WorldWideScience

Sample records for acoustic microscopy risswachstumsstudien

  1. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  2. Transmission acoustic microscopy investigation

    Science.gov (United States)

    Maev, Roman; Kolosov, Oleg; Levin, Vadim; Lobkis, Oleg

    The nature of acoustic contrast, i.e. the connection of the amplitude and phase of the output signal of the acoustic microscope with the local values of the acoustic parameters of the sample (density, elasticity, viscosity) is a central problem of acoustic microscopy. A considerable number of studies have been devoted to the formation of the output signal of the reflection scanning acoustic microscope. For the transmission acoustic microscope (TAM) this problem has remained almost unstudied. Experimental investigation of the confocal system of the TAM was carried out on an independently manufactured laboratory mockup of the TAM with the working frequency of the 420 MHz. Acoustic lenses with the radius of curvature of about 500 microns and aperture angle of 45 deg were polished out in the end faces of two cylindrical sound conductors made from Al2O3 single crystals with an axis parallel to the axis C of the crystal (the length of the sound conductor is 20 mm; diameter, 6 mm). At the end faces of the sound conductor, opposite to the lenses, CdS transducers with a diameter of 2 mm were disposed. The electric channel of the TAM provided a possibility for registering the amplitude of the microscope output signal in the case of the dynamic range of the 50 dB.

  3. Acoustic Imaging Frequency Dynamics of Ferroelectric Domains by Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Kun-Yu, Zhao; Hua-Rong, Zeng; Hong-Zhang, Song; Sen-Xing, Hui; Guo-Rong, Li; Qing-Rui, Yin; Shimamura, Kiyoshi; Kannan, Chinna Venkadasamy; Villora, Encarnacion Antonia Garcia; Takekawa, Shunji; Kitamura, Kenji

    2008-01-01

    We report the acoustic imaging frequency dynamics of ferroelectric domains by low-frequency acoustic probe microscopy based on the commercial atomic force microscopy It is found that ferroelectric domain could be firstly visualized at lower frequency down to 0.5 kHz by AFM-based acoustic microscopy The frequency-dependent acoustic signal revealed a strong acoustic response in the frequency range from 7kHz to 10kHz, and reached maximum at 8.1kHz. The acoustic contrast mechanism can be ascribed to the different elastic response of ferroelectric microstructures to local elastic stress fields, which is induced by the acoustic wave transmitting in the sample when the piezoelectric transducer is vibrating and exciting acoustic wave under ac electric fields due to normal piezoelectric effects. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. What does See the Impulse Acoustic Microscopy inside Nanocomposites?

    Science.gov (United States)

    Levin, V. M.; Petronyuk, Y. S.; Morokov, E. S.; Celzard, A.; Bellucci, S.; Kuzhir, P. P.

    The paper presents results of studying bulk microstructure in carbon nanocomposites by impulse acoustic microscopy technique. Nanocomposite materials are in the focus of interest because of their outstanding properties in minimal nanofiller content. Large surface area and high superficial activity cause strong interaction between nanoparticles that can result in formation of fractal conglomerates. This paper involves results of the first direct observation of nanoparticle conglomerates inside the bulk of epoxy-carbon nanocomposites. Diverse types of carbon nanofiller have been under investigation. The impulse acoustic microscope SIAM-1 (Acoustic Microscopy Lab, IBCP RAS) has been employed for 3D imaging bulk microstructure and measuring elastic properties of the nanocomposite specimens. The range of 50-200 MHz allows observing microstructure inside the entire specimen bulk. Acoustic images are obtained in the ultramicroscopic regime; they are formed by the Rayleigh type scattered radiation. It has been found the high-resolution acoustic vision (impulse acoustic microscopy) is an efficient technique to observe mesostructure formed by fractal cluster inside nanocomposites. The clusterization takes its utmost form in nanocomposites with graphite nanoplatelets as nanofiller. The nanoparticles agglomerate into micron-sized conglomerates distributed randomly over the material. Mesostructure in nanocomposites filled with carbon nanotubes is alternation of regions with diverse density of nanotube packing. Regions with alternative density of CNT packing are clearly seen in acoustical images as neighboring pixels of various brightness.

  5. Characterization of human breast cancer by scanning acoustic microscopy

    Science.gov (United States)

    Chen, Di; Malyarenko, Eugene; Seviaryn, Fedar; Yuan, Ye; Sherman, Mark; Bandyopadhyay, Sudeshna; Gierach, Gretchen; Greenway, Christopher W.; Maeva, Elena; Strumban, Emil; Duric, Neb; Maev, Roman

    2013-03-01

    Objectives: The purpose of this study was to characterize human breast cancer tissues by the measurement of microacoustic properties. Methods: We investigated eight breast cancer patients using acoustic microscopy. For each patient, seven blocks of tumor tissue were collected from seven different positions around a tumor mass. Frozen sections (10 micrometer, μm) of human breast cancer tissues without staining and fixation were examined in a scanning acoustic microscope with focused transducers at 80 and 200 MHz. Hematoxylin and Eosin (H and E) stained sections from the same frozen breast cancer tissues were imaged by optical microscopy for comparison. Results: The results of acoustic imaging showed that acoustic attenuation and sound speed in cancer cell-rich tissue regions were significantly decreased compared with the surrounding tissue regions, where most components are normal cells/tissues, such as fibroblasts, connective tissue and lymphocytes. Our observation also showed that the ultrasonic properties were influenced by arrangements of cells and tissue patterns. Conclusions: Our data demonstrate that attenuation and sound speed imaging can provide biomechanical information of the tumor and normal tissues. The results also demonstrate the potential of acoustic microscopy as an auxiliary method for operative detection and localization of cancer affected regions.

  6. Acoustic profilometry within polymers as performed by Brillouin microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanctuary, R [Laboratoire Europeen de Recherche Universitaire Saarland-Lorraine (LERUSL) at the Centre Universitaire de Luxembourg, Departement des Sciences, Laboratoire 1.19, 162a avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Bactavatchalou, Ravi [Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Mueller, Ulrich [Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany); Possart, W [Universitaet des Saarlandes, Fakultaet fuer Chemie, Pharmazie und Werkstoffwissenschaften 8.15, Gebaeude 22, D-66041 Saarbruecken (Germany); Alnot, P [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), UMR 7040-C.N.R.S, Universite de Nancy I, Bd des Aiguillettes, B.P. 239 F-54506 Vandoeuvre les Nancy (France); Krueger, J K [Universitaet des Saarlandes, Fakultaet fuer Physik und Elektrotechnik 7.2, Gebaeude 38, D-66041 Saarbruecken (Germany)

    2003-11-07

    Using high performance Brillouin spectroscopy we present a new technique, which enables us to perform acoustic microscopy with a spatial resolution of about 1 {mu}m. This technique, called Brillouin microscopy, is tested on several bulk- and film-like polymer samples.

  7. Analysis of Using Acoustic Microscopy to Evaluate Defects in Spot Welding Joints

    Directory of Open Access Journals (Sweden)

    Korzeniowski M.

    2016-06-01

    Full Text Available The article presents the possibilities of using acoustic microscopy to evaluate defects in resistance spot welding joints. For this purpose, the welded joints were made from two grades of aluminium plates EN AW5754 H24 and EN AW6005 T606, which were then subjected to non-destructive testing using acoustic microscopy and conventional destructive testing using traditional light microscopy techniques. Additionally, the study examined the influence of the typical contaminants found in industrial conditions on the quality of the joint.

  8. Additional signals due to negative refraction in acoustic microscopy of anisotropic plates

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Mozhaev, V.G.

    2008-01-01

    The additional V(z) oscillations and pulses are predicted in the case of positive defocusing (focus above the sample surface) in acoustic microscopy of anisotropic plates exhibiting negative refraction of acoustic rays. The relationship between these additional signals and separate points on the acoustic slowness surface of the plate material is elucidated

  9. Additional signals due to negative refraction in acoustic microscopy of anisotropic plates

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A.V. [Faculty of Physics, Moscow State University, Moscow, 119991 GSP-1 (Russian Federation)], E-mail: av_kozlov@inbox.ru; Mozhaev, V.G. [Faculty of Physics, Moscow State University, Moscow, 119991 GSP-1 (Russian Federation)], E-mail: vgmozhaev@mail.ru

    2008-06-23

    The additional V(z) oscillations and pulses are predicted in the case of positive defocusing (focus above the sample surface) in acoustic microscopy of anisotropic plates exhibiting negative refraction of acoustic rays. The relationship between these additional signals and separate points on the acoustic slowness surface of the plate material is elucidated.

  10. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    Science.gov (United States)

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  11. Application of acoustic microscopy to assessment of cardiovascular biomechanics

    Science.gov (United States)

    Saijo, Yoshifumi; Sasaki, Hidehiko; Nitta, Shin-ichi; Tanaka, Motonao; Joergensen, Claus S.; Falk, Erling

    2002-11-01

    Acoustic microscopy provides information on physical and mechanical properties of biological tissues, while optical microscopy with various staining techniques provides chemical properties. The biomechanics of tissues is especially important in cardiovascular system because its pathophysiology is closely related with mechanical stresses such as blood pressure or blood flow. A scanning acoustic microscope (SAM) system with tone-burst ultrasound in the frequency range of 100-200 MHz has been developed, and attenuation and sound speed of tissues have been measured. In human coronary arteries, attenuation and sound speed were high in calcification and collagen, while both values were low in smooth muscle and lipid. Another SAM system with 800-MHz-1.3-GHz ultrasound was applied for aortas of Apo-E deficient mouse, which is known to develop atherosclerosis. Attenuation of ultrasound was significantly higher in type 1 collagen compared to type 3 collagen. Recently, a new type FFT-SAM using a single-pulse, broadband frequency range ultrasound (20-150 MHz) has been developed. Cardiac allograft was observed by FFT-SAM and the acoustic properties were able to grade allograft rejection. SAM provides very useful information for assessing cardiovascular biomechanics and for understanding normal and abnormal images of clinical ultrasound.

  12. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    Science.gov (United States)

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  13. Quantitative measurement of local elasticity of SiOx film by atomic force acoustic microscopy

    International Nuclear Information System (INIS)

    Cun-Fu, He; Gai-Mei, Zhang; Bin, Wu

    2010-01-01

    In this paper the elastic properties of SiO x film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiO x films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD). The local contact stiffness of the tip-SiO x film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiO x film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiO x surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample. (classical areas of phenomenology)

  14. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  15. Mechanisms of CFR composites destruction studying with pulse acoustic microscopy

    Science.gov (United States)

    Petronyuk, Y. S.; Morokov, E. S.; Levin, V. M.; Ryzhova, T. B.; Chernov, A. V.

    2016-05-01

    Non-destructive inspection of carbon-fiber-reinforced (CFR) composites applied in aerospace industry attracts a wide attention. In the paper, high frequency focused ultrasound (50-100 MHz) has been applied to study the bulk microstructure of the CFR material and mechanisms of its destruction under the mechanical loading. It has been shown impulse acoustic microscopy provides detecting the areas of adhesion loss at millimeter and micron level. Behavior of the CFR laminate structure fabricated by prepreg or infusion technology has been investigated under the tensile and impact loading.

  16. Effects of anticancer drugs on glia-glioma brain tumor model characterized by acoustic impedance microscopy

    Science.gov (United States)

    Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko

    2017-07-01

    An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.

  17. Imaging of microwave-induced acoustic fields in LiNbO{sub 3} by high-performance Brillouin microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Krueger, J K [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Univ. des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Elmazria, O [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Bouvot, L [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Mainka, J [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Universitaet des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Sanctuary, R [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Materiaux, Campus Luxembourg-Limpertsberg, L-1511 Luxembourg (Luxembourg); Rouxel, D [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Alnot, P [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France)

    2005-06-21

    High performance Brillouin microscopy (BM) has been used to characterize the spatial distribution of piezoelectrically induced acoustic fields excited at microwave frequencies in a LiNbO{sub 3} single crystal. It is demonstrated that under suitable conditions BM is able to detect microwave-induced bulk as well as surface acoustic waves. Brillouin spectroscopy is able to probe sound wave intensities of induced phonons, which are as small as those of thermal phonons.

  18. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    Science.gov (United States)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  19. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    Science.gov (United States)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  20. High Frequency Acoustic Microscopy for the Determination of Porosity and Young's Modulus in High Burnup Uranium Dioxide Nuclear Fuel

    Science.gov (United States)

    Marchetti, Mara; Laux, Didier; Cappia, Fabiola; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G.

    2016-06-01

    During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile and to the hardness radial profile data obtained by Vickers micro-indentation.

  1. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Marchetti, M.; Laux, D.; Cappia, F.; Laurie, M.; Van Uffelen, P.; Rondinella, V.V.; Despaux, G.

    2015-01-01

    During irradiation UO 2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO 2 pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO 2 pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  2. Bulk microstructure and local elastic properties of carbon nanocomposites studied by impulse acoustic microscopy technique

    Science.gov (United States)

    Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.

    2016-05-01

    Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.

  3. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, M. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); Laux, D. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Cappia, F. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Technische Universitaet Muenchen, Department of Nuclear Engineering, Boltzmannstrasse 15, 85747 Garching bei Munchen (Germany); Laurie, M.; Van Uffelen, P.; Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Despaux, G. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    During irradiation UO{sub 2} nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO{sub 2} pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO{sub 2} pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  4. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  5. PVT Degradation Studies: Acoustic Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tucker, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-01

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regions with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.

  6. Non-mineralized fibrocartilage shows the lowest elastic modulus in the rabbit supraspinatus tendon insertion: measurement with scanning acoustic microscopy.

    Science.gov (United States)

    Sano, Hirotaka; Saijo, Yoshifumi; Kokubun, Shoichi

    2006-01-01

    The acoustic properties of rabbit supraspinatus tendon insertions were measured by scanning acoustic microscopy. After cutting parallel to the supraspinatus tendon fibers, specimens were fixed with 10% neutralized formalin, embedded in paraffin, and sectioned. Both the sound speed and the attenuation constant were measured at the insertion site. The 2-dimensional distribution of the sound speed and that of the attenuation constant were displayed with color-coded scales. The acoustic properties reflected both the histologic architecture and the collagen type. In the tendon proper and the non-mineralized fibrocartilage, the sound speed and attenuation constant gradually decreased as the predominant collagen type changed from I to II. In the mineralized fibrocartilage, they increased markedly with the mineralization of the fibrocartilaginous tissue. These results indicate that the non-mineralized fibrocartilage shows the lowest elastic modulus among 4 zones at the insertion site, which could be interpreted as an adaptation to various types of biomechanical stress.

  7. Line-focus acoustic microscopy of Ti-6242 α/β single colony: determination of elastic constants

    International Nuclear Information System (INIS)

    Kim, J.-Y.; Yakovlev, V.; Rokhlin, S.I.

    2002-01-01

    Time-resolved line-focus acoustic microscopy is performed for determining elastic constants of Ti-6242 α/β-single colony and Ti-6 α-phase single crystal. Surface acoustic wave (SAW) velocities are obtained as a function of the propagation angle from measured time-delays of SAW signals. The propagation of surface waves in a semi-infinite half space formed by anisotropic layers inclined arbitrarily to the sample surface is studied to model a quasi-random lamellar structure of the Ti-6242 α/β-single colony. Effective elastic constants of the multilayered structure are derived and verified through the comparison with exact ones, based on which SAW velocities in non-principal planes are calculated. Effective and constituent elastic constants of the α/β-single colony and the α-phase single crystal are inversely determined from the measured and calculated SAW velocities. The α- and β-phase elastic constants from the α/β-single colony so determined are compared with those from the α-single crystal and data in the literature

  8. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  9. Radiation acoustics and its applications

    International Nuclear Information System (INIS)

    Lyamshev, L.M.

    1992-01-01

    Radiation acoustics is a new branch of acoustics, developing on the boundary of acoustics, nuclear physics, elementary particles and high-energy physics. Its fundamentals are laying in the research of acoustical effects due to the interaction of penetrating radiation with matter. The study of radiation-acoustical effects leads to the new opportunities in the penetration radiation research (acoustical detection, radiation-acoustical dosimetry), study of the physical parameters of matter, in a solution of some applied problems of nondestructive testing, and also for the radiation-acoustical influence on physical and chemical structure of the matter. Results of theoretical and experimental investigations are given. Different mechanisms of the sound generation by penetrating radiation of liquids and solids are considered. Some applications - the radiation acoustical microscopy and visualisation, the acoustical detection of high energy X-ray particles and possibility of using of high energy neutrino beams in geoacoustics - are discussed

  10. Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Torello, D.; Degertekin, F. Levent, E-mail: levent.degertekin@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2013-11-15

    A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelf components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.

  11. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  12. Opto-acoustic microscopy reveals adhesion mechanics of single cells.

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  13. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  14. Relationships between acoustic emissions and microstructures

    International Nuclear Information System (INIS)

    Rao, G.V.; Gopal, R.

    1979-01-01

    Results of a systematic study of 'microstructure-deformation-acoustic emission' relationships on two widely used pressure retaining component materials, namely A533-B nuclear pressure vessel steel and a 7075 aluminum alloy, are presented. The study consists of conducting acoustic monitored tensile tests on a variety of quenched and aged microstructures in the two alloy systems and extensive microstructural characterization of test specimens by light optic and electron microscopy techniques. The results suggest a consistent relationship between acoustic emissions and microdeformation mechanisms. The role of specific microstructural constituents in generating acoustic emissions in the two alloys is discussed. (author)

  15. All-optical optoacoustic microscopy based on probe beam deflection technique

    OpenAIRE

    Maswadi, Saher M.; Ibey, Bennett L.; Roth, Caleb C.; Tsyboulski, Dmitri A.; Beier, Hope T.; Glickman, Randolph D.; Oraevsky, Alexander A.

    2016-01-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separa...

  16. Impulse excitation scanning acoustic microscopy for local quantification of Rayleigh surface wave velocity using B-scan analysis

    Science.gov (United States)

    Cherry, M.; Dierken, J.; Boehnlein, T.; Pilchak, A.; Sathish, S.; Grandhi, R.

    2018-01-01

    A new technique for performing quantitative scanning acoustic microscopy imaging of Rayleigh surface wave (RSW) velocity was developed based on b-scan processing. In this technique, the focused acoustic beam is moved through many defocus distances over the sample and excited with an impulse excitation, and advanced algorithms based on frequency filtering and the Hilbert transform are used to post-process the b-scans to estimate the Rayleigh surface wave velocity. The new method was used to estimate the RSW velocity on an optically flat E6 glass sample, and the velocity was measured at ±2 m/s and the scanning time per point was on the order of 1.0 s, which are both improvement from the previous two-point defocus method. The new method was also applied to the analysis of two titanium samples, and the velocity was estimated with very low standard deviation in certain large grains on the sample. A new behavior was observed with the b-scan analysis technique where the amplitude of the surface wave decayed dramatically on certain crystallographic orientations. The new technique was also compared with previous results, and the new technique has been found to be much more reliable and to have higher contrast than previously possible with impulse excitation.

  17. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    Science.gov (United States)

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  18. Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties

    International Nuclear Information System (INIS)

    Kim, Chung Seok; Park, Ik Keun

    2012-01-01

    The present paper reviews the micro and nano nondestructive evaluation(NDE) technique that is possible to investigate the surface and measure the acoustic properties. The technical theory, features and applications of the ultrasonic atomic force microscopy(UAFM) and scanning acoustic microscopy(SAM) are illustrated. Especially, these technologies are possible to evaluate the mechanical properties in micro/nano structure and surface through the measurement of acoustic properties in addition to the observation of surface and subsurface. Consequently, it is thought that technique developments and applications of these micro/nano NDE in advanced industrial parts together with present nondestructive industry are widely possible hereafter.

  19. 30th International Acoustical Imaging Symposium

    CERN Document Server

    Jones, Joie; Lee, Hua

    2011-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place every two years since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2009 the 30th International Symposium on Acoustical Imaging was held in Monterey, CA, USA, March 1-4. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 30 in the Series contains an excellent collection of forty three papers presented in five major categories: Biomedical Imaging Acoustic Microscopy Non-Destructive Evaluation Systems Analysis Signal Analysis and Image Processing Audience Researchers in medical imaging and biomedical instrumentation experts.

  20. Ultrasonic superlensing jets and acoustic-fork sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org

    2017-05-18

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on “hyper” or “super” lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical ‘snail-fork’ shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices. - Highlights: • Ultrasonic

  1. Finite-Element Simulation of Cantilever Vibrations in Atomic Force Acoustic Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, F J Espinoza [Centro de Investigacion y Estudios Avanzados del IPN. Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico); Scholz, T [Hamburg University of Technology, Institute of Advanced Ceramics, Denickestrasse 15, D-21073 Hamburg (Germany); Schneider, G A [Hamburg University of Technology, Institute of Advanced Ceramics, Denickestrasse 15, D-21073 Hamburg (Germany); Munoz-Saldana, J [Centro de Investigacion y Estudios Avanzados del IPN. Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico); Rabe, U [Fraunhofer Institute for Non-Destructive Testing (IZFP), Bldg. E3.1, University, D-66123 Saarbruecken (Germany); Arnold, W [Fraunhofer Institute for Non-Destructive Testing (IZFP), Bldg. E3.1, University, D-66123 Saarbruecken (Germany)

    2007-03-15

    Atomic Force Acoustic Microscopy has been proven to be a powerful technique for materials characterization with nanoscale lateral resolution. This technique allows one to obtain images of elastic properties of materials. By means of spectroscopic measurements of the tip-sample contact-resonance frequencies, it is possible to obtain quantitative values of the mechanical stiffness of the sample surface. For quantitative analysis a reliable relation between the spectroscopic data and the contact stiffness is required based on a correct geometrical model of the cantilever vibrations. This model must be precise enough for predicting the resonance frequencies of the tip-sample interaction when excited over a wide range of frequencies. Analytical models have served as a good reference for understanding the vibrational behavior of the AFM cantilever. They have certain limits, however, for reproducing the tip-sample contact-resonances due to the cantilever geometries used. For obtaining the local elastic modulus of samples, it is necessary to know the tip-sample contact area which is usually obtained by a calibration procedure with a reference sample. In this work we show that finiteelement modeling may be used to replace the analytical inversion procedure for AFAM data. First, the three first bending modes of cantilever resonances were used for finding the geometrical dimension of the cantilever employed. Then the normal and in-plane stiffness of the sample were obtained for each measurement on the surface to be measured. A calibration was needed to obtain the tip position of the cantilever by making measurements on a sample with known surface elasticity, here crystalline silicon. The method developed in this work was applied to AFAM measurements on silicon, zerodur, and strontium titanate.

  2. Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis

    International Nuclear Information System (INIS)

    Gallego, Antolino; Gil, Jose F.; Vico, Juan M.; Ruzzante, Jose E.; Piotrkowski, Rosa

    2005-01-01

    Coating-substrate adherence in galvanized steel is evaluated by acoustic emission wavelet analysis in scratch tests on hot-dip galvanized samples. The acoustic emission results are compared with optical and electron microscopy observations in order to understand coating features related to adherence and to establish criteria aimed at improving the manufacture process

  3. Adaptation of Acoustic Model Experiments of STM via Smartphones and Tablets

    Science.gov (United States)

    Thees, Michael; Hochberg, Katrin; Kuhn, Jochen; Aeschlimann, Martin

    2017-01-01

    The importance of Scanning Tunneling Microscopy (STM) in today's research and industry leads to the question of how to include such a key technology in physics education. Manfred Euler has developed an acoustic model experiment to illustrate the fundamental measuring principles based on an analogy between quantum mechanics and acoustics. Based on…

  4. All-optical optoacoustic microscopy based on probe beam deflection technique

    Directory of Open Access Journals (Sweden)

    Saher M. Maswadi

    2016-09-01

    Full Text Available Optoacoustic (OA microscopy using an all-optical system based on the probe beam deflection technique (PBDT for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii high sensitivity and (iv ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  5. All-optical optoacoustic microscopy based on probe beam deflection technique.

    Science.gov (United States)

    Maswadi, Saher M; Ibey, Bennett L; Roth, Caleb C; Tsyboulski, Dmitri A; Beier, Hope T; Glickman, Randolph D; Oraevsky, Alexander A

    2016-09-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP) of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  6. Characterization of Films with Thickness Less than 10 nm by Sensitivity-Enhanced Atomic Force Acoustic Microscopy

    Directory of Open Access Journals (Sweden)

    Muraoka Mikio

    2011-01-01

    Full Text Available Abstract We present a method for characterizing ultrathin films using sensitivity-enhanced atomic force acoustic microscopy, where a concentrated-mass cantilever having a flat tip was used as a sensitive oscillator. Evaluation was aimed at 6-nm-thick and 10-nm-thick diamond-like carbon (DLC films deposited, using different methods, on a hard disk for the effective Young's modulus defined as E/(1 - ν2, where E is the Young's modulus, and ν is the Poisson's ratio. The resonant frequency of the cantilever was affected not only by the film's elasticity but also by the substrate even at an indentation depth of about 0.6 nm. The substrate effect was removed by employing a theoretical formula on the indentation of a layered half-space, together with a hard disk without DLC coating. The moduli of the 6-nm-thick and 10-nm-thick DLC films were 392 and 345 GPa, respectively. The error analysis showed the standard deviation less than 5% in the moduli.

  7. Acoustic emission characterization of the tetragonal-monoclinic phase transformation in zirconia

    International Nuclear Information System (INIS)

    Clarke, D.R.; Arora, A.

    1983-01-01

    The processes accompanying the tetragonal-monoclinic phase transformation in zirconia (ZrO 2 ) have been studied using acoustic emission and electron microscopy in an attempt to characterize the different mechanisms by which the transformation can be accommodated in bulk materials. Experiments in which the acoustic emission is detected as specimens are cooled through the transformation, following densification by sintering, are described. For comparison, the acoustic emission from free, nominally unconstrained powders similarly cooled through the transformation is reported. The existence of distinct processes accompanying the phase transformation is established on the basis of postexperiment multiparametric correlation analysis of the acoustic emission

  8. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation μCT

    International Nuclear Information System (INIS)

    Raum, K; Leguerney, I; Chandelier, F; Talmant, M; Saied, A; Peyrin, F; Laugier, P

    2006-01-01

    200 MHz scanning acoustic microscopy (SAM) and synchrotron radiation μCT (SR-μCT) were used to assess microstructural parameters and tissue properties in site-matched regions of interest in cortical bone. Anterior and postero-lateral regions of ten cross sections from human cortical radius were explored. Structural parameters, including diameter and number of Haversian canals per cortical area (Ca.Dm, N.Ca/Ar) and porosity Po were assessed with both methods using a custom-developed image fusion and analysis software. Acoustic impedance Z and degree of mineralization of bone DMB were extracted separately for osteonal and interstitial tissues from the fused images. Structural parameter estimations obtained from radiographic and acoustic images were almost identical. DMB and impedance values were in the range between 0.77 and 1.28 g cm -3 and 5.13 and 12.1 Mrayl, respectively. Interindividual and regional variations were observed, whereas the strongest difference was found between osteonal and interstitial tissues (Z: 7.2 ± 1.1 Mrayl versus 9.3 ± 1.0 Mrayl, DMB: 1.06 ± 0.07 g cm -3 versus 1.16 ± 0.05 g cm -3 , paired t-test, p 2 = 0.174, p -4 ) and for the pooled (osteonal and interstitial) data. The regression of the pooled osteonal and interstitial tissue data follows a second-order polynomial (R 2 = 0.39, p -4 ). Both modalities fulfil the requirement for a simultaneous evaluation of cortical bone microstructure and material properties at the tissue level. While SAM inspection is limited to the evaluation of carefully prepared sample surfaces, SR-μCT provides volumetric information on the tissue without substantial preparation requirements. However, SAM provides a quantitative estimate of elastic properties at the tissue level that cannot be captured by SR-μCT

  9. Flow profiling of a surface-acoustic-wave nanopump

    Science.gov (United States)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  10. Scanning probe microscopy techniques for mechanical characterization at nanoscale

    International Nuclear Information System (INIS)

    Passeri, D.; Anastasiadis, P.; Tamburri, E.; Gugkielmotti, V.; Rossi, M.

    2013-01-01

    Three atomic force microscopy (AFM)-based techniques are reviewed that allow one to conduct accurate measurements of mechanical properties of either stiff or compliant materials at a nanometer scale. Atomic force acoustic microscopy, AFM-based depth sensing indentation, and torsional harmonic AFM are briefly described. Examples and results of quantitative characterization of stiff (an ultrathin SeSn film), soft polymeric (polyaniline fibers doped with detonation nanodiamond) and biological (collagen fibers) materials are reported.

  11. The Micromorphological Research of the Internal Structure of Chairside CAD/CAM Materials by the Method of Scanning Impulse Acoustic Microscopy (SIAM).

    Science.gov (United States)

    Goryainova, Kristina E; Morokov, Egor S; Retinskaja, Marina V; Rusanov, Fedor S; Apresyan, Samvel V; Lebedenko, Igor Yu

    2018-01-01

    The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research.

  12. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    Science.gov (United States)

    Avti, Pramod K; Hu, Song; Favazza, Christopher; Mikos, Antonios G; Jansen, John A; Shroyer, Kenneth R; Wang, Lihong V; Sitharaman, Balaji

    2012-01-01

    In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Optical-resolution (OR) and acoustic-resolution (AR)--Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

  13. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    Directory of Open Access Journals (Sweden)

    Pramod K Avti

    Full Text Available In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM was investigated to detect, map, and quantify trace amounts [nanograms (ng to micrograms (µg] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds.Optical-resolution (OR and acoustic-resolution (AR--Photoacoustic microscopy (PAM was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR fluorescence microscopy.Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections.The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

  14. The Micromorphological Research of the Internal Structure of Chairside CAD/CAM Materials by the Method of Scanning Impulse Acoustic Microscopy (SIAM)

    Science.gov (United States)

    Goryainova, Kristina E.; Morokov, Egor S.; Retinskaja, Marina V.; Rusanov, Fedor S.; Apresyan, Samvel V.; Lebedenko, Igor Yu.

    2018-01-01

    Aim: The aim of the present work was to compare the elastic properties and internal structure of 4 different CAD/CAM chairside materials, by the method of Scanning Impulse Acoustic Microscopy (SIAM). Methods: Four chairside CAD/CAM materials with different structures from hybrid ceramic (VITA Enamic, VITA Zahnfabrik), feldspatic ceramic (VITABlocs Mark II, VITA Zahnfabrik), leucite glass-ceramic (IPS Empress CAD, Ivoclar Vivadent) and PMMA (Telio CAD, Ivoclar Vivadent) were examined by Scanning Impulse Acoustic Microscope (SIAM). Results: The results of micromorphological research of CAD/CAM chairside materials using SIAM method showed differences between the internal structures of these materials. The internal structure of feldspatic and glass-ceramic samples revealed the presence of pores with different sizes, from 10 to 100 microns; the structure of polymer materials rendered some isolated defects, while in the structure of hybrid material, defects were not found. Conclusion: Based on the results obtained from the present study, in cases of chairside production of dental crowns, it would be advisable to give preference to the blocks of hybrid ceramics. Such ceramics devoid of quite large porosity, glazing for CAD/CAM crowns made from leucite glass-ceramic and feldspatic ceramic may be an option. For these purposes, commercially available special muffle furnace for clinical and laboratory individualization and glazing of ceramic prostheses were provided. Further studies are needed to confirm the evidence emerging from the present research. PMID:29492178

  15. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  16. Effects of the murine skull in optoacoustic brain microscopy.

    Science.gov (United States)

    Kneipp, Moritz; Turner, Jake; Estrada, Héctor; Rebling, Johannes; Shoham, Shy; Razansky, Daniel

    2016-01-01

    Despite the great promise behind the recent introduction of optoacoustic technology into the arsenal of small-animal neuroimaging methods, a variety of acoustic and light-related effects introduced by adult murine skull severely compromise the performance of optoacoustics in transcranial imaging. As a result, high-resolution noninvasive optoacoustic microscopy studies are still limited to a thin layer of pial microvasculature, which can be effectively resolved by tight focusing of the excitation light. We examined a range of distortions introduced by an adult murine skull in transcranial optoacoustic imaging under both acoustically- and optically-determined resolution scenarios. It is shown that strong low-pass filtering characteristics of the skull may significantly deteriorate the achievable spatial resolution in deep brain imaging where no light focusing is possible. While only brain vasculature with a diameter larger than 60 µm was effectively resolved via transcranial measurements with acoustic resolution, significant improvements are seen through cranial windows and thinned skull experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    Science.gov (United States)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  18. Adaptation of acoustic model experiments of STM via smartphones and tablets

    Science.gov (United States)

    Thees, Michael; Hochberg, Katrin; Kuhn, Jochen; Aeschlimann, Martin

    2017-10-01

    The importance of Scanning Tunneling Microscopy (STM) in today's research and industry leads to the question of how to include such a key technology in physics education. Manfred Euler has developed an acoustic model experiment to illustrate the fundamental measuring principles based on an analogy between quantum mechanics and acoustics. Based on earlier work we applied mobile devices such as smartphones and tablets instead of using a computer to record and display the experimental data and thus converted Euler's experimental setup into a low-cost experiment that is easy to build and handle by students themselves.

  19. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    International Nuclear Information System (INIS)

    Amami, Souhail; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim

    2010-01-01

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  20. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    Energy Technology Data Exchange (ETDEWEB)

    Amami, Souhail [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)], E-mail: souhail.amami@utc.fr; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)

    2010-05-15

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  1. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  2. Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Dongyao Wang

    2017-02-01

    Full Text Available Owing to high specific strength and designability, unidirectional carbon fiber reinforced polymer (UD-CFRP has been utilized in numerous fields to replace conventional metal materials. Post machining processes are always required for UD-CFRP to achieve dimensional tolerance and assembly specifications. Due to inhomogeneity and anisotropy, UD-CFRP differs greatly from metal materials in machining and failure mechanism. To improve the efficiency and avoid machining-induced damage, this paper undertook to study the correlations between cutting parameters, fiber orientation angle, cutting forces, and cutting-induced damage for UD-CFRP laminate. Scanning acoustic microscopy (SAM was employed and one-/two-dimensional damage factors were then created to quantitatively characterize the damage of the laminate workpieces. According to the 3D Hashin’s criteria a numerical model was further proposed in terms of the finite element method (FEM. A good agreement between simulation and experimental results was validated for the prediction and structural optimization of the UD-CFRP.

  3. Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method.

    Science.gov (United States)

    Wang, Dongyao; He, Xiaodong; Xu, Zhonghai; Jiao, Weicheng; Yang, Fan; Jiang, Long; Li, Linlin; Liu, Wenbo; Wang, Rongguo

    2017-02-20

    Owing to high specific strength and designability, unidirectional carbon fiber reinforced polymer (UD-CFRP) has been utilized in numerous fields to replace conventional metal materials. Post machining processes are always required for UD-CFRP to achieve dimensional tolerance and assembly specifications. Due to inhomogeneity and anisotropy, UD-CFRP differs greatly from metal materials in machining and failure mechanism. To improve the efficiency and avoid machining-induced damage, this paper undertook to study the correlations between cutting parameters, fiber orientation angle, cutting forces, and cutting-induced damage for UD-CFRP laminate. Scanning acoustic microscopy (SAM) was employed and one-/two-dimensional damage factors were then created to quantitatively characterize the damage of the laminate workpieces. According to the 3D Hashin's criteria a numerical model was further proposed in terms of the finite element method (FEM). A good agreement between simulation and experimental results was validated for the prediction and structural optimization of the UD-CFRP.

  4. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  5. Translational illusion of acoustic sources by transformation acoustics.

    Science.gov (United States)

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  6. Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy

    Directory of Open Access Journals (Sweden)

    M. Kalyan Phani

    2015-03-01

    Full Text Available The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V measured by using atomic force acoustic microscopy (AFAM is reported in the present study. The real and imaginary parts of the contact stiffness k* are obtained from the contact-resonance spectra and by using these two quantities, the maps of local elastic stiffness and the damping factor are derived. The evaluation of the data is based on the mass distribution of the cantilever with damped flexural modes. The cantilever dynamics model considering damping, which was proposed recently, has been used for mapping of indentation modulus and damping of different phases in a metallic structural material. The study indicated that in a Ti-6Al-4V alloy the metastable β phase has the minimum modulus and the maximum damping followed by α′- and α-phases. Volume fractions of the individual phases were determined by using a commercial material property evaluation software and were validated by using X-ray diffraction (XRD and electron back-scatter diffraction (EBSD studies on one of the heat-treated samples. The volume fractions of the phases and the modulus measured through AFAM are used to derive average modulus of the bulk sample which is correlated with the bulk elastic properties obtained by ultrasonic velocity measurements. The average modulus of the specimens estimated by AFAM technique is found to be within 5% of that obtained by ultrasonic velocity measurements. The effect of heat treatments on the ultrasonic attenuation in the bulk sample could also be understood based on the damping measurements on individual phases using AFAM.

  7. Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy.

    Science.gov (United States)

    Phani, M Kalyan; Kumar, Anish; Jayakumar, T; Arnold, Walter; Samwer, Konrad

    2015-01-01

    The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V) measured by using atomic force acoustic microscopy (AFAM) is reported in the present study. The real and imaginary parts of the contact stiffness k (*) are obtained from the contact-resonance spectra and by using these two quantities, the maps of local elastic stiffness and the damping factor are derived. The evaluation of the data is based on the mass distribution of the cantilever with damped flexural modes. The cantilever dynamics model considering damping, which was proposed recently, has been used for mapping of indentation modulus and damping of different phases in a metallic structural material. The study indicated that in a Ti-6Al-4V alloy the metastable β phase has the minimum modulus and the maximum damping followed by α'- and α-phases. Volume fractions of the individual phases were determined by using a commercial material property evaluation software and were validated by using X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) studies on one of the heat-treated samples. The volume fractions of the phases and the modulus measured through AFAM are used to derive average modulus of the bulk sample which is correlated with the bulk elastic properties obtained by ultrasonic velocity measurements. The average modulus of the specimens estimated by AFAM technique is found to be within 5% of that obtained by ultrasonic velocity measurements. The effect of heat treatments on the ultrasonic attenuation in the bulk sample could also be understood based on the damping measurements on individual phases using AFAM.

  8. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Directory of Open Access Journals (Sweden)

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini

    2011-01-01

    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  9. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    Science.gov (United States)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  10. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  11. Switchable and tunable film bulk acoustic resonator fabricated using barium strontium titanate active layer and Ta{sub 2}O{sub 5}/SiO{sub 2} acoustic reflector

    Energy Technology Data Exchange (ETDEWEB)

    Sbrockey, N. M., E-mail: sbrockey@structuredmaterials.com; Tompa, G. S. [Structured Materials Industries, Inc., Piscataway, New Jersey 08854 (United States); Kalkur, T. S.; Mansour, A. [Department of Electrical and Computer Engineering, Colorado State University at Colorado Springs, Colorado Springs, Colorado 80933 (United States); Khassaf, H.; Yu, H.; Aindow, M.; Alpay, S. P. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2016-08-01

    A solidly mounted acoustic resonator was fabricated using a Ba{sub 0.60}Sr{sub 0.40}TiO{sub 3} (BST) film deposited by metal organic chemical vapor deposition. The device was acoustically isolated from the substrate using a Bragg reflector consisting of three pairs of Ta{sub 2}O{sub 5}/SiO{sub 2} layers deposited by chemical solution deposition. Transmission electron microscopy verified that the Bragg reflector was not affected by the high temperatures and oxidizing conditions necessary to process high quality BST films. Electrical characterization of the resonator demonstrated a quality factor (Q) of 320 and an electromechanical coupling coefficient (K{sub t}{sup 2}) of 7.0% at 11 V.

  12. Acoustic source for generating an acoustic beam

    Science.gov (United States)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  13. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  14. High-speed automated NDT device for niobium plate using scanning laser acoustic microscopy

    International Nuclear Information System (INIS)

    Oravecz, M.G.; Yu, B.Y.; Riney, K.; Kessler, L.W.; Padamsee, H.

    1988-01-01

    This paper presents a nondestructive testing (NDT) device which rapidly and automatically identifies defects throughout the volume of a 23.4 cm x 23.4 cm x 0.3 cm, pure niobium plate using Scanning Laser Acoustic Microscope (SLAM), high-resolution, 60 MHz, ultrasonic images. A principle advantage of the SLAM technique is that it combines a video scan rate with a high scan density (130 lines/mm at 60 MHz). To automate the inspection system they integrated under computer control the following: the SLAM RS-170/330 video output, a computerized XY plate scanner, a real-time video digitizer/integrator, a computer algorithm for defect detection, a digital mass storage device, and a hardcopy output device. The key element was development of an efficient, reliable defect detection algorithm using a variance filter with a locally determined threshold. This algorithm is responsible for recognizing valid flaws in the midst of random texture. This texture was seen throughout the acoustic images and was caused by the niobium microstructure. The images, as analyzed, contained 128 x 120 pixels with 64 grey levels per pixel. This system allows economical inspection of the large quantities (eg. 100 tons) of material needed for future particle accelerators based on microwave superconductivity. Rapid nondestructive inspection of pure niobium sheet is required because current accelerator performance is largely limited by the quality of commercially available material. Previous work documented critical flaws that are detectable by SLAM techniques. 15 references, 9 figures

  15. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  16. The correlation between acoustic and magnetic properties in the long working metal boiler drum with the parameters of the electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ababkov, Nikolai, E-mail: n.ababkov@rambler.ru; Smirnov, Alexander, E-mail: galvas.kem@gmail.com [T.F. Gorbachev Kuzbass State Technical University, Vesennjaja str 28, Kemerovo, 650000 Russian Federation (Russian Federation)

    2016-01-15

    The present paper presents comparative analysis of measurement results of acoustic and magnetic properties in long working metal of boiler drums and the results obtained by methods of electronic microscopy. The structure of the metal sample from the fracture zone to the base metal (metal working sample long) and the center of the base metal before welding (weld metal sample) was investigated by electron microscopy. Studies performed by spectral acoustic, magnetic noise and electron microscopic methods were conducted on the same plots and the same samples of long working and weld metal of high-pressure boiler drums. The analysis of research results showed high sensitivity of spectral-acoustic and magnetic-noise methods to definition changes of microstructure parameters. Practical application of spectral-acoustic and magnetic noise NDT method is possible for the detection of irregularities and changes in structural and phase state of the long working and weld metal of boiler drums, made of a special molybdenum steel (such as 20M). The above technique can be used to evaluate the structure and physical-mechanical properties of the long working metal of boiler drums in the energy sector.

  17. Interior acoustic cloak

    Directory of Open Access Journals (Sweden)

    Wael Akl

    2014-12-01

    Full Text Available Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which are invariably heavy and bulky. The transformation acoustics relationships that govern the operation of this class of interior acoustic cloaks are presented. Physical insights are given to relate these relationships to the reasons behind the effectiveness of the proposed interior acoustic cloaks. Finite element models are presented to demonstrate the characteristics of interior acoustic cloaks used in treating the interior walls of circular and square cavities both in the time and frequency domains. The obtained results emphasize the effectiveness of the proposed interior cloaks in eliminating the reflections of the acoustic waves from the walls of the treated cavities and thereby rendering these cavities acoustically quiet. It is important to note here that the proposed interior acoustic cloaks can find applications in acoustic cavities such as aircraft cabins and auditoriums as well as many other critical applications.

  18. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  19. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  20. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  1. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  2. A numerical study on acoustic behavior in gas turbine combustor with acoustic resonator

    International Nuclear Information System (INIS)

    Park, I Sun; Sohn, Chae Hoon

    2005-01-01

    Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes

  3. Topological Acoustics

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  4. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    International Nuclear Information System (INIS)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 μs, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1 + to 4 + . The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  5. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 {mu}s, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1{sup +} to 4{sup +}. The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  6. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  7. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha; Wu, Ying

    2016-01-01

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  8. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  9. Acoustics an introduction

    CERN Document Server

    Kuttruff, Heinrich

    2006-01-01

    This definitive textbook provides students with a comprehensive introduction to acoustics. Beginning with the basic physical ideas, Acoustics balances the fundamentals with engineering aspects, applications and electroacoustics, also covering music, speech and the properties of human hearing. The concepts of acoustics are exposed and applied in:room acousticssound insulation in buildingsnoise controlunderwater sound and ultrasoundScientifically thorough, but with mathematics kept to a minimum, Acoustics is the perfect introduction to acoustics for students at any level of mechanical, electrical or civil engineering courses and an accessible resource for architects, musicians or sound engineers requiring a technical understanding of acoustics and their applications.

  10. Examination of the Combustion Morphology of Ziconium Carbide Using Scanning Electron Microscopy

    OpenAIRE

    Newbold, Brian R.

    1997-01-01

    Calculation of viscous particle damping of acoustic combustion instability in solid propellant motors requires an understanding of the combustion behavior of added particles and oxides. A simple hydrogen/oxygen flame was used to ignite carefully sieved zirconium carbide particles which were impacted on slides at different levels below the burner. Scanning electron microscopy revealed that zirconium carbide has a complex heterogeneous combustion morphology. Initially, particles are partly v...

  11. Interior acoustic cloak

    OpenAIRE

    Wael Akl; A. Baz

    2014-01-01

    Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which a...

  12. Acoustic energy harvesting based on a planar acoustic metamaterial

    Science.gov (United States)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  13. Panel acoustic contribution analysis.

    Science.gov (United States)

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  14. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    International Nuclear Information System (INIS)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel; Kittel, Jean; Grosjean, Francois; Ropital, Francois

    2014-01-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C 4 H 10 + H 2 + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  15. Contribution of in situ acoustic emission analysis coupled with thermogravimetry to study zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Al Haj, O.; Peres, V.; Serris, E.; Cournil, M.; Grosjean, F.; Kittel, J.; Ropital, F.

    2015-01-01

    Zirconium alloy (zircaloy-4) corrosion behavior under oxidizing atmosphere at high temperature was studied using thermogravimetric experiment associated with acoustic emission analysis. Under a mixture of oxygen and air in helium, an acceleration of the corrosion is observed due to the detrimental effect of nitrogen which produces zirconium nitride. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration is accompanied by an acoustic emission (AE) activity. Most of the acoustic emission bursts were recorded after the kinetic transition or during the cooling of the sample. Acoustic emission signals analysis allows us to distinguish different populations of cracks in the ZrO 2 layer. These cracks have also been observed by SEM on post mortem cross section of oxidized samples and by in-situ microscopy observations on the top surface of the sample during oxidation. The numerous small convoluted thin cracks observed deeper in the zirconia scale are not detected by the AE technique. From these studies we can conclude that mechanisms as irreversible mechanisms, as cracks initiation and propagation, generate AE signals

  16. Study of uranium dioxide pellets by micro-acoustic techniques

    International Nuclear Information System (INIS)

    Roque, V.

    1999-01-01

    In order to reduce the volume of spent fuel to reprocess and to improve the productivity and the safety of the nuclear reactor, 'Electricite De France' aim to increase the average fuel discharge burn-up. To elaborate the safety reports, EDF develops codes to simulate the thermo-mechanical behaviour of the nuclear fuel element. These numeric simulations need to evaluate accurately and locally the evolution of the material and of its properties. One of the major concern today is the local characterisation of the intrinsic volume fraction porosity and the mechanical properties of the irradiated fuel. The fuel pellet fragmentation, the steep radial gradient in its physical properties evolution and the chemical evolution of the irradiated material make difficult nay the use of the conventional techniques. This leads EDF to pay interest for the use of two complementary techniques: micro-indentation on the one hand and acoustic methods on the other hand (acoustic microscopy and micro-echography), with an additional constrain to perform on active materials. The objective of this work has been to adapt the acoustic methods for an application on uranium dioxide pellets, used as nuclear fuel in Water Pressurised Reactor. Acquisitions protocols have been set to measure accurately the Rayleigh velocity and the longitudinal velocity of the UO 2 . Using these protocols, we have calibrated these acoustic methods by analysing non irradiated nuclear pellet which properties were well known. This process enable to quantify the effects of different physico-chemical parameters of the UO 2 on the ultrasonic velocities measured. Particularly, the large influence of the porosity has been demonstrated and empirical laws to express the evolution of the acoustic velocities as a function of the volume fraction porosity were established. Moreover, we have established a methodology to characterise the intrinsic elastic constants and the volume fraction porosity on irradiated UO 2 fuel pellets

  17. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  18. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    Science.gov (United States)

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-02

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.

  19. Acoustic Neuroma Association

    Science.gov (United States)

    ... EVENTS DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Brain Freeze ? READ MORE Read More What is acoustic neuroma? Identifying an AN Learn More Get Info ...

  20. Development of ion-acoustic double layers through ion-acoustic fluctuations

    International Nuclear Information System (INIS)

    Sekar, A.N.; Saxena, Y.C.

    1985-01-01

    Experimental results on the formation of ion acoustic double layers resembling asymmetric ion-holes are presented. In a double plasma device, modified suitably to inject electron beam into the target plasma, modulation of the beam through step potential leads to excitation of ion-acoustic fluctuation. The ion-acoustic fluctuation, growing away from the grids separating source and target plasmas, developed into weak asymmetric ion-acoustic double layer. The observations are in qualitative agreement with theoretical models and computer simulations. (author)

  1. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  2. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  3. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall

    2014-01-01

    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  4. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  5. Real-time Near-infrared Virtual Intraoperative Surgical Photoacoustic Microscopy

    Directory of Open Access Journals (Sweden)

    Changho Lee

    2015-09-01

    Full Text Available We developed a near infrared (NIR virtual intraoperative surgical photoacoustic microscopy (NIR-VISPAM system that combines a conventional surgical microscope and an NIR light photoacoustic microscopy (PAM system. NIR-VISPAM can simultaneously visualize PA B-scan images at a maximum display rate of 45 Hz and display enlarged microscopic images on a surgeon's view plane through the ocular lenses of the surgical microscope as augmented reality. The use of the invisible NIR light eliminated the disturbance to the surgeon's vision caused by the visible PAM excitation laser in a previous report. Further, the maximum permissible laser pulse energy at this wavelength is approximately 5 times more than that at the visible spectral range. The use of a needle-type ultrasound transducer without any water bath for acoustic coupling can enhance convenience in an intraoperative environment. We successfully guided needle and injected carbon particles in biological tissues ex vivo and in melanoma-bearing mice in vivo.

  6. Acoustic Metamaterials in Aeronautics

    Directory of Open Access Journals (Sweden)

    Giorgio Palma

    2018-06-01

    Full Text Available Metamaterials, man-made composites that are scaled smaller than the wavelength, have demonstrated a huge potential for application in acoustics, allowing the production of sub-wavelength acoustic absorbers, acoustic invisibility, perfect acoustic mirrors and acoustic lenses for hyper focusing, and acoustic illusions and enabling new degrees of freedom in the control of the acoustic field. The zero, or even negative, refractive sound index of metamaterials offers possibilities for the control of acoustic patterns and sound at sub-wavelength scales. Despite the tremendous growth in research on acoustic metamaterials during the last decade, the potential of metamaterial-based technologies in aeronautics has still not been fully explored, and its utilization is still in its infancy. Thus, the principal concepts mentioned above could very well provide a means to develop devices that allow the mitigation of the impact of civil aviation noise on the community. This paper gives a review of the most relevant works on acoustic metamaterials, analyzing them for their potential applicability in aeronautics, and, in this process, identifying possible implementation areas and interesting metabehaviors. It also identifies some technical challenges and possible future directions for research with the goal of unveiling the potential of metamaterials technology in aeronautics.

  7. Calibration of acoustic emission transducers

    International Nuclear Information System (INIS)

    Leschek, W.C.

    1976-01-01

    A method is described for calibrating an acoustic emission transducer to be used in a pre-set frequency range. The absolute reception sensitivity of a reference transducer is determined at frequencies selected within the frequency range. The reference transducer and the acoustic emission transducer are put into acoustic communication with the surface of a limited acoustic medium representing an equivalent acoustic load appreciably identical to that of the medium in which the use of the acoustic emission transducer is intended. A blank random acoustic noise is emitted in the acoustic medium in order to establish a diffuse and reverberating sound field, after which the output responses of the reference transducer and of the acoustic emission transducer are obtained with respect to the diffuse and reverberating field, for selected frequencies. The output response of the acoustic emission transducer is compared with that of the reference transducer for the selected frequencies, so as to determine the reception sensitivity of the acoustic emission transducer [fr

  8. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    International Nuclear Information System (INIS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-01-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers. - Highlights: • Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. • Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. • However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. • Optical tweezers can trap, move and positioned micron size particles with subnanometer accuracy in three dimensions. • One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. • Acoustical tweezers overcome this limitation since the force scales as the field intensity divided by its propagation speed. • However, the feasibility of single beam acoustical tweezers was demonstrated only recently. • We propose a review of the strong similarities but also the specificities of acoustical

  9. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  10. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  11. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  12. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  13. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  14. Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7

    Science.gov (United States)

    Walker, R.

    1984-12-01

    The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.

  15. Analysis of Thermo-Acoustic Emission from Damage in Composite Laminates under Thermal Cyclic Loading

    International Nuclear Information System (INIS)

    Kim, Young Bok; Min, Dae Hong; Lee, Deok Bo; Choi, Nak Sam

    2001-01-01

    An investigation on nondestructive evaluation of thermal stress-reduced damage in the composite laminates (3mm in thickness and [+45 6 /-45 6 ] S lay-up angles) has been performed using the thermo-acoustic emission technique. Reduction of thermo-AE events due to repetitive thermal load cycles showed a Kaiser effect. An analysis of the thermo-AE behavior determined the stress free temperature of composite laminates. Fiber fracture and matrix cracks were observed using the optical microscopy, scanning electron microscopy and ultrasonic C-sean. Short-Time Fourier Transform of thermo-AE signals offered the time-frequency characteristics which might classify the thermo-AE as three different types to estimate the damage processes of the composites

  16. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    International Nuclear Information System (INIS)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-01-01

    The research built upon a prior investigation to develop a unified constitutive model for design-@by-@analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-@fatigue and creep-@ratcheting tests were conducted on the nickel base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-@controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-@fatigue and creep-@ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-@fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-@ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the

  17. CALCULATION OF ACOUSTIC EFFICIENCY OF PORTABLE ACOUSTIC SCREEN

    Directory of Open Access Journals (Sweden)

    Aleksandr Skvortsov

    2016-03-01

    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  18. Non-destructive spatial characterization of buried interfaces in multilayer stacks via two color picosecond acoustics

    Science.gov (United States)

    Faria, Jorge C. D.; Garnier, Philippe; Devos, Arnaud

    2017-12-01

    We demonstrate the ability to construct wide-area spatial mappings of buried interfaces in thin film stacks in a non-destructive manner using two color picosecond acoustics. Along with the extraction of layer thicknesses and sound velocities from acoustic signals, the morphological information presented is a powerful demonstration of phonon imaging as a metrological tool. For a series of heterogeneous (polymer, metal, and semiconductor) thin film stacks that have been treated with a chemical procedure known to alter layer properties, the spatial mappings reveal changes to interior thicknesses and chemically modified surface features without the need to remove uppermost layers. These results compare well to atomic force microscopy scans showing that the technique provides a significant advantage to current characterization methods for industrially important device stacks.

  19. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    Science.gov (United States)

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  20. Anti-sound and Acoustical Cloaks

    Directory of Open Access Journals (Sweden)

    Veturia CHIROIU

    2016-12-01

    Full Text Available The principles by which the acoustics can be mimicked in order to reduce or cancel the vibrational field are based on anti-sound concept which can be materialized by acoustic cloaks. Geometric transformations open an elegant way towards the unconstrained control of sound through acoustic metamaterials. Acoustic cloaks can be achieved through geometric transformations which bring exotic metamaterial properties into the acoustic equations. Our paper brings new ideas concerning the technological keys for manufacturing of novel metamaterials based on the spatial compression of Cantor structures, and the architecture of 3D acoustic cloaks in a given frequency band, with application to architectural acoustics.

  1. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    Science.gov (United States)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  2. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  3. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  4. Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments

    Science.gov (United States)

    Ishida, Tsuyoshi; Chen, Youqing; Bennour, Ziad; Yamashita, Hiroto; Inui, Shuhei; Nagaya, Yuya; Naoi, Makoto; Chen, Qu; Nakayama, Yoshiki; Nagano, Yu

    2016-11-01

    We conducted hydraulic fracturing (HF) experiments on 170 mm cubic granite specimens with a 20 mm diameter central hole to investigate how fluid viscosity affects HF process and crack properties. In experiments using supercritical carbon dioxide (SC-CO2), liquid carbon dioxide (L-CO2), water, and viscous oil with viscosity of 0.051-336.6 mPa · s, we compared the results for breakdown pressure, the distribution and fracturing mechanism of acoustic emission, and the microstructure of induced cracks revealed by using an acrylic resin containing a fluorescent compound. Fracturing with low-viscosity fluid induced three-dimensionally sinuous cracks with many secondary branches, which seem to be desirable pathways for enhanced geothermal system, shale gas recovery, and other processes.

  5. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  6. Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator

    KAUST Repository

    Elayouch, A.

    2017-01-05

    We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties. Our study reveals that the phenomenon of acoustically induced transparency is accompanied by an effect of near-zero density. Indeed, the dynamic effective parameters obtained from experimental data show the presence of a frequency band where the effective mass density is close to zero, with high transmission levels reaching 0.7. Furthermore, we demonstrate that such effective parameters lead to wave guiding in a 90-degrees-bent channel. This kind of acoustic metamaterial can, therefore, give rise to acoustic functions like controlling the wavefront, which may lead to very promising applications in acoustic cloacking or imaging.

  7. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Science.gov (United States)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  8. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  9. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  10. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  11. Ion Acoustic Microscopy

    Science.gov (United States)

    1985-07-01

    Thermal and Related Sciences, L’ Esterel, Quebec (1985), to be published in Can. J. Phys.; H. I. Ringermacher and L. Jackman , "Deep Thermoacoustic Imaging...Research System Bldg. 860 Vandenburg AFB, CA 93437 Dr. Robert V. Ieth, Chief Scientist Div. 76 Hughes Aircraft P.O. Box 902 El Segundo, CA 90245 Dr. Thomas

  12. Acoustic insulator for combined well equipment of acoustic and radioactivity logging

    International Nuclear Information System (INIS)

    Arkad'ev, E.A.; Gorbachev, Yu.I.; Dseban', I.P.; Yagodov, G.I.

    1977-01-01

    The design of an acoustic insulator for cobined well equipment of acoustic and radioactivity logaing made on the basis of studying the velocity of elastic waves propagation and attenuation in cable structures of various marks is described. It is shown that the cable probe of electric loggign equipment which is recommended as an acoustic insulator for combined well equipment has the necessary sound-insulating properties

  13. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    Science.gov (United States)

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  14. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  15. Education in acoustics in Argentina

    Science.gov (United States)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  16. Review of Progress in Acoustic Levitation

    Science.gov (United States)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2018-04-01

    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  17. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    Science.gov (United States)

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  18. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Irradiation Behavior and Post-Irradiation Examinations of an Acoustic Sensor Using a Piezoelectric Transducer

    International Nuclear Information System (INIS)

    Lambert, T.; Zacharie-Aubrun, I.; Hanifi, K.; Valot, Ch.; Fayette, L.; Rosenkantz, E.; Ferrandis, J.Y.; Tiratay, X.

    2013-06-01

    design as the one which has been irradiated. The comparison between both results highlights microstructural evolutions due to irradiation effect. Firstly, metallographic examinations of polished low-angle cross-section of the sensor were performed. The use of low-angle cross-section sample gives geometrical characteristics (macroscopic swelling measurements for instance) with a very good accuracy. This preparation induces a significant magnification of observed region of interest, especially for the acoustic coupling material whose thickness is very small. Optical microscopy on irradiated and non-irradiated samples provides microstructural information about a possible evolution during irradiation test. Secondly, X-ray diffraction measurements on both samples give information about crystalline phase behavior under irradiation. In addition with the important feedback acquired during the in-pile test, these examinations allow us to improve the acoustic sensor design for the next experiments. (authors)

  20. In vivo imaging of cell nuclei by photoacoustic microscopy without staining

    Science.gov (United States)

    Yao, Da-Kang; Chen, Ruimin; Maslov, Konstantin; Zhou, Qifa; Wang, Lihong V.

    2012-02-01

    Ultraviolet photoacoustic microscopy (UVPAM) can image cell nuclei in vivo with high contrast and resolution noninvasively without staining. Here, we used UV light at wavelengths of 210-310 nm for excitation of DNA and RNA to produce photoacoustic waves. We applied the UVPAM to in vivo imaging of cell nuclei in mouse skin, and obtained UVPAM images of the unstained cell nuclei at wavelengths of 245-282 nm as ultrasound gel was used for acoustic coupling. The largest ratio of contrast to noise was found for the images of cell nuclei at a 250 nm wavelength.

  1. Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response.

    Science.gov (United States)

    Fazenda, Bruno; Scarre, Chris; Till, Rupert; Pasalodos, Raquel Jiménez; Guerra, Manuel Rojo; Tejedor, Cristina; Peredo, Roberto Ontañón; Watson, Aaron; Wyatt, Simon; Benito, Carlos García; Drinkall, Helen; Foulds, Frederick

    2017-09-01

    During the 1980 s, acoustic studies of Upper Palaeolithic imagery in French caves-using the technology then available-suggested a relationship between acoustic response and the location of visual motifs. This paper presents an investigation, using modern acoustic measurement techniques, into such relationships within the caves of La Garma, Las Chimeneas, La Pasiega, El Castillo, and Tito Bustillo in Northern Spain. It addresses methodological issues concerning acoustic measurement at enclosed archaeological sites and outlines a general framework for extraction of acoustic features that may be used to support archaeological hypotheses. The analysis explores possible associations between the position of visual motifs (which may be up to 40 000 yrs old) and localized acoustic responses. Results suggest that motifs, in general, and lines and dots, in particular, are statistically more likely to be found in places where reverberation is moderate and where the low frequency acoustic response has evidence of resonant behavior. The work presented suggests that an association of the location of Palaeolithic motifs with acoustic features is a statistically weak but tenable hypothesis, and that an appreciation of sound could have influenced behavior among Palaeolithic societies of this region.

  2. The effects of two counterpropagating surface acoustic wave beams on single electron acoustic charge transport

    International Nuclear Information System (INIS)

    He Jianhong; Guo Huazhong; Song Li; Zhang Wei; Gao Jie; Lu Chuan

    2010-01-01

    We present a comprehensive study of the effects of two counterpropagating surface acoustic waves on the acoustoelectric current of single electron transport devices. A significant improvement in the accuracy of current quantization is achieved as a result of an additional surface acoustic wave beam. The experiments reveal the sinusoidally periodical modulation in the acoustoelectric current characteristic as a function of the relative phase of the two surface acoustic wave beams. Besides, by using standing surface acoustic waves, the acoustoelectric current is detected which we consider as the so-called anomalous acoustoelectric current produced by acoustic wave mechanical deformations. This kind current is contributed to one component of the acoustoelectric current in surface acoustic wave device, which could enable us to establish a more adequate description of acoustoelectric effects on single-electron acoustic charge transport.

  3. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  4. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  5. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    OpenAIRE

    Nakamura, Satoshi; Furusawa, Toshiaki; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  6. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    Science.gov (United States)

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  7. Acoustic Emission Technology and Application

    International Nuclear Information System (INIS)

    Joo, Y. S.; Lim, S. H.; Eom, H. S.; Kim, J. H.; Jung, H. K.

    2003-10-01

    Acoustic emission is the elastic wave that is generated by the rapid release of energy from the localized sources within a material. After the observation of acoustic emission phenomenon in 1950, the research and further investigation had been performed. Acoustic emission examination becomes a rapidly matured nondestructive testing method with demonstrated capabilities for characterizing material behavior and for detecting the defect. It is of interest as a possible passive monitoring technique for detecting, locating and characterizing the defects in component and structure. Acoustic emission technology has recently strengthened the on-line monitoring application for the detection of incipient failures and the assurance of structural integrity. The field of acoustic emission testing is still growing vigorously and presents many challenges. Especially, acoustic emission has been successfully applied in the leak detection of primary pressure boundary of nuclear power plants. In this state-of-art report, the principle, measurement and field applications of acoustic emission technique is reviewed and summarized. Acoustic emission technology will contribute to the assurance of nuclear safety as the on-line monitoring technique of structural integrity of NSSS components and structures

  8. Acoustic building infiltration measurement system

    Science.gov (United States)

    Muehleisen, Ralph T.; Raman, Ganesh

    2018-04-10

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  9. The accidental (acoustical) tourist

    Science.gov (United States)

    Van Kirk, Wayne

    2002-11-01

    The acoustical phenomenon observed at an ancient temple in the Great Ball Court at Chichen Itza was described as ''little short of amazing--an ancient whispering gallery'' by Silvanus G. Morley, leader of the Carnegie Institute's archaeological team that excavated and restored these structures in the 1920s. Since then, many others have experienced the extraordinary acoustics at Chichen Itza and other Maya sites. Despite these reports, archaeologists and acousticians have until recently shown little interest in understanding these phenomena. After experiencing Chichen Itza's remarkable acoustics as a tourist in 1994, the author commenced collecting and disseminating information about acoustical phenomena there and at other Mayan sites, hoping to stimulate interest among archaeologists and acousticians. Were these designs accidental or intentional? If intentional, how was the knowledge obtained? How were acoustical features used? This paper highlights the author's collection of anecdotal reports of mysterious Mayan acoustics (http://http://www.ianlawton.com/pa1.htm), recommended reading for scientists and engineers who wish to pursue this fascinating study. Also recounted are some of the reactions of archaeologists-ranging from curious, helpful, and insightful to humorous and appalling--to outsiders' efforts to bring serious scientific attention to the new field of acoustical archaeology.

  10. Study of Deformation Phenomena in TRIP/TWIP Steels by Acoustic Emission and Scanning Electron Microscopy

    Science.gov (United States)

    Linderov, M. L.; Segel, C.; Weidner, A.; Biermann, H.; Vinogradov, A. Yu.

    2018-04-01

    Modern metastable steels with TRIP/TWIP effects have a unique set of physical-mechanical properties. They combine both high-strength and high-plasticity characteristics, which is governed by processes activated during deformation, namely, twinning, the formation of stacking faults, and martensitic transformations. To study the behavior of these phenomena in CrMnNi TRIP/TWIP steels and stainless CrNiMo steel, which does not have these effects in the temperature range under study, we used the method of acoustic emission and modern methods of signal processing, including the cluster analysis of spectral-density functions. The results of this study have been compared with a detailed microstructural analysis performed with a scanning electron microscope using electron backscatter diffraction (EBSD).

  11. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  12. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  13. Agorá Acoustics - Effects of arcades on the acoustics of public squares

    DEFF Research Database (Denmark)

    Paini, Dario; Gade, Anders Christian; Rindel, Jens Holger

    2005-01-01

    This paper is part of a PhD work, dealing with the acoustics of the public squares (‘Agorá Acoustics’), especially when music (amplified or not) is played. Consequently, our approach will be to evaluate public squares using the same set of acoustics concepts for subjective evaluation and objective...... measurements as applied for concert halls and theatres. In this paper the acoustical effects of arcades will be studied, in terms of reverberation (EDT and T30), clarity (C80), intelligibility (STI) and other acoustical parameters. For this purpose, also the theory of coupled rooms is applied and compared...... with results. An acoustic modelling program, ODEON 7.0, was used for this investigation. Three different sizes of public squares were considered. In order to evaluate the ‘real’ effects of the arcades on the open square, models of all three squares were designed both with and without arcades. The sound source...

  14. Understanding acoustics an experimentalist’s view of acoustics and vibration

    CERN Document Server

    Garrett, Steven L

    2017-01-01

    This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chap...

  15. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  16. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Science.gov (United States)

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  17. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Hassan, Tasnin [North Carolina State Univ., Raleigh, NC (United States); Rangari, Vijaya [Tuskegee Univ., Tuskegee, AL (United States)

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  18. Deep Water Acoustics

    Science.gov (United States)

    2016-06-28

    the Deep Water project and participate in the NPAL Workshops, including Art Baggeroer (MIT), J. Beron- Vera (UMiami), M. Brown (UMiami), T...Kathleen E . Wage. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea. J. Acoust. Soc. Am., 134(4...estimate of the angle α during PhilSea09, made from ADCP measurements at the site of the DVLA. Sim. A B1 B2 B3 C D E F Prof. # 0 4 4 4 5 10 16 20 α

  19. Acoustic Levitation With Less Equipment

    Science.gov (United States)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  20. Anisotropy of acoustic properties in paratellurite

    International Nuclear Information System (INIS)

    Parygin, Vladimir N.

    1996-01-01

    One of the peculiarities of the TeO 2 crystal consists of its strong acoustic anisotropy. This anisotropy demonstrates itself by acoustic energy walk-off and anisotropic distortion of an acoustic beam. Four constants completely characterise the acoustic anisotropy of the medium. In this paper these constants are calculated for various directions of the acoustic beam in crystal. (authors)

  1. Variable-Position Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  2. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    Science.gov (United States)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However

  3. Magnetoactive Acoustic Metamaterials.

    Science.gov (United States)

    Yu, Kunhao; Fang, Nicholas X; Huang, Guoliang; Wang, Qiming

    2018-04-11

    Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli-responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields. It is shown for the first time that effective modulus can be reversibly switched between positive and negative within controlled frequency regimes through lattice buckling modulated by theoretically predicted magnetic fields. The magnetically triggered negative-modulus and cavity-induced negative density are integrated to achieve flexible switching between single-negative and double-negative. This strategy opens promising avenues for remote, rapid, and reversible modulation of acoustic transportation, refraction, imaging, and focusing in subwavelength regimes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.

    1987-01-01

    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  5. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  6. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying

    2017-12-15

    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric

  7. Canada Basin Acoustic Propagation Experiment (CANAPE)

    Science.gov (United States)

    2015-09-30

    acoustic communications, acoustic navigation, or acoustic remote sensing of the ocean interior . RELATED PROJECTS The 2015 CANAPE pilot study was a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Canada Basin Acoustic Propagation Experiment (CANAPE...ocean structure. Changes in sea ice and the water column affect both acoustic propagation and ambient noise. This implies that what was learned

  8. What Is an Acoustic Neuroma

    Science.gov (United States)

    ... CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Italian Japanese Korean Portuguese Romanian Spanish What is Acoustic Neuroma? Each heading slides to reveal information. Important ...

  9. Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures

    International Nuclear Information System (INIS)

    Sheeran, Paul S; Dayton, Paul A; Matsunaga, Terry O

    2014-01-01

    Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques. (paper)

  10. Shallow-Water Mud Acoustics

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow-Water Mud Acoustics William L. Siegmann...models and methods that explain observed material and acoustic properties of different physical types of shallow-ocean mud sediments. Other goals...are to assess prior data relating to the acoustic properties of mud and to provide guidance in the development and interpretation of experiments. A

  11. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  12. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    Science.gov (United States)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  13. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  14. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  15. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  16. Ion-acoustic plasma turbulence

    International Nuclear Information System (INIS)

    Bychenkov, V.Y.; Silin, V.P.

    1982-01-01

    A theory is developed of the nonlinear state that is established in a plasma as a result of development of ion-acoustic instability. Account is taken simultaneously of the linear induced scattering of the waves by the ions and of the quasilinear relaxation of the electrons by the ion-acoustic pulsations. The distribution of the ion-acoustic turbulence in frequency and in angle is obtained. An Ohm's law is established and expressions are obtained for the electronic heat flux and for the relaxation time of the electron temperature in a turbulent plasma. Anomalously large absorption and scattering of the electromagnetic waves by the ion-acoustic pulsations is predicted

  17. A new definition for acoustic dose

    International Nuclear Information System (INIS)

    Duck, F A

    2011-01-01

    This paper discusses a recent proposal for definitions of acoustic dose and acoustic dose-rate. Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Its time-derivative, acoustic dose-rate, Q m , in W kg -1 is central to the prediction of both rate of temperature rise and radiation force. These quantities have spatial and temporal dependency, depending on the local field parameters (acoustic pressure, particle velocity, intensity) and local material properties (absorption coefficient, α a , and mass density, ρ 0 ). Spatial and/or temporal averaging can be applied where appropriate. For plane-wave monochromatic conditions in a homogeneous medium, Q m =2α a I/ρ 0 , (I is the time-averaged intensity), a simple expression which may also incorporate frequency dependencies of energy deposition. Acoustic dose and acoustic does-rate are exact analogues for Specific Absorption and Specific Absorption Rate (SAR), quantities central to radiofrequency (RF) and microwave dosimetry. Acoustic dosimetry in the presence of tissue/gas interfaces remains a considerable challenge.

  18. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  19. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  20. Select Internet Resources on Acoustics

    Directory of Open Access Journals (Sweden)

    Angela R. Davis

    2016-12-01

    Full Text Available Merriam-Webster (2016 defines acoustics as, “a science that deals with the production, control, transmission, reception, and effects of sounds.” According to Rossing (2014, the study of acoustics began in ancient Greece with Pythagoras’ study of vibrating strings on musical instruments. Since those early beginnings, famous scientists including Rayleigh, Alexander Graham Bell, and Thomas Edison, have helped expand the field of acoustics to include architectural, physical, engineering, structural, underwater, physiological and psychological, musical acoustics, and speech. Acoustics is a highly interdisciplinary field and researchers may need resources from physics, medicine, and engineering to understand all aspects of their research.

  1. Handbook of Signal Processing in Acoustics

    CERN Document Server

    Havelock, David; Vorländer, Michael

    2009-01-01

    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.

  2. Original Research. Photoacoustic Microscopy in Dental Medicine

    Directory of Open Access Journals (Sweden)

    Stan Adrian Tudor

    2017-03-01

    Full Text Available Introduction: Photoacoustic microscopy, also known as optoacoustic imaging, is a comparatively new method of investigation in dental medicine, which uses a laser-generated ultrasound (short laser pulses to achieve images for interpretation. Photoacoustic microscopy can be used in a broad spectrum, from detecting tooth decay at its earliest stages to dental anatomy analysis. Material and methods: The energy emitted by the photoacoustic pulse is moderately absorbed by the target and exchanged into heat, leading to a local transitory temperature upsurge. The tension propagates and grows as ultrasonic waves, distinguished by the ultrasonic transducers which are planted apart from the tissue. The photoacoustic microscope has a tunable dye laser which passes through a condensing lens, an objective and ultimately an ultrasonic transducer attached to an acoustic lens to capture and receive information about the scanned probe from a sample moved on the X, Y dimensions. Results: The precise anatomy of layered concentric structures can be clearly observed in photoacoustic microscopy. The image value of the inner layer can be higher, indicating strong optical absorption, while the image value of the outer layer is lower, indicating weaker optical absorption. Meanwhile, the inner layer has the exact same size as the dentin structure and the outer layer has the exact same size as the enamel structure in this cross-section. Conclusions: The photoacoustic microscope (all-optical comes out to be a future and promising tool for detecting early-stage caries and lesions on the surface of the teeth, where micro-leakage occurs at the interface of tooth restoration, and also the anatomy of dental tissues.

  3. Relaxation time of acoustically disturbed plasma

    International Nuclear Information System (INIS)

    Mkrtchyan, K.S.; Abrahamyan, A.S.

    2005-01-01

    The conservation time of an acoustic structure in plasma after relieving of external acoustic influence is investigated. Dependences of the conservation time on discharge parameters are presented. It is asserted that the plasma becomes an anisotropic uniaxial medium with an acoustic superlattice under the acoustic influence

  4. Airy acoustical-sheet spinner tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  5. Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique

    International Nuclear Information System (INIS)

    Mathis, K.; Chmelik, F.; Janecek, M.; Hadzima, B.; Trojanova, Z.; Lukac, P.

    2006-01-01

    Microstructure changes in an AM60 magnesium alloy were monitored using the acoustic emission (AE) technique during tensile tests in the temperature range from 20 to 300 deg. C. The correlation of the AE signal and the deformation processes is discussed. It is shown, using transmission electron and light microscopy, that the character of the AE response is associated with various modes of mechanical twinning at lower temperatures, whereas at higher temperatures also the influence of non-basal dislocations on the AE response must be taken into account

  6. Enhanced efficiency in the excitation of higher modes for atomic force microscopy and mechanical sensors operated in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Penedo, M., E-mail: mapenedo@imm.cnm.csic.es; Hormeño, S.; Fernández-Martínez, I.; Luna, M.; Briones, F. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Raman, A. [Birck Nanotechnology Center and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47904 (United States)

    2014-10-27

    Recent developments in dynamic Atomic Force Microscopy where several eigenmodes are simultaneously excited in liquid media are proving to be an excellent tool in biological studies. Despite its relevance, the search for a reliable, efficient, and strong cantilever excitation method is still in progress. Herein, we present a theoretical modeling and experimental results of different actuation methods compatible with the operation of Atomic Force Microscopy in liquid environments: ideal acoustic, homogeneously distributed force, distributed applied torque (MAC Mode™), photothermal and magnetostrictive excitation. From the analysis of the results, it can be concluded that magnetostriction is the strongest and most efficient technique for higher eigenmode excitation when using soft cantilevers in liquid media.

  7. Department of Cybernetic Acoustics

    Science.gov (United States)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  8. Photo acoustic imaging: technology, systems and market trends

    Science.gov (United States)

    Faucheux, Marc; d'Humières, Benoît; Cochard, Jacques

    2017-03-01

    Although the Photo Acoustic effect was observed by Graham Bell in 1880, the first applications (gas analysis) occurred in 1970's using the required energetic light pulses from lasers. During mid 1990's medical imaging research begun to use Photo Acoustic effect and in vivo images were obtained in mid-2000. Since 2009, the number of patent related to Photo Acoustic Imaging (PAI) has dramatically increased. PAI machines for pre-clinical and small animal imaging have been being used in a routine way for several years. Based on its very interesting features (non-ionizing radiation, noninvasive, high depth resolution ratio, scalability, moderate price) and because it is able to deliver not only anatomical, but functional and molecular information, PAI is a very promising clinical imaging modality. It penetrates deeper into tissue than OCT (Optical Coherence Tomography) and provides a higher resolution than ultrasounds. The PAI is one of the most growing imaging modality and some innovative clinical systems are planned to be on market in 2017. Our study analyzes the different approaches such as photoacoustic computed tomography, 3D photoacoustic microscopy, multispectral photoacoustic tomography and endoscopy with the recent and tremendous technological progress over the past decade: advances in image reconstruction algorithms, laser technology, ultrasound detectors and miniaturization. We analyze which medical domains and applications are the most concerned and explain what should be the forthcoming medical system in the near future. We segment the market in four parts: Components and R&D, pre-clinical, analytics, clinical. We analyzed what should be, quantitatively and qualitatively, the PAI medical markets in each segment and its main trends. We point out the market accessibility (patents, regulations, clinical evaluations, clinical acceptance, funding). In conclusion, we explain the main market drivers and challenges to overcome and give a road map for medical

  9. Acoustic Liners for Turbine Engines

    Science.gov (United States)

    Jones, Michael G (Inventor); Grady, Joseph E (Inventor); Kiser, James D. (Inventor); Miller, Christopher (Inventor); Heidmann, James D. (Inventor)

    2016-01-01

    An improved acoustic liner for turbine engines is disclosed. The acoustic liner may include a straight cell section including a plurality of cells with straight chambers. The acoustic liner may also include a bent cell section including one or more cells that are bent to extend chamber length without increasing the overall height of the acoustic liner by the entire chamber length. In some cases, holes are placed between cell chambers in addition to bending the cells, or instead of bending the cells.

  10. Acoustic communication for Maya Autonomous Underwater Vehicle - performance evaluation of acoustic modem

    Digital Repository Service at National Institute of Oceanography (India)

    Afzulpurkar, S.; Maurya, P.; Navelkar, G.S.; Desa, E.S.; Mascarenhas, A.A.M.Q.; Dabholkar, N.A.; Madhan, R.; Prabhudesai, S.P.

    traffic. This necessitates monitoring the AUV status and data quality through an acoustic link which needs to perform reliably under such conditions, at long range. To address these situations partially, acoustic communication capability is planned...

  11. Acoustical and optical radiation pressures and the development of single beam acoustical tweezers

    OpenAIRE

    Thomas , Jean-Louis; Marchiano , Régis; Baresch , Diego

    2017-01-01

    International audience; Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and positioned micron size particles, biological samples or even atoms with subnanometer accuracy in three dimens...

  12. Development of acoustic particle detector

    International Nuclear Information System (INIS)

    Matsuyama, Tadayoshi; Hinode, Fujio; Konno, Osamu

    1999-01-01

    To detect acoustic sign from electron, determination of acoustic radiation from high energy electron and detector were studied. When charge particles pass through medium, energy loss generates local expansion and contraction of medium and pressure compression wave. We need caustic element with 10 -5 Pa the minimum acoustic receive sensitivity and from 10 to 100 kHz frequency sensitivity characteristic. Elements were made by Low-Q materials, piezoelectric materials (PZT). Various sharp of elements were constructed and measured. 50 mm spherical element showed 38 m V/Pa, the best sensitivity. Our developed acoustic element could detect acoustic radiation generated by electron beam from accelerator. The wave sharp detected proved the same as bipolar wave, which was given theoretically. The pressure generated by beam was proportional to the energy loss E. 200 MeV electron beam existed about 95% particles on the incident axis. So that acoustic detector on the axis proved to detect sound wave generated on the beam axis. (S.Y.)

  13. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  14. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  15. Acoustic communication in plant-animal interactions.

    Science.gov (United States)

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Electrostatic ion acoustic waves

    International Nuclear Information System (INIS)

    Hasegawa, A.

    1983-01-01

    In this paper, certain aspects of plasma physics are illustrated through a study of electrostatic ion acoustic waves. The paper consists of three Sections. Section II deals with linear properties of the ion acoustic wave including derivation of the dispersions relation with the effect of Landau damping and of an ambient magnetic field. The section also introduces the excitation processes of the ion acoustic wave due to an electron drift or to a stimulated Brillouin scattering. The nonlinear properties are introduced in Section III and IV. In Section III, incoherent nonlinear effects such as quasilinear and mode-coupling saturations of the instability are discussed. The coherent nonlinear effects such as the generation of ion acoustic solitons, shocks and weak double layers are presented in Section IV. (Auth.)

  17. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  18. Coupled Acoustic-Mechanical Bandgaps

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Kook, Junghwan

    2016-01-01

    medium and the presence of acoustic resonances. It is demonstrated that corrugation of the plate structure can introduce bending wave bandgaps and bandgaps in the acoustic domain in overlapping and audible frequency ranges. This effect is preserved also when taking the physical coupling between the two...... domains into account. Additionally, the coupling is shown to introduce extra gaps in the band structure due to modal interaction and the appearance of a cut-on frequency for the fundamental acoustic mode....

  19. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  20. Transition section for acoustic waveguides

    International Nuclear Information System (INIS)

    Karplus, H.H.B.

    1975-01-01

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation

  1. Tunable coupled surface acoustic cavities

    Science.gov (United States)

    de Lima, M. M.; Santos, P. V.; Kosevich, Yu. A.; Cantarero, A.

    2012-06-01

    We demonstrate the electric tuning of the acoustic field in acoustic microcavities (MCs) defined by a periodic arrangement of metal stripes within a surface acoustic delay line on LiNbO3 substrate. Interferometric measurements show the enhancement of the acoustic field distribution within a single MC, the presence of a "bonding" and "anti-bonding" modes for two strongly coupled MCs, as well as the positive dispersion of the "mini-bands" formed by five coupled MCs. The frequency and amplitude of the resonances can be controlled by the potential applied to the metal stripes.

  2. Tethys Acoustic Metadata Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tethys database houses the metadata associated with the acoustic data collection efforts by the Passive Acoustic Group. These metadata include dates, locations...

  3. Aerosol behaviour in an acoustic field

    International Nuclear Information System (INIS)

    Malherbe, C.

    1985-01-01

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finest particles on the largest ones. The mechanisms responsible for acoustic agglomeration are mentioned. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Finally, a dimensionless relationship was established between deposition rates and particle diameters as a function of experimental parameters (aeraulic and acoustic conditions, etc...) [fr

  4. Broadband unidirectional acoustic cloak based on phase gradient metasurfaces with two flat acoustic lenses

    Science.gov (United States)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Song, Ai-Ling; Wang, Fang

    2016-07-01

    Narrow bandwidth and bulky configuration are the main obstacles for the realization and application of invisible cloaks. In this paper, we present an effective method to achieve broadband and thin acoustic cloak by using an acoustic metasurface (AMS). In order to realize this cloak, we use slitted unit cells to design the AMS due to the advantage of less energy loss, broad operation bandwidth, and subwavelength thickness. According to the hyperboloidal phase profile along the AMS, the incident plane waves can be focused at a designed focal spot by the flat lens. Furthermore, broadband acoustic cloak is obtained by combining two identical flat lenses. The incident plane waves are focused at the center point in between of the two lenses by passing through one lens, and then recovered by passing through the other one. However, they cannot reach the cloaked regions in between of the two lenses. The simulation results can verify the non-detectability effect of the acoustic cloak. Our study results provide an available and simple approach to experimentally achieve the acoustic cloak, which can be used in acoustic non-detectability for large objects.

  5. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    Science.gov (United States)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  6. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    Science.gov (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  7. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    International Nuclear Information System (INIS)

    Zhang, Ting; Xu, Jian-yi; Cheng, Ying; Liu, Xiao-jun; Guo, Jian-zhong

    2015-01-01

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations

  8. Metallurgical and acoustical characterization of a hydroformed, 304 stainless steel, Caribbean-style musical pan

    International Nuclear Information System (INIS)

    Murr, L.E.; Gaytan, S.M.; Lopez, M.I.; Bujanda, D.E.; Martinez, E.Y.; Whitmyre, G.; Price, H.

    2008-01-01

    We report herein the metallurgical and acoustical characterization of hydroformed 304 stainless steel, Caribbean pans. These pans were fully tuned to chromatic tones and compared to a manufactured, low-carbon, Caribbean steel pan standard. Hydroformed platforms had a Vickers microindentation hardness of HV 345, which was reduced by annealing during pan fabrication to HV 270. Skirts welded to the hydroformed head had a microindentation hardness of HV 440. Microstructural characterization by light optical metallography and transmission electron microscopy illustrated microstructures (including grain structures) characteristic of these pan microindentation hardnesses

  9. Use of acoustic field in gas cleaning

    International Nuclear Information System (INIS)

    Boulaud, D.; Madelaine, G.; Malherbe, C.

    1985-01-01

    The use of acoustic field in gas cleaning can be done in two ways: the first is the conditioning of an aerosol by acoustic agglomeration before filtration by conventional methods (cyclones, granular beds, etc.), the second is the collection efficiency improvement of granular bed filters exposed to an acoustic field. In a first part, experimental results are given on the acoustic agglomeration of a polydisperse aerosol of mass concentration between 0.5 and 1 g/m 3 . An important effect of wall precipitation of particles is described and deposition velocity due to the presence of an acoustic field are measured as a function of particle diameter, sound pressure level and acoustic frequency. A dimensionless relationship between the deposition velocity and particle relaxation time is established for these results. At the end of this part energetic criteria for the use of acoustic agglomeration in a gas cleaning train is given. In a second part, experimental results are given to the influence of acoustic field on the collection efficiency of monodispersed aerosols ranging from 0.1 to 1 μm. For these both uses of acoustic field in industrial gas cleaning the different alternatives for the acoustic field generation are discussed

  10. Sinusoidal Representation of Acoustic Signals

    Science.gov (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  11. Acoustic loading effects on oscillating rod bundles

    International Nuclear Information System (INIS)

    Lin, W.H.

    1980-01-01

    An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed

  12. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  13. ISAT: The mega-fauna acoustic tracking system

    KAUST Repository

    De la Torre, Pedro; Smith, Egan Lloyd; Sancheti, Ajay; Salama, Khaled N.; Berumen, Michael L.

    2013-01-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions to ask Choosing a healthcare provider ... Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation ...

  15. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords World Language Videos Questions to ask Choosing ... Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation ...

  16. Novel Fiber-Optic Ring Acoustic Emission Sensor

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  17. Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator

    KAUST Repository

    Elayouch, A.; Addouche, M.; Farhat, Mohamed; El-Amin, Mohamed; Bagci, Hakan; Khelif, A.

    2017-01-01

    We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties

  18. Controlling Sample Rotation in Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.

    1985-01-01

    Rotation of acoustically levitated object stopped or controlled according to phase-shift monitoring and control concept. Principle applies to square-cross-section levitation chamber with two perpendicular acoustic drivers operating at same frequency. Phase difference between X and Y acoustic excitation measured at one corner by measuring variation of acoustic amplitude sensed by microphone. Phase of driver adjusted to value that produces no rotation or controlled rotation of levitated object.

  19. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... 30041 770-205-8211 info@ANAUSA.org The world’s #1 acoustic neuroma resource Click to learn more... ... is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords World Language Videos Questions to ask Choosing a healthcare ...

  20. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal

    Science.gov (United States)

    Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le

    2016-08-01

    The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.

  1. Dose and diameter relationships for facial, trigeminal, and acoustic neuropathies following acoustic neuroma radiosurgery

    International Nuclear Information System (INIS)

    Flickinger, John C.; Kondziolka, Douglas; Lunsford, L. Dade

    1996-01-01

    Purpose and objective: To define the relationships between dose and tumor diameter for the risks of developing trigeminal, facial, and acoustic neuropathies after acoustic neuroma radiosurgery, a large single-institution experience was analyzed. Materials and methods: Two hundred and thirty-eight patients with unilateral acoustic neuromas who underwent Gamma knife radiosurgery between 1987-1994 with 6-91 months of follow-up (median 30 months) were studied. Minimum tumor doses were 12-20 Gy (median 15 Gy). Transverse tumor diameter varied from 0.3-5.5 cm (median 2.1 cm). The relationships of dose and diameter to the development of cranial neuropathies were delineated by multivariate logistic regression. Results: The development of post-radiosurgery neuropathies affecting cranial nerves V, VII, and VIII were correlated with minimum tumor dose and transverse tumor diameter (P min for VIII where P=0.10). A comparison of the dose-diameter response curves showed the acoustic nerve to be the most sensitive to doses of 12-16 Gy and the facial nerve to be the least sensitive. Conclusion: The risks of developing trigeminal, facial, and acoustic neuropathies following acoustic neuroma radiosurgery can be predicted from the transverse tumor diameter and the minimum tumor dose using models constructed from data presently available

  2. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  3. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P. [Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, building 7, Moscow, 125009 (Russian Federation)

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  4. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  5. Low frequency acoustic properties of bilayer membrane acoustic metamaterial with magnetic oscillator

    Directory of Open Access Journals (Sweden)

    Nansha Gao

    2017-07-01

    Full Text Available A bilayer membrane acoustic metamaterial was proposed to overcome the influence of the mass law on traditional acoustic materials and obtain a lightweight thin-layer structure that can effectively isolate low frequency noise. The finite element analysis (FEA results agree well with the experimental results. It is proved that the sound transmission losses (STLs of the proposed structures are higher than those of same surface density acoustic materials. The introduction of the magnetic mass block is different from the traditional design method, in which only a passive mass block is fixed on the membrane. The magnetic force will cause tension in the membrane, increase membrane prestress, and improve overall structural stiffness. The effects of the geometry size on the STLs are discussed in detail. The kind of method presented in this paper can provide a new means for engineering noise control. Keywords: Bilayer membrane acoustic metamaterial, Low frequency sound insulation, Sound transmission loss, Magnet oscillator

  6. Hidden acoustic information revealed by intentional nonlinearity

    Science.gov (United States)

    Dowling, David R.

    2017-11-01

    Acoustic waves are omnipresent in modern life and are well described by the linearized equations of fluid dynamics. Once generated, acoustic waves carry and collect information about their source and the environment through which they propagate, respectively, and this information may be retrieved by analyzing recordings of these waves. Because of this, acoustics is the primary means for observation, surveillance, reconnaissance, and remote sensing in otherwise opaque environments, such as the Earth's oceans and crust, and the interior of the human body. For such information-retrieval tasks, acoustic fields are nearly always interrogated within their recorded frequency range or bandwidth. However, this frequency-range restriction is not general; acoustic fields may also carry (hidden) information at frequencies outside their bandwidth. Although such a claim may seem counter intuitive, hidden acoustic-field information can be revealed by re-introducing a marquee trait of fluid dynamics: nonlinearity. In particular, an intentional quadratic nonlinearity - a form of intra-signal heterodyning - can be used to obtain acoustic field information at frequencies outside a recorded acoustic field's bandwidth. This quadratic nonlinearity enables a variety of acoustic remote sensing applications that were long thought to be impossible. In particular, it allows the detrimental effects of sparse recordings and random scattering to be suppressed when the original acoustic field has sufficient bandwidth. In this presentation, the topic is developed heuristically, with a just brief exposition of the relevant mathematics. Hidden acoustic field information is then revealed from simulated and measured acoustic fields in simple and complicated acoustic environments involving frequencies from a few Hertz to more than 100 kHz, and propagation distances from tens of centimeters to hundreds of kilometers. Sponsored by ONR, NAVSEA, and NSF.

  7. Guided acoustic wave inspection system

    Science.gov (United States)

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  8. Nonlinear frequency shift of a coherent dust-acoustic wave in the presence of dust-acoustic turbulence

    International Nuclear Information System (INIS)

    Yi Sumin; Ryu, C.-M.; Yoon, Peter H.

    2003-01-01

    The nonlinear frequency shift of a low-frequency, coherent dust-acoustic wave in the presence of higher frequency dust-acoustic turbulence is investigated in the framework of weak turbulence theory. It is found that the frequency shift of the dust-acoustic wave in an unmagnetized dusty plasma is always positive irrespective of the propagation direction of the coherent wave. It is also found that turbulent waves propagating in the same direction as the coherent wave are shown to give rise to a much higher frequency shift than the opposite case. Finally, it is shown that the nonlinear frequency shift of a dust-acoustic wave is more pronounced than in the case of the customary ion-acoustic waves in fully ionized plasmas

  9. The deep sea Acoustic Detection system AMADEUS

    International Nuclear Information System (INIS)

    Naumann, Christopher Lindsay

    2008-01-01

    As a part of the ANTARES neutrino telescope, the AMADEUS (ANTARES Modules for Acoustic Detection Under the Sea) system is an array of acoustical sensors designed to investigate the possibilities of acoustic detection of ultra-high energy neutrinos in the deep sea. The complete system will comprise a total of 36 acoustic sensors in six clusters on two of the ANTARES detector lines. With an inter-sensor spacing of about one metre inside the clusters and between 15 and 340 metres between the different clusters, it will cover a wide range of distances as will as provide a considerable lever arm for point source triangulation. Three of these clusters have already been deployed in 2007 and have been in operation since, currently yielding around 2GB of acoustic data per day. The remaining three clusters are scheduled to be deployed in May 2008 together with the final ANTARES detector line. Apart from proving the feasibility of operating an acoustic detection system in the deep sea, the main aim of this project is an in-depth survey of both the acoustic properties of the sea water and the acoustic background present at the detector site. It will also serve as a platform for the development and refinement of triggering, filtering and reconstruction algorithms for acoustic particle detection. In this presentation, a description of the acoustic sensor and read-out system is given, together with examples for the reconstruction and evaluation of the acoustic data.

  10. De-Dopplerization of Acoustic Measurements

    Science.gov (United States)

    2017-08-10

    accurate measurement of aircraft location to resample the time signal to account for the compression and expansion of acoustic wavefronts. Correcting...AFRL-RH-WP-TR-2017-0043 DE-DOPPLERIZATION OF ACOUSTIC MEASUREMENTS Frank Mobley, PhD 711 HPW/RHCB Wright-Patterson AFB OH...TITLE AND SUBTITLE DE-DOPPLERIZATION OF ACOUSTIC MEASUREMENTS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  11. Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible

    Energy Technology Data Exchange (ETDEWEB)

    Nurmikko, Arto; Humphrey, Maris

    2014-07-10

    The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features – including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research program has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a “non-focusing” optoacoustic microscope instrument (“POAM”), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (“SOAM”) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide

  12. Acoustic emission

    International Nuclear Information System (INIS)

    Straus, A.; Lopez Pumarega, M.I.; Di Gaetano, J.O.; D'Atellis, C.E.; Ruzzante, J.E.

    1990-01-01

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  13. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  14. Acoustic constituents of prosodic typology

    Science.gov (United States)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The

  15. Acoustics Critical Readiness Review

    Science.gov (United States)

    Ballard, Kenny

    2010-01-01

    This presentation reviews the status of the acoustic equipment from the medical operations perspective. Included is information about the acoustic dosimeters, sound level meter, and headphones that are planned for use while on orbit. Finally there is information about on-orbit hearing assessments.

  16. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    Science.gov (United States)

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  17. Acoustic communication in plant–animal interactions

    NARCIS (Netherlands)

    Schöner, M.G.; Simon, R.; Schöner, C.R.

    2016-01-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant–animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound

  18. A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator

    Science.gov (United States)

    Zhao, Xiang; Cai, Li; Yu, Dianlong; Lu, Zhimiao; Wen, Jihong

    2017-06-01

    Acoustic metasurfaces (AMSs) are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR) and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.

  19. Applied acoustics concepts, absorbers, and silencers for acoustical comfort and noise control alternative solutions, innovative tools, practical examples

    CERN Document Server

    Fuchs, Helmut V

    2013-01-01

    The author gives a comprehensive overview of materials and components for noise control and acoustical comfort. Sound absorbers must meet acoustical and architectural requirements, which fibrous or porous material alone can meet. Basics and applications are demonstrated, with representative examples for spatial acoustics, free-field test facilities and canal linings. Acoustic engineers and construction professionals will find some new basic concepts and tools for developments in order to improve acoustical comfort. Interference absorbers, active resonators and micro-perforated absorbers of different materials and designs complete the list of applications.

  20. Acoustic effects of single electrostatic discharges

    International Nuclear Information System (INIS)

    Orzech, Łukasz

    2015-01-01

    Electric discharges, depending on their character, can emit different types of energy, resulting in different effects. Single electrostatic discharges besides generation of electromagnetic pulses are also the source of N acoustic waves. Their specified parameters depending on amount of discharging charge enable determination of value of released charge in a function of acoustic descriptor (e.g. acoustic pressure). Presented approach is the basics of acoustic method for measurement of single electrostatic discharges, enabling direct and contactless measurement of value of charge released during ESD. Method for measurement of acoustic effect of impact of a single electrostatic discharge on the environment in a form of pressure shock wave and examples of acoustic descriptors in a form of equation Q=f(p a ) are described. The properties of measuring system as well as the results of regression static analyses used to determine the described relationships are analysed in details. (paper)

  1. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  2. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection.

    Science.gov (United States)

    Dong, Biqin; Li, Hao; Zhang, Zhen; Zhang, Kevin; Chen, Siyu; Sun, Cheng; Zhang, Hao F

    2015-01-01

    Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.

  3. Acoustic analysis of a piping system

    International Nuclear Information System (INIS)

    Misra, A.S.; Vijay, D.K.

    1996-01-01

    Acoustic pulsations in the Darlington Nuclear Generating Station, a 881 MW CANDU, primary heat transport piping system caused fuel bundle failures under short term operations. The problem was successfully analyzed using the steady-state acoustic analysis capability of the ABAQUS program. This paper describes in general, modelling of low amplitude acoustic pulsations in a liquid filled piping system using ABAQUS. The paper gives techniques for estimating the acoustic medium properties--bulk modulus, fluid density and acoustic damping--and modelling fluid-structure interactions at orifices and elbows. The formulations and techniques developed are benchmarked against the experiments given in 3 cited references. The benchmark analysis shows that the ABAQUS results are in excellent agreement with the experiments

  4. Fluorescence microscopy.

    Science.gov (United States)

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  5. Multiscale modeling of acoustic shielding materials

    NARCIS (Netherlands)

    Gao, K.; Dommelen, van J.A.W.; Geers, M.G.D.

    2012-01-01

    It is very important to protect high-tech systems from acoustic excitation when operating in a noisy environment. Some passive absorbing materials such as acoustic foams can improve the performance which depends on the interaction of the acoustic wave and the microstructure of the foam.

  6. Acoustical heat pumping engine

    Science.gov (United States)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  7. A Treatise on Acoustic Radiation. Volume 2. Acoustic Transducers

    Science.gov (United States)

    1983-01-01

    Newton) V (meter/sec) acoustical p (Newton/meter2 ) U (meter 3/sec) To display Eq. 1.53.1 in simple form we take time to be given by exp(- iot ) and choose...if all the C-component edges and e-drivers are in the tree, all the L-component "A edges and idrivers are in the cotree, all the algebraic equations...momentum and mass of the elastic field then become, (a) Al - V -T + F 278 W-4. ,-,- * * * 4 % • *.• Design of Acoustic Transducers IOT (b) I + VV-s

  8. Acoustic emission technique and its applications

    International Nuclear Information System (INIS)

    Sato, Ichiya; Sasaki, Soji

    1976-01-01

    Acoustic emission technique is described. The characteristics of acoustic emission signal, measurement techniques, and its application are explained. The acoustic signals are grouped into continuous and burst types. The continuous signal is due to plastic deformation, and the burst type is due to the generation and growth of cracks. The latter can be used for the identification of the position of cracks. The frequency of the acoustic emission is in the range from several tens of KHz to two MHz. Piezoelectric ceramics are used as the oscillators of sensors. The dynamic behavior of acoustic emission can be observed with a two-channel acoustic emission measuring apparatus. Multi-channel method was developed at Hitachi, Ltd., and is used for large structures. General computer identification method and simple zone identification method are explained. Noise elimination is important for the measurement, and the methods were studied. Examples of application are the observation of acoustic emission in the plastic deformation of steel, the tensile test of large welded material with natural defects, and others. The method will be used for the diagnosis and observation of large structures, the test and quality control of products. (Kato, T.)

  9. Predicting and auralizing acoustics in classrooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    2005-01-01

    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven...

  10. The Acoustical Apparatus of Rudolph Koenig.

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    1992-01-01

    Discusses the history of Rudolph Koenig's contribution to the development of acoustical apparatus. Contributions include the clock fork to determine absolute acoustic frequencies, a forerunner of the oscilloscope called the manometric flame, and an acoustic interference apparatus used in the Fourier synthesis of musical sounds. (MDH)

  11. Aero-acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Michelsen, Jess; Sørensen, Jens Nørkær

    2002-01-01

    A numerical algorithm for acoustic noise generation is extended to 3D flows. The approach involves two parts comprising a viscous incompressible flow part and an inviscid acoustic part. In order to simulate noise generated from a wind turbine, the incompressible and acoustic equations are written...

  12. Acoustic perturbation equations and Lighthill's acoustic analogy for the human phonation

    Czech Academy of Sciences Publication Activity Database

    Zoerner, S.; Šidlof, Petr; Huppe, A.; Kaltenbacher, M.

    2013-01-01

    Roč. 19, 060309 (2013), s. 1-8 ISSN 1939-800X. [ICA 2013 - Meetings on Acoustics. Montreal, 02.06.2013-07.06.2013] R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : vocal folds * CFD * computational aeroacoustics Subject RIV: BI - Acoustics http://asadl.org/poma/ resource /1/pmarcw/v19/i1/p060309_s1? view =print

  13. Sustainable Acoustic Metasurfaces for Sound Control

    Directory of Open Access Journals (Sweden)

    Paola Gori

    2016-01-01

    Full Text Available Sound attenuation with conventional acoustic materials is subject to the mass law and requires massive and bulky structures at low frequencies. A possible alternative solution is provided by the use of metamaterials, which are artificial materials properly engineered to obtain properties and characteristics that it is not possible to find in natural materials. Theory and applications of metamaterials, already consolidated in electromagnetism, can be extended to acoustics; in particular, they can be applied to improve the properties of acoustical panels. The design of acoustic metasurfaces that could effectively control transmitted sound in unconventional ways appears a significant subject to be investigated, given its wide-ranging possible applications. In this contribution, we investigate the application of a metasurface-inspired technique to achieve the acoustical insulation of an environment. The designed surface has subwavelength thickness and structuring and could be realized with cheap, lightweight and sustainable materials. We present a few examples of such structures and analyze their acoustical behavior by means of full-wave simulations.

  14. A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator

    Directory of Open Access Journals (Sweden)

    Xiang Zhao

    2017-06-01

    Full Text Available Acoustic metasurfaces (AMSs are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.

  15. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  16. Vibro-acoustic modeling and analysis of a coupled acoustic system comprising a partially opened cavity coupled with a flexible plate

    Science.gov (United States)

    Shi, Shuangxia; Su, Zhu; Jin, Guoyong; Liu, Zhigang

    2018-01-01

    This paper is concerned with the modeling and solution method of a three-dimensional (3D) coupled acoustic system comprising a partially opened cavity coupled with a flexible plate and an exterior field of semi-infinite size, which is ubiquitously encountered in architectural acoustics and is a reasonable representation of many engineering occasions. A general solution method is presented to predict the dynamic behaviors of the three-dimensional (3D) acoustic coupled system, in which the displacement of the plate and the sound pressure in the cavity are respectively constructed in the form of the two-dimensional and three-dimensional modified Fourier series with several auxiliary functions introduced to ensure the uniform convergence of the solution over the entire solution domain. The effect of the opening is taken into account via the work done by the sound pressure acting at the coupling aperture that is contributed from the vibration of particles on the acoustic coupling interface and on the structural-acoustic coupling interface. Both the acoustic coupling between finite cavity and exterior field and the structural-acoustic coupling between flexible plate and interior acoustic field are considered in the vibro-acoustic modeling of the three-dimensional acoustic coupled acoustic system. The dynamic responses of the coupled structural-acoustic system are obtained using the Rayleigh-Ritz procedure based on the energy expressions for the coupled system. The accuracy and effectiveness of the proposed method are validated through numerical examples and comparison with results obtained by the boundary element analysis. Furthermore, the influence of the opening and the cavity volume on the acoustic behaviors of opened cavity system is studied.

  17. Low frequency acoustic properties of a honeycomb-silicone rubber acoustic metamaterial

    Science.gov (United States)

    Gao, Nansha; Hou, Hong

    2017-04-01

    In order to overcome the influence of mass law on traditional acoustic materials and obtain a lightweight thin-layer structure which can effectively isolate the low frequency noises, a honeycomb-silicone rubber acoustic metamaterial was proposed. Experimental results show that the sound transmission loss (STL) of acoustic metamaterial in this paper is greatly higher than that of monolayer silicone rubber metamaterial. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed honeycomb-silicone rubber structure was analyzed from a new perspective, which had been validated experimentally. Side length of honeycomb structure and thickness of the unit structure would affect STL in damping control zone. Relevant conclusions and design method provide a new concept for engineering noise control.

  18. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator

    International Nuclear Information System (INIS)

    Ge, Yong; Liu, Shu-sen; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Sun, Hong-xiang; Zhang, Shu-yi

    2016-01-01

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.

  19. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...... this information is discussed. The conclusion of the paper is that the application of acoustical simulation programs is most beneficial in the last of three phases but that an application of the program to the two first phases would be preferable and possible with an improvement of the interface of the program....

  20. Acoustically assisted diffusion through membranes and biomaterials

    International Nuclear Information System (INIS)

    Floros, J.D.; Liang, H.

    1994-01-01

    Part of a special section on the symposium ''Ultrasonic Applications in the Food Industry.'' The use of high-intensity ultrasound in food processing is reviewed. Acoustic radiation, or sound, can be used to monitor various operations or products or to alter a process or product; however, the direct use of sound to improve food processes is not very popular. High-intensity acoustic radiation induces various changes as it passes through a medium, largely as a result of heating, cavitation, agitation and shear stresses, compression and rarefaction, and turbulence. The diffusion of sound through a medium is influenced by factors such as the temperature, acoustic intensity, acoustic frequency, direction of the acoustic wave, pulsation of the acoustic wave, and properties of the medium. Some potential applications of acoustic energy in food processes are increased drying efficiency, acceleration of diffusion through polymeric and biological membranes, and enhanced diffusion through porous materials

  1. Holograms for acoustics.

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer

    2016-09-22

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  2. Proposed frustrated-total-reflection acoustic sensing method

    International Nuclear Information System (INIS)

    Hull, J.R.

    1981-01-01

    Modulation of electromagnetic energy transmission through a frustrated-total-reflection device by pressure-induced changes in the index of refraction is proposed for use as an acoustic detector. Maximum sensitivity occurs for angles of incidence near the critical angle. The minimum detectable pressure in air is limited by Brownian noise. Acoustic propagation losses and diffraction of the optical beam by the acoustic signal limit the minimum acoustic wavelength to lengths of the order of the spatial extent of the optical beam. The response time of the method is fast enough to follow individual acoustic waves

  3. Acoustic cavitation studies

    Science.gov (United States)

    Crum, L. A.

    1981-09-01

    The primary thrust of this study was toward a more complete understanding of general aspects of acoustic cavitation. The effect of long-chain polymer additives on the cavitation threshold was investigated to determine if they reduced the acoustic cavitation threshold in a similar manner to the observed reduction in the cavitation index in hydrodynamic cavitation. Measurements were made of the acoustic cavitation threshold as a function of polymer concentration for additives such as guar gum and polyethelene oxide. The measurements were also made as a function of dissolved gas concentration, surface tension and viscosity. It was determined that there was a significant increase in the acoustic cavitation threshold for increased concentrations of the polymer additives (measurable effects could be obtained for concentrations as low as a few parts per million). One would normally expect that an additive that reduces surface tension to decrease the pressure required to cause a cavity to grow and thus these additives, at first thought, should reduce the threshold. However, even in the hydrodynamic case, the threshold was increased. In both of the hydrodynamic cases considered, the explanation for the increased threshold was given in terms of changed fluid dynamics rather than changed physical properties of the fluid.

  4. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  5. An Experimental Introduction to Acoustics

    Science.gov (United States)

    Black, Andy Nicholas; Magruder, Robert H.

    2017-11-01

    Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is an experiment that serves to introduce an advanced undergraduate or high school student to conducting research in acoustics via an experiment involving a standard dreadnought acoustic guitar, recording industry-related equipment, and relevant industrial analysis software. This experimental process is applicable to a wide range of acoustical topics including both acoustic and electric instruments. Also, the student has a hands-on experience with relevant audio engineering technology to study physical principles.

  6. Acoustic holograms of active regions

    International Nuclear Information System (INIS)

    Chou, Dean-Yi

    2008-01-01

    We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.

  7. Acoustic holograms of active regions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Dean-Yi [Physics Department, National Tsing Hua University, Hsinchu, 30013, Taiwan (China)], E-mail: chou@phys.nthu.edu.tw

    2008-10-15

    We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.

  8. Radiological evaluation of acoustic neurinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Tae; Park, Chang Yun; Choi, Byung So [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1974-04-15

    All 25 patients surgically proven acoustic neurinoma was analysed clinically, radiographically at Severance Hospital of Yonsei Univ. The patients not proved surgically in spite of clinical diagnosis of acoustic neurinoma was excluded from this study. The results are summarized as follows; The clinical findings are; 1. The incidence of tumor in female was twice more frequent than in male and the range of age was 20-50 years peak of age at onset of symptom. 2. The clinical symptoms were variable from unilateral hearing impairment or less (100%), headache (84%) to tinnitus (60%) in order of frequency. 3. The tumor growth in the left cerebellopontine angle was twice more than in the right side with the radio of 16:8. However, in one case bilateral simultaneous growth of acoustic neurinoma was noted. The radiological findings are: The best radiographic method to study the shape and size of internal acoustic canal to demonstrate erosion or destruction of petrous pyramida was considered to be straight frontal view and tomography of the skull in our series. 1. The shape of internal acoustic canal in tumors were straight (in 2 cases), bulbous (in 12 cases), and flared (in 11 cases). Particularly there was erosion or destruction of petrous bone in all of the flared cases of canal. 2. The acoustic meatal erosion was mainly suprameatal in 14 cases of 17 which was noted definite erosion radiographically. 3. The difference of height (vertical diameter) of both side of acoustic canal were follows; 6 cases among 25 was in the range of 0-2 mm measurement, remainder was more than 2 mm. Hence the variation in greater than 1 mm in between both sides of canal in same patient should be regard as abnormal as of acoustic neurinoma. 4. The carotid angiogram shows hydrocephalic pattern in 12 cases among 17. 5. In the vertebral angiogram of 8 cases, anterolateral displacement of basilar artery (in 6 caes), the upward displacement of superior cerebellar artery (in 4 cases) was common findings

  9. Radiological evaluation of acoustic neurinoma

    International Nuclear Information System (INIS)

    Lee, Jong Tae; Park, Chang Yun; Choi, Byung So

    1974-01-01

    All 25 patients surgically proven acoustic neurinoma was analysed clinically, radiographically at Severance Hospital of Yonsei Univ. The patients not proved surgically in spite of clinical diagnosis of acoustic neurinoma was excluded from this study. The results are summarized as follows; The clinical findings are; 1. The incidence of tumor in female was twice more frequent than in male and the range of age was 20-50 years peak of age at onset of symptom. 2. The clinical symptoms were variable from unilateral hearing impairment or less (100%), headache (84%) to tinnitus (60%) in order of frequency. 3. The tumor growth in the left cerebellopontine angle was twice more than in the right side with the radio of 16:8. However, in one case bilateral simultaneous growth of acoustic neurinoma was noted. The radiological findings are: The best radiographic method to study the shape and size of internal acoustic canal to demonstrate erosion or destruction of petrous pyramida was considered to be straight frontal view and tomography of the skull in our series. 1. The shape of internal acoustic canal in tumors were straight (in 2 cases), bulbous (in 12 cases), and flared (in 11 cases). Particularly there was erosion or destruction of petrous bone in all of the flared cases of canal. 2. The acoustic meatal erosion was mainly suprameatal in 14 cases of 17 which was noted definite erosion radiographically. 3. The difference of height (vertical diameter) of both side of acoustic canal were follows; 6 cases among 25 was in the range of 0-2 mm measurement, remainder was more than 2 mm. Hence the variation in greater than 1 mm in between both sides of canal in same patient should be regard as abnormal as of acoustic neurinoma. 4. The carotid angiogram shows hydrocephalic pattern in 12 cases among 17. 5. In the vertebral angiogram of 8 cases, anterolateral displacement of basilar artery (in 6 caes), the upward displacement of superior cerebellar artery (in 4 cases) was common findings

  10. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam

    2018-03-13

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  11. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam; Zhao, Jiajun; Prather, Wayne E.; Wu, Ying; Zhang, Likun

    2018-01-01

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  12. Evaluating the Acoustic Benefits of Over-the-Rotor Acoustic Treatments Installed on the Advanced Noise Control Fan

    Science.gov (United States)

    Gazella, Matthew R.; Takakura, Tamuto; Sutliff, Daniel L.; Bozak, Richard F.; Tester, Brian J.

    2017-01-01

    Over the last 15 years, over-the-rotor acoustic treatments have been evaluated by NASA with varying success. Recently, NASA has been developing the next generation of over-the-rotor acoustic treatments for fan noise reduction. The NASA Glenn Research Centers Advanced Noise Control Fan was used as a Low Technology Readiness Level test bed. A rapid prototyped in-duct array consisting of 50 microphones was employed, and used to correlate the in-duct analysis to the far-field acoustic levels and to validate an existing beam-former method. The goal of this testing was to improve the Technology Readiness Level of various over-the-rotor acoustic treatments by advancing the understanding of the physical mechanisms and projecting the far-field acoustic benefit.

  13. Nonlinear acoustics of water-saturated marine sediments

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1976-01-01

    Interest in the acoustic qualities of water-saturated marine sediments has increased considerably during recent years. The use of sources of high-intensity sound in oil propsecting, in geophysical and geological studies of bottom and subbottom materials and profiles and recently in marine...... archaeology has emphasized the need of information about the nonlinear acoustic qualities of water-saturated marine sediments. While the acoustic experiments and theoretical investigations hitherto performed have concentrated on a determination of the linear acoustic qualities of water-saturated marine...... sediments, their parameters of nonlinear acoustics are still unexplored. The strong absorption, increasing about linearly with frequency, found in most marine sediments and the occurrence of velocity dispersion by some marine sediments restrict the number of nonlinear acoustic test methods traditionally...

  14. Acoustic-noise-optimized diffusion-weighted imaging.

    Science.gov (United States)

    Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M

    2015-12-01

    This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.

  15. Pattern recognition methods for acoustic emission analysis

    International Nuclear Information System (INIS)

    Doctor, P.G.; Harrington, T.P.; Hutton, P.H.

    1979-07-01

    Models have been developed that relate the rate of acoustic emissions to structural integrity. The implementation of these techniques in the field has been hindered by the noisy environment in which the data must be taken. Acoustic emissions from noncritical sources are recorded in addition to those produced by critical sources, such as flaws. A technique is discussed for prescreening acoustic events and filtering out those that are produced by noncritical sources. The methodology that was investigated is pattern recognition. Three different pattern recognition techniques were applied to a data set that consisted of acoustic emissions caused by crack growth and acoustic signals caused by extraneous noise sources. Examination of the acoustic emission data presented has uncovered several features of the data that can provide a reasonable filter. Two of the most valuable features are the frequency of maximum response and the autocorrelation coefficient at Lag 13. When these two features and several others were combined with a least squares decision algorithm, 90% of the acoustic emissions in the data set were correctly classified. It appears possible to design filters that eliminate extraneous noise sources from flaw-growth acoustic emissions using pattern recognition techniques

  16. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying; Yang, Min; Sheng, Ping

    2017-01-01

    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles

  17. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  18. Hot topics: Signal processing in acoustics

    Science.gov (United States)

    Gaumond, Charles F.

    2005-09-01

    Signal processing in acoustics is a multidisciplinary group of people that work in many areas of acoustics. We have chosen two areas that have shown exciting new applications of signal processing to acoustics or have shown exciting and important results from the use of signal processing. In this session, two hot topics are shown: the use of noiselike acoustic fields to determine sound propagation structure and the use of localization to determine animal behaviors. The first topic shows the application of correlation on geo-acoustic fields to determine the Greens function for propagation through the Earth. These results can then be further used to solve geo-acoustic inverse problems. The first topic also shows the application of correlation using oceanic noise fields to determine the Greens function through the ocean. These results also have utility for oceanic inverse problems. The second topic shows exciting results from the detection, localization, and tracking of marine mammals by two different groups. Results from detection and localization of bullfrogs are shown, too. Each of these studies contributed to the knowledge of animal behavior. [Work supported by ONR.

  19. Physics of thermo-acoustic sound generation

    Science.gov (United States)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  20. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    Energy Technology Data Exchange (ETDEWEB)

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  1. ISAT: The mega-fauna acoustic tracking system

    KAUST Repository

    De la Torre, Pedro

    2013-06-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic signal to each hydrophone in a triangular array. The characteristics of the hydrophones, the projector, and the target acoustic signal used for iSAT are described. Initially it is designed to study the movements of whale sharks (Rhincodon typus), but it could potentially be used to describe high resolution movements of other marine species. © 2013 IEEE.

  2. Design of the Acoustic Signal Receiving Unit of Acoustic Telemetry While Drilling

    Directory of Open Access Journals (Sweden)

    Li Zhigang

    2016-01-01

    Full Text Available Signal receiving unit is one of the core units of the acoustic telemetry system. A new type of acoustic signal receiving unit is designed to solve problems of the existing devices. The unit is a short joint in whole. It not only can receive all the acoustic signals transmitted along the drill string, without losing any signal, but will not bring additional vibration and interference. In addition, the structure of the amplitude transformer is designed, which can amplify the signal amplitude and improve the receiving efficiency. The design of the wireless communication module makes the whole device can be used in normal drilling process when the drill string is rotating. So, it does not interfere with the normal drilling operation.

  3. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  4. Acoustic levitation of a large solid sphere

    International Nuclear Information System (INIS)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-01-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  5. Acoustic levitation of a large solid sphere

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Bernassau, Anne L. [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo 05508-030 (Brazil)

    2016-07-25

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  6. Acoustic levitation of a large solid sphere

    Science.gov (United States)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  7. Transmission characteristics of acoustic amplifier in thermoacoustic engine

    International Nuclear Information System (INIS)

    Sun Daming; Qiu Limin; Wang Bo; Xiao Yong

    2008-01-01

    Thermoacoustic engines are promising in practical applications for the merits of simple configuration, reliable operation and environmentally friendly working gas. An acoustic amplifier can increase the output pressure amplitude of a thermoacoustic engine (TE) and improve the matching between the engine and its load. In order to make full use of an acoustic amplifier, the transmission characteristics are studied based on linear thermoacoustic theory. Computational and experimental results show that the amplifying ability of an acoustic amplifier is mainly determined by its geometry parameters and output resistance impedance. The amplifying ability of an acoustic amplifier with appropriate length and diameter reaches its maximum when the output resistance impedance is infinite. It is also shown that the acoustic amplifier consumes an amount of acoustic power when amplifying pressure amplitude and the acoustic power consumption increases with amplifying ratio. Furthermore, a novel cascade acoustic amplifier is proposed, which has a much stronger amplifying ability with reduced acoustic power consumption. In experiments, a two-stage cascade acoustic amplifier amplifies the pressure ratio from 1.177 to 1.62 and produces a pressure amplitude of 0.547 MPa with nitrogen of 2.20 MPa as working gas. Good agreements are obtained between the theoretical analysis and experimental results. This research is instructive for comprehensively understanding the mechanism and making full use of the acoustic amplifier

  8. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    Science.gov (United States)

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Sea Turtle Acoustic Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic transmitters attached to sea turtles captured in various fishing gear enable the animals to be passively tracked. Acoustic receivers set up in an array...

  10. Acoustic non-diffracting Airy beam

    International Nuclear Information System (INIS)

    Lin, Zhou; Guo, Xiasheng; Tu, Juan; Ma, Qingyu; Wu, Junru; Zhang, Dong

    2015-01-01

    The acoustic non-diffracting Airy beam as its optical counterpart has unique features of self-bending and self-healing. The complexity of most current designs handicaps its applications. A simple design of an acoustic source capable of generating multi-frequency and broad-band acoustic Airy beam has been theoretically demonstrated by numerical simulations. In the design, a piston transducer is corrugated to induce spatial phase variation for transducing the Airy function. The piston's surface is grooved in a pattern that the width of each groove corresponds to the half wavelength of Airy function. The resulted frequency characteristics and its dependence on the size of the piston source are also discussed. This simple design may promote the wide applications of acoustic Airy beam particularly in the field of medical ultrasound

  11. Acoustic lenses

    International Nuclear Information System (INIS)

    Kittmer, C.A.

    1983-03-01

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  12. Cerebellar interaction with the acoustic reflex.

    Science.gov (United States)

    Jastreboff, P J

    1981-01-01

    The involvement of the cerebellar vermis in the acoustic reflex was analyzed in 12 cats, decerebrated or in pentobarbital anesthesia. Anatomical data suggested the existence of a connection of lobules VIII with the ventral cochlear nucleus. Single cell recording and evoked potential techniques demonstrated the existence of the acoustic projection to lobulus VIII. Electrical stimulation of this area changed the tension of the middle ear muscle and caused evoked potential responses in the caudal part of the ventral cochlear nucleus. Electrical stimulation of the motor nucleus of the facial nerve evoked a slow wave in the recording taken from the surrounding of the cochlear round window. A hypothesis is proposed which postulates the involvement of the acoustic reflex in space localization of acoustic stimuli and the action of cerebellar vermis in order to assure the stability and plasticity of the acoustic reflex arc.

  13. Building Acoustics

    Science.gov (United States)

    Cowan, James

    This chapter summarizes and explains key concepts of building acoustics. These issues include the behavior of sound waves in rooms, the most commonly used rating systems for sound and sound control in buildings, the most common noise sources found in buildings, practical noise control methods for these sources, and the specific topic of office acoustics. Common noise issues for multi-dwelling units can be derived from most of the sections of this chapter. Books can be and have been written on each of these topics, so the purpose of this chapter is to summarize this information and provide appropriate resources for further exploration of each topic.

  14. Patch near-field acoustic holography: The influence of acoustic contributions from outside the source

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Zhang, Yong-Bin

    2009-01-01

    It is a requirement of conventional Near-field Acoustic Holography that the measurement area covers the entire surface of the source. In the case of Patch Near-field Acoustic Holography (patch NAH), the measurement area can be reduced to cover only a specific area of the source which...... is of particular interest (known as the “patch” or “source patch”). The area of the source beyond this patch is not of interest in the analysis. However, its acoustic output may nevertheless contribute to the total sound field in the measurement plane, and influence the reconstruction of the field close...... to the patch. The purpose of this paper is to investigate how the acoustic radiation from outside the patch area influences the reconstruction of the sound field close to the source. The reconstruction is based on simulated measurements of sound pressure and particle velocity. The methods used in this paper...

  15. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  16. Tipping point analysis of ocean acoustic noise

    Science.gov (United States)

    Livina, Valerie N.; Brouwer, Albert; Harris, Peter; Wang, Lian; Sotirakopoulos, Kostas; Robinson, Stephen

    2018-02-01

    We apply tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system and study possible bifurcations and transitions of the system. The analysis is based on a statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the data using time-series techniques. We analyse long-term and seasonal trends, system states and acoustic fluctuations to reconstruct a one-dimensional stochastic equation to approximate the acoustic dynamical system. We apply potential analysis to acoustic fluctuations and detect several changes in the system states in the past 14 years. These are most likely caused by climatic phenomena. We analyse trends in sound pressure level within different frequency bands and hypothesize a possible anthropogenic impact on the acoustic environment. The tipping point analysis framework provides insight into the structure of the acoustic data and helps identify its dynamic phenomena, correctly reproducing the probability distribution and scaling properties (power-law correlations) of the time series.

  17. A new, simple electrostatic-acoustic hybrid levitator

    Science.gov (United States)

    Lierke, E. G.; Loeb, H.; Gross, D.

    1990-01-01

    Battelle has developed a hybrid levitator by combining the known single-axis acoustic standing wave levitator with a coaxial DC electric field. The resulting Coulomb forces on the charged liquid or solid sample support its weight and, together with the acoustic force, center the sample. Liquid samples with volumes approximately less than 100 micro-liters are deployed from a syringe reservoir into the acoustic pressure node. The sample is charged using a miniature high voltage power supply (approximately less than 20 kV) connected to the syringe needle. As the electric field, generated by a second miniature power supply, is increased, the acoustic intensity is reduced. The combination of both fields allows stable levitation of samples larger than either single technique could position on the ground. Decreasing the acoustic intensity reduces acoustic convection and sample deformation. Neither the electrostatic nor the acoustic field requires sample position sensing or active control. The levitator, now used for static and dynamic fluid physics investigations on the ground, can be easily modified for space operations.

  18. Tipping point analysis of ocean acoustic noise

    Directory of Open Access Journals (Sweden)

    V. N. Livina

    2018-02-01

    Full Text Available We apply tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system and study possible bifurcations and transitions of the system. The analysis is based on a statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the data using time-series techniques. We analyse long-term and seasonal trends, system states and acoustic fluctuations to reconstruct a one-dimensional stochastic equation to approximate the acoustic dynamical system. We apply potential analysis to acoustic fluctuations and detect several changes in the system states in the past 14 years. These are most likely caused by climatic phenomena. We analyse trends in sound pressure level within different frequency bands and hypothesize a possible anthropogenic impact on the acoustic environment. The tipping point analysis framework provides insight into the structure of the acoustic data and helps identify its dynamic phenomena, correctly reproducing the probability distribution and scaling properties (power-law correlations of the time series.

  19. Acoustic signal analysis in the creeping discharge

    International Nuclear Information System (INIS)

    Nakamiya, T; Sonoda, Y; Tsuda, R; Ebihara, K; Ikegami, T

    2008-01-01

    We have previously succeeded in measuring the acoustic signal due to the dielectric barrier discharge and discriminating the dominant frequency components of the acoustic signal. The dominant frequency components appear over 20kHz of acoustic signal by the dielectric barrier discharge. Recently surface discharge control technology has been focused from practical applications such as ozonizer, NO X reactors, light source or display. The fundamental experiments are carried to examine the creeping discharge using the acoustic signal. When the high voltage (6kV, f = 10kHz) is applied to the electrode, the discharge current flows and the acoustic sound is generated. The current, voltage waveforms of creeping discharge and the sound signal detected by the condenser microphone are stored in the digital memory scope. In this scheme, Continuous Wavelet Transform (CWT) is applied to discriminate the acoustic sound of the micro discharge and the dominant frequency components are studied. CWT results of sound signal show the frequency spectrum of wideband up to 100kHz. In addition, the energy distributions of acoustic signal are examined by CWT

  20. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  1. Acoustic shadows help gleaning bats find prey, but may be defeated by prey acoustic camouflage on rough surfaces.

    Science.gov (United States)

    Clare, Elizabeth L; Holderied, Marc W

    2015-09-01

    Perceptual abilities of animals, like echolocating bats, are difficult to study because they challenge our understanding of non-visual senses. We used novel acoustic tomography to convert echoes into visual representations and compare these cues to traditional echo measurements. We provide a new hypothesis for the echo-acoustic basis of prey detection on surfaces. We propose that bats perceive a change in depth profile and an 'acoustic shadow' cast by prey. The shadow is more salient than prey echoes and particularly strong on smooth surfaces. This may explain why bats look for prey on flat surfaces like leaves using scanning behaviour. We propose that rather than forming search images for prey, whose characteristics are unpredictable, predators may look for disruptions to the resting surface (acoustic shadows). The fact that the acoustic shadow is much fainter on rougher resting surfaces provides the first empirical evidence for 'acoustic camouflage' as an anti-predator defence mechanism.

  2. Acoustical sensing of cardiomyocyte cluster beating

    Energy Technology Data Exchange (ETDEWEB)

    Tymchenko, Nina; Kunze, Angelika [Dept. of Applied Physics, Chalmers University of Technology, 412 96 Göteborg (Sweden); Dahlenborg, Kerstin [Cellectis, 413 46 Göteborg (Sweden); Svedhem, Sofia, E-mail: sofia.svedhem@chalmers.se [Dept. of Applied Physics, Chalmers University of Technology, 412 96 Göteborg (Sweden); Steel, Daniella [Cellectis, 413 46 Göteborg (Sweden)

    2013-06-14

    Highlights: •An example of the application of QCM-D to live cell studies. •Detection of human pluripotent stem cell-derived cardiomyocyte cluster beating. •Clusters were studied in a thin liquid film and in a large liquid volume. •The QCM-D beating profile provides an individual fingerprint of the hPS-CMCs. -- Abstract: Spontaneously beating human pluripotent stem cell-derived cardiomyocytes clusters (CMCs) represent an excellent in vitro tool for studies of human cardiomyocyte function and for pharmacological cardiac safety assessment. Such testing typically requires highly trained operators, precision plating, or large cell quantities, and there is a demand for real-time, label-free monitoring of small cell quantities, especially rare cells and tissue-like structures. Array formats based on sensing of electrical or optical properties of cells are being developed and in use by the pharmaceutical industry. A potential alternative to these techniques is represented by the quartz crystal microbalance with dissipation monitoring (QCM-D) technique, which is an acoustic surface sensitive technique that measures changes in mass and viscoelastic properties close to the sensor surface (from nm to μm). There is an increasing number of studies where QCM-D has successfully been applied to monitor properties of cells and cellular processes. In the present study, we show that spontaneous beating of CMCs on QCM-D sensors can be clearly detected, both in the frequency and the dissipation signals. Beating rates in the range of 66–168 bpm for CMCs were detected and confirmed by simultaneous light microscopy. The QCM-D beating profile was found to provide individual fingerprints of the hPS-CMCs. The presented results point towards acoustical assays for evaluation cardiotoxicity.

  3. Acoustic and categorical dissimilarity of musical timbre: Evidence from asymmetriesbetween acoustic and chimeric sounds

    Directory of Open Access Journals (Sweden)

    Kai eSiedenburg

    2016-01-01

    Full Text Available This paper investigates the role of acoustic and categorical information in timbre dissimilarity ratings. Using a Gammatone-filterbank-based sound transformation, we created tones that were rated as less familiar than recorded tones from orchestral instruments and that were harder to associate with an unambiguous sound source (Exp. 1. A subset of transformed tones, a set of orchestral recordings, and a mixed set were then rated on pairwise dissimilarity (Exp. 2A. We observed that recorded instrument timbres clustered into subsets that distinguished timbres according to acoustic and categorical properties. For the subset of cross-category comparisons in the mixed set, we observed asymmetries in the distribution of ratings, as well as a stark decay of inter-rater agreement. These effects were replicated in a more robust within-subjects design (Exp. 2B and cannot be explained by acoustic factors alone. We finally introduced a novel model of timbre dissimilarity based on partial least-squares regression that compared the contributions of both acoustic and categorical timbre descriptors. The best model fit (R^2 = .88 was achieved when both types of descriptors were taken into account. These findings are interpreted as evidence for an interplay of acoustic and categorical information in timbre dissimilarity perception.

  4. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  5. A programmable nonlinear acoustic metamaterial

    Directory of Open Access Journals (Sweden)

    Tianzhi Yang

    2017-09-01

    Full Text Available Acoustic metamaterials with specifically designed lattices can manipulate acoustic/elastic waves in unprecedented ways. Whereas there are many studies that focus on passive linear lattice, with non-reconfigurable structures. In this letter, we present the design, theory and experimental demonstration of an active nonlinear acoustic metamaterial, the dynamic properties of which can be modified instantaneously with reversibility. By incorporating active and nonlinear elements in a single unit cell, a real-time tunability and switchability of the band gap is achieved. In addition, we demonstrate a dynamic “editing” capability for shaping transmission spectra, which can be used to create the desired band gap and resonance. This feature is impossible to achieve in passive metamaterials. These advantages demonstrate the versatility of the proposed device, paving the way toward smart acoustic devices, such as logic elements, diode and transistor.

  6. Acoustic agglomeration methods and apparatus

    Science.gov (United States)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  7. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  8. Pattern-formation under acoustic driving forces

    Science.gov (United States)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  9. International Conference on Acoustics and Vibration

    CERN Document Server

    Chaari, Fakher; Walha, Lasaad; Abdennadher, Moez; Abbes, Mohamed; Haddar, Mohamed

    2017-01-01

    The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at International Conference on Acoustics and Vibration (ICAV2016), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held March 21-23, in Hammamet, Tunisia. The contributions, mainly written by north African authors, covers advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others.This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theori...

  10. Dictionary of Microscopy

    Science.gov (United States)

    Heath, Julian

    2005-10-01

    The past decade has seen huge advances in the application of microscopy in all areas of science. This welcome development in microscopy has been paralleled by an expansion of the vocabulary of technical terms used in microscopy: terms have been coined for new instruments and techniques and, as microscopes reach even higher resolution, the use of terms that relate to the optical and physical principles underpinning microscopy is now commonplace. The Dictionary of Microscopy was compiled to meet this challenge and provides concise definitions of over 2,500 terms used in the fields of light microscopy, electron microscopy, scanning probe microscopy, x-ray microscopy and related techniques. Written by Dr Julian P. Heath, Editor of Microscopy and Analysis, the dictionary is intended to provide easy navigation through the microscopy terminology and to be a first point of reference for definitions of new and established terms. The Dictionary of Microscopy is an essential, accessible resource for: students who are new to the field and are learning about microscopes equipment purchasers who want an explanation of the terms used in manufacturers' literature scientists who are considering using a new microscopical technique experienced microscopists as an aide mémoire or quick source of reference librarians, the press and marketing personnel who require definitions for technical reports.

  11. Saturation of ion-acoustic turbulence

    International Nuclear Information System (INIS)

    Bychenkov, V.Yu.; Gradov, O.M.

    1985-01-01

    The time evolution of ion-acoustic turbulence is investigated taking into consideration both the scattering of electrons and the induced scattering of waves by the ions. The growth rate of the ion-acoustic turbulence is studied as the function of the wave number, including the long-wave ion sound excitations. It is shown that the relaxation of the ion-acoustic turbulence leads to the quasistationary noise distributions, which are the products of distributions according to the wave number and to the angle. The spectra conform to the stationary theory. (D.Gy.)

  12. Microfluidic device for acoustic cell lysis

    Science.gov (United States)

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  13. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    International Nuclear Information System (INIS)

    Cho, Y; Kumar, A; Xu, S; Zou, J

    2016-01-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays. (paper)

  14. Evanescent Acoustic Wave Scattering by Targets and Diffraction by Ripples Graduate Traineeship Award in Ocean Acoustics

    National Research Council Canada - National Science Library

    Osterhoudt, Curtis F; Marston, Philip L

    2007-01-01

    .... The purpose of his research was to improve the understanding of the way that acoustic evanescent waves interact with targets buried in sediments in situations encountered in underwater acoustics...

  15. Digital Controller For Acoustic Levitation

    Science.gov (United States)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  16. Theoretical analysis of leaky surface acoustic waves of point-focused acoustic lens and some experiments

    International Nuclear Information System (INIS)

    Ishikawa, Isao; Suzuki, Yoshiaki; Ogura, Yukio; Katakura, Kageyoshi

    1997-01-01

    When a point-focused acoustic lens in the scanning acoustic microscope (SAM) is faced to test specimen and defocused to some extent, two effective echoes can be obtained. One is the echo of longitudinal wave, which is normally incident upon the specimen of an on-axis beam in the central region of the lens and is reflected normal to the lens surface, hence detected by the transducer. The other is of leaky surface acoustic waves(LSAW), which are mode converted front a narrow beam of off-axis longitudinal wave, then propagate across the surface of the specimen and reradiate at angles normal to the lens surface, thus detected by the transducer. These two echoes are either interfered or separated with each other depending ell the defocused distance. It turned out theoretically that the LSAW have a narrow focal spot in the central region of the point-focused acoustic lens, whose size is approximately 40% of the LSAW wavelength. On top of that, a wavelength of LSAW is about 50% short as that of longitudinal wave. So, It is expected that high resolution images can be obtained provided LSAW are used in the scanning acoustic microscope.

  17. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  18. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu; Wu, Ying; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Nayar, Priyanka; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  19. Ipsilateral masking between acoustic and electric stimulations.

    Science.gov (United States)

    Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang

    2011-08-01

    Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.

  20. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-03-01

    Full Text Available Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  1. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Science.gov (United States)

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  2. Acoustic integrated extinction

    OpenAIRE

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we der...

  3. Stimulated phase-shift acoustic nanodroplets enhance vancomycin efficacy against methicillin-resistant Staphylococcus aureus biofilms

    Directory of Open Access Journals (Sweden)

    Guo H

    2017-06-01

    Full Text Available Hao Guo,1 Ziming Wang,1 Quanyin Du,1 Pan Li,2 Zhigang Wang,2 Aimin Wang1 1Department of Orthopedics, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China; 2Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China Purpose: Bacterial biofilms on the surface of prostheses are becoming a rising concern in managing prosthetic joint infections. The inherent resistant features of biofilms render traditional antimicrobial therapy unproductive and revision surgery outcomes uncertain. This situation has prompted the exploration of novel antimicrobial strategies. The synergy of ultrasound microbubbles and vancomycin has been proposed as an efficient alternative for biofilm eradication. The purpose of this study was to evaluate the anti-biofilm effect of stimulated phase-shift acoustic nanodroplets (NDs combined with vancomycin.Materials and methods: We fabricated lipid phase-shift NDs with a core of liquid perfluoropentane. A new phase change mode for NDs incorporating an initial unfocused low-intensity pulsed ultrasound for 5 minutes and a subsequent incubation at 37°C into a 24-hour duration was developed. Methicillin-resistant Staphylococcus aureus (MRSA biofilms were incubated with vancomycin and NDs under the hybrid stimulation. Biofilm morphology following treatment was determined using confocal laser scanning microscopy and scanning electron microscopy. Resazurin assay was used to quantify bactericidal efficacy against MRSA biofilm bacteria.Results: NDs treated sequentially with ultrasound and heating at 37°C achieved gradual and substantial ND vaporization and cavitation in a successive process. NDs after stimulation were capable of generating stronger destruction on biofilm structure which was best characterized by residual circular arc margins and more dead bacteria. Furthermore, NDs

  4. Heavy-ion microscopy

    International Nuclear Information System (INIS)

    Kraft, G.; Yang, T.C.H.; Richards, T.; Tobias, C.A.

    1980-01-01

    This chapter briefly describes the techniques of optical microscopy, scanning and transmission electron microscopy, soft x-ray microscopy and compares these latter techniques with heavy-ion microscopy. The resolution obtained with these various types of microscopy are compared and the influence of the etching procedure on total resolution is discussed. Several micrographs of mammalian cells are included

  5. Acoustic Center or Time Origin?

    DEFF Research Database (Denmark)

    Staffeldt, Henrik

    1999-01-01

    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  6. Modulation of photonic structures by surface acoustic waves

    International Nuclear Information System (INIS)

    Mauricio M de Lima Jr; Santos, Paulo V

    2005-01-01

    This paper reviews the interaction between coherently stimulated acoustic phonons in the form of surface acoustic waves with light beams in semiconductor based photonic structures. We address the generation of surface acoustic wave modes in these structures as well as the technological aspects related to control of the propagation and spatial distribution of the acoustic fields. The microscopic mechanisms responsible for the interaction between light and surface acoustic modes in different structures are then reviewed. Particular emphasis is given to the acousto-optical interaction in semiconductor microcavities and its application in photon control. These structures exhibit high optical modulation levels under acoustic excitation and are compatible with integrated light sources and detectors

  7. Acoustic Characterization of Mesoscale Objects

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  8. Acoustic parametric pumping of spin waves

    Science.gov (United States)

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2014-11-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  9. Acoustic parametric pumping of spin waves

    OpenAIRE

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2013-01-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  10. Acoustic Metacages for Omnidirectional Sound Shielding

    OpenAIRE

    Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun

    2017-01-01

    Conventional sound shielding structures typically prevent fluid transport between the exterior and interior. A design of a two-dimensional acoustic metacage with subwavelength thickness which can shield acoustic waves from all directions while allowing steady fluid flow is presented in this paper. The structure is designed based on acoustic gradient-index metasurfaces composed of open channels and shunted Helmholtz resonators. The strong parallel momentum on the metacage surface rejects in-pl...

  11. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  12. Anomalous acoustic dispersion in architected microlattice metamaterials

    Science.gov (United States)

    KröDel, Sebastian; Palermo, Antonio; Daraio, Chiara

    The ability to control dispersion in acoustic metamaterials is crucial to realize acoustic filtering and rectification devices as well as perfect imaging using negative refractive index materials. Architected microlattice metamaterials immersed in fluid constitute a versatile platform for achieving such control. We investigate architected microlattice materials able to exploit locally resonant modes of their fundamental building blocks that couple with propagating acoustic waves. Using analytical, numerical and experimental methods we find that such lattice materials show a hybrid dispersion behavior governed by Biot's theory for long wavelengths and multiple scattering theory when wave frequency is close to the resonances of the building block. We identify the relevant geometric parameters to alter and control the group and phase velocities in this class of acoustic metamaterials. Furthermore, we fabricate small-scale acoustic metamaterial samples using high precision SLA additive manufacturing and test the resulting materials experimentally using a customized ultrasonic setup. This work paves the way for new acoustic devices based on microlattice metamaterials.

  13. Theory of the acoustic instability and behavior of the phase velocity of acoustic waves in a weakly ionized plasma

    International Nuclear Information System (INIS)

    Torosyan, O.S.; Mkrtchyan, A.R.

    2003-01-01

    The amplification of acoustic waves due to the transfer of thermal energy from electrons to the neutral component of a glow discharge plasma is studied theoretically. It is shown that, in order for acoustic instability (sound amplification) to occur, the amount of energy transferred should exceed the threshold energy, which depends on the plasma parameters and the acoustic wave frequency. The energy balance equation for an electron gas in the positive column of a glow discharge is analyzed for conditions typical of experiments in which acoustic wave amplification has been observed. Based on this analysis, one can affirm that, first, the energy transferred to neutral gas in elastic electron-atom collisions is substantially lower than the threshold energy for acoustic wave amplification and, second, that the energy transferred from electrons to neutral gas in inelastic collisions is much higher than that transferred in elastic collisions and thus may exceed the threshold energy. It is also shown that, for amplification to occur, there should exist some heat dissipation mechanism more efficient than gas heat conduction. It is suggested that this may be convective radial mixing within a positive column due to acoustic streaming in the field of an acoustic wave. The features of the phase velocity of sound waves in the presence of acoustic instability are investigated

  14. Surface acoustic wave dust deposition monitor

    Science.gov (United States)

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  15. Holographic acoustic elements for manipulation of levitated objects

    Science.gov (United States)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  16. Acoustic of monolithic dome structures

    Directory of Open Access Journals (Sweden)

    Mostafa Refat Ismail

    2018-03-01

    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  17. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  18. Indentation induced mechanical and electrical response in ferroelectric crystal investigated by acoustic mode AFM

    Science.gov (United States)

    Yu, H. F.; Zeng, H. R.; Ma, X. D.; Chu, R. Q.; Li, G. R.; Luo, H. S.; Yin, Q. R.

    2005-01-01

    The mechanical and electrical response of Pb (Mg1/3Nb2/3)- O3-PbTiO3 single crystals to micro-indentation are investigated using the newly developed low frequency scanning probe acoustic microscopy which is based on the atomic force microscope. There are three ways to release the stress produced by indentation. Plastic deformation emerged directly underneath the indentor and along the indentation diagonals. In addition, indentation-induced micro-cracks and new non-180° domain structures which are perpendicular to each other are also observed in the indented surface. Based on the experimental results, the relationship between the cracks and the domain patterns was discussed.

  19. Acoustic engineering and technology '90

    International Nuclear Information System (INIS)

    1990-01-01

    Acoustic monitoring, testing and diagnosis in machines, production processes and products enhance the uptimes and profitability of machinery and plants. 18 papers discuss the current state of the art of acoustic monitoring systems including integrated factory planning as well as industrial health, and noise protection. (DG) [de

  20. Innovative Strategies for Clinical Microscopy Instruction: Virtual Versus Light Microscopy.

    Science.gov (United States)

    McDaniel, M Jane; Russell, Gregory B; Crandall, Sonia J

    2018-06-01

    The purpose of the study was to compare virtual microscopy with light microscopy to determine differences in learning outcomes and learner attitudes in teaching clinical microscopy to physician assistant (PA) students. A prospective, randomized, crossover design study was conducted with a convenience sample of 67 first-year PA students randomized to 2 groups. One group used light microscopes to find microscopic structures, whereas the other group used instructor-directed video streaming of microscopic elements. At the midpoint of the study, the groups switched instructional strategies. Learning outcomes were assessed via posttest after each section of the study, with comparison of final practical examination results to previous cohorts. Attitudes about the 2 educational strategies were assessed through a postcourse questionnaire with a Likert scale. Analysis of the first posttest demonstrated that students in the video-streamed group had significantly better learning outcomes than those in the light microscopy group (P = .004; Cohen's d = 0.74). Analysis of the posttest after crossover showed no differences between the 2 groups (P = .48). Between the 2 posttests, students first assigned to the light microscopy group scored a 6.6 mean point increase (±10.4 SD; p = .0011), whereas students first assigned to the virtual microscopy group scored a 1.3 mean point increase (±7.1 SD; p = .29). The light microscopy group improved more than the virtual microscopy group (P = .019). Analysis of practical examination data revealed higher scores for the study group compared with 5 previous cohorts of first-year students (P virtual microscopy to traditional light microscopy. Virtual microscopy is an effective educational strategy, and students prefer this method when learning to interpret images of clinical specimens.

  1. Dual output acoustic wave sensor for molecular identification

    International Nuclear Information System (INIS)

    Frye, G.C.; Martin, S.J.

    1991-01-01

    This patent describes an apparatus for detecting and identifying at least one unknown chemical species. It comprises: an acoustic wave device capable of generating, transmitting and receiving an acoustic wave, means for measuring the velocity of an acoustic wave travelling through the material; means for simultaneously measuring the attenuation of the acoustic wave traveling through the coating material; sampling means to contact the acoustic wave device to the unknown chemical species; means for determining the changes in both the attenuation and velocity values of the acoustic wave upon sorption of the unknown chemical species into the coating material; and means for correlating the magnitudes of the changes of velocity with respect to the changes of the attenuations of the acoustic wave; and means for comparing the values of the velocity and attenuation changes to known values of velocity and attenuation of known chemical species in order to identify the unknown sorbed chemical species

  2. Physical acoustics principles and methods

    CERN Document Server

    Mason, Warren P

    2012-01-01

    Physical Acoustics: Principles and Methods, Volume IV, Part B: Applications to Quantum and Solid State Physics provides an introduction to the various applications of quantum mechanics to acoustics by describing several processes for which such considerations are essential. This book discusses the transmission of sound waves in molten metals. Comprised of seven chapters, this volume starts with an overview of the interactions that can happen between electrons and acoustic waves when magnetic fields are present. This text then describes acoustic and plasma waves in ionized gases wherein oscillations are subject to hydrodynamic as well as electromagnetic forces. Other chapters examine the resonances and relaxations that can take place in polymer systems. This book discusses as well the general theory of the interaction of a weak sinusoidal field with matter. The final chapter describes the sound velocities in the rocks composing the Earth. This book is a valuable resource for physicists and engineers.

  3. Metasurface-based angle-selective multichannel acoustic refractor

    Science.gov (United States)

    Liu, Bingyi; Jiang, Yongyuan

    2018-05-01

    We theoretically study the angle-selective refractions of an impedance-matched acoustic gradient-index metasurface, which is integrated with a rigid bar array of a deep subwavelength period. An interesting refraction order appears under the all-angle incidence despite the existence of a critical angle, and notably, the odevity of the phase-discretization level apparently selects the transmitted diffraction orders. We utilize the strategy of multilayered media design to realize a three-channel acoustic refractor, which shows good promise for constructing multifunctional diffractive acoustic elements for acoustic communication.

  4. Acoustic and Categorical Dissimilarity of Musical Timbre: Evidence from Asymmetries Between Acoustic and Chimeric Sounds

    Science.gov (United States)

    Siedenburg, Kai; Jones-Mollerup, Kiray; McAdams, Stephen

    2016-01-01

    This paper investigates the role of acoustic and categorical information in timbre dissimilarity ratings. Using a Gammatone-filterbank-based sound transformation, we created tones that were rated as less familiar than recorded tones from orchestral instruments and that were harder to associate with an unambiguous sound source (Experiment 1). A subset of transformed tones, a set of orchestral recordings, and a mixed set were then rated on pairwise dissimilarity (Experiment 2A). We observed that recorded instrument timbres clustered into subsets that distinguished timbres according to acoustic and categorical properties. For the subset of cross-category comparisons in the mixed set, we observed asymmetries in the distribution of ratings, as well as a stark decay of inter-rater agreement. These effects were replicated in a more robust within-subjects design (Experiment 2B) and cannot be explained by acoustic factors alone. We finally introduced a novel model of timbre dissimilarity based on partial least-squares regression that compared the contributions of both acoustic and categorical timbre descriptors. The best model fit (R2 = 0.88) was achieved when both types of descriptors were taken into account. These findings are interpreted as evidence for an interplay of acoustic and categorical information in timbre dissimilarity perception. PMID:26779086

  5. Enhanced sources of acoustic power surrounding AR 11429

    International Nuclear Information System (INIS)

    Donea, Alina; Hanson, Christopher

    2013-01-01

    Multi-frequency power maps of the local acoustic oscillations show acoustic enhancements (''acoustic-power halos'') at high frequencies surrounding large active region. Computational seismic holography reveals a high-frequency ''acoustic-emission halo'', or ''seismic glory'' surrounding large active regions. In this study, we have applied computational seismic holography to map the seismic seismic source density surrounding AR 11429. Studies of HMI/SDO Doppler data, shows that the ''acoustic halos'' and the ''seismic glories'' are prominent at high frequencies 5–8 mHz. We investigate morphological properties of acoustic-power and acoustic emission halos around an active region to see if they are spatially correlated. Details about the local magnetic field from vectormagnetograms of AR 11429 are included. We identify a 15'' region of seismic deficit power (dark moat) shielding the white-light boundary of the active region. The size of the seismic moat is related to region of intermediate magnetic field strength. The acoustic moat is circled by the halo of enhanced seismic amplitude as well as enhanced seismic emission. Overall, the results suggest that features are related. However, if we narrow the frequency band to 5.5 – 6.5 mHz, we find that the seismic source density dominates over the local acoustic power, suggesting the existence of sources that emit more energy downward into the solar interior than upward toward the solar surface.

  6. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    Science.gov (United States)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  7. NEMO-SMO acoustic array: A deep-sea test of a novel acoustic positioning system for a km3-scale underwater neutrino telescope

    Science.gov (United States)

    Viola, S.; Ardid, M.; Bertin, V.; Enzenhöfer, A.; Keller, P.; Lahmann, R.; Larosa, G.; Llorens, C. D.; NEMO Collaboration; SMO Collaboration

    2013-10-01

    Within the activities of the NEMO project, the installation of a 8-floors tower (NEMO-Phase II) at a depth of 3500 m is foreseen in 2012. The tower will be installed about 80 km off-shore Capo Passero, in Sicily. On board the NEMO tower, an array of 18 acoustic sensors will be installed, permitting acoustic detection of biological sources, studies for acoustic neutrino detection and primarily acoustic positioning of the underwater structures. For the latter purpose, the sensors register acoustic signals emitted by five acoustic beacons anchored on the sea-floor. The data acquisition system of the acoustic sensors is fully integrated with the detector data transport system and is based on an “all data to shore” philosophy. Signals coming from hydrophones are continuously sampled underwater at 192 kHz/24 bit and transmitted to shore through an electro-optical cable for real-time analysis. A novel technology for underwater GPS time-stamping of data has been implemented and tested. The operation of the acoustic array will permit long-term test of sensors and electronics technologies that are proposed for the acoustic positioning system of KM3NeT.

  8. Vibro-acoustics of lightweight sandwich structures

    CERN Document Server

    Lu, Tianjian

    2014-01-01

    Vibro-Acoustics of Lightweight Sandwich Structures introduces the study of the coupled vibration and acoustic behavior of lightweight sandwich structures in response to harmonic force and sound pressure. This book focuses on the theoretical modeling and experimental investigation of lightweight sandwich structures in order to provide a predictive framework for vibro-acoustic characteristics of typical engineering structures. Furthermore, by developing solution tools, it concentrates on the influence of key systematic parameters leading to effective guidance for optimal structure design toward lightweight, high-stiffness and superior sound insulation capability. This book is intended for researchers, scientists, engineers and graduate students in mechanical engineering especially in structural mechanics, mechanics and acoustics. Fengxian Xin and Tianjian Lu both work at the School of Aerospace, Xi’an Jiaotong University.

  9. Acoustic Levitation With One Driver

    Science.gov (United States)

    Wang, T. G.; Rudnick, I.; Elleman, D. D.; Stoneburner, J. D.

    1985-01-01

    Report discusses acoustic levitation in rectangular chamber using one driver mounted at corner. Placement of driver at corner enables it to couple effectively to acoustic modes along all three axes. Use of single driver reduces cost, complexity and weight of levitation system below those of three driver system.

  10. Experimental Acoustic Evaluation of an Auditorium

    Directory of Open Access Journals (Sweden)

    Marina Dana Ţopa

    2012-01-01

    Full Text Available The paper presents a case history: the acoustical analysis of a rectangular auditorium. The following acoustical parameters were evaluated: early decay time, reverberation time, clarity, definition, and center time. The excitation signal was linear sweep sine and additional analysis was carried out: peak-to-noise ratio, reverberation time for empty and occupied room, standard deviation of acoustical parameters, diffusion, and just noticeable differences analysis. Conclusions about room’s destination and modeling were drawn in the end.

  11. Computational simulation of acoustic fatigue for hot composite structures

    Science.gov (United States)

    Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  12. [Treatment of giant acoustic neuromas].

    Science.gov (United States)

    Samprón, Nicolás; Altuna, Xabier; Armendáriz, Mikel; Urculo, Enrique

    2014-01-01

    To analyze the treatment modality and outcome of a series of patients with giant acoustic neuromas, a particular type of tumour characterised by their size (extracanalicular diameter of 4cm or more) and high morbidity and mortality. This was a retrospective unicentre study of patients with acoustic neuromas treated in a period of 12 years. In our institutional series of 108 acoustic neuromas operated on during that period, we found 13 (12%) cases of giant acoustic neuromas. We reviewed the available data of these cases, including presentation and several clinical, anatomical, and microsurgical aspects. All patients were operated on by the same neurosurgeon and senior author (EU) using the suboccipital retrosigmoid approach and complete microsurgical removal was achieved in 10 cases. In one case, near total removal was deliberately performed, in another case a CSF shunt was placed as the sole treatment measure, and in the remaining case no direct treatment was given. One patient died in the immediate postoperative period. One year after surgery, 4 patients showed facial nerve function of iii or more in the House-Brackman scale. The 4 most important prognostic characteristics of giant acoustic neuromas are size, adhesion to surrounding structures, consistency and vascularity. Only the first of these is evident in neuroimaging. Giant acoustic neuromas are characterised by high morbidity at presentation as well as after treatment. Nevertheless, the objective of complete microsurgical removal with preservation of cranial nerve function is attainable in some cases through the suboccipital retrosigmoid approach. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  13. Design of acoustic devices by topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard

    2003-01-01

    The goal of this study is to design and optimize structures and devices that are subjected to acoustic waves. Examples are acoustic lenses, sound walls, waveguides and loud speakers. We formulate the design problem as a topology optimization problem, i.e. distribute material in a design domain...... such that the acoustic response is optimized....

  14. Controlling the acoustic streaming by pulsed ultrasounds.

    Science.gov (United States)

    Hoyos, Mauricio; Castro, Angélica

    2013-01-01

    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The acoustic reflex threshold in aging ears.

    Science.gov (United States)

    Silverman, C A; Silman, S; Miller, M H

    1983-01-01

    This study investigates the controversy regarding the influence of age on the acoustic reflex threshold for broadband noise, 500-, 1000-, 2000-, and 4000-Hz activators between Jerger et al. [Mono. Contemp. Audiol. 1 (1978)] and Jerger [J. Acoust. Soc. Am. 66 (1979)] on the one hand and Silman [J. Acoust. Soc. Am. 66 (1979)] and others on the other. The acoustic reflex thresholds for broadband noise, 500-, 1000-, 2000-, and 4000-Hz activators were evaluated under two measurement conditions. Seventy-two normal-hearing ears were drawn from 72 subjects ranging in age from 20-69 years. The results revealed that age was correlated with the acoustic reflex threshold for BBN activator but not for any of the tonal activators; the correlation was stronger under the 1-dB than under the 5-dB measurement condition. Also, the mean acoustic reflex thresholds for broadband noise activator were essentially similar to those reported by Jerger et al. (1978) but differed from those obtained in this study under the 1-dB measurement condition.

  16. Acoustic forcing of a liquid drop

    Science.gov (United States)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  17. Acoustic streaming of a sharp edge.

    Science.gov (United States)

    Ovchinnikov, Mikhail; Zhou, Jianbo; Yalamanchili, Satish

    2014-07-01

    Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier-Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

  18. Industrial installation surveillance acoustic device

    International Nuclear Information System (INIS)

    Marini, Jean; Audenard, Bernard.

    1981-01-01

    The purpose of this invention is the detection of possible impacts of bodies migrating inside the installation, using acoustic sensors of the waves emitted at the time of impact of the migrating bodies. This device makes it possible to take into account only those acoustic signals relating to the impacts of bodies migrating in the area under surveillance, to the exclusion of any other acoustic or electric perturbing phenomenon. The invention has a preferential use in the case of a linear shape installation in which a fluid flows at high rate, such as a section of the primary system of a pressurized water nuclear reactor [fr

  19. Matrix method for acoustic levitation simulation.

    Science.gov (United States)

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.

  20. Time reversal signal processing in acoustic emission testing

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Dvořáková, Zuzana; Chlada, Milan; Dos Santos, S.

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : acoustic emission (AE) * ultrasonic testing (UT) * signal processing * source location * time reversal acoustic s * acoustic emission * signal processing and transfer Subject RIV: BI - Acoustic s http://www.ndt.net/events/ECNDT2014/app/content/Slides/637_Prevorovsky.pdf

  1. Systematic design of acoustic devices by topology optimization

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    We present a method to design acoustic devices with topology optimization. The general algorithm is exemplified by the design of a reflection chamber that minimizes the transmission of acoustic waves in a specified frequency range.......We present a method to design acoustic devices with topology optimization. The general algorithm is exemplified by the design of a reflection chamber that minimizes the transmission of acoustic waves in a specified frequency range....

  2. Ocean acoustic tomography

    International Nuclear Information System (INIS)

    Cornuelle, Bruce D; Worcester, Peter F; Dzieciuch, Matthew A

    2008-01-01

    Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans are opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.

  3. Nanoparticle dispersion in liquid metals by electromagnetically induced acoustic cavitation

    International Nuclear Information System (INIS)

    Kaldre, Imants; Bojarevičs, Andris; Grants, Ilmārs; Beinerts, Toms; Kalvāns, Matīss; Milgrāvis, Mikus; Gerbeth, Gunter

    2016-01-01

    Aim of this study is to investigate experimentally the effect of magnetically induced cavitation applied for the purpose of nanoparticle dispersion in liquid metals. The oscillating magnetic force due to the azimuthal induction currents and the axial magnetic field excites power ultrasound in the sample. If the fields are sufficiently high then it is possible to achieve the acoustic cavitation threshold in liquid metals. Cavitation bubble collapses are known to create microscale jets with a potential to break nanoparticle agglomerates and disperse them. The samples are solidified under the contactless ultrasonic treatment and later analyzed by electron microscopy and energy-dispersive X-ray spectroscopy (EDX). It is observed that SiC nanoparticles are dispersed in an aluminum magnesium alloy, whereas in tin the same particles remain agglomerated in micron-sized clusters despite a more intense cavitation.

  4. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  5. Topological Acoustic Delay Line

    Science.gov (United States)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan

    2018-03-01

    Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.

  6. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  7. Topology optimization for acoustic-structure interaction problems

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    We propose a gradient based topology optimization algorithm for acoustic-structure (vibro-acoustic) interaction problems without an explicit interfacing boundary representation. In acoustic-structure interaction problems, the pressure field and the displacement field are governed by the Helmholtz...... to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz......-dimensional acoustic-structure interaction problems are optimized to show the validity of the proposed method....

  8. A study on the acoustical holography

    International Nuclear Information System (INIS)

    Shin, S.H.; Lee, J.H.; Jang, M.S.

    1979-01-01

    Theoretical and experimental investigations of acoustical holograms, and the optical reconstruction of their images are described. Acoustical holograms are constructed through the use of sound waves of 14 KHz-16 KHz frequency range. The virtual images and conjugate images are reconstructed using He-Ne gas laser(Wavelength 6,328A) light. The effect on the reconstructed images of the wavelength of the sound waves and of the scanning plane are discussed. Furthermore, the three dimensional information memory in acoustical holograms is discussed. (author)

  9. Outdoor Acoustics as a General Discipline

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1999-01-01

    A tutorial paper exploring the characteristics of sound outdoors. Outdoor acoustics is contrasted to room acoustics. A number of important aspects of outdoor acoustics are exemplified and theoretical approaches are outlined. These are influence of ground impedance, influence of weather, screening...... to the application in question. In this way results providing a certain level of accuracy are obtained using methods which are balanced with the accuracy of the input data. Advanced measurement techniques are looked into and suggestions for future research are made...

  10. Acoustic Tomography in the Canary Basin: Meddies and Tides

    Science.gov (United States)

    Dushaw, Brian D.; Gaillard, Fabienne; Terre, Thierry

    2017-11-01

    An acoustic propagation experiment over 308 km range conducted in the Canary Basin in 1997-1998 was used to assess the ability of ocean acoustic tomography to measure the flux of Mediterranean water and Meddies. Instruments on a mooring adjacent to the acoustic path measured the southwestward passage of a strong Meddy in temperature, salinity, and current. Over 9 months of transmissions, the acoustic arrival pattern was an initial broad stochastic pulse varying in duration by 250-500 ms, followed eight stable, identified-ray arrivals. Small-scale sound speed fluctuations from Mediterranean water parcels littered around the sound channel axis caused acoustic scattering. Internal waves contributed more modest acoustic scattering. Based on simulations, the main effect of a Meddy passing across the acoustic path is the formation of many early-arriving, near-axis rays, but these rays are thoroughly scattered by the small-scale Mediterranean-water fluctuations. A Meddy decreases the deep-turning ray travel times by 10-30 ms. The dominant acoustic signature of a Meddy is therefore the expansion of the width of the initial stochastic pulse. While this signature appears inseparable from the other effects of Mediterranean water in this region, the acoustic time series indicates the steady passage of Mediterranean water across the acoustic path. Tidal variations caused by the mode-1 internal tides were measured by the acoustic travel times. The observed internal tides were partly predicted using a recent global model for such tides derived from satellite altimetry.

  11. Laser-induced acoustic imaging of underground objects

    Science.gov (United States)

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  12. Separation of acoustic waves in isentropic flow perturbations

    International Nuclear Information System (INIS)

    Henke, Christian

    2015-01-01

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given

  13. Potential-well model in acoustic tweezers.

    Science.gov (United States)

    Kang, Shih-Tsung; Yeh, Chih-Kuang

    2010-06-01

    Standing-wave acoustic tweezers are popularly used for non-invasive and non-contact particle manipulation. Because of their good penetration in biological tissue, they also show promising prospects for in vivo applications. According to the concept of an optical vortex, we propose an acoustics-vortex- based trapping model of acoustic tweezers. A four-element 1-MHz planar transducer was used to generate 1-MHz sine waves at 1 MPa, with adjacent elements being driven with a pi/2-rad phase difference. Each element was a square with a side length of 5.08 mm, with kerfs initially set at 0.51 mm. An acoustic vortex constituting the spiral motion of an acoustic wave around the beam axis was created, with an axial null. Applying Gor'kov's theory in the Rayleigh regime yielded the potential energy and radiation force for use in subsequent analysis. In the transverse direction, the vortex structure behaved as a series of potential wells that tended to drive a suspended particle toward the beam axis. They were highly fragmented in the near field that is very close to the transducer where there was spiral interference, and well-constructed in the far field. We found that the significant trapping effect was only present between these two regions in the transverse direction--particles were free to move along the beam axis, and a repulsive force was observed in the outer acoustic vortex. Because the steepness of the potential gradient near an axial null dominates the trapping effect, the far field of the acoustic vortex is inappropriate for trapping. Particles too close to the transducer are not sufficiently trapped because of the fragmented potential pattern. We suggest that the ideal distance from the transducer for trapping particles is in front of one-fourth of the Rayleigh distance, based on the superposition of the wavefronts. The maximum trapping force acting on a 13-mum polystyrene sphere in the produced acoustic vortex was 50.0 pN, and it was possible to trap

  14. Acoustic cloaking in two dimensions: a feasible approach

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de vera s.n., E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es

    2008-06-15

    This work proposes an acoustic structure feasible to engineer that accomplishes the requirements of acoustic cloaking design recently introduced by Cummer and Schurig (2007 New J. Phys. 9 45). The structure, which consists of a multilayered composite made of two types of isotropic acoustic metamaterials, exactly matches the conditions for the acoustic cloaking. It is also shown that the isotropic metamaterials needed can be made of sonic crystals containing two types of material cylinders, whose elastic parameters should be properly chosen in order to satisfy (in the homogenization limit) the acoustic properties under request. In contrast to electromagnetic cloaking, the structure here proposed verifies the acoustic cloaking in a wide range of wavelengths; its performance is guaranteed for any wavelength above a certain cutoff defined by the homogenization limit of the sonic crystal employed in its fabrication.

  15. Topology optimization in acoustics and elasto-acoustics via a level-set method

    Science.gov (United States)

    Desai, J.; Faure, A.; Michailidis, G.; Parry, G.; Estevez, R.

    2018-04-01

    Optimizing the shape and topology (S&T) of structures to improve their acoustic performance is quite challenging. The exact position of the structural boundary is usually of critical importance, which dictates the use of geometric methods for topology optimization instead of standard density approaches. The goal of the present work is to investigate different possibilities for handling topology optimization problems in acoustics and elasto-acoustics via a level-set method. From a theoretical point of view, we detail two equivalent ways to perform the derivation of surface-dependent terms and propose a smoothing technique for treating problems of boundary conditions optimization. In the numerical part, we examine the importance of the surface-dependent term in the shape derivative, neglected in previous studies found in the literature, on the optimal designs. Moreover, we test different mesh adaptation choices, as well as technical details related to the implicit surface definition in the level-set approach. We present results in two and three-space dimensions.

  16. Spectral identification of sperm whales from Littoral Acoustic Demonstration Center passive acoustic recordings

    Science.gov (United States)

    Sidorovskaia, Natalia A.; Richard, Blake; Ioup, George E.; Ioup, Juliette W.

    2005-09-01

    The Littoral Acoustic Demonstration Center (LADC) made a series of passive broadband acoustic recordings in the Gulf of Mexico and Ligurian Sea to study noise and marine mammal phonations. The collected data contain a large amount of various types of sperm whale phonations, such as isolated clicks and communication codas. It was previously reported that the spectrograms of the extracted clicks and codas contain well-defined null patterns that seem to be unique for individuals. The null pattern is formed due to individual features of the sound production organs of an animal. These observations motivated the present studies of adapting human speech identification techniques for deep-diving marine mammal phonations. A three-state trained hidden Markov model (HMM) was used with the phonation spectra of sperm whales. The HHM-algorithm gave 75% accuracy in identifying individuals when it had been initially tested for the acoustic data set correlated with visual observations of sperm whales. A comparison of the identification accuracy based on null-pattern similarity analysis and the HMM-algorithm is presented. The results can establish the foundation for developing an acoustic identification database for sperm whales and possibly other deep-diving marine mammals that would be difficult to observe visually. [Research supported by ONR.

  17. Diversity of acoustic streaming in a rectangular acoustofluidic field.

    Science.gov (United States)

    Tang, Qiang; Hu, Junhui

    2015-04-01

    Diversity of acoustic streaming field in a 2D rectangular chamber with a traveling wave and using water as the acoustic medium is numerically investigated by the finite element method. It is found that the working frequency, the vibration excitation source length, and the distance and phase difference between two separated symmetric vibration excitation sources can cause the diversity in the acoustic streaming pattern. It is also found that a small object in the acoustic field results in an additional eddy, and affects the eddy size in the acoustic streaming field. In addition, the computation results show that with an increase of the acoustic medium's temperature, the speed of the main acoustic streaming decreases first and then increases, and the angular velocity of the corner eddies increases monotonously, which can be clearly explained by the change of the acoustic dissipation factor and shearing viscosity of the acoustic medium with temperature. Commercialized FEM software COMSOL Multiphysics is used to implement the computation tasks, which makes our method very easy to use. And the computation method is partially verified by an established analytical solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Acoustic remote sensing of ocean flows

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.

    Acoustic techniques have become powerful tools for measurement of ocean circulation mainly because of the ability of acoustic signals to travel long distances in water, and the inherently non-invasive nature of measurement. The satellite remote...

  19. Recent experiments on acoustic leak detection

    International Nuclear Information System (INIS)

    Voss, J.; Arnaoutis, N.

    1984-01-01

    In the ASB-sodium loop a series of injection experiments with water, helium, argon and nitrogen was performed. The aim of these tests was to get: a comparison of the acoustic signals, generated by water and gas injections with regard to intensity and frequency content; an experimental basis for the design of an acoustic calibration source. The experimental set-up, the variation parameters and first results will be discussed. The principal design of an acoustic calibration source and its range of application will be given. (author)

  20. Scattering Of Nonplanar Acoustic Waves

    Science.gov (United States)

    Gillman, Judith M.; Farassat, F.; Myers, M. K.

    1995-01-01

    Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.

  1. Flaw identification using acoustic emission

    International Nuclear Information System (INIS)

    Woodward, B.; McDonald, N.R.

    1975-01-01

    Acoustic emission 'signatures' contain information about the fine structure of metallurgical source events and their interpretation may provide a means of assessing the severity of internal flaws as well as surface flaws. The ultimate aim of this research on signature analysis is to develop a real time non-destructive testing technique having the capability of flaw recognition as well as flaw location in nuclear reactor components and structures under stress. Thus the requisite, unlike that in most acoustic emission work to date, is for a technique which affords discrimination between acoustic emission from different types of flaws propagating simultaneously. The approach described here requires detailed analysis of the emission signatures in terms of a specific statistical parameter, energy spectral density. In order to realise the full inspection potential of acoustic emission monitoring data obtained from zirconium and steel testpieces have been correlated with metallurgical condition and mechanical behaviour, since the nature of emission signatures is strongly affected by the physical characteristics and internal structure of the material. (Auth.)

  2. Detection method of internal leakage from valve using acoustic method

    International Nuclear Information System (INIS)

    Kumagai, Horomichi

    1990-01-01

    The purpose of this study is to estimate the availability of acoustic method for detecting the internal leakage of valves at power plants. Experiments have been carried out on the characteristics of acoustic noise caused by the leak simulated flow. From the experimental results, the mechanism of the acoustic noisegenerated from flow, the relation between acoustic intensity and leak flow velocity, and the characteristics of the acoustic frequency spectrum were clarified. The acoustic method was applied to valves at site, and the background noises were measured in abnormal plant conditions. When the background level is higher than the acoustic signal, the difference between the background noise frequency spectrum and the acoustic signal spectrum provide a very useful leak detection method. (author)

  3. Prototype acoustic resonance spectroscopy monitor

    International Nuclear Information System (INIS)

    Sinha, D.N.; Olinger, C.T.

    1996-03-01

    This report reports on work performed for the International Atomic Energy Agency (IAEA) through the Program Office for Technical Assistance (POTAS). In this work, we investigate possible applications of nondestructive acoustics measurements to facilitate IAEA safeguards at bulk processing facilities. Two different acoustic techniques for verifying the internal structure of a processing tank were investigated. During this effort we also examined two acoustic techniques for assessing the fill level within a processing tank. The fill-level measurements could be made highly portable and have an added safeguards advantage that they can also detect stratification of fill material. This later application may be particularly useful in confirming the absence of stratification in plutonium processing tanks before accountability samples are withdrawn

  4. Circuit quantum acoustodynamics with surface acoustic waves.

    Science.gov (United States)

    Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J

    2017-10-17

    The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.

  5. Acoustic emission sensor radiation damage threshold experiment

    International Nuclear Information System (INIS)

    Beeson, K.M.; Pepper, C.E.

    1994-01-01

    Determination of the threshold for damage to acoustic emission sensors exposed to radiation is important in their application to leak detection in radioactive waste transport and storage. Proper response to system leaks is necessary to ensure the safe operation of these systems. A radiation impaired sensor could provide ''false negative or false positive'' indication of acoustic signals from leaks within the system. Research was carried out in the Radiochemical Technology Division at Oak Ridge National Laboratory to determine the beta/gamma radiation damage threshold for acoustic emission sensor systems. The individual system consisted of an acoustic sensor mounted with a two part epoxy onto a stainless steel waveguide. The systems were placed in an irradiation fixture and exposed to a Cobalt-60 source. After each irradiation, the sensors were recalibrated by Physical Acoustics Corporation. The results were compared to the initial calibrations performed prior to irradiation and a control group, not exposed to radiation, was used to validate the results. This experiment determines the radiation damage threshold of each acoustic sensor system and verifies its life expectancy, usefulness and reliability for many applications in radioactive environments

  6. Application of acoustic emission to hydride cracking

    International Nuclear Information System (INIS)

    Sagat, S.; Ambler, J.F.R.; Coleman, C.E.

    1986-07-01

    Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking

  7. Method and apparatus for generating acoustic waves

    International Nuclear Information System (INIS)

    Rao, G.V.; Gopal, R.

    1982-01-01

    A portable source of acoustic waves comprises a sample of iron-nickel alloy including an austenite phase cooled to become martensite, and a wave guide to transmit the acoustic waves. The source is applied to the pressure boundary region of a pressurized water reactor to simulate an actual metal flaw and test the calibration of the monitoring and surveillance system. With at most 29.7% nickel in the sample, the source provides acoustic emission due to ductile deformation, and with at least 30% nickel the acoustic emission is characteristic of a brittle deformation. Thus, the monitoring and surveillance system can be tested in either or both situations. In the prior art, synthetic waveform signals were used for such calibration but found not suitable for on-line simulation of the surveillance system. This invention provides an improved system in that it generates true acoustic signals. (author)

  8. On architectural acoustic design using computer simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process. The emphasis is put on the first three out of five phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference to the design of Bagsværd Church by Jørn Utzon. The paper...... discusses the advantages and disadvantages of the programme in each phase compared to the works of architects not using acoustic simulation programmes. The conclusion of the paper is that the application of acoustic simulation programs is most beneficial in the last of three phases but an application...

  9. Software-based acoustical measurements

    CERN Document Server

    Miyara, Federico

    2017-01-01

    This textbook provides a detailed introduction to the use of software in combination with simple and economical hardware (a sound level meter with calibrated AC output and a digital recording system) to obtain sophisticated measurements usually requiring expensive equipment. It emphasizes the use of free, open source, and multiplatform software. Many commercial acoustical measurement systems use software algorithms as an integral component; however the methods are not disclosed. This book enables the reader to develop useful algorithms and provides insight into the use of digital audio editing tools to document features in the signal. Topics covered include acoustical measurement principles, in-depth critical study of uncertainty applied to acoustical measurements, digital signal processing from the basics, and metrologically-oriented spectral and statistical analysis of signals. The student will gain a deep understanding of the use of software for measurement purposes; the ability to implement software-based...

  10. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  11. Acoustic concentration of particles in fluid flow

    Science.gov (United States)

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  12. Acoustic Particle Detection with the ANTARES Detector

    Directory of Open Access Journals (Sweden)

    M. Neff

    2010-01-01

    Full Text Available The (Antares Modules for Acoustic Detection Under the Sea AMADEUS system within the (Astronomy with a Neutrino Telescope and Abyss environmental RESsearch ANTARES neutrino telescope is designed to investigate detection techniques for acoustic signals produced by particle cascades. While passing through a liquid a cascade deposits energy and produces a measurable pressure pulse. This can be used for the detection of neutrinos with energies exceeding 1018 eV. The AMADEUS setup consists of 36 hydrophones grouped in six local clusters measuring about one cubic meter each. This article focuses on acoustic particle detection, the hardware of the AMADEUS detector and techniques used for acoustic signal processing.

  13. Acoustic Particle Detection with the ANTARES Detector

    Directory of Open Access Journals (Sweden)

    Richardt C

    2010-01-01

    Full Text Available The (Antares Modules for Acoustic Detection Under the Sea AMADEUS system within the (Astronomy with a Neutrino Telescope and Abyss environmental RESsearch ANTARES neutrino telescope is designed to investigate detection techniques for acoustic signals produced by particle cascades. While passing through a liquid a cascade deposits energy and produces a measurable pressure pulse. This can be used for the detection of neutrinos with energies exceeding  eV. The AMADEUS setup consists of 36 hydrophones grouped in six local clusters measuring about one cubic meter each. This article focuses on acoustic particle detection, the hardware of the AMADEUS detector and techniques used for acoustic signal processing.

  14. Acoustic concentration of particles in fluid flow

    Science.gov (United States)

    Ward, Michael W.; Kaduchak, Gregory

    2017-08-15

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  15. Experimental verification of transient nonlinear acoustical holography.

    Science.gov (United States)

    Jing, Yun; Cannata, Jonathan; Wang, Tianren

    2013-05-01

    This paper presents an experimental study on nonlinear transient acoustical holography. The validity and effectiveness of a recently proposed nonlinear transient acoustical holography algorithm is evaluated in the presence of noise. The acoustic field measured on a post-focal plane of a high-intensity focused transducer is backward projected to reconstruct the pressure distributions on the focal and a pre-focal plane, which are shown to be in good agreement with the measurement. In contrast, the conventional linear holography produces erroneous results in this case where the nonlinearity involved is strong. Forward acoustic field projection was also carried out to further verify the algorithm.

  16. [Acoustic characteristics of adductor spasmodic dysphonia].

    Science.gov (United States)

    Yang, Yang; Wang, Li-Ping

    2008-06-01

    To explore the acoustic characteristics of adductor spasmodic dysphonia. The acoustic characteristics, including acoustic signal of recorded voice, three-dimensional sonogram patterns and subjective assessment of voice, between 10 patients (7 women, 3 men) with adductor spasmodic dysphonia and 10 healthy volunteers (5 women, 5 men), were compared. The main clinical manifestation of adductor spasmodic dysphonia included the disorders of sound quality, rhyme and fluency. It demonstrated the tension dysphonia when reading, acoustic jitter, momentary fluctuation of frequency and volume, voice squeezing, interruption, voice prolongation, and losing normal chime. Among 10 patients, there were 1 mild dysphonia (abnormal syllable number dysphonia (abnormal syllable number 25%-49%), 1 severe dysphonia (abnormal syllable number 50%-74%) and 2 extremely severe dysphonia (abnormal syllable number > or = 75%). The average reading time in 10 patients was 49 s, with reading time extension and aphasia area interruption in acoustic signals, whereas the average reading time in health control group was 30 s, without voice interruption. The aphasia ratio averaged 42%. The respective symptom syllable in different patients demonstrated in the three-dimensional sonogram. There were voice onset time prolongation, irregular, interrupted and even absent vowel formants. The consonant of symptom syllables displayed absence or prolongation of friction murmur in the block-friction murmur occasionally. The acoustic characteristics of adductor spasmodic dysphonia is the disorders of sound quality, rhyme and fluency. The three-dimensional sonogram of the symptom syllables show distinctive changes of proportional vowels or consonant phonemes.

  17. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  18. Acoustic Levitation With One Transducer

    Science.gov (United States)

    Barmatz, Martin B.

    1987-01-01

    Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.

  19. Vibro-acoustic analysis of composite plates

    International Nuclear Information System (INIS)

    Sarigül, A S; Karagözlü, E

    2014-01-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed

  20. Vibro-acoustic analysis of composite plates

    Science.gov (United States)

    Sarigül, A. S.; Karagözlü, E.

    2014-03-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed.

  1. Thermodynamics of Acoustic Black Holes in Two Dimensions

    Directory of Open Access Journals (Sweden)

    Baocheng Zhang

    2016-01-01

    Full Text Available It is well-known that the thermal Hawking-like radiation can be emitted from the acoustic horizon, but the thermodynamic-like understanding for acoustic black holes was rarely made. In this paper, we will show that the kinematic connection can lead to the dynamic connection at the horizon between the fluid and gravitational models in two dimensions, which implies that there exists the thermodynamic-like description for acoustic black holes. Then, we discuss the first law of thermodynamics for the acoustic black hole via an intriguing connection between the gravitational-like dynamics of the acoustic horizon and thermodynamics. We obtain a universal form for the entropy of acoustic black holes, which has an interpretation similar to the entropic gravity. We also discuss the specific heat and find that the derivative of the velocity of background fluid can be regarded as a novel acoustic analogue of the two-dimensional dilaton potential, which interprets why the two-dimensional fluid dynamics can be connected to the gravitational dynamics but it is difficult for four-dimensional case. In particular, when a constraint is added for the fluid, the analogue of a Schwarzschild black hole can be realized.

  2. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Lulu Zhou

    2017-04-01

    Full Text Available Atomic force microscopy (AFM has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

  3. Piezoelectric Zinc Oxide Based MEMS Acoustic Sensor

    Directory of Open Access Journals (Sweden)

    Aarti Arora

    2008-04-01

    Full Text Available An acoustic sensors exhibiting good sensitivity was fabricated using MEMS technology having piezoelectric zinc oxide as a dielectric between two plates of capacitor. Thin film zinc oxide has structural, piezoelectric and optical properties for surface acoustic wave (SAW and bulk acoustic wave (BAW devices. Oxygen effficient films are transparent and insulating having wide applications for sensors and transducers. A rf sputtered piezoelectric ZnO layer transforms the mechanical deflection of a thin etched silicon diaphragm into a piezoelectric charge. For 25-micron thin diaphragm Si was etched in tetramethylammonium hydroxide solution using bulk micromachining. This was followed by deposition of sandwiched structure composed of bottom aluminum electrode, sputtered 3 micron ZnO film and top aluminum electrode. A glass having 1 mm diameter hole was bonded on backside of device to compensate sound pressure in side the cavity. The measured value of central capacitance and dissipation factor of the fabricated MEMS acoustic sensor was found to be 82.4pF and 0.115 respectively, where as the value of ~176 pF was obtained for the rim capacitance with a dissipation factor of 0.138. The response of the acoustic sensors was reproducible for the devices prepared under similar processing conditions under different batches. The acoustic sensor was found to be working from 30Hz to 8KHz with a sensitivity of 139µV/Pa under varying acoustic pressure.

  4. Bilateral acoustic neuromas.

    Science.gov (United States)

    Anand, V T; Byrnes, D P; Walby, A P; Kerr, A G

    1993-10-01

    This article reviews 12 patients with bilateral acoustic neuromas. The sex incidence was equal and the mean age at diagnosis was 26.2 years. The family history was positive in nine of the patients. Five patients have had incomplete surgical removal of acoustic neuromas on both sides. Two of them are completely deaf and the other three have severe sensorineural hearing loss in one ear and no hearing in the other ear. In five patients the tumour on one side has been operated on and the other side is being observed with at least short-term preservation of good hearing. The remaining two patients died of intra-cranial complications, one of them post-operatively. Four patients developed facial palsy immediately following surgery and one developed facial weakness 6 months after surgery. Guidelines are discussed for the care of these patients including the timing of surgery and alternative treatment options (observation, radio-surgery and chemotherapy). This is essentially a group of young individuals who have had multiple operations for bilateral acoustic tumours and associated manifestations and for whom the disease and the sequelae of treatment can be tragic.

  5. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy.

    Science.gov (United States)

    Hirsch, M; Catchpole-Smith, S; Patel, R; Marrow, P; Li, Wenqi; Tuck, C; Sharples, S D; Clare, A T

    2017-09-01

    Developments in additive manufacturing technology are serving to expand the potential applications. Critical developments are required in the supporting areas of measurement and in process inspection to achieve this. CM247LC is a nickel superalloy that is of interest for use in aerospace and civil power plants. However, it is difficult to process via selective laser melting (SLM) as it suffers from cracking during rapid cooling and solidification. This limits the viability of CM247LC parts created using SLM. To quantify part integrity, spatially resolved acoustic spectroscopy (SRAS) has been identified as a viable non-destructive evaluation technique. In this study, a combination of optical microscopy and SRAS was used to identify and classify the surface defects present in SLM-produced parts. By analysing the datasets and scan trajectories, it is possible to correlate morphological information with process parameters. Image processing was used to quantify porosity and cracking for bulk density measurement. Analysis of surface acoustic wave data showed that an error in manufacture in the form of an overscan occurred. Comparing areas affected by overscan with a bulk material, a change in defect density from 1.17% in the bulk material to 5.32% in the overscan regions was observed, highlighting the need to reduce overscan areas in manufacture.

  6. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy

    Science.gov (United States)

    Hirsch, M.; Catchpole-Smith, S.; Patel, R.; Marrow, P.; Li, Wenqi; Tuck, C.; Sharples, S. D.; Clare, A. T.

    2017-09-01

    Developments in additive manufacturing technology are serving to expand the potential applications. Critical developments are required in the supporting areas of measurement and in process inspection to achieve this. CM247LC is a nickel superalloy that is of interest for use in aerospace and civil power plants. However, it is difficult to process via selective laser melting (SLM) as it suffers from cracking during rapid cooling and solidification. This limits the viability of CM247LC parts created using SLM. To quantify part integrity, spatially resolved acoustic spectroscopy (SRAS) has been identified as a viable non-destructive evaluation technique. In this study, a combination of optical microscopy and SRAS was used to identify and classify the surface defects present in SLM-produced parts. By analysing the datasets and scan trajectories, it is possible to correlate morphological information with process parameters. Image processing was used to quantify porosity and cracking for bulk density measurement. Analysis of surface acoustic wave data showed that an error in manufacture in the form of an overscan occurred. Comparing areas affected by overscan with a bulk material, a change in defect density from 1.17% in the bulk material to 5.32% in the overscan regions was observed, highlighting the need to reduce overscan areas in manufacture.

  7. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  8. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai; Xiao, Bingmu; Wu, Ying

    2014-01-01

    and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  9. Dynamics of levitated objects in acoustic vortex fields.

    Science.gov (United States)

    Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W

    2017-08-02

    Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.

  10. Surface acoustic waves voltage controlled directional coupler

    Science.gov (United States)

    Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.

    1988-10-01

    An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.

  11. Sound reduction by metamaterial-based acoustic enclosure

    Directory of Open Access Journals (Sweden)

    Shanshan Yao

    2014-12-01

    Full Text Available In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  12. Perturbation measurement of waveguides for acoustic thermometry

    Science.gov (United States)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  13. Worship space acoustics 3 decades of design

    CERN Document Server

    Ryherd, Erica; Ronsse, Lauren

    2016-01-01

    This book takes the reader on a wide-ranging tour through churches, synagogues, mosques, and other worship spaces designed during the past 30 years. The book begins with a series of essays on topics ranging from the soundscape of worship spaces to ecclesiastical design at the turn of the 21st Century. Perspective pieces from an architect, audio designer, music director, and worship space owner are also included. The core of the book presents the acoustical and architectural design of a wide variety of individual worship space venues. Acoustical consulting firms, architects, and worship space designers from across the world contributed their recent innovative works in the area of worship space acoustics. The contributions include detailed renderings and architectural drawings, as well as informative acoustic data graphs and evocative descriptions of the spaces. Filled with beautiful photography and fascinating modern design, this book is a must-read for anyone interested in religious architecture, acoustical d...

  14. Sound reduction by metamaterial-based acoustic enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shanshan; Li, Pei; Zhou, Xiaoming; Hu, Gengkai, E-mail: hugeng@bit.edu.cn [Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education and School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2014-12-15

    In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  15. Laser-nucleated acoustic cavitation in focused ultrasound.

    Science.gov (United States)

    Gerold, Bjoern; Kotopoulis, Spiros; McDougall, Craig; McGloin, David; Postema, Michiel; Prentice, Paul

    2011-04-01

    Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications. © 2011 American Institute of Physics

  16. Shallow Water Acoustics Studies

    Science.gov (United States)

    2017-11-19

    LE O CEAN RAPHIC I TITUTI Appli d Oc:ean Physics and E11gi1i,ering Depar1111,11t vember 9, 2017 Dr. Robert Headrick ffice of Naval Resear h, ode...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT Applied Ocean Physics and Engineering Department...2015). [3] J.F. Lynch and A.E. Newhall, "Shallow water acoustics", book chapter in "Practical Underwater Acoustics," L. Bjorno, T. Neighbors, and D

  17. Cylindrical dust acoustic waves with transverse perturbation

    International Nuclear Information System (INIS)

    Xue Jukui

    2003-01-01

    The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation

  18. Acoustic 3D imaging of dental structures

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Hume, W.R. [California Univ., Los Angeles, CA (United States); Douglass, G.D. [California Univ., San Francisco, CA (United States)

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  19. Numerical analysis on acoustic impulse response for watermelon

    International Nuclear Information System (INIS)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho; Lee, Yun Ho

    2002-01-01

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  20. Acoustical Properties of Contemporary Mosques

    OpenAIRE

    Karaman Özgül Yılmaz; Güzel Neslihan Onat

    2017-01-01

    Religious buildings are important for many communities because of their representation of different beliefs. In such structures, the sense of individuality or unity & togetherness are created according to variable worship activities; these different uses have also different acoustical requirements. In order to create the desired feeling in the space at the required time, rooms should be evaluated in terms of acoustical conditions.

  1. Levitation of objects using acoustic energy

    Science.gov (United States)

    Whymark, R. R.

    1975-01-01

    Activated sound source establishes standing-wave pattern in gap between source and acoustic reflector. Solid or liquid material introduced in region will move to one of the low pressure areas produced at antinodes and remain suspended as long as acoustic signal is present.

  2. Acoustic interaction forces between small particles in an ideal fluid

    DEFF Research Database (Denmark)

    Silva, Glauber T.; Bruus, Henrik

    2014-01-01

    We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves...... from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair...

  3. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P E [Vestfold College, Maritime Dept., Toensberg (Norway)

    1998-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  4. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)

    1997-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  5. Fully kinetic simulation of ion acoustic and dust-ion acoustic waves

    International Nuclear Information System (INIS)

    Hosseini Jenab, S. M.; Kourakis, I.; Abbasi, H.

    2011-01-01

    A series of numerical simulations is presented, based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories. All plasma components are modeled kinetically via a Vlasov evolution equation, then coupled through Poisson's equation. The dynamics of ion acoustic waves in an electron-ion and in a dusty (electron-ion-dust) plasma configuration are investigated, focusing on wave decay due to Landau damping and, in particular, on the parametric dependence of the damping rate on the dust concentration and on the electron-to-ion temperature ratio. In the absence of dust, the occurrence of damping was observed, as expected, and its dependence to the relative magnitude of the electron vs ion temperature(s) was investigated. When present, the dust component influences the charge balance, enabling dust-ion acoustic waves to survive Landau damping even in the extreme regime where T e ≅ T i . The Landau damping rate is shown to be minimized for a strong dust concentration or/and for a high value of the electron-to-ion temperature ratio. Our results confirm earlier theoretical considerations and contribute to the interpretation of experimental observations of dust-ion acoustic wave characteristics.

  6. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  7. Acoustic Levitation Containerless Processing

    Science.gov (United States)

    Whymark, R. R.; Rey, C. A.

    1985-01-01

    This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.

  8. Direction selective structural-acoustic coupled radiator

    Science.gov (United States)

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-04-01

    This paper presents a method of designing a structural-acoustic coupled radiator that can emit sound in the desired direction. The structural-acoustic coupled system is consisted of acoustic spaces and wall. The wall composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. An equation is developed that predicts energy distribution and energy flow in the two spaces separated by the wall, and its computational examples are presented including near field acoustic characteristics. To design the directional coupled radiator, Pareto optimization method is adapted. An objective is selected to maximize radiation power on a main axis and minimize a side lobe level and a subjective is selected direction of the main axis and dimensions of the walls geometry. Pressure and intensity distribution of the designed radiator is also presented.

  9. Particle separation by phase modulated surface acoustic waves.

    Science.gov (United States)

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  10. Acoustic Quality Levels of Mosques in Batu Pahat

    Science.gov (United States)

    Azizah Adnan, Nor; Nafida Raja Shahminan, Raja; Khair Ibrahim, Fawazul; Tami, Hannifah; Yusuff, M. Rizal M.; Murniwaty Samsudin, Emedya; Ismail, Isham

    2018-04-01

    Every Friday, Muslims has been required to perform a special prayer known as the Friday prayers which involve the delivery of a brief lecture (Khutbah). Speech intelligibility in oral communications presented by the preacher affected all the congregation and determined the level of acoustic quality in the interior of the mosque. Therefore, this study intended to assess the level of acoustic quality of three public mosques in Batu Pahat. Good acoustic quality is essential in contributing towards appreciation in prayers and increasing khusyu’ during the worship, which is closely related to the speech intelligibility corresponding to the actual function of the mosque according to Islam. Acoustic parameters measured includes noise criteria (NC), reverberation time (RT) and speech transmission index (STI), and was performed using the sound level meter and sound measurement instruments. This test is carried out through the physical observation with the consideration of space and volume design as a factor affecting acoustic parameters. Results from all 3 mosques as the showed that the acoustic quality level inside these buildings are slightly poor which is at below 0.45 coefficients based on the standard. Among the factors that influencing the low acoustical quality are location, building materials, installation of sound absorption material and the number of occupants inside the mosque. As conclusion, the acoustic quality level of a mosque is highly depends on physical factors of the mosque such as the architectural design and space volume besides other factors as been identified by this study.

  11. Acoustic emission measurement on large scale coils at JAERI

    International Nuclear Information System (INIS)

    Yoshida, K.; Hattori, Y.; Nishi, M.F.; Shimamoto, S.; Tsuji, H.

    1986-01-01

    The objective of acoustic emission measurement at Japan Atomic Energy Research Institute (JAERI) is an establishment of a general diagnostic method for superconducting magnet systems. Output of strain and displacement gages can not cover a whole system in monitoring premonitory phenomena of a magnet system s failure, because these sensors are mounted on points and therefore localized. Acoustic emissions can be transmitted to sensors through structural materials without electrical noise. Monitoring of acoustic emission will be one of the methods to predict a serious failure of magnet systems in a vacuum vessel. For this purpose, several sensors were installed on the Japanese LCT coil and the Test Module Coil (TMC). Some of acoustic activity was similar as seen in these coils. The correlation between voltage spikes and acoustic events is excellent during single coil charging mode, but poorer during out of plane force mode. There are no indicative acoustical phenomena before a magnet quench or during normal zone generation. The conditioning of acoustic events and voltage spikes can be seen after any cooling down. The localization of electrical insulation damage with the acoustic emission technique is one of its most useful applications

  12. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping.

    Science.gov (United States)

    Augustsson, Per; Karlsen, Jonas T; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-05-16

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.

  13. Generation of thermo-acoustic waves from pulsed solar/IR radiation

    Science.gov (United States)

    Rahman, Aowabin

    Acoustic waves could potentially be used in a wide range of engineering applications; however, the high energy consumption in generating acoustic waves from electrical energy and the cost associated with the process limit the use of acoustic waves in industrial processes. Acoustic waves converted from solar radiation provide a feasible way of obtaining acoustic energy, without relying on conventional nonrenewable energy sources. One of the goals of this thesis project was to experimentally study the conversion of thermal to acoustic energy using pulsed radiation. The experiments were categorized into "indoor" and "outdoor" experiments, each with a separate experimental setup. The indoor experiments used an IR heater to power the thermo-acoustic lasers and were primarily aimed at studying the effect of various experimental parameters on the amplitude of sound waves in the low frequency range (below 130 Hz). The IR radiation was modulated externally using a chopper wheel and then impinged on a porous solid, which was housed inside a thermo-acoustic (TA) converter. A microphone located at a certain distance from the porous solid inside the TA converter detected the acoustic signals. The "outdoor" experiments, which were targeted at TA conversion at comparatively higher frequencies (in 200 Hz-3 kHz range) used solar energy to power the thermo-acoustic laser. The amplitudes (in RMS) of thermo-acoustic signals obtained in experiments using IR heater as radiation source were in the 80-100 dB range. The frequency of acoustic waves corresponded to the frequency of interceptions of the radiation beam by the chopper. The amplitudes of acoustic waves were influenced by several factors, including the chopping frequency, magnitude of radiation flux, type of porous material, length of porous material, external heating of the TA converter housing, location of microphone within the air column, and design of the TA converter. The time-dependent profile of the thermo-acoustic signals

  14. A Correlated Active Acoustic Leak Detection in a SFR Steam Generator

    International Nuclear Information System (INIS)

    Kim, Tae Joon; Jeong, Ji Young; Kim, Jong Man; Kim, Byung Ho; Kim, Yong Il

    2009-01-01

    The methods of acoustic leak detection are active acoustic leak detection and passive acoustic leak detection. The methods for passive acoustic leak detection are already established, but because our goal is development of passive acoustic leak detection for detecting a leakage range of small and micro leak rates, it is difficult detecting a leak in steam generator using this developed passive acoustic leak detection. Thus the acoustic leak detection system is required to be able to detect wide range of water leaks. From this view point we need to develop an active acoustic leak detection technology to be able to detect intermediate leak rates

  15. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    International Nuclear Information System (INIS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-01-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation. (paper)

  16. Eliminating transducer distortion in acoustic measurements

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Torras Rosell, Antoni; McWalter, Richard Ian

    2014-01-01

    This paper investigates the in uence of nonlinear components that contaminate the linear response of acoustic transducer, and presents a method for eliminating the in uence of nonlinearities in acoustic measurements. The method is evaluated on simulated as well as experimental data, and is shown...

  17. Coherent acoustic excitation of cavity polaritons

    DEFF Research Database (Denmark)

    Poel, Mike van der; de Lima, M. M.; Hey, R.

    The study of acoustic excitation of semiconductor based photonic structures is anemerging field with great potential for new types of photonic manipulation1. In this paperwe present results of using a surface acoustic wave (SAW) to modulate a microcavitywith embedded quantum-well (QW) active layer...

  18. Scattering of Acoustic Waves from Ocean Boundaries

    Science.gov (United States)

    2015-09-30

    at the Target and Reverberation Experiment 2013 (TREX13),” in Proc. IEEE/OES Acoustics in Underwater Geosciences Symposium, Rio de Janeiro , Brazil...a Sandy Seabed at the Target and Reverberation Experiment 2013 (TREX13),” in Proc. IEEE/OES Acoustics in Underwater Geosciences Symposium, Rio de ... Janeiro , Brazil, July 2015. PRESENTATIONS Presenter: Isakson, M.J., Chotiros, N.P., Piper, J.N. and McNeese, A. “Acoustic Scattering from a Sandy Seabed

  19. Aero-acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Michelsen, Jess; Sørensen, Jens Nørkær

    2002-01-01

    A numerical algorithm for acoustic noise generation is extended to 3D flows. The approach involves two parts comprising a viscous incompressible flow part and an inviscid acoustic part. In order to simulate noise generated from a wind turbine, the incompressible and acoustic equations are written...... in polar coordinates. The developed algorithm is combined with a so-called actuator-line technique in which the loading is distributed along lines representing the blade forces. Computations are carried out for the 500kW Nordtank wind turbine equipped with three LM19 blades. ©2001 The American Institute...

  20. Acoustic communication in insect disease vectors

    Directory of Open Access Journals (Sweden)

    Felipe de Mello Vigoder

    2013-01-01

    Full Text Available Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.

  1. Phononic fluidics: acoustically activated droplet manipulations

    Science.gov (United States)

    Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.

    2011-02-01

    Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.

  2. Virtual Acoustics: Evaluation of Psychoacoustic Parameters

    Science.gov (United States)

    Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1997-01-01

    Current virtual acoustic displays for teleconferencing and virtual reality are usually limited to very simple or non-existent renderings of reverberation, a fundamental part of the acoustic environmental context that is encountered in day-to-day hearing. Several research efforts have produced results that suggest that environmental cues dramatically improve perceptual performance within virtual acoustic displays, and that is possible to manipulate signal processing parameters to effectively reproduce important aspects of virtual acoustic perception in real-time. However, the computational resources for rendering reverberation remain formidable. Our efforts at NASA Ames have been focused using a several perceptual threshold metrics, to determine how various "trade-offs" might be made in real-time acoustic rendering. This includes both original work and confirmation of existing data that was obtained in real rather than virtual environments. The talk will consider the importance of using individualized versus generalized pinnae cues (the "Head-Related Transfer Function"); the use of head movement cues; threshold data for early reflections and late reverberation; and consideration of the necessary accuracy for measuring and rendering octave-band absorption characteristics of various wall surfaces. In addition, a consideration of the analysis-synthesis of the reverberation within "everyday spaces" (offices, conference rooms) will be contrasted to the commonly used paradigm of concert hall spaces.

  3. Virtual reflections in electronic acoustic architecture

    Science.gov (United States)

    van Munster, Bjorn

    2005-09-01

    In the era of the ancient Greeks and Byzantines, the first attempts for increasing reverberation time are noted. In the 1950s, the Ambiophonic system accomplished this by means of an electronic device, for the first time. The early systems only increased the reverberation time by delaying the picked-up reverberation. With the introduction of multichannel feedback-based systems, the reverberation level also could be increased. Later, it was understood that it was important to also fill in the missing reflections, address reflection density, frequency dependence, etc. This resulted in the development of the SIAP concept. Current DSP technology led to the development of a processor whereby density, length, level, and the frequency content can be controlled for different areas in the same room or different rooms, leading to the concept of the acoustic server. electronic acoustic architecture has become the current state-of-the-art approach for solving acoustic deficiencies in, among others, rehearsal rooms, theaters, churches, and multipurpose venues. Incorporation of complementary passive acoustic solutions provides an optimum solution for all room problems. This paper discusses the utilization of virtual reflections in the new approach of electronic acoustic architecture for different environments. Measurements performed in the Sejong Performing Arts Centre, Seoul, South Korea, show the power of this approach.

  4. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    Science.gov (United States)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  5. Acoustic emission measurements in petroleum-related rock mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Unander, Tor Erling

    2002-07-01

    Acoustic emission activity in rock has usually been studied in crystalline rock, which reflects that rock mechanics has also mostly been occupied with such rocks in relations to seismology, mining and tunneling. On the other hand, petroleum-related rock mechanics focuses on the behaviour of sedimentary rock. Thus, this thesis presents a general study of acoustic emission activity in sedimentary rock, primarily in sandstone. Chalk, limestone and shale have also been tested, but to much less degree because the AE activity in these materials is low. To simplify the study, pore fluids have not been used. The advent of the personal computer and computerized measuring equipment have made possible new methods both for measuring and analysing acoustic emissions. Consequently, a majority of this work is devoted to the development and implementation of new analysis techniques. A broad range of topics are treated: (1) Quantification of the AE activity level, assuming that the event rate best represents the activity. An algorithm for estimating the event rate and a methodology for objectively describing special changes in the activity e.g., onset determination, are presented. (2) Analysis of AE waveform data. A new method for determining the source energy of an AE event is presented, and it is shown how seismic source theory can be used to analyze even intermediate quality data. Based on these techniques, it is shown that a major part of the measured AE activity originates from a region close to the sensor, not necessarily representing the entire sample. (3) An improved procedure for estimating source locations is presented. The main benefit is a procedure that better handles arrival time data with large errors. Statistical simulations are used to quantify the uncertainties in the locations. The analysis techniques are developed with the application to sedimentary rock in mind, and in two articles, the techniques are used in the study of such materials. The work in the first

  6. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    DEFF Research Database (Denmark)

    Augustsson, Per; Karlsen, Jonas Tobias; Su, Hao-Wei

    2016-01-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance...... of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide...... theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic...

  7. Estimating surface acoustic impedance with the inverse method.

    Science.gov (United States)

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.

  8. Numerical analysis on acoustic impulse response for watermelon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho [Dongshin University, Naju (Korea, Republic of); Lee, Yun Ho [Korea Inspection and Engineering CO.,LTD., Seoul (Korea, Republic of)

    2002-11-15

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  9. Controllable asymmetric transmission via gap-tunable acoustic metasurface

    Science.gov (United States)

    Liu, Bingyi; Jiang, Yongyuan

    2018-04-01

    In this work, we utilize the acoustic gradient metasurface (AGM) of a bilayer configuration to realize the controllable asymmetric transmission. Relying on the adjustable gap between the two composing layers, the metasurface could switch from symmetric transmission to asymmetric transmission at a certain gap value. The underlying mechanism is attributed to the interference between the forward diffracted waves scattered by the surface bound waves at two air-AGM interfaces, which is apparently influenced by the interlayer distance. We further utilize the hybrid acoustic elements to construct the desired gradient metasurface with a tunable gap and validate the controllable asymmetric transmission with full-wave simulations. Our work provides the solution for actively controlling the transmission property of an acoustic element, which shows potential application in acoustic communication as a dynamic tunable acoustic diode.

  10. Influence of the interaction of ions-dust grains on ion acoustic wave and dust acoustic wave

    International Nuclear Information System (INIS)

    Hua Jianjun; Liu Jinyuan; Ma Tengcai

    2004-01-01

    Based on a set of hydrodynamic equations and a linear time-dependent perturbation theory, the influence of the interaction of ions-dust grains on ion acoustic wave IAW and dust acoustic wave DAW in dusty plasma is analyzed. The results show that the interaction makes IAW more stable and DAW less stable

  11. Acoustical Properties of Contemporary Mosques

    Directory of Open Access Journals (Sweden)

    Karaman Özgül Yılmaz

    2017-04-01

    Full Text Available Religious buildings are important for many communities because of their representation of different beliefs. In such structures, the sense of individuality or unity & togetherness are created according to variable worship activities; these different uses have also different acoustical requirements. In order to create the desired feeling in the space at the required time, rooms should be evaluated in terms of acoustical conditions.

  12. Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).

    Science.gov (United States)

    Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian

    2017-10-11

    Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.

  13. French Society of Microscopy, 10. conference; Societe Francaise des Microscopies, 10. colloque

    Energy Technology Data Exchange (ETDEWEB)

    Thibault-Penisson, J; Cremer, Ch; Susini, J; Kirklanda, A I; Rigneault, H; Renault, O; Bailly, A; Zagonel, L F; Barrett, N; Bogner, A; Gauthier, C; Jouneau, P H; Thollet, G; Fuchs, G; Basset, D; Deconihout, B; Vurpillot, F; Vella, A; Matthieu, G; Cadel, E; Bostel, A; Blavette, D; Baumeister, W; Usson, Y; Zaefferer, St; Laffont, L; Weyland, M; Thomas, J M; Midgley, P; Benlekbir, S; Epicier, Th; Diop, B N; Roux, St; Ou, M; Perriat, P; Bausach, M; Aouine, M; Berhault, G; Idrissi, H; Cottevieille, M; Jonic, S; Larquet, E; Svergun, D; Vannoni, M A; Boisset, N; Ersena, O; Werckmann, J; Ulhaq, C; Hirlimann, Ch; Tihay, F; Cuong, Pham-Huu; Crucifix, C; Schultz, P; Jornsanoha, P; Thollet, G; Masenelli-Varlot, K; Gauthier, C; Ludwig, W; King, A; Johnson, G; Gonzalves-Hoennicke, M; Reischig, P; Messaoudi, C; Ibrahim, R; Marco, S; Klie, R F; Zhao, Y; Yang, G; Zhu, Y; Hue, F; Hytch, M; Hartmann, J M; Bogumilowicz, Y; Claverie, A; Klein, H; Alloyeau, D; Ricolleau, C; Langlois, C; Le Bouar, Y; Loiseau, A; Colliex, C; Stephan, O; Kociak, M; Tence, M; Gloter, A; Imhoff, D; Walls, M; Nelayah, J; March, K; Couillard, M; Ailliot, C; Bertin, F; Cooper, D; Rivallin, P; Dumelie, N; Benhayoune, H; Balossier, G; Cheynet, M; Pokrant, S; Tichelaar, F; Rouviere, J L; Cooper, D; Truche, R; Chabli, A; Debili, M Y; Houdellier, F; Warot-Fonrose, B; Hytch, M J; Snoeck, E; Calmels, L; Serin, V; Schattschneider, P; Jacob, D; Cordier, P

    2007-07-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals.

  14. Room acoustic properties of concert halls

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1996-01-01

    A large database of values of various room acoustic parameters has provided the basis for statistical analyses of how and how much the acoustic properties of concert halls are influenced by their size, shape, and absorption area (as deduced from measured reverberation time). The data have been...

  15. Auditory modelling for assessing room acoustics

    NARCIS (Netherlands)

    Van Dorp Schuitman, J.

    2011-01-01

    The acoustics of a concert hall, or any other room, are generally assessed by measuring room impulse responses for one or multiple source and receiver location(s). From these responses, objective parameters can be determined that should be related to various perceptual attributes of room acoustics.

  16. Gravity enhanced acoustic levitation method and apparatus

    Science.gov (United States)

    Barmatz, M. B.; Allen, J. L.; Granett, D. (Inventor)

    1985-01-01

    An acoustic levitation system is provided for acoustically levitating an object by applying a single frequency from a transducer into a resonant chamber surrounding the object. The chamber includes a stabilizer location along its height, where the side walls of the chamber are angled so they converge in an upward direction. When an acoustic standing wave pattern is applied between the top and bottom of the chamber, a levitation surface within the stabilizer does not lie on a horizontal plane, but instead is curved with a lowermost portion near the vertical axis of the chamber. As a result, an acoustically levitated object is urged by gravity towards the lowermost location on the levitation surface, so the object is kept away from the side walls of the chamber.

  17. Acoustic leak detection in nuclear power plants

    International Nuclear Information System (INIS)

    McElroy, J.W.

    1986-01-01

    For several years now, utilities have been utilizing acoustic leak detection methods as an operating tool in their nuclear power stations. The purpose for using the leak detection system at the various stations vary from safety, ALARA, improved operations, preventive maintenance, or increased plant availability. This paper describes the various acoustic techniques and their application. The techniques are divided into three categories: specific component leakage, intersystem leakage, and pipe through-wall crack leakage. The paper addresses each category in terms of motivation to monitor, method of application and operation, and benefits to be gained. Current requirements are reviewed and analyzed with respect to the acoustic techniques. The paper shows how acoustic leak detection is one of the most effective leak detection tools available. 9 figures, 1 table

  18. Student design projects in applied acoustics.

    Science.gov (United States)

    Bös, Joachim; Moritz, Karsten; Skowronek, Adam; Thyes, Christian; Tschesche, Johannes; Hanselka, Holger

    2012-03-01

    This paper describes a series of student projects which are intended to complement theoretical education in acoustics and engineering noise control with practical experience. The projects are also intended to enhance the students' ability to work in a team, to manage a project, and to present their results. The projects are carried out in close cooperation with industrial partners so that the students can get a taste of the professional life of noise control engineers. The organization of such a project, its execution, and some of the results from the most recent student project are presented as a demonstrative example. This latest project involved the creation of noise maps of a production hall, the acoustic analysis of a packaging machine, and the acoustic analysis of a spiral vibratory conveyor. Upon completion of the analysis, students then designed, applied, and verified some simple preliminary noise reduction measures to demonstrate the potential of these techniques. © 2012 Acoustical Society of America

  19. Examples and applications in long-range ocean acoustics

    International Nuclear Information System (INIS)

    Vera, M D

    2007-01-01

    Acoustic energy propagates effectively to long ranges in the ocean interior because of the physical properties of the marine environment. Sound propagation in the ocean is relevant to a variety of studies in communication, climatology and marine biology. Examples drawn from ocean acoustics, therefore, are compelling to students with a variety of interests. The dependence of sound speed on depth results in a waveguide that permits the detection of acoustic energy at ranges, in some experiments, of thousands of kilometres. This effect serves as an illustration of Snell's law with a continuously variable index of refraction. Acoustic tomography also offers a means for imaging the ocean's thermal structure, because of the dependence of sound speed on temperature. The ability to perform acoustic thermometry for large transects of the ocean provides an effective means of studying climate change. This application in an area of substantial popular attention allows for an effective introduction to concepts in ray propagation. Aspects of computational ocean acoustics can be productive classroom examples in courses ranging from introductory physics to upper-division mathematical methods courses

  20. Manipulation of biomimetic objects in acoustic levitation

    OpenAIRE

    Castro , Angelica

    2013-01-01

    This thesis contains 9 chapters making a total of 205 pages including articles. The articles are menctioned throughout the work and are listed as annexes. These articles were produced during the PhD.; Levitation is a promising tool for contactless guiding and non-toxic manipulation. Acoustic levitation by ultrasonic standing waves (USW) allows micron-scale particle manipulation in acoustic resonators. The main goal of this thesis is to explore the possibilities given by the acoustic levitatio...

  1. Acoustic emission leak monitoring system LMS-96

    International Nuclear Information System (INIS)

    Liska, J.; Cvrcek, M.; Mueller, L.

    1997-01-01

    On-line acoustic emission leak monitoring under industrial conditions of nuclear power plants is a problem with specific features setting specific demands on the leak monitoring system. The paper briefly reviews those problems (attenuation pattern of a real structure, acoustic background, alarm system, etc.) and the solution of some of them is discussed. Information is presented on the Acoustic Emission Leak Monitoring System LMS-96 by SKODA NUCLEAR MACHINERY and the system's function is briefly described. (author)

  2. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  3. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  4. Tuned Chamber Core Panel Acoustic Test Results

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  5. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.

    1978-01-01

    In order to improve the security of handling special nuclear materials at the Oak Ridge Y-12 Plant, a sensitive acoustic emission detector has been developed that will detect forcible entry through block or tile walls, concrete floors, or concrete/steel vault walls. A small, low-powered processor was designed to convert the output from a sensitive, crystal-type acoustic transducer to an alarm relay signal for use with a supervised alarm loop. The unit may be used to detect forcible entry through concrete, steel, block, tile, and/or glass

  6. Densitometry By Acoustic Levitation

    Science.gov (United States)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  7. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  8. Bubbles in piezo-acoustic inkjet printing

    NARCIS (Netherlands)

    Lohse, D.; Jeurissen, R.J.M.; de Jong, J.; Versluis, M.; Wijshoff, H.M.A.; van den Berg, M.; Reinten, H.

    2008-01-01

    Ink-jet printing is considered as the hitherto most successful application of microfluidics. A notorious problem in piezo-acoustic ink-jet systems is the formation of air bubbles during operation. They seriously disturb the acoustics and can cause the droplet formation to stop. We could show by a

  9. Off-Resonance Acoustic Levitation Without Rotation

    Science.gov (United States)

    Barmatz, M. B.; Allen, J. L.

    1984-01-01

    Orthogonal acoustic-levitation modes excited at slightly different frequencies to control rotation. Rotation of object in square cross-section acoustic-levitation chamber stopped by detuning two orthogonal (x and y) excitation drivers in plane of square cross section. Detuning done using fundamental degenerate modes or odd harmonic modes.

  10. Diving with microparticles in acoustic fields

    DEFF Research Database (Denmark)

    2012-01-01

    Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate to the nodes of the acoustic wave. For several years, acoustophoresis has been used to manipulate microparticles in microscopic scales...

  11. Steerable sound transport in a 3D acoustic network

    Science.gov (United States)

    Xia, Bai-Zhan; Jiao, Jun-Rui; Dai, Hong-Qing; Yin, Sheng-Wen; Zheng, Sheng-Jie; Liu, Ting-Ting; Chen, Ning; Yu, De-Jie

    2017-10-01

    Quasi-lossless and asymmetric sound transports, which are exceedingly desirable in various modern physical systems, are almost always based on nonlinear or angular momentum biasing effects with extremely high power levels and complex modulation schemes. A practical route for the steerable sound transport along any arbitrary acoustic pathway, especially in a three-dimensional (3D) acoustic network, can revolutionize the sound power propagation and the sound communication. Here, we design an acoustic device containing a regular-tetrahedral cavity with four cylindrical waveguides. A smaller regular-tetrahedral solid in this cavity is eccentrically emplaced to break spatial symmetry of the acoustic device. The numerical and experimental results show that the sound power flow can unimpededly transport between two waveguides away from the eccentric solid within a wide frequency range. Based on the quasi-lossless and asymmetric transport characteristic of the single acoustic device, we construct a 3D acoustic network, in which the sound power flow can flexibly propagate along arbitrary sound pathways defined by our acoustic devices with eccentrically emplaced regular-tetrahedral solids.

  12. Acoustic levitator for containerless measurements on low temperature liquids

    Energy Technology Data Exchange (ETDEWEB)

    Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Rey, Charles A A [Charles Ray, Inc.

    2009-01-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops at temperatures from -40 to +40 C. The levitator consisted of: (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) a acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ~ 22 kHz and could produce sound pressure levels up to 160 dB. The force applied by the acoustic field could be modulated using a frequency generator to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  13. Analysis of Field Data to Describe the Effect of Context (Acoustic and Non-Acoustic Factors on Urban Soundscapes

    Directory of Open Access Journals (Sweden)

    Karmele Herranz-Pascual

    2017-02-01

    Full Text Available The need to improve acoustic environments in our cities has led to increased interest in correcting or minimising noise pollution in urban environments, something that has been associated with the resurgence of the soundscape approach. This line of research highlights the importance of context in the perception of acoustic environments. Despite this, few studies consider together a wide number of variables relating to the context, and analyse the relative importance of each. The purpose of this paper is therefore to identify the acoustic and non-acoustic characteristics of a place (context that influence an individual’s perception of the sound environment and the relative importance of these factors in soundscape. The aim is to continue advancing in the definition of an acoustic comfort indicator for urban places. The data used here were collected in various soundscape campaigns carried out by Tecnalia in Bilbao (Spain between 2011 and 2014. These studies involved 534 evaluations of 10 different places. The results indicate that many diverse contextual factors determine soundscape, the most important being the congruence between soundscape and landscape. The limitations of the findings and suggestions for further research are also discussed.

  14. Study of aerosol behaviour in an acoustic field

    International Nuclear Information System (INIS)

    Malherbe, C.

    1988-01-01

    The average size of an aerosol submitted to acoustic waves is increased. This results from coagulation of the finer particles on the larger ones. An experimental apparatus was developed in order to control the evolution of aerosol distribution in an acoustic field. Important deposition on the walls of the agglomeration chamber was observed as a consequence of the acoustically induced turbulent flow. Consequently, we experimentally evaluated the turbulent properties of the system. A granular bed submitted to an acoustic field and set downstream an agglomerator constitutes an almost absolute filter for an usually penetrating aerosol [fr

  15. Dynamics of acoustic-convective drying of sunflower cake

    Science.gov (United States)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  16. Propellant injection strategy for suppressing acoustic combustion instability

    Science.gov (United States)

    Diao, Qina

    Shear-coaxial injector elements are often used in liquid-propellant-rocket thrust chambers, where combustion instabilities remain a significant problem. A conventional solution to the combustion instability problem relies on passive control techniques that use empirically-developed hardware such as acoustic baffles and tuned cavities. In addition to adding weight and decreasing engine performance, these devices are designed using trial-and-error methods, which do not provide the capability to predict the overall system stability characteristics in advance. In this thesis, two novel control strategies that are based on propellant fluid dynamics were investigated for mitigating acoustic instability involving shear-coaxial injector elements. The new control strategies would use a set of controlled injectors allowing local adjustment of propellant flow patterns for each operating condition, particularly when instability could become a problem. One strategy relies on reducing the oxidizer-fuel density gradient by blending heavier methane with the main fuel, hydrogen. Another strategy utilizes modifying the equivalence ratio to affect the acoustic impedance through mixing and reaction rate changes. The potential effectiveness of these strategies was assessed by conducting unit-physics experiments. Two different model combustors, one simulating a single-element injector test and the other a double-element injector test, were designed and tested for flame-acoustic interaction. For these experiments, the Reynolds number of the central oxygen jet was kept between 4700 and 5500 making the injector flames sufficiently turbulent. A compression driver, mounted on one side of the combustor wall, provided controlled acoustic excitation to the injector flames, simulating the initial phase of flame-acoustic interaction. Acoustic excitation was applied either as band-limited white noise forcing between 100 Hz and 5000 Hz or as single-frequency, fixed-amplitude forcing at 1150 Hz

  17. The reduction of structural acoustic coupling in car bodies

    OpenAIRE

    Richards, T. L.

    1982-01-01

    The nature of sound in cars is discussed in the light of previous experimental and theoretical work, and the major contributions to interior noise are identified. The acoustic field inside a vibrating structure is analysed theoretically in terms of the acoustic cavity modes and the structural modes, and it is shown that'reduction of structural-acoustic coupling could reduce the response for a wide variety of force inputs. Finite element analyses of prismatic acoustic cavi...

  18. The near-field acoustic levitation of high-mass rotors

    International Nuclear Information System (INIS)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-01-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope

  19. The near-field acoustic levitation of high-mass rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  20. The near-field acoustic levitation of high-mass rotors.

    Science.gov (United States)

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  1. Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload

    Science.gov (United States)

    Welsh, David; Smith, Holly; Wang, Shuo

    2010-01-01

    Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.

  2. Acoustic change detection algorithm using an FM radio

    Science.gov (United States)

    Goldman, Geoffrey H.; Wolfe, Owen

    2012-06-01

    The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.

  3. Evaluation of acoustic resonance at branch section in main steam line. Part 1. Effects of steam wetness on acoustic resonance

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2011-01-01

    The power uprating of the nuclear power plant (NPP) is conducted in United States, EU countries and so on, and also is planned in Japan. However, the degradation phenomena such as flow-induced vibration and wall thinning may increase or expose in the power uprate condition. In U.S. NPP, the dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a 17% extended power uprating (EPU) condition. This is caused by acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSL). Increased velocity by uprating excites the pressure fluctuations and makes large amplitude resonance. To evaluate the acoustic resonance at the stub pipes of SRVs in actual BWR, it is necessary to clarify the acoustic characteristics in steam flow. Although there are several previous studies about acoustic resonance, most of them are not steam flow but air flow. Therefore in this study, to investigate the acoustic characteristics in steam flow, we conducted steam flow experiments in each dry and wet steam conditions, and also nearly saturated condition. We measured pressure fluctuation at the top of the single stub pipe and in main steam piping. As a result, acoustic resonance in dry steam flow could be evaluated as same as that in air flow. It is clarified that resonance amplitude of fluctuating pressure at the top of the stub pipe in wet steam was reduced to one-tenth compared with that in dry. (author)

  4. Stable And Oscillating Acoustic Levitation

    Science.gov (United States)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  5. Simplified Rotation In Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  6. A mean flow acoustic engine capable of wind energy harvesting

    International Nuclear Information System (INIS)

    Sun Daming; Xu Ya; Chen Haijun; Wu, Ke; Liu Kaikai; Yu Yan

    2012-01-01

    Highlights: ► A mean flow acoustic engine for wind energy harvesting is designed and manufactured. ► Stable standing wave acoustic field is established at specific flow velocity. ► Experimental and computational results reveal the acoustic field characteristics. ► Acoustic field has monofrequency characteristic and remarkable energy density. - Abstract: Based on the mean flow induced acoustic oscillation effect, a mean flow acoustic engine (MFAE) converts wind energy and fluid energy in pipeline into acoustic energy which can be used to drive thermoacoustic refrigerators and generators without any mechanical moving parts. With natural wind simulated by a centrifugal air fan, a MFAE with a cross-junction configuration was designed and manufactured for experimental study. Stable standing wave acoustic fields were established in specific ranges of air flow velocity. Experimental and computational results reveal the acoustic field distribution in the engine and show the effect of the mean flow velocity and the Strouhal number on the acoustic field characteristics. With a mean flow velocity of 50.52 m/s and a mean pressure of 106.19 kPa, the maximum pressure amplitude of 6.20 kPa was achieved, which was about 5.8% of the mean pressure. It has laid a good foundation for driving power generation devices and thermoacoustic refrigerators by a MFAE.

  7. Estimation of acoustic resonances for room transfer function equalization

    DEFF Research Database (Denmark)

    Gil-Cacho, Pepe; van Waterschoot, Toon; Moonen, Marc

    2010-01-01

    Strong acoustic resonances create long room impulse responses (RIRs) which may harm the speech transmission in an acoustic space and hence reduce speech intelligibility. Equalization is performed by cancelling the main acoustic resonances common to multiple room transfer functions (RTFs), i...

  8. Processing of acoustic signal in rock desintegration

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-12-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  9. The acoustic center of laboratory standard microphones

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2006-01-01

    An experimental procedure is described for obtaining the effective acoustic distance between pairs of microphones coupled by a free field, leading to the determination of the position of the acoustic center of the microphones. The procedure, which is based on measuring the modulus of the electrical...... transfer impedance, has been applied to a large number of microphones. In all cases effects due to reflections from the walls of the anechoic chamber and the interference between the microphones have been removed using a time-selective technique. The procedure of determining the position of the acoustic...... center from the inverse distance law is analyzed. Experimental values of the acoustic center of laboratory standard microphones are presented, and numerical results obtained using the boundary element method supplement the experimental data. Estimated uncertainties are also presented. The results...

  10. Modern methods in analytical acoustics lecture notes

    CERN Document Server

    Crighton, D G; Williams, J E Ffowcs; Heckl, M; Leppington, F G

    1992-01-01

    Modern Methods in Analytical Acoustics considers topics fundamental to the understanding of noise, vibration and fluid mechanisms. The series of lectures on which this material is based began by some twenty five years ago and has been developed and expanded ever since. Acknowledged experts in the field have given this course many times in Europe and the USA. Although the scope of the course has widened considerably, the primary aim of teaching analytical techniques of acoustics alongside specific areas of wave motion and unsteady fluid mechanisms remains. The distinguished authors of this volume are drawn from Departments of Acoustics, Engineering of Applied Mathematics in Berlin, Cambridge and London. Their intention is to reach a wider audience of all those concerned with acoustic analysis than has been able to attend the course.

  11. Modeling of Structural-Acoustic Interaction Using Coupled FE/BE Method and Control of Interior Acoustic Pressure Using Piezoelectric Actuators

    Science.gov (United States)

    Mei, Chuh; Shi, Yacheng

    1997-01-01

    A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.

  12. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  13. Research on the Combination of Underwater Acoustic Countermeasure Equipments Against Torpedo

    Directory of Open Access Journals (Sweden)

    Meng Jie

    2016-01-01

    Full Text Available Today the use of acoustic countermeasure equipment has become the main means in submarine defense torpedo operation. Combination of acoustic countermeasure equipments are used during the operation so that we can amplify the countermeasure effect. Based on the subject of the acoustic countermeasure equipments’ combined use, this paper analyses the interference between these soft kill countermeasure equipments including gas curtain, acoustic decoy and acoustic interferometer, summarizes the advantages and disadvantages of the different combined use of acoustic countermeasure equipments.

  14. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures

    KAUST Repository

    Taamallah, Soufien; LaBry, Zachary A.; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the onset of thermo-acoustic instabilities and their link to the mean flame configurations - or macrostructures - under acoustically coupled

  15. Golden Gate and Pt. Reyes Acoustic Detections

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...

  16. Matching Impedances and Modes in Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.

    1985-01-01

    Temperature differences accommodated with tunable coupler. Report discusses schemes for coupling sound efficiently from cool outside atmosphere into hot acoustic-levitation chamber. Theoretical studies have practical implications for material-processing systems that employ acoustic levitation.

  17. Response Analysis Of Payload Fairing Due To Acoustic Excitation

    Directory of Open Access Journals (Sweden)

    Annu Cherian

    2015-08-01

    Full Text Available Abstract During flight missions launch vehicles are subjected to a severe dynamic pressure loading aero-acoustic and structure-borne excitations of various circumstances which can endanger the survivability of the payload and the vehicles electronic equipment and consequently the success of the mission. The purpose of the fairing is to protect the satellite from damage during launch until deployment in space. Both the structural and acoustic loads are significant during the first few minutes of a launch and have the potential to damage the payload. This paper describes the analysis of mechanical structure and the inner acoustic cavity of the payload fairing subjected to acoustic field. The vibro-acoustic behaviour of the fairing is analyzed using Statistical Energy Analysis SEA Model. The software VA One is used for the statistical energy analysis of launch vehicle payload fairing due to acoustic excitation.

  18. Acoustic emission by self-organising effects of micro-hollow cathode discharges

    Science.gov (United States)

    Kotschate, Daniel; Gaal, Mate; Kersten, Holger

    2018-04-01

    We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.

  19. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures

    KAUST Repository

    Taamallah, Soufien

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the onset of thermo-acoustic instabilities and their link to the mean flame configurations - or macrostructures - under acoustically coupled and decoupled conditions. Methane-hydrogen mixtures are used to explore the role of the fuel in changing the flame macrostructure, as determined by chemilumi-nescence, as the equivalence ratio (φ) varies. We observe four different configurations: a columnar flame (I); a bubble-columnar flame (II); a single conical flame (III); and a double conical flame (IV). We also observe different thermo-acoustic modes in the lean regime investigated, φ ∈ [0.5-0.75], that correspond to different flame configurations. By changing the combustor length without affecting the underlying flow, the resonant modes of the combustor are shifted to higher frequencies allowing for the decoupling of heat release fluctuations and the acoustic field over a range of equivalence ratio. We find that the same flame macrostructures observed in the long, acoustically coupled combustor arise in the short, acoustically decoupled combustor and transition at similar equivalence ratios in both combustors. The onset of the first fully unstable mode in the long combustor occurs at similar equivalence ratio as the flame transition from configuration III to IV. In the acoustically decoupled case, this transition occurs gradually starting with the intermittent appearance of a flame in the outer recirculation zone (ORZ). Spectral analysis of this phenomenon, referred to as "ORZ flame flickering" shows the existence of an unsteady event occurring over a narrow frequency band centered around 28 Hz along with a weaker broadband region at lower frequency in the range [1-10] Hz. The tone at 28 Hz is shown to be associated with the azimuthal advection of the flame by the outer recirculation zone flow. Changes in the fuel composition, by adding hydrogen (up to 20%), do not

  20. Systems and methods for separating particles utilizing engineered acoustic contrast capture particles

    Science.gov (United States)

    Kaduchak, Gregory; Ward, Michael D.

    2018-03-06

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.