices are discussed in some detail.

  20. The electron–phonon coupling of fundamental, overtone, and combination modes and its effects on the resonance Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zhanlong; Wang, Shenghan; Gao, Shuqin [College of Physics, Jilin University, Changchun 130012 (China); Sun, Chenglin, E-mail: chenglin@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zuowei [College of Physics, Jilin University, Changchun 130012 (China)

    2015-12-15

    Highlights: • The Huang–Rhys factors and electron–phonon coupling constants are calculated. • The changes of overtone mode are larger than those of fundamental mode. • The variation pattern of electron–phonon coupling well interprets the changes of spectra. - Abstract: External field plays a very important role in the interaction between the π-electron transition and atomic vibration of polyenes. It has significant effects on both the Huang–Rhys factor and the electron–phonon coupling. In this paper, the visible absorption and resonance Raman spectra of all-trans-β-carotene are measured in the 345–295 K temperature range and it is found that the changes of the 0–1 and 0–2 vibration bands of the absorption spectra with the temperature lead to the different electron–phonon coupling of fundamental, overtone, and combination modes. The electron-phonon coupling constants of all the modes are calculated and analyzed under different temperatures. The variation law of the electron–phonon coupling with the temperature well interprets the changes of the resonance Raman spectra, such as the shift, intensity and line width of the overtone and combination modes, which are all greater than those of the fundamental modes.

  1. Phononic crystals with one-dimensional defect as sensor materials

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed

    2017-09-01

    Recently, sensor technology has attracted great attention in many fields due to its importance in many engineering applications. In the present work, we introduce a study using the innovative properties of phononic crystals in enhancing a new type of sensors based on the intensity of transmitted frequencies inside the phononic band gaps. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficient and dispersion relation are presented. Firstly, the influences of filling fraction ratio and the angle of incidence on the band gap width are discussed. Secondly, the localization of waves inside band gaps is discussed by enhancing the properties of the defected phononic crystal. Compared to the periodic structure, localization modes involved within the band structure of phononic crystals with one and two defect layers are presented and compared. Trapped localized modes can be detected easily and provide more information about defected structures. Such method could increase the knowledge of manufacturing defects by measuring the intensity of propagated waves in the resonant cavities and waveguides. Moreover, several factors enhance the role of the defect layer on the transmission properties of defected phononic crystals are presented. The acoustic band gap can be used to detect or sense the type of liquids filling the defect layer. The liquids make specific resonant modes through the phononic band gaps that related to the properties of each liquid. The frequency where the maximum resonant modes occur is correlated to material properties and allows to determine several parameters such as the type of an unknown material.

  2. The determination of the acoustical phonon dispersion branches of CePd3 by inelastic neutron diffraction

    International Nuclear Information System (INIS)

    Severing, A.

    1985-07-01

    The result of this thesis is, that the phonon dispersion of CePd 3 , measured by inelastic neutron scattering, does not show any phonon softening effects due to valence fluctuations as it is observed in the phonon dispersion spectra of TmSe, SmS under pressure and SMsub(.75)Ysub(.25)S in dependence of the temperature. Even at low temperature no softening effects could be detected in comparison to the room temperature data. However we see indications for the existence of intermediate valence induced electron-phonon couplings in the linewidth of the longitudinal acoustic phonon in -direction with reduced wavevector xi=0.2. This phonon seems to be broadened at 135 K. If this broadening is a real intermediate valence effect, this effects manifest themselves much weaker in CePd 3 than in the substances with NaCl-structure. The question whether such couplings realy exist can only be answered by further measurements. (orig.)

  3. Enhancement of acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities by utilizing surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tian-Xue [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2017-01-30

    A phoxonic crystal is a periodically patterned material that can simultaneously localize optical and acoustic modes. The acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities is investigated numerically. The photons can be well confined in the slot owing to the large electric field discontinuity at the air/dielectric interfaces. Besides, the surface acoustic modes lead to the localization of the phonons near the air-slot. The high overlap of the photonic and phononic cavity modes near the slot results in a significant enhancement of the moving interface effect, and thus strengthens the total acousto-optical interaction. The results of two cavities with different slot widths show that the coupling strength is dependent on the slot width. It is expected to achieve a strong acousto-optical/optomechanical coupling in air-slot phoxonic crystal structures by utilizing surface acoustic modes. - Highlights: • Two-dimensional air-slot phoxonic crystal cavities which can confine simultaneously optical and acoustic waves are proposed. • The acoustic and optical waves are highly confined near/in the air-slot. • The high overlap of the photonic and phononic cavity modes significantly enhances the moving interface effect. • Different factors which affect the acousto-optical coupling are discussed.

  4. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots

    Directory of Open Access Journals (Sweden)

    Giovanni M. Vanacore

    2017-07-01

    Full Text Available Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.

  5. Damping of acoustic flexural phonons in silicene: influence on high-field electronic transport

    Science.gov (United States)

    Rengel, Raúl; Iglesias, José M.; Mokhtar Hamham, El; Martín, María J.

    2018-06-01

    Silicene is a two-dimensional buckled material with broken horizontal mirror symmetry and Dirac-like dispersion. Under such conditions, flexural acoustic (ZA) phonons play a dominant role. Consequently, it is necessary to consider some suppression mechanism for electron–phonon interactions with long wavelengths in order to reach mobilities useful for electronic applications. In this work, we analyze, by means of an ensemble Monte Carlo simulator, the influence of several possibilities for the description of the effect of ZA phonon damping on electronic transport in silicene. The results show that a hard cutoff situation (total suppression for phonons with a wavelength longer than a critical one), as it has been proposed in the literature, does not yield a realistic picture regarding the electronic distribution function, and it artificially induces a negative differential resistance at moderate and high fields. Sub-parabolic dispersions, on the other hand, may provide a more realistic description in terms of the behavior of the electron distribution in the momentum space, but need extremely short cutoff wavelengths to reach functional mobility and drift velocity values.

  6. Characterization of band structure for transverse acoustic phonons in Fibonacci superlattices by a bandedge formalism

    International Nuclear Information System (INIS)

    Hsueh, W J; Chen, R F; Tang, K Y

    2008-01-01

    We present a divergence-free method to determine the characteristics of band structures and projected band structures of transverse acoustic phonons in Fibonacci superlattices. A set of bandedge equations is formulated to solve the band structures for the phonon instead of using the traditional dispersion relation. Numerical calculations show band structures calculated by the present method for the Fibonacci superlattice without numerical instability, which may occur in traditional methods. Based on the present formalism, the band structure for the acoustic phonons has been characterized by closure points and the projected bandgaps of the forbidden bands. The projected bandgaps are determined by the projected band structure, which is characterized by the cross points of the projected bandedges. We observed that the band structure and projected band structure and their characteristics were quite different for different generation orders and the basic layers for the Fibonacci superlattice. In this study, concise rules to determine these characteristics of the band structure and the projected band structure, including the number and the location of closure points of forbidden bands and those of projected bandgaps, in Fibonacci superlattices with arbitrary generation order and basic layers are proposed.

  7. Light scattering by surface phonons in crystals

    International Nuclear Information System (INIS)

    Albuquerque, E.L. de

    1981-01-01

    A theory of inelastic light scattering by surface acoustic phonons in homogeneous crystals is presented. The Green functions are determined by the use of a classical linear response method and used to evaluate the Brillouin cross section. The acoustic modes are found from solutions to the acoustical-wave equation and boundary conditions appropriated. Two light-scattering mechanisms, namely the surface corrugation and bulk elasto-optic effect are analyzed by deriving optical fields which satisfy both the acousto-optically driven wave equation and the electromagnetic boundary conditions. No restrictions are imposed concerning the angle of incidence of the light. Some representative computed Brillouin lineshapes are also presented and their features discussed. (Author) [pt

  8. Research on soundproof properties of cylindrical shells of generalized phononic crystals

    Science.gov (United States)

    Liu, Ru; Shu, Haisheng; Wang, Xingguo

    2017-04-01

    Based on the previous studies, the concept of generalized phononic crystals (GPCs) is further introduced into the cylindrical shell structures in this paper. And a type of cylindrical shells of generalized phononic crystals (CS-GPCs) is constructed, the structural field and acoustic-structural coupled field of the composite cylindrical shells are examined respectively. For the structural field, the transfer matrix method of mechanical state vector is adopted to build the transfer matrix of radial waves propagating from inside to outside. For the acoustic-structural coupled field, the expressions of the acoustic transmission/reflection coefficients and the sound insulation of acoustic waves with the excitation of center line sound source are set up. And the acoustic transmission coefficient and the frequency response of sound insulation in this mode were numerical calculated. Furthermore, the theoretical analysis results are verified by using the method of combining the numerical calculation and finite element simulation. Finally, the effects of inner and outer fluid parameters on the transmission/reflection coefficients of CS-GPCs are analyzed in detail.

  9. Modulation of photonic structures by surface acoustic waves

    International Nuclear Information System (INIS)

    Mauricio M de Lima Jr; Santos, Paulo V

    2005-01-01

    This paper reviews the interaction between coherently stimulated acoustic phonons in the form of surface acoustic waves with light beams in semiconductor based photonic structures. We address the generation of surface acoustic wave modes in these structures as well as the technological aspects related to control of the propagation and spatial distribution of the acoustic fields. The microscopic mechanisms responsible for the interaction between light and surface acoustic modes in different structures are then reviewed. Particular emphasis is given to the acousto-optical interaction in semiconductor microcavities and its application in photon control. These structures exhibit high optical modulation levels under acoustic excitation and are compatible with integrated light sources and detectors

  10. Surface acoustic waves in two dimensional phononic crystal with anisotropic inclusions

    Directory of Open Access Journals (Sweden)

    Ketata H.

    2012-06-01

    Full Text Available An analysis is given to the band structure of the two dimensional solid phononic crystal considered as a semi infinite medium. The lattice includes an array of elastic anisotropic materials with different shapes embedded in a uniform matrix. For illustration two kinds of phononic materials are assumed. A particular attention is devoted to the computational procedure which is mainly based on the plane wave expansion (PWE method. It has been adapted to Matlab environment. Numerical calculations of the dispersion curves have been achieved by introducing particular functions which transform motion equations into an Eigen value problem. Significant improvements are obtained by increasing reasonably the number of Fourier components even when a large elastic mismatch is assumed. Such approach can be generalized to different types of symmetry and permit new physical properties as piezoelectricity to be added. The actual semi infinite phononic structure with a free surface has been shown to support surface acoustic waves (SAW. The obtained dispersion curves reveal band gaps in the SAW branches. It has been found that the influence, of the filling factor and anisotropy on their band gaps, is different from that of bulk waves.

  11. Band structures in a two-dimensional phononic crystal with rotational multiple scatterers

    Science.gov (United States)

    Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Wan, Lele

    2017-03-01

    In this paper, the acoustic wave propagation in a two-dimensional phononic crystal composed of rotational multiple scatterers is investigated. The dispersion relationships, the transmission spectra and the acoustic modes are calculated by using finite element method. In contrast to the system composed of square tubes, there exist a low-frequency resonant bandgap and two wide Bragg bandgaps in the proposed structure, and the transmission spectra coincide with band structures. Specially, the first bandgap is based on locally resonant mechanism, and the simulation results agree well with the results of electrical circuit analogy. Additionally, increasing the rotation angle can remarkably influence the band structures due to the transfer of sound pressure between the internal and external cavities in low-order modes, and the redistribution of sound pressure in high-order modes. Wider bandgaps are obtained in arrays composed of finite unit cells with different rotation angles. The analysis results provide a good reference for tuning and obtaining wide bandgaps, and hence exploring the potential applications of the proposed phononic crystal in low-frequency noise insulation.

  12. Avoided crossing of rattler modes in thermoelectric materials

    DEFF Research Database (Denmark)

    Christensen, Mogens; Abrahamsen, Asger Bech; Christensen, Niels Bech

    2008-01-01

    thermoelectric materials, and the challenge is to limit the conduction of heat by phonons, without simultaneously reducing the charge transport. This is named the 'phonon glass-electron crystal' concept and may be realized in host-guest systems. The guest entities are believed to have independent oscillations......, so-called rattler modes, which scatter the acoustic phonons and reduce the thermal conductivity. We have investigated the phonon dispersion relation in the phonon glass-electron crystal material Ba8Ga16Ge30 using neutron triple-axis spectroscopy. The results disclose unambiguously the theoretically...

  13. Interface plasmon-phonons modes in ion-beam synthesized Mg2Si nanolayers

    International Nuclear Information System (INIS)

    Baleva, M.; Zlateva, G.

    2009-01-01

    Raman scattering of samples, representing n- and p-type Si matrix with unburied Mg 2 Si nanolayers, formed by ion-beam synthesis, are studied. Despite the features in the Raman spectra attributed to the polariton modes with frequencies between those of the TO and LO phonons, additional features outside this interval are detected. The frequencies of these features are very sensitive to the plasma frequency, being different in the n- and p-type Si matrix and to the annealing time. The latter implies the generation of interface plasmonphonons modes. The frequencies of the interface plasmon-phonon modes are calculated and compared with the experimental results. The order of the carrier concentration in Mg 2 Si, the data of which are not available in the literature, is evaluated. (authors)

  14. Acoustic modes in dense dusty plasmas

    International Nuclear Information System (INIS)

    Avinash, K.; Bhattacharjee, A.; Hu, S.

    2002-01-01

    Properties of acoustic modes in high dust density dusty plasmas are studied. The solutions of fluid equations for electrons, ions, and dust grains with collisional and ionization effects are solved along with an equation for grain charging. The high dust density effects on the acoustic modes are interpreted in terms of a change in the screening properties of the grain charge. At low dust density, the grain charge is screened due to electrons and ions. However, at high dust density, the screening of the grain charge due to other grains also becomes important. This leads to a reduction of the phase-velocity, which in turn is shown to make the plasma more unstable at high dust density. In this regime the role of the ion acoustic mode is replaced by the charging mode. The relevance of these results to earlier theoretical studies and experimental results are discussed

  15. Phononic band gap and wave propagation on polyvinylidene fluoride-based acoustic metamaterials

    Directory of Open Access Journals (Sweden)

    Oral Oltulu

    2016-12-01

    Full Text Available In the present work, the acoustic band structure of a two-dimensional phononic crystal (PC containing an organic ferroelectric (PVDF-polyvinylidene fluoride and topological insulator (SnTe was investigated by the plane-wave-expansion (PWE method. Two-dimensional PC with square lattices composed of SnTe cylindrical rods embedded in the PVDF matrix is studied to find the allowed and stop bands for the waves of certain energy. Phononic band diagram ω = ω(k for a 2D PC, in which non-dimensional frequencies ωa/2πc (c-velocity of wave were plotted vs. the wavevector k along the Г–X–M–Г path in the square Brillouin zone shows five stop bands in the frequency range between 10 and 110 kHz. The ferroelectric properties of PVDF and the unusual properties of SnTe as a topological material give us the ability to control the wave propagation through the PC over a wide frequency range of 103–106 Hz. SnTe is a discrete component that allows conducting electricity on its surface but shows insulator properties through its bulk volume. Tin telluride is considered as an acoustic topological insulator as the extension of topological insulators into the field of “topological phononics”.

  16. An informatics based analysis of the impact of isotope substitution on phonon modes in graphene

    International Nuclear Information System (INIS)

    Broderick, Scott; Srinivasan, Srikant; Rajan, Krishna; Ray, Upamanyu; Balasubramanian, Ganesh

    2014-01-01

    It is shown by informatics that the high frequency short ranged modes exert a significant influence in impeding thermal transport through isotope substituted graphene nanoribbons. Using eigenvalue decomposition methods, we have extracted features in the phonon density of states spectra that reveal correlations between isotope substitution and phonon modes. This study also provides a data driven computational framework for the linking of materials chemistry and transport properties in 2D systems.

  17. Coherent acoustic phonon oscillation accompanied with backward acoustic pulse below exciton resonance in a ZnO epifilm on oxide-buffered Si(1 1 1)

    International Nuclear Information System (INIS)

    Lin, Ja-Hon; Shen, Yu-Kai; Lu, Chia-Hui; Chen, Yao-Hui; Chang, Chun-peng; Liu, Wei-Rein; Hsu, Chia-Hung; Lee, Wei-Chin; Hong, Minghwei; Kwo, Jueinai-Raynien; Hsieh, Wen-Feng

    2016-01-01

    Unlike coherent acoustic phonons (CAPs) generated from heat induced thermal stress by the coated Au film, we demonstrated the oscillation from c-ZnO epitaxial film on oxide buffered Si through a degenerate pump–probe technique. As the excited photon energy was set below the exciton resonance, the electronic stress that resulted from defect resonance was used to induce acoustic wave. The damped oscillation revealed a superposition of a high frequency and long decay CAP signal with a backward propagating acoustic pulse which was generated by the absorption of the penetrated pump beam at the Si surface and selected by the ZnO layer as the acoustic resonator. (paper)

  18. Cavity-type hypersonic phononic crystals

    International Nuclear Information System (INIS)

    Sato, A; Fytas, G; Pennec, Y; Djafari-Rouhani, B; Yanagishita, T; Masuda, H; Knoll, W

    2012-01-01

    We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter. (paper)

  19. Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange

    Directory of Open Access Journals (Sweden)

    Lokteva Irina

    2011-01-01

    Full Text Available Abstract Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs. PACS: 63.20.-e, 78.30.-j, 78.67.-n, 78.67.Bf

  20. Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrates

    Science.gov (United States)

    Fandan, R.; Pedrós, J.; Schiefele, J.; Boscá, A.; Martínez, J.; Calle, F.

    2018-05-01

    Surface plasmon polaritons in graphene couple strongly to surface phonons in polar substrates leading to hybridized surface plasmon-phonon polaritons (SPPPs). We demonstrate that a surface acoustic wave (SAW) can be used to launch propagating SPPPs in graphene/h-BN heterostructures on a piezoelectric substrate like AlN, where the SAW-induced surface modulation acts as a dynamic diffraction grating. The efficiency of the light coupling is greatly enhanced by the introduction of the h-BN film as compared to the bare graphene/AlN system. The h-BN interlayer not only significantly changes the dispersion of the SPPPs but also enhances their lifetime. The strengthening of the SPPPs is shown to be related to both the higher carrier mobility induced in graphene and the coupling with h-BN and AlN surface phonons. In addition to surface phonons, hyperbolic phonons polaritons (HPPs) appear in the case of multilayer h-BN films leading to hybridized hyperbolic plasmon-phonon polaritons (HPPPs) that are also mediated by the SAW. These results pave the way for engineering SAW-based graphene/h-BN plasmonic devices and metamaterials covering the mid-IR to THz range.

  1. Phononic Crystal Made of Multilayered Ridges on a Substrate for Rayleigh Waves Manipulation

    Directory of Open Access Journals (Sweden)

    Mourad Oudich

    2017-12-01

    Full Text Available We present a phononic crystal to achieve efficient manipulation of surface acoustic waves (SAW. The structure is made of finite phononic micro-ridges arranged periodically in a substrate surface. Each ridge is constructed by staking silicon and tungsten layers so that it behaves as one-dimensional phononic crystal which exhibits band gaps for elastic waves. The band gap allows the existence of resonance modes where the elastic energy is either confined within units in the free end of the ridge or the ones in contact with the substrate. We show that SAW interaction with localized modes in the free surface of the ridge gives rise to sharp attenuation in the SAW transmission, while the modes confined within the ridge/substrate interface cause broad band attenuations of SAW. Furthermore, we demonstrate that the coupling between the two kinds of modes within the band gap gives high SAW transmission amplitude in the form of Fano-like peaks with high quality factor. The structure could provide an interesting solution for accurate SAW control for sensing applications, for instance.

  2. Lamb wave band gaps in a double-sided phononic plate

    Science.gov (United States)

    Wang, Peng; Chen, Tian-Ning; Yu, Kun-Peng; Wang, Xiao-Peng

    2013-02-01

    In this paper, we report on the theoretical investigation of the propagation characteristics of Lamb wave in a phononic crystal structure constituted by a square array of cylindrical stubs deposited on both sides of a thin homogeneous plate. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite-element method. We investigate the evolution of band gaps in the double-sided phononic plate with stub height on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Numerical results show that as the double stubs in a unit cell arranged more symmetrically on both sides, band width shifts, new band gaps appear, and the bands become flat due to localized resonant modes which couple with plate modes. Specially, more band gaps and flat bands can be found in the symmetrical system as a result of local resonances of the stubs which interact in a stronger way with the plate modes. Moreover, the symmetrical double-sided plate exhibits lower and smaller band gap than that of the asymmetrical plate. These propagation properties of elastic or acoustic waves in the double-sided plate can potentially be utilized to generate filters, slow the group velocity, low-frequency sound insulation, and design acoustic sensors.

  3. Theory of generation of angular momentum of phonons by heat current and its conversion to spins

    Science.gov (United States)

    Hamada, Masato; Murakami, Shuichi

    Spin-rotation coupling in crystals will enable us to convert between spin current and mechanical rotations, as has been studied in surface acoustic waves, in liquid metals, and in carbon nanotubes. In this presentation we focus on angular momentum of phonons. In nonmagnetic crystals without inversion symmetry, we theoretically demonstrate that phonon modes generally have angular momenta depending on their wave vectors. In equilibrium the sum of the angular momenta is zero. On the other hand, if a heat current flows in the crystal, nonequilibrium phonon distribution leads to nonzero total angular momentum of phonons. It can be observed as a rotation of crystal itself, and as a spin current induced by these phonons via the spin-rotation coupling.

  4. Four-phonon processes in the thermal conductivity of GaSb

    International Nuclear Information System (INIS)

    Aliev, M.I.; Arasly, D.G.; Guseinov, R.E.

    1978-01-01

    Phonon thermal conductivity of GaSb in the 300-700 K temperature range is studied by the light pulsed heating which is aimed at estimation of contributions of different polarized branches of acoustic oscillations into lattice thermal conductivity. The role of optico-acoustic interactions and multiphonon processes in phonon-phonon scattering at high temperatures is discussed. It is shown that the X thermal conductivity caused by the current carriers is negligibly small, and the Xsub(ph) phonon conductivity changes depending on temperature according to the Xsub(ph) approximately Tsup(-1.4) law. While calculating Xsub(ph) according to the Holland model taking into account phonon scattering on point defects the phonon thermal conductivity is given as a sum of contributions from longitudinal and transverse low-frequency Xsub(th1) and high-frequency Xsub(th2) acoustic phonons. It is established that at T>500 K Xsub(ph) is caused only by high-frequency transverse phonons and to explain the observed Xsub(ph) dependence on temperature it is necessary to introduce four-phonon process along with the three-phonon processes into intraphonon scattering

  5. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo

    2017-11-02

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  6. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo; Zhao, Jiajun; Mei, Jun; Wu, Ying

    2017-01-01

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  7. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    Science.gov (United States)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  8. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    Science.gov (United States)

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  9. Acoustic phonons mediated non-equilibrium spin current in the presence of Rashba and Dresselhaus spin–orbit couplings

    International Nuclear Information System (INIS)

    Hasanirokh, K.; Phirouznia, A.

    2013-01-01

    Influence of electrons interaction with longitudinal acoustic phonons on magnetoelectric and spin-related transport effects are investigated. The considered system is a two-dimensional electron gas system with both Rashba and Dresselhaus spin–orbit couplings. The works which have previously been performed in this field, have revealed that the Rashba and Dresselhaus couplings cannot be responsible for spin current in the non-equilibrium regime. In the current Letter, a semiclassical method was employed using the Boltzmann approach and it was shown that the spin current of the system, in general, does not go all the way to zero when the electron–phonon coupling is taken into account. It was also shown that spin accumulation of the system could be influenced by electron–phonon coupling.

  10. Attenuation process of the longitudinal phonon mode in a TeO2 crystal in the 20-GHz range

    Science.gov (United States)

    Ohno, S.; Sonehara, T.; Tatsu, E.; Koreeda, A.; Saikan, S.

    2017-06-01

    We experimentally investigated the hypersonic attenuation process of a longitudinal mode (L-mode) sound wave in TeO2 from room temperature to a lower temperature using Brillouin scattering and impulsive stimulated thermal scattering (ISTS) measurements. For precise measurement of the Brillouin linewidth at low temperatures, whereby the mean free path of the phonon becomes longer than the sample length, it is indispensable that the phonon should propagate along the phonon-resonance direction. To figure out the suitable direction, we defined two indices characterizing a degree of phonon divergence and a purity of propagation direction. The best direction that we found from these indices is [110] direction in TeO2, and it was used to discuss the temperature and frequency dependences of Brillouin spectra. We extracted the temperature dependence of the attenuation rate of T4 from the modulated Brillouin spectra due to the phonon resonance below Debye temperature. The frequency dependence ω1 of the hypersonic attenuation was also estimated from the polarization dependence of the Brillouin linewidth. Theoretically, it predicted that the L-mode phonon attenuation at low temperatures in TeO2 is a result of Herring's process, which shows the attenuation behavior of ω2T3 . The ω1T4 dependence is not allowed in Herring's process but is allowed by the L +L →L process, which has been considered to be forbidden so far. We evaluated the thermal phonon lifetime using ISTS and established that it was finite even at 20 K, thereby allowing the L +L →L process. Therefore, we conclude that the L +L →L process dominates the attenuation of an L-mode phonon in TeO2 in the low-temperature region.

  11. THz elastic dynamics in finite-size CoFeB-MgO phononic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrichs, Henning, E-mail: hulrich@gwdg.de; Meyer, Dennis; Müller, Markus; Wittrock, Steffen; Mansurova, Maria [I. Physical Institute, Georg-August University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Walowski, Jakob; Münzenberg, Markus [Institute of Physics, Ernst-Moritz-Arndt University of Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany)

    2016-10-14

    In this article, we present the observation of coherent elastic dynamics in a nano-scale phononic superlattice, which consists of only 4 bilayers. We demonstrate how ultra-short light pulses with a length of 40 fs can be utilized to excite a coherent elastic wave at 0.535 THz, which persist over about 20 ps. In later steps of the elastic dynamics, modes with frequency of 1.7 THz and above appear. All these modes are related to acoustic band gaps. Thus, the periodicity strongly manifests in the wave physics, although the system under investigation has only a small number of spatial periods. To further illustrate this, we show how by breaking the translational invariance of the superlattice, these features can be suppressed. Discussed in terms of phonon blocking and radiation, we elucidate in how far our structures can be considered as useful building blocks for phononic devices.

  12. Coherent gigahertz phonons in Ge₂Sb₂Te₅ phase-change materials.

    Science.gov (United States)

    Hase, Muneaki; Fons, Paul; Kolobov, Alexander V; Tominaga, Junji

    2015-12-09

    Using ≈40 fs ultrashort laser pulses, we investigate the picosecond acoustic response from a prototypical phase change material, thin Ge2Sb2Te5 (GST) films with various thicknesses. After excitation with a 1.53 eV-energy pulse with a fluence of ≈5 mJ cm(-2), the time-resolved reflectivity change exhibits transient electronic response, followed by a combination of exponential-like strain and coherent acoustic phonons in the gigahertz (GHz) frequency range. The time-domain shape of the coherent acoustic pulse is well reproduced by the use of the strain model by Thomsen et al 1986 (Phys. Rev. B 34 4129). We found that the decay rate (the inverse of the relaxation time) of the acoustic phonon both in the amorphous and in the crystalline phases decreases as the film thickness increases. The thickness dependence of the acoustic phonon decay is well modeled based on both phonon-defect scattering and acoustic phonon attenuation at the GST/Si interface, and it is revealed that those scattering and attenuation are larger in crystalline GST films than those in amorphous GST films.

  13. Decay of Wannier-Mott excitons interacting with acoustic phonon in semiconductors with a degenerate valence band

    International Nuclear Information System (INIS)

    Nguyen Toan Thang; Nguyen Ai Viet; Nguyen Hong Quang

    1987-06-01

    Decay probabilities of light and heavy excitons interacting with acoustic phonons in cubic semiconductors with a degenerate valence band are calculated. The numerical results for GaAs showed that the decay probability of the light exciton is much greater than that of the heavy one. (author). 10 refs, 1 fig

  14. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering

    Science.gov (United States)

    Barati, M.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.

    2018-04-01

    We calculate the thermal conductivity of free-standing silicene using the phonon Boltzmann transport equation within the relaxation time approximation. In this calculation, we investigate the effects of sample size and different scattering mechanisms such as phonon–phonon, phonon-boundary, phonon-isotope and phonon-vacancy defect. We obtain some similar results to earlier works using a different model and provide a more detailed analysis of the phonon conduction behavior and various mode contributions. We show that the dominant contribution to the thermal conductivity of silicene, which originates from the in-plane acoustic branches, is about 70% at room temperature and this contribution becomes larger by considering vacancy defects. Our results indicate that while the thermal conductivity of silicene is significantly suppressed by the vacancy defects, the effect of isotopes on the phononic transport is small. Our calculations demonstrate that by removing only one of every 400 silicon atoms, a substantial reduction of about 58% in thermal conductivity is achieved. Furthermore, we find that the phonon-boundary scattering is important in defectless and small-size silicene samples, especially at low temperatures.

  15. Phonon-induced optical superlattice.

    Science.gov (United States)

    de Lima, M M; Hey, R; Santos, P V; Cantarero, A

    2005-04-01

    We demonstrate the formation of a dynamic optical superlattice through the modulation of a semiconductor microcavity by stimulated acoustic phonons. The high coherent phonon population produces a folded optical dispersion relation with well-defined energy gaps and renormalized energy levels, which are accessed using reflection and diffraction experiments.

  16. Spatial confinement of acoustic and optical waves in stubbed slab structure as optomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changsheng, E-mail: lcs135@163.com; Huang, Dan; Guo, Jierong

    2015-02-20

    We theoretically demonstrate that acoustic waves and optical waves can be spatially confined in the same micro-cavity by specially designed stubbed slab structure. The proposed structure presents both phononic and photonic band gaps from finite element calculation. The creation of cavity mode inside the band gap region provides strong localization of phonon and photon in the defect region. The practical parameters to inject cavity and work experimentally at telecommunication range are discussed. This structure can be precisely fabricated, hold promises to enhance acousto-optical interactions and design new applications as optomechanical resonator. - Highlights: • A resonator simultaneously supports acoustic and optical modes. • Strong spatial confinement and slow group velocity. • Potential to work as active optomechanical resonator.

  17. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    International Nuclear Information System (INIS)

    Xie, Zhong-Xiang; Zhang, Yong; Zhang, Li-Fu; Fan, Dian-Yuan

    2017-01-01

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  18. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Xiang [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Yong [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Li-Fu, E-mail: zhanglifu68@hotmail.com [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Dian-Yuan [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2017-05-03

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  19. Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Kuo-Chih, E-mail: chuangkc@zju.edu.cn; Zhang, Zhi-Qiang; Wang, Hua-Xin

    2016-12-09

    Highlights: • Slow waves around the defect modes in a phononic crystal beam are validated. • A fiber Bragg grating displacement sensing system can measure the defect mode. • The defect mode is analyzed by a transfer matrix method with a supercell technique. - Abstract: This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.

  20. Acoustic one-way mode conversion and transmission by sonic crystal waveguides

    Science.gov (United States)

    Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping

    2016-09-01

    We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.

  1. Analysis of Coherent Phonon Signals by Sparsity-promoting Dynamic Mode Decomposition

    Science.gov (United States)

    Murata, Shin; Aihara, Shingo; Tokuda, Satoru; Iwamitsu, Kazunori; Mizoguchi, Kohji; Akai, Ichiro; Okada, Masato

    2018-05-01

    We propose a method to decompose normal modes in a coherent phonon (CP) signal by sparsity-promoting dynamic mode decomposition. While the CP signals can be modeled as the sum of finite number of damped oscillators, the conventional method such as Fourier transform adopts continuous bases in a frequency domain. Thus, the uncertainty of frequency appears and it is difficult to estimate the initial phase. Moreover, measurement artifacts are imposed on the CP signal and deforms the Fourier spectrum. In contrast, the proposed method can separate the signal from the artifact precisely and can successfully estimate physical properties of the normal modes.

  2. Study of optical phonon modes of CdS nanoparticles using Raman

    Indian Academy of Sciences (India)

    In this paper we report the study of optical phonon modes of nanoparticles of CdS using Raman spectroscopy. Nanoparticle sample for the present study was synthesized through chemical precipitation technique. The CdS nanoparticles were then subjected to heat treatment at low temperature (150°C) for extended time ...

  3. Phononic crystals fundamentals and applications

    CERN Document Server

    Adibi, Ali

    2016-01-01

    This book provides an in-depth analysis as well as an overview of phononic crystals. This book discusses numerous techniques for the analysis of phononic crystals and covers, among other material, sonic and ultrasonic structures, hypersonic planar structures and their characterization, and novel applications of phononic crystals. This is an ideal book for those working with micro and nanotechnology, MEMS (microelectromechanical systems), and acoustic devices. This book also: Presents an introduction to the fundamentals and properties of phononic crystals Covers simulation techniques for the analysis of phononic crystals Discusses sonic and ultrasonic, hypersonic and planar, and three-dimensional phononic crystal structures Illustrates how phononic crystal structures are being deployed in communication systems and sensing systems.

  4. Isochoric thermal conductivity of solid carbon oxide: the role of phonons and 'diffusive' modes

    International Nuclear Information System (INIS)

    Konstantinov, V A; Manzhelii, V G; Revyakin, V P; Sagan, V V; Pursky, O I

    2006-01-01

    The isochoric thermal conductivity of solid CO was investigated in three samples of different densities in the interval from 35 K to the onset of melting. In α-CO the temperature dependence of the isochoric thermal conductivity is significantly weaker than Λ∝1/T; in β-CO it increases slightly with temperature. A quantitative description of the experimental results is given within the Debye model of thermal conductivity in the approximation of the corresponding relaxation times and which allows for the fact that the mean-free path of phonons cannot become smaller than half the phonon wavelength. On this consideration the heat is transported by both phonons and 'diffusive' modes

  5. Tri-component phononic crystals for underwater anechoic coatings

    International Nuclear Information System (INIS)

    Zhao, Honggang; Liu, Yaozong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2007-01-01

    Localized resonance in phononic crystal, composed of three-dimensional arrays of composite units, has been discovered recently. The composite unit is a high-density sphere coated by soft silicon rubber. In this Letter, the absorptive properties induced by the localized resonance are systemically investigated. The mode conversions during the Mie scattering of a single coated lead sphere in unbounded epoxy are analyzed by referring the elements of the scattering matrix. Then the anechoic properties of a slab containing a plane of such composite scatterers are investigated with the multiple-scattering method by accounting the effects of the multiple scattering and the viscous dissipation. The results show that the longitudinal to transverse mode conversion nearby the locally resonant region is an effective way to enhance the anechoic performance of the finite slab of phononic crystal. Then, the influences of the viscoelasticity of the silicon rubber and the coating thickness on the acoustic properties of the finite slab are investigated for anechoic optimization. Finally, we synthetically consider the destructive scattering in the finite slab of phononic crystal and the backing, and design an anechoic slab composed of bi-layer coated spheres. The results show that the most of the incident energy is absorbed at the desired frequency band

  6. Spin waves in terbium. II. Magnon-phonon interaction

    International Nuclear Information System (INIS)

    Jensen, J.; Houmann, J.G.

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating in the c direction of Tb have been studied experimentally by means of inelastic neutron scatttering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed by Liu. The coupled magnon--transverse-phonon system for the c direction of Tb is analyzed in detail, and the strengths of the couplings are deduced as a function of wave vector by combining the experimental studies with the theory

  7. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    Science.gov (United States)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  8. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  9. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2016-01-01

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  10. Birefringent phononic structures

    Directory of Open Access Journals (Sweden)

    I. E. Psarobas

    2014-12-01

    Full Text Available Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.

  11. One-way mode transmission in one-dimensional phononic crystal plates

    Science.gov (United States)

    Zhu, Xuefeng; Zou, Xinye; Liang, Bin; Cheng, Jianchun

    2010-12-01

    We investigate theoretically the band structures of one-dimensional phononic crystal (PC) plates with both antisymmetric and symmetric structures, and show how unidirectional transmission behavior can be obtained for either antisymmetric waves (A modes) or symmetric waves (S modes) by exploiting mode conversion and selection in the linear plate systems. The theoretical approach is illustrated for one PC plate example where unidirectional transmission behavior is obtained in certain frequency bands. Employing harmonic frequency analysis, we numerically demonstrate the one-way mode transmission for the PC plate with finite superlattice by calculating the steady-state displacement fields under A modes source (or S modes source) in forward and backward direction, respectively. The results show that the incident waves from A modes source (or S modes source) are transformed into S modes waves (or A modes waves) after passing through the superlattice in the forward direction and the Lamb wave rejections in the backward direction are striking with a power extinction ratio of more than 1000. The present structure can be easily extended to two-dimensional PC plate and efficiently encourage practical studies of experimental realization which is believed to have much significance for one-way Lamb wave mode transmission.

  12. Flexural phonon limited phonon drag thermopower in bilayer graphene

    Science.gov (United States)

    Ansari, Mohd Meenhaz; Ashraf, SSZ

    2018-05-01

    We investigate the phonon drag thermopower from flexural phonons as a function of electron temperature and carrier concentration in the Bloch-Gruneisen regime in non-strained bilayer graphene using Boltzmann transport equation approach. The flexural phonons are expected to be the major source of intrinsic scattering mechanism in unstrained bilayer graphene due to their large density. The flexural phonon modes dispersion relation is quadratic so these low energy flexural phonons abound at room temperature and as a result deform the bilayer graphene sheet in the out of plane direction and affects the transport properties. We also produce analytical result for phonon-drag thermopower from flexural phonons and find that phonon-drag thermopower depicts T2 dependence on temperature and n-1 on carrier concentration.

  13. Tunable Acoustic Valley-Hall Edge States in Reconfigurable Phononic Elastic Waveguides

    Science.gov (United States)

    Liu, Ting-Wei; Semperlotti, Fabio

    2018-01-01

    We investigate the occurrence of acoustic topological edge states in a 2D phononic elastic waveguide due to a phenomenon that is the acoustic analog of the quantum valley Hall effect. We show that a topological transition takes place between two lattices having broken space-inversion symmetry due to the application of a tunable strain field. This condition leads to the formation of gapless edge states at the domain walls, as further illustrated by the analysis of the bulk-edge correspondence and of the associated topological invariants. Interestingly, topological edge states can also be triggered at the boundary of a single domain, when boundary conditions are properly selected. We also show that the static modulation of the strain field allows us to tune the response of the material between the different supported edge states. Although time-reversal symmetry is still intact in this material system, the edge states are topologically protected when intervalley mixing is either weak or negligible. This characteristic enables selective valley injection, which is achieved via synchronized source strategy.

  14. Dominant phonon wave vectors and strain-induced splitting of the 2D Raman mode of graphene

    Science.gov (United States)

    Narula, Rohit; Bonini, Nicola; Marzari, Nicola; Reich, Stephanie

    2012-03-01

    The dominant phonon wave vectors q* probed by the 2D Raman mode of pristine and uniaxially strained graphene are determined via a combination of ab initio calculations and a full two-dimensional integration of the transition matrix. We show that q* are highly anisotropic and rotate about K with the polarizer and analyzer condition relative to the lattice. The corresponding phonon-mediated electronic transitions show a finite component along K-Γ that sensitively determines q*. We invalidate the notion of “inner” and “outer” processes. The characteristic splitting of the 2D mode of graphene under uniaxial tensile strain and given polarizer and analyzer setting is correctly predicted only if the strain-induced distortion and red-shift of the in-plane transverse optical (iTO) phonon dispersion as well as the changes in the electronic band structure are taken into account.

  15. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy

    KAUST Repository

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Ng, Tien Khee; Anjum, Dalaver H.; Prabaswara, Aditya; Yang, Yang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2016-01-01

    SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A1(LO) phonons and single mode behavior for E2 H phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E2 H phonon mode splitting. Further, we observe

  16. Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene

    DEFF Research Database (Denmark)

    Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads

    2017-01-01

    Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons......-limiting factor, and show how the carrier density and temperature scaling of the mobility depends on the electrostatic environment. Our findings may explain the high deformation potential for in-plane acoustic phonons extracted from experiments and, furthermore, suggest a direct relation between device symmetry...

  17. Sound and heat revolutions in phononics

    Science.gov (United States)

    Maldovan, Martin

    2013-11-01

    The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.

  18. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    Science.gov (United States)

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  19. Coherent phonon optics in a chip with an electrically controlled active device.

    Science.gov (United States)

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  20. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    2017-10-17

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving κInSe< κGaSe< κGaS. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, thermal transport is governed by in-plane vibrations in InSe, GaSe and GaS, similar to buckled monolayer materials such as silicene. Alloying of InSe, GaSe and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ~2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.

  1. Preface: Phonons 2007

    Science.gov (United States)

    Perrin, Bernard

    2007-06-01

    logo.jpg" ALT="Conference logo"/> The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how phonons can help tracking dark matter. These 328

  2. The A1g mode in the Hg-1201 phonon spectrum as an indicator of N→S transition

    International Nuclear Information System (INIS)

    Dovgij, Ya.

    2011-01-01

    By analyzing the structure of and the temperature changes in HgBa 2 CuO 4+y phonon spectra, the electron-phonon coupling constant g has been determined for the first time. It is shown that this compound is a superconductor with strong coupling. A frequency interval around 60.4 MeV in the HgBa 2 CuO 4+y phonon spectrum, which may be classed as a 'soft mode', is revealed. The dominant partial contribution to the density of phonon states in that spectral range is found to be given by O(2) atomic vibrations.

  3. Acoustic cloaking by a near-zero-index phononic crystal

    KAUST Repository

    Zheng, Li-Yang

    2014-04-21

    Zero-refractive-index materials may lead to promising applications in various fields. Here, we design and fabricate a near Zero-Refractive-Index (ZRI) material using a phononic crystal (PC) composed of a square array of densely packed square iron rods in air. The dispersion relation exhibits a nearly flat band across the Brillouin zone at the reduced frequency f  = 0.5443c/a, which is due to Fabry-Perot (FP) resonance. By using a retrieval method, we find that both the effective mass density and the reciprocal of the effective bulk modulus are close to zero at frequencies near the flat band. We also propose an equivalent tube network model to explain the mechanisms of the near ZRI effect. This FP-resonance-induced near ZRI material offers intriguing wave manipulation properties. We demonstrate both numerically and experimentally its ability to shield a scattering obstacle and guide acoustic waves through a bent structure.

  4. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.

    Science.gov (United States)

    Hofmann, F; Garg, J; Maznev, A A; Jandl, A; Bulsara, M; Fitzgerald, E A; Chen, G; Nelson, K A

    2013-07-24

    We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon-phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the 'interfacial atomic disorder' model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness.

  5. Inelastic neutron studies of the low energy phonon excitations in the RENi2B2C superconductors (RE = Lu, Y, Ho, Er)

    International Nuclear Information System (INIS)

    Bullock, M.; Stassis, C.; Zarestky, J.; Goldman, A.; Canfield, P.

    1997-01-01

    The authors studied the low-energy phonon excitations for wavevectors close to the Fermi surface nesting vector rvec ξ m ≅ 0.55 rvec a. They find that above T c the frequencies of the Δ 4 [ζ00] lowest-lying optical and acoustic phonon modes decrease with decreasing temperature, for rvec ξ close to rvec ξ m , and there is a shift of intensity from the upper to the lower mode, an effect characteristic of coupled modes. From approximately 120K down to temperatures in the vicinity of T c , only a single unresolved peak is observed. Below T c the phonon spectra of the Y and Lu compounds change dramatically: they consist of a sharp peak at approximately 4.5 meV with a weak shoulder at the higher energy side. No such sharp peak was observed below T c in the Ho and Er compounds

  6. Inelastic neutron scattering studies of the phonon spectra of Chevrel-phase superconductors

    International Nuclear Information System (INIS)

    Bader, S.D.; Sinha, S.K.; Shelton, R.N.

    1976-01-01

    Phonon spectra are obtained using inelastic neutron scattering by polycrystals of the Chevrel-phase superconductors SnMo 6 S 8 , PbMo 6 S 8 , Mo 6 Se 8 , and Pb 1 . 2 Mo 6 Se 8 . Modes associated primarily with Sn (or Pb) atomic displacements are clearly identified. Acoustic softening on cooling is noted for SnMo 6 S 8 . Anharmonicity and the superconductivity are discussed utilizing the molecular-crystal concept

  7. Anisotropic phonon coupling in the relaxor ferroelectric (Na1/2Bi1/2)TiO3 near its high-temperature phase transition

    Science.gov (United States)

    Cai, Ling; Toulouse, Jean; Luo, Haosu; Tian, Wei

    2014-08-01

    The lead free relaxor Na1/2Bi1/2TiO3 (NBT) undergoes a structural cubic-to-tetragonal transition near 800 K which is caused by the cooperative rotations of O6 octahedra. These rotations are also accompanied by the displacements of the cations and the formation of the polar nanodomains (PNDs) that are responsible for the characteristic dielectric dispersion of relaxor ferroelectrics. Because of their intrinsic properties, spontaneous polarization, and lack of inversion symmetry, these PNDs are also piezoelectric and can mediate an interaction between polarization and strain or couple the optic and acoustic phonons. Because PNDs introduce a local tetragonal symmetry, the phonon coupling they mediate is found to be anisotropic. In this paper we present inelastic neutron scattering results on coupled transverse acoustic (TA) and transverse optic (TO) phonons in the [110] and [001] directions and across the cubic-tetragonal phase transition at TC˜800 K. The phonon spectra are analyzed using a mode coupling model. In the [110] direction, as in other relaxors and some ferroelectric perovskites, a precipitous drop of the TO phonon into the TA branch or "waterfall" is observed at a certain qwf˜0.14 r.l.u. In the [001] direction, the highly overdamped line shape can be fitted with closely positioned bare mode energies which are largely overlapping along the dispersion curves. Two competing lattice coupling mechanism are proposed to explain these observations.

  8. Low-frequency spatial wave manipulation via phononic crystals with relaxed cell symmetry

    International Nuclear Information System (INIS)

    Celli, Paolo; Gonella, Stefano

    2014-01-01

    Phononic crystals enjoy unique wave manipulation capabilities enabled by their periodic topologies. On one hand, they feature frequency-dependent directivity, which allows directional propagation of selected modes even at low frequencies. However, the stellar nature of the propagation patterns and the inability to induce single-beam focusing represent significant limitations of this functionality. On the other hand, one can realize waveguides by defecting the periodic structure of a crystal operating in bandgap mode along some desired path. Waveguides of this type are only activated in the relatively high and narrow frequency bands corresponding to total bandgaps, which limits their potential technological applications. In this work, we introduce a class of phononic crystals with relaxed cell symmetry and we exploit symmetry relaxation of a population of auxiliary microstructural elements to achieve spatial manipulation of elastic waves at very low frequencies, in the range of existence of the acoustic modes. By this approach, we achieve focusing without modifying the default static properties of the medium and by invoking mechanisms that are well suited to envision adaptive configurations for semi-active wave control

  9. Frictional drag between quantum wells mediated by phonon exchange

    DEFF Research Database (Denmark)

    Bønsager, M.C.; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1998-01-01

    We use the Kubo formalism to evaluate the contribution of acoustic-phonon exchange to the frictional drag between nearby two-dimensional electron systems. In the case of free phonons, we find a divergent drag rate (tau(D)(-l)). However, tau(D)(-l) becomes finite when phonon scattering from either...

  10. Acoustic phonon dephasing in shallow GaAs/Ga 1- xAl xAs single quantum wells

    Science.gov (United States)

    Cassabois, G.; Meccherini, S.; Roussignol, Ph.; Bogani, F.; Gurioli, M.; Colocci, M.; Planel, R.; Thierry-Mieg, V.

    1998-07-01

    The intermediate dimensionality regime is studied on a set of shallow GaAs/Ga 1- xAl xAs single quantum wells. Such heterostructures exhibit 2D strong excitonic electroabsorption together with near 3D fast transport properties. We report dephasing time measurements ( T2) of the heavy-hole exciton and we show that the acoustic phonon contribution decreases with x to a value in good agreement with theoretical predictions for GaAs bulk.

  11. Phonon tunneling through a double barrier system

    International Nuclear Information System (INIS)

    Villegas, Diosdado; León-Pérez, Fernando de; Pérez-Álvarez, R.; Arriaga, J.

    2015-01-01

    The tunneling of optical and acoustic phonons at normal incidence on a double-barrier is studied in this paper. Transmission coefficients and resonance conditions are derived theoretically under the assumption that the long-wavelength approximation is valid. It is shown that the behavior of the transmission coefficients for the symmetric double barrier has a Lorentzian form close to resonant frequencies and that Breit–Wigner's formula have a general validity in one-dimensional phonon tunneling. Authors also study the so-called generalized Hartman effect in the tunneling of long-wavelength phonons and show that this effect is a numerical artifact resulting from taking the opaque limit before exploring the variation with a finite barrier width. This study could be useful for the design of acoustic devices

  12. Phonon tunneling through a double barrier system

    Energy Technology Data Exchange (ETDEWEB)

    Villegas, Diosdado [Departamento de Física, Universidad Central “Marta Abreu” de Las Villas, CP 54830, Santa Clara, Villa Clara (Cuba); Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico); León-Pérez, Fernando de [Centro Universitario de la Defensa de Zaragoza, Ctra. de Huesca s/n, E-50090 Zaragoza (Spain); Pérez-Álvarez, R. [Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca (Mexico); Arriaga, J., E-mail: arriaga@ifuap.buap.mx [Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico)

    2015-04-15

    The tunneling of optical and acoustic phonons at normal incidence on a double-barrier is studied in this paper. Transmission coefficients and resonance conditions are derived theoretically under the assumption that the long-wavelength approximation is valid. It is shown that the behavior of the transmission coefficients for the symmetric double barrier has a Lorentzian form close to resonant frequencies and that Breit–Wigner's formula have a general validity in one-dimensional phonon tunneling. Authors also study the so-called generalized Hartman effect in the tunneling of long-wavelength phonons and show that this effect is a numerical artifact resulting from taking the opaque limit before exploring the variation with a finite barrier width. This study could be useful for the design of acoustic devices.

  13. Hypersonic phononic crystals.

    Science.gov (United States)

    Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L

    2005-03-25

    In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.

  14. Energy loss in degenerate semiconductors due to inelastic interaction with acoustic and piezoelectric phonons at low lattice temperatures

    International Nuclear Information System (INIS)

    Midday, S; Bhattacharya, D P

    2011-01-01

    The energy loss rate of an electron in a degenerate semiconductor because of inelastic interaction with deformation potential and piezoelectric acoustic phonons is calculated in the case when the lattice temperature is low, so that the approximations of the well-known traditional theory are not valid. Compared to the traditional results and those for non-degenerate semiconductors, the theory here reveals a more complex and altogether different dependence of the loss rate on the carrier energy and the lattice temperature. The numerical results obtained here for Si and GaAs show how significantly the degeneracy level, the true phonon distribution or the inelasticity of the interaction affects the loss characteristics at low temperatures.

  15. Splash, pop, sizzle: Information processing with phononic computing

    Directory of Open Access Journals (Sweden)

    Sophia R. Sklan

    2015-05-01

    Full Text Available Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic.

  16. Soft phonon modes leading to ultralow thermal conductivity and high thermoelectric performance in AgCuTe

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, Subhajit; Jana, Manoj K.; Pan, Jaysree; Guin, Satya N.; Waghmare, Umesh V.; Biswas, Kanishka [New Chemistry Unit and Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore (India); Sanyal, Dirtha [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata (India)

    2018-04-03

    Crystalline solids with intrinsically low lattice thermal conductivity (κ{sub L}) are crucial to realizing high-performance thermoelectric (TE) materials. Herein, we show an ultralow κ{sub L} of 0.35 Wm{sup -1} K{sup -1} in AgCuTe, which has a remarkable TE figure-of-merit, zT of 1.6 at 670 K when alloyed with 10 mol % Se. First-principles DFT calculation reveals several soft phonon modes in its room-temperature hexagonal phase, which are also evident from low-temperature heat-capacity measurement. These phonon modes, dominated by Ag vibrations, soften further with temperature giving a dynamic cation disorder and driving the superionic transition. Intrinsic factors cause an ultralow κ{sub L} in the room-temperature hexagonal phase, while the dynamic disorder of Ag/Cu cations leads to reduced phonon frequencies and mean free paths in the high-temperature rocksalt phase. Despite the cation disorder at elevated temperatures, the crystalline conduits of the rigid anion sublattice give a high power factor. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Suppression of an acoustic mode by an elastic mode of a liquid-filled spherical shell resonator.

    Science.gov (United States)

    Lonzaga, Joel B; Raymond, Jason L; Mobley, Joel; Gaitan, D Felipe

    2011-02-01

    The purpose of this paper is to report on the suppression of an approximately radial (radially symmetric) acoustic mode by an elastic mode of a water-filled, spherical shell resonator. The resonator, which has a 1-in. wall thickness and a 9.5-in. outer diameter, was externally driven by a small transducer bolted to the external wall. Experiments showed that for the range of drive frequencies (19.7-20.6 kHz) and sound speeds in water (1520-1570 m/s) considered in this paper, a nonradial (radially nonsymmetric) mode was also excited, in addition to the radial mode. Furthermore, as the sound speed in the liquid was changed, the resonance frequency of the nonradial mode crossed with that of the radial one and the amplitude of the latter was greatly reduced near the crossing point. The crossing of the eigenfrequency curves of these two modes was also predicted theoretically. Further calculations demonstrated that while the radial mode is an acoustic one associated with the interior fluid, the nonradial mode is an elastic one associated with the shell. Thus, the suppression of the radial acoustic mode is apparently caused by the overlapping with the nonradial elastic mode near the crossing point.

  18. Evidence for anisotropic polar nanoregions in relaxor Pb(Mg1/3Nb2/3)O3: A neutron study of the elastic constants and anomalous TA phonon damping in PMN

    Science.gov (United States)

    Stock, C.; Gehring, P. M.; Hiraka, H.; Swainson, I.; Xu, Guangyong; Ye, Z.-G.; Luo, H.; Li, J.-F.; Viehland, D.

    2012-09-01

    acoustic-optic phonon coupling or other models that invoke the presence of a second, low-energy optic mode.

  19. Model for phonon transmission through a NbN grain-size distribution: Comparison with tunneling-spectroscopy observations

    International Nuclear Information System (INIS)

    Chicault, R.; Joly, Y.

    1990-01-01

    Transport properties of phonons in granular NbN thin film with left-angle 111 right-angle texture are discussed. We propose a model in which each grain has an acoustic resonance when phonons propagate parallel to the film and where a coupling through the amorphous boundaries exists. A statistical study shows that the most homogeneous chains in the grain stack are selected because of the strong efficiency of their transport properties and that they give a fine structure of phonon modes even if the grain-size distribution is quite large. A reasonable agreement is obtained between our tunneling-spectroscopy experiments and the model. A typical experimental result has been fitted using an inelastic phonon-electron-interaction mean free path Λ ph ∼215 nm and a mean grain size d M ∼25.7 nm, the full width at half maximum of the grain distribution being 14 nm

  20. Topological Acoustic Delay Line

    Science.gov (United States)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan

    2018-03-01

    Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.

  1. Direct observation of magnon-phonon coupling in yttrium iron garnet

    Science.gov (United States)

    Man, Haoran; Shi, Zhong; Xu, Guangyong; Xu, Yadong; Chen, Xi; Sullivan, Sean; Zhou, Jianshi; Xia, Ke; Shi, Jing; Dai, Pengcheng

    2017-09-01

    The magnetic insulator yttrium iron garnet (YIG) with a ferrimagnetic transition temperature of ˜560 K has been widely used in microwave and spintronic devices. Anomalous features in spin Seeback effect (SSE) voltages have been observed in Pt/YIG and attributed to magnon-phonon coupling. Here, we use inelastic neutron scattering to map out low-energy spin waves and acoustic phonons of YIG at 100 K as a function of increasing magnetic field. By comparing the zero and 9.1 T data, we find that instead of splitting and opening up gaps at the spin wave and acoustic phonon dispersion intersecting points, magnon-phonon coupling in YIG enhances the hybridized scattering intensity. These results are different from expectations of conventional spin-lattice coupling, calling for different paradigms to understand the scattering process of magnon-phonon interactions and the resulting magnon polarons.

  2. Phonon heat transport through periodically stubbed waveguides

    International Nuclear Information System (INIS)

    Li Wenxia; Chen Keqiu

    2006-01-01

    We investigate the acoustic phonon band structure, transmission spectrum and thermal conductance in a periodically stubbed waveguide structure by use of the transfer matrix method and the scattering matrix method. We find that the existence of stop-frequencies or dips in the transmission spectrum, which corresponds to the stop bands or gaps in the acoustic band structure. The dependence of the stop band width and the dip width on the stub height is also demonstrated. We also find that the universal quantum thermal conductance can be clearly observed and the thermal conductance increases monotonically with increasing temperature. Our results show that the acoustic phonon band structure, transmission spectrum and thermal conductance can be artificially controlled by adjusting the height of the stub

  3. Phonon emission in a degenerate semiconductor at low lattice temperatures

    International Nuclear Information System (INIS)

    Midday, S.; Nag, S.; Bhattacharya, D.P.

    2015-01-01

    The characteristics of phonon growth in a degenerate semiconductor at low lattice temperatures have been studied for inelastic interaction of non-equilibrium electrons with the intravalley acoustic phonons. The energy of the phonon and the full form of the phonon distribution are taken into account. The results reveal significant changes in the growth characteristics compared to the same for a non-degenerate material

  4. Intrinsic to extrinsic phonon lifetime transition in a GaAs–AlAs superlattice

    International Nuclear Information System (INIS)

    Hofmann, F; Garg, J; Chen, G; Maznev, A A; Nelson, K A; Jandl, A; Bulsara, M; Fitzgerald, E A

    2013-01-01

    We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon–phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the ‘interfacial atomic disorder’ model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness. (paper)

  5. Electron-phonon contribution to the phonon and excited electron (hole) linewidths in bulk Pd

    International Nuclear Information System (INIS)

    Sklyadneva, I Yu; Leonardo, A; Echenique, P M; Eremeev, S V; Chulkov, E V

    2006-01-01

    We present an ab initio study of the electron-phonon (e-ph) coupling and its contribution to the phonon linewidths and to the lifetime broadening of excited electron and hole states in bulk Pd. The calculations, based on density-functional theory, were carried out using a linear-response approach in the plane-wave pseudopotential representation. The obtained results for the Eliashberg spectral function α 2 F(ω), e-ph coupling constant λ, and the contribution to the lifetime broadening, Γ e-ph , show strong dependence on both the energy and momentum of an electron (hole) state. The calculation of phonon linewidths gives, in agreement with experimental observations, an anomalously large broadening for the transverse phonon mode T 1 in the Σ direction. In addition, this mode is found to contribute most strongly to the electron-phonon scattering processes on the Fermi surface

  6. Quasiparticle recombination and 2 Δ-phonon-trapping in superconducting tunneling junctions

    International Nuclear Information System (INIS)

    Eisenmenger, W.; Lassmann, K.; Trumpp, H.J.; Krauss, R.

    1976-01-01

    The experimental recombination lifetime Tsub(eff) of quasiparticles in superconducting films in general exceeds tge intrinsic recombination lifetime tau sub(R) by phonon trapping. On the basis of geometric acoustic propagation and reabsorption of phonons emitted in quasiparticle recombination, tau sub(eff) is calculated as a function of film thickness d taking into account longitudinal and transverse phonon reabsorption, bulk loss process and acoustical phonon transmission into the substrate. With increasing thickness d three characteristic ranges are found: range 1 with film thickness d small compared to the phonon reabsorption mean free path Λsub(w) range 2 with d larger than Λsub(w) and dominating boundary losses, and range 3, also with d larger than Λsub(w) but with dominating bulk losses. (orig./HPOE) [de

  7. Active and passive vibration isolation in piezoelectric phononic rods with external voltage excitation

    Directory of Open Access Journals (Sweden)

    Qicheng Zhang

    2017-05-01

    Full Text Available Active piezoelectric materials are applied to one-dimensional phononic crystals, for the control of longitudinal vibration propagation both in active and passive modes. Based on the electromechanical coupling between the acoustical vibration and electric field, the electromechanical equivalent method is taken to theoretically predict the transmission spectrum of the longitudinal vibration. It is shown that the phononic rod can suppress the vibration efficiently at the frequencies of interest, by actively optimizing the motions of piezoelectric elements. In an illustrated phononic rod of 11.2cm long, active tunable isolations of more than 20dB at low frequencies (500Hz-14kHz are generated by controlling the excitation voltages of piezoelectric elements. Meanwhile, passive fixed isolation at high frequencies (14k-63kHz are presented by its periodicity characteristics. Finite element simulations and vibration experiments on the rod demonstrate the effectiveness of the approach in terms of its vibration isolation capabilities and tunable characteristics. This phononic rod can be manufactured easily and provides numerous potential applications in designing isolation mounts and platforms.

  8. Electron-phonon interaction and scattering in Si and Ge: Implications for phonon engineering

    International Nuclear Information System (INIS)

    Tandon, Nandan; Albrecht, J. D.; Ram-Mohan, L. R.

    2015-01-01

    We report ab-initio results for electron-phonon (e-ph) coupling and display the existence of a large variation in the coupling parameter as a function of electron and phonon dispersion. This variation is observed for all phonon modes in Si and Ge, and we show this for representative cases where the initial electron states are at the band gap edges. Using these e-ph matrix elements, which include all possible phonon modes and electron bands within a relevant energy range, we evaluate the imaginary part of the electron self-energy in order to obtain the associated scattering rates. The temperature dependence is seen through calculations of the scattering rates at 0 K and 300 K. The results provide a basis for understanding the impacts of phonon scattering vs. orientation and geometry in the design of devices, and in analysis of transport phenomena. This provides an additional tool for engineering the transfer of energy from carriers to the lattice

  9. Coherent Phonon Dynamics in Short-Period InAs/GaSb Superlattices

    OpenAIRE

    Noe, G. T.; Haugan, H. J.; Brown, G. J.; Sanders, G. D.; Stanton, C. J.; Kono, J.

    2011-01-01

    We have performed ultrafast pump-probe spectroscopy studies on a series of InAs/GaSb-based short-period superlattice (SL) samples with periods ranging from 46 \\AA to 71 \\AA. We observe two types of oscillations in the differential reflectivity with fast ($\\sim$ 1- 2 ps) and slow ($\\sim$ 24 ps) periods. The period of the fast oscillations changes with the SL period and can be explained as coherent acoustic phonons generated from carriers photoexcited within the SL. This mode provides an accura...

  10. Optical-phonon-induced frictional drag in coupled two-dimensional electron gases

    DEFF Research Database (Denmark)

    Hu, Ben Yu-Kuang

    1998-01-01

    The role of optical phonons in frictional drag between two adjacent but electrically isolated two-dimensional electron gases is investigated. Since the optical phonons in III-V materials have a considerably larger coupling to electrons than acoustic phonons (which are the dominant drag mechanism ...

  11. Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles

    Science.gov (United States)

    Ribeiro, Guilherme A. S.; Paulatto, Lorenzo; Bianco, Raffaello; Errea, Ion; Mauri, Francesco; Calandra, Matteo

    2018-01-01

    At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depend on the approximation used for the exchange-correlation kernel in density-functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the phonon frequencies as obtained from the diagonalization of the free-energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe we evaluate the linear thermal expansion coefficient γ =2.3 ×10-5K-1 , finding it to be in good agreement with experimental value of γ =2.04 ×10-5K-1 . Furthermore, we study the phonon spectrum and we do reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the Γ X direction. The phonon satellite becomes broader at high temperatures but its energy is essentially temperature independent, in agreement with experiments. We decompose the self-consistent harmonic free energy in second-, third-, and fourth-order anharmonic terms. We find that the third- and fourth-order terms are small. However, treating the third-order term perturbatively on top of the second-order self-consistent harmonic free energy overestimates the energy of the satellite associated with the transverse optical mode. On the contrary, a perturbative treatment on top of the harmonic Hamiltonian breaks down and leads to imaginary phonon frequencies already at 300 K. In the case of SnTe, we describe the occurrence of a ferroelectric

  12. The hydrogen-bond network of water supports propagating optical phonon-like modes.

    Science.gov (United States)

    Elton, Daniel C; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal-transverse splitting, indicating the presence of coherent long-range dipole-dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought.

  13. Correlation between surface phonon mode and luminescence in nanocrystalline CdS thin films: An effect of ion beam irradiation

    International Nuclear Information System (INIS)

    Kumar, Pragati; Agarwal, Avinash; Saxena, Nupur; Singh, Fouran; Gupta, Vinay

    2014-01-01

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra using two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ a /Γ b ) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.

  14. Acoustic mismatch model and thermal phonon radiation across a tin/sapphire interface with radiation temperatures between 1.6 and 3.7 K

    International Nuclear Information System (INIS)

    Bayrle, R.; Weis, O.

    1989-01-01

    Using a special sandwich arrangement consisting of a constantan film, an insulating oxide layer and a superconducting tin-tunnel junction evaporated on an a-cut sapphire, the temperature jump between tin and sapphire has been measured as function of thermal phonon flux under steady-state and transient conditions using rectangular current pulses in the constantan heater. The tunnel junction serves as a very fast thermometer with a time resolution in the nanosecond range. During the steady-state and the heatup interval, full agreement is found between experimental results, and the predictions of the acoustic mismatch model applied to the phonon transfer across the tin/sapphire interface and under the additional assumption that thermal equilibrium exists between electrons and phonons (one-temperature model). In contrast, very strong deviations are found during the cooling process which starts immediately after the end of the heating pulses. This observed nonequilibrium between electron and phonon system is discussed in more detail in a subsequent paper

  15. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu; Yi, Jun; Li, Ming-yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-01-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  16. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu

    2018-02-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  17. Phonon dispersion relation of uranium nitrate above and below the Neel temperature

    International Nuclear Information System (INIS)

    Dolling, G.; Holden, T.M.; Evensson, E.C.; Buyers, W.J.L.; Lander, G.H.

    1977-01-01

    Neutron coherent inelastic scattering measurements have been made of the phonon dispersion relation of uranium nitride both above and below the Neel temperature T/sub N/ = 50 K. Within the precision of the measurements, about 1% in frequency and 10% in line width and in scattered neutron intensity, no significant changes in these phonon properties were observed as a function of temperature other than those arising from population factor changes and a small stiffening of the lattice as the temperature decreases. At 4.2 K, two acoustic and two optic branches have been determined for each of the [001], [110] and [111] directions. The optic mode measurements revealed (a) a 20% variation in frequency across the Brillouin zone and (b) an interesting disposition of the LO and TO modes, such that nu/sub LO/ > nu/sub TO/ along [001] and [110], while the reverse is true along the [111] directions. Within the experimental resolution, the LO and TO modes are degenerate near q = 0. We have been unable to obtain any satisfactory description of these results on the basis of conventional theoretical treatments (e.g. rigid-ion or shell models). Other possible interpretations of the results are discussed

  18. Phonon dispersion relation of uranium nitride above and below the Neel temperature

    International Nuclear Information System (INIS)

    Dolling, G.; Holden, T.M.; Svensson, E.C.; Buyers, W.J.L.; Lander, G.H.

    1977-01-01

    Neutron coherent inelastic scattering measurements have been made of the phonon dispersion relation of uranium nitride both above and below the Neel temperature T N = 50 K. Within the precision of the measurements, about 1% in frequency and 10% in line width and in scattered neutron intensity, no significant changes in these phonon properties were observed as a function of temperature other than those arising from population factor changes and a small stiffening of the lattice as the temperature decreases. At 4.2 K, two acoustic and two optic branches have been determined for each of the [001], [110] and [111] directions. The optic mode measurements revealed (a) a 20% variation in frequency across the Brillouin zone and (b) and interesting disposition of the LO and TO modes, such that ν LO > ν TO along [001] and [11-], while the reverse is true along the [111] directions. Within the experimental resolution, the LO and TO modes are degenerate near q = 0. We have been unable to obtain any satisfactory description of these results on the basis of conventional theoretical treatments (e.g. rigid-ion or shell models). Other possible interpretations of the results are discussed. (author)

  19. A temperature dependent study of the Raman-active phonon modes in Ca and Zn doped YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Quilty, J. W.; Trodahl, H. J.; Simpson, A.; Flower, N.; Staines, M.; Downes, J.

    1996-01-01

    Full text: The temperature dependent behaviour of the phonon modes in YBa 2 Cu 3 O 7-x (Y-123) are of interest because the strong electron-phonon coupling within these materials yields information about the magnitude of the superconducting gap. The opening of a gap provides a new decay route for phonons, hence phonons near the gap energy show changes in their frequencies and widths as the temperature drops below T c . The magnitude of the superconducting gap may be estimated from these changes. We report our temperature-dependent measurements of the Raman-active phonon modes in ceramic and preferentially oriented polycrystalline samples of Y-123, under a variety of doping regimes. The samples were made underdoped, optimally doped and overdoped by manipulation of the hole concentration on the Cu-O planes, achieved by changing the oxygen stoichiometry, substitution of Zn for Cu, and substitution of Ca for Y. As observed by others, the 340cm -1 phonon, involving vibrations of the oxygen ions on the Cu-O planes, showed the greatest magnitude of change when the samples were cooled below T c , indicating that the superconducting gap energy is close to that of the 340cm -1 phonon

  20. Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, Mikhail A., E-mail: mbelyaev@berkeley.edu [Astronomy Department, University of California, Berkeley, CA 94720 (United States)

    2017-02-01

    We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar–Friedman–Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.

  1. Phonon thermal transport through tilt grain boundaries in strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Deng, Bowen; Chernatynskiy, Aleksandr [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-08-21

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.

  2. Phonon thermal transport through tilt grain boundaries in strontium titanate

    International Nuclear Information System (INIS)

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping; Deng, Bowen; Chernatynskiy, Aleksandr

    2014-01-01

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO 3 . Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO 3 contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies

  3. Raman Scattering Study of the Soft Phonon Mode in the Hexagonal Ferroelectric Crystal KNiCl 3

    Science.gov (United States)

    Machida, Ken-ichi; Kato, Tetsuya; Chao, Peng; Iio, Katsunori

    1997-10-01

    Raman spectra of some phonon modes of the hexagonal ferroelectriccrystal KNiCl3are obtained in the temperature range between 290 K and 590 K, which includes the structural phase transition point T2(=561 K) at which previous measurements of dielectric constant and spontaneouspolarization as a function of temperature had shown that KNiCl3 undergoes a transition between polar phases II and III. An optical birefringence measurement carried outas a complement to the present Raman scattering revealed that this transition is of second order. Towards this transition point, the totally symmetric phonon mode with the lowest frequency observed in the room-temperature phasewas found to soften with increasing temperature.The present results provide new information on the phase-transitionmechanism and the space groups of thehigher (II)- and lower (III)-symmetric phases around T2.

  4. Phonon-assisted decoherence and tunneling in quantum dot molecules

    DEFF Research Database (Denmark)

    Grodecka-Grad, Anna; Foerstner, Jens

    2011-01-01

    processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between...

  5. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    Directory of Open Access Journals (Sweden)

    Vladimir M. Fomin

    2015-10-01

    Full Text Available We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatch between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.

  6. Correlation between surface phonon mode and luminescence in nanocrystalline CdS thin films: An effect of ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com; Agarwal, Avinash [Department of Physics, Bareilly College, Bareilly 243 005, Uttar Pradesh (India); Saxena, Nupur; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2014-07-28

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra using two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ{sub a}/Γ{sub b}) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.

  7. Acoustic propagation mode in a cylindrical plasma

    International Nuclear Information System (INIS)

    Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo

    1975-01-01

    The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)

  8. Defect-mediated phonon dynamics in TaS2 and WSe2

    Directory of Open Access Journals (Sweden)

    Daniel R. Cremons

    2017-07-01

    Full Text Available We report correlative crystallographic and morphological studies of defect-dependent phonon dynamics in single flakes of 1T-TaS2 and 2H-WSe2 using selected-area diffraction and bright-field imaging in an ultrafast electron microscope. In both materials, we observe in-plane speed-of-sound acoustic-phonon wave trains, the dynamics of which (i.e., emergence, propagation, and interference are strongly dependent upon discrete interfacial features (e.g., vacuum/crystal and crystal/crystal interfaces. In TaS2, we observe cross-propagating in-plane acoustic-phonon wave trains of differing frequencies that undergo coherent interference approximately 200 ps after initial emergence from distinct interfacial regions. With ultrafast bright-field imaging, the properties of the interfering wave trains are observed to correspond to the beat frequency of the individual oscillations, while intensity oscillations of Bragg spots generated from selected areas within the region of interest match well with the real-space dynamics. In WSe2, distinct acoustic-phonon dynamics are observed emanating and propagating away from structurally dissimilar morphological discontinuities (vacuum/crystal interface and crystal terrace, and results of ultrafast selected-area diffraction reveal thickness-dependent phonon frequencies. The overall observed dynamics are well-described using finite element analysis and time-dependent linear-elastic continuum mechanics.

  9. Multiple interruption of optically generated acoustic phonons in ruby

    International Nuclear Information System (INIS)

    Dijkhuis, J.I.

    1979-01-01

    This thesis clarifies the rate-determining processes which tend to equilibrate the bottlenecked 29 cm -1 phonons with the temperature bath in stationary experiments. In addition, the direct relaxation between the Zeeman components of E is measured, revealing at high pumping, both continuous and time-resolved, a strong phonon bottleneck. (Auth.)

  10. Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics.

    Science.gov (United States)

    Tsaturyan, Yeghishe; Barg, Andreas; Simonsen, Anders; Villanueva, Luis Guillermo; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S

    2014-03-24

    Dielectric membranes with exceptional mechanical and optical properties present one of the most promising platforms in quantum opto-mechanics. The performance of stressed silicon nitride nanomembranes as mechanical resonators notoriously depends on how their frame is clamped to the sample mount, which in practice usually necessitates delicate, and difficult-to-reproduce mounting solutions. Here, we demonstrate that a phononic bandgap shield integrated in the membrane's silicon frame eliminates this dependence, by suppressing dissipation through phonon tunneling. We dry-etch the membrane's frame so that it assumes the form of a cm-sized bridge featuring a 1-dimensional periodic pattern, whose phononic density of states is tailored to exhibit one, or several, full band gaps around the membrane's high-Q modes in the MHz-range. We quantify the effectiveness of this phononic bandgap shield by optical interferometry measuring both the suppressed transmission of vibrations, as well as the influence of frame clamping conditions on the membrane modes. We find suppressions up to 40 dB and, for three different realized phononic structures, consistently observe significant suppression of the dependence of the membrane's modes on sample clamping-if the mode's frequency lies in the bandgap. As a result, we achieve membrane mode quality factors of 5 × 10(6) with samples that are tightly bolted to the 8 K-cold finger of a cryostat. Q × f -products of 6 × 10(12) Hz at 300 K and 14 × 10(12) Hz at 8 K are observed, satisfying one of the main requirements for optical cooling of mechanical vibrations to their quantum ground-state.

  11. Dust Acoustic Mode Manifestations in Earth's Dusty Ionosphere

    International Nuclear Information System (INIS)

    Kopnin, S.I.; Popel, S.I.

    2005-01-01

    Dust acoustic mode manifestations in the dusty ionosphere are studied. The reason for an appearance of the low-frequency radio noises associated with such meteor fluxes as Perseids, Orionids, Leonids, and Gemenids is determined

  12. Electron-phonon interaction on an Al(001) surface

    International Nuclear Information System (INIS)

    Sklyadneva, I Yu; Chulkov, E V; Echenique, P M

    2008-01-01

    We report an ab initio study of the electron-phonon (e-ph) interaction and its contribution to the lifetime broadening of excited hole (electron) surface states on Al(001). The calculations based on density-functional theory were carried out using a linear response approach in the plane-wave pseudopotential representation. The obtained results show that both the electron-phonon coupling and the linewidth experience a weak variation with the energy and momentum position of a hole (electron) surface state in the energy band. An analysis of different contributions to the e-ph coupling reveals that bulk phonon modes turn out to be more involved in the scattering processes of excited electrons and holes than surface phonon modes. It is also shown that the role of the e-ph coupling in the broadening of the Rayleigh surface phonon mode is insignificant compared to anharmonic effects

  13. Long-wavelength optical phonon behavior in uniaxial strained graphene: Role of electron-phonon interaction

    OpenAIRE

    Assili, Mohamed; Haddad, Sonia

    2014-01-01

    We derive the frequency shifts and the broadening of $\\Gamma$ point longitudinal optical (LO) and transverse optical (TO) phonon modes, due to electron-phonon interaction, in graphene under uniaxial strain as a function of the electron density and the disorder amount. We show that, in the absence of a shear strain component, such interaction gives rise to a lifting of the degeneracy of the LO and TO modes which contributes to the splitting of the G Raman band. The anisotropy of the electronic...

  14. Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition

    International Nuclear Information System (INIS)

    Weyna, S

    2014-01-01

    Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above 'cut-off' frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.

  15. Temperature dependence of the dynamics of zone boundary phonons in ZnO:Li

    Science.gov (United States)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Katiyar, R. S.

    2008-12-01

    Investigations of zone boundary phonons in ZnO:Li system (Li concentration: 10%) and their dynamics with temperature are reported. Additional modes at 127, 157, and 194 cm-1 are observed and assigned to zone boundary phonons at critical point M in the Brillouin zone [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] due to breakdown of crystal translational symmetry with Li incorporation in ZnO. Anharmonicity in peak frequency and linewidth of the zone boundary phonons in a temperature range from 100 to 1000 K is also analyzed taking into account the decay of zone boundary phonons into three- and four-phonon modes (cubic and quadratic anharmonicities). The anharmonic behavior of peak frequency is found to be feebly dependent on three-phonon decay process but thermal expansion of lattice together with four-phonon decay process appropriately defines the temperature dependence. Linewidths, however, follow the simple four-phonon decay mechanism. E2(low) mode, on the other hand, shows a linear temperature dependency and therefore follows a three-phonon decay channel. The calculated values of phonon lifetimes at 100 K for the 127, 157, 194 cm-1, and E2(low) modes are 8.23, 6.54, 5.32, and 11.39 ps. Decay of the zone boundary phonon modes compared to E2(low) mode reveals that dopant induced disorder has a strong temperature dependency.

  16. Electron-Mediated Phonon-Phonon Coupling Drives the Vibrational Relaxation of CO on Cu(100)

    Science.gov (United States)

    Novko, D.; Alducin, M.; Juaristi, J. I.

    2018-04-01

    We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-the-art nonadiabatic theories to quantitatively reproduce the experimental linewidth of the CO internal stretch mode on Cu(100) and it emphasizes the crucial role of the electron-mediated phonon-phonon coupling in this regard. The results demonstrate a strong electron-mediated coupling between the internal stretch and low-energy CO modes, but also a significant role of surface motion. Our nonadiabatic theory is also able to explain the temperature dependence of the internal stretch phonon linewidth, thus far considered a sign of the direct anharmonic coupling.

  17. Electric-dipole absorption resonating with longitudinal optical phonon-plasmon system and its effect on dispersion relations of interface phonon polariton modes in metal/semiconductor-stripe structures

    Science.gov (United States)

    Sakamoto, Hironori; Takeuchi, Eito; Yoshida, Kouki; Morita, Ken; Ma, Bei; Ishitani, Yoshihiro

    2018-01-01

    Interface phonon polaritons (IPhPs) in nano-structures excluding metal components are thoroughly investigated because they have lower loss in optical emission or absorption and higher quality factors than surface plasmon polaritons. In previous reports, it is found that strong infrared (IR) absorption is based on the interaction of p-polarized light and materials, and the resonance photon energy highly depends on the structure size and angle of incidence. We report the optical absorption by metal/semiconductor (bulk-GaAs and thin film-AlN)-stripe structures in THz to mid-IR region for the electric field of light perpendicular to the stripes, where both of s- and p-polarized light are absorbed. The absorption resonates with longitudinal optical (LO) phonon or LO phonon-plasmon coupling (LOPC) modes, and thus is independent of the angle of incidence or structure size. This absorption is attributed to the electric dipoles by the optically induced polarization charges at the metal/semiconductor, heterointerfaces, or interfaces of high electron density layers and depression ones. The electric permittivity is modified by the formation of these dipoles. It is found to be indispensable to utilize our form of altered permittivity to explain the experimental dispersion relations of metal/semiconductor-IPhP and SPhP in these samples. This analysis reveals that the IPhPs in the stripe structures of metal/AlN-film on a SiC substrate are highly confined in the AlN film, while the permittivity of the structures of metal/bulk-GaAs is partially affected by the electric-dipoles. The quality factors of the electric-dipole absorption are found to be 42-54 for undoped samples, and the value of 62 is obtained for Al/AlN-IPhP. It is thought that metal-contained structures are not obstacles to mode energy selectivity in phonon energy region of semiconductors.

  18. Nano-optomechanical system based on microwave frequency surface acoustic waves

    Science.gov (United States)

    Tadesse, Semere Ayalew

    Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic

  19. Nonlinear generation of non-acoustic modes by low-frequency sound in a vibrationally relaxing gas

    International Nuclear Information System (INIS)

    Perelomova, A.

    2010-01-01

    Two dynamic equations referring to a weakly nonlinear and weakly dispersive flow of a gas in which molecular vibrational relaxation takes place, are derived. The first one governs an excess temperature associated with the thermal mode, and the second one describes variations in vibrational energy. Both quantities refer to non-wave types of gas motion. These variations are caused by the nonlinear transfer of acoustic energy into thermal mode and internal vibrational degrees of freedom of a relaxing gas. The final dynamic equations are instantaneous; they include a quadratic nonlinear acoustic source, reflecting the nonlinear character of interaction of low-frequency acoustic and non-acoustic motions of the fluid. All types of sound, periodic or aperiodic, may serve as an acoustic source of both phenomena. The low-frequency sound is considered in this study. Some conclusions about temporal behavior of non-acoustic modes caused by periodic and aperiodic sound are made. Under certain conditions, acoustic cooling takes place instead of heating. (author)

  20. Lattice parameters and Raman-active phonon modes of β-(AlxGa1−x)2O3

    International Nuclear Information System (INIS)

    Kranert, Christian; Jenderka, Marcus; Lenzner, Jörg; Lorenz, Michael; Wenckstern, Holger von; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2015-01-01

    We present X-ray diffraction and Raman spectroscopy investigations of a (100)-oriented (Al x Ga 1–x ) 2 O 3 thin film on MgO (100) and bulk-like ceramics in dependence on their composition. The thin film grown by pulsed laser deposition has a continuous lateral composition spread allowing to determine precisely the dependence of the phonon mode properties and lattice parameters on the chemical composition. For x < 0.4, we observe the single-phase β-modification. Its lattice parameters and phonon energies depend linearly on the composition. We determined the slopes of these dependencies for the individual lattice parameters and for nine Raman lines, respectively. While the lattice parameters of the ceramics follow Vegard's rule, deviations are observed for the thin film. This deviation has only a small effect on the phonon energies, which show a reasonably good agreement between thin film and ceramics

  1. Ultrasonic investigation of phonon localization in a disordered three-dimensional 'mesoglass'

    International Nuclear Information System (INIS)

    Page, J H; Hu, H; Skipetrov, S; Tiggelen, B A van

    2007-01-01

    One of the long standing questions in phonon physics has been whether or not the Anderson localization of acoustic phonons can be demonstrated unambiguously in disordered materials. In this paper, this question is addressed by reporting signatures of the localization of ultrasonic waves in a 'mesoglass' made from a disordered three-dimensional network of aluminum beads. In the upper part of the intermediate frequency regime, which extends over the range of frequencies where the acoustic phonon wavelength is comparable with the sizes of the pores and beads, the intensity distributions of the speckle patterns due to strong multiple scattering show clear departures from Rayleigh statistics, with a variance that increases with frequency. This intensity distribution can be fitted with a stretched exponential, consistent with recent predictions for localization. In this frequency range, the time-of-flight profile of the transmitted intensity exhibits a non-exponential decay, which may be construed as a slowing down of the phonon diffusion coefficient with propagation time. These results are interpreted using recent theoretical predictions based on the self-consistent theory of the dynamics of localization, showing that our experimental data are consistent with the localization of acoustic waves in this mesoglass, and further elucidating their behaviour

  2. Quasiparticles, phonons and beyond. Enlargement the basis of quasiparticle-phonon model

    International Nuclear Information System (INIS)

    Stoyanov, Ch.

    2000-01-01

    The version of Quasiparticle-Phonon Model (QPM) which accounts up to three-phonons is discussed. The new basis is used to study the low-lying isovector mode and the low-energy E1 transitions forbidden in the ideal boson picture. The coupling to the continuum is incorporated in the formalism of QPM. The phenomenon of trapping of states is studied in the case of high-lying states with large angular momentum. (author)

  3. Terahertz acoustic phonon detection from a compact surface layer of spherical nanoparticles powder mixture of aluminum, alumina and multi-walled carbon nanotube

    Science.gov (United States)

    Abouelsayed, A.; Ebrahim, M. R.; El hotaby, W.; Hassan, S. A.; Al-Ashkar, Emad

    2017-10-01

    We present terahertz spectroscopy study on spherical nanoparticles powder mixture of aluminum, alumina, and MWCNTs induced by surface mechanical attrition treatment (SMAT) of aluminum substrates. Surface alloying of AL, Al2O3 0.95% and MWCNTs 0.05% powder mixture was produced during SMAT process, where a compact surface layer of about 200 μm due to ball bombardment was produced from the mixture. Al2O3 alumina powder played a significant role in MWCNTs distribution on surface, those were held in deformation surface cites of micro-cavities due to SMAT process of Al. The benefits are the effects on resulted optical properties of the surface studied at the terahertz frequency range due to electrical isolation confinement effects and electronic resonance disturbances exerted on Al electronic resonance at the same range of frequencies. THz acoustic phonon around 0.53-0.6 THz (17-20 cm-1) were observed at ambient conditions for the spherical nanoparticles powder mixture of Al, Al2O3 and MWCNTs. These results suggested that the presence of Al2O3 and MWCNTs during SMAT process leads to the optically detection of such acoustic phonon in the THz frequency range.

  4. 3D continuum phonon model for group-IV 2D materials

    KAUST Repository

    Willatzen, Morten

    2017-06-30

    A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles derivation includes full consideration of the lattice anisotropy and flexural modes perpendicular to the layers and can thus be applied to any two-dimensional material. In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included.

  5. Bandgap calculation of two-dimensional mixed solid-fluid phononic crystals by Dirichlet-to-Neumann maps

    International Nuclear Information System (INIS)

    Li Fenglian; Wang Yuesheng; Zhang Chuanzeng

    2011-01-01

    A numerical method based on the Dirichlet-to-Neumann (DtN) map is presented to compute the bandgaps of two-dimensional phononic crystals, which are composed of square or triangular lattices of circular solid cylinders in a fluid matrix. The DtN map is constructed using the cylindrical wave expansion in a unit cell. A linear eigenvalue problem, which depends on the Bloch wave vector and involves relatively small matrices, is formulated. Numerical calculations are performed for typical systems with various acoustic impedance ratios of the solid inclusions and the fluid matrix. The results indicate that the DtN-map based method can provide accurate results for various systems efficiently. In particular it takes into account the fluid-solid interface conditions and the transverse wave mode in the solid component, which has been proven to be significant when the acoustic impedance of the solid inclusions is close to or smaller than that of the fluid matrix. For systems with an acoustic impedance of the inclusion much less than that of the matrix, physical flat bands appear in the band structures, which will be missed if the transverse wave mode in the solid inclusions is neglected.

  6. Phononic crystals and elastodynamics: Some relevant points

    Directory of Open Access Journals (Sweden)

    N. Aravantinos-Zafiris

    2014-12-01

    Full Text Available In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.

  7. Room temperature ferromagnetism and phonon properties of pure and doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Apostolova, I.N. [University of Forestry, Faculty of Forest Industry, 10, Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria); Apostolov, A.T. [University of Architecture, Civil Engineering and Geodesy, Faculty of Hydrotechnics, Department of Physics, 1, Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Bahoosh, S.G. [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Wesselinowa, J.M., E-mail: julia@phys.uni-sofia.bg [University of Sofia, Department of Physics, 5, J. Bouchier Blvd., 1164 Sofia (Bulgaria)

    2014-03-15

    We have considered the origin of RTFM in TiO{sub 2} nanoparticles (NPs). Further we have studied the properties of the E{sub g1} phonon mode. The phonon frequency of anatase TiO{sub 2} NPs increases whereas in the case of rutile TiO{sub 2} NPs it decreases as the particle size decreases. The phonon damping is always enhanced in the nanosized materials. The hardening of the E{sub g1} mode and the softening of the E{sub g3} mode in anatase TiO{sub 2} NPs could be explained with the different anharmonic spin–phonon interaction constants of these modes. The doping effects with different transition metal ions on the E{sub g1} phonon mode are also discussed. - Highlights: • The origin of RTFM in TiO{sub 2} nanoparticles is investigated. • With decreasing of particle size the phonon frequency of anatase and rutile TiO{sub 2} NPs increases and decreases, respectively. • This could be explained with the different anharmonic spin–phonon interaction constants of these modes. • The phonon damping is always enhanced in the nanosized materials. • The doping effects with different transition metal ions on the E{sub g1} phonon mode are also discussed.

  8. Infrared-active optical phonons in LiFePO4 single crystals

    Science.gov (United States)

    Stanislavchuk, T. N.; Middlemiss, D. S.; Syzdek, J. S.; Janssen, Y.; Basistyy, R.; Sirenko, A. A.; Khalifah, P. G.; Grey, C. P.; Kostecki, R.

    2017-07-01

    Infrared-active optical phonons were studied in olivine LiFePO4 oriented single crystals by means of both rotating analyzer and rotating compensator spectroscopic ellipsometry in the spectral range between 50 and 1400 cm-1. The eigenfrequencies, oscillator strengths, and broadenings of the phonon modes were determined from fits of the anisotropic harmonic oscillator model to the data. Optical phonons in a heterosite FePO4 crystal were measured from the delithiated ab-surface of the LiFePO4 crystal and compared with the phonon modes of the latter. Good agreement was found between experimental data and the results of solid-state hybrid density functional theory calculations for the phonon modes in both LiFePO4 and FePO4.

  9. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    Science.gov (United States)

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  10. Low-Field Mobility and Galvanomagnetic Properties of Holes in Germanium with Phonon Scattering

    DEFF Research Database (Denmark)

    Lawætz, Peter

    1968-01-01

    acoustic scattering, no overall consistency is found between available galvanomagnetic data and deformation potentials derived directly from experiments on strained Ge. The discrepancies may be ascribed to ionized-impurity scattering, but at higher temperatures where optical phonon scattering is operative......A theoretical calculation of the low-field galvanomagnetic properties of holes in Ge has been carried out incorporating all relevant details of the band structure. The scattering is limited to acoustic and optical phonons and is described by the deformation potentials a, b, d, and d0. For pure......, the deviations are still appreciable. We are led to conclude that the deformation-potential theory of phonon scattering needs reconsideration, and a nontrivial correction is pointed out....

  11. 3D continuum phonon model for group-IV 2D materials

    DEFF Research Database (Denmark)

    Willatzen, Morten; Lew Yan Voon, Lok C.; Gandi, Appala Naidu

    2017-01-01

    . In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained......, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included....

  12. Toward stimulated interaction of surface phonon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Kong, B. D.; Trew, R. J.; Kim, K. W., E-mail: kwk@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911 (United States)

    2013-12-21

    Thermal emission spectra mediated by surface phonon polariton are examined by using a theoretical model that accounts for generation processes. Specifically, the acoustic phonon fusion mechanism is introduced to remedy theoretical deficiencies of the near thermal equilibrium treatments. The model clarifies the thermal excitation mechanism of surface phonon polaritons and the energy transfer path under non-zero energy flow. When applied to GaAs and SiC semi-infinite surfaces, the nonequilibrium model predicts that the temperature dependence of the quasi-monochromatic peak can exhibit distinctly different characteristics of either sharp increase or slow saturation depending on the materials, which is in direct contrast with the estimate made by the near-equilibrium model. The proposed theoretical tool can accurately analyze the nonequilibrium steady states, potentially paving a pathway to demonstrate stimulated interaction/emission of thermally excited surface phonon polaritons.

  13. Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures

    Science.gov (United States)

    Li, Guanpeng; Yao, Kailun; Gao, Guoying

    2018-01-01

    Using first-principle calculations combined with Boltzmann transport theory, we investigate the biaxial strain effect on the electronic and phonon thermal transport properties of a 1 T (CdI2-type) structural TiS2 monolayer, a recent experimental two-dimensional (2D) material. It is found that the electronic band structure can be effectively modulated and that the band gap experiences an indirect-direct-indirect transition with increasing tensile strain. The band convergence induced by the tensile strain increases the Seebeck coefficient and the power factor, while the lattice thermal conductivity is decreased under the tensile strain due to the decreasing group velocity and the increasing scattering chances between the acoustic phonon modes and the optical phonon modes, which together greatly increase the thermoelectric performance. The figure of merit can reach 0.95 (0.82) at an 8 percent tensile strain for the p-type (n-type) doping, which is much larger than that without strain. The present work suggests that the TiS2 monolayer is a good candidate for 2D thermoelectric materials, and that biaxial strain is a powerful tool with which to enhance thermoelectric performance.

  14. Phonon localization transition in relaxor ferroelectric PZN-5%PT

    International Nuclear Information System (INIS)

    Manley, Michael E.; Christianson, Andrew D.; Abernathy, Douglas L.; Sahul, Raffi

    2017-01-01

    Relaxor ferroelectric behavior occurs in many disordered ferroelectric materials but is not well understood at the atomic level. Recent experiments and theoretical arguments indicate that Anderson localization of phonons instigates relaxor behavior by driving the formation of polar nanoregions (PNRs). Here, we use inelastic neutron scattering to observe phonon localization in relaxor ferroelectric PZN-5%PT (0.95[Pb(Zn 1/3 Nb 2/3 )O 3 ]–0.05PbTiO 3 ) and detect additional features of the localization process. In the lead, up to phonon localization on cooling, the local resonant modes that drive phonon localization increase in number. The increase in resonant scattering centers is attributed to a known increase in the number of locally off centered Pb atoms on cooling. The transition to phonon localization occurs when these random scattering centers increase to a concentration where the Ioffe-Regel criterion is satisfied for localizing the phonon. Finally, we also model the effects of damped mode coupling on the observed phonons and phonon localization structure.

  15. Predications and Observations of Global Beta-induced Alfven-acoustic Modes in JET and NSTX

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.

    2008-01-01

    In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta 20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks

  16. Magnon and phonon thermometry with inelastic light scattering

    Science.gov (United States)

    Olsson, Kevin S.; An, Kyongmo; Li, Xiaoqin

    2018-04-01

    Spin caloritronics investigates the interplay between the transport of spin and heat. In the spin Seebeck effect, a thermal gradient across a magnetic material generates a spin current. A temperature difference between the energy carriers of the spin and lattice subsystems, namely the magnons and phonons, is necessary for such thermal nonequilibrium generation of spin current. Inelastic light scattering is a powerful method that can resolve the individual temperatures of magnons and phonons. In this review, we discuss the thermometry capabilities of inelastic light scattering for measuring optical and acoustic phonons, as well as magnons. A scattering spectrum offers three temperature sensitive parameters: frequency shift, linewidth, and integrated intensity. We discuss the temperatures measured via each of these parameters for both phonon and magnons. Finally, we discuss inelastic light scattering experiments that have examined the magnon and phonon temperatures in thermal nonequilibrium which are particularly relevant to spin caloritronic phenomena.

  17. Tunable infrared reflectance by phonon modulation

    Science.gov (United States)

    Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.

    2018-03-06

    The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.

  18. Semi-Dirac points in phononic crystals

    KAUST Repository

    Zhang, Xiujuan

    2014-01-01

    A semi-Dirac cone refers to a peculiar type of dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. It was originally discovered in electron systems, in which the associated quasi-particles are massless along one direction, like those in graphene, but effective-mass-like along the other. It was reported that a semi-Dirac point is associated with the topological phase transition between a semi-metallic phase and a band insulator. Very recently, the classical analogy of a semi-Dirac cone has been reported in an electromagnetic system. Here, we demonstrate that, by accidental degeneracy, two-dimensional phononic crystals consisting of square arrays of elliptical cylinders embedded in water are also able to produce the particular dispersion relation of a semi-Dirac cone in the center of the Brillouin zone. A perturbation method is used to evaluate the linear slope and to affirm that the dispersion relation is a semi-Dirac type. If the scatterers are made of rubber, in which the acoustic wave velocity is lower than that in water, the semi-Dirac dispersion can be characterized by an effective medium theory. The effective medium parameters link the semi-Dirac point to a topological transition in the iso-frequency surface of the phononic crystal, in which an open hyperbola is changed into a closed ellipse. This topological transition results in drastic change in wave manipulation. On the other hand, the theory also reveals that the phononic crystal is a double-zero-index material along the x-direction and photonic-band-edge material along the perpendicular direction (y-direction). If the scatterers are made of steel, in which the acoustic wave velocity is higher than that in water, the effective medium description fails, even though the semi-Dirac dispersion relation looks similar to that in the previous case. Therefore different wave transport behavior is expected. The semi-Dirac points in phononic crystals described in

  19. Mapping momentum-dependent electron-phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering

    Science.gov (United States)

    Stern, Mark J.; René de Cotret, Laurent P.; Otto, Martin R.; Chatelain, Robert P.; Boisvert, Jean-Philippe; Sutton, Mark; Siwick, Bradley J.

    2018-04-01

    Despite their fundamental role in determining material properties, detailed momentum-dependent information on the strength of electron-phonon and phonon-phonon coupling (EPC and PPC, respectively) across the entire Brillouin zone has remained elusive. Here we demonstrate that ultrafast electron diffuse scattering (UEDS) directly provides such information. By exploiting symmetry-based selection rules and time resolution, scattering from different phonon branches can be distinguished even without energy resolution. Using graphite as a model system, we show that UEDS patterns map the relative EPC and PPC strength through their profound sensitivity to photoinduced changes in phonon populations. We measure strong EPC to the K -point TO phonon of A1' symmetry (K -A1' ) and along the entire TO branch between Γ -K , not only to the Γ -E2 g phonon. We also determine that the subsequent phonon relaxation of these strongly coupled optical phonons involve three stages: decay via several identifiable channels to TA and LA phonons (1 -2 ps), intraband thermalization of the non-equilibrium TA/LA phonon populations (30 -40 ps) and interband relaxation of the TA/LA modes (115 ps). Combining UEDS with ultrafast angle-resolved photoelectron spectroscopy will yield a complete picture of the dynamics within and between electron and phonon subsystems, helping to unravel complex phases in which the intertwined nature of these systems has a strong influence on emergent properties.

  20. Inverse Edelstein effect induced by magnon-phonon coupling

    Science.gov (United States)

    Xu, Mingran; Puebla, Jorge; Auvray, Florent; Rana, Bivas; Kondou, Kouta; Otani, Yoshichika

    2018-05-01

    We demonstrate a spin to charge current conversion via magnon-phonon coupling and an inverse Edelstein effect on the hybrid device Ni/Cu (Ag )/Bi 2O3 . The generation of spin current (Js≈108A/m2 ) due to magnon-phonon coupling reveals the viability of acoustic spin pumping as a mechanism for the development of spintronic devices. A full in-plane magnetic field angle dependence of the power absorption and a combination of longitudinal and transverse voltage detection reveals the symmetric and asymmetric components of the inverse Edelstein effect voltage induced by Rayleigh-type surface acoustic waves. While the symmetric components are well studied, asymmetric components still need to be explored. We assign the asymmetric contributions to the interference between longitudinal and shear waves and an anisotropic charge distribution in our hybrid device.

  1. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap.

    Science.gov (United States)

    Guo, San-Dong; Liu, Bang-Gui

    2018-03-14

    Topological semimetals may have potential applications such as in topological qubits, spintronics and quantum computations. Efficient heat dissipation is a key factor for the reliability and stability of topological semimetal-based nano-electronics devices, which is closely related to high thermal conductivity. In this work, the elastic properties and lattice thermal conductivity of TaN are investigated using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation. According to the calculated bulk modulus, shear modulus and C 44 , TaN can be regarded as a potential incompressible and hard material. The room-temperature lattice thermal conductivity is predicted to be 838.62 [Formula: see text] along the a axis and 1080.40 [Formula: see text] along the c axis, showing very strong anisotropy. It is found that the lattice thermal conductivity of TaN is several tens of times higher than other topological semimetals, such as TaAs, MoP and ZrTe, which is due to the very longer phonon lifetimes for TaN than other topological semimetals. The very different atomic masses of Ta and N atoms lead to a very large acoustic-optical band gap, and then prohibit the scattering between acoustic and optical phonon modes, which gives rise to very long phonon lifetimes. Calculated results show that isotope scattering has little effect on lattice thermal conductivity, and that phonons with mean free paths larger than 20 (80) [Formula: see text] along the c direction at 300 K have little contribution to the total lattice thermal conductivity. This work implies that TaN-based nano-electronics devices may be more stable and reliable due to efficient heat dissipation, and motivates further experimental works to study lattice thermal conductivity of TaN.

  2. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap

    Science.gov (United States)

    Guo, San-Dong; Liu, Bang-Gui

    2018-03-01

    Topological semimetals may have potential applications such as in topological qubits, spintronics and quantum computations. Efficient heat dissipation is a key factor for the reliability and stability of topological semimetal-based nano-electronics devices, which is closely related to high thermal conductivity. In this work, the elastic properties and lattice thermal conductivity of TaN are investigated using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation. According to the calculated bulk modulus, shear modulus and C 44, TaN can be regarded as a potential incompressible and hard material. The room-temperature lattice thermal conductivity is predicted to be 838.62 W~m-1~K^{-1} along the a axis and 1080.40 W~m-1~K^{-1} along the c axis, showing very strong anisotropy. It is found that the lattice thermal conductivity of TaN is several tens of times higher than other topological semimetals, such as TaAs, MoP and ZrTe, which is due to the very longer phonon lifetimes for TaN than other topological semimetals. The very different atomic masses of Ta and N atoms lead to a very large acoustic-optical band gap, and then prohibit the scattering between acoustic and optical phonon modes, which gives rise to very long phonon lifetimes. Calculated results show that isotope scattering has little effect on lattice thermal conductivity, and that phonons with mean free paths larger than 20 (80) μm along the c direction at 300 K have little contribution to the total lattice thermal conductivity. This work implies that TaN-based nano-electronics devices may be more stable and reliable due to efficient heat dissipation, and motivates further experimental works to study lattice thermal conductivity of TaN.

  3. Investigation of energetic particle induced geodesic acoustic mode

    Science.gov (United States)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  4. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids.

    Science.gov (United States)

    Alonso-Redondo, E; Schmitt, M; Urbach, Z; Hui, C M; Sainidou, R; Rembert, P; Matyjaszewski, K; Bockstaller, M R; Fytas, G

    2015-09-22

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to 'manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the 'anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies.

  5. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids

    Science.gov (United States)

    Alonso-Redondo, E.; Schmitt, M.; Urbach, Z.; Hui, C. M.; Sainidou, R.; Rembert, P.; Matyjaszewski, K.; Bockstaller, M. R.; Fytas, G.

    2015-09-01

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to `manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the `anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies.

  6. Tunable infrared reflectance by phonon modulation

    Energy Technology Data Exchange (ETDEWEB)

    Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.

    2018-03-06

    The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.

  7. Geodesic acoustic modes in noncircular cross section tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com; Lakhin, V. P. [National Research Center “Kurchatov Institute,” (Russian Federation); Konovaltseva, L. V. [People’s Friendship University of Russia (Russian Federation); Ilgisonis, V. I. [National Research Center “Kurchatov Institute,” (Russian Federation)

    2017-03-15

    The influence of the shape of the plasma cross section on the continuous spectrum of geodesic acoustic modes (GAMs) in a tokamak is analyzed in the framework of the MHD model. An expression for the frequency of a local GAM for a model noncircular cross section plasma equilibrium is derived. Amendments to the oscillation frequency due to the plasma elongation and triangularity and finite tokamak aspect ratio are calculated. It is shown that the main factor affecting the GAM spectrum is the plasma elongation, resulting in a significant decrease in the mode frequency.

  8. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-02-18

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering. This dissertation discusses the implementation of multiple topological phases in specific designed photonic and phononic crystals. First, it reports a tunable quantum Hall phase in acoustic ring-waveguide system. A new three-band model focused on the topological transitions at the Γ point is studied, which gives the functionality that nontrivial topology can be tuned by changing the strengths of the couplings and/or the broken time-reversal symmetry. The resulted tunable topological edge states are also numerically verified. Second, based on our previous studied acoustic ring-waveguide system, we introduce anisotropy by tuning the couplings along different directions. We find that the bandgap topology is related to the frequency and directions. We report our proposal on a frequency filter designed from such an anisotropic topological phononic crystal. Third, motivated by the recent progress on quantum spin Hall phases, we propose a design of time-reversal symmetry broken quantum spin Hall insulators in photonics, in which a new quantum anomalous Hall phase emerges. It supports a chiral edge state with certain spin orientations, which is robust against the magnetic impurities. We also report the realization of the quantum anomalous Hall phase in phononics.

  9. Phonons in a one-dimensional Yukawa chain: Dusty plasma experiment and model

    International Nuclear Information System (INIS)

    Liu Bin; Goree, J.

    2005-01-01

    Phonons in a one-dimensional chain of charged microspheres suspended in a plasma were studied in an experiment. The phonons correspond to random particle motion in the chain; no external manipulation was applied to excite the phonons. Two modes were observed, longitudinal and transverse. The velocity fluctuations in the experiment are analyzed using current autocorrelation functions and a phonon spectrum. The phonon energy was found to be unequally partitioned among phonon modes in the dusty plasma experiment. The experimental phonon spectrum was characterized by a dispersion relation that was found to differ from the dispersion relation for externally excited phonons. This difference is attributed to the presence of frictional damping due to gas, which affects the propagation of externally excited phonons differently from phonons that correspond to random particle motion. A model is developed and fit to the experiment to explain the features of the autocorrelation function, phonon spectrum, and the dispersion relation

  10. Berry Curvature in Magnon-Phonon Hybrid Systems.

    Science.gov (United States)

    Takahashi, Ryuji; Nagaosa, Naoto

    2016-11-18

    We study theoretically the Berry curvature of the magnon induced by the hybridization with the acoustic phonons via the spin-orbit and dipolar interactions. We first discuss the magnon-phonon hybridization via the dipolar interaction, and show that the dispersions have gapless points in momentum space, some of which form a loop. Next, when both spin-orbit and dipolar interactions are considered, we show anisotropic texture of the Berry curvature and its divergence with and without gap closing. Realistic evaluation of the consequent anomalous velocity is given for yttrium iron garnet.

  11. Predictions and observations of global beta-induced Alfven-acoustic modes in JET and NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N N [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Berk, H L [Institute for Fusion Studies, University of Texas, Austin, TX 78712 (United States); Crocker, N A [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Fredrickson, E D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kaye, S [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kubota, S [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Park, H [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Peebles, W [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Sabbagh, S A [Department of Applied Physics, Columbia University, New York, NY 10027-6902 (United States); Sharapov, S E [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Stutmat, D [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Tritz, K [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Levinton, F M [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States); Yuh, H [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States)

    2007-12-15

    In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high beta >20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks.

  12. Band structures of two dimensional solid/air hierarchical phononic crystals

    International Nuclear Information System (INIS)

    Xu, Y.L.; Tian, X.G.; Chen, C.Q.

    2012-01-01

    The hierarchical phononic crystals to be considered show a two-order “hierarchical” feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  13. Band structures of two dimensional solid/air hierarchical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.L.; Tian, X.G. [State Key Laboratory for Mechanical Structure Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics, AML and CNMM, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    The hierarchical phononic crystals to be considered show a two-order 'hierarchical' feature, which consists of square array arranged macroscopic periodic unit cells with each unit cell itself including four sub-units. Propagation of acoustic wave in such two dimensional solid/air phononic crystals is investigated by the finite element method (FEM) with the Bloch theory. Their band structure, wave filtering property, and the physical mechanism responsible for the broadened band gap are explored. The corresponding ordinary phononic crystal without hierarchical feature is used for comparison. Obtained results show that the solid/air hierarchical phononic crystals possess tunable outstanding band gap features, which are favorable for applications such as sound insulation and vibration attenuation.

  14. Temperature dependence of phonons in pyrolitic graphite

    International Nuclear Information System (INIS)

    Brockhouse, B.N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4 0 K and 1500 0 C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes

  15. D33 mode piezoelectric diaphragm based acoustic transducer with high sensitivity

    KAUST Repository

    Shen, Zhiyuan; Lu, Jingyu; Tan, Cheewee; Miao, Jianmin; Wang, Zhihong

    2013-01-01

    This paper presents the design, fabrication, and characterization of an acoustic transducer using a piezoelectric freestanding bulk diaphragm as the sensing element. The diaphragm bearing the spiral electrode operates in d 33 mode, which allows the in-plane deformation of the diaphragm to be converted to the out-of-plane deformation and generates an acoustic wave in the same direction. A finite element code is developed to reorient the material polarization distribution according to the poling field calculated. The first four resonance modes have been simulated and verified by impedance and velocity spectra. The sensitivity and the sound pressure level of the transducer were characterized. The realized sensitivity of 126.21 μV/Pa at 1 kHz is nearly twenty times of the sensitivity of a sandwich d31 mode transducer. © 2012 Elsevier B.V.

  16. Customized shaping of vibration modes by acoustic metamaterial synthesis

    Science.gov (United States)

    Xu, Jiawen; Li, Shilong; Tang, J.

    2018-04-01

    Acoustic metamaterials have attractive potential in elastic wave guiding and attenuation over specific frequency ranges. The vast majority of related investigations are on transient waves. In this research we focus on stationary wave manipulation, i.e., shaping of vibration modes. Periodically arranged piezoelectric transducers shunted with inductive circuits are integrated to a beam structure to form a finite-length metamaterial beam. We demonstrate for the first time that, under a given operating frequency of interest, we can facilitate a metamaterial design such that this frequency becomes a natural frequency of the integrated system. Moreover, the vibration mode corresponding to this natural frequency can be customized and shaped to realize tailored/localized response distribution. This is fundamentally different from previous practices of utilizing geometry modification and/or feedback control to achieve mode tailoring. The metamaterial design is built upon the combinatorial effects of the bandgap feature and the effective resonant cavity feature, both attributed to the dynamic characteristics of the metamaterial beam. Analytical investigations based on unit-cell dynamics and modal analysis of the metamaterial beam are presented to reveal the underlying mechanism. Case illustrations are validated by finite element analyses. Owing to the online tunability of circuitry integrated, the proposed mode shaping technique can be online adjusted to fit specific requirements. The customized shaping of vibration modes by acoustic metamaterial synthesis has potential applications in vibration suppression, sensing enhancement and energy harvesting.

  17. Phonon mechanism of mobility equilibrium fluctuation and properties of 1/f-noise

    International Nuclear Information System (INIS)

    Melkonyan, S.V.; Aroutiounian, V.M.; Gasparyan, F.V.; Asriyan, H.V.

    2006-01-01

    The main mechanisms of the generation of the equilibrium fluctuations of the electron mobility in homogeneous and non-degenerate semiconductors are studied. It is proven that the mobility fluctuations are related to energy fluctuations and are conditioned by random non-elastic scattering and generation-recombination processes. In particular, it is shown that the mobility fluctuations come into existence as a result of random electron-phonon and phonon-phonon scattering processes. The case of acoustic phonon-phonon scattering is considered in detail. The spectral density of the electron lattice mobility fluctuations is calculated on the base of a new phonon mechanism. It is shown that the noise spectrum over a broad frequency range has a 1/f form. The theoretical results for many samples agree with experimental data

  18. Spin relaxation rates in quantum dots: Role of the phonon modulated spin orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Marques, G. E.

    2008-11-01

    We calculate the spin relaxation rates in InAs and GaAs parabolic quantum dots due to the interaction of spin carriers with acoustical phonons. We consider a spin relaxation mechanism completely intrinsic to the system, since it is based on the modulation of the spin-orbit interaction by the acoustic phonon potential, which is independent of any structural properties of the confinement potential. The electron-phonon deformation potential and the piezoelectric interaction are described by the Pavlov-Firsov spin-phonon Hamiltonian. Our results demonstrate that, for narrow-gap semiconductors, the deformation potential interaction becomes dominant. This behavior is not observed for wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the relaxation processes. We also demonstrate that the spin relaxation rates are particularly sensitive to values of the Landé g-factor, which depend strongly on the spatial shape of the confinement.

  19. Inducing Strong Non-Linearities in a Phonon Trapping Quartz Bulk Acoustic Wave Resonator Coupled to a Superconducting Quantum Interference Device

    Directory of Open Access Journals (Sweden)

    Maxim Goryachev

    2018-04-01

    Full Text Available A quartz Bulk Acoustic Wave resonator is designed to coherently trap phonons in such a way that they are well confined and immune to suspension losses so they exhibit extremely high acoustic Q-factors at low temperature, with Q × f products of order 10 18 Hz. In this work we couple such a resonator to a Superconducting Quantum Interference Device (SQUID amplifier and investigate effects in the strong signal regime. Both parallel and series connection topologies of the system are investigated. The study reveals significant non-Duffing response that is associated with the nonlinear characteristics of Josephson junctions. The nonlinearity provides quasi-periodic structure of the spectrum in both incident power and frequency. The result gives an insight into the open loop behaviour of a future Cryogenic Quartz Oscillator in the strong signal regime.

  20. Polar Mixing Optical Phonon Spectra in Wurtzite GaN Cylindrical Quantum Dots: Quantum Size and Dielectric Effects

    International Nuclear Information System (INIS)

    Zhang Li; Liao Jianshang

    2010-01-01

    The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QoD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. ρ-IO/z-PR mixing modes and the z-IO/ρ-PR mixing modes existing in QoD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrical forms. Via a standard procedure of field quantization, the Froehlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes 'reducing' behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QoD QDs to the IO modes and PR modes in wurtzite Q2D QW and Q1D QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics. (interdisciplinary physics and related areas of science and technology)

  1. Electromagnetic decay of two-phonon states

    International Nuclear Information System (INIS)

    Catara, F.; Chomaz, Ph.; Van Giai, N.; Paris-11 Univ., 91 - Orsay

    1991-01-01

    The electromagnetic decay of two-phonon states corresponding to the multi-excitation of giant resonances is studied. The calculations are performed within a boson expansion approach and the elementary modes are constructed in random phase approximation (RPA). The rates for direct transition of two-phonon states to the ground state turn out to be not negligibly smaller than those from the (single) giant resonances. The former transitions are accompanied by a γ-ray whose energy is equal to the sum of the two phonon energies. Thus the detection of such high energy γ-rays could provide a signature of the excitation of two-phonon states. (author) 9 refs., 3 tabs

  2. First-principles study on the electronic structure, phonons and optical properties of LaB_6 under high-pressure

    International Nuclear Information System (INIS)

    Chao, Luomeng; Bao, Lihong; Wei, Wei; O, Tegus; Zhang, Zhidong

    2016-01-01

    The electronic structure, phonons and optical properties of LaB_6 compound under different pressure have been studied by first-principles calculation. The electronic structure calculation shows that the d band along the M-Γ direction of the Brillouin zone moves up with increasing pressure and the band minimum is above the Fermi level at 45 GPa. The pressure-induced charge transfer from La to B atoms is reflected in the upshift of d band along the M-Γ direction with pressure. The calculated phonon dispersion curve at zero pressure is in good agreement with the experimental results. However, the phonon dispersion under high pressure does not show any information about the phase transition at 10 GPa, which was reported previously. The acoustic and optical phonon modes harden all the way with increasing pressure. In addition, the dielectric function is in accordance with the Drude model in the pressure range of 0 GPa–35 GPa and follows the Lorentz model at 45 GPa. The LaB_6 compound exhibits better visible light transmittance performance with the increasing pressure in the range of 0 GPa–35 GPa and visible light transmittance peak would be shifted towards ultraviolet region. - Highlights: • Physical properties of LaB_6 under high pressure have been theoretically studied. • Predict an electronic topological transition occurs at 45 GPa for LaB_6. • Predict a pressure-induced charge transfer from La to B atoms. • The phonon modes at Γ point show an increasing trend with increasing pressure. • The LaB_6 exhibits better heat-shielding performance with the increasing pressure.

  3. Long-wavelength optical phonon behavior in uniaxial strained graphene: Role of electron-phonon interaction

    Science.gov (United States)

    Assili, M.; Haddad, S.

    2014-09-01

    We derive the frequency shifts and the broadening of Γ-point longitudinal optical (LO) and transverse optical (TO) phonon modes, due to electron-phonon interaction, in graphene under uniaxial strain as a function of the electron density and the disorder amount. We show that, in the absence of a shear strain component, such interaction gives rise to a lifting of the degeneracy of the LO and TO modes which contributes to the splitting of the G Raman band. The anisotropy of the electronic spectrum, induced by the strain, results in a polarization dependence of the LO and TO modes. This dependence is in agreement with the experimental results showing a periodic modulation of the Raman intensity of the split G peak. Moreover, the anomalous behavior of the frequency shift reported in undeformed graphene is found to be robust under strain.

  4. Squeezed Phonons: Modulating Quantum Fluctuations of Atomic Displacements.

    Science.gov (United States)

    Hu, Xuedong; Nori, Franco

    1997-03-01

    We have studied phonon squeezed states and also put forward several proposals for their generation(On phonon parametric process, X. Hu and F. Nori, Phys. Rev. Lett. 76), 2294 (1996); on polariton mechanism, X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); on second-order Raman scattering, X. Hu and F. Nori, preprint.. Here, we compare the relative merits and limitations of these approaches, including several factors that will limit the amount of phonon squeezing. In particular, we investigate the effect of the initial thermal states on the phonon modes. Using a model for the phonon density matrix, we also study the mixing of the phonon squeezed states with thermal states, which describes the decay of the phonon coherence. Finally, we calculate the maximum possible squeezing from a phonon parametric process limited by phonon decay.

  5. Acoustically Tailored Composite Rotorcraft Fuselage Panels

    Science.gov (United States)

    2015-07-02

    3.2.4 Band-Gap/Phononic Crystal Structure-borne Sound Barriers 43 3.2.5 Split Panel Concept for Airborne Sound Transmission Reduction 69 3.3 Final...radiated by the transmission housing also impacts the ceiling panels acoustically, which transmit a portion of that sound into the interior. Composite...3.2.4 Band-Gap/Phononic Crystal Structure-borne Sound Barriers Phononic crystals , or arrays of structural discontinuities, can mitigate structure-borne

  6. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    Science.gov (United States)

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires

    International Nuclear Information System (INIS)

    Schaefer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Gruetzmacher, D; Calarco, R; Sutter, E; Sutter, P

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E 2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  8. Enhanced Light Scattering of the Forbidden longitudinal Optical Phonon Mode Studied by Micro-Raman Spectroscopy on Single InN nanowires

    International Nuclear Information System (INIS)

    Sutter, E.; Schafer-Nolte, E.O.; Stoica, T.; Gotschke, T.; Limbach, F.A.; Sutter, P.; Grutzmacher, D.; Calarco, R.

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  9. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires.

    Science.gov (United States)

    Schäfer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Sutter, E; Sutter, P; Grützmacher, D; Calarco, R

    2010-08-06

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  10. Phonon spectra, electronic, and thermodynamic properties of WS2 nanotubes.

    Science.gov (United States)

    Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V

    2017-11-15

    Hybrid density functional theory calculations are performed for the first time on the phonon dispersion and thermodynamic properties of WS 2 -based single-wall nanotubes. Symmetry analysis is presented for phonon modes in nanotubes using the standard (crystallographic) factorization for line groups. Symmetry and the number of infra-red and Raman active modes in achiral WS 2 nanotubes are given for armchair and zigzag chiralities. It is demonstrated that a number of infrared and Raman active modes is independent on the nanotube diameter. The zone-folding approach is applied to find out an impact of curvature on electron and phonon band structure of nanotubes rolled up from the monolayer. Phonon frequencies obtained both for layers and nanotubes are used to compute the thermal contributions to their thermodynamic functions. The temperature dependences of energy, entropy, and heat capacity of nanotubes are estimated with respect to those of the monolayer. The role of phonons in the stability estimation of nanotubes is discussed based on Helmholtz free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    Directory of Open Access Journals (Sweden)

    Jianning Han

    2014-05-01

    Full Text Available Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.

  12. Two-phonon absorption spectra in CuInSe2

    International Nuclear Information System (INIS)

    Sobotta, H.; Neumann, H.; Kissinger, W.; Riede, V.; Kuehn, G.

    1981-01-01

    An attempt was made to measure and to analyse phonon combination mode spectra of CuInSe 2 and in this way to determine the phonon mode frequencies unknown so far. Considering the absorption coefficient spectra, there are to well-pronounced peaks at 405 and 428 cm -1 at room temperature which are shifted to 412 and 433 cm -1 , respectively, at 105 K. Accounting for the fact that the absorption peaks at 405 and 428 cm -1 show the same temperature shift, it seems to be not unreasonable to assume that all the phonon modes participating in these absorption processes are characterized by the same temperature dependence of the mode frequencies. The corresponding mode Grueneisen parameters have been estimated using the thermal expansion coefficients for CuInSe 2 . Values of 1.7 to 2.0 were obtained being nearly of the same magnitude as the values of the high-energy zone-center modes in CuAlS 2 and CuGaS 2 derived from high-pressure Raman scattering studies

  13. The anharmonic phonon decay rate in group-III nitrides

    International Nuclear Information System (INIS)

    Srivastava, G P

    2009-01-01

    Measured lifetimes of hot phonons in group-III nitrides have been explained theoretically by considering three-phonon anharmonic interaction processes. The basic ingredients of the theory include full phonon dispersion relations obtained from the application of an adiabatic bond charge model and crystal anharmonic potential within the isotropic elastic continuum model. The role of various decay routes, such as Klemens, Ridley, Vallee-Bogani and Barman-Srivastava channels, in determining the lifetimes of the Raman active zone-centre longitudinal optical (LO) modes in BN (zincblende structure) and A 1 (LO) modes in AlN, GaN and InN (wurtzite structure) has been quantified.

  14. A Neutron Study for Phonon Dispersion Relations in HgTe

    DEFF Research Database (Denmark)

    Kepa, H.; Gebicki, W.; Giebultowicz, T.

    1980-01-01

    Dispersion relations for acoustic phonons in mercury telluride in three high symmetry directions [111], [110] and [001] are presented. The eleven-parameter rigid-ion model is fitted to the experimental data....

  15. The lattice dynamical studies of rare earth compounds: electron-phonon interactions

    International Nuclear Information System (INIS)

    Jha, Prafulla K.; Sanyal, Sankar P.; Singh, R.K.

    2002-01-01

    During the last two decades chalcogenides and pnictides of rare earth (RE) atoms have drawn considerable attention of the solid state physicists because of their peculiar electronic, magnetic, optical and phonon properties. Some of these compounds e.g. sulphides and selenides of cerium (Ce), samarium (Sm), yttrium (Y), ytterbium (Yb), europium (Eu) and thulium (Tm) and their alloys show nonintegral valence (between 2 and 3), arising due to f-d electron hybridization at ambient temperature and pressure. The rare earth mixed valence compounds (MVC) reviewed in this article crystallize in simple cubic structure. Most of these compounds show the existence of strong electron-phonon coupling at half way to the zone boundary. This fact manifests itself through softening of the longitudinal acoustic mode, negative value of elastic constant C 12 etc. The purpose of this contribution is to review some of the recent activities in the fields of lattice dynamics and allied properties of rare earth compounds. The present article is primarily devoted to review the effect of electron-phonon interactions on the dynamical properties of rare earth compounds by using the lattice dynamical model theories based on charged density deformations and long-range many body forces. While the long range charge transfer effect arises due to f-d hybridization of nearly degenerate 4f-5d bands of rare earth ions, the density deformation comes into the picture of breathing motion of electron shells. These effects of charge transfer and charge density deformation when considered in the lattice dynamical models namely the three body force rigid ion model (TRM) and breathing shell model (BSM) are quite successful in explaining the phonon anomalies in these compounds and undoubtedly unraveled many important physical process governing the phonon anomalies in rare earth compounds

  16. Multi-channel unidirectional transmission of phononic crystal heterojunctions

    Science.gov (United States)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-02-01

    Two square steel columns are arranged in air to form two-dimensional square lattice phononic crystals (PNCs). Two PNCs can be combined into a non-orthogonal 45∘ heterojunction when the difference in the directional band gaps of the two PNC types is utilized. The finite element method is used to calculate the acoustic band structure, the heterogeneous junction transmission characteristics, acoustic field distribution, and many others. Results show that a non-orthogonal PNC heterojunction can produce a multi-channel unidirectional transmission of acoustic waves. With the square scatterer rotated, the heterojunction can select a frequency band for unidirectional transmission performance. This capability is particularly useful for constructing acoustic diodes with wide-bands and high-efficiency unidirectional transmission characteristics.

  17. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang

    2016-02-18

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  18. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang; Varadhan, Purushothaman; Wang, Hsin-Hua; Chen, Cheng-Ying; Fang, Xiaosheng; He, Jr-Hau

    2016-01-01

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  19. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  20. Composition Dependence of Surface Phonon Polariton Mode in Wurtzite InxGa1−xN (0 ≤ x ≤ 1) Ternary Alloy

    International Nuclear Information System (INIS)

    Ng, S. S.; Hassan, Z.; Hassan, H. Abu

    2008-01-01

    We present a theoretical study on the composition dependence of the surface phonon polariton (SPP) mode in wurtzite structure α-In x Ga 1-x N ternary alloy over the whole composition range. The SPP modes are obtained by the theoretical simulations by means of an anisotropy model. The results reveal that the SPP mode of α-In x Ga 1-x N semiconductors exhibits one-mode behaviour. From these data, composition dependence of the SPP mode with bowing parameter of −28.9 cm −1 is theoretically obtained

  1. Large calculated electron-phonon interactions in La2-xMxCuO4

    International Nuclear Information System (INIS)

    Krakauer, H.; Pickett, W.E.; Cohen, R.E.

    1993-01-01

    Results of self-consistent linearized-augmented-plane-wave calculations within the local-density-functional approximation (LDA) are presented of the electron-phonon-induced linewidths and interaction strength of selected phonons in La 2-xMx CuO 4 at x=0.15. Through the use of a supercell geometry, rigid-ion-type approximations are avoided and the full electron-phonon matrix elements are determined from finite differences of the LDA potentials corresponding to frozen-in phonon at Γ X, and Z. At the X point, all fully symmetric A g modes (i.e., having the symmetry of the oxygen planar-breathing mode) as well as three modes having B 3g symmetry are examined. Small linewidths were found for the three B 3g modes, and moderate linewidths for the A g modes, the largest corresponding to ratios γ q,ν /ω q,ν =0.02 for the oxygen breathing and axial modes

  2. Boundary modes in quasiperiodic elastic structures

    Science.gov (United States)

    Rosa, Matheus I. N.; Pal, Raj K.; Arruda, José R. F.; Ruzzene, Massimo

    2018-03-01

    Topological metamaterials are a new class of materials that support topological modes such as edge modes and interface modes, which are commonly immune to scattering and imperfections. This novelty has been the subject of extensive research in many branches of physics such as electronics, photonics, phononics, and acoustics. The nontrivial topological properties related to the presence of topological modes are tipically found in periodic media. However, it was recently demonstrated that structures called quasicrystals may also exhibit nontrivial topological behavior attributed to dimensions higher than that of the quasicrystal. While quasiperiodicity has received a lot of attention in the fields of crystallography and photonics, research into quasiperiodic elastic structures has been scarce. In this paper, we show how the concepts of quasiperiodicity may be applied to the design of topological mechanical metamaterials. We start by investigating the boundary modes present in quasiperiodic 1D phononic lattices. These modes have the interesting property of being localized at either one of the two different boundaries depending on the value of an additional parameter, which is remnant of the higher dimension. A smooth variation of this parameter in either time or a spatial dimension can lead to a robust transfer of energy between two sites of the structure. We present an idealized mechanical system composed by an array of coupled rods that may be used as a platform for realizing this kind of robust transfer of energy. These are preliminary investigations into a entirely new class of structures which may lead to novel engineering applications.

  3. Compensating for evanescent modes and estimating characteristic impedance in waveguide acoustic impedance measurements

    DEFF Research Database (Denmark)

    Nørgaard, Kren Rahbek; Fernandez Grande, Efren

    2017-01-01

    The ear-canal acoustic impedance and reflectance are useful for assessing conductive hearing disorders and calibrating stimulus levels in situ. However, such probe-based measurements are affected by errors due to the presence of evanescent modes and incorrect estimates or assumptions regarding...... characteristic impedance. This paper proposes a method to compensate for evanescent modes in measurements of acoustic impedance, reflectance, and sound pressure in waveguides, as well as estimating the characteristic impedance immediately in front of the probe. This is achieved by adjusting the characteristic...... impedance and subtracting an acoustic inertance from the measured impedance such that the non-causality in the reflectance is minimized in the frequency domain using the Hilbert transform. The method is thus capable of estimating plane-wave quantities of the sought-for parameters by supplying only...

  4. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons

    Directory of Open Access Journals (Sweden)

    Caldwell Joshua D.

    2015-04-01

    Full Text Available The excitation of surface-phonon-polariton (SPhP modes in polar dielectric crystals and the associated new developments in the field of SPhPs are reviewed. The emphasis of this work is on providing an understanding of the general phenomenon, including the origin of the Reststrahlen band, the role that optical phonons in polar dielectric lattices play in supporting sub-diffraction-limited modes and how the relatively long optical phonon lifetimes can lead to the low optical losses observed within these materials. Based on this overview, the achievements attained to date and the potential technological advantages of these materials are discussed for localized modes in nanostructures, propagating modes on surfaces and in waveguides and novel metamaterial designs, with the goal of realizing low-loss nanophotonics and metamaterials in the mid-infrared to terahertz spectral ranges.

  5. Propagation of dust electro-acoustic modes in dusty plasma

    International Nuclear Information System (INIS)

    Avinash, K.

    2001-01-01

    The propagation of the dust electro-acoustic (DEA) mode in dusty plasma with different electron and ion temperatures T e and T i and different ion species is studied. The critical ratio of the dust space charge to the ion space charge ε for the excitation of DEA mode is found to decrease with increasing T e /T i and increase with m i /m e (m i and m e are the ion and electron masses). Thus experiments with hydrogen plasma where electrons are sufficiently hotter than ions and where the reduction in the dust charge with ε is more than 50% are essential for the observation of self-shielding and the DEA mode

  6. Physical acoustics v.8 principles and methods

    CERN Document Server

    Mason, Warren P

    1971-01-01

    Physical Acoustics: Principles and Methods, Volume VIII discusses a number of themes on physical acoustics that are divided into seven chapters. Chapter 1 describes the principles and applications of a tool for investigating phonons in dielectric crystals, the spin phonon spectrometer. The next chapter discusses the use of ultrasound in investigating Landau quantum oscillations in the presence of a magnetic field and their relation to the strain dependence of the Fermi surface of metals. The third chapter focuses on the ultrasonic measurements that are made by pulsing methods with velo

  7. Quantum mode phonon forces between chainmolecules

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2001-01-01

    bimolecular interaction is a truly many-body force that is temperature dependent and can be of the order of 1 eV. These phonon forces depend on molecular shape, composition, and density. They may therefore also be important for large molecular conformational changes, including the unfolding of chain molecules....... For the later case, a significant change in zero-point energy is found. This may be the underlying cause for cold denaturation of proteins. (C) 2001 John Wiley & Sons, Inc....

  8. Dispersion relations of the acoustic modes in divalent liquid metals

    Directory of Open Access Journals (Sweden)

    Inui Masanori

    2017-01-01

    Full Text Available Collective dynamics in liquid Ca and liquid Cd was studied by inelastic x-ray scattering (IXS. Using our experimental technique to prepare proper sample cells and high performance of an IXS beamline (BL35XU at SPring-8 in Japan, the dynamic structure factor with reasonable statistics was obtained for these divalent liquid metals. For both liquids, the dynamic structure factor at low Q exhibits a central peak with a shoulder or small hump clearly visible on each side, and the inelastic excitation energy determined using the model function composed of Lorentzian and the damped harmonic oscillator function disperses with increasing Q. The dispersion curves of these liquids were compared with that of the longitudinal acoustic phonon in each crystalline phase. From these results, clear difference in the interatomic interaction be- tween liquid Ca and liquid Cd was inferred.

  9. Phonon thermal conductance of disordered graphene strips with armchair edges

    International Nuclear Information System (INIS)

    Shi Lipeng; Xiong Shijie

    2009-01-01

    Based on the model of lattice dynamics together with the transfer matrix technique, we investigate the thermal conductances of phonons in quasi-one-dimensional disordered graphene strips with armchair edges using Landauer formalism for thermal transport. It is found that the contributions to thermal conductance from the phonon transport near von Hove singularities is significantly suppressed by the presence of disorder, on the contrary to the effect of disorder on phonon modes in other frequency regions. Besides the magnitude, for different widths of the strips, the thermal conductance also shows different temperature dependence. At low temperatures, the thermal conductance displays quantized features of both pure and disordered graphene strips implying that the transmission of phonon modes at low frequencies are almost unaffected by the disorder

  10. Freeform Phononic Waveguides

    Directory of Open Access Journals (Sweden)

    Georgios Gkantzounis

    2017-11-01

    Full Text Available We employ a recently introduced class of artificial structurally-disordered phononic structures that exhibit large and robust elastic frequency band gaps for efficient phonon guiding. Phononic crystals are periodic structures that prohibit the propagation of elastic waves through destructive interference and exhibit large band gaps and ballistic propagation of elastic waves in the permitted frequency ranges. In contrast, random-structured materials do not exhibit band gaps and favour localization or diffusive propagation. Here, we use structures with correlated disorder constructed from the so-called stealthy hyperuniform disordered point patterns, which can smoothly vary from completely random to periodic (full order by adjusting a single parameter. Such amorphous-like structures exhibit large band gaps (comparable to the periodic ones, both ballistic-like and diffusive propagation of elastic waves, and a large number of localized modes near the band edges. The presence of large elastic band gaps allows the creation of waveguides in hyperuniform materials, and we analyse various waveguide architectures displaying nearly 100% transmission in the GHz regime. Such phononic-circuit architectures are expected to have a direct impact on integrated micro-electro-mechanical filters and modulators for wireless communications and acousto-optical sensing applications.

  11. Computational modeling of geometry dependent phonon transport in silicon nanostructures

    Science.gov (United States)

    Cheney, Drew A.

    Recent experiments have demonstrated that thermal properties of semiconductor nanostructures depend on nanostructure boundary geometry. Phonons are quantized mechanical vibrations that are the dominant carrier of heat in semiconductor materials and their aggregate behavior determine a nanostructure's thermal performance. Phonon-geometry scattering processes as well as waveguiding effects which result from coherent phonon interference are responsible for the shape dependence of thermal transport in these systems. Nanoscale phonon-geometry interactions provide a mechanism by which nanostructure geometry may be used to create materials with targeted thermal properties. However, the ability to manipulate material thermal properties via controlling nanostructure geometry is contingent upon first obtaining increased theoretical understanding of fundamental geometry induced phonon scattering processes and having robust analytical and computational models capable of exploring the nanostructure design space, simulating the phonon scattering events, and linking the behavior of individual phonon modes to overall thermal behavior. The overall goal of this research is to predict and analyze the effect of nanostructure geometry on thermal transport. To this end, a harmonic lattice-dynamics based atomistic computational modeling tool was created to calculate phonon spectra and modal phonon transmission coefficients in geometrically irregular nanostructures. The computational tool is used to evaluate the accuracy and regimes of applicability of alternative computational techniques based upon continuum elastic wave theory. The model is also used to investigate phonon transmission and thermal conductance in diameter modulated silicon nanowires. Motivated by the complexity of the transmission results, a simplified model based upon long wavelength beam theory was derived and helps explain geometry induced phonon scattering of low frequency nanowire phonon modes.

  12. Electromagnetic excitation of phonons at C(001) surfaces

    International Nuclear Information System (INIS)

    Perez-Sanchez, F L; Perez-Rodriguez, F

    2009-01-01

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  13. Electromagnetic excitation of phonons at C(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F L [Escuela de Ciencias, Universidad Autonoma ' Benito Juarez' de Oaxaca, Avenida Universidad S/N, Ex-Hacienda de Cinco Senores, Ciudad Universitaria, Oaxaca de Juarez, Oaxaca, 68120 (Mexico); Perez-Rodriguez, F, E-mail: fperez@sirio.ifuap.buap.m [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Post. J-48, Puebla 72570 (Mexico)

    2009-09-02

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  14. A numerical study on acoustic behavior in gas turbine combustor with acoustic resonator

    International Nuclear Information System (INIS)

    Park, I Sun; Sohn, Chae Hoon

    2005-01-01

    Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes

  15. Local symmetry breaking and spin–phonon coupling in SmCrO3 orthochromite

    International Nuclear Information System (INIS)

    El Amrani, M.; Zaghrioui, M.; Ta Phuoc, V.; Gervais, F.; Massa, Néstor E.

    2014-01-01

    Raman scattering and infrared reflectivity performed on polycrystalline SmCrO 3 support strong influence of the antiferromagnetic order on phonon modes. Both measurements show softening of some modes below T N . Such a behavior is explained by spin–phonon coupling in this compound. Furthermore, temperature dependence of the infrared spectra has demonstrated important changes compared to the Raman spectra, suggesting strong structural modifications due to the cation displacements rather to those of the oxygen ions. Our results reveal that polar distortions originating in local symmetry breaking, i.e. local non-centrosymmetry, resulting in Cr off-centring. - Highlights: • We investigated Raman and infrared phonon modes of SmCrO 3 versus temperature. • Results reveal strong influence of the antiferromagnetic order on phonon modes. • Temperature dependence of the infrared spectra shows strong structural modifications suggesting local symmetry breaking

  16. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    International Nuclear Information System (INIS)

    Dekorsy, T; Taubert, R; Hudert, F; Schrenk, G; Bartels, A; Cerna, R; Kotaidis, V; Plech, A; Koehler, K; Schmitz, J; Wagner, J

    2007-01-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 10 7 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles

  17. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    Science.gov (United States)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  18. Long-Wavelength Phonon Scattering in Nonpolar Semiconductors

    DEFF Research Database (Denmark)

    Lawætz, Peter

    1969-01-01

    The long-wavelength acoustic- and optical-phonon scattering of carriers in nonpolar semiconductors is considered from a general point of view. The deformation-potential approximation is defined and it is shown that long-range electrostatic forces give a nontrivial correction to the scattering...... of the very-short-range nature of interactions in a covalent semiconductor....

  19. Dynamical instability, strong anharmonicity and electron-phonon coupling in KOs2O6: First-principles calculations

    Science.gov (United States)

    Wang, Wei; Sun, Jiafa; Li, Bin; He, Junqi

    2017-09-01

    First-principles pseudopotential calculations on phonon and electronic properties of β -pyrochlore superconductor KOs2O6 are performed. The imaginary soft-phonon modes with a special double-well potential for the lowest Eu(1) mode and the second lowest T1u(1) mode are reported, which indicates the dynamical instability in KOs2O6. However, the double wells are too small to induce a structural phase transformation in KOs2O6. The strong anharmonicity especially for K T2g(1) phonon mode is got, which is approved to be from the strong electron-phonon coupling that supports the superconductivity in KOs2O6.

  20. Waveguiding in supported phononic crystal plates

    International Nuclear Information System (INIS)

    Vasseur, J; Hladky-Hennion, A-C; Deymier, P; Djafari-Rouhani, B; Duval, F; Dubus, B; Pennec, Y

    2007-01-01

    We investigate, with the help of the finite element method, the existence of absolute band gaps in the band structure of a free-standing phononic crystal plate and of a phononic crystal slab deposited on a substrate. The two-dimensional phononic crystal is constituted by a square array of holes drilled in an active piezoelectric (PZT5A or AlN) matrix. For both matrix materials, an absolute band gap occurs in the band structure of the free-standing plate provided the thickness of the plate is on the order of magnitude of the lattice parameter. When the plate is deposited on a Si substrate, the absolute band gap still remains when the matrix of the phononic crystal is made of PZT5A. The AlN phononic crystal plate losses its gap when supported by the Si substrate. In the case of the PZT5A matrix, we also study the possibility of localized modes associated with a linear defect created by removing one row of air holes in the deposited phononic crystal plate

  1. Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy

    KAUST Repository

    Tangi, Malleswararao

    2016-07-26

    The dislocation free Inx Al 1-xN nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C–610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of Inx Al 1-xN NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04–0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A1(LO) phonons and single mode behavior for E2 H phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E2 H phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A1(LO) and E2 H phonons in Inx Al 1-xN NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important Inx Al 1-xN nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  2. Surface phonon polaritons in semi-infinite semiconductor superlattices

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1986-07-01

    Surface phonon polaritons in a semi-infinite semiconductor superlattice bounded by vacuum are studied. The modes associated with the polaritons are obtained and used to obtain the dispersion relation. Numerical results show that polariton bands exist between the TO and LO phonon frequencies, and are found to approach two surface mode frequencies in the limit of large tangential wave vector. Dependency of frequencies on the ratio of layer thicknesses is shown. Results are illustrated by a GaAs-GaP superlattice bounded by vacuum. (author)

  3. Quantum non-demolition phonon counter with a hybrid optomechnical system

    Science.gov (United States)

    Song, Qiao; Zhang, KeYe; Dong, Ying; Zhang, WeiPing

    2018-05-01

    A phonon counting scheme based on the control of polaritons in an optomechanical system is proposed. This approach permits us to measure the number of phonons in a quantum non-demolition (QND) manner for arbitrary modes not limited by the frequency matching condition as in usual photon-phonon scattering detections. The performance on phonon number transfer and quantum state transfer of the counter are analyzed and simulated numerically by taking into account all relevant sources of noise.

  4. Mutual interactions of phonons, rotons, and gravity

    Science.gov (United States)

    Nicolis, Alberto; Penco, Riccardo

    2018-04-01

    We introduce an effective point-particle action for generic particles living in a zero-temperature superfluid. This action describes the motion of the particles in the medium at equilibrium as well as their couplings to sound waves and generic fluid flows. While we place the emphasis on elementary excitations such as phonons and rotons, our formalism applies also to macroscopic objects such as vortex rings and rigid bodies interacting with long-wavelength fluid modes. Within our approach, we reproduce phonon decay and phonon-phonon scattering as predicted using a purely field-theoretic description of phonons. We also correct classic results by Landau and Khalatnikov on roton-phonon scattering. Finally, we discuss how phonons and rotons couple to gravity, and show that the former tend to float while the latter tend to sink but with rather peculiar trajectories. Our formalism can be easily extended to include (general) relativistic effects and couplings to additional matter fields. As such, it can be relevant in contexts as diverse as neutron star physics and light dark matter detection.

  5. Phonon structures of GaN-based random semiconductor alloys

    Science.gov (United States)

    Zhou, Mei; Chen, Xiaobin; Li, Gang; Zheng, Fawei; Zhang, Ping

    2017-12-01

    Accurate modeling of thermal properties is strikingly important for developing next-generation electronics with high performance. Many thermal properties are closely related to phonon dispersions, such as sound velocity. However, random substituted semiconductor alloys AxB1-x usually lack translational symmetry, and simulation with periodic boundary conditions often requires large supercells, which makes phonon dispersion highly folded and hardly comparable with experimental results. Here, we adopt a large supercell with randomly distributed A and B atoms to investigate substitution effect on the phonon dispersions of semiconductor alloys systematically by using phonon unfolding method [F. Zheng, P. Zhang, Comput. Mater. Sci. 125, 218 (2016)]. The results reveal the extent to which phonon band characteristics in (In,Ga)N and Ga(N,P) are preserved or lost at different compositions and q points. Generally, most characteristics of phonon dispersions can be preserved with indium substitution of gallium in GaN, while substitution of nitrogen with phosphorus strongly perturbs the phonon dispersion of GaN, showing a rapid disintegration of the Bloch characteristics of optical modes and introducing localized impurity modes. In addition, the sound velocities of both (In,Ga)N and Ga(N,P) display a nearly linear behavior as a function of substitution compositions. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80481-0.

  6. Features of electron-phonon interactions in nanotubes with chiral symmetry in magnetic field

    CERN Document Server

    Kibis, O V

    2001-01-01

    Interaction of the electrons with acoustic phonons in the nanotube with chiral symmetry by availability of the magnetic field, parallel to the nanotube axis, is considered. It is shown that the electron energy spectrum is asymmetric relative to the electron wave vector inversion and for that reason the electron-phonon interaction appears to be different for similar phonons with mutually contrary directions of the wave vector. This phenomenon leads to origination of the electromotive force by the spatially uniform electron gas heating and to appearance of the quadrupole component in the nanotube volt-ampere characteristics

  7. Screening-induced surface polar optical phonon scattering in dual-gated graphene field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo, E-mail: hubo2011@semi.ac.cn

    2015-03-15

    The effect of surface polar optical phonons (SOs) from the dielectric layers on electron mobility in dual-gated graphene field effect transistors (GFETs) is studied theoretically. By taking into account SO scattering of electron as a main scattering mechanism, the electron mobility is calculated by the iterative solution of Boltzmann transport equation. In treating scattering with the SO modes, the dynamic dielectric screening is included and compared to the static dielectric screening and the dielectric screening in the static limit. It is found that the dynamic dielectric screening effect plays an important role in the range of low net carrier density. More importantly, in-plane acoustic phonon scattering and charged impurity scattering are also included in the total mobility for SiO{sub 2}-supported GFETs with various high-κ top-gate dielectric layers considered. The calculated total mobility results suggest both Al{sub 2}O{sub 3} and AlN are the promising candidate dielectric layers for the enhancement in room temperature mobility of graphene in the future.

  8. Electron-optical phonon coupling in superconductors

    International Nuclear Information System (INIS)

    Rietschel, H.

    1975-01-01

    The role of the optical phonons in superconductivity is investigated in the case of compounds with different atomic masses Msub(k). It is shown that the electron mass enhancement factor lambda is independent of Msub(k) if the force constant matrix is mass independent. However, when using lambda to calculate Tsub(c), it must be decomposed into its acoustical and optical contributions, which depend separately on Msub(k). Interference scattering from a light and a heavy mass is studied and its contributions to lambda within the free electron approximation. Numerical results are presented for a rocksalt structure crystal with nearest and next nearest neighbour coupling. These results indicate that the optical phonon contributions to lambda may substantially increase Tsub(c). (orig.) [de

  9. Acoustic study of YBa2Cu3Ox thin films

    International Nuclear Information System (INIS)

    Lee, S.; Chi, C.; Koren, G.; Gupta, A.

    1991-01-01

    The attenuation of surface acoustic waves by epitaxial YBa 2 Cu 3 O x films has been studied for x congruent 6 to 7. For fully oxygenated samples, the acoustic attenuation as a function of temperature shows two broad peaks at about 135 and 240 K, and decreases monotonically below the lower peak temperature. The cause of attenuation peaks is attributed to scattering by optical phonons. Our data do not show any gap structure at T c due to relatively weak electron-phonon interactions at the acoustic frequencies. As the oxygen deficiency increases, the temperature dependence of the dc resistance changes from metallic to semiconducting and finally to insulating behavior. Acoustic attenuation data correspondingly show a drastic change due to different attenuation mechanisms: from the phonon scattering loss in the metallic regime to the electric-field coupling loss in the semiconducting and insulating regimes. In the latter regimes, the temperature dependence of low-frequency resistance calculated from the attenuation data can be fitted to a three-dimensional Mott variable-range-hopping model

  10. Theory of Raman scattering in coupled electron-phonon systems

    Science.gov (United States)

    Itai, K.

    1992-01-01

    The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.

  11. Local symmetry breaking and spin–phonon coupling in SmCrO{sub 3} orthochromite

    Energy Technology Data Exchange (ETDEWEB)

    El Amrani, M. [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Zaghrioui, M., E-mail: zaghrioui@univ-tours.fr [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Ta Phuoc, V.; Gervais, F. [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Massa, Néstor E. [Laboratorio Nacional de Investigacion y Servicios en Espectroscopia Optica-Centro CEQUINOR, Universidad Nacional de La Plata, C. C. 962, 1900 La Plata (Argentina)

    2014-06-01

    Raman scattering and infrared reflectivity performed on polycrystalline SmCrO{sub 3} support strong influence of the antiferromagnetic order on phonon modes. Both measurements show softening of some modes below T{sub N}. Such a behavior is explained by spin–phonon coupling in this compound. Furthermore, temperature dependence of the infrared spectra has demonstrated important changes compared to the Raman spectra, suggesting strong structural modifications due to the cation displacements rather to those of the oxygen ions. Our results reveal that polar distortions originating in local symmetry breaking, i.e. local non-centrosymmetry, resulting in Cr off-centring. - Highlights: • We investigated Raman and infrared phonon modes of SmCrO{sub 3} versus temperature. • Results reveal strong influence of the antiferromagnetic order on phonon modes. • Temperature dependence of the infrared spectra shows strong structural modifications suggesting local symmetry breaking.

  12. The dust-acoustic mode in two-temperature electron plasmas with ...

    Indian Academy of Sciences (India)

    ... charging fluctuations, the dispersion peculiarities of dust-acoustic waves are studied based on dust fluid dynamics. The present results show that the effect will introduce a dissipation on the mode, and the dispersion and the dissipation depend on the temperature ratio and number density ratio of hot and cold electrons.

  13. Characterization of irradiation damage distribution near TiO2/SrTiO3 interfaces using coherent acoustic phonon interferometry

    International Nuclear Information System (INIS)

    Yarotski, Dmitry; Yan Li; Jia Quanxi; Taylor, Antoinette J.; Fu Engang; Wang Yongqiang; Uberuaga, Blas P.

    2012-01-01

    We apply ultrafast coherent acoustic phonon interferometry to characterize the distribution of the radiation damage near the TiO 2 /SrTiO 3 interfaces. We show that the optical and mechanical properties of anatase TiO 2 remain unaffected by the radiation dosages in the 0.1÷5 dpa (displacements per atom) range, while the degraded optical response indicates a significant defect accumulation in the interfacial region of SrTiO 3 at 0.1 dpa and subsequent amorphization at 3 dpa. Comparison between the theoretical simulations and the experimental results reveals an almost threefold reduction of the sound velocity in the irradiated SrTiO 3 layer with peak damage levels of 3 and 5 dpa.

  14. SAW-Based Phononic Crystal Microfluidic Sensor-Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications.

    Science.gov (United States)

    Oseev, Aleksandr; Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V; Hirsch, Soeren

    2017-09-23

    The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept.

  15. SOFT MODE ANOMALIES IN THE PEROVSKITE RELAXOR Pb(Mg1/3Nb2/3)O3

    International Nuclear Information System (INIS)

    GEHRING, P.M.; VAKRUSHEV, S.B.; SHIRANE, G.

    2000-01-01

    Neutron inelastic scattering measurements of the polar TO phonon mode in the cubic relaxor Pb(Mg 1/3 Nb 2/3 )O 3 , at room temperature, reveal anomalous behavior similar to that recently observed in Pb(Zn 1/3 Nb 2/3 ) 0.92 Ti 0.08 O 3 in which the optic branch appears to drop precipitously into the acoustic branch at a finite value of the momentum transfer q = 0.2 angstrom -1 , measured from the zone center. By contrast, a recent neutron study indicates that PMN exhibits a normal TO phonon dispersion at 800 K. The authors speculate this behavior is common to all relaxor materials, and is the result of the presence of nanometer-scale polarized domains in the crystal that form below a temperature T d , which effectively prevent the propagation of long wavelength (q = 0) phonons

  16. The significance of temperature dependence on the piezoelectric energy harvesting by using a phononic crystal

    Science.gov (United States)

    Aly, Arafa H.; Nagaty, Ahmed; Khalifa, Zaki; Mehaney, Ahmed

    2018-05-01

    In this study, an acoustic energy harvester based on a two-dimensional phononic crystal has been constructed. The present structure consists of silicon cylinders in the air background with a polyvinylidene fluoride cylinder as a defect to confine the acoustic energy. The presented energy harvester depends on the piezoelectric effect (using the piezoelectric material polyvinylidene fluoride) that converts the confined acoustic energy to electric energy. The maximum output voltage obtained equals 170 mV. Moreover, the results revealed that the output voltage can be increased with increasing temperature. In addition, the effects of the load resistance and the geometry of the piezoelectric material on the output voltage have been studied theoretically. Based on these results, all previous studies about energy harvesting in phononic structures must take temperature effects into account.

  17. Lattice modes of hexamethylbenzene studied by inelastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stride, J.A. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France)], E-mail: stride@ill.fr; Adams, J.M. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Johnson, M.R. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France)

    2005-10-31

    The combination of inelastic neutron scattering and detailed ab initio calculations has been used to arrive at accurate assignments of the low energy lattice mode region of hexamethylbenzene (HMB) across the low temperature first order phase transition at 117.5 K. This was also extended well into the mid-infrared spectral region and a good agreement was found between observed and calculated frequencies, which were also confirmed with isotopically substituted d-HMB. At low temperature, the lattice region is dominated by the methyl group torsions around 15 and 20 meV, which soften dramatically on passing into the higher temperature phase. The lowest energy methyl torsion corresponds to a coherent gear wheel motion, observed here for the first time and predicted in previous numerical studies of HMB. The three acoustic phonons lie to lower energy, centered around 6-7 meV, whilst the three optic phonons are very close in energy to the lowest methyl torsions. Other assignments are found to be in accord with literature values and so an unambiguous assignment of all spectral modes has been obtained for the first time. We conclude that due to the behaviour of the lattice modes either side of the phase transition, its nature is predominantly that of a thermally activated dynamic order-disorder transition.

  18. Lattice modes of hexamethylbenzene studied by inelastic neutron scattering

    International Nuclear Information System (INIS)

    Stride, J.A.; Adams, J.M.; Johnson, M.R.

    2005-01-01

    The combination of inelastic neutron scattering and detailed ab initio calculations has been used to arrive at accurate assignments of the low energy lattice mode region of hexamethylbenzene (HMB) across the low temperature first order phase transition at 117.5 K. This was also extended well into the mid-infrared spectral region and a good agreement was found between observed and calculated frequencies, which were also confirmed with isotopically substituted d-HMB. At low temperature, the lattice region is dominated by the methyl group torsions around 15 and 20 meV, which soften dramatically on passing into the higher temperature phase. The lowest energy methyl torsion corresponds to a coherent gear wheel motion, observed here for the first time and predicted in previous numerical studies of HMB. The three acoustic phonons lie to lower energy, centered around 6-7 meV, whilst the three optic phonons are very close in energy to the lowest methyl torsions. Other assignments are found to be in accord with literature values and so an unambiguous assignment of all spectral modes has been obtained for the first time. We conclude that due to the behaviour of the lattice modes either side of the phase transition, its nature is predominantly that of a thermally activated dynamic order-disorder transition

  19. Electron-phonon interaction in Chevrel-phase compounds

    International Nuclear Information System (INIS)

    Rainer, D.; Pobell, F.

    1981-03-01

    Experiments on the electron-phonon interaction in Chevrel-phase compounds (CPC) and a theoretical discussion of their results are presented. The authors particularly discuss measurements of the isotope effect of the transition temperature in Mo 6 Se 8 and SnMo 6 S 8 and tunneling spectroscopy experiments on Cu 1 . 8 Mo 6 S 8 and PbMo 6 S 8 . These investigations have been performed to get information about the strength of the electron-phonon interaction in CPC, and about the question whether there are phonon modes which couple particularly strongly to the electrons in these compounds. (orig./GSCH)

  20. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    Science.gov (United States)

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. © 2012 Acoustical Society of America

  1. Millimeter wave absorption by confined acoustic modes in CdSe/CdTe core-shell quantum dots

    International Nuclear Information System (INIS)

    Liu, T-M; Lu, J-Y; Kuo, C-C; Wen, Y-C; Lai, C-W; Yang, M-J; Chou, P-T; Murray, D B; Saviot, L; Sun, C-Kuang

    2007-01-01

    Taking advantage of the specific core-shell charge separation structure in the CdSe/CdTe core-shell Type-II quantum dots (QDs), we experimentally observed the resonant-enhanced dipolar interaction between millimeter-wave (MMW) photons and their corresponding (l = 1) confined acoustic phonons. With proper choice of size, the absorption band can be tuned to desired frequency of MMW imaging. Exploiting this characteristic absorption, in a fiber-scanned MMW imaging system, we demonstrated the feasibility of CdSe/CdTe QDs as the contrast agents of MMW imaging

  2. Full-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification

    KAUST Repository

    Liu, Bingyi

    2017-07-01

    Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell\\'s law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for full-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the full-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates. The coiling-up space structures are utilized to build desired acoustic gradient metasurface and the full-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface and enables a new degree of the acoustic wave manipulating.

  3. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    Directory of Open Access Journals (Sweden)

    Sujun Xie

    2018-03-01

    Full Text Available In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC, which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect, the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  4. Phonon and thermal properties of achiral single wall carbon ...

    Indian Academy of Sciences (India)

    A detailed theoretical study of the phonon and thermal properties of achiral single wall carbon nanotubes has been carried out using force constant model considering up to third nearest-neighbor interactions. We have calculated the phonon dispersions, density of states, radial breathing modes (RBM) and the specific heats ...

  5. Hypersonic modes in nanophononic semiconductors.

    Science.gov (United States)

    Hepplestone, S P; Srivastava, G P

    2008-09-05

    Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal.

  6. Numerical investigation of the propagation of elastic wave modes in a one-dimensional phononic crystal plate coated on a uniform substrate

    International Nuclear Information System (INIS)

    Hou Zhilin; Assouar, Badreddine M

    2009-01-01

    The propagation of wave modes in a two-layer free standing plate composed of a one-dimensional phononic crystal (PC) thin layer coated on a uniform substrate was investigated numerically by the modified plane wave expansion method. The band structures of the system with different thicknesses of the substrate were calculated. The numerical result showed that Bragg scattering by the periodic structure in a PC and wave scattering by the free surface could be coupled to each other with an added substrate layer. The properties of the confined modes in such a system, for example, the Love-wave-like mode, the confined PC mode (which is localized mainly in the PC layer) and the surface mode on the free surface of the substrate layer, were investigated.

  7. Dynamics of impurity modes and electron–phonon interaction in Heavy Fermion (HF) systems

    International Nuclear Information System (INIS)

    Shadangi, N.; Sahoo, J.; Mohanty, S.; Nayak, P.

    2014-01-01

    A theoretical explanation is provided to understand the effect of small concentration of impurities characterized by change in mass and nearest neighbor force constants on the phonon spectrum as well as on the electron–phonon interaction in some Heavy Fermion (HF) systems in the normal state within theoretical framework of the Periodic Anderson Model (PAM). Three different mechanisms of the electron–phonon interactions, namely, the usual interaction between the phonons with the electrons in the f-bands, electrons arising from that of hybridization term of PAM and the local electron–phonon coupling at the impurity sites are considered. Coherent Potential Approximation (CPA) is used to evaluate the configuration averaged self–energy and the total Green function. For simplicity of calculation the CPA self–energy is evaluated in Average t -matrix Approximation (ATA). The analytical analysis is carried out for finite T in the long wavelength limit. The influence of impurity mass parameter λ and other system parameters such as d, the position of f-level, the effective coupling strength g on the calculated re-normalized phonon frequency and the excitation spectrum through the spectral function is studied. The numerical analysis of the results does show the influence of impurities as evident from different plots in this paper.

  8. Effects of a piezoelectric substrate on phonon-drag thermopower in monolayer graphene

    Science.gov (United States)

    Bhargavi, K. S.; Kubakaddi, S. S.; Ford, C. J. B.

    2017-06-01

    The phonon-drag thermopower is studied in a monolayer graphene on a piezoelectric substrate. The phonon-drag contribution S\\text{PA}\\text{g} from the extrinsic potential of piezoelectric surface acoustic (PA) phonons of a piezoelectric substrate (GaAs) is calculated as a function of temperature T and electron concentration n s. At a very low temperature, S\\text{PA}\\text{g} is found to be much greater than S\\text{DA}\\text{g} of the intrinsic deformation potential of acoustic (DA) phonons of the graphene. There is a crossover of S\\text{PA}\\text{g} and S\\text{DA}\\text{g} at around ~5 K. In graphene samples of about  >10 µm size, we predict S g ~ 20 µV at 10 K, which is much greater than the diffusion component of the thermopower and can be experimentally observed. In the Bloch-Gruneisen (BG) regime T and n s dependence are, respectively, given by the power laws S\\text{PA}\\text{g} (S\\text{DA}\\text{g} ) ~ T 2(T 3) and S\\text{PA}\\text{g} , S\\text{DA}\\text{g} ~ n\\text{s}-1/2 . The T(n s) dependence is the manifestation of the 2D phonons (Dirac phase of the electrons). The effect of the screening is discussed. Analogous to Herring’s law (S g μ p ~ T -1), we predict a new relation S g μ p ~ n\\text{s}0 , where μ p is the phonon-limited mobility. We suggest that the n s dependent measurements will play a more significant role in identifying the Dirac phase and the effect of screening.

  9. Small Fermi energy, strong electron-phonon effects and anharmonicity in MgB2

    International Nuclear Information System (INIS)

    Cappelluti, E.; Pietronero, L.

    2007-01-01

    The investigation of the electron-phonon properties in MgB 2 has attracted a huge interest after the discovery of superconductivity with T c 39 K in this compound. Although superconductivity is often described in terms of the conventional Eliashberg theory, properly generalized in the multiband/multigap scenario, important features distinguish MgB 2 from other conventional strong-coupling superconductors. Most important it is the fact that a large part of the total electron-phonon strength seems to be concentrated here in only one phonon mode, the boron-boron E 2g stretching mode. Another interesting property is the small Fermi energy of the σ bands, which are strongly coupled with the E 2g mode. In this contribution, we discuss how the coexistence of both these features give rise to an unconventional phenomenology of the electron-phonon properties

  10. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  11. On the influence of drag effect on acoustic modes in two-condensate relativistic superfluid systems

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.

    1999-01-01

    Equations of velocities of acoustic excitations in a relativistic two-condensate superfluid system are derived with due account of reciprocal drag of superfluid motion (drag effect). The influence of the drag effect on acoustic modes in the system is considered. It is shown that the effect does not influence the nature of acoustic excitation oscillations but produces changes in the velocities of the second, third and fourth sounds

  12. Characterisation of the hole-acoustic phonon interaction in modulation doped Si/Si1-xGex (0.085<=x<=0.28) heterostructures

    International Nuclear Information System (INIS)

    Braithwaite, G.

    1999-06-01

    The work presented in this Thesis describes the author's experimental investigation of the two dimensional hole gas - acoustic phonon interaction in non-inverted modulation doped strained Si 1-x Ge x heterostructures. This covers a range of Ge content (0.085≤x≤0.28) and carrier temperature range 0.35K ≤ T C ≤ 4.2K. Using the technique of carrier temperature mapping, the present author has measured the energy loss rate characteristics of the two dimensional hole gas as a function of carrier temperature. The carrier temperature thermometers used are, the zero magnetic field resistivity, the low magnetic field magnetoresistance, and, the thermal damping of the amplitude of the Shubnikov - de Haas oscillations. The present author has also used an exact numerical calculation to determine the theoretical energy loss rates over the range of Ge contents and found consistently that the deformation potential interaction is best described as being weakly screened. Also, it is found, that by including an additional piezoelectric-like acoustic phonon coupled interaction, it is possible to achieve improved agreement between the theoretical energy loss rates and the experimental data over the range of carrier temperatures 0.35K≤T C ≤4.2K. The present author suggests that a possible source of this interaction is linked to the correlated interface roughness that may be expected at the upper Si/Si 1-x Ge x heterointerface. From analysis of the low magnetic field magnetoresistance measurements, the author has determined the carrier temperature dependence of the hole-hole scattering rate. It will be shown that by considering the fully self consistent nature of carrier-carrier scattering in the weak localisation regime ('dirty limit'), and by including the effect of carrier-carrier scattering in the 'clean limit', it is possible to calculate the dephasing rates for this system and obtain agreement with the measured experimental data to within an accuracy of ±10%. This is a

  13. Confined and interface phonons in combined cylindrical nanoheterosystem

    Directory of Open Access Journals (Sweden)

    O.M.Makhanets

    2006-01-01

    Full Text Available The spectra of all types of phonons existing in a complicated combined nanoheterosystem consisting of three cylindrical quantum dots embedded into the cylindrical quantum wire placed into vacuum are studied within the dielectric continuum model. It is shown that there are confined optical (LO and interface phonons of two types: top surface optical (TSO and side surface optical (SSO modes of vibration in such a nanosystem. The dependences of phonon energies on the quasiwave numbers and geometrical parameters of quantum dots are investigated and analysed.

  14. Extraordinary lateral beaming of sound from a square-lattice phononic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaoxue; Qiu, Chunyin; He, Hailong; Peng, Shasha; Ke, Manzhu [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Liu, Zhengyou, E-mail: zyliu@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2017-03-03

    Highlights: • An extraordinary lateral beaming phenomenon is observed in a finite phononic crystal made of square lattice. • The phenomenon can be explained by the equivalence of the states located around the four corners of the first Brillouin zone. • The lateral beaming behavior enables a simple design of acoustic beam splitters. • In some sense, the phenomenon can be described by a near zero refractive index. - Abstract: This work revisits the sound transmission through a finite phononic crystal of square lattice. In addition to a direct, ordinary transmission through the sample, an extraordinary lateral beaming effect is also observed. The phenomenon stems from the equivalence of the states located around the four corners of the first Brillouin zone. The experimental result agrees well with the theoretical prediction. The lateral beaming behavior enables a simple design for realizing acoustic beam splitters.

  15. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    International Nuclear Information System (INIS)

    Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Soukiassian, A; Tenne, D A; Schlom, D; Xi, X X; Cantarero, A

    2007-01-01

    We study high quality molecular-beam epitaxy grown BaTiO 3 /SrTiO 3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO 3 /SrTiO 3 layer thicknesses the effective sound velocities within each of the layers are obtained

  16. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    Science.gov (United States)

    Bruchhausen, A.; Lanzillotti-Kimura, N. D.; Fainstein, A.; Soukiassian, A.; Tenne, D. A.; Schlom, D.; Xi, X. X.; Cantarero, A.

    2007-12-01

    We study high quality molecular-beam epitaxy grown BaTiO3/SrTiO3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO3/SrTiO3 layer thicknesses the effective sound velocities within each of the layers are obtained.

  17. Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Nielsen, Per Kær; Kreiner-Møller, Asger

    2013-01-01

    We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Markovian model accounting for dephasing from...... longitudinal acoustic phonons, and the analysis explains the difference between nonresonant cavity feeding in different nanocavities. From the comparison between experiment and theory we extract the effective phonon density of states experienced by the quantum dot in the nanocavity. This quantity determines...

  18. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    Directory of Open Access Journals (Sweden)

    Hugo Lourenço-Martins

    2017-12-01

    Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].

  19. Phonon-based scalable platform for chip-scale quantum computing

    Directory of Open Access Journals (Sweden)

    Charles M. Reinke

    2016-12-01

    Full Text Available We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.

  20. Enhancing phonon flow through one-dimensional interfaces by impedance matching

    Science.gov (United States)

    Polanco, Carlos A.; Ghosh, Avik W.

    2014-08-01

    We extend concepts from microwave engineering to thermal interfaces and explore the principles of impedance matching in 1D. The extension is based on the generalization of acoustic impedance to nonlinear dispersions using the contact broadening matrix Γ(ω), extracted from the phonon self energy. For a single junction, we find that for coherent and incoherent phonons, the optimal thermal conductance occurs when the matching Γ(ω) equals the Geometric Mean of the contact broadenings. This criterion favors the transmission of both low and high frequency phonons by requiring that (1) the low frequency acoustic impedance of the junction matches that of the two contacts by minimizing the sum of interfacial resistances and (2) the cut-off frequency is near the minimum of the two contacts, thereby reducing the spillage of the states into the tunneling regime. For an ultimately scaled single atom/spring junction, the matching criterion transforms to the arithmetic mean for mass and the harmonic mean for spring constant. The matching can be further improved using a composite graded junction with an exponential varying broadening that functions like a broadband antireflection coating. There is, however, a trade off as the increased length of the interface brings in additional intrinsic sources of scattering.

  1. Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y.; Cline, D. [Univ. of Rochester, NY (United States)

    1996-12-31

    Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.

  2. Geodesic acoustic modes excited by finite beta drift waves

    DEFF Research Database (Denmark)

    Chakrabarti, Nikhil Kumar; Guzdar, P.N.; Kleva, R.G.

    2008-01-01

    Presented in this paper is a mode-coupling analysis for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by finite beta drift waves. The finite beta effects give rise to a strong stabilizing influence on the parametric excitation process. The dominant finite beta...... effect is the combination of the Maxwell stress, which has a tendency to cancel the primary drive from the Reynolds stress, and the finite beta modification of the drift waves. The zonal magnetic field is also excited at the GAM frequency. However, it does not contribute to the overall stability...... of the three-wave process for parameters of relevance to the edge region of tokamaks....

  3. Nonlinear excitation of geodesic acoustic modes by drift waves

    International Nuclear Information System (INIS)

    Chakrabarti, N.; Singh, R.; Kaw, P. K.; Guzdar, P. N.

    2007-01-01

    In this paper, two mode-coupling analyses for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by drift waves are presented. The first approach is a coherent parametric process, which leads to a three-wave resonant interaction. This investigation allows for the drift waves and the GAMs to have comparable scales. The second approach uses the wave-kinetic equations for the drift waves, which then couples to the GAMs. This requires that the GAM scale length be large compared to the wave packet associated with the drift waves. The resonance conditions for these two cases lead to specific predictions of the radial wave number of the excited GAMs

  4. Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene.

    Science.gov (United States)

    Araujo, Paulo T; Mafra, Daniela L; Sato, Kentaro; Saito, Riichiro; Kong, Jing; Dresselhaus, Mildred S

    2012-01-01

    In this letter, we present a step towards understanding the bilayer graphene (2LG) interlayer (IL)-related phonon combination modes and overtones as well as their phonon self-energy renormalizations by using both gate-modulated and laser-energy dependent inelastic scattering spectroscopy. We show that although the IL interactions are weak, their respective phonon renormalization response is significant. Particularly special, the IL interactions are mediated by Van der Waals forces and are fundamental for understanding low-energy phenomena such as transport and infrared optics. Our approach opens up a new route to understanding fundamental properties of IL interactions which can be extended to any graphene-like material, such as MoS₂, WSe₂, oxides and hydroxides. Furthermore, we report a previously elusive crossing between IL-related phonon combination modes in 2LG, which might have important technological applications.

  5. Detecting phonon blockade with photons

    International Nuclear Information System (INIS)

    Didier, Nicolas; Pugnetti, Stefano; Fazio, Rosario; Blanter, Yaroslav M.

    2011-01-01

    Measuring the quantum dynamics of a mechanical system, when few phonons are involved, remains a challenge. We show that a superconducting microwave resonator linearly coupled to the mechanical mode constitutes a very powerful probe for this scope. This new coupling can be much stronger than the usual radiation pressure interaction by adjusting a gate voltage. We focus on the detection of phonon blockade, showing that it can be observed by measuring the statistics of the light in the cavity. The underlying reason is the formation of an entangled state between the two resonators. Our scheme realizes a phonotonic Josephson junction, giving rise to coherent oscillations between phonons and photons as well as a self-trapping regime for a coupling smaller than a critical value. The transition from the self-trapping to the oscillating regime is also induced dynamically by dissipation.

  6. Lattice parameters and Raman-active phonon modes of β-(Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kranert, Christian, E-mail: christian.kranert@uni-leipzig.de; Jenderka, Marcus; Lenzner, Jörg; Lorenz, Michael; Wenckstern, Holger von; Schmidt-Grund, Rüdiger; Grundmann, Marius [Institut für Experimentelle Physik II, Universität Leipzig, Halbleiterphysik, Linnéstr. 5, 04103 Leipzig (Germany)

    2015-03-28

    We present X-ray diffraction and Raman spectroscopy investigations of a (100)-oriented (Al{sub x}Ga{sub 1–x}){sub 2}O{sub 3} thin film on MgO (100) and bulk-like ceramics in dependence on their composition. The thin film grown by pulsed laser deposition has a continuous lateral composition spread allowing to determine precisely the dependence of the phonon mode properties and lattice parameters on the chemical composition. For x < 0.4, we observe the single-phase β-modification. Its lattice parameters and phonon energies depend linearly on the composition. We determined the slopes of these dependencies for the individual lattice parameters and for nine Raman lines, respectively. While the lattice parameters of the ceramics follow Vegard's rule, deviations are observed for the thin film. This deviation has only a small effect on the phonon energies, which show a reasonably good agreement between thin film and ceramics.

  7. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bruchhausen, A [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Lanzillotti-Kimura, N D [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Fainstein, A [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Soukiassian, A [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Tenne, D A [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Schlom, D [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Xi, X X [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Cantarero, A [Materials Science Institute, University of Valencia, PO Box 22085, E-46071 Valencia (Spain)

    2007-12-15

    We study high quality molecular-beam epitaxy grown BaTiO{sub 3}/SrTiO{sub 3} superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO{sub 3}/SrTiO{sub 3} layer thicknesses the effective sound velocities within each of the layers are obtained.

  8. Frequency and Temperature Dependence of Anharmonic Phonon Relaxation Rate in Carbon Nanotubes

    International Nuclear Information System (INIS)

    Hepplestone, S P; Srivastava, G P

    2007-01-01

    The relaxation rate of phonon modes in the (10, 10) single wall carbon nanotube undergoing three-phonon interactions at various temperatures has been studied using both qualitative and quantitative approaches based upon Fermi's Golden Rule and a quasi-elastic continuum model for the anharmonic potential. For the quantitative calculations, dispersion relations for the phonon modes were obtained from analytic expressions developed by Zhang et al. The qualitative expressions were derived using simple linear phonon dispersions relations. We show that in the high temperature regime the relaxation rate varies linearly with temperature and with the square of the frequency. In the low temperature regime we show that the relaxation rate varies exponentially with the inverse of temperature. These results have some very interesting implifications for effects for mean free path and thermal conductivity calculations

  9. Search for the 3-phonon state of 40Ca

    International Nuclear Information System (INIS)

    Fallot, M.

    2002-09-01

    We study collective vibrational states of the nucleus: giant resonances and multiphonon states. It has been shown that multiphonon states, which are built with several superimposed giant resonances, can be excited in inelastic heavy ion scattering near the grazing angle. No three photon states have been observed until now. An experiment has been performed at GANIL, aiming at the observation of the 3-phonon state built with the giant quadrupole resonance (GQR) in 40 Ca, with the reaction 40 Ca + 40 Ca at 50 A.Me.V. The ejectile was identified in the SPEG spectrometer. Light charged particles were detected in 240 CsI scintillators of the INDRA 4π array. The analysis confirms the previous results about the GQR and the 2-phonon state in 40 Ca. For the first time, we have measured an important direct decay branch of the GQR by alpha particles. Applying the so-called 'missing energy method' to events containing three protons measured in coincidence with the ejectile, we observe a direct decay branch revealing the presence of a 3-phonon state in the excitation energy region expected for the triple GQR. Dynamical processes are also studied in the inelastic channel, emphasizing a recently discovered mechanism named towing-mode. We observe for the first time the towing-mode of alpha particles. The energies of multiphonon states in 40 Ca and 208 Pb have been computed microscopically including some anharmonicities via boson mapping methods. The basis of the calculation has been extended to the 3-phonon states. Our results show large anharmonicities (several MeV), due to the coupling of 3-phonon states to 2-phonon states. The extension of the basis to 4-phonon states has been performed for the first time. The inclusion of the 4 phonon states in the calculation did not affect the previous observations concerning the 2-phonon states. Preliminary results on the anharmonicities of the 3-phonon states are presented. (author)

  10. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low-k Films: A Surface Brillouin Scattering Study

    Science.gov (United States)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-04-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low-k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  11. Multiple topological phases in phononic crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2017-01-01

    We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.

  12. Multiple topological phases in phononic crystals

    KAUST Repository

    Chen, Zeguo

    2017-11-20

    We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.

  13. Effects of strain on phonon interactions and phase nucleation in several semiconductor and nano particle systems

    Science.gov (United States)

    Tallman, Robert E.

    Raman scattering is utilized to explore the effects of applied pressure and strain on anharmonic phonon interactions and nucleation of structural transitions in several bulk and nanoparticle semiconductor systems. The systems investigated are bulk ZnS and ZnSe in several isotopic compositions, InP/CdS core/shell nanoparticles exhibiting confined and surface optical Raman modes, and amorphous selenium films undergoing photo-induced crystallization. The anharmonic decay of long-wavelength optical modes into two-phonon acoustic combinations modes is studied in 64Zn32S, 64Zn34S, natZnatS bulk crystals by measuring the TO(Gamma) Raman line-shape as a function of applied hydrostatic pressure. The experiments are carried out at room temperature and 16K for pressures up to 150 kbars using diamond-anvil cells. The most striking effects occur in 68Zn32S where the TO(Gamma) peak narrows by a factor of 10 and increases in intensity at pressures for which the TO(Gamma) frequency has been tuned into a gap in the two-phonon density of states (DOS). In all the isotopic compositions, the observed phonon decay processes can be adequately explained by a second order perturbation treatment of the anharmonic coupling between TO(Gamma) and TA + LA combinations at various critical points, combined with an adiabatic bond-charge model for the phonon DOS and the known mode Gruneisen parameters. Bulk ZnSe crystals exhibit very different behavior. Here we find that anharmonic decay alone can not explain the excessive (˜ 60 cm-1 ) broadening in the TO(Gamma) Raman peak observed as the pressure approaches to within 50kbar of the ZB -> B1 phase transition (at P ˜ 137 kbar). Rather the broadening appears to arise from antecedent nucleation of structural changes within nanoscopic domains, with the mechanism for line-shape changes being mode mixing via localization and disorder instead of anharmonicity. To sort out these contributions, pressure experiments on natural ZnSe and on isotopically pure

  14. Search for the 3-phonon state of {sup 40}Ca; Recherche de l'etat a trois phonons dans le {sup 40}Ca

    Energy Technology Data Exchange (ETDEWEB)

    Fallot, M

    2002-09-01

    We study collective vibrational states of the nucleus: giant resonances and multiphonon states. It has been shown that multiphonon states, which are built with several superimposed giant resonances, can be excited in inelastic heavy ion scattering near the grazing angle. No three photon states have been observed until now. An experiment has been performed at GANIL, aiming at the observation of the 3-phonon state built with the giant quadrupole resonance (GQR) in {sup 40}Ca, with the reaction {sup 40}Ca + {sup 40}Ca at 50 A.Me.V. The ejectile was identified in the SPEG spectrometer. Light charged particles were detected in 240 CsI scintillators of the INDRA 4{pi} array. The analysis confirms the previous results about the GQR and the 2-phonon state in {sup 40}Ca. For the first time, we have measured an important direct decay branch of the GQR by alpha particles. Applying the so-called 'missing energy method' to events containing three protons measured in coincidence with the ejectile, we observe a direct decay branch revealing the presence of a 3-phonon state in the excitation energy region expected for the triple GQR. Dynamical processes are also studied in the inelastic channel, emphasizing a recently discovered mechanism named towing-mode. We observe for the first time the towing-mode of alpha particles. The energies of multiphonon states in {sup 40}Ca and {sup 208}Pb have been computed microscopically including some anharmonicities via boson mapping methods. The basis of the calculation has been extended to the 3-phonon states. Our results show large anharmonicities (several MeV), due to the coupling of 3-phonon states to 2-phonon states. The extension of the basis to 4-phonon states has been performed for the first time. The inclusion of the 4 phonon states in the calculation did not affect the previous observations concerning the 2-phonon states. Preliminary results on the anharmonicities of the 3-phonon states are presented. (author)

  15. Simultaneous microwave photonic and phononic band gaps in piezoelectric–piezomagnetic superlattices with three types of domains in a unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zheng-hua [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Jiang, Zheng-Sheng [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Chen, Tao [Laboratory of Quantum Information and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lei, Da-Jun [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China); Yan, Wen-Yan, E-mail: yanwenyan88@126.com [School of Software and Communication Engineering, Xiangnan University, Chenzhou 423000 (China); Qiu, Feng; Huang, Jian-Quan; Deng, Hai-Ming; Yao, Min [Xiangnan University-Gospell Joint Laboratory of Microwave Communication Technology, Xiangnan University, Chenzhou 423000 (China)

    2016-04-29

    A novel phoxonic crystal using the piezoelectric (PMN-PT) and piezomagnetic (CoFe{sub 2}O{sub 4}) superlattices with three types of domains in a unit cell (PPSUC) is present, in which dual microwave photonic and phononic band gaps can be obtained simultaneously. Two categories of phononic band gaps, originating from both the Bragg scattering of acoustic waves in periodic structures at the Brillouin zone boundary and the electromagnetic wave-lattice vibration couplings near the Brillouin zone center, can be observed in the phononic band structures. The general characteristics of the microwave photonic band structures are similar to those of pure piezoelectric or piezomagnetic superlattices, with the major discrepancy being the appearance of nearly dispersionless branches within the microwave photonic band gaps, which show an extremely large group velocity delay. Thus, the properties may also be applied to compact acoustic-microwave devices. - Highlights: • Dual microwave photonic and phononic band gaps can coexist in the PPSUC. • Two categories of phononic band gaps with different mechanism can be obtained. • Nearly dispersionless branches appear in the microwave photonic band gaps.

  16. Surface phonon modes of the NaI(001) crystal surface by inelastic He atom scattering

    International Nuclear Information System (INIS)

    Brug, W.P.; Chern, G.; Duan, J.; Safron, S.A.; Skofronick, J.G.; Benedek, G.

    1990-01-01

    The present theoretical treatment of the surface dynamics of ionic insulators employs the shell model with parameters obtained from bulk materials. The approach has been generally very successful in comparisons with experiment. However, most of the experimental surface dynamics work has been on the low-mass alkali halides with very little effort on higher energy modes or on the heavier alkali halides, where effects from relaxation might be important. The work of this paper explores these latter two conditions. Inelastic scattering of He atoms from the left-angle 110 right-angle NaI(001) surface has been used to obtain the acoustic S 1 Rayleigh mode, the S 6 longitudinal mode, and the S 8 crossing mode, however, no gap S 4 optical mode was seen. The results compare favorably with reported theoretical models employing both slab calculations and the Green's function method thus indicating that bulk parameters and the shell model go a long way in explaining most of the observations

  17. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Lawrence Berkeley Lab., CA

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 angstrom Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 angstrom, 500 angstrom, and 300 angstrom per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 angstrom/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 angstrom/side appear to correspond with the phonon transmission study

  18. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, W.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  19. Efficient excitation of nonlinear phonons via chirped pulses: Induced structural phase transitions

    Science.gov (United States)

    Itin, A. P.; Katsnelson, M. I.

    2018-05-01

    Nonlinear phononics play important role in strong laser-solid interactions. We discuss a dynamical protocol for efficient phonon excitation, considering recent inspiring proposals: inducing ferroelectricity in paraelectric perovskites, and inducing structural deformations in cuprates [Subedi et al., Phys. Rev. B 89, 220301(R) (2014), 10.1103/PhysRevB.89.220301; Phys. Rev. B 95, 134113 (2017), 10.1103/PhysRevB.95.134113]. High-frequency phonon modes are driven by midinfrared pulses, and coupled to lower-frequency modes those indirect excitations cause structural deformations. We study in more detail the case of KTaO3 without strain, where it was not possible to excite the needed low-frequency phonon mode by resonant driving of the higher frequency one. Behavior of the system is explained using a reduced model of coupled driven nonlinear oscillators. We find a dynamical mechanism which prevents effective excitation at resonance driving. To induce ferroelectricity, we employ driving with sweeping frequency, realizing so-called capture into resonance. The method can be applied to many other related systems.

  20. Tunable phonon-induced transparency in bilayer graphene nanoribbons.

    Science.gov (United States)

    Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon

    2014-08-13

    In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.

  1. Phonon dispersion curves for CsCN

    International Nuclear Information System (INIS)

    Gaur, N.K.; Singh, Preeti; Rini, E.G.; Galgale, Jyostna; Singh, R.K.

    2004-01-01

    The motivation for the present work was gained from the recent publication on phonon dispersion curves (PDCs) of CsCN from the neutron scattering technique. We have applied the extended three-body force shell model (ETSM) by incorporating the effect of coupling between the translation modes and the orientation of cyanide molecules for the description of phonon dispersion curves of CsCN between the temperatures 195 and 295 K. Our results on PDCs in symmetric direction are in good agreement with the experimental data measured with inelastic neutron scattering technique. (author)

  2. Resonant exciton-phonon coupling in ZnO nanorods at room temperature

    Directory of Open Access Journals (Sweden)

    Soumee Chakraborty

    2011-09-01

    Full Text Available Vibronic and optoelectronic properties, along with detailed studies of exciton-phonon coupling at room temperature (RT for random and aligned ZnO nanorods are reported. Excitation energy dependent Raman studies are performed for detailed analysis of multi-phonon processes in the nanorods. We report here the origin of coupling between free exciton and its associated phonon replicas, including its higher order modes, in the photoluminescence spectra at RT. Resonance of excitonic electron and resonating first order zone center LO phonon, invoked strongly by Frolich interaction, are made responsible for the observed phenomenon.

  3. Designing Phononic Crystals with Wide and Robust Band Gaps

    Science.gov (United States)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  4. Designing Phononic Crystals with Wide and Robust Band Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jia, Zian [State University of New York at Stony Brook; Yang, Haoxiang [State University of New York at Stony Brook; Wang, Lifeng [State University of New York at Stony Brook

    2018-04-16

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  5. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    International Nuclear Information System (INIS)

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen; Qi, Dong-Xiang

    2015-01-01

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths

  6. Blue and red shifted temperature dependence of implicit phonon shifts in graphene

    Science.gov (United States)

    Mann, Sarita; Jindal, V. K.

    2017-07-01

    We have calculated the implicit shift for various modes of frequency in a pure graphene sheet. Thermal expansion and Grüneisen parameter which are required for implicit shift calculation have already been studied and reported. For this calculation, phonon frequencies are obtained using force constants derived from dynamical matrix calculated using VASP code where the density functional perturbation theory (DFPT) is used in interface with phonopy software. The implicit phonon shift shows an unusual behavior as compared to the bulk materials. The frequency shift is large negative (red shift) for ZA and ZO modes and the value of negative shift increases with increase in temperature. On the other hand, blue shift arises for all other longitudinal and transverse modes with a similar trend of increase with increase in temperature. The q dependence of phonon shifts has also been studied. Such simultaneous red and blue shifts in transverse or out plane modes and surface modes, respectively leads to speculation of surface softening in out of plane direction in preference to surface melting.

  7. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter

    International Nuclear Information System (INIS)

    Bifano, Michael F P; Kaul, Pankaj B; Prakash, Vikas

    2010-01-01

    This paper reports dependency of specific heat and ballistic thermal conductance on cross-sectional geometry (tube versus rod) and size (i.e., diameter and wall thickness), in free-standing isotropic non-metallic crystalline nanostructures. The analysis is performed using dispersion relations found by numerically solving the Pochhammer-Chree frequency equation for a tube. Estimates for the allowable phonon dispersion relations within the crystal lattice are obtained by modifying the elastic acoustic dispersion relations so as to account for the discrete nature of the material's crystal lattice. These phonon dispersion relations are then used to evaluate the specific heat and ballistic thermal conductance in the nanostructures as a function of the nanostructure geometry and size. Two major results are revealed in the analysis: increasing the outer diameter of a nanotube while keeping the ratio of the inner to outer tube radius (γ) fixed increases the total number of available phonon modes capable of thermal population. Secondly, decreasing the wall thickness of a nanotube (i.e., increasing γ) while keeping its outer diameter fixed, results in a drastic decrease in the available phonon mode density and a reduction in the frequency of the longitudinal and flexural acoustic phonon modes in the nanostructure. The dependency of the nanostructure's specific heat on temperature indicates 1D, 2D, and 3D geometric phonon confinement regimes. Transition temperatures for each phonon confinement regime are shown to depend on both the nanostructure's wall thickness and outer radius. Compared to nanowires (γ = 0), the frequency reduction of acoustic phonon modes in thinner walled nanotubes (γ = 0.96) is shown to elevate the ballistic thermal conductance of the thin-walled nanotube between 0.2 and 150 K. At 20 K, the ballistic thermal conductance of the thin-walled nanotube (γ = 0.96) becomes 300% greater than that of a solid nanowire. For temperatures above 150 K, the trend

  8. Renormalized modes in cuprate superconductors

    Science.gov (United States)

    Gupta, Anushri; Kumari, Anita; Verma, Sanjeev K.; Indu, B. D.

    2018-04-01

    The renormalized mode frequencies are obtained with the help of quantum dynamical approach of many body phonon Green's function technique via a general Hamiltonian (excluding BCS Hamiltonian) including the effects of phonons and electrons, anharmonicities and electron-phonon interactions. The numerical estimates have been carried out to study the renormalized mode frequency of high temperature cuprate superconductor (HTS) YBa2Cu3O7-δ using modified Born-Mayer-Huggins interaction potential (MBMHP) best applicable to study the dynamical properties of all HTS.

  9. Real-Time Observation of Exciton-Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells.

    Science.gov (United States)

    Ni, Limeng; Huynh, Uyen; Cheminal, Alexandre; Thomas, Tudor H; Shivanna, Ravichandran; Hinrichsen, Ture F; Ahmad, Shahab; Sadhanala, Aditya; Rao, Akshay

    2017-11-28

    Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication, and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons, remains an open question. Here, we investigate two widely used materials, namely, butylammonium lead iodide (CH 3 (CH 2 ) 3 NH 3 ) 2 PbI 4 and hexylammonium lead iodide (CH 3 (CH 2 ) 5 NH 3 ) 2 PbI 4 , both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton-phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm -1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 and 137 cm -1 . Using the determined optical phonon energies, we analyzed photoluminescence broadening mechanisms. At low temperatures (photoluminescence line shape observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.

  10. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    Science.gov (United States)

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  11. Control of coherent information via on-chip photonic–phononic emitter–receivers

    Science.gov (United States)

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2015-01-01

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405

  12. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying

    2017-12-15

    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric

  13. One phonon resonant Raman scattering in free-standing quantum wires

    International Nuclear Information System (INIS)

    Zhao, Xiang-Fu; Liu, Cui-Hong

    2007-01-01

    The scattering intensity (SI) of a free-standing cylindrical semiconductor quantum wire for an electron resonant Raman scattering (ERRS) process associated with bulk longitudinal optical (LO) phonon modes and surface optical (SO) phonon modes is calculated separately for T=0 K. The Frohlich interaction is considered to illustrate the theory for GaAs and CdS systems. Electron states are confined within a free-standing quantum wire (FSW). Single parabolic conduction and valence bands are assumed. The selection rules are studied. Numerical results and a discussion are also presented for various radii of the cylindrical

  14. Highest-order optical phonon-mediated relaxation in CdTe/ZnTe quantum dots

    International Nuclear Information System (INIS)

    Masumoto, Yasuaki; Nomura, Mitsuhiro; Okuno, Tsuyoshi; Terai, Yoshikazu; Kuroda, Shinji; Takita, K.

    2003-01-01

    The highest 19th-order longitudinal optical (LO) phonon-mediated relaxation was observed in photoluminescence excitation spectra of CdTe self-assembled quantum dots grown in ZnTe. Hot excitons photoexcited highly in the ZnTe barrier layer are relaxed into the wetting-layer state by emitting multiple LO phonons of the barrier layer successively. Below the wetting-layer state, the LO phonons involved in the relaxation are transformed to those of interfacial Zn x Cd 1-x Te surrounding CdTe quantum dots. The ZnTe-like and CdTe-like LO phonons of Zn x Cd 1-x Te and lastly acoustic phonons are emitted in the relaxation into the CdTe dots. The observed main relaxation is the fast relaxation directly into CdTe quantum dots and is not the relaxation through either the wetting-layer quantum well or the band bottom of the ZnTe barrier layer. This observation shows very efficient optical phonon-mediated relaxation of hot excitons excited highly in the ZnTe conduction band through not only the ZnTe extended state but also localized state in the CdTe quantum dots reflecting strong exciton-LO phonon interaction of telluride compounds

  15. New vibrational mode of the acoustic type in Nd(Pr)2 Cu O4 single crystals

    International Nuclear Information System (INIS)

    Fil', D.V.; Kolobov, I.G.; Fil', V.D.; Barilo, S.N.; Zhigunov, D.I.

    1995-01-01

    Sound velocities along main symmetry directions as well as their angle dependences in (100),(110)-type planes are measured in Nd(Pr) 2 Cu O 4 . Anomalies in the angle dependences are found, which are interpreted as a result of the interaction of elastic vibrations with an additional plane mode of the acoustic type. According to the proposed interpretation, the bare spectrum of the additional mode is two-dimensional, and the origin of the mode is connected with the electron degrees of freedom in the Cu O 2 -planes. A phenomenological model for description of acoustic mode spectra in the investigated systems is proposed. On the basis of the anion model of HTSC, a possible microscopic scenario of the appearance of the additional mode is analyzed. In the framework of the phenomenological model, the Debye temperatures are computed, which are in agreement with the specific heat data. The values of the components of the elastic moduli tensor are given

  16. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects.

    Science.gov (United States)

    Jiang, Jin-Wu; Yang, Nuo; Wang, Bing-Shen; Rabczuk, Timon

    2013-04-10

    We perform molecular dynamics simulations to investigate the reduction of the thermal conductivity by kinks in silicon nanowires. The reduction percentage can be as high as 70% at room temperature. The temperature dependence of the reduction is also calculated. By calculating phonon polarization vectors, two mechanisms are found to be responsible for the reduced thermal conductivity: (1) the interchanging effect between the longitudinal and transverse phonon modes and (2) the pinching effect, that is, a new type of localization, for the twisting and transverse phonon modes in the kinked silicon nanowires. Our work demonstrates that the phonon interchanging and pinching effects, induced by kinking, are brand-new and effective ways in modulating heat transfer in nanowires, which enables the kinked silicon nanowires to be a promising candidate for thermoelectric materials.

  17. Simulation of long-wave phonon ({lambda}> b) scattering at geometric imperfections in nanowires by FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Salamatov, E.I. [Physico-Technical Institute, UrB RAS, 132 Kirov Street, Izhevsk (Russian Federation)

    2012-01-15

    Elementary acts of acoustic phonon scattering in nanowires are studied numerically by the FDTD method. The points of bifurcation of the main waveguide are considered as defects. The particularities of the reflection/transmission coefficient of phonons of different polarizations are studied as a function of the frequency and geometrical parameters of the problem. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Creation of high-energy phonons by four-phonon processes in anisotropic phonon system of He II

    International Nuclear Information System (INIS)

    Adamenko, I.N.; Nemchenko, K.E.; Slipko, V.A.; Kitsenko, Yu.A.; Wyatt, A.F.G.

    2007-01-01

    The problem of the creation of high-energy phonons (h-phonons) by a pulse of low-energy phonons (I-phonons) moving from a heater to a detector in superfluid helium, is solved. The rate of h-phonon creation is obtained and it is shown that created h-phonons occupy a much smaller solid angle in momentum space, than the I-phonons. Analytical expression for the creation rate of h-phonon, along the symmetry axis of a pulse, are derived. It allows us to get useful approximate analytical expressions for creation rate of h-phonons. The time dependences of the parameters which describe the I-phonon pulse are obtained. This shows that half of the initial energy of I-phonon pulse can be transferred into h-phonons. The results of the calculations are compared with experimental data and we show that this theory explains a number of experimental results. The value of the momentum, which separates the I- and h-phonon subsystems, is found

  19. Effect of Phonon Drag on the Thermopower in a Parabolic Quantum Well

    Energy Technology Data Exchange (ETDEWEB)

    Hasanov, Kh. A., E-mail: xanlarhasanli@rambler.ru; Huseynov, J. I. [Azerbaijan State Pedagogical University (Azerbaijan); Dadashova, V. V. [Baku State University (Azerbaijan); Aliyev, F. F. [National Academy of Sciences of Azerbaijan, Abdullaev Institute of Physics (Azerbaijan)

    2016-03-15

    The theory of phonon-drag thermopower resulting from a temperature gradient in the plane of a two-dimensional electron gas layer in a parabolic quantum well is developed. The interaction mechanisms between electrons and acoustic phonons are considered, taking into account potential screening of the interaction. It is found that the effect of electron drag by phonons makes a significant contribution to the thermopower of the two-dimensional electron gas. It is shown that the consideration of screening has a significant effect on the drag thermopower. For the temperature dependence of the thermopower in a parabolic GaAs/AlGaAs quantum well in the temperature range of 1–10 K, good agreement between the obtained theoretical results and experiments is shown.

  20. Nonlocal analysis of the excitation of the geodesic acoustic mode by drift waves

    DEFF Research Database (Denmark)

    Guzdar, P.N.; Kleva, R.G.; Chakrabarti, N.

    2009-01-01

    The geodesic acoustic modes (GAMs) are typically observed in the edge region of toroidal plasmas. Drift waves have been identified as a possible cause of excitation of GAMs by a resonant three wave parametric process. A nonlocal theory of excitation of these modes in inhomogeneous plasmas typical...... of the edge region of tokamaks is presented in this paper. The continuum GAM modes with coupling to the drift waves can create discrete "global" unstable eigenmodes localized in the edge "pedestal" region of the plasma. Multiple resonantly driven unstable radial eigenmodes can coexist on the edge pedestal....

  1. A realistic analysis of the phonon growth characteristics in a degenerate semiconductor using a simplified model of Fermi-Dirac distribution

    Science.gov (United States)

    Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.

    2017-01-01

    The phonon growth characteristic in a degenerate semiconductor has been calculated under the condition of low temperature. If the lattice temperature is high, the energy of the intravalley acoustic phonon is negligibly small compared to the average thermal energy of the electrons. Hence one can traditionally assume the electron-phonon collisions to be elastic and approximate the Bose-Einstein (B.E.) distribution for the phonons by the simple equipartition law. However, in the present analysis at the low lattice temperatures, the interaction of the non equilibrium electrons with the acoustic phonons becomes inelastic and the simple equipartition law for the phonon distribution is not valid. Hence the analysis is made taking into account the inelastic collisions and the complete form of the B.E. distribution. The high-field distribution function of the carriers given by Fermi-Dirac (F.D.) function at the field dependent carrier temperature, has been approximated by a well tested model that apparently overcomes the intrinsic problem of correct evaluation of the integrals involving the product and powers of the Fermi function. Hence the results thus obtained are more reliable compared to the rough estimation that one may obtain from using the exact F.D. function, but taking recourse to some over simplified approximations.

  2. Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals

    International Nuclear Information System (INIS)

    Yang Xuefeng; Wang Zhengxiong

    2012-01-01

    Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.

  3. The Role of C-axis Polarized Phonons in High Temperature Superconductors

    International Nuclear Information System (INIS)

    Timusk, T.; Homes, C. C.; Reichardt, W.

    1995-01-01

    We report on the optical conductivity of c-axis phonons in YBa 2 Cu 3 O 7-σ as a function of doping and temperature. At room temperature the frequencies and strengths of the modes are in good agreement with results from shell models based on neutron scattering. We discuss the apical oxygen mode which becomes asymmetric in underdoped materials and argue, with Burns, that the Au mode shifts from 570 cm -1 to 610 cm -1 for the two-fold coordinated copper sites in the chain layer in oxygen depleted materials. At low temperature there is a large transfer of c-axis phonon oscillator strength from O(4) apical and O (2, 3,) plane bending modes, to a very broad at 400 cm -1

  4. Single-photon indistinguishability: influence of phonons

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka

    2012-01-01

    of indistinguishability, absent in the approximate theories. The maximum arises due to virtual processes in the highly non-Markovian short-time regime, which dominate the decoherence for small QD-cavity coupling, and phonon-mediated real transitions between the upper and lower polariton branches in the long-time regime......Recent years have demonstrated that the interaction with phonons plays an important role in semiconductor based cavity QED systems [2], consisting of a quantum dot (QD) coupled to a single cavity mode [Fig. 1(a)], where the phonon interaction is the main decoherence mechanism. Avoiding decoherence...... as a function of the QD-cavity coupling strength for light emitted from the QD and the cavity, respectively, for all the employed methods. Both the Lindblad and TCL theories deviate significantly from our exact results, where, importantly, the exact results predict a pronounced maximum in the degree...

  5. Mean E×B shear effect on geodesic acoustic modes in Tokamaks

    International Nuclear Information System (INIS)

    Singh, Rameswar; Gurcan, Ozgur D.

    2015-01-01

    E × B shearing effect on geodesic acoustic mode (GAM) is investigated for the first time both as an initial value problem in the shearing frame and as an eigenvalue value problem in the lab frame. The nontrivial effects are that E × B shearing couples the standard GAM perturbations to their complimentary poloidal parities. The resulting GAM acquires an effective inertia increasing in time leading to GAM damping. Eigenmode analysis shows that GAMs are radially localized by E × B shearing with the mode width being inversely proportional and radial wave number directly proportional to the shearing rate for weak shear. (author)

  6. Influence of phonons on semiconductor quantum emission

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, Thomas

    2009-07-06

    A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)

  7. Acoustic study of YBa sub 2 Cu sub 3 O sub x thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Chi, C.; Koren, G.; Gupta, A. (IBM Research Division, Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598 (US))

    1991-03-01

    The attenuation of surface acoustic waves by epitaxial YBa{sub 2}Cu{sub 3}O{sub {ital x}} films has been studied for {ital x}{congruent}6 to 7. For fully oxygenated samples, the acoustic attenuation as a function of temperature shows two broad peaks at about 135 and 240 K, and decreases monotonically below the lower peak temperature. The cause of attenuation peaks is attributed to scattering by optical phonons. Our data do not show any gap structure at {ital T}{sub {ital c}} due to relatively weak electron-phonon interactions at the acoustic frequencies. As the oxygen deficiency increases, the temperature dependence of the dc resistance changes from metallic to semiconducting and finally to insulating behavior. Acoustic attenuation data correspondingly show a drastic change due to different attenuation mechanisms: from the phonon scattering loss in the metallic regime to the electric-field coupling loss in the semiconducting and insulating regimes. In the latter regimes, the temperature dependence of low-frequency resistance calculated from the attenuation data can be fitted to a three-dimensional Mott variable-range-hopping model.

  8. Phonons and solitons in the "thermal" sine-Gordon system

    DEFF Research Database (Denmark)

    Salerno, Mario; Jørgensen, E.; Samuelsen, Mogens Rugholm

    1984-01-01

    Standard methods of stochastic processes are used to study the coupling of the sine-Gordon system with a heat reservoir. As a result we find thermal phonons with an average energy of kB T per mode. The translational mode (zero mode) is found to carry an average energy of 1 / 2kBT. This last value...

  9. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    Science.gov (United States)

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  10. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    International Nuclear Information System (INIS)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M S; Guest, James K

    2016-01-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  11. Phonon spectra in SiO2 glasses

    International Nuclear Information System (INIS)

    Perez R, J.F.; Jimenez S, S.; Gonzalez H, J.; Vorobiev, Y.V.; Hernandez L, M.A.; Parga T, J.R.

    1999-01-01

    Phonon spectra in SiO 2 sol-gel made glasses annealed under different conditions are investigated using infrared absorption and Raman scattering. These data are compared with those obtained in commercial optical-quality quartz. All the materials exhibit the same phonon bands, the exact position and the intensity depend on the measuring technique and on the sample preparation method. The phonon spectra in this material are interpreted on the basis of a simple quasi-linear description of elastic waves in an O-Si-O chain. It is shown that the main features observed in the range 400-1400 cm -1 can be predicted using a quasi-linear chain model in which the band at 1070 cm -1 is assigned to the longitudinal optical waves in the O-Si-O chain with the smallest possible wavelength at the Brillouin zone boundary, the band located around 450 cm -1 is assigned to the transversal optical waves and the band at 800 cm -1 to the longitudinal acoustical waves with the same wavelength. The degree of structural disorder can be also deduced within the framework of the proposed model. (Author)

  12. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride

    Science.gov (United States)

    Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard

    2018-04-01

    Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.

  13. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  14. LO-phonon and plasmon coupling in neutron-transmutation-doped GaAs

    International Nuclear Information System (INIS)

    Kuriyama, K.; Sakai, K.; Okada, M.

    1996-01-01

    Coupling between the longitudinal-optic (LO) phonon mode and the longitudinal plasma mode in neutron-transmutation-doped (NTD) semi-insulating GaAs was studied using Raman-scattering spectroscopy and a Fourier-transform infrared spectrometer. When the electron concentration due to the activation of NTD impurities (Ge Ga and Se As ) approaches ∼8x10 16 cm -3 , the LO-phonon endash plasmon coupling is observed. This behavior is consistent with the free-electron absorption due to the activation of NTD impurities in samples annealed above 600 degree C. copyright 1996 The American Physical Society

  15. Influence of acoustic dominant mode propagation in a trifurcated lined duct with different impedances

    International Nuclear Information System (INIS)

    Ayub, M; Tiwana, M H; Mann, A B

    2010-01-01

    In this study, we analyzed the diffraction of the acoustic dominant mode in a parallel-plate trifurcated waveguide with normal impedance boundary conditions in the case where surface impedances of the upper and lower infinite plates are different from each other. The acoustic dominant mode is incident in a soft/hard semi-infinite duct located symmetrically in the infinite lined duct. The solution of the boundary value problem using Fourier transform leads to two simultaneous modified Wiener-Hopf equations that are uncoupled using the pole removal technique. Two infinite sets of unknown coefficients are involved in the solution, which satisfy two infinite systems of linear algebraic equations. These systems are solved numerically. The new kernel functions are factorized. Some graphical results showing the influence of sundry parameters of interest on the reflection coefficient are presented.

  16. Fluid phonons, protoinflationary dynamics and large-scale gravitational fluctuations

    CERN Document Server

    Giovannini, Massimo

    2013-01-01

    We explore what can be said on the effective temperature and sound speed of a statistical ensemble of fluid phonons present at the onset of a conventional inflationary phase. The phonons are the actual normal modes of the gravitating and irrotational fluid that dominates the protoinflationary dynamics. The bounds on the tensor to scalar ratio result in a class of novel constraints involving the slow roll parameter, the sound speed of the phonons and the temperature of the plasma prior to the onset of inflation. If the current size of the Hubble radius coincides with the inflationary event horizon redshifted down to the present epoch, the sound speed of the phonons can be assessed from independent measurements of the tensor to scalar ratio and of the tensor spectral index.

  17. Observation of coherent optical phonons excited by femtosecond laser radiation in Sb films by ultrafast electron diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Ischenko, A. A. [Moscow Technological University, Institute of High Chemical Technologies (Russian Federation); Kochikov, I. V. [Moscow State University (Russian Federation); Misochko, O. V. [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation); Chekalin, S. V.; Ryabov, E. A. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)

    2017-03-15

    The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinations of these phonon modes in the Sb sample have also been experimentally observed.

  18. Observation of antiphase coherent phonons in the warped Dirac cone of Bi2Te3

    Science.gov (United States)

    Golias, E.; Sánchez-Barriga, J.

    2016-10-01

    In this Rapid Communication we investigate the coupling between excited electrons and phonons in the highly anisotropic electronic structure of the prototypical topological insulator Bi2Te3 . Using time- and angle-resolved photoemission spectroscopy we are able to identify the emergence and ultrafast temporal evolution of the longitudinal-optical A1 g coherent-phonon mode in Bi2Te3 . We observe an antiphase behavior in the onset of the coherent-phonon oscillations between the Γ K ¯ and the Γ M ¯ high-symmetry directions that is consistent with warping. The qualitative agreement between our density-functional theory calculations and the experimental results reveals the critical role of the anisotropic coupling between Dirac fermions and phonon modes in the topological insulator Bi2Te3 .

  19. The broad Brillouin doublet and CP of KTaO3, second sound vs. Two-phonon difference scattering

    International Nuclear Information System (INIS)

    Farhi, E.; Tagantsev, A.K.; Hehlen, B.; Courtens, E.; Boatner, L.A.

    1999-01-01

    Complete text of publication follows. Low-T Brillouin spectra of the incipient ferroelectric KTaO 3 exhibit a broad central peak (CP) (1), and some additional broad Brillouin doublet (BD) (2), that can both relate to phonon-density fluctuations (3). Starting from extensive new high resolution neutron scattering measurements in pure crystals, low lying phonon sheets were modelled in the central part of Brillouin zone. Such a parameterisation was then used in order to analyse those up-mentioned unusual features in teens of two-phonon mechanisms (4). Numerical evaluations show that transverse acoustic (TA) phonons whose normal damping is faster than the BD frequency (Γ DB > ω DB ) may produce hydrodynamic second sound (propagation of heat). Moreover, two-phonon difference scattering from low damping thermal TA phonons ((Γ DB DB ) can contribute to the spectra with either a sharp or a broader BD, depending on the phonon group velocity and phonon-sheet anisotropy. The position of the doublet is consistent with both mechanisms, but comparing the computed anisotropies with experimental Brillouin and neutron scattering data, one favours the second process. (author)

  20. Manipulation of Phonons with Phononic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Leseman, Zayd Chad [Univ. of New Mexico, Albuquerque, NM (United States)

    2015-07-09

    There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.

  1. Bulk-like-phonon polaritons in one-dimensional photonic superlattices

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Mora-Ramos, M. E.

    2017-05-01

    We investigate the properties of a one-dimensional photonic superlattice made of alternating layers of air and wurtzite aluminum nitride. The Maxwell equations are solved for any admissible values of the angle of incidence by means of the transfer matrix formalism. The band structure of the frequency spectrum is obtained, as well as the density of states and transmittance associated to both the TM and TE modes. The dispersion relations indicate that for oblique incidence and TM modes there is a component of the electric field oriented along the growth direction of the structure that couples with the longitudinal optical phonon oscillations of the aluminum nitride thus leading to the appearance of longitudinal phonon polaritons in the system.

  2. Phonon anomalies and electron-phonon coupling of metal surfaces and thin films; Phononenanomalien und Elektron-Phonon-Kopplung an Metalloberflaechen und duennen Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Flach, B.

    2000-01-01

    This thesis has two topics: One is the investigation of an adsorbate induced phonon anomaly on W(110) and Mo{sub 1-x}Re{sub x}(110) (x = 5, 15, 25%) with inelastic helium atom scattering (HAS). The other one is the study of the growth, morphology and dynamics of ultra-thin lithium films deposited on W(110). In 1992 a giant phonon anomaly was found by J. Luedecke on the hydrogen saturated W(110) and Mo(110) surfaces. The anomaly consists of a deep and sharp indentation in the phonon dispersion curves in which the phonon energy nearly drops to zero ({omega}{sub 1}). In addition, a small and broad dip in the surface Rayleigh mode is observed ({omega}{sub 2}). The anomaly appears in the anti {gamma}-H- as well as in the anti {gamma}-S-direction of the surface Brillouin zone (SBZ). Since its first discovery, numerous other experimental and theoretical studies have followed. In the present work the effects is reinvestigated and experimental parameters, such as the crystal temperature and the incident energy, were changed in order to study their influence on the anomalous phonon behavior. In the case of H/Mo(110) the substrate was changed as well by alloying with small amounts of rhenium. In the present experiments a strong crystal temperature dependence of the {omega}{sub 2}-branch was found which leads to lower energies at the 'dip' for smaller temperatures, while the {omega}{sub 1}-anomaly remains unchanged. Such behavior agrees well with the picture that the {omega}{sub 2}-branch is due to a Kohn anomaly. (orig.)

  3. Current & Heat Transport in Graphene Nanoribbons: Role of Non-Equilibrium Phonons

    Science.gov (United States)

    Pennington, Gary; Finkenstadt, Daniel

    2010-03-01

    The conducting channel of a graphitic nanoscale device is expected to experience a larger degree of thermal isolation when compared to traditional inversion channels of electronic devices. This leads to enhanced non-equilibrium phonon populations which are likely to adversely affect the mobility of graphene-based nanoribbons due to enhanced phonon scattering. Recent reports indicating the importance of carrier scattering with substrate surface polar optical phonons in carbon nanotubes^1 and graphene^2,3 show that this mechanism may allow enhanced heat removal from the nanoribbon channel. To investigate the effects of hot phonon populations on current and heat conduction, we solve the graphene nanoribbon multiband Boltzmann transport equation. Monte Carlo transport techniques are used since phonon populations may be tracked and updated temporally.^4 The electronic structure is solved using the NRL Tight-Binding method,^5 where carriers are scattered by confined acoustic, optical, edge and substrate polar optical phonons. [1] S. V. Rotkin et al., Nano Lett. 9, 1850 (2009). [2] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, Nature Nanotech. 3, 206 (2008). [3] V. Perebeinos and P. Avouris, arXiv:0910.4665v1 [cond-mat.mes-hall] (2009). [4] P. Lugli et al., Appl. Phys. Lett. 50, 1251 (1987). [5] D. Finkenstadt, G. Pennington & M.J. Mehl, Phys. Rev. B 76, 121405(R) (2007).

  4. Hybrid phonons in nanostructures

    CERN Document Server

    Ridley, Brian K

    2017-01-01

    Crystalline semiconductor nanostructures have special properties associated with electrons and lattice vibrations and their interaction, and this is the topic of the book. The result of spatial confinement of electrons is indicated in the nomenclature of nonostructures: quantum wells, quantum wires, and quantum dots. Confinement also has a profound effect on lattice vibrations and an account of this is the prime focus. The documentation of the confinement of acoustic modes goes back to Lord Rayleigh’s work in the late nineteenth century, but no such documentation exists for optical modes. Indeed, it is only comparatively recently that any theory of the elastic properties of optical modes exists, and the account given in the book is comprehensive. A model of the lattice dynamics of the diamond lattice is given that reveals the quantitative distinction between acoustic and optical modes and the difference of connection rules that must apply at an interface. The presence of interfaces in nanostructures forces ...

  5. Phonons and colossal thermal expansion behavior of Ag3Co(CN)6 and Ag3Fe(CN)6.

    Science.gov (United States)

    Mittal, R; Zbiri, M; Schober, H; Achary, S N; Tyagi, A K; Chaplot, S L

    2012-12-19

    Recently colossal volume thermal expansion has been observed in the framework compounds Ag(3)Co(CN)(6) and Ag(3)Fe(CN)(6). We have measured phonon spectra using neutron time-of-flight spectroscopy as a function of temperature and pressure. Ab initio calculations were carried out for the sake of analysis and interpretation. Bonding is found to be very similar in the two compounds. At ambient pressure, modes in the intermediate frequency part of the vibrational spectra in the Co compound are shifted slightly to higher energies as compared to the Fe compound. The temperature dependence of the phonon spectra gives evidence for a large explicit anharmonic contribution to the total anharmonicity for low-energy modes below 5 meV. We have found that modes are mainly affected by the change in size of the unit cell, which in turn changes the bond lengths and vibrational frequencies. Thermal expansion has been calculated via the volume dependence of phonon spectra. Our analysis indicates that Ag phonon modes within the energy range 2-5 meV are strongly anharmonic and major contributors to thermal expansion in both systems. The application of pressure hardens the low-energy part of the phonon spectra involving Ag vibrations and confirms the highly anharmonic nature of these modes.

  6. Hydrodynamic states of phonons in insulators

    Directory of Open Access Journals (Sweden)

    S.A. Sokolovsky

    2012-12-01

    Full Text Available The Chapman-Enskog method is generalized for accounting the effect of kinetic modes on hydrodynamic evolution. Hydrodynamic states of phonon system of insulators have been studied in a small drift velocity approximation. For simplicity, the investigation was carried out for crystals of the cubic class symmetry. It has been found that in phonon hydrodynamics, local equilibrium is violated even in the approximation linear in velocity. This is due to the absence of phonon momentum conservation law that leads to a drift velocity relaxation. Phonon hydrodynamic equations which take dissipative processes into account have been obtained. The results were compared with the standard theory based on the local equilibrium validity. Integral equations have been obtained for calculating the objects of the theory (including viscosity and heat conductivity. It has been shown that in low temperature limit, these equations are solvable by iterations. Steady states of the system have been considered and an expression for steady state heat conductivity has been obtained. It coincides with the famous result by Akhiezer in the leading low temperature approximation. It has been established that temperature distribution in the steady state of insulator satisfies a condition of heat source absence.

  7. Phonon-enhanced crystal growth and lattice healing

    Science.gov (United States)

    Buonassisi, Anthony; Bertoni, Mariana; Newman, Bonna

    2013-05-28

    A system for modifying dislocation distributions in semiconductor materials is provided. The system includes one or more vibrational sources for producing at least one excitation of vibrational mode having phonon frequencies so as to enhance dislocation motion through a crystal lattice.

  8. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer

    Science.gov (United States)

    Yang, G. Y.; Du, J. K.; Huang, B.; Jin, Y. A.; Xu, M. H.

    2017-04-01

    The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE) is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM). The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.

  9. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer

    Directory of Open Access Journals (Sweden)

    G. Y. Yang

    2017-04-01

    Full Text Available The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM. The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.

  10. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    International Nuclear Information System (INIS)

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    2017-01-01

    We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.

  11. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    Science.gov (United States)

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    2017-12-01

    Here, we describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.

  12. Bandgap measurements and the peculiar splitting of E{sub 2}{sup H} phonon modes of In{sub x}Al{sub 1-x}N nanowires grown by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Ng, Tien Khee; Prabaswara, Aditya; Ooi, Boon S., E-mail: boon.ooi@kaust.edu.sa [Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Anjum, Dalaver H.; Yang, Yang [Adavanced nanofabrication Imaging and characterization, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; El-Desouki, Munir M. [National Center for Nanotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442-6086 (Saudi Arabia)

    2016-07-28

    The dislocation free In{sub x}Al{sub 1-x}N nanowires (NWs) are grown on Si(111) by nitrogen plasma assisted molecular beam epitaxy in the temperature regime of 490 °C–610 °C yielding In composition ranges over 0.50 ≤ x ≤ 0.17. We study the optical properties of these NWs by spectroscopic ellipsometry (SE), photoluminescence, and Raman spectroscopies since they possesses minimal strain with reduced defects comparative to the planar films. The optical bandgap measurements of In{sub x}Al{sub 1-x}N NWs are demonstrated by SE where the absorption edges of the NW samples are evaluated irrespective of substrate transparency. A systematic Stoke shift of 0.04–0.27 eV with increasing x was observed when comparing the micro-photoluminescence spectra with the Tauc plot derived from SE. The micro-Raman spectra in the NWs with x = 0.5 showed two-mode behavior for A{sub 1}(LO) phonons and single mode behavior for E{sub 2}{sup H} phonons. As for x = 0.17, i.e., high Al content, we observed a peculiar E{sub 2}{sup H} phonon mode splitting. Further, we observe composition dependent frequency shifts. The 77 to 600 K micro-Raman spectroscopy measurements show that both AlN- and InN-like modes of A{sub 1}(LO) and E{sub 2}{sup H} phonons in In{sub x}Al{sub 1-x}N NWs are redshifted with increasing temperature, similar to that of the binary III group nitride semiconductors. These studies of the optical properties of the technologically important In{sub x}Al{sub 1-x}N nanowires will path the way towards lasers and light-emitting diodes in the wavelength of the ultra-violet and visible range.

  13. Investigation on the Effect of Underwater Acoustic Pressure on the Fundamental Mode of Hollow-Core Photonic Bandgap Fibers

    Directory of Open Access Journals (Sweden)

    Adel Abdallah

    2015-01-01

    Full Text Available Recently, microstructured optical fibers have become the subject of extensive research as they can be employed in many civilian and military applications. One of the recent areas of research is to enhance the normalized responsivity (NR to acoustic pressure of the optical fiber hydrophones by replacing the conventional single mode fibers (SMFs with hollow-core photonic bandgap fibers (HC-PBFs. However, this needs further investigation. In order to fully understand the feasibility of using HC-PBFs as acoustic pressure sensors and in underwater communication systems, it is important to study their modal properties in this environment. In this paper, the finite element solver (FES COMSOL Multiphysics is used to study the effect of underwater acoustic pressure on the effective refractive index neff of the fundamental mode and discuss its contribution to NR. Besides, we investigate, for the first time to our knowledge, the effect of underwater acoustic pressure on the effective area Aeff and the numerical aperture (NA of the HC-PBF.

  14. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Potemkin, F V; Mareev, E I [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Khodakovskii, N G [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  15. Amplitude-dependent topological edge states in nonlinear phononic lattices

    Science.gov (United States)

    Pal, Raj Kumar; Vila, Javier; Leamy, Michael; Ruzzene, Massimo

    2018-03-01

    This work investigates the effect of nonlinearities on topologically protected edge states in one- and two-dimensional phononic lattices. We first show that localized modes arise at the interface between two spring-mass chains that are inverted copies of each other. Explicit expressions derived for the frequencies of the localized modes guide the study of the effect of cubic nonlinearities on the resonant characteristics of the interface, which are shown to be described by a Duffing-like equation. Nonlinearities produce amplitude-dependent frequency shifts, which in the case of a softening nonlinearity cause the localized mode to migrate to the bulk spectrum. The case of a hexagonal lattice implementing a phononic analog of a crystal exhibiting the quantum spin Hall effect is also investigated in the presence of weakly nonlinear cubic springs. An asymptotic analysis provides estimates of the amplitude dependence of the localized modes, while numerical simulations illustrate how the lattice response transitions from bulk-to-edge mode-dominated by varying the excitation amplitude. In contrast with the interface mode of the first example studies, this occurs both for hardening and softening springs. The results of this study provide a theoretical framework for the investigation of nonlinear effects that induce and control topologically protected wave modes through nonlinear interactions and amplitude tuning.

  16. Electron-phonon heat exchange in quasi-two-dimensional nanolayers

    Science.gov (United States)

    Anghel, Dragos-Victor; Cojocaru, Sergiu

    2017-12-01

    We study the heat power P transferred between electrons and phonons in thin metallic films deposited on free-standing dielectric membranes. The temperature range is typically below 1 K, such that the wavelengths of the excited phonon modes in the system is large enough so that the picture of a quasi-two-dimensional phonon gas is applicable. Moreover, due to the quantization of the components of the electron wavevectors perpendicular to the metal film's surface, the electrons spectrum forms also quasi two-dimensional sub-bands, as in a quantum well (QW). We describe in detail the contribution to the electron-phonon energy exchange of different electron scattering channels, as well as of different types of phonon modes. We find that heat flux oscillates strongly with thickness of the film d while having a much smoother variation with temperature (Te for the electrons temperature and Tph for the phonons temperature), so that one obtains a ridge-like landscape in the two coordinates, (d, Te) or (d, Tph), with crests and valleys aligned roughly parallel to the temperature axis. For the valley regions we find P ∝ Te3.5 - Tph3.5. From valley to crest, P increases by more than one order of magnitude and on the crests P cannot be represented by a simple power law. The strong dependence of P on d is indicative of the formation of the QW state and can be useful in controlling the heat transfer between electrons and crystal lattice in nano-electronic devices. Nevertheless, due to the small value of the Fermi wavelength in metals, the surface imperfections of the metallic films can reduce the magnitude of the oscillations of P vs. d, so this effect might be easier to observe experimentally in doped semiconductors.

  17. The intermediate phase and low wave number phonon modes in antiferroelectric (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} ceramics discovered from temperature dependent Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xiaojuan; Guo, Shuang [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Hu, Zhigao, E-mail: zghu@ee.ecnu.edu.cn [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Chen, Xuefeng; Wang, Genshui [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Dong, Xianlin; Chu, Junhao [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2016-05-15

    Optical phonons and phase transitions of (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} (PLZST 97/2/60/40-100y/100y) ceramics with different compositions have been investigated by x-ray diffraction and temperature dependent Raman spectra. From the temperature dependence of low wavenumber phonon modes, two phase transitions (antiferroelectric orthorhombic to intermediate phase and intermediate phase to paraelectric cubic phase) were detected. The intermediate phase could be the coexistence one of antiferroelectric orthorhombic and ferroelectric rhombohedral phase. In addition, two modes (a soft mode and an anharmonic hopping central mode) were found in the high temperature paraelectric cubic phase. On cooling, the anharmonic hopping central mode splits into two modes in the terahertz range. Moreover, the antiferrodistortive mode appears in the antiferroelectric orthorhombic phase. Based on the analysis, the phase diagram of PLZST ceramics can be well improved. - Highlights: • The evolution of phonon modes in antiferroelectric PLZST ceramics. • An intermediate phase was found between orthorhombic and cubic phase. • The phase diagram of PLZST ceramics can be well improved.

  18. Imaging of microwave-induced acoustic fields in LiNbO{sub 3} by high-performance Brillouin microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Krueger, J K [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Univ. des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Elmazria, O [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Bouvot, L [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Mainka, J [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Universitaet des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Sanctuary, R [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Materiaux, Campus Luxembourg-Limpertsberg, L-1511 Luxembourg (Luxembourg); Rouxel, D [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Alnot, P [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France)

    2005-06-21

    High performance Brillouin microscopy (BM) has been used to characterize the spatial distribution of piezoelectrically induced acoustic fields excited at microwave frequencies in a LiNbO{sub 3} single crystal. It is demonstrated that under suitable conditions BM is able to detect microwave-induced bulk as well as surface acoustic waves. Brillouin spectroscopy is able to probe sound wave intensities of induced phonons, which are as small as those of thermal phonons.

  19. Phonon Dispersion and the Competition between Pairing and Charge Order

    Science.gov (United States)

    Costa, N. C.; Blommel, T.; Chiu, W.-T.; Batrouni, G.; Scalettar, R. T.

    2018-05-01

    The Holstein model describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge-density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature Tcdw for CDW order and also uncover several novel features of diagonal long-range order in the phase diagram, including a competition between charge patterns at momenta q =(π ,π ) and q =(0 ,π ) which lends insight into the relationship between Fermi surface nesting and the wave vector at which charge order occurs. We also demonstrate SC order at half filling in situations where a nonzero bandwidth sufficiently suppresses Tcdw.

  20. Time and angle resolved phonon absorption in the fractional quantum hall regime

    International Nuclear Information System (INIS)

    Devitt, A.M.

    2000-09-01

    The work described in this thesis is a study of the phonon absorption by a two-dimensional electron system (2DES) in the fractional quantum Hall regime and also at ν = 1/2. The fractional quantum Hall effect arises in 2DES's in high magnetic fields and is characterised by the quantisation of the transverse or Hall resistance and the vanishing longitudinal conductivity. The filling factor denotes the number of filled Landau levels and the quantum Hall effect occurs when this ratio is at certain rational odd denominator filling factors. The phenomenology of the effect arises due to the existence of an energy gap between the ground state and the lowest excited state. This energy gap is characterised by a deep minimum, or minima, at finite in-plane wavevector. Acoustic phonon absorption is expected to probe the energy gap at wavevectors close to or at the minimum in the dispersion curve. The experiments reported here incorporate the use of a thin film heater to produce a pulse of phonons of which a fraction are absorbed by the 2DES. A fast amplifier and signal averaging board enable detection of small signals due to absorption of phonons. The technique used allows time resolution of the phonon signal which typically takes place over a period of 10 μs or so. The time resolution enables different phonon modes to be studied. By altering the position of the heater relative to the 2DES angular resolution is also possible. The phonon absorption at several different filling factors has been investigated and the energy gaps found are in reasonable agreement with theoretical predictions. The absorption at ν 1/2 has also been investigated. Here the composite fermions are expected to have a well defined Fermi wavevector. The absorption at ν = 1/2 and the fractional quantum Hall states is found to be qualitatively and quantitatively different. We see that the change in electron temperature atν = 1/2 is much less than at ν = 1/3 due to the larger heat capacity. At ν = 1

  1. Holographic Phonons

    Science.gov (United States)

    Alberte, Lasma; Ammon, Martin; Jiménez-Alba, Amadeo; Baggioli, Matteo; Pujolàs, Oriol

    2018-04-01

    We present a class of holographic massive gravity models that realize a spontaneous breaking of translational symmetry—they exhibit transverse phonon modes whose speed relates to the elastic shear modulus according to elasticity theory. Massive gravity theories thus emerge as versatile and convenient theories to model generic types of translational symmetry breaking: explicit, spontaneous, and a mixture of both. The nature of the breaking is encoded in the radial dependence of the graviton mass. As an application of the model, we compute the temperature dependence of the shear modulus and find that it features a glasslike melting transition.

  2. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    Science.gov (United States)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  3. Characteristics of fundamental acoustic wave modes in thin piezoelectric plates.

    Science.gov (United States)

    Joshi, S G; Zaitsev, B D; Kuznetsova, I E; Teplykh, A A; Pasachhe, A

    2006-12-22

    The characteristics of the three lowest order plate waves (A(0), S(0), and SH(0)) propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength lambda are theoretically analyzed. It is found that these waves can provide much higher values of electromechanical coupling coefficient K(2) and lower values of temperature coefficient of delay (TCD) than is possible with surface acoustic waves (SAWs). For example, in 30Y-X lithium niobate, the SH(0) mode has K(2)=0.46 and TCD=55 ppm/degrees C. The corresponding values for SAW in the widely used, strong coupling material of 128Y-X lithium niobate are K(2)=0.053 and TCD=75 ppm/degrees C. Another important advantage of plate waves is that, unlike the case of SAWs, they can operate satisfactorily in contact with a liquid medium, thus making possible their use in liquid phase sensors.

  4. Phononic thermal resistance due to a finite periodic array of nano-scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier [Univ. Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621 Villeurbanne (France)

    2016-07-28

    The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.

  5. Features of the non-collinear one-phonon anomalous light scattering controlled by elastic waves with elevated linear losses: potentials for multi-frequency parallel spectrum analysis of radio-wave signals.

    Science.gov (United States)

    Shcherbakov, Alexandre S; Arellanes, Adan Omar

    2017-12-01

    During subsequent development of the recently proposed multi-frequency parallel spectrometer for precise spectrum analysis of wideband radio-wave signals, we study potentials of new acousto-optical cells exploiting selected crystalline materials at the limits of their capabilities. Characterizing these wide-aperture cells is non-trivial due to new features inherent in the chosen regime of an advanced non-collinear one-phonon anomalous light scattering by elastic waves with significantly elevated acoustic losses. These features can be observed simpler in uniaxial, tetragonal, and trigonal crystals possessing linear acoustic attenuation. We demonstrate that formerly studied additional degree of freedom, revealed initially for multi-phonon regimes of acousto-optical interaction, can be identified within the one-phonon geometry as well and exploited for designing new cells. We clarify the role of varying the central acoustic frequency and acoustic attenuation using the identified degree of freedom. Therewith, we are strongly restricted by a linear regime of acousto-optical interaction to avoid the origin of multi-phonon processes within carrying out a multi-frequency parallel spectrum analysis of radio-wave signals. Proof-of-principle experiments confirm the developed approaches and illustrate their applicability to innovative technique for an advanced spectrum analysis of wideband radio-wave signals with the improved resolution in an extended frequency range.

  6. Studies of elasticity, sound propagation and attenuation of acoustic modes in granular media: final report

    Energy Technology Data Exchange (ETDEWEB)

    Makse, Hernan A. [City College of New York, NY (United States). Levich Inst., Dept. of Physcis; Johnson, David L. [Schlumberger-Doll Research, Cambridge, MA (United States)

    2014-09-03

    This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO2 or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, but also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.

  7. Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides

    Science.gov (United States)

    Mei, Antonio Rodolph Bighetti

    the films are completely dense with smooth surfaces (roughness = 1.3 nm, consistent with atomic-force microscopy analyses). Based upon temperature-dependent electronic transport measurements, epitaxial ZrN/MgO(001) layers have a room-temperature resistivity rho 300K of 12.0 muO-cm, a temperature coefficient of resistivity between 100 and 300 K of 5.6x10-8 O-cm K -1, a residual resistivity rhoo below 30 K of 0.78 muO-cm (corresponding to a residual resistivity ratio rho300K/rho 15K = 15), and the layers exhibit a superconducting transition temperature Tc = 10.4 K. The relatively high residual resistivity ratio, combined with long in-plane and out-of-plane x-ray coherence lengths, xi|| = 18 nm and xi⊥ = 161 nm, indicates high crystalline quality with low mosaicity. The reflectance of ZrN(001), as determined by variable-angle spectroscopic ellipsometry, decreases slowly from 95% at 1 eV to 90% at 2 eV with a reflectance edge at 3.04 eV. Interband transitions dominate the dielectric response above 2 eV. The ZrN(001) nanoindentation hardness and modulus are 22.7+/-1.7 and 450+/-25 GPa. Transport electron/phonon coupling parameters and Eliashberg spectral functions alphatr2F(ho) are determined for Group-IV TM nitrides TiN, ZrN, and HfN, and the rare-earth (RE) nitride CeN using an inversion procedure based upon temperature-dependent (4 electron/phonon coupling parameters lambdatr vary from 1.11 for ZrN to 0.82 for HfN, 0.73 for TiN, and 0.44 for CeN. The small variation in lambda tr among the TM nitrides and the weak coupling in CeN are consistent with measured Tc values: 10.4 (ZrN), 9.18 (HfN), 5.35 (TiN), and electron/phonon coupling in conventional superconductors. Spectral peaks in alpha2F(ho), corresponding to regions in energy-space for which electrons couple to acoustic hoac and optical ho op phonon modes, are centered at ho ac = 33 and hoop = 57 meV for TiN, 25 and 60 meV for ZrN, 18 and 64 meV for HfN, and 21 and 39 meV for CeN. The acoustic modes soften with

  8. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus.

    Science.gov (United States)

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-10

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB 2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency [Formula: see text] optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  9. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus

    Science.gov (United States)

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-01

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency B3g1 optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  10. One- and two-phonon excitations in strongly deformed triaxial nuclei

    International Nuclear Information System (INIS)

    Hagemann, G.B.

    2003-01-01

    The wobbling mode is uniquely related to triaxiality and introduces a series of bands with increasing wobbling phonon number, n ω , and a characteristic large Δ nω =1 E2 strength between the bands. The pattern of γ-transitions between the wobbling excitations will be influenced by the presence of an aligned particle. Evidence for the wobbling mode was obtained recently, and even a two-phonon wobbling excitation has now been identified in 163 Lu. The similarity of the data in 163 Lu to new strongly deformed triaxial bands and connecting transitions in the neighbouring nuclei, 165 Lu and 167 Lu, establishes wobbling as a more general phenomenon in this region. (author)

  11. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    Science.gov (United States)

    Krasniqi, F. S.; Zhong, Y.; Epp, S. W.; Foucar, L.; Trigo, M.; Chen, J.; Reis, D. A.; Wang, H. L.; Zhao, J. H.; Lemke, H. T.; Zhu, D.; Chollet, M.; Fritz, D. M.; Hartmann, R.; Englert, L.; Strüder, L.; Schlichting, I.; Ullrich, J.

    2018-03-01

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91 Mn0.09 As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

  12. Molecular-dynamics theory of the temperature-dependent surface phonons of W(001)

    International Nuclear Information System (INIS)

    Wang, C.Z.; Fasolino, A.; Tosatti, E.

    1987-04-01

    We study the temperature-dependent zone-boundary surface phonons across the c(2x2)→1x1 reconstruction phase transition of the clean W(001) surface. Velocity-velocity correlations and hence the phonon spectral densities are calculated by molecular dynamics for the surface atoms of a finite thickness (001) slab, with interatomic potentials established in a previous study of the surface statics. Our calculated k = (1/2,1/2)(2π/a) surface phonon are dominated by three main low-frequency modes. Of these, the longitudinal and the shear horizontal are reconstruction-related and display critical broadening and softening at the phase transition, while the third, the shear vertical, is basically unaffected. The reconstruction phase mode, shear horizontal, appears to be responsible for the phase fluctuations which destroy long-range order at the transition. (author). 30 refs, 12 figs

  13. Origin of the "waterfall" effect in phonon dispersion of relaxor perovskites.

    Science.gov (United States)

    Hlinka, J; Kamba, S; Petzelt, J; Kulda, J; Randall, C A; Zhang, S J

    2003-09-05

    We have undertaken an inelastic neutron scattering study of the perovskite relaxor ferroelectric Pb(Zn(1/3)Nb(2/3))O3 with 8% PbTiO3 (PZN-8%PT) in order to elucidate the origin of the previously reported unusual kink on the low frequency transverse phonon dispersion curve (known as the "waterfall effect"). We show that its position (q(wf)) depends on the choice of the Brillouin zone and that the relation of q(wf) to the size of the polar nanoregions is highly improbable. The waterfall phenomenon is explained in the framework of a simple model of coupled damped harmonic oscillators representing the acoustic and optic phonon branches.

  14. Emergence of an Out-of-Plane Optical Phonon (ZO) Kohn Anomaly in Quasifreestanding Epitaxial Graphene.

    Science.gov (United States)

    Politano, Antonio; de Juan, Fernando; Chiarello, Gennaro; Fertig, Herbert A

    2015-08-14

    In neutral graphene, two prominent cusps known as Kohn anomalies are found in the phonon dispersion of the highest optical phonon at q=Γ (LO branch) and q=K (TO branch), reflecting a significant electron-phonon coupling (EPC) to undoped Dirac electrons. In this work, high-resolution electron energy loss spectroscopy is used to measure the phonon dispersion around the Γ point in quasifreestanding graphene epitaxially grown on Pt(111). The Kohn anomaly for the LO phonon is observed at finite momentum q~2k_{F} from Γ, with a shape in excellent agreement with the theory and consistent with known values of the EPC and the Fermi level. More strikingly, we also observe a Kohn anomaly at the same momentum for the out-of-plane optical phonon (ZO) branch. This observation is the first direct evidence of the coupling of the ZO mode with Dirac electrons, which is forbidden for freestanding graphene but becomes allowed in the presence of a substrate. Moreover, we estimate the EPC to be even greater than that of the LO mode, making graphene on Pt(111) an optimal system to explore the effects of this new coupling in the electronic properties.

  15. Coherent helix vacancy phonon and its ultrafast dynamics waning in topological Dirac semimetal C d3A s2

    Science.gov (United States)

    Sun, Fei; Wu, Q.; Wu, Y. L.; Zhao, H.; Yi, C. J.; Tian, Y. C.; Liu, H. W.; Shi, Y. G.; Ding, H.; Dai, X.; Richard, P.; Zhao, Jimin

    2017-06-01

    We report an ultrafast lattice dynamics investigation of the topological Dirac semimetal C d3A s2 . A coherent phonon beating among three evenly spaced A1 g optical phonon modes (of frequencies 1.80, 1.96, and 2.11 THz, respectively) is unambiguously observed. The two side modes originate from the counter helixes composing Cd vacancies. Significantly, such helix vacancy-induced phonon (HVP) modes experience prominent extra waning in their ultrafast dynamics as temperature increases, which is immune to the central mode. Above 200 K, the HVP becomes inactive, which may potentially affect the topological properties. Our results in the lattice degree of freedom suggest the indispensable role of temperature in considering topological properties of such quantum materials.

  16. The confinement of phonon propagation in TiAlN/Ag multilayer coatings with anomalously low heat conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, A. I.; Wainstein, D. L., E-mail: d-wainstein@sprg.ru [Surface Phenomena Researches Group, Radio Str., 23/9, Bld. 2, Off. 475, CNIICHERMET, 105005 Moscow (Russian Federation); Rashkovskiy, A. Yu. [Surface Phenomena Researches Group, Radio Str., 23/9, Bld. 2, Off. 475, CNIICHERMET, 105005 Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskiy pr-t, 4, 119049 Moscow (Russian Federation); Gago, R. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Soldera, F. [Department of Materials Science and Engineering, Saarland University, 66123 Saarbruecken (Germany); Endrino, J. L. [School of Aerospace, Transport and Manufacturing (SATM), Surface Engineering and Nanotechnology Institute, Cranfield University, College Road, Cranfield, MK43 0AL Bedfordshire (United Kingdom)

    2016-05-30

    TiAlN/Ag multilayer coatings with a different number of bilayers and thicknesses of individual layers were fabricated by DC magnetron co-sputtering. Thermal conductivity was measured in dependence of Ag layer thickness. It was found anomalous low thermal conductivity of silver comparing to TiAlN and Ag bulk standards and TiAlN/TiN multilayers. The physical nature of such thermal barrier properties of the multilayer coatings was explained on the basis of reflection electron energy loss spectroscopy. The analysis shows that nanostructuring of the coating decreases the density of states and velocity of acoustic phonons propagation. At the same time, multiphonon channels of heat propagation degenerate. These results demonstrate that metal-dielectric interfaces in TiAlN/Ag coatings are insurmountable obstacles for acoustic phonons propagation.

  17. Thermal conductivity of electron-doped CaMnO3 perovskites: Local lattice distortions and optical phonon thermal excitation

    International Nuclear Information System (INIS)

    Wang Yang; Sui Yu; Wang Xianjie; Su Wenhui; Liu Xiaoyang; Fan, Hong Jin

    2010-01-01

    The thermal transport properties of a series of electron-doped CaMnO 3 perovskites have been investigated. Throughout the temperature range 5-300 K, phonon thermal conductivity is dominant, and both electron and spin wave contributions are negligible. The short phonon mean free paths in this system result in the relatively low thermal conductivities. The strong phonon scatterings stem from the A-site mismatch and bond-length fluctuations induced by local distortions of MnO 6 octahedra. The thermal conductivity in the magnetically ordered state is enhanced as a result of the decrease in spin-phonon scattering. The results also indicate that above the magnetic ordering temperature, observable thermal excitation of optical phonons occurs. The contribution of optical phonons to thermal conductivity becomes non-negligible and is proposed to play an important role in the glass-like thermal transport behavior (i.e. positive temperature dependence of the thermal conductivity) in the paramagnetic state. These features can be understood in terms of an expression of thermal conductivity that includes both acoustic and optical phonon terms.

  18. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    International Nuclear Information System (INIS)

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Peters, David W.; Davids, Paul S.

    2016-01-01

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO_2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

  19. Phonon superradiance and phonon laser effect in nanomagnets.

    Science.gov (United States)

    Chudnovsky, E M; Garanin, D A

    2004-12-17

    We show that the theory of spin-phonon processes in paramagnetic solids must take into account the coherent generation of phonons by the magnetic centers. This effect should drastically enhance spin-phonon rates in nanoscale paramagnets and in crystals of molecular nanomagnets.

  20. Hybrid functional calculation of electronic and phonon structure of BaSnO3

    International Nuclear Information System (INIS)

    Kim, Bog G.; Jo, J.Y.; Cheong, S.W.

    2013-01-01

    Barium stannate, BaSnO 3 (BSO), with a cubic perovskite structure, has been highlighted as a promising host material for the next generation transparent oxide electrodes. This study examined theoretically the electronic structure and phonon structure of BSO using hybrid density functional theory based on the HSE06 functional. The electronic structure results of BSO were corrected by extending the phonon calculations based on the hybrid density functional. The fundamental thermal properties were also predicted based on a hybrid functional calculation. Overall, a detailed understanding of the electronic structure, phonon modes and phonon dispersion of BSO will provide a theoretical starting-point for engineering applications of this material. - Graphical Abstract: (a) Crystal structure of BaSnO 3 . The center ball is Ba and small (red) ball on edge is oxygen and SnO 6 octahedrons are plotted as polyhedron. (b) Electronic band structure along the high symmetry point in the Brillouin zone using the HSE06 hybrid functional. (c) The phonon dispersion curve calculated using the HSE06 hybrid functional (d) Zone center lowest energy F 1u phonon mode. Highlights: ► We report the full hybrid functional calculation of not only the electronic structure but also the phonon structure for BaSnO 3 . ► The band gap calculation of HSE06 revealed an indirect gap with 2.48 eV. ► The effective mass at the conduction band minimum and valence band maximum was calculated. ► In addition, the phonon structure of BSO was calculated using the HSE06 functional. ► Finally, the heat capacity was calculated and compared with the recent experimental result.

  1. Phonon and magnon scattering of Bi{sub 2}Fe{sub 4}O{sub 9} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Poorva, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com; Kumar, Ashwini, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore-452001 (India)

    2014-04-24

    We report the phonon structure of Bi{sub 2}Fe{sub 4}O{sub 9} ceramics as synthesized by solid-state reaction route. Rietveld refined X-ray diffraction patterns confirmed the formation of single-phase perovskite structure and all the peaks of Bi{sub 2}Fe{sub 4}O{sub 9} perfectly indexed to the orthorhombic (space group Pbam). Raman scattering measurements identifies 12A{sub g}+1B{sub 2g}+1B{sub 3g} Raman active optical phonon modes. Apart from phonon scattering, mode at 470 cm{sup −1} is observed which is due to magnon scattering. The P-E loop infers paraelectric nature of Bi{sub 2}Fe{sub 4}O{sub 9}.

  2. Spectroscopy of infrared-active phonons in high-temperature superconductors

    Science.gov (United States)

    Litvinchuk, A. P.; Thomsen, C.; Cardona, M.; Borjesson, L.

    1995-01-01

    For a large variety of superconducting materials both experimental and theoretical lattice dynamical studies have been performed to date. The assignment of the observed infrared- and Raman-active phonon modes to the particular lattice eigenmodes is generally accepted. We will concentrate here upon the analysis of the changes of the infrared-phonon parameters (frequency and linewidth) upon entering the superconducting state which, as will be shown, may provide information on the magnitude of the superconductivity-related gap and its dependence on the superconducting transition temperature Tc.

  3. Polar phonons in β-Ga2O3 studied by IR reflectance spectroscopy and first-principle calculations

    Science.gov (United States)

    Azuhata, Takashi; Shimada, Kazuhiro

    2017-08-01

    IR reflectance spectra of β-Ga2O3 are measured in the range from 400 to 1100 cm-1 using the (\\bar{2}01) and (010) planes for pure transverse Au- and Bu-mode phonons, respectively. The spectra measured using the (010) plane depend remarkably on the polarization direction of the incident light because of the monoclinic symmetry. Reflectance spectra simulated using parameters obtained from first-principle calculations are in good agreement with the experimental spectra. By adjusting the calculated phonon parameters so as to reproduce the experimental spectra, the polar phonon parameters were determined for six modes above 400 cm-1.

  4. Drift effects on electromagnetic geodesic acoustic modes

    Energy Technology Data Exchange (ETDEWEB)

    Sgalla, R. J. F., E-mail: reneesgalla@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-900 (Brazil)

    2015-02-15

    A two fluid model with parallel viscosity is employed to derive the dispersion relation for electromagnetic geodesic acoustic modes (GAMs) in the presence of drift (diamagnetic) effects. Concerning the influence of the electron dynamics on the high frequency GAM, it is shown that the frequency of the electromagnetic GAM is independent of the equilibrium parallel current but, in contrast with purely electrostatic GAMs, significantly depends on the electron temperature gradient. The electromagnetic GAM may explain the discrepancy between the f ∼ 40 kHz oscillation observed in tokamak TCABR [Yu. K. Kuznetsov et al., Nucl. Fusion 52, 063044 (2012)] and the former prediction for the electrostatic GAM frequency. The radial wave length associated with this oscillation, estimated presently from this analytical model, is λ{sub r} ∼ 25 cm, i.e., an order of magnitude higher than the usual value for zonal flows (ZFs)

  5. Neutron scattering investigation of the acoustic-mode Grüneisen parameters in RbBr

    DEFF Research Database (Denmark)

    Ernst, G.; Krexner, G.; Quittner, G.

    1984-01-01

    The microscopic Grüneisen parameters in RbBr have been determined for 44 acoustic modes in the main symmetry directions Δ, Σ, and Λ by inelastic neutron scattering under hydrostatic pressure. The experimental data are well described within the framework of a breathing-shell model, which includes...

  6. Topology optimization of two-dimensional asymmetrical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hao-Wen [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Su, Xiao-Xing [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2014-01-17

    The multiple elitist genetic algorithm with the adaptive fuzzy fitness granulation (AFFG) is used to design the phononic crystals with large relative bandgap width (BGW) for combined out-of-plane and in-plane wave modes. Without assumption on the symmetry of the unit-cell, we obtain an asymmetrical phononic crystal with the relative BGW which is quite larger than that of the optimized symmetrical structure. With the help of AFFG, the number of the fitness function evaluations is reduced by over 50% and the procedure converges 5 times faster than the conventional evolutionary algorithm to reach the same final fitness values.

  7. Calculation of phonon dispersion in carbon nanotubes using a continuum-atomistic finite element approach

    Directory of Open Access Journals (Sweden)

    Michael J. Leamy

    2011-12-01

    Full Text Available Dispersion calculations are presented for cylindrical carbon nanotubes using a manifold-based continuum-atomistic finite element formulation combined with Bloch analysis. The formulated finite elements allow any (n,m chiral nanotube, or mixed tubes formed by periodically-repeating heterojunctions, to be examined quickly and accurately using only three input parameters (radius, chiral angle, and unit cell length and a trivial structured mesh, thus avoiding the tedious geometry generation and energy minimization tasks associated with ab initio and lattice dynamics-based techniques. A critical assessment of the technique is pursued to determine the validity range of the resulting dispersion calculations, and to identify any dispersion anomalies. Two small anomalies in the dispersion curves are documented, which can be easily identified and therefore rectified. They include difficulty in achieving a zero energy point for the acoustic twisting phonon, and a branch veering in nanotubes with nonzero chiral angle. The twisting mode quickly restores its correct group velocity as wavenumber increases, while the branch veering is associated with a rapid exchange of eigenvectors at the veering point, which also lessens its impact. By taking into account the two noted anomalies, accurate predictions of acoustic and low-frequency optical branches can be achieved out to the midpoint of the first Brillouin zone.

  8. Phonon-assisted damping of plasmons in three- and two-dimensional metals

    Science.gov (United States)

    Caruso, Fabio; Novko, Dino; Draxl, Claudia

    2018-05-01

    We investigate the effects of crystal lattice vibrations on the dispersion of plasmons. The loss function of the homogeneous electron gas (HEG) in two and three dimensions is evaluated numerically in the presence of electronic coupling to an optical phonon mode. Our calculations are based on many-body perturbation theory for the dielectric function as formulated by the Hedin-Baym equations in the Fan-Migdal approximation. The coupling to phonons broadens the spectral signatures of plasmons in the electron-energy loss spectrum (EELS) and it induces the decay of plasmons on timescales shorter than 1 ps. Our results further reveal the formation of a kink in the plasmon dispersion of the two-dimensional HEG, which marks the onset of plasmon-phonon scattering. Overall, these features constitute a fingerprint of plasmon-phonon coupling in EELS of simple metals. It is shown that these effects may be accounted for by resorting to a simplified treatment of the electron-phonon interaction which is amenable to first-principles calculations.

  9. Acoustic and electronic properties of one-dimensional quasicrystals

    International Nuclear Information System (INIS)

    Nori, F.; Rodriguez, J.P.

    1986-01-01

    We study the acoustic and electronic properties of one-dimensional quasicrystals. Both numerical (nonperturbative) and analytical (perturbative) results are shown. The phonon and electronic spectra exhibit a self-similar hierarchy of gaps and many localized states in the gaps. We study quasiperiodic structures with any number of layers and several types of boundary conditions. We discuss the connection between our phonon model and recent experiments on quasiperiodic GaAs-AlAs superlattices. We predict the existence of many gap states localized at the surfaces

  10. Using Acoustic Structure Quantification During B-Mode Sonography for Evaluation of Hashimoto Thyroiditis.

    Science.gov (United States)

    Rhee, Sun Jung; Hong, Hyun Sook; Kim, Chul-Hee; Lee, Eun Hye; Cha, Jang Gyu; Jeong, Sun Hye

    2015-12-01

    This study aimed to evaluate the usefulness of Acoustic Structure Quantification (ASQ; Toshiba Medical Systems Corporation, Nasushiobara, Japan) values in the diagnosis of Hashimoto thyroiditis using B-mode sonography and to identify a cutoff ASQ level that differentiates Hashimoto thyroiditis from normal thyroid tissue. A total of 186 thyroid lobes with Hashimoto thyroiditis and normal thyroid glands underwent sonography with ASQ imaging. The quantitative results were reported in an echo amplitude analysis (Cm(2)) histogram with average, mode, ratio, standard deviation, blue mode, and blue average values. Receiver operating characteristic curve analysis was performed to assess the diagnostic ability of the ASQ values in differentiating Hashimoto thyroiditis from normal thyroid tissue. Intraclass correlation coefficients of the ASQ values were obtained between 2 observers. Of the 186 thyroid lobes, 103 (55%) had Hashimoto thyroiditis, and 83 (45%) were normal. There was a significant difference between the ASQ values of Hashimoto thyroiditis glands and those of normal glands (P thyroiditis were significantly greater than those in patients with normal thyroid glands. The areas under the receiver operating characteristic curves for the ratio, blue average, average, blue mode, mode, and standard deviation were: 0.936, 0.902, 0.893, 0.855, 0.846, and 0.842, respectively. The ratio cutoff value of 0.27 offered the best diagnostic performance, with sensitivity of 87.38% and specificity of 95.18%. The intraclass correlation coefficients ranged from 0.86 to 0.94, which indicated substantial agreement between the observers. Acoustic Structure Quantification is a useful and promising sonographic method for diagnosing Hashimoto thyroiditis. Not only could it be a helpful tool for quantifying thyroid echogenicity, but it also would be useful for diagnosis of Hashimoto thyroiditis. © 2015 by the American Institute of Ultrasound in Medicine.

  11. Design and fabrication of an AT-cut quartz phononic Lamb wave resonator

    International Nuclear Information System (INIS)

    Hung, Chia-Hao; Liu, Ting-Wei; Wu, Tsung-Tsong; Wang, Wei-Shan; Esashi, Masayoshi; Lin, Yu-Ching; Sun, Jia-Hong; Chen, Yung-Yu

    2013-01-01

    This paper presents results on the design and fabrication of an AT-cut quartz Lamb wave resonator with phononic crystal (PC) reflective gratings. The deep reactive ion etching process with a laboratory-made etcher was utilized to fabricate PC structures of the AT-cut quartz Lamb wave resonator. The finite element method was adopted to calculate the PC band structure, effective reflective distance from the PC boundary and further the resonant modes and admittance of the phononic Lamb wave resonant cavity. Through the comparison studies between the experimental and simulated results, a design process for the AT-cut quartz phononic Lamb wave resonator was proposed. It is noted that by using the phononic reflectors, the size of the Lamb wave resonator can be reduced significantly. (paper)

  12. The manifestation of spin-phonon coupling in CaMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Goian, V., E-mail: goian@fzu.cz; Kamba, S.; Borodavka, F.; Nuzhnyy, D.; Savinov, M. [Institute of Physics, The Czech Academy of Sciences, Na Slovance 2, 182 21 Prague (Czech Republic); Belik, A. A. [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-04-28

    Recently predicted presence of spin-phonon coupling in the CaMnO{sub 3} is experimentally confirmed in infrared (IR), Raman and time-domain THz spectra. Most of phonon frequencies seen below 350 cm{sup −1} exhibit significant shifts on cooling below antiferromagnetic phase transition at T{sub N} ≅ 120 K. Moreover, several new modes activate in the IR and Raman spectra on cooling below T{sub N}. Sum of phonon contributions to static permittivity exhibits small but reliable anomaly at T{sub N}. On the other hand, the spin-phonon coupling is not manifested in temperature dependence of radio-frequency permittivity, because intrinsic permittivity is screened by extrinsic contribution from conductivity, which enhances the permittivity to giant values.

  13. Detecting the phonon spin in magnon-phonon conversion experiments

    Science.gov (United States)

    Holanda, J.; Maior, D. S.; Azevedo, A.; Rezende, S. M.

    2018-05-01

    Recent advances in the emerging field of magnon spintronics have stimulated renewed interest in phenomena involving the interaction between spin waves, the collective excitations of spins in magnetic materials that quantize as magnons, and the elastic waves that arise from excitations in the crystal lattice, which quantize as phonons. In magnetic insulators, owing to the magnetostrictive properties of materials, spin waves can become strongly coupled to elastic waves, forming magnetoelastic waves—a hybridized magnon-phonon excitation. While several aspects of this interaction have been subject to recent scrutiny, it remains unclear whether or not phonons can carry spin. Here we report experiments on a film of the ferrimagnetic insulator yttrium iron garnet under a non-uniform magnetic field demonstrating the conversion of coherent magnons generated by a microwave field into phonons that have spin. While it is well established that photons in circularly polarized light carry a spin, the spin of phonons has had little attention in the literature. By means of wavevector-resolved Brillouin light-scattering measurements, we show that the magnon-phonon conversion occurs with constant energy and varying linear momentum, and that the light scattered by the phonons is circularly polarized, thus demonstrating that the phonons have spin.

  14. Experimental verification of acoustic pseudospin multipoles in a symmetry-broken snowflakelike topological insulator

    Science.gov (United States)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Liu, Xiaojun; Christensen, Johan

    2017-12-01

    Topologically protected wave engineering in artificially structured media resides at the frontier of ongoing metamaterials research, which is inspired by quantum mechanics. Acoustic analogs of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation by means of robust edge mode excitations through analogies drawn to exotic quantum states. A variety of artificial acoustic systems hosting topological edge states have been proposed analogous to the quantum Hall effect, topological insulators, and Floquet topological insulators in electronic systems. However, those systems were characterized by a fixed geometry and a very narrow frequency response, which severely hinders the exploration and design of useful applications. Here we establish acoustic multipolar pseudospin states as an engineering degree of freedom in time-reversal invariant flow-free phononic crystals and develop reconfigurable topological insulators through rotation of their meta-atoms and reshaping of the metamolecules. Specifically, we show how rotation forms man-made snowflakelike molecules, whose topological phase mimics pseudospin-down (pseudospin-up) dipolar and quadrupolar states, which are responsible for a plethora of robust edge confined properties and topological controlled refraction disobeying Snell's law.

  15. Phonon dispersion curves of fcc La

    International Nuclear Information System (INIS)

    Stassis, C.; Loong, C.; Zarestky, J.

    1982-01-01

    Large single crystals of fcc La were grown in situ and were used to study the lattice dynamics of this phase of La by coherent inelastic neutron scattering. The phonon dispersion curves have been measured along the [xi00], [xixi0], [xixixi], and [0xi1] symmetry directions at 660 and 1100 K. The T[xixixi] branch exhibits anomalous dispersion for xi>0.25 and, in addition, close to the zone boundary, the phonon frequencies of this branch decrease with decreasing temperature. This soft-mode behavior may be related to the #betta→α# transformation in La, an assumption supported by recent band-theoretical calculations of the generalized susceptibility of fcc La. At X the frequencies of the L[xi00] branch are considerably lower than those of the corresponding branch of #betta#-Ce; a similar but not as pronounced effect is observed for the frequencies of the L[xixixi] branch close to the point L. Since the calculated generalized susceptibility of fcc La exhibits strong peaks at X and L, these anomalies may be due to the renormalization of the phonon frequencies by virtual fbold-arrow-left-rightd transitions to the unoccupied 4f level in La. The data were used to evaluate the elastic constants, the phonon density of states, and the lattice specific heat at constant pressure C/sub P//sup

  16. Photon control of phonons in mixed crystal quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ingale, Alka

    2003-12-15

    Coherent phonon oscillations in solids can be excited impulsively by a single femtosecond laser pulse whose duration is shorter than a phonon period. In the impulsive stimulated Raman scattering (ISRS) experiment, scattering of probe is monitored as a function of time with respect to pump to generate time domain spectra of coherent phonons. In this paper, we present one such study of CdSe{sub 0.68}Te{sub 0.32} (d{approx}80 A) quantum dots in glass matrix, i.e semiconductor-doped glass (SDG) RG780 from Schott, USA and the experiment was performed at Prof. Merlin's laboratory at the University of Michigan, USA. Here, we present first report of selectively driving only CdSe-like modes in these mixed crystal quantum dots using photon control with two pump beams.

  17. Tuning and switching the hypersonic phononic properties of elastic impedance contrast nanocomposites.

    Science.gov (United States)

    Sato, Akihiro; Pennec, Yan; Shingne, Nitin; Thurn-Albrecht, Thomas; Knoll, Wolfgang; Steinhart, Martin; Djafari-Rouhani, Bahram; Fytas, George

    2010-06-22

    Anodic aluminum oxide (AAO) containing arrays of aligned cylindrical nanopores infiltrated with polymers is a well-defined model system for the study of hypersound propagation in polymer nanocomposites. Hypersonic phononic properties of AAO/polymer nanocomposites such as phonon localization and anisotropic sound propagation can be tailored by adjusting elastic contrast and density contrast between the components. Changes in density and elastic properties of the component located in the nanopores induced by phase transitions allow reversible modification of the phononic band structure and mode switching. As example in case, the crystallization and melting of poly(vinylidene difluoride) inside AAO was investigated.

  18. Thermal Transport and Phonon Hydrodynamics in Strontium Titanate

    Science.gov (United States)

    Martelli, Valentina; Jiménez, Julio Larrea; Continentino, Mucio; Baggio-Saitovitch, Elisa; Behnia, Kamran

    2018-03-01

    We present a study of thermal conductivity, κ , in undoped and doped strontium titanate in a wide temperature range (2-400 K) and detecting different regimes of heat flow. In undoped SrTiO3 , κ evolves faster than cubic with temperature below its peak and in a narrow temperature window. Such behavior, previously observed in a handful of solids, has been attributed to a Poiseuille flow of phonons, expected to arise when momentum-conserving scattering events outweigh momentum-degrading ones. The effect disappears in the presence of dopants. In SrTi1 -xNbx O3 , a significant reduction in lattice thermal conductivity starts below the temperature at which the average inter-dopant distance and the thermal wavelength of acoustic phonons become comparable. In the high-temperature regime, thermal diffusivity becomes proportional to the inverse of temperature, with a prefactor set by sound velocity and Planckian time (τp=(ℏ/kBT ) ).

  19. Nonlinear phononics and structural control of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Mankowsky, Roman

    2016-01-20

    Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal

  20. The Main Principles of Formation of the Transverse Modes in the Multilayered Waveguides of Surface Acoustic Waves

    Science.gov (United States)

    Sveshnikov, B. V.; Bagdasaryan, A. S.

    2016-07-01

    We develop a self-consistent model allowing one to analyze the properties of the interdigital transducer of the surface acoustic waves as a symmetric five-layered waveguide on a piezoelectric substrate with three possible values of the phase velocity of the acoustic-wave propagation along the longitudinal axis of the system. The transcendental dispersion relation for describing the waves in such a system is derived and the method for its instructive graphic analysis is proposed. The condition under which only the fundamental transverse mode is excited in the waveguide is formulated. The method for calculating the normalized power and the transverse distribution of the field of the continuous-spectrum waves radiated from the considered waveguide is described. It is shown that the characteristic spatial scale of the longitudinal damping of the amplitude of this field at the waveguide center can be a qualitative estimate of the transverse-mode formation length. The efficiency of a new method for suppressing the higher-order transverse waveguide modes is demonstrated.

  1. Elastic wave surfaces and phonon focussing for the A-15 compounds

    International Nuclear Information System (INIS)

    Viswanathan, K.S.

    1981-01-01

    It is shown that the section of the energy surface corresponding to the longitudinal mode by the principal xy-plane for the A-15 compounds will degenerate into four points at the corners of a square at very low temperatures in the cubic phase. When the quasi-shear mode propagating along the (110) direction becomes soft, simultaneously the longitudinal mode will exhibit unusually high phonon focussing. (author)

  2. Comparison of junctionless and inversion-mode p-type metal-oxide-semiconductor field-effect transistors in presence of hole-phonon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dib, E., E-mail: elias.dib@for.unipi.it [Dipartimento di Ingegneria dell' Informazione, Università di Pisa, 56122 Pisa (Italy); Carrillo-Nuñez, H. [Integrated Systems Laboratory ETH Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland); Cavassilas, N.; Bescond, M. [IM2NP, UMR CNRS 6242, Bât. IRPHE, Technopôle de Château-Gombert, 13384 Marseille Cedex 13 (France)

    2016-01-28

    Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations.

  3. Comparison of junctionless and inversion-mode p-type metal-oxide-semiconductor field-effect transistors in presence of hole-phonon interactions

    International Nuclear Information System (INIS)

    Dib, E.; Carrillo-Nuñez, H.; Cavassilas, N.; Bescond, M.

    2016-01-01

    Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations

  4. Optical phonons in PbTe/CdTe multilayer heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. N.; Yakovlev, V. A. [Russian Academy of Sciences, Institute for Spectroscopy (Russian Federation); Kucherenko, I. V., E-mail: kucheren@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Karczewski, G. [Polish Academy of Sciences, Institute of Physics (Poland); Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-05-15

    The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.

  5. Research on the Band Gap Characteristics of Two-Dimensional Phononic Crystals Microcavity with Local Resonant Structure

    Directory of Open Access Journals (Sweden)

    Mao Liu

    2015-01-01

    Full Text Available A new two-dimensional locally resonant phononic crystal with microcavity structure is proposed. The acoustic wave band gap characteristics of this new structure are studied using finite element method. At the same time, the corresponding displacement eigenmodes of the band edges of the lowest band gap and the transmission spectrum are calculated. The results proved that phononic crystals with microcavity structure exhibited complete band gaps in low-frequency range. The eigenfrequency of the lower edge of the first gap is lower than no microcavity structure. However, for no microcavity structure type of quadrilateral phononic crystal plate, the second band gap disappeared and the frequency range of the first band gap is relatively narrow. The main reason for appearing low-frequency band gaps is that the proposed phononic crystal introduced the local resonant microcavity structure. This study provides a good support for engineering application such as low-frequency vibration attenuation and noise control.

  6. Band structures of phononic crystal composed of lattices with different periodic constants

    International Nuclear Information System (INIS)

    Hu, Jia-Guang; Xu, Wen

    2014-01-01

    With a square lattice mercury and water system being as the model, the band structures of nesting and compound phononic crystals with two different lattice constants were investigated using the method of the supercell plane wave expansion. It was observed that large band gaps can be achieved in low frequency regions by adjusting one of the lattice constants. Meanwhile, effects similar to interstitial impurity defects can be achieved with the increase of lattice constant of the phononic crystal. The corresponding defect modes can be stimulated in band gaps. The larger the lattice constant, the stronger the localization effect of defect modes on the wave. In addition, the change of the filling fraction of impurity exerts great influence on the frequency and localization of defect modes. Furthermore, the change of the position of impurity has notable influence on the frequency of defect modes and their localization. However, the geometry structure and orientation of impurity have little effect on the frequency of defect modes and their localization in the band gap.

  7. Electron density window for best frequency performance, lowest phase noise and slowest degradation of GaN heterostructure field-effect transistors

    International Nuclear Information System (INIS)

    Matulionis, Arvydas

    2013-01-01

    The problems in the realm of nitride heterostructure field-effect transistors (HFETs) are discussed in terms of a novel fluctuation–dissipation-based approach impelled by a recent demonstration of strong correlation of hot-electron fluctuations with frequency performance and degradation of the devices. The correlation has its genesis in the dissipation of the LO-mode heat accumulated by the non-equilibrium longitudinal optical phonons (hot phonons) confined in the channel that hosts the high-density hot-electron gas subjected to a high electric field. The LO-mode heat causes additional scattering of hot electrons and facilitates defect formation in a different manner than the conventional heat contained mainly in the acoustic phonon mode. We treat the heat dissipation problem in terms of the hot-phonon lifetime responsible for the conversion of the non-migrant hot phonons into migrant acoustic modes and other vibrations. The lifetime is measured over a wide range of electron density and supplied electric power. The optimal conditions for the dissipation of the LO-mode heat are associated with the plasmon-assisted disintegration of hot phonons. Signatures of plasmons are experimentally resolved in fluctuations, dissipation, hot-electron transport, transistor frequency performance, transistor phase noise and transistor reliability. In particular, a slower degradation and a faster operation of GaN-based HFETs take place inside the electron density window where the resonant plasmon-assisted ultrafast dissipation of the LO-mode heat comes into play. A novel heterostructure design for the possible improvement of HFET performance is proposed, implemented and tested. (invited review)

  8. Viscoelastic effect on acoustic band gaps in polymer-fluid composites

    International Nuclear Information System (INIS)

    Merheb, B; Deymier, P A; Muralidharan, K; Bucay, J; Jain, M; Aloshyna-Lesuffleur, M; Mohanty, S; Berker, A; Greger, R W

    2009-01-01

    In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals

  9. Study of phonon-induced energy transfer processes in crystals using heat pulses

    International Nuclear Information System (INIS)

    Burns, A.R.

    1978-03-01

    The artificial generation of acoustic lattice vibrations by a heat pulse technique is developed in order to probe phonon interactions in molecular crystals. Specifically, the phonon-assisted delocalization of ''trapped'' excited triplet state energy in the aromatic crystal 1,2,4,5-tetrachlorobenzene (TCB) is studied in a quantitative manner by monitoring the time-resolved decrease in trap phosphorescence intensity due to the propagation of a well-defined heat pulse. The excitation distribution in a single trap system, such as the X-trap in neat h 2 -TCB, is discussed in terms of the energy partition function relating the temperature dependence of the trap phosphorescence intensity to the trap depth, exciton bandwidth, and the number of exciton band states. In a multiple trap system, such as the hd and h 2 isotopic traps in d 2 -TCB, the excitation distribution is distinctly non-Boltzmann; yet it may be discussed in terms of a preferential energy transfer between the two trap states via the exciton band. For both trap systems, a previously developed kinetic model is presented which relates the efficiency of trap-band energy exchange to the density of band states and the trap-phonon coupling matrix elements. A bolometric technique for determining the thermal response time of the heater/crystal system is presented. The phonon mean free path in the crystal is size-limited, and the heater/crystal boundary conductance is reasonably close to previously reported values. The theory of heat pulse phonon spectroscopy is presented and discussed in terms of black-body phonon radiation

  10. Energy trapping of thickness-extensional modes in thin film bulk acoustic wave filters

    Directory of Open Access Journals (Sweden)

    Zinan Zhao

    2016-01-01

    Full Text Available This paper presents the thickness-extensional vibration of a rectangular piezoelectric thin film bulk acoustic wave filter with two pairs of electrodes symmetrically deposited on the center of the zinc oxide film. The two-dimensional scalar differential equations which were first derived to describe in-plane vibration distribution by Tiersten and Stevens are employed. The Ritz method with trigonometric functions as basis functions is used based on a variational formulation developed in our previous paper. Free vibration resonant frequencies and corresponding modes are obtained. The modes may separate into symmetric and antisymmetric ones for such a structurally symmetric filter. Trapped modes with vibrations mainly under the driving electrodes are exhibited. The six corner-type regions of the filter neglected by Tiersten and Stevens for an approximation are taken into account in our analysis. Results show that their approximation can lead to an inaccuracy on the order of dozens of ppm for the fundamental mode, which is quite significant in filter operation and application.

  11. Design of materials configurations for enhanced phononic and electronic properties

    Science.gov (United States)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  12. Analysis of the crystal lattice instability for cage–cluster systems using the superatom model

    Energy Technology Data Exchange (ETDEWEB)

    Serebrennikov, D. A., E-mail: dserebrennikov@innopark.kantiana.ru, E-mail: dimafania@mail.ru; Clementyev, E. S. [I. Kant Baltic Federal University, “Functional Nanomaterials” Scientific–Educational Center (Russian Federation); Alekseev, P. A. [“Kurchatov Institute” National Research Center (Russian Federation)

    2016-09-15

    We have investigated the lattice dynamics for a number of rare-earth hexaborides based on the superatom model within which the boron octahedron is substituted by one superatom with a mass equal to the mass of six boron atoms. Phenomenological models have been constructed for the acoustic and lowenergy optical phonon modes in RB{sub 6} (R = La, Gd, Tb, Dy) compounds. Using DyB{sub 6} as an example, we have studied the anomalous softening of longitudinal acoustic phonons in several crystallographic directions, an effect that is also typical of GdB{sub 6} and TbB{sub 6}. The softening of the acoustic branches is shown to be achieved through the introduction of negative interatomic force constants between rare-earth ions. We discuss the structural instability of hexaborides based on 4f elements, the role of valence instability in the lattice dynamics, and the influence of the number of f electrons on the degree of softening of phonon modes.

  13. A Numerical Analysis of Phononic-Assisted Control of Ultrasound Waves in Acoustofluidic Device

    DEFF Research Database (Denmark)

    Moiseyenko, Rayisa; Bruus, Henrik

    2015-01-01

    and streaming has received much attention, since it relies solely on mechanical properties such as particle size and contrast in density and compressibility. We present a theoretical study of phononic-assisted control of ultrasound waves in acoustofluidic devices. We propose the use of phononic crystal...... diffractors, which can be introduced in acoustofluidic structures. These diffractors can be applied in the design of efficient resonant cavities, directional sound waves for new types of particle sorting methods, or acoustically controlled deterministic lateral displacement. The PnC-diffractor-based devices...... can be made configurable, by embedding the diffractors, all working at the same excitation frequency but with different resulting diffraction patterns, in exchangeable membranes on top of the device....

  14. Study of Phonon Dispersion Relations in Cuprous Oxide by Inelastic Neutron Scattering

    DEFF Research Database (Denmark)

    Beg, M. M.; Shapiro, S. M.

    1976-01-01

    Phonon dispersion relations in Cu2O have been studied at 20°C using inelastic neutron scattering. Seven acoustic branches and twelve optical branches have been studied in detail in the three symmetry directions [00ζ], [ζζ0], and [ζζζ] of the cubic lattice. Four of the six zone-center phonons have...... been observed and the assignments and energies are confirmed as Γ25=87±2 cm-1, Γ12′=105±3 cm-1, Γ15=146±1 cm-1, and Γ2′≈347 cm-1. The dispersion relations agree only qualitatively with the rigid-ion-model calculations. It is suggested that more detailed calculations may be performed in the light...

  15. One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)

    2013-02-01

    We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.

  16. Novel information theory techniques for phonon spectroscopy

    International Nuclear Information System (INIS)

    Hague, J P

    2007-01-01

    The maximum entropy method (MEM) and spectral reverse Monte Carlo (SRMC) techniques are applied to the determination of the phonon density of states (PDOS) from heat-capacity data. The approach presented here takes advantage of the standard integral transform relating the PDOS with the specific heat at constant volume. MEM and SRMC are highly successful numerical approaches for inverting integral transforms. The formalism and algorithms necessary to carry out the inversion of specific heat curves are introduced, and where possible, I have concentrated on algorithms and experimental details for practical usage. Simulated data are used to demonstrate the accuracy of the approach. The main strength of the techniques presented here is that the resulting spectra are always physical: Computed PDOS is always positive and properly applied information theory techniques only show statistically significant detail. The treatment set out here provides a simple, cost-effective and reliable method to determine phonon properties of new materials. In particular, the new technique is expected to be very useful for establishing where interesting phonon modes and properties can be found, before spending time at large scale facilities

  17. Electromagnetic characteristics of geodesic acoustic mode in the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Seidl, Jakub; Krbec, Jaroslav; Hron, Martin; Adámek, Jiří; Hidalgo, C.; Markovič, Tomáš; Melnikov, A.V.; Stöckel, Jan; Weinzettl, Vladimír; Aftanas, Milan; Bílková, Petra; Bogár, Ondrej; Böhm, Petr; Eliseev, L.G.; Háček, Pavel; Havlíček, Josef; Horáček, Jan; Imríšek, Martin; Kovařík, Karel; Mitošinková, Klára; Pánek, Radomír; Tomeš, Matěj; Vondráček, Petr

    2017-01-01

    Roč. 57, č. 12 (2017), č. článku 126048. ISSN 0029-5515 R&D Projects: GA ČR(CZ) GA16-25074S; GA ČR(CZ) GA14-35260S; GA AV ČR(CZ) GA16-24724S; GA ČR(CZ) GA15-10723S; GA MŠk(CZ) 8D15001; GA MŠk(CZ) LM2015045 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : geodesic acoustic mode * tokamak * turbulence * COMPASS Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016

  18. Electron phonon couplings in 2D perovskite probed by ultrafast photoinduced absorption spectroscopy

    Science.gov (United States)

    Huynh, Uyen; Ni, Limeng; Rao, Akshay

    We use the time-resolved photoinduced absorption (PIA) spectroscopy with 20fs time resolution to investigate the electron phonon coupling in the self-assembled hybrid organic layered perovskite, the hexyl ammonium lead iodide compound (C6H13NH3)2 (PbI4) . The coupling results in the broadening and asymmetry of its temperature-dependence photoluminescence spectra. The exact time scale of this coupling, however, wasn't reported experimentally. Here we show that using an ultrashort excitation pulse allows us to resolve from PIA kinetics the oscillation of coherent longitudinal optical phonons that relaxes and self-traps electrons to lower energy states within 200 fs. The 200fs relaxation time is equivalent to a coupling strength of 40meV. Two coupled phonon modes are also identified as about 100 cm-1 and 300 cm-1 from the FFT spectrum of the PIA kinetics. The lower energy mode is consistent with previous reports and Raman spectrum but the higher energy one hasn't been observed before.

  19. Phonon transport in a one-dimensional harmonic chain with long-range interaction and mass disorder

    Science.gov (United States)

    Zhou, Hangbo; Zhang, Gang; Wang, Jian-Sheng; Zhang, Yong-Wei

    2016-11-01

    Atomic mass and interatomic interaction are the two key quantities that significantly affect the heat conduction carried by phonons. Here, we study the effects of long-range (LR) interatomic interaction and mass disorder on the phonon transport in a one-dimensional harmonic chain with up to 105 atoms. We find that while LR interaction reduces the transmission of low-frequency phonons, it enhances the transmission of high-frequency phonons by suppressing the localization effects caused by mass disorder. Therefore, LR interaction is able to boost heat conductance in the high-temperature regime or in the large size regime, where the high-frequency modes are important.

  20. Study of ammonium molecular ion impurity modes in Rb1-x(NH4)xI mixed crystals by inelastic incoherent neutron scattering

    International Nuclear Information System (INIS)

    Smirnov, L.S.; Natkaniec, I.; Ollivier, J.; Dianoux, J.A.; Martinez Sarrion, M.L.; Mestres, L.

    2010-01-01

    The study of ammonium dynamics in Rb 1-x (NH 4 ) x I mixed crystals was carried out by inelastic incoherent neutron scattering in the concentration region of orientationally disordered α-phase, 0.0< x<0.40, at the temperature range from 2 to 150 K. The observed resonance modes correspond to three energy regions: 0.19-0.481 (I), 0.56-3.0 (II) and 4.0-10.0 (III) meV. The modes of region I could be described by rotational tunneling energies of the multipole moments of ammonium ions. The modes within energy region II correspond to the calculated rotational tunneling energies between splitted levels of the ground librational level of ammonium ion. The modes of region III can be described as local gap modes of ammonium ion because they are located between acoustic and optic branches of RbI phonon density of states

  1. Tuning characteristic of band gap and waveguide in a multi-stub locally resonant phononic crystal plate

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Wang

    2015-10-01

    Full Text Available In this paper, the tuning characteristics of band gaps and waveguides in a locally resonant phononic crystal structure, consisting of multiple square stubs deposited on a thin homogeneous plate, are investigated. Using the finite element method and supercell technique, the dispersion relationships and power transmission spectra of those structures are calculated. In contrast to a system of one square stub, systems of multiple square stubs show wide band gaps at lower frequencies and an increased quantity of band gaps at higher frequencies. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the generation of the lowest band gap. Additionally, the influence of the stubs arrangement on the band gaps in multi-stub systems is investigated. The arrangements of the stubs were found to influence the band gaps; this is critical to understand for practical applications. Based on this finding, a novel method to form defect scatterers by changing the arrangement of square stubs in a multi-stub perfect phononic crystal plate was developed. Defect bands can be induced by creating defects inside the original complete band gaps. The frequency can then be tuned by changing the defect scatterers’ stub arrangement. These results will help in fabricating devices such as acoustic filters and waveguides whose band frequency can be modulated.

  2. Quantum Control of a Nitrogen-Vacancy Center using Surface Acoustic Waves in the Resolved Sideband Limit

    Science.gov (United States)

    Golter, David; Oo, Thein; Amezcua, Maira; Wang, Hailin

    Micro-electromechanical systems research is producing increasingly sophisticated tools for nanophononic applications. Such technology is well-suited for achieving chip-based, integrated acoustic control of solid-state quantum systems. We demonstrate such acoustic control in an important solid-state qubit, the diamond nitrogen-vacancy (NV) center. Using an interdigitated transducer to generate a surface acoustic wave (SAW) field in a bulk diamond, we observe phonon-assisted sidebands in the optical excitation spectrum of a single NV center. This exploits the strong strain sensitivity of the NV excited states. The mechanical frequencies far exceed the relevant optical linewidths, reaching the resolved-sideband regime. This enables us to use the SAW field for driving Rabi oscillations on the phonon-assisted optical transition. These results stimulate the further integration of SAW-based technologies with the NV center system.

  3. Soft phonon anomalies in relaxor ferroelectrics

    International Nuclear Information System (INIS)

    Shirane, Gen; Gehring, Peter M.

    2001-01-01

    A review is given of the phonon anomalies, which have been termed waterfalls', that were recently discovered through a series of neutron inelastic scattering measurements on the lead-oxide relaxor systems PZN-xPT, PMN, and PZN. We discuss a simple coupled-mode model that has been used successfully to describe the basic features of the waterfall, and which relates this unusual feature to the presence of polar micro-regions. (author)

  4. Speed of thermal expansion of a long, thin insulating bar and the physical momentum of acoustic phonons

    International Nuclear Information System (INIS)

    Lee, Y C

    2008-01-01

    Thermal expansion is an everyday phenomenon. One would naturally be curious to see how fast the expansion proceeds. While the theory of thermal expansion in statistical thermal equilibrium is well known, the time-dependent process during thermal expansion is a more complex statistical dynamical problem. Contrary to intuitive expectations, it will be seen that the dynamical expansion process is generally different from the process of merely establishing temperature equilibration (thermal-kinetic equilibrium) because two vastly disparate timescales are at work. It will be shown that the finite speed of thermal expansion hinges upon a recently derived result that an acoustic phonon of wavevector q-vector≠0 does carry a finite physical momentum; it arises from anharmonicity, provided translational symmetry is broken. While the eventual mathematical formulation seems pedestrian, it is arrived at after several layers of physical thinking. Our final result shows that the time required for thermal expansion of a thin bar of length L by ΔL due to a given temperature increase ΔT is given by Δt L ∝ (L/ΔL) (L/c s ), where c s is the speed of sound. Its physical origin as well as its classical and quantum limits are fully discussed

  5. Matching Impedances and Modes in Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.

    1985-01-01

    Temperature differences accommodated with tunable coupler. Report discusses schemes for coupling sound efficiently from cool outside atmosphere into hot acoustic-levitation chamber. Theoretical studies have practical implications for material-processing systems that employ acoustic levitation.

  6. Phonon manipulation with phononic crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F. (University of New Mexico, Albuquerque, NM); El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III

    2012-01-01

    In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power

  7. Heat Exchange Between Electrons and Phonons in Nanosystems at Sub-Kelvin Temperatures

    Directory of Open Access Journals (Sweden)

    Anghel Dragoş-Victor

    2018-01-01

    Full Text Available Ultra-sensitive nanoscopic detectors for electromagnetic radiation consist of thin metallic films deposited on dielectric membranes. The metallic films, of thickness d of the order of 10 nm, form the thermal sensing element (TSE, which absorbs the incident radiation and measures its power flux or the energies of individual photons. To achieve the sensitivity required for astronomical observations, the TSE works at temperatures of the order of 0.1 K. The dielectric membranes are used as support and for thermal insulation of the TSE and are of thickness L − d of the order of 100 nm (L being the total thickness of the system. In such conditions, the phonon gas in the detector assumes a quasi-two-dimensional distribution, whereas quantization of the electrons wavenumbers in the direction perpendicular to the film surfaces leads to the formation of quasi two-dimensional electronic sub-bands. The heat exchange between electrons and phonons has an important contribution to the performance of the device and is dominated by the interaction between the electrons and the antisymmetric acoustic phonons.

  8. Surface phonons

    CERN Document Server

    Wette, Frederik

    1991-01-01

    In recent years substantial progress has been made in the detection of surface phonons owing to considerable improvements in inelastic rare gas scattering tech­ niques and electron energy loss spectroscopy. With these methods it has become possible to measure surface vibrations in a wide energy range for all wave vectors in the two-dimensional Brillouin zone and thus to deduce the complete surface phonon dispersion curves. Inelastic atomic beam scattering and electron energy loss spectroscopy have started to play a role in the study of surface phonons similar to the one played by inelastic neutron scattering in the investigation of bulk phonons in the last thirty years. Detailed comparison between experimen­ tal results and theoretical studies of inelastic surface scattering and of surface phonons has now become feasible. It is therefore possible to test and to improve the details of interaction models which have been worked out theoretically in the last few decades. At this point we felt that a concise, co...

  9. 3D continuum phonon model for group-IV 2D materials

    KAUST Repository

    Willatzen, Morten; Lew Yan Voon, Lok C; Gandi, Appala; Schwingenschlö gl, Udo

    2017-01-01

    A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles derivation includes full consideration of the lattice anisotropy and flexural modes perpendicular to the layers and can thus

  10. Phonon anomalies in trilayer high-Tc cuprate superconductors

    International Nuclear Information System (INIS)

    Dubroka, Adam; Munzar, Dominik

    2004-01-01

    We present an extension of the model proposed recently to account for dramatic chAes below T c (anomalies) of some c-axis polarized infrared-active phonons in bilayer cuprate superconductors, that applies to trilayer high-T c compounds. We discuss several types of phonon anomalies that can occur in these systems and demonstrate that our model is capable of explaining the spectral chAes occurring upon entering the superconducting state in the trilayer compound Tl 2 Ba 2 Ca 2 Cu 3 O 10 . The low-temperature spectra of this compound obtained by Zetterer and coworkers display an additional broad absorption band, similar to the one observed in underdoped YBa 2 Cu 3 O 7-δ and Bi 2 Sr 2 CaCu 2 O 8 . In addition, three phonon modes are strongly anomalous. We attribute the absorption band to the transverse Josephson plasma resonance, similar to that of the bilayer compounds. The phonon anomalies are shown to result from a modification of the local fields induced by the formation of the resonance. The spectral chAes in Tl 2 Ba 2 Ca 2 Cu 3 O 10 are compared with those occurring in Bi 2 Sr 2 Ca 2 Cu 3 O 10 , reported recently by Boris and coworkers

  11. Tunable broadband unidirectional acoustic transmission based on a waveguide with phononic crystal

    Science.gov (United States)

    Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Wan, Lele

    2016-08-01

    In this paper, a tunable broadband unidirectional acoustic transmission (UAT) device composed of a bended tube and a superlattice with square columns is proposed and numerically investigated by using finite element method. The UAT is realized in the proposed UAT device within two wide frequency ranges. And the effectiveness of the UAT device is demonstrated by analyzing the sound pressure distributions when the acoustic waves are incident from different directions. The unidirectional band gaps can be effectively tuned by mechanically rotating the square columns, which is a highlight of this paper. Besides, a bidirectional acoustic isolation (BAI) device is obtained by placing two superlattices in the bended tube, in which the acoustic waves cannot propagate along any directions. The physical mechanisms of the proposed UAT device and BAI device are simply discussed. The proposed models show potential applications in some areas, such as unidirectional sonic barrier or noise insulation.

  12. Electron hopping and optic phonons in Eu3S4

    International Nuclear Information System (INIS)

    Guentherodt, G.

    1981-01-01

    Raman scattering on single crystals of Eu 3 S 4 does not show the allowed q=o phonon modes in the cubic phase and exhibits no new modes in the distorted low temperature phase (T 2- ions. This mode does not show any anomaly near the charge order -disorder phase transition Tsub(t)=186 K. Temperature tunable spin fluctuations associated with the temperature activated Eu 2+ → Eu 3+ electron hopping are detected in the scattering intensity, superimposed on the usual thermal spin disorder. (author)

  13. The triple-axis neutron spectrometer KANDI III and measurement of phonons in copper

    International Nuclear Information System (INIS)

    Melamud, M.; Pinto, H.; Shaked, H.

    1976-12-01

    The acoustic phonon dispersion relations of copper were measured using the recently installed triple-axis neutron spectrometer KANDI III. A description of KANDI III and its peripherals is given in this work. The theory of dispersion relations and their measurement using neutron inelastic diffraction are briefly discussed. Raw data and results for copper are presented and compared with the data and results found in the literature

  14. Phonon dispersion relations in PrBa2Cu3O6+x (x≅0.2)

    International Nuclear Information System (INIS)

    Gardiner, C.H.; Boothroyd, A.T.; Larsen, B.H.; Reichardt, W.; Zhokhov, A.A.; Andersen, N.H.; Lister, S.J.S.; Wildes, A.R.

    2004-01-01

    We report measurements of the phonon dispersion relations in nonsuperconducting, oxygen-deficient PrBa 2 Cu 3 O 6+x (x≅0.2) by inelastic neutron scattering. The data are compared with a model of the lattice dynamics based on a common interatomic potential. Good agreement is achieved for all but two phonon branches, which are significantly softer than predicted. These modes are found to arise predominantly from motion of the oxygen ions in the CuO 2 planes. Analogous modes in YBa 2 Cu 3 O 6 are well described by the common interatomic potential model

  15. Soft phonon anomalies in relaxor ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Shirane, Gen [Department of Physics, Brookhaven National Laboratory, Upton, New York (United States); Gehring, Peter M. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland (United States)

    2001-03-01

    A review is given of the phonon anomalies, which have been termed waterfalls', that were recently discovered through a series of neutron inelastic scattering measurements on the lead-oxide relaxor systems PZN-xPT, PMN, and PZN. We discuss a simple coupled-mode model that has been used successfully to describe the basic features of the waterfall, and which relates this unusual feature to the presence of polar micro-regions. (author)

  16. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  17. Phonon renormalization at small q values in the high-temperature phase of CsCuCl sub 3

    CERN Document Server

    Foerster, U; Schotte, U; Stuhr, U

    1997-01-01

    The hexagonal perovskite CsCuCl sub 3 exhibits a structural phase transition from a dynamically disordered high-temperature phase to an ordered low-temperature phase due to the cooperative Jahn-Teller effect. The lattice dynamics of the high-temperature phase has been studied by inelastic neutron scattering experiments. The investigations concentrated on small wave vectors q, where for the first time renormalized phonons at q=0.02-0.05 A sup - sup 1 could be observed. The measurements confirm the predictions of a theoretical approach based on the coupling between dynamic reorientation processes and acoustic lattice waves (pseudo-spin phonon coupling). (author)

  18. Acoustic gain in piezoelectric semiconductors at ε-near-zero response

    DEFF Research Database (Denmark)

    Willatzen, Morten; Christensen, Johan

    2014-01-01

    We demonstrate strong acoustic gain in electric-field biased piezoelectric semiconductors at frequencies near the plasmon frequency in the terahertz range. When the electron drift velocity produced by an external electric field is higher than the speed of sound, Cherenkov radiation of phonons...

  19. Mode Transition and Intermittency in an Acoustically Uncoupled Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary A.; Taamallah, Soufien; Kewlani, Gaurav; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2014-01-01

    The prediction of dynamic instability remains an open and important issue in the development of gas turbine systems, particularly those constrained by emissions limitations. The existence and characteristics of dynamic instability are known to be functions of combustor geometry, flow conditions, and combustion parameters, but the form of dependence is not well understood. By modifying the acoustic boundary conditions, changes in flame and flow structure due to inlet parameters can be studied independent of the acoustic modes with which they couple. This paper examines the effect of equivalence ratio on the flame macrostructure — the relationship between the turbulent flame brush and the dominant flow structures — in an acoustically uncoupled environment. The flame brush is measured using CH* chemiluminescence, and the flow is interrogated using two-dimensional particle image velocimetry. We examine a range of equivalence ratios spanning three distinct macrostructures. The first macrostructure (ϕ = 0.550) is characterized by a diffuse flame brush confined to the interior of the inner recirculation zone. We observe a conical flame in the inner shear layer, continuing along the wall shear layer in the second macrostructure (ϕ = 0.600). The third macrostructure exhibits the same flame brush as the second, with an additional flame brush in the outer shear layer (ϕ = 0.650). Between the second and third macrostructures, we observe a regime in which the flame brush transitions intermittently between the two structures. We use dynamic mode decomposition on the PIV data to show that this transition event, which we call flickering, is linked to vorticity generated by the intermittent expansion of the outer recirculation zone as the flame jumps in and out of the outer shear layer. In a companion paper, we show how the macrostructures described in this paper are linked with dynamic instability [1].

  20. Mode Transition and Intermittency in an Acoustically Uncoupled Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary A.

    2014-06-16

    The prediction of dynamic instability remains an open and important issue in the development of gas turbine systems, particularly those constrained by emissions limitations. The existence and characteristics of dynamic instability are known to be functions of combustor geometry, flow conditions, and combustion parameters, but the form of dependence is not well understood. By modifying the acoustic boundary conditions, changes in flame and flow structure due to inlet parameters can be studied independent of the acoustic modes with which they couple. This paper examines the effect of equivalence ratio on the flame macrostructure — the relationship between the turbulent flame brush and the dominant flow structures — in an acoustically uncoupled environment. The flame brush is measured using CH* chemiluminescence, and the flow is interrogated using two-dimensional particle image velocimetry. We examine a range of equivalence ratios spanning three distinct macrostructures. The first macrostructure (ϕ = 0.550) is characterized by a diffuse flame brush confined to the interior of the inner recirculation zone. We observe a conical flame in the inner shear layer, continuing along the wall shear layer in the second macrostructure (ϕ = 0.600). The third macrostructure exhibits the same flame brush as the second, with an additional flame brush in the outer shear layer (ϕ = 0.650). Between the second and third macrostructures, we observe a regime in which the flame brush transitions intermittently between the two structures. We use dynamic mode decomposition on the PIV data to show that this transition event, which we call flickering, is linked to vorticity generated by the intermittent expansion of the outer recirculation zone as the flame jumps in and out of the outer shear layer. In a companion paper, we show how the macrostructures described in this paper are linked with dynamic instability [1].