WorldWideScience

Sample records for acoustic lens design

  1. Design of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers

    You-Lin Tu

    2016-11-01

    Full Text Available In this paper, acoustic tweezers which use beam forming performed by a Fresnel zone plate are proposed. The performance has been demonstrated by finite element analysis, including the acoustic intensity, acoustic pressure, acoustic potential energy, gradient force, and particle distribution. The acoustic tweezers use an ultrasound beam produced by a lead zirconate titanate (PZT transducer operating at 2.4 MHz and 100 Vpeak-to-peak in a water medium. The design of the Fresnel lens (zone plate is based on air reflection, acoustic impedance matching, and the Fresnel half-wave band (FHWB theory. This acoustic Fresnel lens can produce gradient force and acoustic potential wells that allow the capture and manipulation of single particles or clusters of particles. Simulation results strongly indicate a good trapping ability, for particles under 150 µm in diameter, in the minimum energy location. This can be useful for cell or microorganism manipulation.

  2. Flat acoustic lens by acoustic grating with curled slits

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  3. Study of focusing characteristics of ultrasound for designing acoustic lens in ultrasonic moxibustion device

    Bae, Jae Hyun; Song, Sung Jin; Kim, Hak Joon [School of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-04-15

    Traditional moxibustion therapy can cause severe pain and leave scarring burns at the moxibustion site as it relies on the practitioner's subjective and qualitative treatment. Recently, ultrasound therapy has received attention as an alternative to moxibustion therapy owing to its objectiveness and quantitative nature. However, in order to convert ultrasound energy into heat energy, there is a need to precisely understand the ultrasound-focusing characteristics of the acoustic lens. Therefore, in this study, an FEM simulation was performed for acoustic lenses with different geometries a concave lens and zone lens as the geometry critically influences ultrasound focusing. The acoustic pressure field, amplitude, and focal point were also calculated. Furthermore, the performance of the fabricated acoustic lens was verified by a sound pressure measurement experiment.

  4. Flat acoustic lens by acoustic grating with curled slits

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  5. Liquid lens using acoustic radiation force.

    Koyama, Daisuke; Isago, Ryoichi; Nakamura, Kentaro

    2011-03-01

    A liquid lens is proposed that uses acoustic radiation force with no mechanical moving parts. It consists of a cylindrical acrylic cell filled with two immiscible liquids (degassed water and silicone oil) and a concave ultrasound transducer. The focal point of the transducer is located on the oil-water interface, which functions as a lens. The acoustic radiation force is generated when there is a difference in the acoustic energy densities of different media. An acoustic standing wave was generated in the axial direction of the lens and the variation of the shape of the oil-water interface was observed by optical coherence tomography (OCT). The lens profile can be rapidly changed by varying the acoustic radiation force from the transducer. The kinematic viscosity of silicone oil was optimized to minimize the response times of the lens. Response times of 40 and 80 ms when switching ultrasonic radiation on and off were obtained with a kinematic viscosity of 200 cSt. The path of a laser beam transmitted through the lens was calculated by ray-tracing simulations based on the experimental results obtained by OCT. The transmitted laser beam could be focused by applying an input voltage. The liquid lens could be operated as a variable-focus lens by varying the input voltage.

  6. A course in lens design

    Velzel, Chris

    2014-01-01

    A Course in Lens Design is an instruction in the design of image-forming optical systems. It teaches how a satisfactory design can be obtained in a straightforward way. Theory is limited to a minimum, and used to support the practical design work. The book introduces geometrical optics, optical instruments and aberrations. It gives a description of the process of lens design and of the strategies used in this process. Half of its content is devoted to the design of sixteen types of lenses, described in detail from beginning to end. This book is different from most other books on lens design because it stresses the importance of the initial phases of the design process: (paraxial) lay-out and (thin-lens) pre-design. The argument for this change of accent is that in these phases much information can be obtained about the properties of the lens to be designed. This information can be used in later phases of the design. This makes A Course in Lens Design a useful self-study book, and a suitable basis for an intro...

  7. An acoustic Maxwell’s fish-eye lens based on gradient-index metamaterials

    Yuan, Bao-guo; Tian, Ye; Cheng, Ying; Liu, Xiao-jun

    2016-10-01

    We have proposed a two-dimensional acoustic Maxwell’s fish-eye lens by using the gradient-index metamaterials with space-coiling units. By adjusting the structural parameters of the units, the refractive index can be gradually varied, which is key role to design the acoustic fish-eye lens. As predicted by ray trajectories on a virtual sphere, the proposed lens has the capability to focus the acoustic wave irradiated from a point source at the surface of the lens on the diametrically opposite side of the lens. The broadband and low loss performance is further demonstrated for the lens. The proposed acoustic fish-eye lens is expected to have the potential applications in directional acoustic coupler or coherent ultrasonic imaging. Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11574148, 11474162, 1274171, 11674172, and 11674175), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20110091120040 and 20120091110001).

  8. Indoor acoustic gain design

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  9. Three-dimensional photoacoustic imaging system with a 4f aspherical acoustic lens

    Jen, En; Lin, Hsintien; Chiang, Huihua Kenny

    2016-08-01

    Photoacoustic (PA) imaging is a modality for achieving high-contrast images of blood vessels or tumors. Most PA imaging systems use complex reconstruction algorithms under conventional linear array transducers. We introduced the optical simulating method to improve the acoustic lens design and obtain a PA imaging system with improved spatial revolution (a 0.5-mm point spread function and a lateral image resolution of more than 1 mm) is realized using a 4f aspherical acoustic lens. The acoustic lens approach improved the image resolution and enabled direct reconstruction of three-dimensional (3-D) PA images. The system demonstrated a lateral resolution of more than 1 mm, a field of view of 8.5 deg, and a depth of focus of 10 mm. The system displays great potential for developing a real-time 3-D PA camera system for biomedical ultrasound imaging applications.

  10. High frequency acoustic microscopy with Fresnel zoom lens

    2007-01-01

    The acoustic field distributions and the convergent beams generated by the planar-structure Fresnel zone transducers on solid surface are investigated. Because only 0 and 180 degree phase transducers are used, an imaging system with the Fresnel zoom lens could work at very high frequency, which overcomes the frequency limit of the traditional phased array acoustic imaging system. Simulation results are given to illustrate the acoustic field distributions along the focal axis and the whole plane as well. Based on the principle of scanning of the focus with the change of frequency for the excited signal, an experimental imaging system is also built. Acoustic Fresnel zone transducers are fabricated at center frequency of 400 MHz. Measurements and detections of the known hole flaws at different depths of the fused quartz sample are presented to show that the imaging system with Fresnel zoom lens could move its focus by only changing the frequency of the excited signal.

  11. Panoramic lens designed with transformation optics

    Wang, Huaping; Deng, Yangyang; Zheng, Bin; Li, Rujiang; Jiang, Yuyu; Dehdashti, Shahram; Xu, Zhiwei; Chen, Hongsheng

    2017-01-01

    The panoramic lens is a special kind of lens, which is applied to observe full view. In this letter, we theoretically present a panoramic lens (PL) using transformation optics method. The lens is designed with inhomogeneous and anisotropic constitutive parameters, which has the ability to gather light from all directions and confine light within the visual angle of observer. Simulation results validate our theoretical design.

  12. Transferring Lens Prescriptions Between Lens-Design Programs

    Stacy, John E.; Wooley, Laura; Carlin, Brian

    1989-01-01

    Optical Lens Prescription Data Formatter computer program enables user to transfer complicated lens prescriptions quickly and easily from one major optical-design program to another and back again. One can take advantage of inherent strength of either program. Programs are ACCOS V from Scientific Calculations, Inc., of Fishers, NY, and CODE V from Optical Research Associates of Pasadena, CA. VAX version written in FORTRAN.

  13. High frequency acoustic microscopy with Fresnel zoom lens

    QIAO DongHai; LI ShunZhou; WANG ChengHao

    2007-01-01

    The acoustic field distributions and the convergent beams generated by the planar-structure Fresnel zone transducers on solid surface are investigated.Because only 0 and 180 degree phase transducers are used,an imaging system with the Fresnel zoom lens could work at very high frequency,which overcomes the frequency limit of the traditional phased array acoustic imaging system.Simulation results are given to illustrate the acoustic field distributions along the focal axis and the whole plane as well.Based on the principle of scanning of the focus with the change of frequency for the excited signal,an experimental imaging system is also built.Acoustic Fresnel zone transducers are fabricated at center frequency of 400 MHz.Measurements and detections of the known hole flaws at different depths of the fused quartz sample are presented to show that the imaging system with Fresnel zoom lens could move its focus by only changing the frequency of the excited signal.

  14. An inverse and analytic lens design method

    Lu, Yang; Lakshminarayanan, Vasudevan

    2016-01-01

    Traditional lens design is a numerical and forward process based on ray tracing and aberration theory. This method has limitations because the initial configuration of the lens has to be specified and the aberrations of the lenses have to considered. This paper is an initial attempt to investigate an analytic and inverse lens design method, called Lagrange, to overcome these barriers. Lagrange method tries to build differential equations in terms of the system parameters and the system input ...

  15. The 2010 IODC lens design problem: the green lens

    Juergens, Richard C.

    2010-08-01

    The lens design problem for the 2010 IODC is to design a 100 mm focal length lens in which every optical surface has the same radius of curvature, positive or negative, or is plano. The lens is used monochromatically at 532 nm and is made of only Schott N-BK7 glass. The goal of the problem is to maximize the product of the semi-field of view and the entrance pupil diameter while holding the distortion to within +/-5% and the RMS wavefront error to <= 0.07 wave within the field of view. There were 37 entries from eight different countries. Four different commercial lens design programs were used, along with two custom, in-house programs. The number of lens elements in the entries ranged from 3 to 64. The overall length of the lenses varied from 105 mm to 3.6 km. The winning entry had an entrance pupil diameter of 81.3 mm and a semi-field of view of 43.5° for a merit function product of 3537.

  16. Acoustic Eaton lens array and its fluid application

    Kim, Sang-Hoon; Das, Mukunda P

    2016-01-01

    A principle of an acoustic Eaton Lens array and its application as a removable tsunami wall is proposed theoretically. The lenses are made of expandable rubber balloons and create a stop-band by the rotating the incoming tsunami wave and reduce the pressure by canceling each other. The diameter of each lens is larger than the wavelength of the tsunami near the coast, that is, order of a kilometer. The impedance matching on the border of the lenses results in little reflection. Before a tsunami, the balloons are buried underground in shallow water near the coast in folded or rounded form. Upon sounding of the tsunami alarm, water and air are pumped into the balloons, which expand and erect the wall above the sea level within a few hours. After the tsunami, the water and air are released from the balloons, which are then buried underground for reuse. Electricity is used to power the entire process.

  17. Algorithm design of liquid lens inspection system

    Hsieh, Lu-Lin; Wang, Chun-Chieh

    2008-08-01

    In mobile lens domain, the glass lens is often to be applied in high-resolution requirement situation; but the glass zoom lens needs to be collocated with movable machinery and voice-coil motor, which usually arises some space limits in minimum design. In high level molding component technology development, the appearance of liquid lens has become the focus of mobile phone and digital camera companies. The liquid lens sets with solid optical lens and driving circuit has replaced the original components. As a result, the volume requirement is decreased to merely 50% of the original design. Besides, with the high focus adjusting speed, low energy requirement, high durability, and low-cost manufacturing process, the liquid lens shows advantages in the competitive market. In the past, authors only need to inspect the scrape defect made by external force for the glass lens. As to the liquid lens, authors need to inspect the state of four different structural layers due to the different design and structure. In this paper, authors apply machine vision and digital image processing technology to administer inspections in the particular layer according to the needs of users. According to our experiment results, the algorithm proposed can automatically delete non-focus background, extract the region of interest, find out and analyze the defects efficiently in the particular layer. In the future, authors will combine the algorithm of the system with automatic-focus technology to implement the inside inspection based on the product inspective demands.

  18. Managing as designing with a positive lens

    Avital, M.; Boland, R.J.; Avital, M.; Boland, R.J.; Cooperrider, D.L.

    2007-01-01

    The role and potential contribution of a positive lens to the design of systems and organizations is the focus of this essay. The positive lens refers to an emerging perspective in the social sciences that emphasizes a positive stance toward our capacity to construct better organizations and technol

  19. Acoustic Eaton lens array and its fluid application

    Kim, Sang-Hoon; Sy, Pham-Van; Das, Mukunda P.

    2017-03-01

    A principle of an acoustic Eaton lens array and its application as a removable tsunami wall is proposed theoretically. The lenses are made of expandable rubber pillars or balloons and create a stop-band by rotating the incoming tsunami wave and reduce the pressure by canceling each other. The diameter of each lens is larger than the wavelength of the tsunami near the coast, that is, order of a kilometer. The impedance matching on the border of the lenses results in a little reflection. Before a tsunami, the balloons are buried underground in shallow water near the coast in folded or rounded form. Upon sounding of the tsunami alarm, water and air are pumped into the pillars, which expand and erect the wall above the sea level within a few hours. After the tsunami, the water and air are released from the pillars, which are then buried underground for reuse. Electricity is used to power the entire process. A numerical simulation with a linear tsunami model was carried out.

  20. Tunable optical lens array using viscoelastic material and acoustic radiation force

    Koyama, Daisuke, E-mail: dkoyama@mail.doshisha.ac.jp; Kashihara, Yuta; Matsukawa, Mami [Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Hatanaka, Megumi [Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321 (Japan); Nakamura, Kentaro [Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-26, Nagatsutacho, Midoriku, Yokohama 226-8503 (Japan)

    2015-10-28

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.

  1. Photon nanojet lens: design, fabrication and characterization

    Xu, Chen; Zhang, Sichao; Shao, Jinhai; Lu, Bing-Rui; Mehfuz, Reyad; Drakeley, Stacey; Huang, Fumin; Chen, Yifang

    2016-04-01

    In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect.

  2. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  3. Application of optical polymers in lens design

    Sultanova, Nina; Kasarova, Stefka; Nikolov, Ivan

    2016-03-01

    Optical, some thermal and elastic properties of optical polymers which are of importance in lens design are considered. Results are based on precise measurement of refraction of materials. Ultrasonic investigation of elastic moduli is carried out. Comparison to properties of Schott glasses is accomplished. Examples on the design of all-plastic and hybrid glass-plastic systems are presented.

  4. An inverse and analytic lens design method

    Lu, Yang

    2016-01-01

    Traditional lens design is a numerical and forward process based on ray tracing and aberration theory. This method has limitations because the initial configuration of the lens has to be specified and the aberrations of the lenses have to considered. This paper is an initial attempt to investigate an analytic and inverse lens design method, called Lagrange, to overcome these barriers. Lagrange method tries to build differential equations in terms of the system parameters and the system input and output (object and image). The generalized Snell's law in three dimensional space and the normal of a surface in fundamental differential geometry are applied. Based on the Lagrange method equations for a single surface system are derived which can perfectly image a point object.

  5. A new acoustic lens material for large area detectors in photoacoustic breast tomography

    Xia, Wenfeng; van Hespen, Johan C G; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Acoustic lenses made of acrylic plastic (PMMA) have been used to enlarge the acceptance angle of sensitive large surface area detectors and improve lateral resolution. However, PMMA lenses introduce image artifacts due to ultrasound internal reflections within the lenses. In this work we investigated this issue proposing a new lens material Stycast 1090SI. We characterized the acoustic properties of the proposed material in comparison with PMMA. Detector performance using negative lenses with the two materials, was tested using finite element simulation and experiment. Further the image quality of a photoacoustic tomography system was studied using k-Wave simulation and experiment. Our acoustic characterization showed that Stycast 1090SI has tissue-like acoustic impedance, high speed of sound and low acoustic attenuation. Both acoustic lenses show significant enlargement of detector acceptance angle and lateral resolution improvement. However, image artifacts induced by acoustic lenses are reduced using the p...

  6. On Architectural Acoustics Design using Computer Simulation

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    is to investigate the field of application an acoustic simulation program can have during an architectural acoustics design process. A case study is carried out in order to represent the iterative working process of an architect. The working process is divided into five phases and represented by typical results......The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...

  7. A high transmission broadband gradient index lens using elastic shell acoustic metamaterial elements

    Titovich, Alexey S; Norris, Andrew N

    2016-01-01

    The use of cylindrical elastic shells as elements in acoustic metamaterial devices is demonstrated through simulations and underwater measurements of a cylindrical-to-plane wave lens. Transformation acoustics (TA) of a circular region to a square dictates that the effective density in the lens remain constant and equal to that of water. Piecewise approximation to the desired effective compressibility is achieved using a square array with elements based on the elastic shell metamaterial concept developed in [30]. The size of the elements are chosen based on availability of shells, minimizing fabrication difficulties. The tested device is neutrally buoyant comprising 48 elements of nine different types of commercial shells made from aluminum, brass, copper, and polymers. Simulations indicate a broadband range in which the device acts as a cylindrical to plane wave lens. The experimental findings confirm the broadband quadropolar response from approximately 20 to 40 kHz, with positive gain of the radiation patte...

  8. On architectural acoustic design using computer simulation

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    acoustic design process. The emphasis is put on the first three out of five phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference to the design of Bagsværd Church by Jørn Utzon. The paper......Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...

  9. A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures

    Lin, Zhou; Tu, Juan; Cheng, Jianchun [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); Guo, Xiasheng, E-mail: guoxs@nju.edu.cn, E-mail: dzhang@nju.edu.cn [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Wu, Junru [Department of Physics, University of Vermont, Burlington, Vermont 05405 (United States); Huang, Pingtong [Department of Ultrasound, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009 (China); Zhang, Dong, E-mail: guoxs@nju.edu.cn, E-mail: dzhang@nju.edu.cn [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080 (China)

    2015-09-14

    An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.

  10. Experimental Realization of a Nonlinear Acoustic Lens with a Tunable Focus

    Donahue, Carly M; Bonanomi, Luca; Keller, Thomas A; Daraio, Chiara

    2013-01-01

    We realize a nonlinear acoustic lens composed of a two-dimensional array of sphere chains interfaced with water. The chains are able to support solitary waves which, when interfaced with a linear medium, transmit compact pulses with minimal oscillations. When focused, the lens is able to produce compact pressure pulses of high amplitude, the "sound bullets". We demonstrate that the focal point can be controlled via pre-compression of the individual chains, as this changes the wave speed within them. The experimental results agree well both spatially and temporally with analytical predictions over a range of focus locations.

  11. Preliminary of Optical Lens Design for Micro-Satellite

    Rachim, Elvira; Mukhtar Tahir, Andi; Herawan, Agus

    2017-01-01

    The development of micro satellites for the last two decades is emerging rapidly as the need of satellite communication usage is increasing. Earth observation is one of the example of how satellites are on demand. Most observation satellites consist of sensors and imaging system on-board. One of the key element to have a good imaging system is a special optical lens system design. Such lens is designed specifically by calculating every parameter such as refractive, reflective indexes, type of surface, distance and many more. Manufactured lenses sometimes do not match the requirement of an imager system hence the special lens design is needed. This paper will first briefly describe the history of optic, theory related to lens system, then the design and the analysis of lens system for micro-satellites generally and LAPAN A4 particularly.

  12. Why are there so many system shapes in lens design?

    Bociort, F.

    2010-01-01

    The presence of many local minima in the merit function landscape is perhaps the most difficult challenge in lens design. We present a simplified mathematical model that illustrates why the number of local minima increases rapidly with each additional lens added to the imaging system. Comparisons wi

  13. Worship space acoustics 3 decades of design

    Ryherd, Erica; Ronsse, Lauren

    2016-01-01

    This book takes the reader on a wide-ranging tour through churches, synagogues, mosques, and other worship spaces designed during the past 30 years. The book begins with a series of essays on topics ranging from the soundscape of worship spaces to ecclesiastical design at the turn of the 21st Century. Perspective pieces from an architect, audio designer, music director, and worship space owner are also included. The core of the book presents the acoustical and architectural design of a wide variety of individual worship space venues. Acoustical consulting firms, architects, and worship space designers from across the world contributed their recent innovative works in the area of worship space acoustics. The contributions include detailed renderings and architectural drawings, as well as informative acoustic data graphs and evocative descriptions of the spaces. Filled with beautiful photography and fascinating modern design, this book is a must-read for anyone interested in religious architecture, acoustical d...

  14. An Optimisation Approach for Room Acoustics Design

    Holm-Jørgensen, Kristian; Kirkegaard, Poul Henning; Andersen, Lars

    2005-01-01

    This paper discuss on a conceptual level the value of optimisation techniques in architectural acoustics room design from a practical point of view. It is chosen to optimise one objective room acoustics design criterium estimated from the sound field inside the room. The sound field is modeled...

  15. Design and simulation of large field plate lithography lens

    Deng, Chao; Xing, Tingwen; Lin, Wumei; Zhu, Xianchang

    2016-10-01

    Because industry demand for LED,LCD panel continues to increase, the high yield of micron-scale resolution lithography is increasingly prominent for manufacturers, which requires the field of lithography objective lens becomes larger. This paper designed a lithography lens with large field, whose effective image side field will reach to 132 × 132mm.Subsequently, the tolerance was analysed by simulation for the optical system. Finally, it is proved that the design meets the requirements of micron-scale resolution.

  16. Design Report for Low Power Acoustic Detector

    2013-08-01

    the hardware design, target detection algorithm design in both MATLAB and VHDL , and typical performance results. 15. SUBJECT TERMS Acoustic low...diagram. .......................................................................................................3 Figure 4. HED VHDL block diagram...6 Figure 5. DCD VHDL block diagram

  17. Effects of Different Contact Lens Designs on Visual Quality Among the Soft Spherical Contact Lens Users

    Mustafa Demir

    2013-10-01

    Full Text Available Purpose: To evaluate the effects of different lens designs on visual quality among soft spherical contact lens users. Material and Method: Forty eyes of twenty patients from our contact lens unit were included in this study. Refractive errors of the patients were between -0.50 and -6.0 diopters with 0.05. Total higher order aberration mean rms value was 0.29±0.10 µm without glasses, while it was 0.33±0.10 µm with Balafilcon A lenses and 0.31±0.10 µm with Senofilcon A lenses. Higher order aberration values measured after contact lens application did not show a significant difference for two contact lens designs (p>0.05. Discussion: High and low contrast sensitivity values were better with spectacles compared to contact lenses. We did not observe significant difference in higher order aberration values and visual quality between aspheric and spheric designed lenses. (Turk J Ophthalmol 2013; 43: 321-5

  18. Numerical implementation of generalized Coddington equations for ophthalmic lens design

    Rojo, P.; Royo, S.; Ramírez, J.; Madariaga, I.

    2014-02-01

    A method for general implementation in any software platform of the generalized Coddington equations is presented, developed, and validated within a Matlab environment. The ophthalmic lens design strategy is presented thoroughly, and the basic concepts of generalized ray tracing are introduced. The methodology for ray tracing is shown to include two inter-related processes. Firstly, finite ray tracing is used to provide the main direction of propagation of the considered ray at the incidence point of interest. Afterwards, generalized ray tracing provides the principal curvatures of the local wavefront at that point, and its orientation after being refracted by the lens. The curvature values of the local wavefront are interpreted as the sagital and tangential powers of the lens at the point of interest. The proposed approach is validated using a double-check of the calculated lens performance in the spherical lens case: while finite ray tracing is validated using a commercial ray tracing software, generalized ray tracing is validated using a software application for ophthalmic lens design based on the classical version of Coddington equations. Equations of the complete tracing process are developed in detail for the case of generic astigmatic ophthalmic lenses as an example. Three-dimensional representation of the sagital and tangential powers of the ophthalmic lens at all directions of gaze then becomes possible, and results are presented for lenses with different geometries.

  19. Design basis of industrial acoustic separators

    Cappon, H.J.; Keesman, K.J.

    2013-01-01

    This study presents the process of obtaining a basic design for an industrial scale acoustic separator based on flow characteristics inside the separation chamber, on acoustic analysis within the chamber and calculated particle trajectories combining these two analyses. Adequate criteria for subsequ

  20. Unidirectional propagation of designer surface acoustic waves

    Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2014-01-01

    We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.

  1. Design of wide field and high resolution video lens

    Xiao, Ze-xin; Zhan, Binzhou; Han, Haimei

    2009-11-01

    Online detecting is increasingly used in industrial process for the requirement of product quality improving. It is a trend that the "machine detecting" with "machine version + computer intelligence" as new method replaces traditional manual "eye observation". The essential of "machine detecting" is that image of object being collected with high resolution video lens on sensor panel of photoelectric (CCD ,CMOS) and detecting result being automatically gained by computer after the image saved and processed. "Machine detecting" is developing rapidly with the universal reception by enterprises because of its fine accurateness, high efficiency and the real time. Video lens is one of the important components of machine version system. Requirements of wide field and high resolution enlarged the complexity of video lens design. In this paper a design case used in visible light with field diameter Φ32mm, β=-0.25× and NA'=0.15. We give design parameters of the video lens which obtained with theoretically calculating and Oslo software optimization: MTF>0.3 in full field and 215lp/mm, distortion <0.05%.This lens has an excellent optic performance to match with 1.3 million pixels 1/2"CCD, and a high performance price ratio for being consist of only 7 single lens in the way of 5 units.

  2. Aspherical Lens Design Using Genetic Algorithm for Reducing Aberrations in Multifocal Artificial Intraocular Lens

    Chih-Ta Yen

    2015-09-01

    Full Text Available A complex intraocular lens (IOL design involving numerous uncertain variables is proposed. We integrated a genetic algorithm (GA with the commercial optical design software of (CODE V to design a multifocal IOL for the human eye. We mainly used an aspherical lens in the initial state to the crystalline type; therefore, we used the internal human eye model in the software. The proposed optimized algorithm employs a GA method for optimally simulating the focusing function of the human eye; in this method, the thickness and curvature of the anterior lens and the posterior part of the IOL were varied. A comparison of the proposed GA-designed IOLs and those designed using a CODE V built-in optimal algorithm for 550 degrees myopia and 175 degrees astigmatism conditions of the human eye for pupil size 6 mm showed that the proposed IOL design improved the spot size of root mean square (RMS, tangential coma (TCO and modulation transfer function (MTF at a spatial frequency of 30 with a pupil size of 6 mm by approximately 17%, 43% and 35%, respectively. However, the worst performance of spherical aberration (SA was lower than 46%, because the optical design involves a tradeoff between all aberrations. Compared with the traditional CODE V built-in optimal scheme, the proposed IOL design can efficiently improve the critical parameters, namely TCO, RMS, and MTF.

  3. IODC 1998 Lens Design Problem Revisited: A Strategy for Simplifying Glass Choices in an Apochromatic Design

    Seppala, L G

    2000-09-15

    A glass-choice strategy, based on separately designing an achromatic lens before progressing to an apochromatic lens, simplified my approach to solving the International Optical Design Conference (IODC) 1998 lens design problem. The glasses that are needed to make the lens apochromatic are combined into triplet correctors with two ''buried'' surfaces. By applying this strategy, I reached successful solutions that used only six glasses--three glasses for the achromatic design and three additional glasses for the apochromatic design.

  4. Acoustic design by topology optimization

    Dühring, Maria Bayard; Jensen, Jakob Søndergaard; Sigmund, Ole

    2008-01-01

    To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions...

  5. Design of an impedance matching acoustic bend

    Yang, Yuzhen; Jia, Han; Lu, Wenjia; Sun, Zhaoyong; Yang, Jun

    2017-01-01

    We propose the design of an impedance matching acoustic bend in this article. The bending structure is composed of sub-wavelength unit cells with perforated plates and side pipes, whose mass density and bulk modulus can be tuned simultaneously. So the refraction index and the impedance of the acoustic bend can be modulated simultaneously to guarantee both the bending effect and the high transmission. The simulation results of sound pressure field distribution show that the bending effect of t...

  6. Electrostatic afocal-zoom lens design using computer optimization technique

    Sise, Omer, E-mail: omersise@gmail.com

    2014-12-15

    Highlights: • We describe the detailed design of a five-element electrostatic afocal-zoom lens. • The simplex optimization is used to optimize lens voltages. • The method can be applied to multi-element electrostatic lenses. - Abstract: Electron optics is the key to the successful operation of electron collision experiments where well designed electrostatic lenses are needed to drive electron beam before and after the collision. In this work, the imaging properties and aberration analysis of an electrostatic afocal-zoom lens design were investigated using a computer optimization technique. We have found a whole new range of voltage combinations that has gone unnoticed until now. A full range of voltage ratios and spherical and chromatic aberration coefficients were systematically analyzed with a range of magnifications between 0.3 and 3.2. The grid-shadow evaluation was also employed to show the effect of spherical aberration. The technique is found to be useful for searching the optimal configuration in a multi-element lens system.

  7. Design of an ultraviolet projection lens by using a global search algorithm and computer optimization

    Zoric, Nenad; Livshits, Irina; Dilworth, Don; Okishev, Sergey

    2017-02-01

    This paper describes a method for designing an ultraviolet (UV) projection lens for microlithography. Our approach for meeting this objective is to use a starting design automatically obtained by the DSEARCH feature in the SYNOPSYS™ lens design program. We describe the steps for getting a desired starting point for the projection lens and discuss optimization problems unique to this system, where the two parts of the projection lens are designed independently.

  8. The design of Helmholtz resonator based acoustic lenses by using the symmetric Multi-Level Wave Based Method and genetic algorithms

    Atak, Onur; Huybrechs, Daan; Pluymers, Bert; Desmet, Wim

    2014-07-01

    Sonic crystals can be used as acoustic lenses in certain frequencies and the design of such systems by creating vacancies and using genetic algorithms has been proven to be an effective method. So far, rigid cylinders have been used to create such acoustic lens designs. On the other hand, it has been proven that Helmholtz resonators can be used to construct acoustic lenses with higher refraction index as compared to rigid cylinders, especially in low frequencies by utilizing their local resonances. In this paper, these two concepts are combined to design acoustic lenses that are based on Helmholtz resonators. The Multi-Level Wave Based Method is used as the prediction method. The benefits of the method in the context of design procedure are demonstrated. In addition, symmetric boundary conditions are derived for more efficient calculations. The acoustic lens designs that use Helmholtz resonators are compared with the acoustic lens designs that use rigid cylinders. It is shown that using Helmholtz resonator based sonic crystals leads to better acoustic lens designs, especially at the low frequencies where the local resonances are pronounced.

  9. A Computational Lens on Design Research

    Hoyles, Celia; Noss, Richard

    2015-01-01

    In this commentary, we briefly review the collective effort of design researchers to weave theory with empirical results, in order to gain a better understanding of the processes of learning. We seek to respond to this challenging agenda by centring on the evolution of one sub-field: namely that which involves investigations within a…

  10. Student design projects in applied acoustics.

    Bös, Joachim; Moritz, Karsten; Skowronek, Adam; Thyes, Christian; Tschesche, Johannes; Hanselka, Holger

    2012-03-01

    This paper describes a series of student projects which are intended to complement theoretical education in acoustics and engineering noise control with practical experience. The projects are also intended to enhance the students' ability to work in a team, to manage a project, and to present their results. The projects are carried out in close cooperation with industrial partners so that the students can get a taste of the professional life of noise control engineers. The organization of such a project, its execution, and some of the results from the most recent student project are presented as a demonstrative example. This latest project involved the creation of noise maps of a production hall, the acoustic analysis of a packaging machine, and the acoustic analysis of a spiral vibratory conveyor. Upon completion of the analysis, students then designed, applied, and verified some simple preliminary noise reduction measures to demonstrate the potential of these techniques.

  11. A design study of a magnifying magnetic lens for proton radiography

    YANG Guo-Jun; ZHANG Zhuo; WEI Tao; HE Xiao-Zhong; LONG Ji-Dong; SHI Jin-Shui; ZHANG Kai-Zhi

    2012-01-01

    Magnifying magnetic lenses can be used in high-energy proton microscopes.The -I lens suggested by Zumbro is analyzed in this paper,and a new type of magnetic lens called a lengthened lens is introduced.Theoretical analysis shows that the lengthened lens can form a magnifying lens,and at the same time the main advantages of a Zumbro lens are inherited.Using the My-BOC beam dynamics code,an example of the design is shown.The results show that the method of designing magnifying magnetic lenses is effective.

  12. Systematic design of acoustic devices by topology optimization

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    We present a method to design acoustic devices with topology optimization. The general algorithm is exemplified by the design of a reflection chamber that minimizes the transmission of acoustic waves in a specified frequency range.......We present a method to design acoustic devices with topology optimization. The general algorithm is exemplified by the design of a reflection chamber that minimizes the transmission of acoustic waves in a specified frequency range....

  13. Numerical implementation of generalized Coddington equations for ophthalmic lens design

    Rojo Badenas, Pilar; Royo Royo, Santiago; RAMÍREZ,JORGE; Madariaga, Inés

    2014-01-01

    A method for general implementation in any software platform of the generalized Coddington equations is presented, developed, and validated within a Matlab environment. The ophthalmic lens design strategy is presented thoroughly, and the basic concepts of generalized ray tracing are introduced. The methodology for ray tracing is shown to include two inter-related processes. Firstly, finite ray tracing is used to provide the main direction of propagation of the considered ray at the incidence ...

  14. Superiority of zoom lens coupling in designing a novel X-ray image detector

    2008-01-01

    We design a novel X-ray image detector by lens coupling a Gd2O2S:Tb intensifying screen with a high performance low-light-level (L3,which often means luminescence less than 10-3 Lux) image intensifier.Different coupling effects on imaging performance between zoom lens and fix-focus lens are analyzed theoretically.In experiment,for designing a detector of 15-inch visual field,the system coupled by zoom lens is of 12.25-1p/cm resolution,while the one with fix-focus lens is 10 lp/cm.The superiority of zoom lens is validated.It is concluded that zoom lens preserves the image information better than fix-focus lens and improves the imaging system's performance in this design,which is referential to the design of other optical imaging systems.

  15. Design and analysis of an adaptive lens that mimics the performance of the crystalline lens in the human eye

    Santiago-Alvarado, Agustin; Cruz-Félix, Angel S.; Iturbide-Jiménez, F.; Martínez-López, M.; Ramírez-Como, M.; Armengol-Cruz, V.; Vásquez-Báez, I.

    2014-09-01

    Tunable lenses are optical systems that have attracted much attention due to their potential applications in such areas like ophthalmology, machine vision, microscopy and laser processing. In recent years we have been working in the analysis and performance of a liquid-filled variable focal length lens, this is a lens that can modify its focal length by changing the amount of water within it. Nowadays we extend our study to a particular adaptive lens known as solid elastic lens (SEL) that it is formed by an elastic main body made of Polydimethylsiloxane (PDMS Sylgard 184). In this work, we present the design, simulation and analysis of an adaptive solid elastic lens that in principle imitates the accommodation process of the crystalline lens in the human eye. For this work, we have adopted the parameters of the schematic eye model developed in 1985 by Navarro et al.; this model represents the anatomy of the eye as close as possible to reality by predicting an acceptable and accurate quantity of spherical and chromatic aberrations without any shape fitting. An opto-mechanical analysis of the accommodation process of the adaptive lens is presented, by simulating a certain amount of radial force applied onto the SEL using the finite element method with the commercial software SolidWorks®. We also present ray-trace diagrams of the simulated compression process of the adaptive lens using the commercial software OSLO®.

  16. Compact acoustic antenna design using labyrinthine metamaterials

    Ren, Chunyu

    2015-05-01

    We present an effective design and architecture for a class of acoustic antennas in air. The work begins with a conformal transformation method that yields the preliminary design, which is constructed using an isotropic but inhomogeneous material. However, the desired material parameters have been unavailable until now. Here we show that by scaling up the refractive index and optimizing the geometry in the preliminary design, a series of square antennas can be achieved to exhibit an excellent beam-collimating effect. An important part of our strategy is that the device's thickness and material properties can be tailored easily to greatly facilitate its realization. It is also demonstrated that the proposed antenna can be made very thin and readily implemented using labyrinthine acoustic metamaterials.

  17. Preliminary Design Study of the Hollow Electron Lens for LHC

    Perini, Diego; CERN. Geneva. ATS Department

    2017-01-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field generated by a set of superconducting solenoids. The first step of the design is the definition of the magnetic fields that drive the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB® tool is presented. The influence of the main geometrical and electrical parameters are analysed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the preliminary design of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar ...

  18. Progressive addition lens design by optimizing NURBS surface

    Liu, Yen-Liang; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Su, Guo-Dung

    2011-10-01

    Progressive addition lenses (PAL) are used to compensate presbyopia, which is induced by losing accommodation of elder eyes. These eyes need different optical power provided by eye glasses while watching objects at different distance. A smaller optical power is required in further distance and a larger one in nearer zone. A progressive addition lens can provides different power requirements in one piece of lens. This paper introduces a whole process of PAL production, from design, fabrication, to measurement. The PAL is designed by optimizing NURBS surface. Parameters of merit function are adjusted to design lenses with different specifications. The simulation results confirm that the power distributes as expected and cylinders are controlled under an acceptable level. Besides, sample lenses have been fabricated and measured. We apply precise-machining to produce the molds for plastic injection. Then, the samples are produced by injecting polycorbonate to the molds. Finally, Ultra Accuracy 3D Profilemeter is used to measure the sample PALs. Practical examinations shows that our designs are achievable and feasible in practice use.

  19. Design of a Test Bench for Intraocular Lens Optical Characterization

    Alba-Bueno, Francisco; Vega, Fidel; Millán, María S.

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its

  20. Design of a Test Bench for Intraocular Lens Optical Characterization

    Alba-Bueno, Francisco; Vega, Fidel; Millan, Maria S, E-mail: francisco.alba-bueno@upc.edu, E-mail: fvega@oo.upc.edu, E-mail: millan@oo.upc.edu [Departamento de Optica y Optometria, Universidad Politecnica de Cataluna, C/ Violinista Vellsola 37, 08222 Terrassa (Spain)

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its

  1. The length control of focal line in the plano-concave line focusing acoustic lens%平凹线聚焦透镜焦线长度的控制方法

    王勇; 林书玉; 张小丽

    2012-01-01

    The way to control the length of focal line in the plano-concave line focusing acoustic lens is presented.The area of plano-concave cylindrical acoustic lens is changed into a new area formed from a circular arc of xOy plane rotating around the z-axis.Based on the Huygens′ principle,the sound model of the lens is established and the numerical simulation is finished.The conclusion shows that one could control the focal line length of the plano-concave line focusing acoustic lens by changing the radius of arc and the radius of rotation.This work could give some help in the design line focusing acoustic lens.%提出一种可以控制焦线长度的平凹线聚焦透镜的设计方法.将平凹柱面线聚焦透镜的柱面设计为xOy平面上一个圆弧线绕z轴旋转构成的曲面,利用惠更斯原理,对该形式的透镜建立声学模型,并对其进行数值模拟和仿真.结果表明:在透镜长和宽不变的情况下,可通过控制圆弧的半径和旋转半径两个参数实现对透镜焦线长度的控制.

  2. An Ultrasonic Lens Design Based on Prefractal Structures

    Sergio Castiñeira-Ibáñez; Daniel Tarrazó-Serrano; Constanza Rubio; Pilar Candelas; Antonio Uris

    2016-01-01

    The improvement in focusing capabilities of a set of annular scatterers arranged in a fractal geometry is theoretically quantified in this work by means of the finite element method (FEM). Two different arrangements of rigid rings in water are used in the analysis. Thus, both a Fresnel ultrasonic lens and an arrangement of rigid rings based on Cantor prefractals are analyzed. Results show that the focusing capacity of the modified fractal lens is better than the Fresnel lens. This new lens is...

  3. An Ultrasonic Lens Design Based on Prefractal Structures

    Sergio Castiñeira-Ibáñez

    2016-04-01

    Full Text Available The improvement in focusing capabilities of a set of annular scatterers arranged in a fractal geometry is theoretically quantified in this work by means of the finite element method (FEM. Two different arrangements of rigid rings in water are used in the analysis. Thus, both a Fresnel ultrasonic lens and an arrangement of rigid rings based on Cantor prefractals are analyzed. Results show that the focusing capacity of the modified fractal lens is better than the Fresnel lens. This new lens is believed to have potential applications for ultrasonic imaging and medical ultrasound fields.

  4. 线聚焦无镜头式聚偏氟乙烯超声探头的研制及V(f,z)分析法在表面波波速测量中的应用%Design, Fabrication of Line-focus Lens-less Polyvinylidene Fluoride Transducers and Applications on Measuring Surface Acoustic Waves with V(f, z) Analytical Method

    何存富; 吕炎; 宋国荣; 吴斌; 李永春

    2011-01-01

    Line-focus-beam ultrasonic material property characterization system enables accurate measurements on the phase velocities of leaky surface acoustic waves(LSAW) or rayleigh-type leaky surface acoustic waves. But in view of the lens of the conventional acoustic microscopy is expensive and difficult to produce, new method of design and fabrication of two line-focus lens-less polyvinylidene fluoride(PVDF) transducers is presented for acoustic microscopy system utilizing a 40 urn thick piezoelectric PVDF film to construct the active element. The transducers introduced here centre around 5 MHz and 11 MHz respectively. Different from high cost of equipments and measuring the oscillation period △Z on an operation of tone-burst mode, an improved V(f, z) method based on tow-dimensional Fourier transform is developed for the broadband measurements. A defocusing system for measuring surface acoustic waves is established and a non-contact immersion experiment of a polished fused quartz is carried out. The LSAW velocity extracted by V(f, z) analytical technique is compared with the theoretical one and they both are in good agreement.%线聚焦式超声材料性质表征系统可以对水浸试样漏表面波或类漏表面波的相速度进行精确的测量,但鉴于传统超声显微镜镜头的材料昂贵且制作困难,采用厚度为40 μm的聚偏氟乙烯(Polyvinylidene fluoride,PVDF)压电薄膜作为激励/接收元件,设计、制作两个应用于声学显微系统的线聚焦无镜头式PVDF超声换能器,其中心频率分别为5 MHz和11 MHz.区别于传统超声显微镜高昂的设备费用与利用单频V(z)曲线测量空间振荡周期△z的方法,基于二维傅里叶变换开发出一种改进的适用于宽频的V(f,z)分析法,并发展建立一套成本较低的用于测量材料漏表面波波速的散焦试验系统.为测试换能器、算法和整体系统的性能,对抛光熔融石英进行非接触式水浸超声试验,利用V(f,z)分析法

  5. Integral freeform illumination lens design of LED based pico-projector.

    Zhao, Shuang; Wang, Kai; Chen, Fei; Qin, Zong; Liu, Sheng

    2013-05-01

    In this paper, an illumination lens design for a LED-based pico-projector is presented. Different from the traditional illumination systems composed by lens group, the integral illumination lens consists of a total internal reflector (TIR) and a freeform surface. TIR acts as collimation lens and its top surface formed by a freeform surface reshapes the nonuniform circular light pattern generated by TIR to be rectangular and uniform. Diameter and height of the lens are 16 and 10 mm, respectively. An optimization method to deal with the problem of extended light source is also presented in detail in this paper. According to the simulation results of the final optimized lens, 77% (neglecting the effect of polarization) of the power of light source is collected on liquid crystal on silicon panel with a 16∶9 ratio and illumination uniformity achieves 92%.

  6. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  7. Optimizing distance image quality of an aspheric multifocal intraocular lens using a comprehensive statistical design approach.

    Hong, Xin; Zhang, Xiaoxiao

    2008-12-01

    The AcrySof ReSTOR intraocular lens (IOL) is a multifocal lens with state-of-the-art apodized diffractive technology, and is indicated for visual correction of aphakia secondary to removal of cataractous lenses in adult patients with/without presbyopia, who desire near, intermediate, and distance vision with increased spectacle independence. The multifocal design results in some optical contrast reduction, which may be improved by reducing spherical aberration. A novel patent-pending approach was undertaken to investigate the optical performance of aspheric lens designs. Simulated eyes using human normal distributions were corrected with different lens designs in a Monte Carlo simulation that allowed for variability in multiple surgical parameters (e.g. positioning error, biometric variation). Monte Carlo optimized results indicated that a lens spherical aberration of -0.10 microm provided optimal distance image quality.

  8. Gradient-index ophthalmic lens design and polymer material studies

    Fischer, David Joel

    Unifocal ophthalmic lenses are conventionally designed using homogeneous glass or plastic materials and aspheric surfaces. The desired power and aberration correction are provided by selection of surface shape and refractive index. This thesis studies the design of ophthalmic lenses utilizing gradient-index (GRIN) materials for both the optical power and aberration control. This is done using geometrical optical theory and ray-tracing simulations. Progressive addition lenses (PALS) are vision correction lenses with a continuous change in power used to treat presbyopia. The power variation is typically located in the lower half of the lens. Progressive addition lenses are currently made with aspheric surfaces to achieve the focal power transition and aberration control. These surfaces have at most, mirror symmetry about the vertical axis. The possible design of progressive addition lenses with GRIN materials has not been well studied. This thesis studies PALS and identifies how gradient-index materials can be used to provide both the power progression and aberration control. The optical theory for rotationally symmetric and asymmetric power additions is given. Analytical and numerical methods for calculating the index profile are used, and the results examined using ray-tracing simulations. The theory developed for ophthalmic lenses is applied to the design of GRIN axicon. This is the first GRIN axicon manufactured, and is fabricated using ion-exchanged GRIN glass. Experimental measurements of its performance are compared and found to match theoretical predictions. This demonstrates the generality of the theory developed: it may be applied to non-visual applications, and even to non-imaging applications. Realistic implementation of GRIN technology to ophthalmic application requires the fabrication of large scale refractive index gradients in polymer material systems. The methyl-methacrylate/styrene copolymer system is studied to develop an empirical model of its

  9. Initial Design of an Acoustic Communication Channel Simulator

    Bertolotto, G.; Jenserud, T.; Walree, P.A. van

    2007-01-01

    The joint European project “UUV Covert Acoustic Communications” aims at the design of an acoustic communication system between an unmanned underwater vehicle and a support mother ship. To achieve the objective of covert communication over long ranges in littoral waters, knowledge is required on the

  10. Digital sonar design in underwater acoustics principles and applications

    Li, Qihu

    2012-01-01

    "Digital Sonar Design in Underwater Acoustics Principles and Applications" provides comprehensive and up-to-date coverage of research on sonar design, including the basic theory and techniques of digital signal processing, basic concept of information theory, ocean acoustics, underwater acoustic signal propagation theory, and underwater signal processing theory. This book discusses the general design procedure and approaches to implementation, the design method, system simulation theory and techniques, sonar tests in the laboratory, lake and sea, and practical validation criteria and methods for digital sonar design. It is intended for researchers in the fields of underwater signal processing and sonar design, and also for navy officers and ocean explorers. Qihu Li is a professor at the Institute of Acoustics, Chinese Academy of Sciences, and an academician of the Chinese Academy of Sciences.

  11. Deconvolution method in designing freeform lens array for structured light illumination.

    Ma, Donglin; Feng, Zexin; Liang, Rongguang

    2015-02-10

    We have developed a deconvolution freeform lens array design approach to generate high-contrast structured light illumination patterns. This method constructs the freeform lens array according to the point response obtained by deconvoluting the prescribed illumination pattern with the blur response of the extended light source. This design method is more effective in designing a freeform lens array to achieve accurate structured light patterns. For a sinusoidal fringe pattern, the contrast ratio can be as high as 97%, compared to 62% achieved by the conventional ray mapping method.

  12. Design of Novel Compound Fresnel Lens for High-Performance Photovoltaic Concentrator

    Lei Jing

    2012-01-01

    Full Text Available We present a new design of compound Fresnel-R concentrator which is composed of two lenses: a primary lens (Fresnel lens that works by total internal reflection at outer sawteeth but refraction at inner sawteeth, and a ringed secondary lens that works by refraction. In contrast to previous Fresnel lens concentrators, this design increases the acceptance angle, improves the irradiance uniformity on the solar cell, and reduces the aspect ratio significantly. Meanwhile several sawteeth of the primary Fresnel lens can correspond to a same ring of secondary lens, which will efficiently lower the complexity of designing and manufacturing. Moreover, in order to reduce the influence of manufacturing tolerances and to increase the optical efficiency further, the central part of the bottom of the secondary lens which directly adhered to the solar cell is designed as a cone-shaped prism to collect the sunlight that does not reach the solar cell. Finally, we provide simulations and analyses of the design method an optical efficiency more than 80% and an aspect ratio smaller than 0.5 can be achieved.

  13. Design of tracking and detecting lens system by diffractive optical method

    Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei

    2016-10-01

    Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.

  14. Two-lens designs for modern uncooled and cooled IR imaging devices

    Schuster, Norbert; Franks, John

    2013-10-01

    In recent years, thermal detectors with a 17 μm pixel pitch have become well-established for use in various applications, such as thermal imaging in cars. This has allowed the civilian infrared market to steadily mature. The main cost for these lens designs comes from the number of lenses used. The development of thermal detectors, which are less sensitive than quantum detectors, has compelled camera manufacturers to demand very fast F-numbers such as f/1.2 or faster. This also minimizes the impact of diffraction in the 8-12 μmm waveband. The freedom afforded by the choice of the stop position in these designs has been used to create high-resolution lenses that operate near the diffraction limit. Based on GASIR®1, a chalcogenide glass, two-lens designs have been developed for all pixel counts and fields of view. Additionally, all these designs have been passively athermalized, either optically or mechanically. Lenses for cooled quantum detectors have a defined stop position called the cold stop (CS) near the FPA-plane. The solid angle defined by the CS fixes not only the F-number (which is less fast than for thermal detectors), but determines also the required resolution. The main cost driver of these designs is the lens diameter. Lenses must be sufficiently large to avoid any vignetting of ray bundles intended to reach the cooled detector. This paper studies the transfer of approved lens design principles for thermal detectors to lenses for cooled quantum detectors with CS for same pixel count at three horizontal fields of view: a 28° medium field lens, an 8° narrow field lens, and a 90° wide field lens. The lens arrangements found for each category have similar lens costs.

  15. Designing single-beam multitrapping acoustical tweezers

    Silva, Glauber T

    2014-01-01

    The concept of a single-beam acoustical tweezer device which can simultaneously trap microparticles at different points is proposed and demonstrated through computational simulations. The device employs an ultrasound beam produced by a circular focused transducer operating at 1 MHz in water medium. The ultrasound beam exerts a radiation force that may tweeze suspended microparticles in the medium. Simulations show that the acoustical tweezer can simultaneously trap microparticles in the pre-focal zone along the beam axis, i.e. between the transducer surface and its geometric focus. As acoustical tweezers are fast becoming a key instrument in microparticle handling, the development of acoustic multitrapping concept may turn into a useful tool in engineering these devices.

  16. RF Lens-Embedded Massive MIMO Systems: Fabrication Issues and Codebook Design

    Kwon, Taehoon; Lim, Yeon-Geun; Min, Byung-Wook; Chae, Chan-Byoung

    2016-07-01

    In this paper, we investigate a radio frequency (RF) lens-embedded massive multiple-input multiple-output (MIMO) system and evaluate the system performance of limited feedback by utilizing a technique for generating a suitable codebook for the system. We fabricate an RF lens that operates on a 77 GHz (mmWave) band. Experimental results show a proper value of amplitude gain and an appropriate focusing property. In addition, using a simple numerical technique--beam propagation method (BPM)--we estimate the power profile of the RF lens and verify its accordance with experimental results. We also design a codebook--multi-variance codebook quantization (MVCQ)--for limited feedback by considering the characteristics of the RF lens antenna for massive MIMO systems. Numerical results confirm that the proposed system shows significant performance enhancement over a conventional massive MIMO system without an RF lens.

  17. STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN

    Dobler, Gregory [Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106 (United States); Fassnacht, Christopher D.; Rumbaugh, Nicholas [Department of Physics, University of California, 1 Shields Avenue, Davis, CA 95616 (United States); Treu, Tommaso; Liao, Kai [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Marshall, Phil [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 20450, MS29, Stanford, CA 94309 (United States); Hojjati, Alireza [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T 1Z1 (Canada); Linder, Eric, E-mail: tt@astro.ucla.edu [Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720 (United States)

    2015-02-01

    The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ∼10{sup 3} strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a ''Time Delay Challenge'' (TDC). The challenge is organized as a set of ''ladders'', each containing a group of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.

  18. The Design of Lens Imaging System by Means of Fractional Fourier Transform

    CHEN Jiannong; XU Qiang; D.R.Selviah

    2002-01-01

    The relation between the 2nd fractional Fourier transform and the imaging process of an optical system is discussed. By changing the coordinate scales of the input plane in respect to the magnification of the optical imaging system, the fractional Fourier transform can be a powerful tool in designing specific imaging system. The Gaussian imaging formula of single lens is obtained by using the tool. Finally the procedures are generalized for designing a double-lens imaging system through an example.

  19. Optical design of f-theta lens for dual wavelength selective laser melting

    Feng, Lianhua; Cao, Hongzhong; Zhang, Ning; Xu, Xiping; Duan, Xuanming

    2016-10-01

    F-theta lens is an important unit for selective laser melting (SLM) manufacture. The dual wavelength f-theta lens has not been used in SLM manufacture. Here, we present the design of the f-theta lens which satisfies SLM manufacture with coaxial 532 nm and 1030 nm 1080 nm laser beams. It is composed of three pieces of spherical lenses. The focal spots for 532 nm laser and 1030 nm 1080 nm laser are smaller than 35 μm and 70 μm, respectively. The results meet the demands of high precision SLM. The chromatic aberration could cause separation between two laser focal spots in the scanning plane, so chromatic aberration correction is very important to our design. The lateral color of the designed f-theta lens is less than 11 μm within the scan area of 150 mm x 150 mm, which meet the application requirements of dual wavelength selective laser melting.

  20. Strong Lens Time Delay Challenge: I. Experimental Design

    Dobler, Gregory; Treu, Tommaso; Marshall, Phillip J; Liao, Kai; Hojjati, Alireza; Linder, Eric; Rumbaugh, Nicholas

    2013-01-01

    The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters as well as probe the dark matter (sub-)structure within the lens galaxy. The number of lenses with measured time delays is growing rapidly as a result of some dedicated efforts; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ~1000 lens systems consisting of a foreground elliptical galaxy producing multiple images of a background quasar. In an effort to assess the present capabilities of the community to accurately measure the time delays in strong gravitational lens systems, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we invite the community to take part in a "Time Delay Challenge" (TDC). The challenge is organized as a set of "ladders", each containing a group of simulated datasets to be analyzed blindly by participating independent analysis teams. Each rung on a ladder consists of a set of realistic mock observed le...

  1. New concentrator multifocal Fresnel lens for improved uniformity: design and characterization

    Vázquez-Moliní, Daniel; Fernández-Balbuena, Antonio Álvarez; Bernabeu, Eusebio; Muñoz de Luna Clemente, Javier; Domingo-Marique, Alfonso; García-Botella, Ángel

    2009-08-01

    The emergence of high efficiency photovoltaic cells is leading the industry into using solar concentrators in order to reduce costs by decreasing the number of cells used. In this paper Optics department of Universidad Complutense de Madrid has designed a multifocal Fresnel lens of PMMA and has studied the main parameters that have influence on its final function. This has been done by taking into account its manufacturing tolerances. The lens is square shaped with sides measuring 270 mm and it is composed of three different zones based on three different criteria: The central zone has been designed by using paraxial formulation, the intermediate one has been designed based on Fresnel classical formula while the marginal zone's purpose is to deflect the light by total internal reflection on prism faces. All three zones have different focal areas and different optical axis so the energy distribution will be more uniform whilst avoiding cell damage caused by hot spots. The design stage is feedback through simulations using a ray tracer software. In order to characterize the lens operation a measure of optical concentration was first taken on different lens areas using an integrating sphere. Finally, the lens performance in terms of concentration and in terms of uniformity at the focal spot was studied by processing the images taken with a CCD camera on a screen placed at the focal plane of the lens.

  2. Athermal design for mid-wave infrared lens with long EFFL

    Bai, Yu; Xing, Tingwen

    2016-10-01

    When the environment temperature has changed, then each parameter in infrared lens has also changed, thus the image quality became bad, so athermal technology is one of key technology in designing infrared lens. The temperature influence of each parameter in infrared lens is analyzed in the paper. In the paper, an athermal mid-wave infrared optical system with long focal length by Code-v optical design software was presented. The parameters of the athermal infrared system are 4.0 f/number, 704mm effective focal length (EFL) , 1° field of view and 3.7-4.8 μm spectrum region 100% cold shield efficiency. When the spatial frequency is 16lp/mm, the Modulation Transfer Function (MTF) of all the field of view was above 0.5 from the working temperature range -40° to 60°. From the image quality and thermal analysis result, we knew that the lens had good athermal performance.

  3. Analysis, Design and Fabrication of centimeter-wave Dielectric Fresnel Zone Plate Lens and reflector

    Mahmoudi, A; Mahmoudi, Ali; Azalzadeh, Reza

    2005-01-01

    Fresnel lens has a long history in optics. This concept at non-optical wavelengths is also applicable. In this paper we report design and fabrication of a half and quarter wave dielectric Fresnel lens made of Plexiglas, and a Fresnel reflector at 11.1 GHz frequency. We made two lenses and one reflector at same frequency and compare their gain and radiation pattern to simulated results. Some methods for better focusing action will be introduced.

  4. First-order method of zoom lens design by means of generalized parameters.

    Khorokhorov, Alexei M; Piskunov, Dmitry E; Shirankov, Alexander F

    2016-08-01

    A method of paraxial zoom lens design is proposed that makes it possible to determine the optical powers and component movements of a zoom lens with the required zoom ratio. The method is based on the theory of generalized parameters, which can be used to analyze a zoom system by varying only one parameter. All possible zoom lenses with two movable components are considered for an object at infinity.

  5. Meta-lens design with low permittivity dielectric materials through smart transformation optics

    Kim, Junhyun; Shin, Dongheok; Choi, Seungjae; Yoo, Do-Sik; Seo, Ilsung; Kim, Kyoungsik

    2015-09-01

    We report here a design method based on smart transformation optics (STO) to control the range of the permittivity values of the materials required to manufacture transformation optics devices. In particular, we show that it is possible to reduce the maximum electric permittivity value required to realize a STO device with certain functionality by means of a simple conceptual elastic stretching process. We illustrate the design procedure with two types of collimator meta-lens designs, which we call warping space collimator meta-lens and half fisheye collimator meta-lens, respectively. We provide design examples of these two types of lenses with the help of COMSOL Multiphysics software. These two design examples are fabricated with commonly available dielectric materials by means of 3D printing technology. For the functional verification of these two collimator lenses, we provide measurement results obtained with transverse electric waves of frequency range 7-13GHz.

  6. Application of Q-type aspheric surface in the design of Wynne-Dyson projection lens

    Ho, Cheng-Fang; Peng, Wei-Jei; Hsu, Wei-Yao

    2016-10-01

    ITRC dedicates in high precision optics for more than 40 years and focuses in lithography optics for projection system recently. The first project of the lithography optics in ITRC is an i-line Wynne-Dyson projection lens for 3D-ICs applications. The Wynne-Dyson projection lens is a classical design for unity magnification projection system. We take the advantages of the established benefits of Wynne-Dyson lens and modify it. ITRC`s Wynne-Dyson lens is a 0.16 NA system with unity magnification, which is designed in double telecentricity and long working distance. The projection lens comprises three lenses and one concave mirror. Two aspheric surfaces are deployed in lens 1 and concave mirror. A lens with aspheric surfaces can correct for aberration and deliver a higher performance with fewer lens elements; therefore it has advantages of compact and light. However, aspheres are more difficult to fabricate and higher cost than spherical surface. In order to control the testability and manufacturability of the aspheric surface, the Q-type aspheric surfaces are applied in our design phase and manufacture process. We optimize for both performance and manufacturability by Q-type aspheric surfaces. Not only a testable and manufacturable asphere can be approached but also an additional benefits of less sensitive and cost-effective to manufacture to the required specification. In this paper, the Q-type aspheric surfaces and slope constraint are applied to a Wynne-Dyson projection lens, the testability of Q-type aspheric surfaces by the departure from best-fit-sphere and fringe density of interferometry are estimated. Furthermore, subaperture stitching interferometer system (ASI, from QED technologies) is also applied for testability comparison. The tolerance and sensitivity are also discussed. Finally, the results show a diffraction limit approached lens with testable aspheric surface is designed using Q-type aspheric surface. One of the asphere is 150 m departure from best

  7. Ocean Acoustic Tomography Mooring Design Study.

    1982-04-01

    Figure 5 A- 13 APPENDIX B Power Systems for the Long-Range Acoustic Transmitter STRAWMAN #1 Lithium Primary Battery Lithium Thionyl Chloride ...buoyancy provided by a syntactic foam sphere. - LRT and the top buoyancy at the same depth. - Lithium primary battery placed with LRT. - Tension member...much less pressure). 4. Same as 1. except: - Lithium primary battery placed upon the anchor. - Electromechanical cable (also the tension member

  8. Acoustic Sensor Network Design for Position Estimation

    2009-05-01

    frequency fw as follows, [Morse and Ingard 1968; Johnson and Dudgeon 1993]: y(t) = x(t) + n(t) = s(t)√ βR e−j 2πfwR βc + n(t), (22) where β(t) = 1 + vc...Processing. Prentice Hall. Morse, P. and Ingard , K. 1968. Theoretical Acoustics. McGraw-Hill. Nemhauser, G. L. and Wolsey, L. A. 1988. Integer and

  9. Acoustical design of the new Cathay Pacific first class lounge

    Hong, Westwood K. W.

    Cathay Pacific Airways' requirement of a first class lounge for attracting the high-yield passenger market to Hong Kong presented a special challenge for the Acoustical consultant. The 500-seating lounge covers more than 2000 square meters and is claimed by Cathay to be the biggest in Asia for its first class passengers. Arup acoustics was required to design a space that provided a quiet and relaxed environment for the Commercial Important Persons after a 16 to 17-hour flight. Arup Acoustics has designed the acoustics of the Lounge in meeting a stringent low noise specification requested by the user. The design work gave a comprehensive service both to support the lead consultant Ova Arup & Partners in controlling the external aircraft noise and internal noise and to assist the architect and interior designer in providing an excellent acoustical atmosphere for the passengers to rest while waiting for an onward connection. This paper will discuss the design of the lightweight roof and special double glazing system, featured by a 20-mm-thick laminated glass for the outer pane and a 600 to 1000-mm air gap to combat aircraft noise at the Hong Kong International Airport.

  10. Design of sandwich acoustic window for sonar domes

    YU Mengsa; LI Dongsheng; GONG Li; XU Jian

    2005-01-01

    Aimed at the low noise design of sonar dome in ships, a method has been presented for calculating the sonar self noise of a simplified sonar dome consisting of sandwich acoustic window and parallel acoustic cavity, which is excited by stationary random pressure fluctuation of turbulence boundary layer, using temporal and spatial double Fourier transform and wavenumber-frequency spectrum analysis. After numerically analyzing the influence of geometrical and physical parameters of acoustic window on the sonar self noise, the design method and reasonable parameters for sandwich acoustic window are proposed. The results show that the property of low noise induced by acoustic window of sandwich is dominated by the cut-off effect of longitudinal wave and transverse wave propagating in the visco-elastic layer of sandwich as well as the mismatch effect of impedance. If the thickness, density, Young's modulus and damping factor of plates and visco-elastic layer as well as the sound speed of longitudinal wave and transverse wave in the visco-elastic layer are selected reasonably, the maximum noise reduction of sandwich acoustic window is 6.5 dB greater than that of a single glass fiber reinforced plastic plate.

  11. Parametric fuselage design: Integration of mechanics and acoustic & thermal insulation

    Krakers, L.A.

    2009-01-01

    Designing a fuselage is a very complex process, which involves many different aspects like strength and stability, fatigue, damage tolerance, fire resistance, thermal and acoustic insulation but also inspection, maintenance, production and repair aspects. It is difficult to include all design aspect

  12. Acoustic control in enclosures using optimally designed Helmholtz resonators

    Driesch, Patricia Lynne

    A virtual design methodology is developed to minimize the noise in enclosures with optimally designed, passive, acoustic absorbers (Helmholtz resonators). A series expansion of eigen functions is used to represent the acoustic absorbers as external volume velocities, eliminating the need for a solution of large matrix eigen value problems. A determination of this type (efficient model/reevaluation approach) significantly increases the design possibilities when optimization techniques are implemented. As a benchmarking exercise, this novel methodology was experimentally validated for a narrowband acoustic assessment of two optimally designed Helmholtz resonators coupled to a 2D enclosure. The resonators were tuned to the two lowest resonance frequencies of a 30.5 by 40.6 by 2.5 cm (12 x 16 x 1 inch) cavity with the resonator volume occupying only 2% of the enclosure volume. A maximum potential energy reduction of 12.4 dB was obtained at the second resonance of the cavity. As a full-scale demonstration of the efficacy of the proposed design method, the acoustic response from 90--190 Hz of a John Deere 7000 Ten series tractor cabin was investigated. The lowest cabin mode, referred to as a "boom" mode, proposes a significant challenge to a noise control engineer since its anti-node is located near the head of the operator and often generates unacceptable sound pressure levels. Exploiting the low frequency capability of Helmholtz resonators, lumped parameter models of these resonators were coupled to the enclosure via an experimentally determined acoustic model of the tractor cabin. The virtual design methodology uses gradient optimization techniques as a post processor for the modeling and analysis of the unmodified acoustic interior to determine optimal resonator characteristics. Using two optimally designed Helmholtz resonators; potential energy was experimentally reduced by 3.4 and 10.3 dB at 117 and 167 Hz, respectively.

  13. Short-focus and ultra-wide-angle lens design in wavefront coding

    Zhang, Jiyan; Huang, Yuanqing; Xiong, Feibing

    2016-10-01

    Wavefront coding (WFC) is a hybrid technology designed to increase depth of field of conventional optics. The goal of our research is to apply this technology to the short-focus and ultra-wide-angle lens which suffers from the aberration related with large field of view (FOV) such as coma and astigmatism. WFC can also be used to compensate for other aberration which is sensitive to the FOV. Ultra-wide-angle lens has a little depth of focus because it has small F number and short-focus. We design a hybrid lens combing WFC with the ultra-wide-angle lens. The full FOV and relative aperture of the final design are up to170° and 1/1.8 respectively. The focal length is 2 mm. We adopt the cubic phase mask (CPM) in the design. The conventional design will have a wide variation of the point spread function (PSF) across the FOV and it is very sensitive with the variation of the FOV. The new design we obtain the PSF is nearly invariant over the whole FOV. But the result of the design also shows the little difference between the horizontal and vertical length of the PSF. We analyze that the CPM is non-symmetric phase mask and the FOV is so large, which will generate variation in the final image quality. For that reason, we apply a new method to avoid that happened. We try to make the rays incident on the CPM with small angle and decrease the deformation of the PSF. The experimental result shows the new method to optimize the CPM is fit for the ultra-wide-angle lens. The research above will be a helpful instruction to design the ultra-wide-angle lens with WFC.

  14. Acoustic design and research on the auditorium of Shanghai Grand Theatre

    ZHANG Kuisheng

    2000-01-01

    Shanghai Grand Theatre is a great modern theatre with the largest formula, the highest investment, the most advanced technique and excellent acoustic quality in China. This article mainly introduced Shanghai Grand Theatre's characteristics of formula, technical requirements of acoustic design of Auditorium, characteristics of figure design, reverberation control, acoustic simulation research, acoustic performance and subjective evaluation.

  15. Spatial filter lens design for the main laser of the National Ignition Facility

    Korniski, R. J., Optics 1 Inc, Westlake Village, CA

    1998-06-05

    The National Ignition Facility (NIF), being designed and constructed at Lawrence Livermore National Laboratory (LLNL), comprises 192 laser beams The lasing medium is neodymium in phosphate glass with a fundamental frequency (1{omega}) of 1 053{micro}m Sum frequency generation in a pair of conversion crystals (KDP/KD*P) will produce 1 8 megajoules of the third harmonic light (3{omega} or {lambda}=351{micro}m) at the target The purpose of this paper is to provide the lens design community with the current lens design details of the large optics in the Main Laser This paper describes the lens design configuration and design considerations of the Main Laser The Main Laser is 123 meters long and includes two spatial filters one 13 5 meters and one 60 meters These spatial filters perform crucial beam filtering and relaying functions We shall describe the significant lens design aspects of these spatial filter lenses which allow them to successfully deliver the appropriate beam characteristic onto the target For an overview of NIF please see ``Optical system design of the National Ignition Facility,`` by R Edward English. et al also found in this volume.

  16. Design and fabrication of concave-convex lens for head mounted virtual reality 3D glasses

    Deng, Zhaoyang; Cheng, Dewen; Hu, Yuan; Huang, Yifan; Wang, Yongtian

    2015-08-01

    As a kind of light-weighted and convenient tool to achieve stereoscopic vision, virtual reality glasses are gaining more popularity nowadays. For these glasses, molded plastic lenses are often adopted to handle both the imaging property and the cost of massive production. However, the as-built performance of the glass depends on both the optical design and the injection molding process, and maintaining the profile of the lens during injection molding process presents particular challenges. In this paper, optical design is combined with processing simulation analysis to obtain a design result suitable for injection molding. Based on the design and analysis results, different experiments are done using high-quality equipment to optimize the process parameters of injection molding. Finally, a single concave-convex lens is designed with a field-of-view of 90° for the virtual reality 3D glasses. The as-built profile error of the glass lens is controlled within 5μm, which indicates that the designed shape of the lens is fairly realized and the designed optical performance can thus be achieved.

  17. Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System

    Lei Jing

    2014-01-01

    Full Text Available A practical optimization design is proposed, in which the solar direct light spectrum and multijunction cell response range are taken into account in combination, particularly for the Fresnel concentrators with a high concentration and a small aspect ratio. In addition, the change of refractive index due to temperature variation in outdoor operation conditions is also considered in the design stage. The calculation results show that this novel Fresnel lens achieves an enhancement of energy efficiency of about 10% compared with conventional Fresnel lens for a given solar spectrum, solar cell response, and corrected sunshine hours of different ambient temperature intervals.

  18. Design of macro-filter-lens with simultaneous chromatic and geometric aberration correction.

    Prasad, Dilip K; Brown, Michael S

    2014-01-01

    A macro-filter-lens design that can correct for chromatic and geometric aberrations simultaneously while providing for a long focal length is presented. The filter is easy to fabricate since it involves two spherical surfaces and a planar surface. Chromatic aberration correction is achieved by making all the rays travel the same optical distance inside the filter element (negative meniscus). Geometric aberration is corrected for by the lens element (plano-convex), which makes the output rays parallel to the optic axis. This macro-filter-lens design does not need additional macro lenses and it provides an inexpensive and optically good (aberration compensated) solution for macro imaging of objects not placed close to the camera.

  19. High Performance FOV Switching Mechanism Design for an Infrared Zoom Lens

    Chun-Ju Huang

    2011-12-01

    Full Text Available This paper presents the design and implementation of a prototype dual FOV (field-of-view zoom lens mechanism. The infrared zoom lens uses a permanent magnet DC motor for the motion driver and a microcontroller as the controller. Through the cooperation of two major sensor signals, a shaft encoder and a position sensor, the FOV switching mechanism can achieve both high-speed and high-precision alignment. Experimental results showed an alignment accuracy average of 0.155 mrads and less than 0.5 second alignment settling time. Despite the influence of the non-zero backlash and the A/D uncertainty on the infrared zoom lens, the goal of alignment can be reached by the cooperation between the two major sensors and the controller. The control strategy for switching control was also proposed to help reaching the high-speed precision design specifications.

  20. Active acoustic metamaterials reconfigurable in real-time

    Popa, Bogdan-Ioan; Konneker, Adam; Cummer, Steven A

    2015-01-01

    A major limitation of current acoustic metamaterials is that their acoustic properties are either locked into place once fabricated or only modestly tunable, tying them to the particular application for which they are designed. We present in this paper a design approach that yields active metamaterials whose physical structure is fixed, yet their local acoustic response can be changed almost arbitrarily and in real-time by configuring the digital electronics that control the metamaterial acoustic properties. We demonstrate experimentally this approach by designing a metamaterial slab configured to act as a very thin acoustic lens that manipulates differently three identical, consecutive pulses incident on the lens. Moreover, we show that the slab can be configured to implement simultaneously various roles, such as that of a lens and beam steering device. Finally, we show that the metamaterial slab is suitable for efficient second harmonic acoustic imaging devices capable to overcome the diffraction limit of l...

  1. Design and performance analysis of digital acoustic underwater telemetry system

    Catipovic, J. A.; Baggeroer, A. B.; Vonderheydt, K.; Koelsch, D. E.

    1985-11-01

    The work discusses the design and performance characteristics of a Digital Acoustic Telemetry System (DATS) which incorporates the current state-of-the-art technology and is capable of reliable data transmission at rates useful to a wide range of ocean exploration and development gear.

  2. Acoustical Considerations in Planning and Design of Library Facilities.

    Wrightson, Denelle; Wrightson, John M.

    1999-01-01

    Discusses acoustical demands in public libraries to consider during the design and construction process of new or renovated library space. Topics include intrusive noises; overly reverberant spaces; lack of speech privacy; sound transmission class; noise criteria; reverberation time and noise reduction coefficient; space planning; sound systems;…

  3. The design and application of large area intensive lens array focal spots measurement system

    Chen, Bingzhen; Yao, Shun; Yang, Guanghui; Dai, Mingchong; Wang, Zhiyong

    2014-12-01

    Concentrating Photovoltaic (CPV) modules are getting thinner and using smaller cells now days. Correspondingly, large area intensive lens arrays with smaller unit dimension and shorter focal length are wanted. However, the size and power center of lens array focal spots usually differ from the design value and are hard to measure, especially under large area situation. It is because the machining error and deformation of material of the lens array are hard to simulate in the optical design process. Thus the alignment error between solar cells and focal spots in the module assembly process will be hard to control. Under this kind of situation, the efficiency of CPV module with thinner body and smaller cells is much lower than expected. In this paper, a design of large area lens array focal spots automatic measurement system is presented, as well as its prototype application results. In this system, a four-channel parallel light path and its corresponding image capture and process modules are designed. These modules can simulate focal spots under sunlight and have the spots image captured and processed using charge coupled devices and certain gray level algorithm. Thus the important information of focal spots such as spot size and location will be exported. Motion control module based on grating scale signal and interval measurement method are also employed in this system in order to get test results with high speed and high precision on large area lens array no less than 1m×0.8m. The repeatability of the system prototype measurement is +/-10μm with a velocity of 90 spot/min. Compared to the original module assembled using coordinates from optical design, modules assembled using data exported from the prototype is 18% higher in output power, reaching a conversion efficiency of over 31%. This system and its design can be used in the focal spot measurement of planoconvex lens array and Fresnel lens array, as well as other kinds of large area lens array application

  4. Design study for a 16x zoom lens system for visible surveillance camera

    Vella, Anthony; Li, Heng; Zhao, Yang; Trumper, Isaac; Gandara-Montano, Gustavo A.; Xu, Di; Nikolov, Daniel K.; Chen, Changchen; Brown, Nicolas S.; Guevara-Torres, Andres; Jung, Hae Won; Reimers, Jacob; Bentley, Julie

    2015-09-01

    *avella@ur.rochester.edu Design study for a 16x zoom lens system for visible surveillance camera Anthony Vella*, Heng Li, Yang Zhao, Isaac Trumper, Gustavo A. Gandara-Montano, Di Xu, Daniel K. Nikolov, Changchen Chen, Nicolas S. Brown, Andres Guevara-Torres, Hae Won Jung, Jacob Reimers, Julie Bentley The Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, USA 14627-0186 ABSTRACT High zoom ratio zoom lenses have extensive applications in broadcasting, cinema, and surveillance. Here, we present a design study on a 16x zoom lens with 4 groups (including two internal moving groups), designed for, but not limited to, a visible spectrum surveillance camera. Fifteen different solutions were discovered with nearly diffraction limited performance, using PNPX or PNNP design forms with the stop located in either the third or fourth group. Some interesting patterns and trends in the summarized results include the following: (a) in designs with such a large zoom ratio, the potential of locating the aperture stop in the front half of the system is limited, with ray height variations through zoom necessitating a very large lens diameter; (b) in many cases, the lens zoom motion has significant freedom to vary due to near zero total power in the middle two groups; and (c) we discuss the trade-offs between zoom configuration, stop location, packaging factors, and zoom group aberration sensitivity.

  5. Soft gamma-ray optics: new Laue lens design and performance estimates

    Barriere, N; Abrosimov, N; Von Ballmoos, P; Bastie, P; Courtois, P; Jentschel, M; Knödlseder, J; Rousselle, J; Ubertini, P

    2009-01-01

    Laue lenses are an emerging technology based on diffraction in crystals that allows the concentration of soft gamma rays. This kind of optics that works in the 100 keV - 1.5 MeV band can be used to realize an high-sensitivity and high-angular resolution telescope (in a narrow field of view). This paper reviews the recent progresses that have been done in the development of efficient crystals, in the design study and in the modelisation of the answer of Laue lenses. Through the example of a new concept of 20 m focal length lens focusing in the 100 keV - 600 keV band, the performance of a telescope based on a Laue lens is presented. This lens uses the most efficient mosaic crystals in each sub-energy range in order to yield the maximum reflectivity. Imaging capabilities are investigated and shows promising results.

  6. Design Research through the Lens of Sociology of Technology

    Berntsen, Hilde Østerås; Seim, Rikke

    2007-01-01

    The use of an approach to design research inspired by Sociology of Technology offers a nuanced understanding of design processes. The purpose of this paper is to explore how terminology derived from the socio-technical theory of Actor Network (ANT) can be used to understand the complexity of design......-design of existing workspace and work practice in an industrial company. The case study (i) illustrates a socio-technical approach to design research and (ii) shows how ANT terminology can be applied in an analysis of the course of events in a design process with numerous actors involved....

  7. Conceptual design study of a 5 kilowatt solar dynamic Brayton power system using a dome Fresnel lens solar concentrator

    Oneill, Mark J.; Mcdanal, A. J.; Spears, Don H.

    1989-01-01

    The primary project objective was to generate a conceptual design for a nominal 5 kW solar dynamic space power system, which uses a unique, patented, transmittance-optimized, dome-shaped, point-focus Fresnel lens as the optical concentrator. Compared to reflective concentrators, the dome lens allows 200 times larger slope errors for the same image displacement. Additionally, the dome lens allows the energy receiver, the power conversion unit (PCU), and the heat rejection radiator to be independently optimized in configuration and orientation, since none of these elements causes any aperture blockage. Based on optical and thermal trade studies, a 6.6 m diameter lens with a focal length of 7.2 m was selected. This lens should provide 87 percent net optical efficienty at 800X geometric concentration ratio. The large lens is comprised of 24 gores, which compactly stow together during launch, and automatically deploy on orbit. The total mass of the microglass lens panels, the graphite/epoxy support structure, and miscellaneous hardware is about 1.2 kg per square meter of aperture. The key problem for the dome lens approach relates to the selection of a space-durable lens material. For the first time, all-glass Fresnel lens samples were successfully made by a sol-gel casting process.

  8. Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm.

    Fang, Yi-Chin; Tsai, Chen-Mu; Macdonald, John; Pai, Yang-Chieh

    2007-05-01

    Two different types of Gauss lens design, which effectively eliminate primary chromatic aberration, are presented using an efficient genetic algorithm (GA). The current GA has to deal with too many targets in optical global optimization so that the performance is not much improved. Generally speaking, achromatic aberrations have a great relationship with variable glass sets for all elements. For optics whose design is roughly convergent, glass sets for optics will play a significant role in axial and lateral color aberration. Therefore better results might be derived from the optimal process of eliminating achromatic aberration, which could be carried out by finding feasible glass sets in advance. As an alternative, we propose a new optimization process by using a GA and involving theories of geometrical optics in order to select the best optical glass combination. Two Gauss-type lens designs are employed in this research. First, a telephoto lens design is sensitive to axial aberration because of its long focal length, and second, a wide-angle Gauss design is complicated by lateral color aberration at the extreme corners because Gauss design is well known not to deal well with wide-angle problems. Without numbers of higher chief rays passing the element, it is difficult to correct lateral color aberration altogether for the Gauss design. The results and conclusions show that the attempts to eliminate primary chromatic aberrations were successful.

  9. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  10. Practical guide to saddle-point construction in lens design

    Bociort, F.; Van Turnhout, M.; Marinescu, O.

    2007-01-01

    Saddle-point construction (SPC) is a new method to insert lenses into an existing design. With SPC, by inserting and extracting lenses new system shapes can be obtained very rapidly, and we believe that, if added to the optical designer’s arsenal, this new tool can significantly increase design prod

  11. Acoustic Design of Super-light Structures

    Christensen, Jacob Ellehauge; Hertz, Kristian Dahl; Brunskog, Jonas;

    in a controlled laboratory environment have been conducted with the element in order to evaluate its performance in airborne and impact sound insulation. These results have been employed in simulations of the flanking transmission to estimate the in-situ performance of the super-light slab element. The flanking......Super-light structures is a newly developed and patented construction principle for concrete structures. It combines some of the desirable properties of normal strong concrete and lightweight aggregate concrete in order to improve the utilization of the materials and to design improved concrete...... structures and elements. The super-light slab element in the present research is developed as a holistic design including all relevant disciplines. The element is based on wellknown technologies and materials, which have been used for millenniums, namely compression arches and lightweight expanded clay...

  12. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  13. Acoustic design of rotor blades using a genetic algorithm

    Wells, V. L.; Han, A. Y.; Crossley, W. A.

    1995-01-01

    A genetic algorithm coupled with a simplified acoustic analysis was used to generate low-noise rotor blade designs. The model includes thickness, steady loading and blade-vortex interaction noise estimates. The paper presents solutions for several variations in the fitness function, including thickness noise only, loading noise only, and combinations of the noise types. Preliminary results indicate that the analysis provides reasonable assessments of the noise produced, and that genetic algorithm successfully searches for 'good' designs. The results show that, for a given required thrust coefficient, proper blade design can noticeably reduce the noise produced at some expense to the power requirements.

  14. Gradient Index Polymer Optics: Achromatic Singlet Lens Design

    2010-01-01

    achromatic singlet lenses. The designs are based on gradient index lenses fabricated from nanolayered polymer materials. Raytraced results confirm the...fabricated from nanolayered polymer materials. Raytraced results confirm the achromatic performance of the designs. OCIS codes: (110.2760) Gradient...lenses in Zemax®. In order to model these lenses, user-defined surfaces had to be developed for the software. RL RG z y • • Δz • tc •n0 n1• Raytrace

  15. Free-form thin lens design with light scattering surfaces for practical LED down light illumination

    Lin, Raychiy J.; Sun, Ching-Cherng

    2016-05-01

    The free-form optical quasilens surface technology was utilized to develop and design a solid transparent plastic optical lens for the LED down light with the narrow angular light distribution requirement in the LED lighting applications. In order to successfully complete the mission, the precise mid-field angular distribution model of the LED light source was established and built. And also the optical scattering surface property of the Harvey BSDF scattering model was designed, measured, and established. Then, the optical simulation for the entire optical system was performed to develop and design this solid transparent plastic optical lens system. Finally, the goals of 40 deg angular light distribution pattern defined at full width half maximum with glare reduced in the areas of interest and the optical performance of nearly 82% light energy transmission optics were achieved for the LED down light illumination.

  16. Optical design and multiobjective optimization of miniature zoom optics with liquid lens element.

    Sun, Jung-Hung; Hsueh, Bo-Ren; Fang, Yi-Chin; MacDonald, John; Hu, Chao-Chang

    2009-03-20

    We propose an optical design for miniature 2.5x zoom fold optics with liquid elements. First, we reduce the volumetric size of the system. Second, this newly developed design significantly reduces the number of moving groups for this 2.5x miniature zoom optics (with only two moving groups compared with the four or five groups of the traditional zoom lens system), thanks to the assistance of liquid lens elements in particular. With regard to the extended optimization of this zoom optics, relative illuminance (RI) and the modulation transfer function (MTF) are considered because the more rays passing through the edge of the image, the lower will be the MTF, at high spatial frequencies in particular. Extended optimization employs the integration of the Taguchi method and the robust multiple criterion optimization (RMCO) approach. In this approach, a Pareto optimal robust design solution is set with the aid of a certain design of the experimental set, which uses analysis of variance results to quantify the relative dominance and significance of the design factors. It is concluded that the Taguchi method and RMCO approach is successful in optimizing the RI and MTF values of the fold 2.5x zoom lens system and yields better and more balanced performance, which is very difficult for the traditional least damping square method to achieve.

  17. Design of an LED Spotlight Lens%一种LED射灯透镜的设计

    谢拥军; 徐健; 苏丹

    2014-01-01

    The generatrix of collimating total internal reflection ( TIR) lens is obtained against point source model via mathematical modeling with Snell’s law and Fermat principle, and then the fly-eye lens is designed to control the divergence angle of the emergent light. The TIR lens is modeled with 3D software and used in conjunction with extended source 3030 LED. The design meets the requirements after the simulation verification of optical software. Finally, the effects of aperture value of fly-eye lens and arrangement density on light-emitting angle of the emergent light and central light intensity are discussed and analyzed. Its conclusion helps to reduce the development period of such lens.%利用斯涅尔定律、费马原理,针对点光源模型,通过数学建模得到准直全内反射(Total internal reflection, TIR)透镜的母线,再通过设计复眼透镜来控制其出射光的发散角。利用3D软件完成复眼TIR透镜建模,并将其与扩展光源3030 LED配合使用,经光学软件模拟验证,达到了设计要求。最后讨论并分析了复眼透镜孔径值、复眼透镜的排列密度对出发光角度、中心光强的影响,其结论有助于缩短此类透镜的开发周期。

  18. Design, characterization and visual performance of a new multizone contact lens

    Rodriguez-Vallejo, Manuel; Monsoriu, Juan A; Furlan, Walter D

    2016-01-01

    Objectives: To analyze the whole process involved in the production of a new bifocal Multizone Contact Lens (MCL) for presbyopia. Methods: The optical quality of a new MCL was evaluated by ray tracing software in a model eye with pupil different diameters with the lens centered and decentered. A stock of low addition (+1.5 D) MCL for presbyopia was ordered for manufacturing. Power profiles were measured with a contact lens power mapper, processed with a custom software and compared with the theoretical design. Nine lenses from the stock were fitted to presbyopic subjects and the visual performance was evaluated with new APPs for iPad Retina. Results: Numerical simulations showed that the trough the focus curve provided by MCL has an extended depth of focus. The optical quality was not dependent on pupil size and only decreased for lens decentered with a pupil diameter of 4.5 mm. The manufactured MCL showed a smoothed power profile with a less-defined zones. The bias between experimental and theoretical zone s...

  19. FEA Analysis of AP-0 Target Hall Collection Lens (Current Design)

    Hurh, P.G.; Tang, Z.

    2001-06-22

    The AP-0 Target Hall Collection Lens is a pulsed device which focuses anti-protons just downstream of the Target. Since the angles at which the anti-protons depart the Target can be quite large, a very high focusing strength is required to maximize anti-proton capture into the downstream Debuncher Ring. The current design of the Collection Lens was designed to operate with a focusing gradient of 1,000 T/m. However, multiple failures of early devices resulted in lowering the normal operating gradient to about 750 T/m. At this gradient, the Lens design fares much better, lasting several million pulses, but ultimately still fails. A Finite Element Analysis (FEA) has been performed on this Collection Lens design to help determine the cause and/or nature of the failures. The Collection Lens magnetic field is created by passing high current through a central conductor cylinder. A uniform current distribution through the cylinder will create a tangential or azimuthal magnetic field that varies linearly from zero at the center of the cylinder to a maximum at the outer surface of the cylinder. Anti-proton particles passing through this cylinder (along the longitudinal direction) will see an inward focusing kick back toward the center of the cylinder proportional to the magnetic field strength. For the current Lens design a gradient of 1,000 T/m requires a current of about 580,000 amps. Since the DC power and cooling requirements would be prohibitive, the Lens is operated in a pulsed mode. Each pulse is half sine wave in shape with a pulse duration of about 350 microseconds. Because of the skin effect, the most uniform current density actually occurs about two-thirds of the way through the pulse. This means that the maximum current of the pulse is actually higher than that required in the DC case (about 670,000 amps). Since the beam must pass through the central conductor cylinder it must be made of a conducting material that is also very 'transparent' to the beam

  20. Advancements in transformation optics-enabled gradient-index lens design

    Campbell, Sawyer D.; Brocker, Donovan E.; Nagar, Jogender; Easum, John A.; Werner, Douglas H.; Werner, Pingjuan L.

    2015-09-01

    Transformation Optics (TO) provides the mathematical framework for representing the behavior of electromagnetic radiation in a given geometry by "transforming" it to an alternative, usually more desirable, geometry through an appropriate mapping of the constituent material parameters. Using a quasi-conformal mapping, the restrictions on the required material parameters can be relaxed allowing isotropic inhomogeneous all-dielectric materials to be employed. This approach has led to the development of a new and powerful design tool for gradient-index (GRIN) optical systems. Using TO, aspherical lenses can be transformed to simpler spherical and flat geometries or even rotationally-asymmetric shapes which result in true 3D GRIN profiles. TO can also potentially be extended to collapse an entire lens system into a representative GRIN profile thus reducing its physical dimensions while retaining the optical performance of the original system. However, dispersion effects of the constituent materials often limit the bandwidth of metamaterial and TO structures thus restricting their potential applicability. Nonetheless, with the proper pairing of GRIN profile and lens geometry to a given material system, chromatic aberrations can be minimized. To aid in the GRIN construction, we employ advanced multi-objective optimization algorithms which allow the designer to explicitly view the trade-offs between all design objectives such as RMS spot size, field-of-view (FOV), lens thickness, 𝛥𝑛, and focal drift due to chromatic aberrations. We present an overview of our TO-enabled GRIN lens design process and analysis techniques while demonstrating designs which minimize the presence of mono- and poly-chromatic aberrations and discuss their requisite material systems.

  1. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors

    Ivan Felis

    2016-06-01

    Full Text Available Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L.

  2. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors.

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-06-10

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L).

  3. Acoustic design of open plan schools and comparison of requirements

    Møller Petersen, Claus; Rasmussen, Birgit

    2012-01-01

    between groups and satisfac¬tory speech intelligibility internally in groups. This paper describes the newest Danish requirements and recommendations for such open plan areas and presents the design, measurements and subjective evaluation of two newer Danish schools. According to the users, the general......In the Nordic countries several new schools have open plan areas for teaching and group work. However, to optimize learning efficiency for pupils and working conditions for teachers and to reduce noise levels, such spaces require special acoustic design to obtain sufficient sound attenuation...

  4. Zoom lens design for 10.2-megapixel APS-C digital SLR cameras.

    Sun, Wen-Shing; Chu, Pu-Yi; Tien, Chuen-Lin; Chung, Meng-Feng

    2017-01-20

    A zoom lens design for a 10.2-megapixel digital single-lens reflex (SLR) camera with an advanced photo system type-C (APS-C) CCD image sensor is presented. The proposed zoom lens design consists of four groups of 3× zoom lenses with a focal length range of 17-51 mm. In the optimization process, 107 kinds of Schott glass combined with 26 kinds of plastic materials, as listed in Code V, are used. The best combination of glass and plastic materials is found based on the nd-Vd diagram. The modulation transfer function (MTF) was greater than 0.509 at 42  lp/mm, the lateral chromatic aberration was less than 5 μm, the optical distortion was less than 1.97%, and the relative illumination was greater than 80.05%. We also performed the tolerance analysis with the 2σ (97.7%) position selected and given tolerance tables and results for three zooming positions, which made the design more practical for manufacturing.

  5. Design of a compact focusing lens system with short acceleration tube at 300 kV

    Ishii, Yasuyuki, E-mail: ishii.yasuyuki@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Ohkubo, Takeru; Kojima, Takuji; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2011-10-15

    A compact focusing lens system with high demagnification over 1500 was designed to form an ion nanobeam with 346 keV energy by adding a short distance acceleration tube for beam acceleration and focusing downstream of the existing double acceleration lens system. The demagnification, focusing points and aberrations of the acceleration tube were studied using beam trajectory calculation. The acceleration tube was designed to have a length of 140 mm and a demagnification of 2 at its acceleration tube voltage of 300 kV, which resulted in a new compact focusing lens system with a total length of about 640 mm. In addition, the maximum voltage and electric-field of the acceleration tube were confirmed experimentally on the built device to be 300 kV and 30 kV/cm, respectively. The final beam size formed by the system was estimated to be 130 nm in diameter using the design parameters. The result suggests that an ion nanobeam of 346 keV can be formed by an apparatus having the reasonable length of 2 m, which permits us to develop a system for 1 MV by elongating its tube length.

  6. SILICON COMPATIBLE ACOUSTIC WAVE RESONATORS: DESIGN, FABRICATION AND PERFORMANCE

    Aliza Aini Md Ralib

    2014-12-01

    Full Text Available ABSTRACT: Continuous advancement in wireless technology and silicon microfabrication has fueled exciting growth in wireless products. The bulky size of discrete vibrating mechanical devices such as quartz crystals and surface acoustic wave resonators impedes the ultimate miniaturization of single-chip transceivers. Fabrication of acoustic wave resonators on silicon allows complete integration of a resonator with its accompanying circuitry.  Integration leads to enhanced performance, better functionality with reduced cost at large volume production. This paper compiles the state-of-the-art technology of silicon compatible acoustic resonators, which can be integrated with interface circuitry. Typical acoustic wave resonators are surface acoustic wave (SAW and bulk acoustic wave (BAW resonators.  Performance of the resonator is measured in terms of quality factor, resonance frequency and insertion loss. Selection of appropriate piezoelectric material is significant to ensure sufficient electromechanical coupling coefficient is produced to reduce the insertion loss. The insulating passive SiO2 layer acts as a low loss material and aims to increase the quality factor and temperature stability of the design. The integration technique also is influenced by the fabrication process and packaging.  Packageless structure using AlN as the additional isolation layer is proposed to protect the SAW device from the environment for high reliability. Advancement in miniaturization technology of silicon compatible acoustic wave resonators to realize a single chip transceiver system is still needed. ABSTRAK: Kemajuan yang berterusan dalam teknologi tanpa wayar dan silikon telah menguatkan pertumbuhan yang menarik dalam produk tanpa wayar. Saiz yang besar bagi peralatan mekanikal bergetar seperti kristal kuarza menghalang pengecilan untuk merealisasikan peranti cip. Silikon serasi  gelombang akustik resonator mempunyai potensi yang besar untuk menggantikan unsur

  7. Design and optimization of membrane-type acoustic metamaterials

    Blevins, Matthew Grant

    One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.

  8. Wavenumber transform analysis for acoustic black hole design.

    Feurtado, Philip A; Conlon, Stephen C

    2016-07-01

    Acoustic black holes (ABHs) are effective, passive, lightweight vibration absorbers that have been developed and shown to effectively reduce the structural vibration and radiated sound of beam and plate structures. ABHs employ a local thickness change that reduces the speed of bending waves and increases the transverse vibration amplitude. The vibrational energy can then be effectively focused and dissipated by material losses or through conventional viscoelastic damping treatments. In this work, the measured vibratory response of embedded ABH plates was transformed into the wavenumber domain in order to investigate the use of wavenumber analysis for characterizing, designing, and optimizing practical ABH systems. The results showed that wavenumber transform analysis can be used to simultaneously visualize multiple aspects of ABH performance including changes in bending wave speed, transverse vibration amplitude, and energy dissipation. The analysis was also used to investigate the structural acoustic coupling of the ABH system and determine the radiation efficiency of the embedded ABH plates compared to a uniform plate. The results demonstrated that the ABH effect results in acoustic decoupling as well as vibration reduction. The wavenumber transform based methods and results will be useful for implementing ABHs into real world structures.

  9. Design of compact freeform lens for application specific Light-Emitting Diode packaging.

    Wang, Kai; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-01-18

    Application specific LED packaging (ASLP) is an emerging technology for high performance LED lighting. We introduced a practical design method of compact freeform lens for extended sources used in ASLP. A new ASLP for road lighting was successfully obtained by integrating a polycarbonate compact freeform lens of small form factor with traditional LED packaging. Optical performance of the ASLP was investigated by both numerical simulation based on Monte Carlo ray tracing method and experiments. Results demonstrated that, comparing with traditional LED module integrated with secondary optics, the ASLP had advantages of much smaller size in volume (approximately 1/8), higher system lumen efficiency (approximately 8.1%), lower cost and more convenience for customers to design and assembly, enabling possible much wider applications of LED for general road lighting. Tolerance analyses were also conducted. Installation errors of horizontal and vertical deviations had more effects on the shape and uniformity of radiation pattern compared with rotational deviation. The tolerances of horizontal, vertical and rotational deviations of this lens were 0.11 mm, 0.14 mm and 2.4 degrees respectively, which were acceptable in engineering.

  10. Design of a solar-blind ultraviolet zoom lens in corona detection

    Kang, Sirui; Fan, Wenwen; Chen, Yu

    2016-11-01

    Based on the requirements of corona detection on searching targets with large field of view and detecting objects with small field of view, a refractive zoom optical system using mechanical compensation technology, which operates at 0.24μm~0.28μm wavelength ,is designed with aspherical surfaces. S8844-0909 ultraviolet CCD is selected as a sensor with pixel size 24μm×24μm. The zooming region is 35mm~70mm with F number of 3.5 and the corresponding field of view of 7°~14°.The zoom lens consists of seven lenses with two aspherical surfaces, so it has the advantages of compact size and simple structure. The results show that in full zooming range, the MTF values over all fields of view are above 0.8 at cut-off frequency 21lp/mm. The distortion is less than 5%.The zoom lens system has good image quality and stable image plane, which meets the overall design requirements of the optical system. Keywords: Corona detection, Zoom lens, Aspheric surface

  11. Aspherical lens design using hybrid neural-genetic algorithm of contact lenses.

    Yen, Chih-Ta; Ye, Jhe-Wen

    2015-10-01

    The design of complex contact lenses involves numerous uncertain variables. How to help an optical designer to first design the optimal contact lens to reduce discomfort when wearing a pair of glasses is an essential design concern. This study examined the impact of aberrations on contact lenses to optimize a contact lens design for myopic and astigmatic eyes. In general, two aspherical surfaces can be assembled in an optical system to reduce the overall volume size. However, this design reduces the spherical aberration (SA) values at wide contact radii. The proposed optimization algorithm with optical design can be corrected to improve the SA value and, thus, reduce coma aberration (TCO) values and enhance the modulation transfer function (MTF). This means integrating a modified genetic algorithm (GA) with a neural network (NN) to optimize multiple-quality characteristics, namely the SA, TCO, and MTF, of contact lenses. When the proposed optional weight NN-GA is implemented, the weight values of the fitness function can be varied to adjust system performance. The method simplifies the selection of parameters in the optimization of optical systems. Compared with the traditional CODE V built-in optimal scheme, the proposed scheme is more flexible and intuitive to improve SA, TCO, and MTF values by 50.03%, 45.78%, and 24.7%, respectively.

  12. Design of thin-film photonic metamaterial L\\"uneburg lens using analytical approach

    Gao, Hanhong; Johnson, Steven G; Barbastathis, George

    2011-01-01

    We design an all-dielectric L\\"uneburg lens as an adiabatic space-variant lattice explicitly accounting for finite film thickness. We describe an all-analytical approach to compensate for the finite height of subwavelength dielectric structures in the pass-band regime. This method calculates the effective refractive index of the infinite-height lattice from effective medium theory, then embeds a medium of the same effective index into a slab waveguide of finite height and uses the waveguide dispersion diagram to calculate a new effective index. The results are compared with the conventional numerical treatment - a direct band diagram calculation, using a modified three-dimensional lattice with the superstrate and substrate included in the cell geometry. We show that the analytical results are in good agreement with the numerical ones, and the performance of the thin-film L\\"uneburg lens is quite different than the estimates obtained assuming infinite height.

  13. Eye models for the prediction of contrast vision in patients with new intraocular lens designs

    Piers, Patricia A.; Sverker Norrby, N. E.; Mester, Ulrich

    2004-04-01

    Theoretical calculations of the polychromatic modulation transfer function (MTF) and wave-front aberration were performed with physiological eye models. These eye models have an amount of spherical aberration that is representative of a normal population of pseudophakic eyes implanted with two different types of intraocular lens (IOL) made from high-refractive-index silicone. These theoretical calculations were compared with the measured contrast sensitivity function (CSF) under mesopic lighting conditions and with wave-front aberration (obtained with a Hartmann-Shack wave-front sensor) collected from 37 patients bilaterally implanted with the same types of lens. The relationships between the ocular wave-front aberration and the MTF predicted by the eye models and the CSF and the ocular wave-front aberration measured in eyes implanted with IOLs were investigated. The predicted improvements in MTF and wave-front aberration correlated well with the improvements measured in practice. Physiological eye models are therefore useful tools for IOL design.

  14. Data analysis results of the second sea trial of ambient noise imaging with acoustic lens in 2014: Two-dimensional target images affected by direction of field of view and spatial noise distribution

    Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2016-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10-14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.

  15. Acoustic design sensitivity analysis of structural sound radiation

    许智生

    2009-01-01

    This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method and the surface sound pressure by Rayleigh integral,and expressed the sound radiation power of the structure in a positive definite quadratic form of the Hermitian with an impedance matrix.The ADS analysis of the plate was thus translated into the analysis of structure dynamic sensitivity and ...

  16. Concepts of the mosaic array of numerous ultra-small lens (MANUL) design

    Pál, A.; Mészáros, L.

    2016-08-01

    In order to provide a continuous, multi-color time-domain surveying of the brightest regime of the naked-eye optical sky, we designed the Mosaic Array of Numerous Ultrasmall Lens (MANUL). This device is a palm-sized "astronomical observatory," featuring optics, filters and all necessary electronics (including a TCP/IP-based downlink), all are mounted on 2-inch printed circuit boards. Based on these units, a modular and mosaic arrangement of CMOS imaging sensors with an effective resolution of 1'/pixel can be built. Here we introduce the main design concepts, the early prototyping and the results of the preliminary photometric quality analysis of this initiative.

  17. Improved design of three-dimensional lens for low concentrator PV modules; Teishukogata taiyo denchiyo sanjigen lens no koseinoka ni kansuru kenkyu

    Goma, S.; Yoshioka, K.; Saito, T. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    Attention is paid to reduction in area required for solar cells by solar concentration as a means of solving cost limits of solar cells and unstable supply of Si materials. Low concentration solar cells are effective from the aspects of utilization of scattered light and unnecessary ray tracing. The optical concentration ratio was calculated of three-dimensional lens having design values of various north/south and east/west direction allowable incidence half angles. The three-dimensional lens are designed by cutting a rectangular parallelepiped by the two-dimensional composite elliptical plane designed by various allowable incidence half angles from two directions of north/south and east/west. Using Perez`s sky solar radiation models and meteorological data HASP, calculated were the annual accumulated global radiation ratio on an inclined surface and the optical efficiency. Calculated were the solar cell area ratio and solar concentration area ratio of the concentration type to obtain solar radiation the same as that of the planar type. From the optimization calculation, it was found that lens are optimal which have design values of north/south and east/west direction allowable incidence half angles of 30-70deg. The solar cell area ratio is 57% and the solar concentration area ratio is 1.2 times. It was found that by making the module area 1.2 times, more than 40% of the solar cells used can be saved. 5 refs., 8 figs.

  18. The study about forming high-precision optical lens minimalized sinuous error structures for designed surface

    Katahira, Yu; Fukuta, Masahiko; Katsuki, Masahide; Momochi, Takeshi; Yamamoto, Yoshihiro

    2016-09-01

    Recently, it has been required to improve qualities of aspherical lenses mounted on camera units. Optical lenses in highvolume production generally are applied with molding process using cemented carbide or Ni-P coated steel, which can be selected from lens material such as glass and plastic. Additionally it can be obtained high quality of the cut or ground surface on mold due to developments of different mold product technologies. As results, it can be less than 100nmPV as form-error and 1nmRa as surface roughness in molds. Furthermore it comes to need higher quality, not only formerror( PV) and surface roughness(Ra) but also other surface characteristics. For instance, it can be caused distorted shapes at imaging by middle spatial frequency undulations on the lens surface. In this study, we made focus on several types of sinuous structures, which can be classified into form errors for designed surface and deteriorate optical system performances. And it was obtained mold product processes minimalizing undulations on the surface. In the report, it was mentioned about the analyzing process by using PSD so as to evaluate micro undulations on the machined surface quantitatively. In addition, it was mentioned that the grinding process with circumferential velocity control was effective for large aperture lenses fabrication and could minimalize undulations appeared on outer area of the machined surface, and mentioned about the optical glass lens molding process by using the high precision press machine.

  19. Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates

    Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.

    2016-06-01

    There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.

  20. [Lens platform].

    Łukaszewska-Smyk, Agnieszka; Kałuzny, Józef

    2010-01-01

    The lens platform defines lens structure and lens material. Evolution of lens comprises change in their shape, angulation of haptens and transition of three-piece lens into one-piece lens. The lens fall into two categories: rigid (PMMA) and soft (siliconic, acrylic, colameric). The main lens maaterials are polymers (hydrophilic and hydrophobic). The lens platform has an effect on biocompatibility, bioadhesion, stability of lens in capsule, degree of PCO evolution and sensitiveness to laser damages.

  1. Miniature objective lens for array digital pathology: design improvement based on clinical evaluation

    McCall, Brian; Pierce, Mark; Graviss, Edward A.; Richards-Kortum, Rebecca R.; Tkaczyk, Tomasz S.

    2016-03-01

    A miniature objective designed for digital detection of Mycobacterium tuberculosis (MTB) was evaluated for diagnostic accuracy. The objective was designed for array microscopy, but fabricated and evaluated at this stage of development as a single objective. The counts and diagnoses of patient samples were directly compared for digital detection and standard microscopy. The results were found to be correlated and highly concordant. The evaluation of this lens by direct comparison to standard fluorescence sputum smear microscopy presented unique challenges and led to some new insights in the role played by the system parameters of the microscope. The design parameters and how they were developed are reviewed in light of these results. New system parameters are proposed with the goal of easing the challenges of evaluating the miniature objective and maintaining the optical performance that produced the agreeable results presented without over-optimizing. A new design is presented that meets and exceeds these criteria.

  2. Changing space and sound: Parametric design and variable acoustics

    Norton, Christopher William

    This thesis examines the potential for parametric design software to create performance based design using acoustic metrics as the design criteria. A former soundstage at the University of Southern California used by the Thornton School of Music is used as a case study for a multiuse space for orchestral, percussion, master class and recital use. The criteria used for each programmatic use include reverberation time, bass ratio, and the early energy ratios of the clarity index and objective support. Using a panelized ceiling as a design element to vary the parameters of volume, panel orientation and type of absorptive material, the relationships between these parameters and the design criteria are explored. These relationships and subsequently derived equations are applied to Grasshopper parametric modeling software for Rhino 3D (a NURBS modeling software). Using the target reverberation time and bass ratio for each programmatic use as input for the parametric model, the genomic optimization function of Grasshopper - Galapagos - is run to identify the optimum ceiling geometry and material distribution.

  3. Rapid cooled lens cell

    Stubbs, David M.; Hsu, Ike C.

    1991-12-01

    This paper describes the optomechanical design, thermal analysis, fabrication, and test evaluation processes followed in developing a rapid cooled, infrared lens cell. Thermal analysis was the key engineering discipline exercised in the design phase. The effect of thermal stress on the lens, induced by rapid cooling of the lens cell, was investigated. Features of this lens cell that minimized the thermal stress will be discussed in a dedicated section. The results of thermal analysis on the selected lens cell design and the selection of the flow channel design in the heat exchanger will be discussed. Throughout the paper engineering drawings, illustrations, analytical results, and photographs of actual hardware are presented.

  4. Design and development of a high-concentration and high-efficiency photovoltaic concentrator using a curved Fresnel lens

    Scharlack, R.S.; Moffat, A.

    1983-08-01

    Thermo Electron has designed a high concentration photovoltaic module that uses a domed, point-focus Fresnel lens. Their design, design optimization process, and results from lens and receiver tests are described in this report. A complete module has not been fabricated and probably will not be fabricated in the future; however, Thermo Electron's optical design, analysis, and testing of both secondary optical units and domed Fresnel lenses have made a significant contribution to our project. Tooling errors prevented the lens from reaching its potential efficiency by the end of the contract, and resolution of these tooling problems is currently being attempted with a follow-on contract, No. 68-9463.

  5. DESIGN OF MODULATION AND COMPRESSION CODING IN UNDERWATER ACOUSTIC IMAGE TRANSMISSION

    程恩; 余丽敏; 林耿超

    2002-01-01

    This paper describes the design of modulation, compression coding and transmissi on control in underwater acoustic color image transmission system. This design adap ts a special system of modulation and transmission control based on a DSP(Digital Signal Processing) chip, to cope with the complex underwater acoustic channel. The hardware block diagram and software flow chart are presented.

  6. DESIGN OF MODULATION AND COMPRESSION CODING IN UNDERWATER ACOUSTIC IMAGE TRANSMISSION

    程恩; 余丽敏; 林耿超

    2002-01-01

    This paper describes the design of modulation, compression coding and transmission control in underwater acoustic color image transmission system. This design adapts a special system of modulation and transmission control based on a DSP(Digital Signal Processing) chip, to cope with the complex underwater acoustic channel. The hardware block diagram and software flow chart are presented.

  7. Acoustical Design Guidelines for Living Rooms for Adults with intellectual Disabilities

    Saher, K.

    2013-01-01

    The aim of this thesis is to investigate the effects of building design tools on acoustical quality parameters in living rooms for adults with intellectual disabilities (ID) and develop acoustical design guidelines for architects. This study is specifically concerned with the validation of auralizat

  8. Design techniques for superposition of acoustic bandgaps using fractal geometries

    Castiñeira-Ibáñez, S; Sánchez-Pérez, J V; Garcia-Raffi, L M

    2010-01-01

    Research into properties of heterogeneous artificial materials, consisting of arrangements of rigid scatterers embedded in a medium with different elastic properties, has been intense throughout last two decades. The capability to prevent the transmission of waves in predetermined bands of frequencies -called bandgaps- becomes one of the most interesting properties of these systems, and leads to the possibility of designing devices to control wave propagation. The underlying physical mechanism is destructive Bragg interference. Here we show a technique that enables the creation of a wide bandgap in these materials, based on fractal geometries. We have focused our work in the acoustic case where these materials are called Phononic/Sonic Crystals (SC) but, the technique could be applied any types of crystals and wave types in ranges of frequencies where the physics of the process is linear.

  9. Circuit design for the retina-like image sensor based on space-variant lens array

    Gao, Hongxun; Hao, Qun; Jin, Xuefeng; Cao, Jie; Liu, Yue; Song, Yong; Fan, Fan

    2013-12-01

    Retina-like image sensor is based on the non-uniformity of the human eyes and the log-polar coordinate theory. It has advantages of high-quality data compression and redundant information elimination. However, retina-like image sensors based on the CMOS craft have drawbacks such as high cost, low sensitivity and signal outputting efficiency and updating inconvenience. Therefore, this paper proposes a retina-like image sensor based on space-variant lens array, focusing on the circuit design to provide circuit support to the whole system. The circuit includes the following parts: (1) A photo-detector array with a lens array to convert optical signals to electrical signals; (2) a strobe circuit for time-gating of the pixels and parallel paths for high-speed transmission of the data; (3) a high-precision digital potentiometer for the I-V conversion, ratio normalization and sensitivity adjustment, a programmable gain amplifier for automatic generation control(AGC), and a A/D converter for the A/D conversion in every path; (4) the digital data is displayed on LCD and stored temporarily in DDR2 SDRAM; (5) a USB port to transfer the data to PC; (6) the whole system is controlled by FPGA. This circuit has advantages as lower cost, larger pixels, updating convenience and higher signal outputting efficiency. Experiments have proved that the grayscale output of every pixel basically matches the target and a non-uniform image of the target is ideally achieved in real time. The circuit can provide adequate technical support to retina-like image sensors based on space-variant lens array.

  10. Design of an efficient Fresnel-type lens utilizing double total internal reflection for solar energy collection.

    Wallhead, Ian; Jiménez, Teresa Molina; Ortiz, Jose Vicente García; Toledo, Ignacio Gonzalez; Toledo, Cristóbal Gonzalez

    2012-11-05

    A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.

  11. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.

    Wei, Zongsu; Weavers, Linda K

    2016-07-01

    Scaled-up and economically viable sonochemical systems are critical for increased use of ultrasound in environmental and chemical processing applications. In this study, computational simulations and acoustic pressure maps were used to design a larger-scale sono-reactor containing a multi-stepped ultrasonic horn. Simulations in COMSOL Multiphysics showed ultrasonic waves emitted from the horn neck and tip, generating multiple regions of high acoustic pressure. The volume of these regions surrounding the horn neck were larger compared with those below the horn tip. The simulated acoustic field was verified by acoustic pressure contour maps generated from hydrophone measurements in a plexiglass box filled with water. These acoustic pressure contour maps revealed an asymmetric and discrete distribution of acoustic pressure due to acoustic cavitation, wave interaction, and water movement by ultrasonic irradiation. The acoustic pressure contour maps were consistent with simulation results in terms of the effective scale of cavitation zones (∼ 10 cm and acoustic field and identified cavitation location, a cylindrically-shaped sono-reactor with a conical bottom was designed to evaluate the treatment capacity (∼ 5 L) for the multi-stepped horn using COMSOL simulations. In this study, verification of simulation results with experiments demonstrates that coupling of COMSOL simulations with hydrophone measurements is a simple, effective and reliable scientific method to evaluate reactor designs of ultrasonic systems.

  12. On the acoustic wedge design and simulation of anechoic chamber

    Jiang, Changyong; Zhang, Shangyu; Huang, Lixi

    2016-10-01

    This study proposes an alternative to the classic wedge design for anechoic chambers, which is the uniform-then-gradient, flat-wall (UGFW) structure. The working mechanisms of the proposed structure and the traditional wedge are analyzed. It is found that their absorption patterns are different. The parameters of both structures are optimized for achieving minimum absorber depth, under the condition of absorbing 99% of normal incident sound energy. It is found that, the UGFW structure achieves a smaller total depth for the cut-off frequencies ranging from 100 Hz to 250 Hz. This paper also proposes a modification for the complex source image (CSI) model for the empirical simulation of anechoic chambers, originally proposed by Bonfiglio et al. [J. Acoust. Soc. Am. 134 (1), 285-291 (2013)]. The modified CSI model considers the non-locally reactive effect of absorbers at oblique incidence, and the improvement is verified by a full, finite-element simulation of a small chamber. With the modified CSI model, the performance of both decorations with the optimized parameters in a large chamber is simulated. The simulation results are analyzed and checked against the tolerance of 1.5 dB deviation from the inverse square law, stipulated in the ISO standard 3745(2003). In terms of the total decoration depth and anechoic chamber performance, the UGFW structure is better than the classic wedge design.

  13. Design of acoustic beam aperture modifier using gradient-index phononic crystals.

    Lin, Sz-Chin Steven; Tittmann, Bernhard R; Huang, Tony Jun

    2012-06-15

    This article reports the design concept of a novel acoustic beam aperture modifier using butt-jointed gradient-index phononic crystals (GRIN PCs) consisting of steel cylinders embedded in a homogeneous epoxy background. By gradually tuning the period of a GRIN PC, the propagating direction of acoustic waves can be continuously bent to follow a sinusoidal trajectory in the structure. The aperture of an acoustic beam can therefore be shrunk or expanded through change of the gradient refractive index profiles of the butt-jointed GRIN PCs. Our computational results elucidate the effectiveness of the proposed acoustic beam aperture modifier. Such an acoustic device can be fabricated through a simple process and will be valuable in applications, such as biomedical imaging and surgery, nondestructive evaluation, communication, and acoustic absorbers.

  14. Comparison of different Kerr-lens mode locking laser design techniques

    Moreno-Larios, José Agustín.; Rosete-Aguilar, Martha; Garduño-Mejía, Jesús

    2016-04-01

    Three numerical methods for the design of Kerr Lens Mode-Locking (KLML) ultrashort pulse cavities that use a solid state Brewster-cut nonlinear gain medium are compared. The nonlinear medium is modeled first deploying a matrix approximation that considers non-coupled (tangential analysis is independent of sagittal analysis) Kerr and thermal self-focusing; and second with a differential equation that relates the real and imaginary parts of the inverse of the complex Gaussian beam parameter. The third comparison is against a matrix analysis method that considers the coupling between the sagittal and tangential modes inside the nonlinear medium in order to determine the impact of this effect. The three methods search the self-consistency condition for the complex beam parameter and the results are compared.

  15. Design of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp

    Wang, Hong; Li, Xiufeng; Ge, Peng

    2017-02-01

    We propose a design method of an optical lens combined with a total internal reflection (TIR) freeform surface for a LED front fog lamp. The TIR freeform surface controls the edge rays of the LED source. It totally reflects the edge rays and makes them emit from the top surface of the lens. And the middle rays of the LED source go through the refractive surface and reach the measured plane. We simulate the model by Monte Carlo method. Simulation results show that the front fog lamp system can satisfy the requirement of ECE R19 Rev7. The light control efficiency can reach up to 76%.

  16. Meta-analysis and review: effectiveness, safety, and central port design of the intraocular collamer lens

    Packer M

    2016-06-01

    Full Text Available Mark Packer Mark Packer MD Consulting, Inc., Boulder, CO, USA Abstract: The purpose of this review is to summarize relevant data from publications appearing in the peer-reviewed scientific literature over the past decade since US Food and Drug Administration approval of the implantable collamer lens (ICL, and, in particular, to review studies relating to sizing methodology, safety, and effectiveness, as well as more recent studies reporting clinical outcomes of the V4c Visian ICL with KS Aquaport, VICMO. A literature search was conducted using two databases, PubMed.gov and Science.gov, to identify all articles published after 2005 related to the Visian ICL (STAAR Surgical, Inc.. Articles were examined for their relevance to sizing methodology, clinical safety, and effectiveness, and the references cited in each article were also searched for additional relevant publications. The literature review revealed that all currently reported methods of determining the best-fit size of the ICL achieve similarly satisfactory results in terms of vault, the safe distance between the crystalline lens and the ICL. Specifically, meta-analysis demonstrated that sulcus-to-sulcus and white-to-white measurement-based sizing methods do not result in clinically meaningful nor statistically significant differences in vault (two-sample two-sided t-test using pooled mean and standard deviations; t (2,594=1.33; P=0.18. The reported rates of complications related to vault are very low, except in two case series where additional risk factors such as higher levels of myopia and older age impacted the incidence of cataract. On the basis of preclinical studies and initial clinical reports, with up to 5 years of follow-up, the new VICMO central port design holds promise for further reduction of complications. Given its safety record and the significant improvement in vision and quality of life that the ICL makes possible, the benefits of ICL implantation outweigh the risks

  17. Design considerations and sensitivity estimates for an acoustic neutrino detector

    Karg, T; Graf, K; Hoessl, J; Kappes, A; Katz, U; Lahmann, R; Naumann, C; Salomon, K; Karg, Timo; Anton, Gisela; Graf, Kay; Hoessl, Juergen; Kappes, Alexander; Katz, Uli; Lahmann, Robert; Naumann, Christopher; Salomon, Karsten

    2005-01-01

    We present a Monte Carlo study of an underwater neutrino telescope based on the detection of acoustic signals generated by neutrino induced cascades. This provides a promising approach to instrument large detector volumes needed to detect the small flux of cosmic neutrinos at ultra-high energies (E > 1 EeV). Acoustic signals are calculated based on the thermo-acoustic model. The signal is propagated to the sensors taking frequency dependent attenuation into account, and detected using a threshold trigger, where acoustic background is included as an effective detection threshold. A simple reconstruction algorithm allows for the determination of the cascade direction and energy. Various detector setups are compared regarding their effective volumes. Sensitivity estimates for the diffuse neutrino flux are presented.

  18. Meta-analysis and review: effectiveness, safety, and central port design of the intraocular collamer lens.

    Packer, Mark

    2016-01-01

    The purpose of this review is to summarize relevant data from publications appearing in the peer-reviewed scientific literature over the past decade since US Food and Drug Administration approval of the implantable collamer lens (ICL), and, in particular, to review studies relating to sizing methodology, safety, and effectiveness, as well as more recent studies reporting clinical outcomes of the V4c Visian ICL with KS Aquaport, VICMO. A literature search was conducted using two databases, PubMed.gov and Science.gov, to identify all articles published after 2005 related to the Visian ICL (STAAR Surgical, Inc.). Articles were examined for their relevance to sizing methodology, clinical safety, and effectiveness, and the references cited in each article were also searched for additional relevant publications. The literature review revealed that all currently reported methods of determining the best-fit size of the ICL achieve similarly satisfactory results in terms of vault, the safe distance between the crystalline lens and the ICL. Specifically, meta-analysis demonstrated that sulcus-to-sulcus and white-to-white measurement-based sizing methods do not result in clinically meaningful nor statistically significant differences in vault (two-sample two-sided t-test using pooled mean and standard deviations; t (2,594)=1.33; P=0.18). The reported rates of complications related to vault are very low, except in two case series where additional risk factors such as higher levels of myopia and older age impacted the incidence of cataract. On the basis of preclinical studies and initial clinical reports, with up to 5 years of follow-up, the new VICMO central port design holds promise for further reduction of complications. Given its safety record and the significant improvement in vision and quality of life that the ICL makes possible, the benefits of ICL implantation outweigh the risks.

  19. Meta-analysis and review: effectiveness, safety, and central port design of the intraocular collamer lens

    Packer, Mark

    2016-01-01

    The purpose of this review is to summarize relevant data from publications appearing in the peer-reviewed scientific literature over the past decade since US Food and Drug Administration approval of the implantable collamer lens (ICL), and, in particular, to review studies relating to sizing methodology, safety, and effectiveness, as well as more recent studies reporting clinical outcomes of the V4c Visian ICL with KS Aquaport, VICMO. A literature search was conducted using two databases, PubMed.gov and Science.gov, to identify all articles published after 2005 related to the Visian ICL (STAAR Surgical, Inc.). Articles were examined for their relevance to sizing methodology, clinical safety, and effectiveness, and the references cited in each article were also searched for additional relevant publications. The literature review revealed that all currently reported methods of determining the best-fit size of the ICL achieve similarly satisfactory results in terms of vault, the safe distance between the crystalline lens and the ICL. Specifically, meta-analysis demonstrated that sulcus-to-sulcus and white-to-white measurement-based sizing methods do not result in clinically meaningful nor statistically significant differences in vault (two-sample two-sided t-test using pooled mean and standard deviations; t (2,594)=1.33; P=0.18). The reported rates of complications related to vault are very low, except in two case series where additional risk factors such as higher levels of myopia and older age impacted the incidence of cataract. On the basis of preclinical studies and initial clinical reports, with up to 5 years of follow-up, the new VICMO central port design holds promise for further reduction of complications. Given its safety record and the significant improvement in vision and quality of life that the ICL makes possible, the benefits of ICL implantation outweigh the risks. PMID:27354760

  20. Design of anisotropic focusing metasurface and its application for high-gain lens antenna

    Guo, Wenlong; Wang, Guangming; Li, Haipeng; Li, Tangjing; Ge, Qichao; Zhuang, Yaqiang

    2017-03-01

    In this paper, we propose an anisotropic focusing metasurface with function of focusing orthogonally polarized waves in refraction and reflection modes respectively. By employing four layered metallic patches spaced by triple layered dielectric spacers, an anisotropic phase element is designed with capability of transmitting x-polarized waves but reflecting y-polarized beams efficiently. Composed of 21 × 21 cells and with size of 105 × 105 mm2, a focusing metasurface operating at 15 GHz is designed with the same focal length of 30 mm for x- and y-polarized waves. By setting a patch antenna at the focal point, the metasurface sample is employed to enhance gain of the radiation source. For verification, the metasurface sample is fabricated and measured. The antenna performance, in terms of realized boresight gain and operating bandwidth under x- and y-polarized waves illumination, is presented. Results show that the 1 dB gain bandwidths are respectively from 14.7 to 15.3 GHz and 14.7 to 15.2 GHz, and the gain are enhanced by 14.1 dB, 15.1 dB in refraction and reflection modes when the metasurface is impinged by x- and y-polarized spherical waves. The proposed anisotropic metasurface may afford an alternative for designing anisotropic planar lens or high-gain antenna.

  1. A preliminary design study on an acoustic muffler for the laminar flow transition research apparatus

    Abrahamson, A. L.

    1984-01-01

    An acoustic muffler design of a research tool for studying laminar flow and the mechanisms of transition, the Laminar Flow and Transition Research Apparatus (LFTRA) is investigated. Since the presence of acoustic pressure fluctuations is known to affect transition, low background noise levels in the test section of the LFTRA are mandatory. The difficulties and tradeoffs of various muffler design concepts are discussed and the most promising candidates are emphasized.

  2. Clinical Trials of Exterior Non Implanted Interference-Based Extended Depth of Focus Intra Ocular Lens Design

    Zeev Zalevsky

    2014-10-01

    Full Text Available In this paper, we present the clinical trials performed with intra ocular lens (IOL design, realizing an interference-based extended depth of focus concept, with an external glass plate. The purpose of such extended depth of focus-based IOL design is to prevent cataract patients from needing to use different types of glasses (for reading and for distance vision after undergoing surgery.

  3. Advanced gradient-index lens design tools to maximize system performance and reduce SWaP

    Campbell, Sawyer D.; Nagar, Jogender; Brocker, Donovan E.; Easum, John A.; Turpin, Jeremiah P.; Werner, Douglas H.

    2016-05-01

    GRadient-INdex (GRIN) lenses have long been of interest due to their potential for providing levels of performance unachievable with traditional homogeneous lenses. While historically limited by a lack of suitable materials, rapid advancements in manufacturing techniques, including 3D printing, have recently kindled a renewed interest in GRIN optics. Further increasing the desire for GRIN devices has been the advent of Transformation Optics (TO), which provides the mathematical framework for representing the behavior of electromagnetic radiation in a given geometry by "transforming" it to an alternative, usually more desirable, geometry through an appropriate mapping of the constituent material parameters. Using TO, aspherical lenses can be transformed to simpler spherical and flat geometries or even rotationally-asymmetric shapes which result in true 3D GRIN profiles. Meanwhile, there is a critical lack of suitable design tools which can effectively evaluate the optical wave propagation through 3D GRIN profiles produced by TO. Current modeling software packages for optical lens systems also lack advanced multi-objective global optimization capability which allows the user to explicitly view the trade-offs between all design objectives such as focus quality, FOV, ▵nand focal drift due to chromatic aberrations. When coupled with advanced design methodologies such as TO, wavefront matching (WFM), and analytical achromatic GRIN theory, these tools provide a powerful framework for maximizing SWaP (Size, Weight and Power) reduction in GRIN-enabled optical systems. We provide an overview of our advanced GRIN design tools and examples which minimize the presence of mono- and polychromatic aberrations in the context of reducing SWaP.

  4. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect.

  5. Fitting an MSD (mini scleral design) rigid contact lens in advanced keratoconus with INTACS.

    Dalton, Kristine; Sorbara, Luigina

    2011-12-01

    Keratoconus is a bilateral degenerative disease characterized by a non-inflammatory, progressive central corneal ectasia (typically asymmetric) and decreased vision. In its early stages it may be managed with spectacles and soft contact lenses but more commonly it is managed with rigid contact lenses. In advanced stages, when contact lenses can no longer be fit, have become intolerable, or corneal damage is severe, a penetrating keratoplasty is commonly performed. Alternative surgical techniques, such as the use of intra-stromal corneal ring segments (INTACS) have been developed to try and improve the fit of rigid contact lenses in keratoconic patients and avoid penetrating keratoplasties. This case report follows through the fitting of rigid contact lenses in an advanced keratoconic cornea after an INTACS procedure and discusses clinical findings, treatment options, and the use of mini-scleral and scleral lens designs as they relate to the challenges encountered in managing such a patient. Mini-scleral and scleral lenses are relatively easy to fit, and can be of benefit to many patients, including advanced keratoconic patients, post-INTAC patients and post-penetrating keratoplasty patients.

  6. Integrating acoustic analysis in the architectural design process using parametric modelling

    Peters, Brady

    2011-01-01

    This paper discusses how parametric modeling techniques can be used to provide architectural designers with a better understanding of the acoustic performance of their designs and provide acoustic engineers with models that can be analyzed using computational acoustic analysis software. Architects...... are increasingly using parametric modeling techniques in their design processes to allow the exploration of large numbers of design options using multiple criteria. Parametric modeling software can be performance-driven and sound has the potential to become one of these performance-driven dimensions. This can...... provide a method by which architects and engineers can work together more efficiently and communicate better. This research is illustrated through the design of an architectural project, a new school in Copenhagen, Denmark by JJW Architects, where parametric modeling techniques have been used in different...

  7. Business model design through a designer's lens: Translating, transferring and transforming cognitive configurations into action

    Simonse, W.L.; Badke-Schaub, P.G.

    2015-01-01

    Strategic managers are challenged to take advantage of digitalisation opportunities related to services of social media and web 2.0 technologies. Business innovations such as crowd sourcing platforms require a new way of integrating business to technology, articulated in a new business model designs

  8. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  9. Feasibility of acoustic neutrino detection in ice: Design and performance of the South Pole Acoustic Test Setup (SPATS)

    Boeser, S; Descamps, F; Fischer, J; Hallgren, A; Heller, R; Hundertmark, S; Krieger, K; Nahnhauer, R; Pohl, M; Price, P B; Sulanke, K -H; Tosi, D; Vandenbroucke, J

    2008-01-01

    The South Pole Acoustic Test Setup (SPATS) has been built to evaluate the acoustic characteristics of the South Pole ice in the 10 to 100 kHz frequency range so that the feasibility and specific design of an acoustic neutrino detection array at South Pole can be evaluated. SPATS consists of three vertical strings that were deployed in the upper 400 meters of the South Pole ice cap in January 2007, using the upper part of IceCube holes. The strings form a triangular array with the longest baseline 421 meters. Each of them has 7 stages with one transmitter and one sensor module. Both are equipped with piezoelectric ceramic elements in order to produce or detect sound. Analog signals are brought to the surface on electric cables where they are digitized by a PC-based data acquisition system. The data from all three strings are collected on a master-PC in a central facility, from which they are sent to the northern hemisphere via a satellite link or locally stored on tape. A technical overview of the SPATS detect...

  10. Ultra-wide to mid-wide angle 3X zoom and focus adjustable lens design for industrial video endoscope

    Yang, Dongmin

    2012-11-01

    Optical zoom lens design for industrial video endoscope faces tremendous challenges in stringent compactness requirement in both diameter and rigid length dimensions, as well as harsh environmental requirements such as high working temperature. Industrial video endoscope with optical zoom capability is increasingly demanded by market yet nowadays no such product has been commercialized. Once it succeeds, it will provide huge benefits to customers in improvement of remote visual inspection work quality and productivity. A 3X continuous optical zoom lens design with short focal length is presented in this paper. It is capable to change Field of View from ultra-wide angle as 120degrees to mid-wide angle as 40degrees. Focus distance change is from infinity to as close as 5mm. The whole lens train has a maximum diameter of 3.0mm, and overall length of 8.7mm, which makes it practical to be integrated into a 6mm industrial video endoscope. Image quality in terms of contrast and resolution exceeds today's existing commercial 6mm industrial video endoscopes. The design has also considered cost and product ruggedness requests.

  11. Design and Analysis of Underwater Acoustic Networks with Reflected Links

    Emokpae, Lloyd

    Underwater acoustic networks (UWANs) have applications in environmental state monitoring, oceanic profile measurements, leak detection in oil fields, distributed surveillance, and navigation. For these applications, sets of nodes are employed to collaboratively monitor an area of interest and track certain events or phenomena. In addition, it is common to find autonomous underwater vehicles (AUVs) acting as mobile sensor nodes that perform search-and-rescue missions, reconnaissance in combat zones, and coastal patrol. These AUVs are to work cooperatively to achieve a desired goal and thus need to be able to, in an ad-hoc manner, establish and sustain communication links in order to ensure some desired level of quality of service. Therefore, each node is required to adapt to environmental changes and be able to overcome broken communication links caused by external noise affecting the communication channel due to node mobility. In addition, since radio waves are quickly absorbed in the water medium, it is common for most underwater applications to rely on acoustic (or sound) rather than radio channels for mid-to-long range communications. However, acoustic channels pose multiple challenging issues, most notably the high transmission delay due to slow signal propagation and the limited channel bandwidth due to high frequency attenuation. Moreover, the inhomogeneous property of the water medium affects the sound speed profile while the signal surface and bottom reflections leads to multipath effects. In this dissertation, we address these networking challenges by developing protocols that take into consideration the underwater physical layer dynamics. We begin by introducing a novel surface-based reflection scheme (SBR), which takes advantage of the multipath effects of the acoustic channel. SBR works by using reflections from the water surface, and bottom, to establish non-line-of-sight (NLOS) communication links. SBR makes it possible to incorporate both line

  12. Design and performance of the South Pole Acoustic Test Setup

    Abdou, Yasser; Berdermann, Jens; Bissok, Martin; Bohm, Christian; Boeser, Sebastian; Bothe, Martin; Carson, Michael; Descamps, Freija; Fischer-Wolfarth, Jan-Hendrik; Gustafsson, Leif; Hallgren, Allan; Heinen, Dirk; Helbing, Klaus; Heller, Reinhart; Hundertmark, Stephan; Karg, Timo; Krieger, Kevin; Laihem, Karim; Meures, Thomas; Nahnhauer, Rolf; Naumann, Uwe; Oberson, Filip; Paul, Larissa; Pohl, Mario; Price, Buford; Ribordy, Mathieu; Ryckbosch, Dirk; Schunck, Matthias; Semburg, Benjamin; Stegmaier, Jutta; Sulanke, Karl-Heinz; Tosi, Delia; Vandenbroucke, Justin; Wiebusch, Christopher

    2011-01-01

    The South Pole Acoustic Test Setup (SPATS) was built to evaluate the acoustic characteristics of the South Pole ice in the 10 kHz to 100 kHz frequency range, for the purpose of assessing the feasibility of an acoustic neutrino detection array at the South Pole. The SPATS hardware consists of four vertical strings deployed in the upper 500 m of the South Pole ice cap. The strings form a trapezoidal array with a maximum baseline of 543 m. Each string has 7 stages equipped with one transmitter and one sensor module. Sound is detected or generated by piezoelectric ceramic elements inside the modules. Analogue signals are sent to the surface on electric cables where they are digitized by a PC-based data acquisition system. The data from all strings are collected on a central computer in the IceCube Laboratory from where they are send to a central data storage facility via a satellite link or stored locally on tape. A technical overview of SPATS and its performance is presented.

  13. Design of a cross-dipole array acoustic logging tool

    Lu Junqiang; Ju Xiaodong; Cheng Xiangyang

    2008-01-01

    When entering an anisotropic formation,a shear wave splits into a fast wave and a slow wave.Based on the principle of four-component cross-dipole acoustic wave measurement,the anisotropy of HTI (Horizontal Transverse Isotropy) formation can be determined.The method of calculating the fast and slow wave data when a shear wave propagates along the borehole axis in anisotropic formation was analyzed,and the implementation of a cross-dipole acoustic logging tool was demonstrated.The tool was composed of transmitter electronics,transmitter mandrel,acoustic isolator,receiver mandrel and main control electronics.Sonde,transmitter circuit,signal receiving and processing circuit,data acquisition system,system control circuit and telemetry interface circuit were presented and analyzed.The test model was used in production wells and standard wells in various areas and the four-component cross-dipole waves were acquired and processed.The waves had good signal-to-noise ratio and clear characteristics,and the fast and slow waveforms,processed slowness curves,anisotropy and fast shear wave azimuth well matched with each other.

  14. Classroom acoustics design for speakers’ comfort and speech intelligibility: a European perspective

    Garcia, David Pelegrin; Rasmussen, Birgit; Brunskog, Jonas

    2014-01-01

    experienced at work. With the aim of improving teachers' working conditions, this paper proposes adjustments to current regulatory requirements on classroom acoustics in Europe from novel insights on classroom acoustics design that meet simultaneously criteria of vocal comfort for teachers and speech...... intelligibility for students. Two room acoustic parameters are shown relevant for a speaker: the voice support, linked to vocal effort, and the decay time derived from an oral-binaural impulse response, linked to vocal comfort. Theoretical prediction models for room-averaged values of these parameters...... are combined with a model of speech intelligibility based on the useful-to-detrimental ratio and empirical models of signal-to-noise ratio in classrooms in order to derive classroom acoustic guidelines, taking into account physical volume restrictions linked to the number of students present in a classroom...

  15. Speaker-Oriented Classroom Acoustics Design Guidelines in the Context of Current Regulations in European Countries

    Pelegrin Garcia, David; Brunskog, Jonas; Rasmussen, Birgit

    2014-01-01

    experienced at work. With the aim of improving working conditions for teachers, this article presents guidelines for classroom acoustics design that meet simultaneously criteria of vocal comfort and speech intelligibility, which may be of use in future discussions for updating regulatory requirements...... in classroom acoustics. Two room acoustic parameters are shown relevant for a speaker: the voice support, linked to vocal effort, and the decay time derived from an oral-binaural impulse response, linked to vocal comfort. Theoretical prediction models for room-averaged values of these parameters are combined...... with a model of speech intelligibility based on the useful-to-detrimental ratio and empirical models of signal-to-noise ratio in classrooms in order to derive classroom acoustic guidelines, taking into account physical volume restrictions linked to the number of students present in a classroom. The recommended...

  16. Experimental validation of systematically designed acoustic hyperbolic meta material slab exhibiting negative refraction

    Christiansen, Rasmus Ellebæk; Sigmund, Ole

    2016-01-01

    This Letter reports on the experimental validation of a two-dimensional acoustic hyperbolic metamaterial slab optimized to exhibit negative refractive behavior. The slab was designed using a topology optimization based systematic design method allowing for tailoring the refractive behavior. The e...

  17. Design and fabrication of one-dimensional focusing X-ray compound lens with Al material

    Zichun Le; Ming Zhang; Jingqiu Liang; Wen Dong; Kai Liu; Bisheng Quan

    2006-01-01

    @@ A method based on Fourier spectrum analysis for predicting the performances of the X-ray compound lenses is briefly introduced,the theoretical result obtained is the same as that of Fresnel-Kirchhoff approach.A kind of technique named moulding is developed for fabricating the one-dimensional (1D) compound X-ray lens with Al material and the fabrication process is presented.In addition,a two-time coating method is used to improve the numerical apertures of the compound lenses.Furthermore,the focusing performance of the Al compound X-ray lens under the high energy X-rays is measured.

  18. 一种LED均匀照明的透镜设计%A Lens Design for LED Uniform Illumination

    王晶; 张宁; 徐熙平; 乔杨

    2015-01-01

    由于LED发射光强的逐渐提高,许多照明系统使用单颗LED作为光源就可以满足不同场合的需求。通过对LED的发光特性的分析,提出了一种以单颗LED作为光源的均匀照明透镜的设计。首先由Snell定律和能量守恒定律构建出满足设计条件的透镜的数学方程,运用MATLAB进行编程解出该方程,再使用Pro/E对求解出的坐标点进行拟合来得到透镜模型,最后用TracePro将得到的透镜模型进行光线追击,通过得到的照度图可知最终达到在规定区域内均匀照明的需求。%With the increasing of emission intensity of LED, illumination system with a single LED light source can meet requirements in many fields. According to the characteristics of LED source, a method of lens design of LED uniform illumination was proposed. At first,a lens design equation by Snell's law and the law of conservation of ener-gy was formulated;and the result of the equation was solved by MATLAB. Then the profile curves were acquired by curve fitting of the coordinate spots with software Pro/E;so the lens model could be got. At last,the lens model was introduced into TracePro and rays were traced. Finally the uniform illumination at target area was obtained.

  19. The acoustic design of the Centro Nacional de las Artes in Mexico City

    Cooper, Rusell

    2002-11-01

    In this paper the acoustic design of the separate buildings housing the school of music, school of drama, and school of dance that opened in 1996 will be described. Spaces that JHA designed included practice rooms, studios, rehearsal rooms, black box, and concert hall. Details of room acoustic treatments, sound isolation measures, and venturi air flow will be illustrated. An overview of the entire project will also include the 500 seat multipurpose theater (with variable absorption systems) and the Alla Magna. Differences between the American and Mexican styles of consulting, importing of materials, installation, and commissioning will also be discussed.

  20. Designing null phase screens to test a fast plano-convex aspheric lens

    DelOlmo-Márquez, Jesús; Castán-Ricaño, Diana; Avendaño-Alejo, Maximino; Díaz-Uribe, Rufino

    2015-08-01

    We have obtained a formula to represent the wavefront produced by a plano-convex aspheric lens with symmetry of revolution considering a plane wavefront propagating parallel to the optical axis and impinging on the refracting surface, it is called a zero-distance phase front, being it the first wavefront to be out of the optical system. Using a concept of differential geometry called parallel curves it is possible to obtain an analytic formula to represent the wavefront propagated at arbitrary distances through the optical axis. In order to evaluate qualitatively a plano-convex aspheric lens, we have modified slightly an interferometer Tywman-Green as follow: In the reference beam we use a plane mirror and the beam of test we have used a spatial light modulator (SLM) to compensate the phase produced by the lens under test. It will be called a null phase interferometer. The main idea is to recombine both wavefronts in order to get a null interferogram, otherwise we will associate the patterns of the interferogram to deformations of the lens under test. The null phase screens are formed with concentric circumferences assuming different gray levels printed on SLM.

  1. Design, construction, activation, and operation of a high intensity acoustic test chamber

    Kamel, L. T.

    1986-01-01

    The design philosophy, construction, integration, and activation of the high intensity acoustic test chamber for production acceptance testing of satellites are discussed. The 32,000 cubic-foot acoustic test cell consists of a steel reinforced concrete chamber with six electropneumatic noise generators. One of the innovative features of the chamber is a unique quarter horn assembly that acoustically couples the noise generators to the chamber. Design concepts, model testing, and evaluation results are presented. Considerations such as nitrogen versus compressed air source, digital closed loop spectrum control versus manual equalizers, and microprocessor based interlock systems are included. Construction difficulties, anomalies encountered, and their resolution are also discussed. Results of the readiness testing are highlighted.

  2. Transfer element method with application to acoustic design of aeroengine nacelle

    Wang Xiaoyu

    2015-04-01

    Full Text Available In the present survey, various methods for the acoustic design of aeroengine nacelle are first briefly introduced along with the comments on their advantages and disadvantages for practical application, and then detailed analysis and discussion focus on a kind of new method which is called “transfer element method” (TEM with emphasis on its application in the following three problems: turbomachinery noise generations, sound transmission in ducts and radiation from the inlet and outlet of ducts, as well as the interaction between them. In the theoretical frame of the TEM, the solution of acoustic field in an infinite duct with stator sound source or liner is extended to that in a finite domain with all knows and unknowns on the interface plane, and the relevant acoustic field is solved by setting up matching equation. In addition, based on combining the TEM with the boundary element method (BEM by establishing the pressure and its derivative continuum conditions on the inlet and outlet surface, the sound radiation from the inlet and outlet of ducts can also be investigated. Finally, the effects of various interactions between the sound source and acoustic treatment have been discussed in this survey. The numerical examples indicate that it is quite important to consider the effect of such interactions on sound attenuation during the acoustic design of aeroengine nacelle.

  3. A Two-Stage Taguchi Design ExampleImage Quality Promotion in Miniature Camera/Cell-Phone Lens

    Luke K. Wang

    2012-07-01

    Full Text Available A simple, practical manufacturing process, integrating manufacturing capability-oriented design (MCOD philosophy and Taguchi’s method, is presented to tackle the high resolution miniature camera/cell phone lens issues at the manufacturing phase. Meanwhile, we also use optical software to create an analytical simulation model to investigate the quality characteristics due to lens’ thickness, eccentricity, surface profile, and air lens’ gap; a single quality characteristics expressed in terms of modulation transfer function (MTF is defined. Optimal combination of process parameters in experimental scenario using Taguchi’s method is performed, and the results are judged and analyzed by the indices of signal-to-noise ratio (S/N and the analysis of variance (ANOVA. The key idea of the two-stage design is to utilize optical software to conduct the sensitivity analysis of MTF first; an analytical model, dependent on actual process parameters at manufacturing stage, is constructed next; and finally by substituting these outputs from the analytical model back to the optical software to verify the design criterion and do the modifications. By minimizing both the theoretical errors at design stage and the complexity in the manufacturing process, we are able to seeking for the most economical solution, simultaneously attain the optimal/suboptimal combination of process parameters or control factors in lens manufacturing issue.

  4. Impedance-Matched Reduced Acoustic Cloaking with Realizable Mass and Its Layered Design

    CHEN Huan-Yang; YANG Tao; LUO Xu-Dong; MA Hong-Ru

    2008-01-01

    We present an impedance-matched reduced version of acoustic cloaking whose mass is in a reasonable range. A layered cloak design with isotropic material is also proposed for the reduced cloak. Numerical calculations from the transfer matrix methods show that the present layered cloak can reduce the scattering of an air cylinder substantially.

  5. Design of object surveillance system based on enhanced fish-eye lens

    Jianhui Wu; Kuntao Yang; Qiaolian Xiang; Nanyang Zhang

    2009-01-01

    A new method is proposed for the object surveillance system based on the enhanced fish-eye lens and the high speed digital signal processor (DSP). The improved fish-eye lens images an ellipse picture on the charge-coupled device (CCD) surface, which increases both the utilization rate of the 4:3 rectangular CCD and the imaging resolution, and remains the view angle of 183°. The algorithm of auto-adapted renewal background subtraction (ARBS) is also explored to extract the object from the monitoring image. The experimental result shows that the ARBS algorithm has high anti-jamming ability and high resolution, leading to excellent object detecting ability from the enhanced elliptical fish-eye image under varies en-vironments. This system has potential applications in different security monitoring fields due to its wide monitoring space, simple structure, working stability, and reliability.

  6. Interior Acoustic Analysis for Early Use in Design Project

    National Aeronautics and Space Administration — The design of an aircraft is a highly iterative process. During the conceptual design phase there is no time for developing detailed simulation models and decisions...

  7. Design of a piezoelectric transducer cylindrical phase modulator for simulating acoustic emission signals

    HE Cunfu; HANG Lijun; WU Bin

    2007-01-01

    To conveniently carry out the pipeline leak experiment in a laboratory,leak acoustic signals are simulated by using the converse piezoelectric effect of a piezoelectric transducer (PZT) cylindrical phase modulator.On the basis of the piezoelectric equations and electromechanical equivalence principle,the transfer function of a PZT cylindrical phase modulator is delivered.A PZT cylindrical phase modulator is designed,and the numerical simulation is conducted.Results prove that the PZT cylindrical phase modulator can effectively simulate leak acoustic emission signals when the frequency is lower than 25 KHz.

  8. Classroom acoustics design guidelines based on the optimization of speaker conditions

    Pelegrin Garcia, David; Brunskog, Jonas

    2012-01-01

    School teachers suffer frequently from voice problems due to the high vocal load that they experience and the not-always-ideal conditions under which they have to teach. Traditionally, the purpose of the acoustic design of classrooms has been to optimize speech intelligibility. New guidelines...... and noise level measurements in classrooms. Requirements of optimum vocal comfort, average A-weighted speech levels across the audience higher than 50 dB, and a physical volume higher than 6 m3/student are combined to extract optimum acoustic conditions, which depend on the number of students...

  9. Design of acoustic cell settler for filtering and recycling microbial cells.

    Hwang, Sung-Ho; Koo, Yoon-Mo

    2003-02-01

    An acoustic cell settler (ACS) using ultrasound at cells of 3 MHz was used to recycle Saccharomyces cerevisiae in a fermenter. The locations of both the inlet and outlet in the acoustic cell settler, which have a relatively long distance between the transducer and reflector, were optimized. A tilted settler was designed to make up for the defect in the horizontal ACS, which has a low recovery ratio. The tilted ACS gave a recovery ratio of yeast cells of about 5 during the most period of operation, which was twice that of the horizontal ACS.

  10. MEMS acoustic emission transducers designed with high aspect ratio geometry

    Saboonchi, H.; Ozevin, D.

    2013-09-01

    In this paper, micro-electro-mechanic systems (MEMS) acoustic emission (AE) transducers are manufactured using an electroplating technique. The transducers use a capacitance change as their transduction principle, and are tuned to the range 50-200 kHz. Through the electroplating technique, a thick metal layer (20 μm nickel + 0.5 μm gold) is used to form a freely moving microstructure layer. The presence of the gold layer reduces the potential corrosion of the nickel layer. A dielectric layer is deposited between the two electrodes, thus preventing the stiction phenomenon. The transducers have a measured quality factor in the range 15-30 at atmospheric pressure and are functional without vacuum packaging. The transducers are characterized using electrical and mechanical tests to identify the capacitance, resonance frequency and damping. Ultrasonic wave generation using a Q-switched laser shows the directivity of the transducer sensitivity. The comparison of the MEMS transducers with similar frequency piezoelectric transducers shows that the MEMS AE transducers have better response characteristics and sensitivity at the resonance frequency and well-defined waveform signatures (rise time and decay time) due to pure resonance behavior in the out-of-plane direction. The transducers are sensitive to a unique wave direction, which can be utilized to increase the accuracy of source localization by selecting the correct wave velocity at the structures.

  11. Conceptual design study of advanced acoustic-composite nacelles

    Nordstrom, K. E.; Marsh, A. H.; Sargisson, D. F.

    1975-01-01

    Conceptual studies were conducted to assess the impact of incorporating advanced technologies in the nacelles of a current wide-bodied transport and an advanced technology transport. The improvement possible in the areas of fuel consumption, flyover noise levels, airplane weight, manufacturing costs, and airplane operating cost were evaluated for short and long-duct nacelles. Use of composite structures for acoustic duct linings in the fan inlet and exhaust ducts was considered as well as for other nacelle components. For the wide-bodied transport, the use of a long-duct nacelle with an internal mixer nozzle in the primary exhaust showed significant improvement in installed specific fuel consumption and airplane direct operating costs compared to the current short-duct nacelle. The long-duct mixed-flow nacelle is expected to achieve significant reductions in jet noise during takeoff and in turbo-machinery noise during landing approach. Recommendations were made of the technology development needed to achieve the potential fuel conservation and noise reduction benefits.

  12. Summary of recent design studies of advanced acoustic-composite nacelles

    Norton, H. T., Jr.

    1975-01-01

    The results are summarized of recent NASA-sponsored studies of advanced acoustic-composite nacelles. Conceptual nacelle designs for current wide-bodied transports and for advanced technology transports, intended for operational use in the mid-1980's, were studied by Lockheed-California Company and the Douglas Aircraft Company. These studies were conducted with the objective of achieving significant reductions in community noise and/or fuel consumption with minimum penalties in airplane weights, cost, and operating expense. The results indicate that the use of advanced composite materials offer significant potential weight and cost savings and result in reduced fuel consumption and noise when applied to nacelles. The most promising concept for realizing all of these benefits was a long duct, mixed flow acoustic composite nacelle with advanced acoustic liners.

  13. Challenges, constraints and results of lens design in 8-12micron waveband for bolometer-FPAs having a pixel pitch 12micron

    Schuster, Norbert; Franks, John

    2013-06-01

    In the 8-12 micron waveband Focal Plane Arrays (FPA) are available with a pixel pitch of 12 microns or less. High resolution FPAs with VGA, XGA and SXGA resolution should become available at a reasonable price. These will require new lens designs to give the required fields of view. The challenge for the Optical Designer is to design lenses when the pixel pitch of the detector is the same as the wavelength of the light imaged. The lens specification will need to give more thought to the resolution required by the system. A smaller pixel pitch detector defines a requirement for a shorter focal length to give the same field of view. This will have a number of effects upon the lens design. Geometrical aberrations decrease proportionally with the focal length. Reverse telephoto layouts will become more common, particularly when the system has a shutter. The increase in pixel count will require wide field of view lenses which present particular challenges. The impact of diffraction effects on the lens design is considerably increased. The fast F-number causes an increase in the diffraction limit of the system, but also increases geometric aberrations by a cube law. Therefore the balance between the diffraction limited and the aberration limited performance becomes more difficult. The first approach of the designer is to re-use proven designs originally intended for use with 17micron detectors. Some of these designs will have adequate performance at the Nyquist limit of the 12 micron detectors. Even smaller detector pitches, such as 10 micron, will demand new approaches to Infra Red lens design. The traditional approach will quickly increase the number of elements to 3 or even more. This could lead to the lenses with medium fields of view driving the system cost. A close cooperation between the camera developer and lens designer will become necessary in order to explore alternate approaches, such as wavefront coding, in order to reach the most cost effective solution.

  14. Acoustic Analysis and Design of the E-STA MSA Simulator

    Bittinger, Samantha A.

    2016-01-01

    The Orion European Service Module Structural Test Article (E-STA) Acoustic Test was completed in May 2016 to verify that the European Service Module (ESM) can withstand qualification acoustic environments. The test article required an aft closeout to simulate the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA) cavity, however, the flight MSA design was too cost-prohibitive to build. NASA Glenn Research Center (GRC) had 6 months to design an MSA Simulator that could recreate the qualification prediction MSA cavity sound pressure level to within a reasonable tolerance. This paper summarizes the design and analysis process to arrive at a design for the MSA Simulator, and then compares its performance to the final prediction models created prior to test.

  15. Structural-Acoustic Simulations in Early Airframe Design Project

    National Aeronautics and Space Administration — The structural design during the early development of an aircraft focuses on strength, fatigue, corrosion, maintenance, inspection, and manufacturing. Usually the...

  16. Acoustical features of two Mayan monuments at Chichen Itza: Accident or design?

    Lubman, David

    2002-11-01

    Chichen Itza dominated the early postclassic Maya world, ca. 900-1200 C.E. Two of its colossal monuments, the Great Ball Court and the temple of Kukulkan, reflect the sophisticated, hybrid culture of a Mexicanized Maya civilization. The architecture seems intended for ceremony and ritual drama. Deducing ritual practices will advance the understanding of a lost civilization, but what took place there is largely unknown. Perhaps acoustical science can add value. Unexpected and unusual acoustical features can be interpreted as intriguing clues or irrelevant accidents. Acoustical advocates believe that, when combined with an understanding of the Maya worldview, acoustical features can provide unique insights into how the Maya designed and used theater spaces. At Chichen Itza's monuments, sound reinforcement features improve rulers and priests ability to address large crowds, and Ball Court whispering galleries permit speech communication over unexpectedly large distances. Handclaps at Kukulkan stimulate chirps that mimic a revered bird (''Kukul''), thus reinforcing cultic beliefs. A ball striking playing field wall stimulates flutter echoes at the Great Ball Court; their strength and duration arguably had dramatic, mythic, and practical significance. Interpretations of the possible mythic, magic, and political significance of sound phenomena at these Maya monuments strongly suggests intentional design.

  17. Acoustic Treatment Design Scaling Methods. Volume 1; Overview, Results, and Recommendations

    Kraft, R. E.; Yu, J.

    1999-01-01

    Scale model fan rigs that simulate new generation ultra-high-bypass engines at about 1/5-scale are achieving increased importance as development vehicles for the design of low-noise aircraft engines. Testing at small scale allows the tests to be performed in existing anechoic wind tunnels, which provides an accurate simulation of the important effects of aircraft forward motion on the noise generation. The ability to design, build, and test miniaturized acoustic treatment panels on scale model fan rigs representative of the fullscale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. The primary objective of this study was to develop methods that will allow scale model fan rigs to be successfully used as acoustic treatment design tools. The study focuses on finding methods to extend the upper limit of the frequency range of impedance prediction models and acoustic impedance measurement methods for subscale treatment liner designs, and confirm the predictions by correlation with measured data. This phase of the program had as a goal doubling the upper limit of impedance measurement from 6 kHz to 12 kHz. The program utilizes combined analytical and experimental methods to achieve the objectives.

  18. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  19. Design for an efficient single photon source based on a single quantum dot embedded in a parabolic solid immersion lens.

    Devaraj, Vasanthan; Baek, Jongseo; Jang, Yudong; Jeong, Hyuk; Lee, Donghan

    2016-04-18

    We have designed a single photon emitter based on a single quantum dot embedded within a single mode parabolic solid immersion lens (pSIL) and a capping low-index pSIL. Numerical simulations predicted that the emitter performance should exhibit a high photon collection efficiency with excellent far-field emission properties, broadband operation, and good tolerance in its geometric (spatial configuration) parameters. Good geometric tolerance in a single-mode pSIL without yielding significant losses in the photon collection efficiency is advantageous for device fabrication. The low-index top pSIL layer provided this structure with a high photon collection efficiency, even in the case of a small numerical aperture (NA). Photon collection efficiencies of 64% and 78% were expected for NA values of 0.41 and 0.5, respectively. In addition to the benefits listed above, our combined pSIL design provided excellent broadband performance in a 100 nm range.

  20. Development of design of CLA: target lens line-focusing system

    Li, Xuechun; Zhu, Jianqiang

    1999-08-01

    In this paper the principle of CLA-target system to obtain focal line with homogenous intensity distribution was described. And tow new structure modal CLA used for improving the homogeneous of focal line was described and the numerical results of the classical CLA and new type CLA was also given. Those result showed that the focal line long-range intensity distribution can be improved greatly by using CLA with optimized unequal cylindrical lens element for beam with Gaussian intensity distribution and by using hybrid element CLA for the case of super-Gaussian distribution. The optimal process was treated by simulated annealing method. The intensity modulation decreased to 0.7 percent for optimized 4-element unequal width CLA system when incident laser with Gaussian section distribution.

  1. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    Mihaela Puiu; Ana-Maria Gurban; Lucian Rotariu; Simona Brajnicov; Cristian Viespe; Camelia Bala

    2015-01-01

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporat...

  2. DESIGN OF ENVELOPE STRUCTURES OF BUILDINGS WITH ACCOUNT FOR AND SUBJECT TO THE CONDITIONS OF ACOUSTIC PROTECTION

    Giyasov Botir Iminzhonovich

    2012-12-01

    Full Text Available The totality of all environmental influences, including domestic and industrial noise, must be taken into account in the design of building structures. Building envelopes that have appropriate acoustic protection properties are to be used in the practice of the acoustic protection (soundproofing, etc.. According to the principles of structural design, design of soundproof buildings can be broken down into the two groups: design with account for the security conditions (eg., windows, doors, walls, floors, and design of noise-proof structures (eg., partitions, suspended ceilings. Multi-optional design of building structures or buildings that meet the terms of acoustic protection requires a modern approach to the process of their development. Any progress in this area is associated with computer-aided design supported by multiple analysis options. Automation allows adjustments in order to comply with the variety of the input data or objective functions to provide for optimal cycling options. In this regard, the authors describe the algorithms and principles of design of building envelopes on the condition of and subject to the acoustic protection. The proposed solution represents a software package capable of performing a multivariate analysis of options of acoustic protection at each stage of building design. Practical application of the software package used to solve practical problems in the design of building envelopes has demonstrated its higher efficiency that the one of traditional design methods.

  3. DESIGN OF INTELLIGENT CONTROL SYSTEM USING ACOUSTIC PARAMETERS FOR GRINDING MILL OPERATION

    Sonali Sen

    2013-02-01

    Full Text Available This paper utilizes acoustic parameters such as FS,NC, N, P, INC, FL, FH, W for acoustic signals S of different running conditions of a ballmill to deriveout the acoustic signatures and hence control signals, which is to be used for designing the control systems of the mill. The parameters FS, NC, N, P, INC, FL, FH and W are represented by sample rate in Hz, number of cepstral coefficients, length of frame in samples, number of filters in filter bank, frame increment, low end of the lowest filter, high end of highest filter and the window over which the analysis is to be performed respectively. The work establishes an appropriate theoretical background that helps to predict dynamic breakage characteristics with respect to particle size distribution of materials, adequately supported by experimental data. The signatures of different running conditions of grinding mill have been extracted from the captured signal in time frame these have been used as feedback signal to monitor the grinding operation. Condenser based microphones have been used for capturing acoustic signals in time domain directly in computers and stored for further analysis. Matlab R2010b has been used for different analysis of the experiment. On analyzing the signatures, it has been observed whether the fines are produced progressively to attain the desired size range or the mill producing undesired products. Thus, the approach has been used in this paper has the ability to arrive in the stage of optimum grinding by tuning parameters of the mill in real time, and also it can prevent the mill to enter into an erroneous state. Moreover, on study it has found that the present scheme can be used more accurately in comparison to the earlier work of the author. This paper presents an implementation scheme to use acoustic signal as the control signal to regulate the operation of a grinding mill.

  4. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-01-01

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated. PMID:28252033

  5. Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens.

    Sheikh, Mumtaz; Riza, Nabeel A

    2010-06-01

    To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring standard Gaussian beam parameters, the analyzer can also be used to measure the M(2) beam propagation parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed analyzer are successfully conducted for a 633 nm laser beam. Given the all-digital nature of the DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed analyzer versus prior art promises better repeatability, speed, and reliability.

  6. Rock and pop venues acoustic and architectural design

    Adelman-Larsen, Niels Werner

    2014-01-01

    Popular music plays an substantial role in most people’s life. The demand and financial revenue of Rock and pop concerts is large and still increasing. Though 80% of the music turnover is done in Rock and Pop Music, books assess only Classical concert and opera houses. However, the requirements for pop music halls are different from classical Music and opera houses. This book closes this gap including the following features: In part one, the book A. Gives a objective methodology to assess Rock and Pop Music Venues B. Shows essential construction details and choices of building materials in the design of new venues or the renovation of old ones. In part two, the book C. Presents a set of famous European rock and pop venues, their architecture, their beauty and their properties. D. These Venues are assessed by a new and comparably simple method to objectively rate halls. Subjective data complete the assessment and give a full picture of the sound quality of a venue.

  7. Acoustic and social design of schools-ways to improve the school listening environment

    Hagen, Mechthild

    2005-04-01

    Results of noise research indicate that communication, and as a result, teaching, learning and the social atmosphere are impeded by noise in schools. The development of strategies to reduce noise levels has often not been effective. A more promising approach seems to be to pro-actively support the ability to listen and to understand. The presentation describes the approach to an acoustic and social school design developed and explored within the project ``GanzOhrSein'' by the Education Department of the Ludwig-Maximilians-University of Munich. The scope includes an analysis of the current ``school soundscape,'' an introduction to the concept of the project to improve individual listening abilities and the conditions for listening, as well as practical examples and relevant research results. We conclude that an acoustic school design should combine acoustic changes in classrooms with educational activities to support listening at schools and thus contribute to improving individual learning conditions and to reducing stress on both pupils and teachers.

  8. Wave focusing using symmetry matching in axisymmetric acoustic gradient index lenses

    Romero-García, V.; Cebrecos, A.; Picó, R.; Sánchez-Morcillo, V. J.; Garcia-Raffi, L. M.; Sánchez-Pérez, J. V.

    2013-12-01

    The symmetry matching between the source and the lens results in fundamental interest for lensing applications. In this work, we have modeled an axisymmetric gradient index (GRIN) lens made of rigid toroidal scatterers embedded in air considering this symmetry matching with radially symmetric sources. The sound amplification obtained in the focal spot of the reported lens (8.24 dB experimentally) shows the efficiency of the axisymmetric lenses with respect to the previous Cartesian acoustic GRIN lenses. The axisymmetric design opens new possibilities in lensing applications in different branches of science and technology.

  9. Odeon, a design tool for auditorium acoustics, noise control and loudspeaker systems

    Christensen, Claus Lynge

    2001-01-01

    The ODEON software was originally developed for prediction of auditorium acoustics. However current editions of the software are not limited to these fields, but also allow prediction in rooms such as churches and mosques, interior noise control, design of room acoustics and sound distribution...... systems in public rooms such as foyers, underground stations and airports. Some of the features in ODEON 5.0 Combined are; two methods for global estimation of reverberation time, various point response calculations providing decay curves, reflectograms, miscellaneous parameter graphs, 3D maps, multi......-source calculations including point, line and surface sources, facilities for noise control calculations and multi-channel auralization using fully filtered BRIR’s....

  10. James Webb Space Telescope Optical Simulation Testbed II. Design of a Three-Lens Anastigmat Telescope Simulator

    Choquet, Élodie; N'Diaye, Mamadou; Perrin, Marshall D; Soummer, Rémi

    2014-01-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to reproduce the main aspects of wavefront sensing and control (WFSC) for JWST. To replicate the key optical physics of JWST's three-mirror anastigmat (TMA) design at optical wavelengths we have developed a three-lens anastigmat optical system. This design uses custom lenses (plano-convex, plano-concave, and bi-convex) with fourth-order aspheric terms on powered surfaces to deliver the equivalent image quality and sampling of JWST NIRCam at the WFSC wavelength (633~nm, versus JWST's 2.12~micron). For active control, in addition to the segmented primary mirror simulator, JOST reproduces the secondary mirror alignment modes with five degrees of freedom. We present the testbed requirements and its optical and optomechanical design. We study the linearity of the main aberration modes (focus, astigmatism, coma) both as a function of field point and level of misalignments of the secondary mirror. We find that t...

  11. Optical lens-shift design for increasing spatial resolution of 3D ToF cameras

    Lietz, Henrik; Hassan, M. Muneeb; Eberhardt, Jörg

    2017-02-01

    Sensor resolution of 3D time-of-flight (ToF) outdoor-capable cameras is strongly limited because of its large pixel dimensions. Computational imaging permits enhancement of the optical system's resolving power without changing physical sensor properties. Super-resolution (SR) algorithms superimpose several sub-pixel-shifted low-resolution (LR) images to overcome the system's limited spatial sampling rate. In this paper, we propose a novel opto-mechanical system to implement sub-pixel shifts by moving an optical lens. This method is more flexible in terms of implementing SR techniques than current sensor-shift approaches. In addition, we describe a SR observation model that has been optimized for the use of LR 3D ToF cameras. A state-of-the-art iteratively reweighted minimization algorithm executes the SR process. It is proven that our method achieves nearly the same resolution increase as if the pixel area would be halved physically. Resolution enhancement is measured objectively for amplitude images of a static object scene.

  12. Comparison of STRUCTURAL-ACOUSTIC Control Designs on AN Active Composite Panel

    BINGHAM, B.; ATALLA, M. J.; HAGOOD, N. W.

    2001-07-01

    This work presents a comparison of three technologies for structural-acoustic control that, while prevalent in the literature, had not been compared on a single structure. The comparison is generalizable because the techniques are implemented on a panel structure representative of a more complex structure (e.g., an aircraft fuselage, a submarine vehicle hull, a satellite payload shroud, etc.). The test-bed used for this comparison is a carbon-fiber composite panel manufactured with embedded active fiber composite actuators. Since such integrated structures constitute a continued avenue of research, the manufacturing and performance of this structure is illustrated. The design of the test-bed is guided by an effort to achieve a dynamic response similar to a single panel in a typical aircraft or rotorcraft fuselage.Existing active control architectures for broadband acoustic radiation reduction are compared both analytically and experimentally on a representative structure to quantify the capabilities and limitations of the existing control methodologies. Specifically, three broad categories of control are compared: classical feedback (rate feedback), optimal feedback (linear quadratic Gaussian), and adaptive feedforward control (x -filtered least mean square). The control architectures implemented during this study are all single-input/single-output in order to allow a fair comparison of the issues involved in the design, as well as the use and performance of each approach. Both the vibration and the acoustic performance are recorded for each experiment under equivalent conditions to allow a generalizable comparison. Experimental results lead to conclusions pertaining to the application of active structural-based control to improve the acoustic performance of more complex structures.

  13. Mechanical design and vibro-acoustic testing of ultrathin carbon foils for a spacecraft instrument

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    IBEX-Hi is an electrostatic analyzer spacecraft instrument designed to measure the energy and flux distribution of energetic neutral atoms (ENAs) emanating from the interaction zone between the Earth's solar system and the Milky Way galaxy. A key element to this electro-optic instrument is an array of fourteen carbon foils that are used to ionize the ENAs. The foils are comprised of an ultrathin (50-100 {angstrom} thick) layer of carbon suspended across the surface of an electroformed Nickel wire screen, which in turn is held taught by a metal frame holder. The electro formed orthogonal screen has square wire elements, 12.7 {micro}m thick, with a pitch of 131.1 wires/cm. Each foil holder has an open aperture approximately 5 cm by 2.5 cm. Designing and implementing foil holders with such a large surface area has not been attempted for spaceflight in the past and has proven to be extremely challenging. The delicate carbon foils are subject to fatigue failure from the large acoustic and vibration loads that they will be exposed to during launch of the spacecraft. This paper describes the evolution of the foil holder design from previous space instrument applications to a flight-like IBEX-Hi prototype. Vibro-acoustic qualification tests of the IBEX-Hi prototype instrument and the resulting failure of several foils are summarized. This is followed by a discussion of iterative foil holder design modifications and laser vibrometer modal testing to support future fatigue failure analyses, along with additional acoustic testing of the IBEX-Hi prototype instrument. The results of these design and testing activities are merged and the resulting flight-like foil holder assembly is proposed.

  14. Acoustic superfocusing by solid phononic crystals

    Zhou, Xiaoming; Assouar, M. Badreddine; Oudich, Mourad

    2014-12-01

    We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.

  15. Interactions in an acoustic world

    Simaciu, Ion; Borsos, Zoltan; Bradac, Mariana

    2016-01-01

    The present paper aims to complete an earlier paper where the acoustic world was introduced. This is accomplished by analyzing the interactions which occur between the inhomogeneities of the acoustic medium, which are induced by the acoustic vibrations traveling in the medium. When a wave packet travels in a medium, the medium becomes inhomogeneous. The spherical wave packet behaves like an acoustic spherical lens for the acoustic plane waves. According to the principle of causality, there is an interaction between the wave and plane wave packet. In specific conditions the wave packet behaves as an acoustic black hole.

  16. Principles for the design and calibration of radiation protection dosemeters for operational and protection quantities for eye lens dosimetry.

    Bordy, J M; Gualdrini, G; Daures, J; Mariotti, F

    2011-03-01

    The work package two of the ORAMED project--Collaborative Project (2008-2011) supported by the European Commission within its seventh Framework Programme--is devoted to the study of the eye lens dosimetry. A first approach is to implement the use of H(p)(3) by providing new sets of conversion coefficients and well suited calibration and type test procedures. This approach is presented in other papers in the proceedings of this conference. Taking into account that the eye lens is an organ close to the surface of the body, another approach would be to directly estimate the absorbed dose to the eye lens, D(lens,est) through a special calibration procedure although this quantity is not directly measurable. This paper is a methodological paper that tries to identify the critical aspects of a dosimetry in terms of D(lens).

  17. Responsive acoustic surfaces

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  18. Acoustic contrast sensitivity to transfer function errors in the design of a personal audio system.

    Park, Jin-Young; Choi, Jung-Woo; Kim, Yang-Hann

    2013-07-01

    An analytic means to evaluate the error sensitivity of a personal audio system is proposed. The personal audio system, which focuses acoustic energy into a zone of interest using multiple loudspeakers, is subject to various errors when implemented. The performance of a personal audio system, defined as an energy ratio between the zone of interest and the rest, is inevitably influenced by errors. Thus the ability to predict performance change at the design stage is crucial when building a robust personal audio system. The dependence of the energy ratio change on various types of errors is formulated.

  19. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    Mihaela Puiu

    2015-05-01

    Full Text Available We report a Love wave surface acoustic wave (LW-SAW immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT applications.

  20. Enhanced sensitive love wave surface acoustic wave sensor designed for immunoassay formats.

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-05-05

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications.

  1. Design, assembly, and testing of a high-resolution relay lens used for holography with operation at both doubled and tripled Nd:YAG laser wavelengths

    Sorenson, Danny S [Los Alamos National Laboratory; Pazuchanics, Peter D [Los Alamos National Laboratory; Malone, Robert M [NSTEC; Cox, Brian C [NSTEC; Frogget, Brent C [NSTEC; Kaufman, Morris I [NSTEC; Capelle, Gene A [NSTEC/SB; Grover, M [NSTEC/SB; Stevens, Gerald D [NSTEC/SB; Turley, William D [NSTEC/SB

    2009-01-01

    The design and assembly of a nine-element lens that achieves >2000 1p/mm resolution at a 355-nm wavelength (ultraviolet) has been completed. By adding a doublet to this lens system, operation at a 532-nm wavelength (green) with > 1100 1p/mm resolution is achieved. This lens is used with high-power laser light to record holograms of fast-moving ejecta particles from a shocked metal surface located inside a test package. Part of the lens and the entire test package are under vacuum with a 1-cm air gap separation. Holograms have been recorded with both doubled and tripled Nd:YAG laser light. The UV operation is very sensitive to the package window's tilt. If this window is tilted by more than 0.1 degrees, the green operation performs with better resolution than that of the UV operation. The setup and alignment are performed with green light, but the dynamic recording can be done with either UV light or green light. A resolution plate can be temporarily placed inside the test package so that a television microscope located beyond the hologram position can archive images of resolution patterns that prove that the calibration wires., interference filter, holographic plate, and relay lenses are in their correct positions. Part of this lens is under vacuum, at the point where the laser illumination passes through a focus. Alignment and tolerancing of this high-resolution lens are presented. Resolution variation across the 12-mm field of view and throughout the 5-mm depth of field is discussed for both wavelengths.

  2. LASER INDUCED THERMAL LENS EFFECT

    沈俊; 黄孟才; 江景云; 施教芳

    1991-01-01

    The thermal lens effect has emerged in recent years as a novel ,highly sensitive tool for the study of the very weak molecular absorption of light energy,This paper discusses the theory and technique of the thermal lens measurement.Some opplications of the thermal lens measurement are described.A mode-mismatched dual-beam thermal lens experimental arragement with a modulated probe beam ,designed by the authors.for trace analysis is presented,and its detection limit was found to be 4.1×10-7 for Cu(Ⅱ) in ethanol and 80 mW excitation power.

  3. An Improved Variable Structure Adaptive Filter Design and Analysis for Acoustic Echo Cancellation

    A. Kar

    2015-04-01

    Full Text Available In this research an advance variable structure adaptive Multiple Sub-Filters (MSF based algorithm for single channel Acoustic Echo Cancellation (AEC is proposed and analyzed. This work suggests a new and improved direction to find the optimum tap-length of adaptive filter employed for AEC. The structure adaptation, supported by a tap-length based weight update approach helps the designed echo canceller to maintain a trade-off between the Mean Square Error (MSE and time taken to attain the steady state MSE. The work done in this paper focuses on replacing the fixed length sub-filters in existing MSF based AEC algorithms which brings refinements in terms of convergence, steady state error and tracking over the single long filter, different error and common error algorithms. A dynamic structure selective coefficient update approach to reduce the structural and computational cost of adaptive design is discussed in context with the proposed algorithm. Simulated results reveal a comparative performance analysis over proposed variable structure multiple sub-filters designs and existing fixed tap-length sub-filters based acoustic echo cancellers.

  4. Optical design of fish-eye lens used for monitoring system%用于监控系统的鱼眼镜头光学设计

    梁久伟; 罗春华; 杨铭

    2011-01-01

    The bionics principle is used based on the principle of fish-eye lens and monitor control system requirements. A fish-eye lens that FOV is 180° and relative aperture is 1/1. 6 is designed with the optical system design software ZEMAX to meet the requirement of the monitor control system on panoramic monitor. The designed system consists nine lenses. The total length is 68. 5mm, image receiver is 1/3 inch CCD, the MTF value is more than 0. 3 within 0. 7 FOV at 80lp/mm, the MTF value of FOV are more than 0. 5 within 0 FOV at 120lp/mm. The lens has high distortion because of this lens is a fish-eye lens. Its barrel distortion approximates to 100% within 1. 0 FOV.%为了满足监控系统中单镜头可实现全景监控的需求,运用仿生学原理,在原有鱼眼镜头的基础上结合监控系统的需求,运用ZEMAX软件设计了一款视场为180°,相对孔径为1/1.6的鱼眼镜头.该镜头由9片透镜组成,总长度为68.5mm,采用1/3英寸CCD作为图像接收器件.在120lp/mm时,其MTF曲线在轴上大于0.4,在80lp/mm时,在0.7带上大于0.3.由于是超广角镜头,此镜头畸变很大,在边缘视场具有接近100%的桶形畸变.

  5. Wood lens design philosophy based on a binary additive manufacturing technique

    Marasco, Peter L.; Bailey, Christopher

    2016-04-01

    Using additive manufacturing techniques in optical engineering to construct a gradient index (GRIN) optic may overcome a number of limitations of GRIN technology. Such techniques are maturing quickly, yielding additional design degrees of freedom for the engineer. How best to employ these degrees of freedom is not completely clear at this time. This paper describes a preliminary design philosophy, including assumptions, pertaining to a particular printing technique for GRIN optics. It includes an analysis based on simulation and initial component measurement.

  6. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  7. Impact of flow induced vibration acoustic loads on the design of the Laguna Verde Unit 2 steam dryer

    Forsyth, D. R.; Wellstein, L. F.; Theuret, R. C.; Han, Y.; Rajakumar, C. [Westinghouse Electric Company LLC, Cranberry Township, PA 16066 (United States); Amador C, C.; Sosa F, W., E-mail: forsytdr@westinghouse.com [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Km 42.5 Carretera Cardel-Nautla, 91680 Alto Lucero, Veracruz (Mexico)

    2015-09-15

    Industry experience with Boiling Water Reactors (BWRs) has shown that increasing the steam flow through the main steam lines (MSLs) to implement an extended power up rate (EPU) may lead to amplified acoustic loads on the steam dryer, which may negatively affect the structural integrity of the component. The source of these acoustic loads has been found to be acoustic resonance of the side branches on the MSLs, specifically, coupling of the vortex shedding frequency and natural acoustic frequency of safety relief valves (SRVs). The resonance that results from this coupling can contribute significant acoustic energy into the MSL system, which may propagate upstream into the reactor pressure vessel steam dome and drive structural vibration of steam dryer components. This can lead to high-cycle fatigue issues. Lock-in between the vortex shedding frequency and SRV natural frequency, as well as the ability for acoustic energy to propagate into the MSL system, are a function of many things, including the plant operating conditions, geometry of the MSL/SRV junction, and placement of SRVs with respect to each other on the MSLs. Comision Federal de Electricidad and Westinghouse designed, fabricated, and installed acoustic side branches (ASBs) on the MSLs which effectively act in the system as an energy absorber, where the acoustic standing wave generated in the side-branch is absorbed and dissipated inside the ASB. These ASBs have been very successful in reducing the amount of acoustic energy which propagates into the steam dome. In addition, modifications to the Laguna Verde Nuclear Power Plant Unit 2 steam dryer have been completed to reduce the stress levels in critical locations in the dryer. The objective of this paper is to describe the acoustic side branch concept and the design iterative processes that were undertaken at Laguna Verde Unit 2 to achieve a steam dryer design that meets the guidelines of the American Society of Mechanical Engineers, Boiler and Pressure

  8. Vibro-acoustic design sensitivity analysis using the wave-based method

    Koo, Kunmo; Pluymers, Bert; Desmet, Wim; Wang, Semyung

    2011-08-01

    Conventional element-based methods, such as the finite element method (FEM) and boundary element method (BEM), require mesh refinements at higher frequencies in order to converge. Therefore, their applications are limited to low frequencies. Compared to element-based methods, the wave-based method (WBM) adopts exact solutions of the governing differential equation instead of simple polynomials to describe the dynamic response variables within the subdomains. As such, the WBM does not require a finer division of subdomains as the frequency increases in order to exhibit high computational efficiency. In this paper, the design sensitivity formulation of a semi-coupled structural-acoustic problem is implemented using the WBM. Here, the results of structural harmonic analyses are imported as the boundary conditions for the acoustic domain, which consists of multiple wave-based subdomains. The cross-sectional area of each beam element is considered as a sizing design variable. Then, the adjoint variable method (AVM) is used to efficiently compute the sensitivity. The adjoint variable is obtained from structural reanalysis using an adjoint load composed of the system matrix and an evaluation of the wave functions of each boundary. The proposed sensitivity formulation is subsequently applied to a two-dimensional (2D) vehicle model. Finally, the sensitivity results are compared to the finite difference sensitivity results, which show good agreement.

  9. Design and performance of a 30 KV electron gun with ten independent cathodes & a magnetic lens.

    Rudys, Joseph Matthew; Reed, Kim Warren

    2006-08-01

    Measurements on a 30 kV electron gun with ten independent cathodes, operating in a 6.5 Tesla (T) magnetic field are presented. An earlier paper covered the design of this electron gun [1]. Experimental results are compared to model predictions. Beam current is compared to theoretical space charge limited flow.

  10. 单反相机立体摄取镜头的研制%Design of Three-dimensional Intake Lens in SLR Camera

    贾正松; 张德忠

    2011-01-01

    提出一种单镜头立体照相方案,通过对镜头立体光圈及其控制电路的设计,制造出用于单反数码相机的立体镜头,并分析该技术方案所获立体图像的特点.实践表明,该镜头结构简单、使用方便、能一次性形成多种立体图像,有利于立体照相技术的推广.%A single-lens stereo camera program is proposed. Through the lens aperture and the three-dimensional design of the control circuit, three-dimensional lens is created for SLR digital cameras. The technical program is analyzed and three-dimensional image features are obtained. Practical results show that the lens structure is simple, and easy to use, can form a variety of one-time three-dimensional images. So it is helpful for the promotion of three-dimensional radiographic technique.

  11. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System

    Joel Reis

    2016-09-01

    Full Text Available This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance.

  12. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System

    Reis, Joel; Morgado, Marco; Batista, Pedro; Oliveira, Paulo; Silvestre, Carlos

    2016-01-01

    This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS) to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance. PMID:27649181

  13. A mixing surface acoustic wave device for liquid sensing applications: Design, simulation, and analysis

    Bui, ThuHang; Morana, Bruno; Scholtes, Tom; Chu Duc, Trinh; Sarro, Pasqualina M.

    2016-08-01

    This work presents the mixing wave generation of a novel surface acoustic wave (M-SAW) device for sensing in liquids. Two structures are investigated: One including two input and output interdigital transducer (IDT) layers and the other including two input and one output IDT layers. In both cases, a thin (1 μm) piezoelectric AlN layer is in between the two patterned IDT layers. These structures generate longitudinal and transverse acoustic waves with opposite phase which are separated by the film thickness. A 3-dimensional M-SAW device coupled to the finite element method is designed to study the mixing acoustic wave generation propagating through a delay line. The investigated configuration parameters include the number of finger pairs, the piezoelectric cut profile, the thickness of the piezoelectric substrate, and the operating frequency. The proposed structures are evaluated and compared with the conventional SAW structure with the single IDT layer patterned on the piezoelectric surface. The wave displacement along the propagation path is used to evaluate the amplitude field of the mixing longitudinal waves. The wave displacement along the AlN depth is used to investigate the effect of the bottom IDT layer on the transverse component generated by the top IDT layer. The corresponding frequency response, both in simulations and experiments, is an additive function, consisting of sinc(X) and uniform harmonics. The M-SAW devices are tested to assess their potential for liquid sensing, by dropping liquid medium in volumes between 0.05 and 0.13 μl on the propagation path. The interaction with the liquid medium provides information about the liquid, based on the phase attenuation change. The larger the droplet volume is, the longer the duration of the phase shift to reach stability is. The resolution that the output change of the sensor can measure is 0.03 μl.

  14. Lens Model

    Nash, Ulrik William

    2014-01-01

    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil......Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory...... of probabilistic functionalism, and concerns the environment and the mind, and adaptation by the latter to the former. This entry is about the lens model, and probabilistic functionalism more broadly. Focus will mostly be on firms and their employees, but, to fully appreciate the scope, we have to keep in mind...

  15. Preliminary vibration, acoustic, and shock design and test criteria for components on the Lightweight External Tank (LWT)

    1981-01-01

    The Space Shuttle LWT is divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (general Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available. Along with the specifications are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. A method of selecting applicable vibration, acoustic, and shock specifications is presented.

  16. Optics design for J-TEXT ECE imaging with field curvature adjustment lens

    Zhu, Y.; Zhao, Z.; Liu, W. D.; Xie, J., E-mail: jlxie@ustc.edu.cn [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Hu, X.; Muscatello, C. M.; Domier, C. W.; Luhmann, N. C.; Chen, M.; Ren, X. [University of California at Davis, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Zhuang, G.; Yang, Z. [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-11-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas. Of particular importance has been microwave electron cyclotron emission imaging (ECEI) for imaging T{sub e} fluctuations. Key to the success of ECEI is a large Gaussian optics system constituting a major portion of the focusing of the microwave radiation from the plasma to the detector array. Both the spatial resolution and observation range are dependent upon the imaging optics system performance. In particular, it is critical that the field curvature on the image plane is reduced to decrease crosstalk between vertical channels. The receiver optics systems for two ECEI on the J-TEXT device have been designed to ameliorate these problems and provide good performance with additional field curvature adjustment lenses with a meniscus shape to correct the aberrations from several spherical surfaces.

  17. Finite element synthesis of structural or acoustic receptances in view of practical design applications

    Lagache, Jean-Marie; Assaf, Samir; Schulte, Christian

    2008-02-01

    The present study addresses the modal synthesis of dynamic responses or receptances, which can be considered as a major issue in vibratory or acoustic design. A new method termed "method of orthocomplement" offers to increase the accuracy of modal superposition. Two apparently independent domains are considered: first, the numerical control of round-off errors in finite-dimensional models; second, the regularization of modal boundary discontinuities in infinite-dimensional formulations. Concerning the finite-dimensional systems, using the proposed method in conjunction with pseudo-inversion theorems, proves that "inertia relief corrections" remedy modal truncation problems in singular floating systems, just as static corrections do for simply supported systems. The proof is based on hitherto unpublished expressions of inertial contributions in terms of orthogonal projectors. It is worth noting that such expressions present by themselves some technical interest. Modal formulae being delivered in closed form, a thorough analysis of errors becomes possible. Special "spectrograms" are introduced to appraise the convergence of ordinary or modified modal sums. When applied to infinite-dimensional modal boundary discontinuities, the method of orthocomplement eliminates the Gibbs oscillations that affect the ordinary spectral sums, and produces the same corrected formulae as it did for finite-dimensional examples. Effective solutions for the computation of vibratory or acoustic boundary receptances, are developed in that way. The paper once again illustrates how orthogonal projectors can contribute to the determination of static corrections. Future applications to coupling problems, model reduction and modal synthesis are briefly presented at the end of the text.

  18. Progressive lens design method based on addition power curve transformation%基于加光曲线变换的渐进镜片设计方法

    薛登攀; 李湘宁; 李笑

    2012-01-01

    Starting with the vertex definition of spectacle lens, the principle and structure of the progressive addition lens, the rule and method of meridian designing are introduced. The type of addition power curve in the periphery area is chose, and then, the surface power distribution of the lens is given by the method based on transformation of meridian addition power law under the boundary conditions. To compare with the traditional methods, this one has the advantages not only in the unified power distribution form of the progressive addition lens, but also with more freedom and flexibility choice for the designer. The lens surface sag, power and astigmatism distribution can be obtained according to differential geometry of curving surface. It is proved by an embodiment that the required progressive addition lens can be designed with this method.%从眼镜片用顶焦度的定义出发,探讨了渐进加光镜片的原理和结构,介绍了子午线设计的原则和方法.选择镜片周边的加光曲线形式,通过在边界条件下对子午加光曲线做变换,确定镜片表面的屈光度分布,给出了基于加光曲线变换的设计方法.与传统方法相比,不仅在形式上统一了渐进加光镜片的屈光度分布,而且还为设计者提供了更自由灵活的选择.利用曲面微分几何原理获得镜片表面面型矢高,计算屈光度和像散分布.通过实例设计表明,此方法可以设计出所需渐进特征的加光镜片.

  19. Modern lens antennas for communications engineering

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  20. A debugging system for azimuthally acoustic logging tools based on modular and hierarchical design ideas

    Zhang, K.; Ju, X. D.; Lu, J. Q.; Men, B. Y.

    2016-08-01

    On the basis of modular and hierarchical design ideas, this study presents a debugging system for an azimuthally sensitive acoustic bond tool (AABT). The debugging system includes three parts: a personal computer (PC), embedded front-end machine and function expansion boards. Modular and hierarchical design ideas are conducted in all design and debug processes. The PC communicates with the front-end machine via the Internet, and the front-end machine and function expansion boards connect each other by the extended parallel bus. In this method, the three parts of the debugging system form stable and high-speed data communication. This study not only introduces the system-level debugging and sub-system level debugging of the tool but also the debugging of the analogue signal processing board, which is important and greatly used in logging tools. Experiments illustrate that the debugging system can greatly improve AABT verification and calibration efficiency and that, board-level debugging can examine and improve analogue signal processing boards. The design thinking is clear and the design structure is reasonable, thus making it easy to extend and upgrade the debugging system.

  1. Recent multi-purpose hall designs in Denmark with physically variable acoustics

    Gade, Anders Christian

    1999-01-01

    ) and so clarity (C), but also the strength parameter (G) could be varied in a favorable direction in view of the prescribed uses of the halls. The hall with variable absorption is the assembly hall in the new extension to the Royal Library in Copenhagen to open in fall 1999. This hall will seat 600 people...... and be used for chamber music concerts, symphony orchestra rehearsals, and amplified speech. For the latter two functions, a reduction in G along with reduction in T was considered favorable. The hall with variable volume is the recently opened Esbjerg Musikhus seating 1100 and equipped with a full stage...... house. This hall is used for symphonic concerts and musicals as well as drama and conferences. In this hall, maintaining or even increasing G along with a reduction in T is advantageous, especially in the drama theatre mode. The paper will describe the design of these two halls along with acoustic...

  2. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.

    Ergün, A Sanlı

    2011-10-01

    Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well.

  3. Reliable data storage system design and implementation for acoustic logging while drilling

    Hao, Xiaolong; Ju, Xiaodong; Wu, Xiling; Lu, Junqiang; Men, Baiyong; Yao, Yongchao; Liu, Dong

    2016-12-01

    Owing to the limitations of real-time transmission, reliable downhole data storage and fast ground reading have become key technologies in developing tools for acoustic logging while drilling (LWD). In order to improve the reliability of the downhole storage system in conditions of high temperature, intensive shake and periodic power supply, improvements were made in terms of hardware and software. In hardware, we integrated the storage system and data acquisition control module into one circuit board, to reduce the complexity of the storage process, by adopting the controller combination of digital signal processor and field programmable gate array. In software, we developed a systematic management strategy for reliable storage. Multiple-backup independent storage was employed to increase the data redundancy. A traditional error checking and correction (ECC) algorithm was improved and we embedded the calculated ECC code into all management data and waveform data. A real-time storage algorithm for arbitrary length data was designed to actively preserve the storage scene and ensure the independence of the stored data. The recovery procedure of management data was optimized to realize reliable self-recovery. A new bad block management idea of static block replacement and dynamic page mark was proposed to make the period of data acquisition and storage more balanced. In addition, we developed a portable ground data reading module based on a new reliable high speed bus to Ethernet interface to achieve fast reading of the logging data. Experiments have shown that this system can work stably below 155 °C with a periodic power supply. The effective ground data reading rate reaches 1.375 Mbps with 99.7% one-time success rate at room temperature. This work has high practical application significance in improving the reliability and field efficiency of acoustic LWD tools.

  4. Computer simulation design of millimeter-wave Rotman lens antenna%毫米波Rotman透镜天线的计算机仿真设计

    刘敏; 丁君; 郭陈江

    2013-01-01

    A millimeter-wave Rotman lens multibeam antenna with opetating frequency 37GHz and 7 beams is designed in this paper. The choices of Rotman lens focal length are analyzed to achieve the minimum phase errors. Rotman lens and antenna array are realized with microstrip and simulated together. Simulations show that this antenna can achieve multibeam and wide-angle scanning.%设计了一个频率在37 GHz的7波束毫米波Rotman透镜多波束天线.分析了透镜焦距的选择方法,以实现最小的相位误差.Rotman透镜采用微带形式实现,天线单元采用微带贴片天线,并实现了Rotman透镜与天线阵列的整体仿真.结果表明,该天线可以实现多波束宽角度的扫描特性.

  5. Creating geometrically robust designs for highly sensitive problems using topology optimization: Acoustic cavity design

    Christiansen, Rasmus E.; Lazarov, Boyan S.; Jensen, Jakob S.;

    2015-01-01

    and limitations are discussed. In addition, a known explicit penalization approach is considered for comparison. For near-uniform spatial variations it is shown that highly robust designs can be obtained using the double filter approach. It is finally demonstrated that taking non-uniform variations into account...

  6. Bionic intraocular lens with variable focus and integrated structure

    Liang, Dan; Wang, Xuan-Yin; Du, Jia-Wei; Xiang, Ke

    2015-10-01

    This paper proposes a bionic accommodating intraocular lens (IOL) for ophthalmic surgery. The designed lens has a solid-liquid mixed integrated structure, which mainly consists of a support ring, elastic membrane, rigid lens, and optical liquid. The lens focus can be adjusted through the deformation of the lens front surface when compressed. The integrated structure of the IOL is presented, as well as a detailed description of the lens materials and fabrication process. Images under different radial pressures are captured, and the lens deformation process, accommodating range, density, and optical property are analyzed. The designed lens achieves a 14.6 D accommodating range under a radial pressure of 51.4 mN and a 0.24 mm alteration of the lens outer radius. The deformation property of the lens matches well with the characteristic of the eye and shows the potential to help patients fully recover their vision accommodation ability after the cataract surgery.

  7. 自由曲面LED汽车前照灯光学透镜设计方法%Design method of LED headlamp freeform optical lens

    王洪; 陈赞吉; 吴衡; 葛鹏

    2014-01-01

    由于LED配光特性不同于传统光源,为了将LED应用于汽车照明中需对LED进行二次光学设计。文中根据LED汽车前照灯的配光特性,提出了一种自由曲面LED汽车前照灯光学透镜的设计方法。首先由能量守恒原理,在接收屏上的坐标和透镜自由曲面上的坐标之间建立能量的一一对应关系,基于非成像光学理论,采用照度优化设计法,运用数值计算求解出光学透镜曲面各个点坐标的坐标值,并使用三维模型软件制作出透镜光学模型。通过蒙特卡洛模拟法来追迹光线仿真,最后的配光效果完全满足《汽车用LED前照灯》(GB25991-2010)标准,系统的光学效率得到显著提高,可达到91%。%Different from the light distribution characteristics of the traditional light source, LED light characteristics are more complex, the second optical design for LED used in automotive lighting needs to be done. According to the light distribution characteristics of LED automobile headlamp, a freeform optical lens design method for LED headlamp was presented in this paper. By establishing one- to- one relationship between the coordinates of point on the receiving surface and the coordinates of point on the freeform surface of lens according to energy conservation principle, determining the mapping relationship between the energy and the lens, and applying the illumination optimization method, the coordinates of point on the freeform surface of lens was solved out with numerical methods based on non- imaging optics theory, then modeling software was used to establish an optical model for the freeform optical lens. Through tracing the light with Monte Carlo simulation method, the final effect of light distribution fully meets the Automotive headlamps with LED light sources and/or LED modules (GB25991-2010) standards. The simulation results show that the optical efficiency is improved greatly and can be up to 91%.

  8. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-01-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with the low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for design of intravascular acoustic angiography transducers. PMID:25856384

  9. Comparison of multimicrophone probe design and processing methods in measuring acoustic intensity.

    Wiederhold, Curtis P; Gee, Kent L; Blotter, Jonathan D; Sommerfeldt, Scott D; Giraud, Jarom H

    2014-05-01

    Three multimicrophone probe arrangements used to measure acoustic intensity are the four-microphone regular tetrahedral, the four-microphone orthogonal, and the six-microphone designs. Finite-sum and finite-difference processing methods can be used with such probes to estimate pressure and particle velocity, respectively. A numerical analysis is performed to investigate the bias inherent in each combination of probe design and processing method. Probes consisting of matched point sensor microphones both embedded and not embedded on the surface of a rigid sphere are considered. Results are given for plane wave fields in terms of root-mean-square average bias and maximum bias as a function of angle of incidence. An experimental verification of the analysis model is described. Of the combinations considered and under the stated conditions, the orthogonal probe using the origin microphone for the pressure estimate is shown to have the lowest amount of intensity magnitude bias. Lowest intensity direction bias comes from the six-microphone probe using an average of the 15 intensity components calculated using all microphone pairs. Also discussed are how multimicrophone probes can advantageously use correction factors calculated from a numerical analysis and how the results of such an analysis depend on the chosen definition of the dimensionless frequency.

  10. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  11. Real time device for biosensing: design of a bacteriophage model using love acoustic waves.

    Tamarin, O; Comeau, S; Déjous, C; Moynet, D; Rebière, D; Bezian, J; Pistré, J

    2003-05-01

    Love wave sensors (ST-cut quartz substrate with interdigital transducers, SiO(2) guiding layer and sensitive coating) have been receiving a great deal of attention for a few years. Indeed, the wave coupled in a guiding layer confers a high gravimetric sensitivity and the shear horizontal (SH) polarization allows to work in liquid media. In this paper, an analytical method is proposed to calculate the Love wave phase velocity and the gravimetric sensitivity for a complete multilayer structure. This allows us to optimize the Love wave devices design in order to improve their gravimetric sensitivity in liquid media. As a model for virus or bacteria detection in liquids (drinking or bathing water, food em leader ) we design a model using M13 bacteriophage. The first step is the anti-M13 (AM13) monoclonal antibody grafting, on the device surface (SiO(2)). The second step is an immunoreaction in between the M13 bacteriophage and the AM13 antibody. The Love wave device allows to detect in real time the graft of the AM13 sensitive coating, as well as the immobilization of the M13 bacteriophages. With a pH change, the M13 bacteriophages can be removed from the sensor surface, in order to be numerated as plaque forming unit (pfu). Results on the sensitivity of Love waves are compared with similar immunological works with bulk acoustic wave devices, and demonstrate the high potentialities of Love waves sensors.

  12. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

    Xie, Qing; Cheng, Shuyi; Lü, Fangcheng; Li, Yanqing

    2014-03-01

    The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application.

  13. Preliminary vibration, acoustic, and shock design and test criteria for components on the SRB, ET, and SSME

    1976-01-01

    Specifications for vibration, acoustic and shock design for components and subassemblies on the External Tank (ET), Solid Rocket Booster (SRB), and Space Shuttle Main Engine (SSME). Included are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. The space shuttle ET, SRB, and SSME have been divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (General Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available. Criteria for some specific components are also presented.

  14. LED Freeform Lens Design for Street Uniform Illumination%用于道路均匀照明的 LED 自由曲面透镜设计

    贺志华; 董前民; 王少雷; 李敏

    2014-01-01

    鉴于LED在道路照明应用中的复杂性和特殊性,以非成像光学为基础,提出了一种新颖的用于道路均匀照明透镜设计方案。运用微分几何原理,建立自由曲面面型的一阶拟线性双曲型偏微分方程,并在matlab中进行数值求解,将所得面型数据导入SolidWorks中建立透镜模型,该透镜将LED朗伯分布转化为道路照明所需的蝙蝠翼分布。通过Tracepro对所建透镜进行光线追迹,结果表明10m处目标面的整体均匀度在85%以上,能量利用率为89.2%。在对扩展光源配光时,该光学系统仍保持较好的照明效果,不仅有效照明区域符合预期,且照度均匀度优于0.80。用DIALux模拟该透镜组成的5×10式模组的路灯系统的照明效果,结果显示路面照度均匀度达0.83,符合国家标准。%Given the complexity and particularity of the LED in the application of street lighting , this paper presents a new lens design method for street uniform lighting based on non-imaging optics .Using the theory of differential geometry to set up the first-order quasi-linear hyperbolic partial differential equations of the freeform lens surface , and solve it by numerical solution in matlab , using the data of the lens profile , the lens model is established in SolidWorks .The designed lens can convert the Lambert distribution of the LED into the bat wing distribution for street lighting .The designed optical system simulated with ray-tracing in TracePro, the results show that the overall uniformity of the 10m distance target plane is above 85%, and the efficiency is 89 .2%.This optical system still maintains good lighting effect when point at extended light source .Not only is the effective illumination area in line with expectations , but also can keep the uniformity above 80%.The street lighting system , which uses the designed lens consisting of 5 ×10-in modular, simulated the lighting effects in DIALux .The

  15. Acoustic imaging and mirage effects with high transmittance in a periodically perforated metal slab

    Zhao, Sheng-Dong; Wang, Yue-Sheng; Zhang, Chuanzeng

    2016-11-01

    In this paper, we present a high-quality superlens to focus acoustic waves using a periodically perforated metallic structure which is made of zinc and immersed in water. By changing a geometrical parameter gradually, a kind of gradient-index phononic crystal lens is designed to attain the mirage effects. The acoustic waves can propagate along an arc-shaped trajectory which is precisely controlled by the angle and frequency of the incident waves. The negative refraction imaging effect depends delicately on the transmittance of the solid structure. The acoustic impedance matching between the solid and the liquid proposed in this article, which is determined by the effective density and group velocity of the unit-cell, is significant for overcoming the inefficiency problem of acoustic devices. This study focuses on how to obtain the high transmittance imaging and mirage effects based on the adequate material selection and geometrical design.

  16. Mass sensitivity analysis and designing of surface acoustic wave resonators for chemical sensors

    Kshetrimayum, Roshan; Yadava, R. D. S.; Tandon, R. P.

    2009-05-01

    The sensitivity of surface acoustic wave (SAW) chemical sensors depends on several factors such as the frequency and phase point of SAW device operation, sensitivity of the SAW velocity to surface mass loading, sensitivity of the SAW oscillator resonance to the loop phase shift, film thickness and oscillator electronics. This paper analyzes the influence of the phase point of operation in SAW oscillator sensors based on two-port resonator devices. It is found that the mass sensitivity will be enhanced if the SAW device has a nonlinear dependence on the frequency (delay ~ frequency-1). This requires the device to generate and operate in a ωτg(ω) = const region in the device passband, where ω denotes the angular frequency of oscillation and τg(ω) denotes the phase slope of the SAW resonator device. A SAW coupled resonator filter (CRF) that take advantage of mode coupling is considered in realizing such a device to help in shaping the phase transfer characteristics of a high mass sensitivity sensor. The device design and simulation results are presented within the coupling-of-modes formalism.

  17. A research program to reduce interior noise in general aviation airplanes. Design of an acoustic panel test facility

    Roskam, J.; Muirhead, V. U.; Smith, H. W.; Henderson, T. D.

    1977-01-01

    The design, construction, and costs of a test facility for determining the sound transmission loss characteristics of various panels and panel treatments are described. The pressurization system and electronic equipment used in experimental testing are discussed as well as the reliability of the facility and the data gathered. Tests results are compared to pertinent acoustical theories for panel behavior and minor anomalies in the data are examined. A method for predicting panel behavior in the stiffness region is also presented.

  18. Analysis, Design, and Evaluation of Acoustic Feedback Cancellation Systems for Hearing Aids

    Guo, Meng

    2013-01-01

    application that whereas the traditional and stateof- the-art acoustic feedback cancellation systems fail with significant sound distortions and howling as consequences, the new probe noise approach is able to remove feedback artifacts caused by the feedback path change in no more than a few hundred......Acoustic feedback problems occur when the output loudspeaker signal of an audio system is partly returned to the input microphone via an acoustic coupling through the air. This problem often causes significant performance degradations in applications such as public address systems and hearing aids....... In the worst case, the audio system becomes unstable and howling occurs. In this work, first we analyze a general multiple microphone audio processing system, where a cancellation system using adaptive filters is used to cancel the effect of acoustic feedback. We introduce and derive an accurate approximation...

  19. Acoustic evaluation and adjustment of an open-plan office through architectural design and noise control.

    Passero, Carolina Reich Marcon; Zannin, Paulo Henrique Trombetta

    2012-11-01

    Arranging office space into a single open room offers advantages in terms of easy exchange of information and interaction among coworkers, but reduces privacy and acoustic comfort. Thus, the purpose of this work was to evaluate the acoustic quality of a real open-plan office and to propose changes in the room to improve the acoustic conditioning of this office. The computational model of the office under study was calibrated based on RT and STI measurements. Predictions were made of the RT and STI, which generated the radius of distraction r(D), and the rate of spatial decay of sound pressure levels per distance doubling DL(2) in the real conditions of the office and after modifications of the room. The insertion of dividers between work stations and an increase in the ceiling's sound absorption improved the acoustic conditions in the office under study.

  20. Vibration, acoustic, and shock design and test criteria for components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME)

    1984-01-01

    The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.

  1. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.

    Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and

  2. Experimental Contact Lens to Prevent Glaucoma-Induced Blindness

    ... Home Page An Experimental Contact Lens to Prevent Glaucoma-Induced Blindness By Sharon Reynolds Posted January 23, 2014 An experimental contact lens design releases a glaucoma medicine at a steady rate for up to ...

  3. Design and analyses of an ultra-thin flat lens for wave front shaping in the visible

    Huang, Kai, E-mail: nianhua110@hotmail.com [Department of Biomedical Engineering, Bioengineering College of Chongqing University, Chongqing University, Chongqing 400044 (China); Li, Yiyan, E-mail: liy10@unlv.nevada.edu [Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154-4026 (United States); Tian, Xuelong, E-mail: xltian@cqu.edu.cn [Department of Biomedical Engineering, Bioengineering College of Chongqing University, Chongqing University, Chongqing 400044 (China); Zeng, Dajun, E-mail: dajunzeng@163.com [Department of Biomedical Engineering, Bioengineering College of Chongqing University, Chongqing University, Chongqing 400044 (China); Gao, Xueli, E-mail: 2455031293@qq.com [Department of Biomedical Engineering, Bioengineering College of Chongqing University, Chongqing University, Chongqing 400044 (China)

    2015-12-04

    An ultra-thin flat lens is proposed for focusing circularly polarized light in the visible range. Anisotropic C-shaped nanoantennas with phase discontinuities are used to form the metasurface of the lens. The phase response of the C-shaped nanoantennas can be manipulated by simply rotating the angle of the unit nanoantenna. A 600 nm incident circularly polarized light is focused by the proposed techniques. Good agreements are observed by using our MoM and a commercial FDTD software package. The computation time spent by using MoM is approximately 10–100 times smaller than using FDTD. All the results show the proposed nanoantenna array has a great potential for nanoscale optical microscopy, solar cell energy conversion enhancement, as well as integrated optical circuits. - Highlights: • Successfully focusing a 600 nm light using a circularly C-shaped nanoantenna array. • The computation time spent by using MoM is approximately 10–100 times smaller than FDTD. • A good agreement is observed using our MoM to the classic FDTD method.

  4. Design and implementation of low complexity wake-up receiver for underwater acoustic sensor networks

    Yue, Ming

    This thesis designs a low-complexity dual Pseudorandom Noise (PN) scheme for identity (ID) detection and coarse frame synchronization. The two PN sequences for a node are identical and are separated by a specified length of gap which serves as the ID of different sensor nodes. The dual PN sequences are short in length but are capable of combating severe underwater acoustic (UWA) multipath fading channels that exhibit time varying impulse responses up to 100 taps. The receiver ID detection is implemented on a microcontroller MSP430F5529 by calculating the correlation between the two segments of the PN sequence with the specified separation gap. When the gap length is matched, the correlator outputs a peak which triggers the wake-up enable. The time index of the correlator peak is used as the coarse synchronization of the data frame. The correlator is implemented by an iterative algorithm that uses only one multiplication and two additions for each sample input regardless of the length of the PN sequence, thus achieving low computational complexity. The real-time processing requirement is also met via direct memory access (DMA) and two circular buffers to accelerate data transfer between the peripherals and the memory. The proposed dual PN detection scheme has been successfully tested by simulated fading channels and real-world measured channels. The results show that, in long multipath channels with more than 60 taps, the proposed scheme achieves high detection rate and low false alarm rate using maximal-length sequences as short as 31 bits to 127 bits, therefore it is suitable as a low-power wake-up receiver. The future research will integrate the wake-up receiver with Digital Signal Processors (DSP) for payload detection.

  5. Contact lens in keratoconus

    Varsha M Rathi

    2013-01-01

    Full Text Available Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP lenses, soft and soft toric lenses, piggy back contact lenses (PBCL, hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL.

  6. An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks

    Sánchez, Antonio; Blanc, Sara; Yuste, Pedro; Perles, Angel; Serrano, Juan José

    2012-01-01

    This paper is focused on the description of the physical layer of a new acoustic modem called ITACA. The modem architecture includes as a major novelty an ultra-low power asynchronous wake-up system implementation for underwater acoustic transmission that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature enables a reduced power dissipation of 10 μW in stand-by mode and registers very low power values during reception and transmission. The modem also incorporates clear channel assessment (CCA) to support CSMA-based medium access control (MAC) layer protocols. The design is part of a compact platform for a long-life short/medium range underwater wireless sensor network. PMID:22969324

  7. Cross-Layer Design For Energy-Efficient In Wireless Underwater Communication: Acoustic Frequency IDentification Case Study

    Ghada Zaibi

    2011-05-01

    Full Text Available Thanks to the recent developments on communication techniques, micro-technology and on digital electronics, Underwater Wireless Sensor Networks (UWSNs are being employed in several types of underwater applications such as wireless identification named Acoustic Frequency Identification (AFID. In this research, we are trying to adapt concepts of wireless acoustic identification to the difficult underwater environment with its hard constraints especially absence of high bandwidth communication (no radio.So, there is a critical parameter in UWSN making challenge because it determines how longer sensor nodes and the entire networks would remain functional. However, in these types of Networks, node's battery presents a limited energy resource and network lifetime is related to the energy consumption by a node. Thus, in this paper we will propose some contributions and cross-layer design to prolong the AFID network lifetime.

  8. An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks

    Antonio Sánchez

    2012-05-01

    Full Text Available This paper is focused on the description of the physical layer of a new acoustic modem called ITACA. The modem architecture includes as a major novelty an ultra-low power asynchronous wake-up system implementation for underwater acoustic transmission that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature enables a reduced power dissipation of 10 µW in stand-by mode and registers very low power values during reception and transmission. The modem also incorporates clear channel assessment (CCA to support CSMA-based medium access control (MAC layer protocols. The design is part of a compact platform for a long-life short/medium range underwater wireless sensor network.

  9. An ultra-low power and flexible acoustic modem design to develop energy-efficient underwater sensor networks.

    Sánchez, Antonio; Blanc, Sara; Yuste, Pedro; Perles, Angel; Serrano, Juan José

    2012-01-01

    This paper is focused on the description of the physical layer of a new acoustic modem called ITACA. The modem architecture includes as a major novelty an ultra-low power asynchronous wake-up system implementation for underwater acoustic transmission that is based on a low-cost off-the-shelf RFID peripheral integrated circuit. This feature enables a reduced power dissipation of 10 μW in stand-by mode and registers very low power values during reception and transmission. The modem also incorporates clear channel assessment (CCA) to support CSMA-based medium access control (MAC) layer protocols. The design is part of a compact platform for a long-life short/medium range underwater wireless sensor network.

  10. Preliminary vibration, acoustic, and shock design and test criteria for components on the HEAO-A spacecraft

    1975-01-01

    These vibration, acoustic, and shock specifications provide the qualification test criteria for spacecraft components and subassemblies and for the High Energy Astronomy Observatory (HEAO-A) experiments. The HEAO-A was divided into zones and subzones to obtain simple component groupings. Zones are designated primarily to assist in determining the applicable specification. A Subzone is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, the appropriate Subzone weight ranges are available. Experiment and specific component specifications are available.

  11. Preliminary vibration, acoustic, and shock design and test criteria for components on the HEAO-C spacecraft

    1975-01-01

    The vibration, acoustic, and shock specification test criteria for spacecraft components and subassemblies and for the high Energy Astronomy Observatory (HEAO-C) experiments are presented. The HEAO-C was divided into zones and subzones to obtain simple component groupings. Zones are designated primarily to assist in determining the applicable specification. A subzone (general specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, the appropriate subzone weight ranges (-A, -B, etc. ) are available. Experiment and specific component specifications are available.

  12. Design and construction of a reverberation chamber for high-intensity acoustic testing.

    Slusser, R. A.

    1973-01-01

    A high-intensity acoustic test facility was constructed at the Jet Propulsion Laboratory (JPL) to support the Mariner Mars 1971 project. For ease of construction, the reverberation chamber itself is rectangular, which resulted in very little sacrifice in acoustic performance. Levels as high as 156 dB can be achieved with the chamber empty and test levels of 150 dB have been used with a Mariner Mars spacecraft model (full size) in the chamber. Levels as high as this must be generated using electropneumatic transducers, which modulate gaseous nitrogen to this facility.

  13. Underwater Imaging with a Moving Acoustic Lens

    1998-01-01

    10.00  1998 IEEE Authorized licensed use limited to: NRL. Downloaded on December 1, 2009 at 15:29 from IEEE Xplore . Restrictions apply. Report...licensed use limited to: NRL. Downloaded on December 1, 2009 at 15:29 from IEEE Xplore . Restrictions apply. KAMGAR-PARSI et al.: UNDERWATER IMAGING 93...use limited to: NRL. Downloaded on December 1, 2009 at 15:29 from IEEE Xplore . Restrictions apply. 94 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7

  14. Analysis of the Acoustic Design of Small Concert Building%小型音乐厅建筑声学设计探析

    吴寄斯

    2014-01-01

    本文针对小型音乐厅的建筑声学设计的重要性,重点围绕混响时间设计、体形设计、吸声材料的设计、噪声控制设计等几个方面,对小型音乐厅建筑声学设计进行了详细分析,以期对提升小型音乐厅的声学设计质量有所借鉴。%This paper, aims at the importance of architectural acoustics design of small concert hal, focusing on reverberat- ion time design, shape design, sound absorption material des- ign, design of noise control and other aspects, analyzed in de- tail the acoustics design of smal concert hals, hoping to pro- vide reference for the quality lifting of acoustic design of smal concerts.

  15. Acoustic elliptical cylindrical cloaks

    Ma Hua; Qu Shao-Bo; Xu Zhuo; Wang Jia-Fu

    2009-01-01

    By making a comparison between the acoustic equations and the 2-dimensional (2D) Maxwell equations, we obtain the material parameter equations (MPE) for acoustic elliptical cylindrical cloaks. Both the theoretical results and the numerical results indicate that an elliptical cylindrical cloak can realize perfect acoustic invisibility when the spatial distributions of mass density and bulk modulus are exactly configured according to the proposed equations. The present work is the meaningful exploration of designing acoustic cloaks that are neither sphere nor circular cylinder in shape, and opens up possibilities for making complex and multiplex acoustic cloaks with simple models such as spheres, circular or elliptic cylinders.

  16. Physics of electrostatic lens

    1981-09-01

    The purpose of this program was to study the physics of the ion-energy boosting electrostatic lens for collective ion acceleration in the Luce diode. Extensive work was done in preparation for experiments on the PI Pulserad 1150. Analytic work was done on the orbit of protons in a mass spectrometer and a copper stack for nuclear activation analysis of proton energy spectrum has been designed. Unfortunately, a parallel program which would provide the Luce diode for the collective ion acceleration experiment never materialized. As a result no experiments were actually performed on the Pulserad 1150.

  17. Design and Characterization of Fibrin-Based Acoustically Responsive Scaffolds for Tissue Engineering Applications.

    Moncion, Alexander; Arlotta, Keith J; Kripfgans, Oliver D; Fowlkes, J Brian; Carson, Paul L; Putnam, Andrew J; Franceschi, Renny T; Fabiilli, Mario L

    2016-01-01

    Hydrogel scaffolds are used in tissue engineering as a delivery vehicle for regenerative growth factors. Spatiotemporal patterns of growth factor signaling are critical for tissue regeneration, yet most scaffolds afford limited control of growth factor release, especially after implantation. We previously found that acoustic droplet vaporization can control growth factor release from a fibrin scaffold doped with a perfluorocarbon emulsion. This study investigates properties of the acoustically responsive scaffold (ARS) critical for further translation. At 2.5 MHz, acoustic droplet vaporization and inertial cavitation thresholds ranged from 1.5 to 3.0 MPa and from 2.0 to 7.0 MPa peak rarefactional pressure, respectively, for ARSs of varying composition. Viability of C3H/10T1/2 cells, encapsulated in the ARS, did not decrease significantly for pressures below 4 MPa. ARSs with perfluorohexane emulsions displayed higher stability versus those with perfluoropentane emulsions, while surrogate payload release was minimal without ultrasound. These results enable the selection of ARS compositions and acoustic parameters needed for optimized spatiotemporally controlled release.

  18. Analysis tools for the design of active structural acoustic control systems

    Oude Nijhuis, Marco Hendrikus Hermanus

    2003-01-01

    Acoustic noise is an important problem in the modern society and provides much of the impetus for the development of noise reduction techniques. Passive methods, such as the use of sound absorbing materials, provide an adequate solution to many noise problems, but for noise reduction at low frequenc

  19. Design of a proton-electron beam overlap monitor for the new RHIC electron lens, based on detecting energetic backscattered electrons

    Thieberger T.; Beebe, E.; Fischer, W.; Gassner, D.; Gu, X.; Hamdi, K.; Hock, J.; Minty, M.; Miller, T.; Montag, C.; Pikin, A.

    2012-04-15

    The optimal performance of the two electron lenses that are being implemented for high intensity polarized proton operation of RHIC requires excellent collinearity of the {approx}0.3 mm RMS wide electron beams with the proton bunch trajectories over the {approx}2m interaction lengths. The main beam overlap diagnostic tool will make use of electrons backscattered in close encounters with the relativistic protons. These electrons will spiral along the electron guiding magnetic field and will be detected in a plastic scintillator located close to the electron gun. A fraction of these electrons will have energies high enough to emerge from the vacuum chamber through a thin window thus simplifying the design and operation of the detector. The intensity of the detected electrons provides a measure of the overlap between the e- and the opposing proton beams. Joint electron arrival time and energy discrimination may be used additionally to gain some longitudinal position information with a single detector per lens.

  20. Partial Lens Design Based on the LED Road Lighting%基于 LED 道路照明的偏光透镜设计

    王少雷; 张莉; 李敏; 贺志华; 王乐

    2014-01-01

    In this paper , we designed a partial lens used in LED road lighting , which was based on non-uniform grid partition method .The lens can project more light on the road .The design of the partial lens reduces the light pollution , and improves the utilization of road lighting effectively .And it is not affected by the installation height of lamps and the placement of light pole , it greatly improves the lamp shape and the beautiful design flexibility .The uniformity is 77.6%, which is simulated in the optical software Lighttools . When the light absorption loss of the material and reflection loss of the interface are fully considered , the light energy utilization is as high as 84.5%.And the IES model of light distribution curve of the partial lens is calculated in the lighting simulation software Dialux , the brightness uniformity is 0.74 , and the TI is controlled in 9%.These indicators of intensity of illumination uniformity , brightness uniformity and glare control meet the requirements of The Standards of Street Lighting Design completely.It will have a broad prospect in the application and promotion of road lighting in the future .%基于非均匀网格划分法设计了一种用于LED道路照明的偏光透镜。该透镜能够把LED发出的光线更多地投射在路面上。这种偏光透镜设计减少了道路外的光污染,同时有效提高了路面的光线利用率。在光学软件Lighttools的模拟中,测得整个光学系统照度均匀度为77.6%。并且充分考虑材料的吸收损失和界面的反射损失后,光能利用率高达84.5%。在照明仿真软件Dialux中对该偏光透镜的配光曲线IES模型导入后在模拟道路中进行计算仿真,得到其亮度总均匀度为0.74,并且眩光限制阈值增量控制在9%。所以,该偏光透镜的亮度均匀度、照度均匀度及眩光控制等指标都很好地满足了我国《城市道路照明设计标准》的要求。

  1. Acoustic Microscopy at Cryogenic Temperatures.

    1982-01-01

    intensities are used, and quantitatitvely acount for the onset of nonlinear excess attenuation. Aooeuuaiol For DTIC TAB Unaranounc ed Just if icat to By...to acoustic power is a reasonable value and can be acounted for by assuming a one-way transducer conversion loss of 5 dB, a lens illumination loss of

  2. Preliminary design of an advanced programmable digital filter network for large passive acoustic ASW systems. [Parallel processor

    McWilliams, T.; Widdoes, Jr., L. C.; Wood, L.

    1976-09-30

    The design of an extremely high performance programmable digital filter of novel architecture, the LLL Programmable Digital Filter, is described. The digital filter is a high-performance multiprocessor having general purpose applicability and high programmability; it is extremely cost effective either in a uniprocessor or a multiprocessor configuration. The architecture and instruction set of the individual processor was optimized with regard to the multiple processor configuration. The optimal structure of a parallel processing system was determined for addressing the specific Navy application centering on the advanced digital filtering of passive acoustic ASW data of the type obtained from the SOSUS net. 148 figures. (RWR)

  3. 音乐厅建声设计技术的传承与发展%Heritage and development of architectural acoustics design for concert hall

    章奎生

    2011-01-01

    综述了国内外音乐厅设计与建设的发展历史和过程,介绍了国内外近四十个音乐厅的建设与设计概况及规模体形、主要音质指标和主观音质评价等级等.文中还着重介绍了音乐厅音质设计的三大方面和六点关键技术及我国音乐厅建声设计技术的传承与发展概况.%The history and progress of development of architectural acoustics design for domestic and oversea concert halls is summarized in this paper. The outlines of architecture and acoustics for about forty concert halls in the world are introduced. Those outlines include dimension, somatotype, main acoustical parameters and the rank of subjeaive acoustics evaluation. Then three aspects and six key techniques of acoustics design in concert hall are presented in detail, and the heritage and development of architectural acoustics design for concert hall is introduced in brief.

  4. The Ultrawideband Leaky Lens Antenna

    Bruni, S.; Neto, A.; Marliani, F.

    2007-01-01

    A novel directive and nondispersive antenna is presented: the ultrawideband (UWB) leaky lens. It is based on the broad band Cherenkov radiation occurring at a slot printed between different infinite homogeneous dielectrics. The first part of the paper presents the antenna concept and the UWB design.

  5. Design and analysis of the trapeziform and flat acoustic cloaks with controllable invisibility performance in a quasi-space

    Jian Zhu

    2015-07-01

    Full Text Available We present the design, implementation and detailed performance analysis for a class of trapeziform and flat acoustic cloaks. An effective large invisible area is obtained compared with the traditional carpet cloak. The cloaks are realized with homogeneous metamaterials which are made of periodic arrangements of subwavelength unit cells composed of steel embedded in air. The microstructures and its effective parameters of the cloaks are determined quickly and precisely in a broadband frequency range by using the effective medium theory and the proposed parameters optimization method. The invisibility capability of the cloaks can be controlled by the variation of the key design parameters and scale factor which are proved to have more influence on the performance in the near field than that in the far field. Different designs are suitable for different application situations. Good cloaking performance demonstrates that such a device can be physically realized with natural materials which will greatly promote the real applications of invisibility cloak.

  6. Design and Fabrication of Acoustic Wave Actuated Microgenerator for Portable Electronic Devices

    Lai, Tenghsien; Tsou, Chingfu

    2008-01-01

    The past few years have seen an increasing focus on energy harvesting issue, including power supply for portable electric devices. Utilize scavenging ambient energy from the environment could eliminate the need for batteries and increase portable device lifetimes indefinitely. In addition, through MEMS technology fabricated micro-generator could easy integrate with these small or portable devices. Several different ambient sources, including solar, vibration and temperature effect, have already exploited [1-3]. Each energy source should be used in suitable environment, therefore to produce maximum efficiency. In this paper, we present an acoustic wave actuated micro-generator for power system by using the energy of acoustic waves, such as the sound from human voices or speakerphone, to actuate a MEMS-type electromagnetic transducer. This provides a longer device lifetime and greater power system convenience. Moreover, it is convenient to integrate MEMS-based microgenerators with small or porta le devices

  7. Design Multi- beam Dielectric Lens Antenna for Passive Millimeter Wave Imaging%毫米波多波束介质透镜天线设计

    刘传全; 关福宏; 孙晓玮

    2011-01-01

    In this paper,aiming at the requirement of passive millimeter wave imaging, the traditional tapered slot antenna is improved. A new structure tapered slot antenna with corrugated edges and coupled dipole is applied as feed of dielectric lens antenna, feeding by microstrip with angle - slotline transition. Three - dimensional electromagnetic simulation software is used for simulation and design of the specific size parameters and the tapered slot antenna is measured; Key parameters and radiation patterns of multi - beam dielectric lens antenna with array feed is obtained by simulation.%研究优化天线设计问题,针对被动毫米波成像的需求,要求天线对目标实时扫描成像.传统结构的渐变缝隙天线性能和扫描成像数据率低,效果差.为解决上述问题,提出一种新结构,采用褶皱边缘和缝隙加偶极子的新型渐变缝隙天线作为透镜天线的馈源,以斜角微带-槽线过渡结构对渐变缝隙天线馈电,并利用三维电磁场仿真软件仿真设计了具体尺寸参数,并测试了相关结果.优化仿真得到了阵列馈源介质透镜多波束天线设计的关键参数和辐射方向图.最后进行仿真,结果表明,所设计的天线能很好的满足被动毫米波成像系统的需求.

  8. 热透镜效应补偿的高功率 Nd∶YAG 激光器的优化设计%Optimal design of high power Nd∶YAG laser based on compensation of thermal lens effect

    吴羽; 龙晓莉; 焦中兴; 何广源; 张倩

    2015-01-01

    In order to obtain 1064nm laser with high power and high beam quality , a laser resonator was designed to solve thermal lens effect with a concave lens as compensation lens .The selection of the compensation lens was analyzed .A Nd∶YAG laser with a compensation lens and a plano-plano cavity was verified in the experiment .High beam quality 55W 1064nm laser was obtained when the focal length of the concave lens was 250mm and the transmittance of the output mirror was 30%.This research is helpful to the design of laser resonators with high power and beam quality .%为了获得高功率、高光束质量的1064nm激光,采用凹透镜作为补偿透镜来补偿激光棒的热透镜效应。对补偿透镜的选取进行理论分析,并使用所设计的包含补偿透镜的平平谐振腔Nd∶YAG激光器进行了实验验证。在实验中,使用焦距为250mm的凹透镜、透过率为30%的输出耦合镜,获得了55W 的高功率、高光束质量的1064nm激光输出。结果表明,此项研究对高功率、高光束质量激光器谐振腔的设计是有帮助的。

  9. Achieving selective interrogation and sub-wavelength resolution in thin plates with embedded metamaterial acoustic lenses

    Semperlotti, F., E-mail: fsemperl@nd.edu; Zhu, H. [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-08-07

    In this study, we present an approach to ultrasonic beam-forming and high resolution identification of acoustic sources having critical implications for applications such as structural health monitoring. The proposed concept is based on the design of dynamically tailored structural elements via embedded acoustic metamaterial lenses. This approach provides a completely new alternative to conventional phased-array technology enabling the formation of steerable and collimated (or focused) ultrasonic beams by exploiting a single transducer. Numerical results show that the ultrasonic beam can be steered by simply tuning the frequency of the excitation. Also, the embedded lens can be designed to achieve sub-wavelength resolution to clustered acoustic sources, which is a typical scenario encountered in incipient structural damage.

  10. Standard practice for determining damage-Based design Stress for fiberglass reinforced plastic (FRP) materials using acoustic emission

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This practice details procedures for establishing the direct stress and shear stress damage-based design values for use in the damage-based design criterion for materials to be used in FRP vessels and other composite structures. The practice uses data derived from acoustic emission examination of four-point beam bending tests and in-plane shear tests (see ASME Section X, Article RT-8). 1.2 The onset of lamina damage is indicated by the presence of significant acoustic emission during the reload portion of load/reload cycles. "Significant emission" is defined with historic index. 1.3 Units - The values stated in inch-pound units are to be regarded as standard. The values given in brackets are mathematical conversions to SI units which are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health pr...

  11. Nanoparticle-Laden Contact Lens for Controlled Ocular Delivery of Prednisolone: Formulation Optimization Using Statistical Experimental Design

    Amr ElShaer

    2016-04-01

    Full Text Available Human eye is one of the most accessible organs in the body, nonetheless, its physiology and associated precorneal factors such as nasolacrimal drainage, blinking, tear film, tear turnover, and induced lacrimation has significantly decreased the residence time of any foreign substances including pharmaceutical dosage forms. Soft contact lenses are promising delivery devices that can sustain the drug release and prolong residence time by acting as a geometric barrier to drug diffusion to tear fluid. This study investigates experimental parameters such as composition of polymer mixtures, stabilizer and the amount of active pharmaceutical ingredient on the preparation of a polymeric drug delivery system for the topical ocular administration of Prednisolone. To achieve this goal, prednisolone-loaded poly (lactic-co-glycolic acid (PLGA nanoparticles were prepared by single emulsion solvent evaporation method. Prednisolone was quantified using a validated high performance liquid chromatography (HPLC method. Nanoparticle size was mostly affected by the amount of co-polymer (PLGA used whereas drug load was mostly affected by amount of prednisolone (API used. Longer homogenization time along with higher amount of API yielded the smallest size nanoparticles. The nanoparticles prepared had an average particle size of 347.1 ± 11.9 nm with a polydispersity index of 0.081. The nanoparticles were then incorporated in the contact lens mixture before preparing them. Clear and transparent contact lenses were successfully prepared. When the nanoparticle (NP-loaded contact lenses were compared with control contact lenses (unloaded NP contact lenses, a decrease in hydration by 2% (31.2% ± 1.25% hydration for the 0.2 g loaded NP contact lenses and light transmission by 8% (unloaded NP contact lenses 94.5% NP 0.2 g incorporated contact lenses 86.23%. The wettability of the contact lenses remained within the desired value (<90 °C even upon incorporation of the NP. NP

  12. Acoustic and auditory phonetics: the adaptive design of speech sound systems.

    Diehl, Randy L

    2008-03-12

    Speech perception is remarkably robust. This paper examines how acoustic and auditory properties of vowels and consonants help to ensure intelligibility. First, the source-filter theory of speech production is briefly described, and the relationship between vocal-tract properties and formant patterns is demonstrated for some commonly occurring vowels. Next, two accounts of the structure of preferred sound inventories, quantal theory and dispersion theory, are described and some of their limitations are noted. Finally, it is suggested that certain aspects of quantal and dispersion theories can be unified in a principled way so as to achieve reasonable predictive accuracy.

  13. Design of large dimension and rear projecting lens in laser display system%大屏背投激光显示广角镜头的设计

    陈旭; 冯玉涛; 刘伟奇; 魏忠伦; 康玉思

    2011-01-01

    研究了背投激光显示广角投影镜头的设计,并给出了1个162.6 cm(64 in)背投激光显示广角镜头的设计实例.投影镜头前的光学引擎采用数字光处理显示方式,并应用数字微镜晶片(DMD)进行数字光学处理.系统焦距为7.38mm;设计波长为F,d,C;F数为2.46;全视场达到100°;在空间调制器DMD的Nyquist频率处,90%以上视场的MTF>0.6.系统渐晕系数为负,提高了投影显示像面边缘的光照度;全视场畸变<1.4%,1个像元尺寸内集中了点目标能量的90%以上.系统中使用了1个直角棱镜对光路进行折叠,减小了镜头长度,使棱镜展开后系统全长为259 mm.此外,该镜头只使用了1个二次项为0的非球面(高次项至8次),保证了镜头加工的可行性.设计结果显示,本文提出的设计方法有利于降低投影系统成本,实现产业化生产.%After comparing different structures of wide-angle projecting lenses, a wide-angle lens for 162.6 cm(64 in) rear projection laser display is designed. The focal length of the system is 7.38 mm,the wavelength used in the design is F, d, C and the full field of view reaches 100°. The technical indii of the projection lens are summarized as follows: DMD (Digital Micromirror Device) is used in the light digital processing, 90% MTF is greater than 0. 6 at the Nyquist frequency; the barrel distortion of the system is smaller than 1.4% ,and 90% of the energy in the point target is focused in a pixel dimension. Furthermore,a right angle prism is used to fold the optical path to decrease the length of the lens,so that the whole optical length of the system is 259 mm after outspreading the right angle prism. The vignetting factor of the wide angle is negative, which enhances the image illumination after projection. Moreover, an aspheric surface with the small size, zero conic constant and the maximum eight order coefficient is used to promise the feasibility of the mounting. Analytical results show that the

  14. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...

  15. An acoustic bending waveguide designed by anisotropic density-near-zero metamaterial

    Wang, Yang-Yang; Ding, Er-Liang; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2016-12-01

    Anisotropic metamaterial with only one component of the mass density tensor near zero (ADNZ) is proposed to control the sound wave propagation. We find that such an anisotropic metamaterial can be used to realize perfect bending waveguides. According to a coordinate transformation, the surface waves on the input and output interfaces of the ADNZ metamaterial induces the sound energy flow to be redistributed and match smoothly with the propagating modes inside the metamaterial waveguide. According to the theory of bending waveguide, we realize the “T”-type sound shunting and convergence, as well as acoustic channel selection by embedding small-sized defects. Numerical calculations are performed to confirm the above effects. Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant No. 11474160), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201609), and the Priority Academic Program Development of Jiangsu Higher Education Institution, China.

  16. Design of acoustic wave biochemical sensors using micro-electro-mechanical systems

    Valentine, Jane E.; Przybycien, Todd M.; Hauan, Steinar

    2007-03-01

    Acoustic wave biochemical sensors work by detecting the frequency shifts resulting from the binding of target molecules to a functionalized resonator. Resonator types currently in use or under development include macroscopic quartz crystal microbalances (QCMs) as well as a number of different integrated Micro-electro-mechanical Systems (MEMS) structures. Due to an increased resonator surface area to mass ratio, we believe that membrane-based MEMS systems are particularly promising with regard to sensitivity. Prototypes have been developed [S. Hauan et al., U.S. Patent Application (filed 6 Nov. 2003)] and preliminary calculations [M. J. Bartkovsky et al., paper 385e presented at the AIChE Annual Meeting, Nov. 2003; J. E. Valentine et al., paper 197h presented at the AICHE Annual Meeting, Nov. 2003] indicate significant improvements over other methods, both macroscopic and MEMS based. In this article we describe our work on a MEMS-based acoustic wave biochemical sensor using a membrane resonator. We demonstrate the effects of spatial distributions of mass on the membrane on sensitivity and show how to use this spatial sensitivity to detect multiple targets simultaneously. To do so we derive a function approximating the membrane response surface to spatial mass loadings under the applicable range of conditions. We verify the agreement using finite element methods, and present our initial sensitivity calculations demonstrating the advantages of variable mass loadings.

  17. The Baryon Acoustic Oscillation Broadband and Broad-beam Array: Design Overview and Sensitivity Forecasts

    Pober, Jonathan C; DeBoer, David R; McDonald, Patrick; McQuinn, Matthew; Aguirre, James E; Ali, Zaki; Bradley, Richard F; Chang, Tzu-Ching; Morales, Miguel F

    2012-01-01

    This work describes a new instrument optimized for a detection of the neutral hydrogen 21cm power spectrum between redshifts of 0.5-1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) Array. BAOBAB will build on the efforts of a first generation of 21cm experiments which are targeting a detection of the signal from the Epoch of Reionization at z ~ 10. At z ~ 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are Baryon Acoustic Oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900MHz band with a frequency resolution of 300 kHz and a system temperature of 50K. The number of antennas will grow in staged deployments, and reconfigurations...

  18. Design and implementation of an omni-directional underwater acoustic micro-modem based on a low-power micro-controller unit.

    Won, Tae-Hee; Park, Sung-Joon

    2012-01-01

    For decades, underwater acoustic communication has been restricted to the point-to-point long distance applications such as deep sea probes and offshore oil fields. For this reason, previous acoustic modems were typically characterized by high data rates and long working ranges at the expense of large size and high power consumption. Recently, as the need for underwater wireless sensor networks (UWSNs) has increased, the research and development of compact and low-power consuming communication devices has become the focus. From the consideration that the requisites of acoustic modems for UWSNs are low power consumption, omni-directional beam pattern, low cost and so on, in this paper, we design and implement an omni-directional underwater acoustic micro-modem satisfying these requirements. In order to execute fast digital domain signal processing and support flexible interfaces with other peripherals, an ARM Cortex-M3 is embedded in the micro-modem. Also, for the realization of small and omni-directional properties, a spherical transducer having a resonant frequency of 70 kHz and a diameter of 34 mm is utilized for the implementation. Physical layer frame format and symbol structure for efficient packet-based underwater communication systems are also investigated. The developed acoustic micro-modem is verified analytically and experimentally in indoor and outdoor environments in terms of functionality and performance. Since the modem satisfies the requirements for use in UWSNs, it could be deployed in a wide range of applications requiring underwater acoustic communication.

  19. Design and Implementation of an Omni-Directional Underwater Acoustic Micro-Modem Based on a Low-Power Micro-Controller Unit

    Sung-Joon Park

    2012-02-01

    Full Text Available For decades, underwater acoustic communication has been restricted to the point-to-point long distance applications such as deep sea probes and offshore oil fields. For this reason, previous acoustic modems were typically characterized by high data rates and long working ranges at the expense of large size and high power consumption. Recently, as the need for underwater wireless sensor networks (UWSNs has increased, the research and development of compact and low-power consuming communication devices has become the focus. From the consideration that the requisites of acoustic modems for UWSNs are low power consumption, omni-directional beam pattern, low cost and so on, in this paper, we design and implement an omni-directional underwater acoustic micro-modem satisfying these requirements. In order to execute fast digital domain signal processing and support flexible interfaces with other peripherals, an ARM Cortex-M3 is embedded in the micro-modem. Also, for the realization of small and omni-directional properties, a spherical transducer having a resonant frequency of 70 kHz and a diameter of 34 mm is utilized for the implementation. Physical layer frame format and symbol structure for efficient packet-based underwater communication systems are also investigated. The developed acoustic micro-modem is verified analytically and experimentally in indoor and outdoor environments in terms of functionality and performance. Since the modem satisfies the requirements for use in UWSNs, it could be deployed in a wide range of applications requiring underwater acoustic communication.

  20. Cochlear bionic acoustic metamaterials

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  1. The Deep Lens Survey

    Wittman, D; Dell'Antonio, I P; Becker, A C; Margoniner, V E; Cohen, J; Norman, D; Loomba, D; Squires, G; Wilson, G; Stubbs, C; Hennawi, J F; Spergel, D N; Boeshaar, P C; Clocchiatti, A; Hamuy, M; Bernstein, G; González, A; Guhathakurta, R; Hu, W; Seljak, U; Zaritsky, D

    2002-01-01

    The Deep Lens Survey (DLS) is a deep BVRz' imaging survey of seven 2x2 degree fields, with all data to be made public. The primary scientific driver is weak gravitational lensing, but the survey is also designed to enable a wide array of other astrophysical investigations. A unique feature of this survey is the search for transient phenomena. We subtract multiple exposures of a field, detect differences, classify, and release transients on the Web within about an hour of observation. Here we summarize the scientific goals of the DLS, field and filter selection, observing techniques and current status, data reduction, data products and release, and transient detections. Finally, we discuss some lessons which might apply to future large surveys such as LSST.

  2. Applying an Activity Theory Lens to Designing Instruction for Learning about the Structure, Behavior, and Function of a Honeybee System

    Danish, Joshua A.

    2014-01-01

    This article reports on a study in which activity theory was used to design, implement, and analyze a 10-week curriculum unit about how honeybees collect nectar with a particular focus on complex systems concepts. Students (n = 42) in a multi-year kindergarten and 1st-grade classroom participated in this study as part of their 10 regular classroom…

  3. THE BARYON ACOUSTIC OSCILLATION BROADBAND AND BROAD-BEAM ARRAY: DESIGN OVERVIEW AND SENSITIVITY FORECASTS

    Pober, Jonathan C.; Parsons, Aaron R.; McQuinn, Matthew; Ali, Zaki [Astronomy Department, University of California, Berkeley, CA (United States); DeBoer, David R. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); McDonald, Patrick [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Aguirre, James E. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Astronomy Department and Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Chang, Tzu-Ching [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan (China); Morales, Miguel F. [Department of Physics, University of Washington, Seattle, WA (United States)

    2013-03-15

    This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z {approx} 10. At z {approx} 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z {approx} 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from {approx}0.5 to 1.5.

  4. LGS声表面波滤波器设计%The design of LGS crystal surface acoustic wave filter

    孙娜; 邱贝贝

    2013-01-01

    In this paper,we designed the LGS crystal surface acoustic wave iflter(SAWF),introduced the structure,calculated the frequency response,and compared with quartz.We found the insert loss of LGS SAWF is smal er than that of quartz SAWF.They can be applied to fabricate miniaturized intermediate frequency band-pass iflters.%本文设计了LGS声表面波滤波器(SAWF),介绍其结构,计算了声表面波滤波器的频率响应特性,与石英进行比较。发现LGS声表面波滤波器比石英声表面波滤波器的插入损耗要小很多,是应用于小型化中频带宽滤波器的优选材料之一。

  5. Conjugate metamaterials and the perfect lens

    Xu, Yadong; Xu, Lin; Chen, Huanyang

    2015-01-01

    In this letter, we show how transformation optics makes it possible to design what we call conjugate metamaterials. We show that these materials can also serve as substrates for making a subwavelength-resolution lens. The so-called "perfect lens", which is a lens that could focus all components of light (including propagating and evanescent waves), can be regarded as a limiting case, in which the respective conjugate metamaterials approach the characteristics of left-handed metamaterials, which have a negative refractive index.

  6. Real-time Parallel Processing System Design and Implementation for Underwater Acoustic Communication Based on Multiple Processors

    YAN Zhen-hua; HUANG Jian-guo; ZHANG Qun-fei; HE Cheng-bing

    2007-01-01

    ADSP-TS101 is a high performance DSP with good properties of parallel processing and high speed. According to the real-time processing requirements of underwater acoustic communication algorithms, a real-time parallel processing system with multi-channel synchronous sample, which is composed of multiple ADSP-TS101s, is designed and carried out.For the hardware design, field programmable gate array (FPGA) logical control is adopted for the design of multi-channel synchronous sample module and cluster/data flow associated pin connection mode is adopted for multiprocessing parallel processing configuration respectively. And the software is optimized by two kinds of communication ways: broadcast writing way through shared bus and point-to-point way through link ports. Through the whole system installation, connective debugging, and experiments in a lake, the results show that the real-time parallel processing system has good stability and real-time processing capability and meets the technical design requirements of real-time processing.

  7. The Optical Design of a System using a Fresnel Lens that Gathers Light for a Solar Concentrator and that Feeds into Solar Alignment Optics

    Wilkerson, Gary W.; Huegele, Vinson

    1998-01-01

    The Marshall Space Flight Center (MSFC) has been developing a space deployable, lightweight membrane concentrator to focus solar energy into a solar furnace while remaining aligned to the sun. For an inner surface, this furnace has a cylindrical heat exchanger cavity coaligned to the optical axis; the furnace warms gas to propel the spacecraft. The membrane concentrator is a 1727 mm (68.00 in.) diameter, F/1.7 Fresnel lens. This large membrane is made from polyimide and is 0.076 mm (0.0030 in.) thick; it has the Fresnel grooves cast into it. The solar concentrator system has a super fast paraboloid reflector near the lens focus and immediately adjacent to the cylindrical exchanger cavity. The paraboloid collects the wide bandwidth and some of the solar energy scattered by the Fresnel lens. Finally, the paraboloid feeds the light into the cylinder. The Fresnel lens also possesses a narrow annular zone that focuses a reference beam toward four detectors that keep the optical system aligned to the sun; thus, occurs a refracting lens that focuses two places! The result can be summarized as a composite Fresnel lens for solar concentration and alignment.

  8. Contact lens in keratoconus

    Varsha M Rathi; Preeji S Mandathara; Srikanth Dumpati

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the En...

  9. Iatrogenic Lens Injuries

    Ümit Kamış

    2012-12-01

    Full Text Available During intraocular surgery, undesired damages of various etiology may occur in adjacent tissues. One of these tissues is the crystalline lens, which may be traumatized both in anterior segment and posterior segment surgeries, and when damaged, it usually causes marked decrease in visual acuity. The leading causes of iatrogenic lens injuries are intravitreal injection, laser iridotomy, phakic intraocular lens implantation, anterior chamber paracentesis, and vitreoretinal surgery. When crystalline lens damage occurs, its negative effect on visual function may be eliminated by performing cataract surgery intraoperatively or in elective conditions. (Turk J Ophthalmol 2012; 42: Supplement 27-30

  10. A Spectrometer Based on Diffractive Lens

    WANG Daoyi; YAN Yingbai; JIN Guofan; WU Minxian

    2001-01-01

    A novel spectrometer is designed based on diffractive lens. It is essentially a flat field spectrometer. All the focal points are along the optical axis. Besides, all the asymmetrical aberrations vanish in our mounting. Thus low aberration can be obtained. In this article a diffractive lens is modeled as a special grating and analyzed by using a grating-based method. And a stigmatic point is introduced to reduce the aberrations.

  11. Lightweight autoclavable wide-angle contact lens for vitreous surgery.

    Chalam, K V; Gupta, Shailesh K; Agarwal, Swati

    2007-01-01

    The authors describe an autoclavable, self-stabilizing, lightweight wide-angle contact lens for vitrectomy. The lens has two optical pieces with perforated plastic casing to sustain a high temperature (150 degrees C) for autoclaving. The lens has a 106 degrees static and 127 degrees dynamic field of view. The footplates and reduced weight (2.4 grams) due to the plastic casing allow self-stabilization of the lens. The open lens design.with high temperature resistant plastic prevents fogging during autoclaving and surgery. The autoclavable, self-stabilizing, lightweight wide-angle contact lens allows visualization of the peripheral retina during surgery and faster sterilization by autoclaving between surgeries without the disadvantage of lens fogging.

  12. Design of a radio-linked implantable cochlear prosthesis using surface acoustic wave devices.

    Jeutter, D C; Josse, F

    1993-01-01

    Cochlear prosthesis systems for postlingually deaf individuals (those who have become deaf due to disease or injury after having developed mature speech capability) are considered. These systems require the surgical implantation of an array of electrodes within the cochlea and are driven by processed sound signals from outside the body. A system that uses an analog signal approach for transcutaneous transfer of six processed speech data channels using frequency multiplexing is described. The system utilizes a filterbank of six narrowband surface acoustic wave (SAW) filters in the range 72-78 MHz with a 1.2-MHz channel spacing to multiplex the six carrier signals, frequency modulated, by the processed speech signals, onto a composite signal. The same SAW filters are used in the receiver filterbank for signal separation, but are housed in a miniaturized package. The system includes a portable transmitter and a receiver package which is to be implanted in the patient. The implanted circuits are supplied exclusively from power transferred from outside the body via a separate 10-MHz transcutaneous link.

  13. A study of the formulation design of acoustically active lipospheres as carriers for drug delivery.

    Fang, Jia-You; Hung, Chi-Feng; Liao, Mei-Hui; Chien, Chih-Chen

    2007-08-01

    Acoustically active lipospheres (AALs) were prepared using perfluorocarbons and coconut oil as the cores of inner phase. These AALs were stabilized using coconut oil and phospholipid coatings. A lipophilic antioxidant, resveratrol, was the model drug loaded into the AALs. AALs with various percentages of perfluorocarbons and oil were prepared to examine their physicochemical and drug release properties. Co-emulsifiers such as Brij 98 and Pluronic F68 (PF68) were also incorporated into AALs for evaluation. AALs with high resveratrol encapsulation rates ( approximately 90%) were prepared, with a mean droplet size of 250-350nm. The AALs produced with perfluorohexane as the core material had larger particle sizes than those with perfluoropentane. Resveratrol in these systems exhibited retarded drug release in both the presence and absence of plasma in vitro; the formulations with high oil and perfluorocarbon percentages showed the lowest drug release rates. The addition of PF68 slightly but significantly reduced resveratrol delivery from the AALs. Ultrasound treatment of 1MHz produced an increase in the drug release from the systems, illustrating the drug-targeting effect of the combination of AALs and ultrasound.

  14. Mechanism of operation and design considerations for surface acoustic wave device vapor sensors

    Wohltjen, H.

    1984-04-01

    Surface acoustic wave (SAW) devices offer many attractive features for application as vapor phase chemical microsensors. This paper describes the characteristics of SAW devices and techniques by which they can be employed as vapor sensors. The perturbation of SAW amplitude and velocity by polymeric coating films was investigated both theoretically and experimentally. High sensitivity can be achieved when the device is used as the resonating element in a delay line oscillator circuit. A simple equation has been developed from theoretical considerations which offers reasonably accurate quantitative predictions of SAW Device frequency shifts when subjected to a given mass loading. In this mode the SAW device behaves in a fashion very similar to conventional bulk wave quartz crystal microbalance except that the sensitivity can be several orders of magnitude higher and the device size can be several orders of magnitude smaller. Detection of mass changes of less than 1 femtogram by a SAW device having a surface area of 0.0001 square cm. is theoretically possible.

  15. Numerical acoustic characteristics and optimum design of the pressure reducing valve

    Guo, P. C.; Sun, L. G.; Sun, S. H.; Feng, J. J.; Wu, K. G.; Luo, X. Q.

    2016-11-01

    The pressure reducing valves are widely used in the technological water supplied ways of gravity flow. A credible pressure reducing valve can provide stable cooling water for units with extremely low maintenance cost and labor intensity in a fairly long period of time. In this paper, a three-dimensional numerical simulation of flow field and acoustic characteristics towards a combined type pressure reducing valve was carried out based on ANSYS Fluent and the FW-H equation. The numerical results achieve the regulation of noise generation, transmission and attenuation. It shows that the sound pressure level of monitoring points seem to be higher and large gradient at low frequencies under the same flow velocity, while it presents reverse results with the increment of frequency and maintains a constant valve finally. At the same time, the monitoring points in the vicinity of throttling cone shows higher sound pressure level and upstream noise is lower than downstream's. Aiming at the problem of valve noise, a modified measure to reduce the flow-induced noise was proposed.

  16. Design and Installation of Lecture Hall Lighting and Acoustic Equipment%报告厅灯光音响设备的设计与安装

    温洪春

    2012-01-01

    专业灯光音响工程是一项对技术要求较高的综合性工程,其涉及到建筑、电工、电子、声学、光学等专业性知识,在具体的工程实施过程中,又分为场地考察、分析计算、设计选型、施工调试等几个阶段。文中在讨论灯光系统的设计与调整、音响设备,并时设备的安装进行研究分析,以给学术报告厅灯光音响设备的设计与安装提供一定的参考。%Professional lighting and acoustic engineering is a comprehensive project which has a high technical standard. It involves construction, electrical engineering, electronics, acoustics, optics and other professional fields. In a specific project implementation process, it is divided into such stages as site visits, analysis of calcula- tion, design selection, construction and commissioning. This article aims to discuss the design and adjustment of the lighting system and acoustic equipment and analyze the installation of equipment. It is of practical value for the design and installation of lighting and acoustic equipment for the lecture.

  17. Acoustic Communications Measurement Systems (ACOMMS)

    Federal Laboratory Consortium — FUNCTION: Design and develop adaptive signal processing techniques to improve underwater acoustic communications and networking. Phase coherent and incoherent signal...

  18. Superlensing Microscope Objective Lens

    Yan, Bing; Parker, Alan; Lai, Yukun; Thomas, John; Yue, Liyang; Monks, James

    2016-01-01

    Conventional microscope objective lenses are diffraction limited, which means that they cannot resolve features smaller than half the illumination wavelength. Under white light illumination, such resolution limit is about 250-300 nm for an ordinary microscope. In this paper, we demonstrate a new superlensing objective lens which has a resolution of about 100 nm, offering at least two times resolution improvement over conventional objectives in resolution. This is achieved by integrating a conventional microscope objective lens with a superlensing microsphere lens using a 3D printed lens adaptor. The new objective lens was used for label-free super-resolution imaging of 100 nm-sized engineering and biological samples, including a Blu-ray disc sample, semiconductor chip and adenoviruses. Our work creates a solid base for developing a commercially-viable superlens prototype, which has potential to transform the field of optical microscopy and imaging.

  19. Re-evaluating Science and Technology trough the lens of Arts and Graphic Design. A case study in La Spezia.

    Locritani, Marina; Stroobant, Mascha; Talamoni, Roberta; Merlino, Silvia; Guccinelli, Giacomo; Benvenuti, Lucrezia; Zatta, Consuelo; Stricker, Federica; Zappa, Franco; Sgherri, Matteo

    2016-04-01

    The Human society is getting more and more involved with scientific and environmental issues both in terms of consciousness of good practices or participation in legislative decision-making processes. A common effort to preserve our planet is asked every day, for example through recycling practices, reduction of pollutant emission, use of alternative energies and awareness of risks natural and human-induced hazards. In addition, public opinion is often involved for issues of scientific interest (e.g. genetically modified organisms GMO). Unfortunately, the Eurobarometer (Eurobarometer Special 419 Report, Public perceptions of Science, Research and Innovation, 2014) indicates, especially for the Italian population, a low interest in science and therefore a lack of confidence in the potential of the research. It is hence important for people to be informed of the progress made by science and the importance of the researchers' role. Education, awareness and dissemination of scientific results and issues must be made through simple and appealing channels that must reach all levels of society and age groups: from children to older people. A common and comprehensible language for everyone can be found in Graphic Arts. For this reasons, the working group for science dissemination of La Spezia has increased, in recent years, close relationship with some artists (especially graphic designers). The collaboration between two different worlds (art and science) has allowed us to see an unusual approach and to translate concepts developed in images which everyone can understand also under an emotional point of view. Different techniques and tools based on the target to be reached have been employed. 1. Conferences. Gender differences issues in science professions and more generally in society has been addressed through interactive conferences and round tables during the European Researchers' Night 2015 and other occasions for general public. Arguments and questions were described

  20. Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance.

    Alcoverro, Benoit; Le Pichon, Alexis

    2005-04-01

    The implementation of the infrasound network of the International Monitoring System (IMS) for the enforcement of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) increases the effort in the design of suitable noise reducer systems. In this paper we present a new design consisting of low impedance elements. The dimensioning and the optimization of this discrete mechanical system are based on numerical simulations, including a complete electroacoustical modeling and a realistic wind-noise model. The frequency response and the noise reduction obtained for a given wind speed are compared to statistical noise measurements in the [0.02-4] Hz frequency band. The effects of the constructive parameters-the length of the pipes, inner diameters, summing volume, and number of air inlets-are investigated through a parametric study. The studied system consists of 32 air inlets distributed along an overall diameter of 16 m. Its frequency response is flat up to 4 Hz. For a 2 m/s wind speed, the maximal noise reduction obtained is 15 dB between 0.5 and 4 Hz. At lower frequencies, the noise reduction is improved by the use of a system of larger diameter. The main drawback is the high-frequency limitation introduced by acoustical resonances inside the pipes.

  1. Variable-focus cylindrical liquid lens array

    Zhao, Wu-xiang; Liang, Dong; Zhang, Jie; Liu, Chao; Zang, Shang-fei; Wang, Qiong-hua

    2013-06-01

    A variable-focus cylindrical liquid lens array based on two transparent liquids of different refractive index is demonstrated. An elastic membrane divides a transparent reservoir into two chambers. The two chambers are filled with liquid 1 and liquid 2, respectively, which are of different refractive index. The micro-clapboards help liquid 1, liquid 2 and the elastic membrane form a cylindrical lens array. Driving these two liquids to flow can change the shape of the elastic membrane as well as the focal length. In this design, the gravity effect of liquid can be overcome. A demo lens array of positive optical power is developed and tested. Moreover, a potential application of the proposed lens array for autostereoscopic 3D displays is emphasized.

  2. Design of passive directional acoustic devices using Topology Optimization - from method to experimental validation

    Christiansen, Rasmus Ellebæk; Fernandez Grande, Efren

    2016-01-01

    emission in two dimensions and is experimentally validated using three dimensional prints of the optimized designs. The emitted fields exhibit a level difference of at least 15 dB on axis relative to the off-axis directions, over frequency bands of approximately an octave. It is demonstrated to be possible...... to outperform the latter in terms of directivity and maximum side-lobe level over nearly an octave band. A set of frequencies are considered simultaneously in the design formulation and performance robustness toward uniform spatial production errors in the designed devices is assured by including perturbations...

  3. Communication Acoustics

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  4. Optimum Design of Balanced Surface Acoustic Wave Filters Using Evolutionary Computation

    Tagawa, Kiyoharu

    2009-01-01

    As an example of evolutionary computation technique in the real-world application, we presented an optimum design method for balanced SAW filters. First of all, in order to evaluate the performances of balanced SAW filters based on the computer simulation, we derived the network model of balanced SAW filters from the equivalent circuit model of them according to the balanced network theory. Then we formulated the structural design of balanced SAW filters as an optimization problem for improvi...

  5. Relation between Local Acoustic Parameters and Protein Distribution in Human and Porcine Eye Lenses

    Korte, de C.L.; Steen, van der A.F.W.; Thijssen, J.M.; Duindam, J.J.; Otto, Cees; Puppels, G.J.

    1994-01-01

    The purpose of this study is to characterize the eye lens (human, porcine) by acoustic measurements and to investigate whether relations exist with the local protein content. The acoustic measurements were performed with a 'scanning acoustic microscope' (SAM), operating at a frequency of 20 MHz. At

  6. Beryllium window and acoustic delay line design for x-ray lithography beam lines at the University of Wisconsin Center for X-ray Lithography

    Brodsky, E. L.; Hamilton, W.; Wells, G.; Cerrina, F.; Corradini, M.

    1992-01-01

    X-ray lithography systems require sample chambers that can perform exposures in helium gas at atmospheric pressure. The interface between the experimental chamber and the beamline is critical for x-ray lithography and the storage ring. It must allow a high x-ray flux throughput while providing a vacuum barrier so that helium gas does not leak into the beam line and the storage ring. The beam line must also be designed to have protection in the case that a window does fail in order to minimize adverse effects to the ring and other systems. The details of the design for the vacuum system used on beam lines for the Center for X-ray Lithography at the University of Wisconsin Synchrotron Radiation Center 1-GeV electron storage ring are reported. Curved beryllium windows with a 1×5-cm2 aperture and 13 μm thick that have a leak rate less than 10-10 Torr l/s have been successfully used at the experimental chamber beam-line interface. This thin flat beryllium foil is mounted in a curved housing with a wire seal to minimize helium leakage. The window assembly is designed and has been tested to withstand substantial overpressure before failure. If the beryllium window does fail, the beamline has an acoustic delay line that is designed to delay the incoming shock wave of helium gas so that a fast valve at the end of the beam line will close and minimize leakage of helium into the storage ring. The acoustic delay line is designed with baffles to slow the shock front and a secondary thin window to protect against molecular diffusion into the storage ring. The acoustic delay line has been tested to determine the effect of baffle design on delay of the shock wave. A theoretical model that provides a good description of the acoustic delay has also been developed.

  7. 二氧化碳探测仪典型透镜支撑结构的设计及分析%Design and analysis of support structure for typical lens of carbon dioxide detector

    梁彪; 刘伟

    2011-01-01

    为了降低外界载荷和温度变化对二氧化碳探测仪光学系统透镜面形及共轴的影响,根据系统的特点和技术要求,对其典型透镜的支撑结构进行了研究,设计了一种径向挠性支撑结构并建立了3D实体模型。运用工程CAD分析软件,采用非线性有限元分析方法对其进行了动静刚度特性和热特性仿真分析,验证了支撑结构设计的合理性。分析结果表明,透镜结构组件的一阶固有频率为1 301 Hz;利用面型拟合,得到了各工况下镜面面形误差值为PV≤λ/10,RMS≤λ/50,偏转误差≤1″。该径向支撑结构能很好地保持透镜共轴精度,减小了温度变化对镜面变形的影响,各项结果满足设计要求,证明了结构设计的合理性。%To decrease the influence of external loads and temperature changes on the surface deformation and alignment of a lens,a typical lens support structure was investigated based on the characteristics and technical requirements of carbon dioxide detectors for optical systems and specifications.A radial support structure was proposed and its 3D model was established.In order to verify the reasonability of the structure,the dynamic and static rigidities as well as thermal characteristics were analyzed by using a nonlinear analysis method through CAD engineering analytical software.The analysis results indicate that the first frequency of lens subassembly is 1 301 Hz,and lens surface shape error is as follows:PV≤λ/10,RMS≤λ/50,Tilt error≤1″.The radial support structure can keep lens centration well and reduce the influence of temperature diversification on the lens surface deformation.These results validate the rationality of structure and satisfy the design requirements.

  8. Design and Calibration of Double Lens 3D Camera System%双镜头3D摄像系统的设计与标定

    梁发云; 何小明; 尤鹏飞; 王婧; 陈志文; 帖志成

    2013-01-01

    Stereo depth and parallax are closely related with the intrinsic parameters and the relation of mutual positions in 3D camera system.In this paper,the combined 3D camera system is designed on the base of the mathematical model of double lens 3D camera system and a new method of stereo calibration based on the imaging chessboard is proposed.It directly adopts LCD monitor to produce dynamic calibration target.Intrinsic and external parameters are calculated with calibration toolbox,and parameters are used to prove the rationality of the design of combined 3D camera system structure.The experimental results show that this calibration method not only acquires high precision,but also its process is convenient and fast,and can be applied to 3D camera system.The combined 3D camera system after calibration is in line with the human eye stereo vision.%3D摄像系统的内参数以及相互位置关系与视差、立体深度密切相关.在双镜头3D摄像系统数学模型的基础上设计了组合式3D摄像系统,提出了一种基于显像棋盘作为标定靶面的新方法,直接利用液晶显示器生成动态标定靶面,运用标定工具箱对双摄像头内外参数进行标定,并利用标定的参数验证组合式3D摄像系统结构设计的合理性.实验表明,该标定方法方便、快捷,操作过程简单,取得了较高的精度,适合3D摄像系统的标定,标定后的组合式3D摄像系统符合人眼立体视觉.

  9. Acoustic telemetry

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  10. Science 101: How Do Acoustics Dictate the Design of a Concert Hall?

    Robertson, Bill

    2015-01-01

    This column provides background science information for elementary teachers. When the author was young he used to think that the ideal design for a concert hall would contain walls that were composed of sound-absorbing material, like foam or egg cartons or such. He noticed, though, that this was not the case. Most concert halls contain curtains…

  11. Optimal Design and Acoustic Assessment of Low-Vibration Rotor Blades

    G. Bernardini

    2016-01-01

    Full Text Available An optimal procedure for the design of rotor blade that generates low vibratory hub loads in nonaxial flow conditions is presented and applied to a helicopter rotor in forward flight, a condition where vibrations and noise become severe. Blade shape and structural properties are the design parameters to be identified within a binary genetic optimization algorithm under aeroelastic stability constraint. The process exploits an aeroelastic solver that is based on a nonlinear, beam-like model, suited for the analysis of arbitrary curved-elastic-axis blades, with the introduction of a surrogate wake inflow model for the analysis of sectional aerodynamic loads. Numerical results are presented to demonstrate the capability of the proposed approach to identify low vibratory hub loads rotor blades as well as to assess the robustness of solution at off-design operating conditions. Further, the aeroacoustic assessment of the rotor configurations determined is carried out in order to examine the impact of low-vibration blade design on the emitted noise field.

  12. Core Noise: Implications of Emerging N+3 Designs and Acoustic Technology Needs

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a summary of the core-noise implications of NASA's primary N+3 aircraft concepts. These concepts are the MIT/P&W D8.5 Double Bubble design, the Boeing/GE SUGAR Volt hybrid gas-turbine/electric engine concept, the NASA N3-X Turboelectric Distributed Propulsion aircraft, and the NASA TBW-XN Truss-Braced Wing concept. The first two are future concepts for the Boeing 737/Airbus A320 US transcontinental mission of 180 passengers and a maximum range of 3000 nm. The last two are future concepts for the Boeing 777 transpacific mission of 350 passengers and a 7500 nm range. Sections of the presentation cover: turbofan design trends on the N+1.5 time frame and the already emerging importance of core noise; the NASA N+3 concepts and associated core-noise challenges; the historical trends for the engine bypass ratio (BPR), overall pressure ratio (OPR), and combustor exit temperature; and brief discussion of a noise research roadmap being developed to address the core-noise challenges identified for the N+3 concepts. The N+3 conceptual aircraft have (i) ultra-high bypass ratios, in the rage of 18 - 30, accomplished by either having a small-size, high-power-density core, an hybrid design which allows for an increased fan size, or by utilizing a turboelectric distributed propulsion design; and (ii) very high OPR in the 50 - 70 range. These trends will elevate the overall importance of turbomachinery core noise. The N+3 conceptual designs specify the need for the development and application of advanced liners and passive and active control strategies to reduce the core noise. Current engineering prediction of core noise uses semi-empirical methods based on older turbofan engines, with (at best) updates for more recent designs. The models have not seen the same level of development and maturity as those for fan and jet noise and are grossly inadequate for the designs considered for the N+3 time frame. An aggressive program for the development of updated noise

  13. Intraocular lens fabrication

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  14. Intraocular lens fabrication

    Salazar, Mike A. (Albuquerque, NM); Foreman, Larry R. (Los Alamos, NM)

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  15. Unitary lens semiconductor device

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  16. Practice and key technology on acoustics design of concert hall%音乐厅声学设计实践与关键技术的探讨

    章奎生; 宋拥民

    2012-01-01

    Development overview on design and construction of professional concert hall since the 1990s in China is summarized in this paper. Acoustics design cases of professional concert hall completed by Zhang Kuisheng acoustical design and research studio over the past decade are described. Then four of those professional concert halls are introduced in detail. Those are Hunan concert hall, concert hall in China conservatory, Beijing, philharmonic hall in Xiamen international conference center and Yangzhou concert hall. Finally, key technologies and factors should be considered in acoustical design of concert halls such as the preferred reverberation time, shape and volume per seat, acoustical material and diffuser design in concert hall are discussed in detail. Those successful experience and suggestions are put forward for discussing.%简述了20世纪90年代以来我国专业音乐厅设计建设的发展概况,介绍了上海章奎生声学设计研究所近十年来承担专业音乐厅工程声学设计实践成果,例举了中国音乐学院音乐厅、厦门国际会议中心音乐厅、湖南群艺馆音乐厅及扬州市音乐厅共4个音乐厅的设计实例,并对专业音乐厅声学设计中的平剖面体型设计、单座容积控制、厅内混响时间参量选择、声场扩散处理及装修材料选择等多个关键技术进行了总结和探讨.

  17. Colored Contact Lens Dangers

    Full Text Available ... Lens-Related Eye Infections Mar 01, 2017 New Technology Helps the Legally Blind Be More Independent Oct ... easy answer, and neither one considers long-term impacts. Phakic Intraocular Lenses for Nearsightedness FEB 27, 2017 ...

  18. Colored Contact Lens Dangers

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ...

  19. Colored Contact Lens Dangers

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... 2016 More Eye Health News Studies Look at Effects of Marijuana on Vision FEB 28, 2017 By ...

  20. Colored Contact Lens Dangers

    Full Text Available ... Healthy Contact Lens Use May 31, 2016 Is El Niño Making Your Allergies Worse? May 16, 2016 ... Number: * Email: * Enter code: * Message: Thank you Your feedback has been sent.

  1. Achromatic Fresnel Lens with Improved Efficiency for PV Systems

    Mario González Montes

    2014-01-01

    Full Text Available This work is aimed to design and evaluate different achromatic Fresnel lens solutions capable of operating as concentrators aimed at photovoltaic cells systems. Throughout this study, the theoretical parametric design of the achromatic lens will be shown together with a series of simulations to verify the performance of each lens topology. The results will be compared with a standard Fresnel lens to ascertain the validity and effectiveness of the obtained design. Finally, a novel kind of hybrid lens is proposed, which combines the advantages of each type of lens (standard and Fresnel according to the optimal operating region of each design. Efficiency and concentration ratios of each particular lens are shown, regarding lens dimension, light’s incidence angle, or wavelength. Through this innovative achromatic design concentration ratios above 1000 suns, which hardly reach standard Fresnel lenses. Furthermore chromatic dispersion is minimized and the efficiency rate is over 85% of efficiency for a wide spectral range (from 350 nm to 1100 nm.

  2. 实现LED矩形均匀照明的透镜设计%Lens design for uniform illumination of rectangle area with LED

    李竞

    2011-01-01

    Lens for uniform illumination of rectangle area with LED light source was designed. Based on differential geometry, a series of partial non-linear equations were constructed. According to the conservation law of energy, energy mapping relations between the source and the target plane were constructed. The points of the surface were obtained by solving the equations with fourth order Runge-Kutta formulas, and the desired free-form surface was got by curve fitting with Rhinoceros software. With ray tracing in ASAP software, the result indicates that the optical efficiency is more than 94. 01%, and the illumination uniformity of the predetermined illumination area on the target plane is better than 92. 73%. The continuity of the free-form surface was also analyzed, and the result shows that the continuity of the freeform surface is determined by energy mapping relations.%随着大功率LED发射光强的不断提高,采用单粒LED为光源的照明系统已得到普遍应用.设计一种以LED为光源实现矩形均匀照明的透镜,根据微分几何的理论建立透镜面型所满足的微分方程,然后根据能量映射关系和能量守恒定律建立面型与目标面坐标点之间的关系,并通过四阶龙格-库塔法求解微分方程得到面型数据,利用所得的面型数据在三维建模软件Rhinoceros中构建出所求透镜面型,并将透镜导入ASAP进行模拟.模拟结果表明:该光学系统效率达到94.01%,目标面照度均匀性优于92.73%.最后分析了自由曲面的连续性,指出能量映射关系决定着自由曲面的连续性.

  3. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  4. Acoustic Treatment Design Scaling Methods. Volume 5; Analytical and Experimental Data Correlation

    Chien, W. E.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The primary purpose of the study presented in this volume is to present the results and data analysis of in-duct transmission loss measurements. Transmission loss testing was performed on full-scale, 1/2-scale, and 115-scale treatment panel samples. The objective of the study was to compare predicted and measured transmission loss for full-scale and subscale panels in an attempt to evaluate the variations in suppression between full- and subscale panels which were ostensibly of equivalent design. Generally, the results indicated an unsatisfactory agreement between measurement and prediction, even for full-scale. This was attributable to difficulties encountered in obtaining sufficiently accurate test results, even with extraordinary care in calibrating the instrumentation and performing the test. Test difficulties precluded the ability to make measurements at frequencies high enough to be representative of subscale liners. It is concluded that transmission loss measurements without ducts and data acquisition facilities specifically designed to operate with the precision and complexity required for high subscale frequency ranges are inadequate for evaluation of subscale treatment effects.

  5. Controlling sound with acoustic metamaterials

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  6. 声屏障声学设计与计算机仿真应用%Acoustic Design of Sound Barriers and Simulation of Their Noise Control Performance

    陈永光; 袁启慧; 蔡伟明; 郑佰平

    2013-01-01

    In order to analyze the acoustic design process of sound barriers, survey analysis of traffic noise in the region around the residential buildings adjacent to an avenue was conducted. Based on the data obtained, three preliminary designs of sound insulation reflective barriers with different top structures were done for this region. To verify the result, acoustic software of Virtual. Lab Acoustic was applied to simulate the noise control performance of the three sound barriers. The simulation results show that the design of the vertical sound barrier can meet the practical noise reduction requirements effectively.%通过对重庆市某道路某处居民楼所存在的噪声污染情况进行实际监测,根据声屏障声学设计的步骤设计出适合该区域的三个不同顶部造型的声屏障,采用声学软件Virtual. Lab Acoustic对三种声屏障的降噪效果进行模拟,对模拟结果进行分析;确认直立型声屏障的设计可满足要求。

  7. Modeling, design, packing and experimental analysis of liquid-phase shear-horizontal surface acoustic wave sensors

    Pollard, Thomas B

    Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity

  8. Patient acceptability of the Tecnis® multifocal intraocular lens

    Sood P

    2011-03-01

    Full Text Available Priyanka Sood1, Maria A Woodward21Emory Eye Center, Atlanta, GA, USA; 2Kellogg Eye Center, Ann Arbor, MI, USAAbstract: Cataract surgery has evolved. The goal of the surgeon includes both restoration of vision and refinement of vision. Patients' desire for spectacle independence has driven the market for presbyopia-correcting cataract surgery and development of novel intraocular lens (IOL designs. The Tecnis® Multifocal Intraocular Lens incorporates an aspheric, modified anterior prolate IOL with a diffractive multifocal lens design. The design aims to minimize spherical aberration and improve range of focus. The purpose of this review is to assess patient acceptability of the Tecnis® multifocal intraocular lens.Keywords: Tecnis®, intraocular lens, multifocal, presbyopia 

  9. Capabilities, Design, Construction and Commissioning of New Vibration, Acoustic, and Electromagnetic Capabilities Added to the World's Largest Thermal Vacuum Chamber at NASA's Space Power Facility

    Motil, Susan M.; Ludwiczak, Damian R.; Carek, Gerald A.; Sorge, Richard N.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    NASA s human space exploration plans developed under the Exploration System Architecture Studies in 2005 included a Crew Exploration Vehicle launched on an Ares I launch vehicle. The mass of the Crew Exploration Vehicle and trajectory of the Ares I coupled with the need to be able to abort across a large percentage of the trajectory generated unprecedented testing requirements. A future lunar lander added to projected test requirements. In 2006, the basic test plan for Orion was developed. It included several types of environment tests typical of spacecraft development programs. These included thermal-vacuum, electromagnetic interference, mechanical vibration, and acoustic tests. Because of the size of the vehicle and unprecedented acoustics, NASA conducted an extensive assessment of options for testing, and as result, chose to augment the Space Power Facility at NASA Plum Brook Station, of the John H. Glenn Research Center to provide the needed test capabilities. The augmentation included designing and building the World s highest mass capable vibration table, the highest power large acoustic chamber, and adaptation of the existing World s largest thermal vacuum chamber as a reverberant electromagnetic interference test chamber. These augmentations were accomplished from 2007 through early 2011. Acceptance testing began in Spring 2011 and will be completed in the Fall of 2011. This paper provides an overview of the capabilities, design, construction and acceptance of this extraordinary facility.

  10. Optimized Design and Simulation of Composite Fresnel Lens%复合型菲涅耳透镜的优化设计及仿真

    殷丹艳; 王淮生; 骆青君

    2016-01-01

    Objective The efficiency of concentrating photovoltaic power is an important parameter in concentrating solar system.To improve the uniformity of the condensing spot and the photoelectric con-version efficiency,the traditional Fresnel lens was improved by increasing the light transmittance and the uniformity of the surface light intensity of the battery of the composite Fresnel lens.Methods The com-posite lens consists of internal ordinary Fresnel lens annular lens and the external double total internal re-flection annular lens.The internal ordinary Fresnel lens has been divided into odd units,in each of which the width was equal to the width of the battery.The wedge angles in the same unit were equal to each oth-er,thus having sun light refraction with the equal width.The light emitted formed a light band with uni-form intensity,suitable for photovoltaic power generation.Therefore,the sunlight into the lens was su-perposed on the surface of the battery with equal illumination.This method replaced secondary mirrors. In addition,the simulation was realized by making the complex three-dimensional modeling in the Pro En-gineer software and importing the model into TracePro.Results Setting the focal length of the Fresnel lens to 100 mm,the inner radius 36 mm,the corresponding aperture angle 20°,the outer diameter 110 mm, and the corresponding aperture angle 30°,and defining sunlight parameters led to the uniform illumination map The results showed the 91.4% optical efficiency and the 85.9% homogenization.Compared with the common Fresnel lens light distribution map of the same size,the uniformity of focal spot on photovoltaic panels on was significantly increased and the irradiance between the center and the edge had little differ-ence.Conclusion The optimized composite lens has higher uniformity and optical transmission efficiency.%目的:在聚光太阳能系统中,聚光光伏的效率是重要衡量参数之一。为了提高聚光光斑的均匀性以及光

  11. Modeling and Design of AlN Based SAW Device and Effect of Reflected Bulk Acoustic Wave Generated in the Device

    Saleem Khan

    2013-05-01

    Full Text Available Investigations of the effect of generation and reflection of bulk acoustic waves (BAWs on the performance surface acoustic wave (SAW device using finite element method (FEM simulation is carried out. A SAW delay line structure using Aluminum Nitride (AlN substrate is simulated. The dimension of the device is kept in the range of the 42  22.5 m in order to analyze the effect in MEMS devices. The propagation of the bulk wave in all the direction of the substrate is studied and analyzed. Since BAW reflect from the bottom of the SAW device and interfere with the receiving IDTs. The output of the SAW device is greatly affected by the interference of the BAW with SAWs in the device. Thus in SAW devices, BAW needed to be considered before designing the device.

  12. The Research on Perlite Acoustic Board Construction Standard Design%珍珠岩吸声板建筑标准设计研究

    崔申; 王德志; 李月强

    2013-01-01

    The article tells that the National building standard design references collective drawings The perlite acoustic board suspended ceiling and wall construction has been finished and published, which based on strengthened double-wire mesh inside the Perlite Acoustic Board, more convenient and nice special keel and innovated installation ways.%通过研制双层钢网加强珍珠岩吸声板及其便捷美观的专用龙骨,创新安装方式方法,完成国家建筑标准设计参考图《珍珠岩吸声板吊顶与墙面构造》的编制出版。

  13. Possibilities of Railway Development in Lithuania: the Analysis of Regulations for Railway Design in the Aspect of Reduction of Acoustic Noise

    Aja Tumavičė

    2016-02-01

    Full Text Available All over the world railways are of the least-polluting vehicles, and they became increasingly popular. However, the noise emission from railway infrastructure is the most problematic issue, especially at the development planning stage. This article presents analysis of Lithuanian regulations for railway design in the aspect of reduction of acoustic noise. It analyses regulations, which are mandatory for Lithuanian railway designers and builders. In addition, the overview of regulations’provisions, which are related to noise mitigation measures, are presented.

  14. 实现大范围均匀照明的LED透镜二次光学设计%Secondary Optical Design for Light Emitting Diodes Lens with Wide Range and High Uniformity Illumination

    芦佳宁; 余杰; 童玉珍; 张国义

    2012-01-01

    Proposed is a new and accessible method to design LED free-form lens with wide range and high uniformity illumination. Based on the energy conservation law and light refraction Shell's law, free-form lens are calculated by the Matlab programming. CAD software is used to compose the solid model of free-form lens. With optical simulation software Tracepro, ray tracing is used to verify the secondary optical design with the height of lighting source as 3 m and the diameter of circular receiving surface as 10 m. The illumination uniformity higher than 80% is realized.%提出了一种新的、利于实施计算的实现大范围均匀照明的LED灯具透镜设计方法。基于能量守恒定理和光线折射Snell定理,通过Matlab编程计算出自由曲面透镜坐标点。借助CAD软件和光学模拟软件Tracepro,模拟了自由曲面透镜的具体应用,在光源高为3m,接收面直径为10m的圆形照明区域,得到了均匀度达80%以上的照度分布,该设计可以应用在商场、工厂等室内照明灯具上。

  15. Acoustical Imaging

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  16. An acoustic invisible gateway

    Zhu, Yi-Fan; Liang, Bin; Kan, Wei-Wei; Yang, Jun; Cheng, Jian-Chun

    2015-01-01

    The recently-emerged concept of "invisible gateway" with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of "restoring" a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the "gate" to mimic a rigid "wall" and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet ef...

  17. Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.

    Yamada, N; Nishikawa, T

    2010-06-21

    In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.

  18. Acoustic textiles

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  19. Acoustic biosensors

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...

  20. Rose-K versus soper contact lens in keratoconus: A randomized comparative trial

    Raghav Gupta

    2014-01-01

    Conclusion: Both the contact lens designs provide an equal improvement in visual acuity in patients with Keratoconus. However, Rose-K contact lens provides greater comfort, better quality of vision and requires less chair time compared with the Soper lens and hence may possibly have a greater acceptability.

  1. Fundamentals of concentric lens systems synthesis

    Ezhova, Kseniia; Zverev, Victor; Tochilina, Tatiana; Tymoshchuk, Irina

    2016-09-01

    Introduction of coefficients defining the relationship of the radii of curvature of the surfaces of concentric optical systems, allowed the transformation of the obtained analytical relations in a system of two equations with two unknowns. It is shown that the existence of the solution of the system of equations determined by the optical constants of the selected lens material. The results of the analysis of the conditions of the chromatic aberration correction position and the sequence of obtaining of the system equations define the theoretical basis of the engineering method of parametric synthesis of concentric lens systems. Application of the developed method is illustrated by examples of calculation particular systems design build.

  2. Research on Lens Design Sense Experience Ways in Animation Storyboard Teaching%镜头感设计的情境体验方式在动画分镜教学中的运用探究

    郑群

    2014-01-01

    Lens sense design is an vital link in animation storyboard, in order to make the picture more visual impact, a variety of lens effects need to be reasonable integrated in storyboard design. This article in detail explains how to utilize a shot in the picture storyboard teaching, with scene experience to let students learn easier, and roundly improve the verisimilitude of visual effects in works.%镜头感的设计是动画分镜中至关重要的一环,为了使画面更具视觉冲击力,需要将多种镜头效果合理融入分镜设计中,本文将详细阐述如何将镜头感灵活运用在画面分镜教学中,并通过情景体验方式使学生更易掌握,最终使作品在视觉效果的灵动性上得以全面提升。

  3. Optical Design of F- theta Lens for Dual Wavelength Selective Laser Melting%双波长选区激光熔化成形中F-theta镜头光学设计

    冯联华; 张宁; 曹洪忠; 徐熙平; 段宣明

    2016-01-01

    F-theta lens is an important unit for selective laser melting (SLM) manufacture and generally use a single wavelength as the light source. The dual wavelength f-theta lens has not been used in SLM manufacture. In order to improve the SLM formability, we present the design of the f-theta lens satisfied coaxial dual wavelength SLM manu-facture. Linear scanning was achieved by introducing negative distortion, and chromatic aberration correction was achieved by choosing appropriate glass material and the structural optimization. It is composed of three pieces of spheri-cal lenses. In the scan area of 120mm × 120mm, the focal spots for 532nm laser and 1080nm laser are smaller than 30μm and 60μm,respectively. The lateral color of the designed f-theta lens is less than 1μm between the two wave-lengths,which meet the high precision application requirements of dual wavelength selective laser melting.%在选区激光熔化成形设备中,F-theta镜头是其重要的组成单元,一般采用单一波长作为光源。为了改善选区激光熔化成形性能,首次设计了由三片球面透镜组成的用于共轴双波长选区激光熔化成形的f-theta镜头。通过引入负畸变实现线性扫描,并选择合适玻璃材料、结构设计来消除色差。在扫描面积为120mm×120mm范围内,适用激光波长为532nm和1080nm,对这两波长激光的聚焦光斑分别小于30μm和60μm,横向色差分离小于1μm,满足高精度双波长激光同时共轴选区熔化成形的应用需求。

  4. Effects of charge design features on parameters of acoustic and seismic waves and cratering, for SMR chemical surface explosions

    Gitterman, Y.

    2012-04-01

    time delays clearly separated for the shot of IMI explosives (characterized by much higher detonation velocity than ANFO). Additionally acoustic records at close distances from WSMR explosions Distant Image (2440 tons of ANFO) and Minor Uncle (2725 tons of ANFO) were used to extend the charge and distance range for the SS delay scaled relationship, that showed consistency with SMR ANFO shots. The developed specific charge design contributed to the success of this unique dual Sayarim explosion experiment, providing the strongest GT0 sources since the establishment of the IMS network, that demonstrated clearly the most favorable westward/ eastward infrasound propagation up to 3400/6250 km according to appropriate summer/winter weather pattern and stratospheric wind directions, respectively, and thus verified empirically common models of infrasound propagation in the atmosphere. The research was supported by the CTBTO, Vienna, and the Israel Ministry of Immigrant Absorption.

  5. Research and Design of Surface Acoustic Wave Interdigital Transducer%声表面波又指换能器的研究与设计

    平均芬; 乐孜纯

    2011-01-01

    The parameter design of every module including optical waveguide, mode splitter, acoustic waveguide and interdigital transducer is the key to the design of acoustic-optical tunable filter. The parameters of interdigital transducer are designed, and the design ideas of radio frequency drive circuit and matching circuit are put forward. Taking micro controller unit (MCU) AT89C52 as the master controller in circuit control system, the test result is obtained by a 158 MHz frequency synthesizer.%声光可调谐滤波器的设计,关键是它的各个模块,包括光波导、模分离器、声波导和又指换能器的参数设计。设计了叉指换能器各个参数,并对其射频驱动电路和匹配电路给出了设计思路,其中电路控制系统以单片机AT89C52为主控制器,在频率为158MHz频谱仪上得出了频率合成器的测试结果。

  6. Radiation acoustics

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  7. Solar powered desalination system using Fresnel lens

    Sales, M. T. B. F.

    2016-11-01

    The Philippines is surrounded by coastal areas and these areas can be a potential source for potable water. This study aims to design and construct a solar powered desalination system using Fresnel lens. The experimental study was conducted using polluted salt water for the sample and desalination was carried out using the designed system. The desalination system was composed of the solar concentrator, solar still and the condenser system. The Fresnel lens was made of acrylic plastic and was an effective solar concentrator. Solar stills made of dark colored glass bottles were effective in absorbing the solar energy. The condenser system made of polybutylene and polystyrene were effective in condensing the vapor at ambient temperature. The shortest time of vaporization of the salt water was at 293 sec and the optimum angle of position of the lens was 36.42°. The amount of condensate collected was directly proportional to the amount of salt water in the solar still. The highest mean efficiency of the designed set-up was 34.82%. The water produced by the solar powered desalination system using Fresnel lens passed the standards set by WHO (World Health Organization) for drinking water.

  8. Thin Lens Ray Tracing.

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  9. Comparison of Strong Gravitational Lens Model Software II. HydraLens: Computer-Assisted Strong Gravitational Lens Model Generation and Translation

    Lefor, Alsn T

    2015-01-01

    The behavior of strong gravitational lens model software in the analysis of lens models is not necessarily consistent among the various software available, suggesting that the use of several models may enhance the understanding of the system being studied. Among the publicly available codes, the model input files are heterogeneous, making the creation of multiple models tedious. An enhanced method of creating model files and a method to easily create multiple models, may increase the number of comparison studies. HydraLens simplifies the creation of model files for four strong gravitational lens model software packages, including Lenstool, Gravlens/Lensmodel, glafic and PixeLens, using a custom designed GUI for each of the four codes that simplifies the entry of the model for each of these codes, obviating the need for user manuals to set the values of the many flags and in each data field. HydraLens is designed in a modular fashion, which simplifies the addition of other strong gravitational lens codes in th...

  10. Design of an X-ray detecting system based on square polycapillary X-ray lens%一种基于方形多毛细管透镜的X射线探测系统设计

    易龙涛; 孙天希; 王锴; 彭诗棋; 韩悦; 张爽; 刘志国

    2016-01-01

    An X-ray detecting system based on square polycapillary X-ray lens was designed, which had a very small X-ray collection angle. The square polycapillary X-ray lens is an X-ray control device based on total X-ray reflection. The X-ray in large range can be focused on an X-ray CCD detector by the square polycapillary X-ray lens. By measuring the transmission characteristic of the square polycapillary X-ray lens and creating the data modelling, the data detected by the X-ray CCD detector could be corrected and the information of the X-ray in the entry end of the square polycapillary X-ray lens could be restored. The transmission characteristic of the square polycapillary X-ray lens was simulated by the light trajectory tracking method. The results show that this system is suitable for large area X-ray imaging when the energy of the X-ray is lower than 20 keV. It is also suitable for collecting X-ray to improve the detection efficiency when the energy of the X-ray is lower than 14.6 keV. The above characteristics show that this system is not only suitable for some special detecting such as pulsar navigation, but also suitable for normal X-ray detecting.%设计了一种基于方形多毛细管X射线透镜的X射线探测系统,该系统具有较小的X射线收集角。方形多毛细管X射线透镜是一种基于X射线全反射的X射线调控器件,可将大面积范围内的X射线汇聚至X射线CCD探测器。通过测定X射线在方形多毛细管X射线透镜中的传输特性、建立数据模型,可校正X射线CCD所测数据并还原透镜入口端的入射X射线信息。通过光线轨迹追踪方法模拟了方形多毛细管X射线透镜的传输特性。结果表明,该系统适合探测能量低于21.5 keV的X射线,用于大面积成像;也适合探测能量低于14.6 keV的X射线,用于提高探测效率。该系统不仅可用于诸如X射线脉冲星导航等特殊应用,也可用于常规X射线探测。

  11. Dielectric Optical-Controlled Magnifying Lens by Nonlinear Negative Refraction

    Cao, Jianjun; Zheng, Yuanlin; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2014-01-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive index. Recent advancements in nanotechnology enable novel lenses, such as, superlens, hyperlens, Luneburg lens, with sub-wavelength resolution capabilities by specially designing materials' refractive indices with meta-materials and transformation optics. However, these artificially nano/micro engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here we experimentally demonstrate for the first time a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applicat...

  12. Finite Element Analysis of the LOLA Receiver Telescope Lens

    Matzinger, Elizabeth

    2007-01-01

    This paper presents the finite element stress and distortion analysis completed on the Receiver Telescope lens of the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. The Receiver Telescope captures the laser pulses transmitted through a diffractive optical element (DOE) and reflected off the lunar surface. The largest lens of the Receiver Telescope, Lens 1, is a 150 mm diameter aspheric lens originally designed to be made of BK7 glass. The finite element model of the Receiver Telescope Lens 1 is comprised of solid elements and constrained in a manner consistent with the behavior of the mounting configuration of the Receiver Telescope tube. Twenty-one temperature load cases were mapped to the nodes based on thermal analysis completed by LOLA's lead thermal analyst, and loads were applied to simulate the preload applied from the ring flexure. The thermal environment of the baseline design (uncoated BK7 lens with no baffle) produces large radial and axial gradients in the lens. These large gradients create internal stresses that may lead to part failure, as well as significant bending that degrades optical performance. The high stresses and large distortions shown in the analysis precipitated a design change from BK7 glass to sapphire.

  13. Study of Porous Materials Acoustic Signatures Behaviour in Dark Field

    Bouhedja, S; Hamdi, F [Laboratoires des Hyperfrequences et Semi-conducteurs, Universite de Constantine, B.P. 125, DZ-25000 (Algeria); Doghmane, A; Hadjoub, Z, E-mail: bouhedja_samia@yahoo.fr, E-mail: a_doghmane@yahoo.fr [Laboratoire des Semi-Conducteurs, Departement de Physique, Faculte des Sciences, Universite Badji-Mokhtar, BP 12, Annaba, DZ-23000 (Algeria)

    2011-03-01

    Several kinds of lens-transducer system exist in the scanning acoustic microscope. In this work, annular lenses are chosen in order to quantify the occultation limiting angle to suppress Rayleigh mode generation. Hence, we have numerically simulated, through variable occultation of generated rays at the lens center, the porous silicon acoustic signatures at an operating frequency of 142 MHz. In non destructive control, this investigation is of a great importance in the measurement of the surface waves attenuation. The obtained results enabled us to evaluate the maximum relative occultation at Rayleigh waves.

  14. Design of antimagnetic lens window of mine-used infrared thermometers%矿用红外测温仪镜头窗口防磁设计

    李立明; 陈影

    2012-01-01

    矿用高压供电设备温度过高时容易发生故障,由于供电设备周围存在大量的感应磁场,影响红外测温仪测量的准确性。红外测温仪的屏蔽外壳的材料为硅钢,镜头窗口处的电磁泄漏是电磁屏蔽效能下降的主要原因。在镜头窗口贴上ITO膜后,仿真得出的屏蔽效能达到了A级50dB以上,满足了屏蔽效能要求,提高了温度测量的准确性。%Overhigh of the hot points on the high-voltage power supply equipment used in the mine easily brings about accidents,and since there are lots of induced magnetic fields around the power supply equipments,the accuracy of the infrared thermometer can not be guaranteed.Silicon steel was selected as the shielding enclosure material of the infrared thermometer,the electromagnetic leakage at the lens window was the main cause of decrease in electromagnetic shielding capacity.After applying ITO film on the lens window,simulated shielding capacity reached 50 dB of grade A,which met the requirement of shielding capacity and improved the accuracy of the temperature measurement.

  15. A single-pixel wireless contact lens display

    Lingley, A. R.; Ali, M.; Liao, Y.; Mirjalili, R.; Klonner, M.; Sopanen, M.; Suihkonen, S.; Shen, T.; Otis, B. P.; Lipsanen, H.; Parviz, B. A.

    2011-12-01

    We present the design, construction and in vivo rabbit testing of a wirelessly powered contact lens display. The display consists of an antenna, a 500 × 500 µm2 silicon power harvesting and radio integrated circuit, metal interconnects, insulation layers and a 750 × 750 µm2 transparent sapphire chip containing a custom-designed micro-light emitting diode with peak emission at 475 nm, all integrated onto a contact lens. The display can be powered wirelessly from ~1 m in free space and ~2 cm in vivo on a rabbit. The display was tested on live, anesthetized rabbits with no observed adverse effect. In order to extend display capabilities, design and fabrication of micro-Fresnel lenses on a contact lens are presented to move toward a multipixel display that can be worn in the form of a contact lens. Contact lenses with integrated micro-Fresnel lenses were also tested on live rabbits and showed no adverse effect.

  16. Acoustical Imaging

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  17. Battlefield acoustics

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  18. Acoustics Research

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  19. Room Acoustics

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  20. Research On The Acoustical Design Of Rail Traffic Sound Barrier%轨道交通声屏障声学设计思路探讨

    芦垒

    2015-01-01

    With the development of Rail Traffic construction, the traffic noise pollution becomes very im-portant problem. People will pay more attention to the Sound barrier as an effective measure of controlling noise. The design of sound barrier is a very complicated problem.It is influenced by acoustical characteris-tics, landscape effects, structural safety, fire performance and maintenance. But the most important thing is still the acoustical design.%随着轨道交通建设的发展,交通噪声的污染越来越严重。声屏障作为一种降低交通噪声有效的方法,越来越受到人们的重视。声屏障设计是一个综合复杂的问题,需要考虑多项因素,包括声学特性、景观效果、结构安全、防火性能以及维护保养等,但最主要的还是声学设计。

  1. Simulation analysis and optimized design of electromagnetic acoustic transducer%电磁超声换能器仿真分析与优化设计

    刘燕; 潘瑞敏; 陈德智; 姜贺

    2015-01-01

    利用对称性简化永磁体的有限元建模,建立了用于激发Lamb波的电磁超声换能器的三维模型,同时考虑高频情况下的集肤效应造成的计算困难,得出了多根电流产生涡流场的解析解,并结合均匀性设计实验,得到了电磁超声换能器参数对涡流强度和电磁场强度的影响规律。%Using the symmetry to simplify the permanent magnet finite element modeling ,this paper proposes a three‐dimensional model of the electromagnetic acoustic transducer to generate Lamb wave . Meanwhile ,taking into account the difficulties in calculation caused by the skin effect at high frequen‐cy ,this paper deals with the distribution characteristics of the coil magnetic field by means of DC field and obtains the analytical solutions to the eddy current field produced by multiple current .The experi‐ments based on the uniform design result in obtaining the rule of the effect of the electromagnetic ul‐trasonic transducer parameters on the eddy current density and the electromagnetic field strength , w hich provides an optimum approach to designing an electromagnetic acoustic transducer .

  2. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.

    Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2012-10-01

    The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit.

  3. Remote cooling by a novel thermal lens with anisotropic positive thermal conductivity

    Sun, Fei; He, Sailing

    2017-01-01

    A novel thermal lens that can achieve a remote cooling effect is designed by transformation thermodynamics. The effective distance between the separate hot source and cold source is shortened by our shelled thermal lens without any negative thermal conductivity. Numerical simulations verify the performance of our thermal lens. Based on the effective medium theory, we also propose a practical way to realize our lens using two-layered isotropic thermal media that are both found in nature. The proposed thermal lens will have potential applications in remote temperature control and in creating other thermal illusions.

  4. Design of wide-angle projection lens for 4k digital projector%4k 数字放映机广角放映镜头的设计

    刘宵婵; 陈琛; 宋涛; 张禹; 李维善; 刘红军

    2014-01-01

    To meet the need of 4k short distance movie projection ,a wide-angle projection lens was designed ,which is suitable for projectors with three-digital-micromirror-device (DMD) chips .The largest projection ratio could be 0 .75∶1 ,the relative aperture is 1/2 .2 ,the invert-ed telephoto ratio is 4 .6∶1 .At the Nyquist frequency of 66lp/mm ,the resolution of center field is 0 .42 ,and the resolution of marginal field is 0 .25 .T he max lateral chromatic aberration is 3 .7 μm ,w hich is less than 0 .5 pixel ,and the max distortion is 2 .5% .T he feature of invert-ed telephoto was deeply analyzed ,and the methods for choosing structure ,distributing focal power and calculating key parameters were provided in the paper ,additional ,the issues nee-ding pay attention during aberration correction were contained .Finally ,a wide-angle projec-tion lens with high resolution which could meet all the indices was designed ,besides that ,the lens has the feature of easy structure ,low cost and high quality .%为满足4k电影的短距离放映需求,设计一款广角放映镜头,可适配于采用三芯片DMD技术的放映机,最大投射比可达0.75∶1,相对孔径为1/2.2,反远比为4.6∶1,在66lp/mm的Nyquist频率处,MTF值为0.42,边缘视场MTF值为0.25。最大横向色差为3.7μm<0.5pixel,最大畸变为2.5%。分析了反远距形式的特点,给出了合理选型、分配光焦度和计算关键技术参数的方法,以及像差校正过程中应注意的问题。最终设计出了符合设计指标的具有高分辨率的广角放映镜头,该镜头结构简单、成本低。

  5. Design of acoustical system of cellphone screen abrasive impacting machining%手机屏幕磨料冲击加工声学系统设计

    腾志君

    2012-01-01

    针对手机屏幕形状复杂、加工精度要求高和材料脆性大等问题,采用磨料冲击加工方法对手机屏幕进行了加工制造;依据变幅杆设计原理对声学系统进行了理论分析,建立了声学系统数学模型,设计了圆锥形变幅杆和大尺寸矩形截面工具头,并利用HP4294A型阻抗分析仪测试了圆锥形变幅杆的阻抗特性和谐振频率,应用ANSYS有限元分析软件,对工具头和声学系统进行了结构动力学模态分析.研究结果表明,变幅杆的阻抗特性和谐振频率分别为54.36 Ω和19.9 kHz,工具头和声学系统的谐振频率分别为19.858 kHz和20.185 kHz,所设计的手机屏幕磨料冲击加工声学系统能够满足设计和使用要求.%Aiming at a complicated shape, high processing accuracy and big brittle materials of cellphone screen, the abrasive impacting machining was used to solve the difficulty in machining cellphone screen. According to den principle of solid horn > acoustical system of machining apparatus was analyzed in theory and its mathematical model was established, the conical horn and tool with large dimension rectangular section were designed. The impedance characteristic and resonant frequency of the horn was tested with HP4294A impedance analyzer. Model analysis of the tool and acoustical system was made with ANSYS finite element analysis software. The results of analysis indicate that the impedance characteristic and resonant frequency of horn are 54.36 Ω and 19.9 kHz,resonant frequencies of the tool and acoustical system are 19.858 kHz and 20,185 kHz,and acoustical system is satisfied with designing and operating requirement.

  6. Evaluation of near-surface stress distributions in dissimilar welded joint by scanning acoustic microscopy.

    Kwak, Dong Ryul; Yoshida, Sanichiro; Sasaki, Tomohiro; Todd, Judith A; Park, Ik Keun

    2016-04-01

    This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints.

  7. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  8. Research of the long-focus Maksutov telephoto lens

    Tarasov, I. P.; Tsyganok, E. A.

    2016-04-01

    The article presents the research result and the optical design of long-focus telephoto lens for photo shooting by the academician Maksutov's scheme. It shows a review of lenses for photo shooting on the market today, and also an analysis of the correctional possibilities which is based on the scheme is presented; studied long-focus telephoto lens is compared with its closest analog, the calculation of a new telephoto lens with higher image quality is made on the basis of that comparison.

  9. Adaptive neuro-fuzzy estimation of optimal lens system parameters

    Petković, Dalibor; Pavlović, Nenad T.; Shamshirband, Shahaboddin; Mat Kiah, Miss Laiha; Badrul Anuar, Nor; Idna Idris, Mohd Yamani

    2014-04-01

    Due to the popularization of digital technology, the demand for high-quality digital products has become critical. The quantitative assessment of image quality is an important consideration in any type of imaging system. Therefore, developing a design that combines the requirements of good image quality is desirable. Lens system design represents a crucial factor for good image quality. Optimization procedure is the main part of the lens system design methodology. Lens system optimization is a complex non-linear optimization task, often with intricate physical constraints, for which there is no analytical solutions. Therefore lens system design provides ideal problems for intelligent optimization algorithms. There are many tools which can be used to measure optical performance. One very useful tool is the spot diagram. The spot diagram gives an indication of the image of a point object. In this paper, one optimization criterion for lens system, the spot size radius, is considered. This paper presents new lens optimization methods based on adaptive neuro-fuzzy inference strategy (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated.

  10. Optical design of two-axes parabolic trough collector and two-section Fresnel lens for line-to-spot solar concentration.

    Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto

    2015-06-01

    Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.

  11. Anisotropic and omnidirectional focusing in Luneburg lens structure with gradient photonic crystals

    Zhao, Yuan-Yuan; Zhang, Yong-Liang; Zheng, Mei-Ling; Dong, Xian-Zi; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2017-01-01

    We propose a flexible design for implementation of the Luneburg lens with gradient photonic crystals. The full-wave simulation results demonstrate the excellent performance of omnidirectional focusing of the designed Luneburg lens over a broad frequency band, and firstly exhibit anisotropic focusing in the designed Luneburg lens with a specific frequency band. In this study, our effort is focused on figuring out the operating wavelength range where the effective medium approximation theory is applicable, and the mechanism for generating anisotropic and omnidirectional focusing in Luneburg lens structure.

  12. Test results of high-precision large cryogenic lens holders

    Gal, C.; Reutlinger, A.; Boesz, A.; Leberle, T.; Mottaghibonab, A.; Eckert, P.; Dubowy, M.; Gebler, H.; Grupp, F.; Geis, N.; Bode, A.; Katterloher, R.; Bender, R.

    2012-09-01

    For the Euclid mission a Pre-Development phase is implemented to prove feasibility of individual components of the system [1]. The Near Infrared Spectrometer and Photometer (NISP) of EUCLID requires high precision large lens holders (?170 mm) at cryogenic temperatures (150K). The four lenses of the optical system are made of different materials: fused silica, CaF2, and LF5G15 that are mounted in a separate lens barrel design. Each lens has its separate mechanical interface to the lens barrel, the so called adaption ring. The performance of the lens holder design is verified by adapted test equipment and test facility including an optical metrology system. The characterization of the lens deformation and displacement (decenter, tilt) due to mechanical loads of the holder itself as well as thermally induced loads are driven by the required submicron precision range and the operational thermal condition. The surface deformation of the lens and its holder is verified by interferometric measurements, while tilt and position accuracy are measured by in-situ fibre based distance sensors. The selected distance measurement sensors have the capability to measure in a few mm range with submicron resolution in ultra high vacuum, in vibration environments and at liquid nitrogen temperatures and below. The calibration of the measurement system is of crucial importance: impacts such as temperature fluctuation, surface roughness, surface reflectivity, straylight effects, etc. on the measured distance are carefully calibrated. Inbuilt thermal expansion effects of the fibre sensors are characterized and proven with lens dummy with quasi zero CTE. The paper presents the test results and measured performance of the high precision large cryogenic lens holders attained by the metrology system. These results are presented on behalf of the EUCLID consortium.

  13. Characterization of acoustic lenses with the Foucault test by confocal laser scanning microscopy

    Ahmed Mohamed, E. T.; Abdelrahman, A.; Pluta, M.; Grill, W.

    2010-03-01

    In this work, the Foucault knife-edge test, which has traditionally been known as the classic test for optical imaging devices, is used to characterize an acoustic lens for operation at 1.2 GHz. A confocal laser scanning microscope (CLSM) was used as the illumination and detection device utilizing its pinhole instead of the classical knife edge that is normally employed in the Foucault test. Information about the geometrical characteristics, such as the half opening angle of the acoustic lens, were determined as well as the quality of the calotte of the lens used for focusing. The smallest focal spot size that could be achieved with the examined lens employed as a spherical reflector was found to be about 1 μm. By comparison to the idealized resolution a degradation of about a factor of 2 can be deduced. This limits the actual quality of the acoustic focus.

  14. Acoustic biosensors

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  15. Patient acceptability of the Tecnis® multifocal intraocular lens

    Woodward, Maria; Sood,Priyanka

    2011-01-01

    Priyanka Sood1, Maria A Woodward21Emory Eye Center, Atlanta, GA, USA; 2Kellogg Eye Center, Ann Arbor, MI, USAAbstract: Cataract surgery has evolved. The goal of the surgeon includes both restoration of vision and refinement of vision. Patients' desire for spectacle independence has driven the market for presbyopia-correcting cataract surgery and development of novel intraocular lens (IOL) designs. The Tecnis® Multifocal Intraocular Lens incorporates an aspheric, modified anter...

  16. A stereoscopic lens for digital cinema cameras

    Lipton, Lenny; Rupkalvis, John

    2015-03-01

    Live-action stereoscopic feature films are, for the most part, produced using a costly post-production process to convert planar cinematography into stereo-pair images and are only occasionally shot stereoscopically using bulky dual-cameras that are adaptations of the Ramsdell rig. The stereoscopic lens design described here might very well encourage more live-action image capture because it uses standard digital cinema cameras and workflow to save time and money.

  17. Hybrid Refractive-Diffractive Achromatic System Design with Photon Sieve-Lens Combination%光子筛-透镜组合的折衍混合消色差系统设计

    何渝; 赵立新; 唐燕; 陈铭勇; 朱江平

    2012-01-01

    Photon sieve is a diffractive optical element with large chromatic aberration, which is not suitable for imaging in wide spectral. The focal length of photon sieve decreases when the incident wavelength increases, while the focal length of positive refractive lens increases when the incident wavelength increases. The design applying the method of hybrid refractive-diffractive into the photon sieve achromatic is proposed. These opposite dispersive characteristics are used in this method. A plano-convex len is placed close to side of a photon sieve in order to achieve achromatic design. Then the achromatic system is designed in the visible spectrum. The analysis shows that the system is achromatic and has a certain ability of secondary spectrum correction. The relative error between focal lengths of achromatic wavelength and centre wavelength is 0. 33%. The imaging spectral bandwidth is 20 nm. Compared with ordinary single photon sieve, the design broadens the imaging spectrum range. Compared with the hybrid refractive-diffractive system using zone plate, a smaller focusing spot can be achieved.%光子筛作为一种衍射光学元件,具有较大的色散,不适用于宽光谱成像.光子筛的焦距随着入射波长的增大而减小,而正的折射透镜焦距随着入射波长的增大而增大.应用了折衍混合方法进行光子筛消色差的设计.该设计利用二者相反的色散特性,在光子筛的一侧紧密放置一平凸透镜,从而实现光子筛的消色差设计.并针对可见光光谱进行了设计,分析表明该方法能够实现消色差,且具有一定校正二级光谱的能力,消色差波长与中心波长处焦距相对误差为0.33%,成像光谱带宽为20 nm.与普通单个光子筛相比,该方法有效拓宽了光子筛的成像光谱范围.与使用波带片的折衍混合系统相比,聚焦光斑更小.

  18. [Intraocular lens implantation in developmental lens disorders in children].

    Kanigowska, Krystyna; Grałek, Mirosława; Kepa, Beata; Chipczyńska, Barbara

    2009-01-01

    The pediatric cataract surgery in eyes with developmental disorders, stay with still considerable challenge. At children, the lasting vision development extorts necessity quick settlement of refraction defect formed after operation. The intraocular lens old boy with cataract in microspherophakia and 12 years old boy with cataract in lens with coloboma. One-piece flexible and rigid PMMA intraocular lens was placed with success at posterior chamber without scleral fixations and without using capsular tension ring in this cases. After 3 years of observation there were no decentration or dislocation of intraocular lens in both children. Authors concluded that in some cases posterior chamber intraocular lens implantation despite defective zonular or capsular support, can make up the effective method of surgical treatment without risk of early dislocation.

  19. Droplets Acoustics

    Dahan, Raphael; Carmon, Tal

    2015-01-01

    Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.

  20. Rose-K contact lens for keratoconus

    Jain Arun

    2007-01-01

    Full Text Available Aim: To report clinical experience and the comparative value of axial and instantaneous topography data in fitting Rose-K design contact lenses in moderate and severe keratoconus. Materials and Methods: Thirty-eight eyes (of 23 patients with keratoconus were fitted with Rose-K design contact lenses and followed up for at least six months or more. Visual acuity with habitual vision correction available was measured. Axial and instantaneous topography maps for each eye were recorded. Contact lens wear comfort was graded on a ten point rating scale every three months. Results: Fourteen (100% moderate keratoconus eyes (average Sim K 48.61 ± 1.24D and 23 of 24 (96% of severe keratoconus eyes (average Sim K 60.88 ± 5.31D were successfully fitted with the Rose-K lenses. Final fit contact lenses in severe keratoconus had statistically significant steeper base curves compared to average axial corneal curvature than in moderate keratoconus eyes. Average simulated corneal curvature on axial maps predicted final fit contact lens base curves significantly better than on instantaneous maps. Thirty-three of the 37 eyes fitted with contact lenses maintained wear comfort over average follow up period of 13 ± 3.5 months. Conclusions: Rose-K design rigid contact lenses are successful in visually rehabilitating 100% of moderate and 96% of severe keratoconus eyes. Most patients (90% maintained contact lens wear comfort. Corneal curvature on axial maps is a better predictive of base curve of final fit contact lens.

  1. Critical Assessment of Correction Methods for Fisheye Lens Distortion

    Liu, Y.; Tian, C.; Huang, Y.

    2016-06-01

    A fisheye lens is widely used to create a wide panoramic or hemispherical image. It is an ultra wide-angle lens that produces strong visual distortion. The distortion modeling and estimation of the fisheye lens are the crucial step for fisheye lens calibration and image rectification in computer vision and close-range photography. There are two kinds of distortion: radial and tangential distortion. Radial distortion is large for fisheye imaging and critical for the subsequent image processing. Although many researchers have developed calibration algorithms of radial distortion of fisheye lens, quantitative evaluation of the correction performance has remained a challenge. This is the first paper that intuitively and objectively evaluates the performance of five different calibration algorithms. Upto- date research on fisheye lens calibration is comprehensively reviewed to identify the research need. To differentiate their performance in terms of precision and ease-using, five methods are then tested using a diverse set of actual images of the checkerboard that are taken at Wuhan University, China under varying lighting conditions, shadows, and shooting angles. The method of rational function model, which was generally used for wide-angle lens correction, outperforms the other methods. However, the one parameter division model is easy for practical use without compromising too much the precision. The reason is that it depends on the linear structure in the image and requires no preceding calibration. It is a tradeoff between correction precision and ease-using. By critically assessing the strengths and limitations of the existing algorithms, the paper provides valuable insight and guideline for future practice and algorithm development that are important for fisheye lens calibration. It is promising for the optimal design of lens correction models that are suitable for the millions of portable imaging devices.

  2. Analysis of binary mixtures of aqueous aromatic hydrocarbons with low-phase-noise shear-horizontal surface acoustic wave sensors using multielectrode transducer designs.

    Bender, Florian; Mohler, Rachel E; Ricco, Antonio J; Josse, Fabien

    2014-11-18

    The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX

  3. Projection lens design of wide band dynamic infrared scene simulator with digital micromirror device%宽波段DMD动态红外景象仿真器投影光学系统设计

    党东妮; 季轶群; 沈为民

    2012-01-01

    宽波段红外景象仿真器可用于内场评价和验证中波/长波红外双波段成像仪.详细介绍了基于数字微镜器件(DMD)的动态红外景象仿真器的组成和工作原理.重点介绍了覆盖中波和长波红外的宽波段红外投影光学系统的指标要求、设计思想和设计结果.基于离轴三反射镜系统设计的系统,具有无色差、适用波段宽、相对孔径大、结构较紧凑、成像质量好等优点.根据待测设备要求,设计了一款口径100、相对孔径F/2.84、全面视场角4.4°、成像质量接近于衍射极限的宽波段投影光学系统.%Wide band infrared scene simulator can be used to evaluate and verify the performance of middle (MWIR) and/or long(LWIR) wavelength infrared dual-band imagers. The construction and work principle of dynamic infrared scene simulator based digital micromirror device (DMD) were introduced in detail. The required performance, design idea and result of its projection lens covering MWTR and LWIR bands were analyzed and reported. The designed optical system was based on off-axial three-mirror system and had the advantages of achromatism, wide usable band, high speed, relative compactness and good imaging quality. According to the requirement of tested instrument, a projection lens was designed, which had 3-12 |xm of wide band, 100 mm of entrance pupil diameter, 2.84 of F-No, 284 mm of effective focal length and 4.4 degrees of area full field of view, and approached its diffraction-limited performance.

  4. Effect of crystalline lens surfaces and refractive index on image quality by model simulation analysis

    Meimei Kong; Zhishan Gao; Lei Chen; Xinhua Li

    2008-01-01

    The surfaces and refractive index of crystalline lens play an important role in the optical performance of human eye.On the basis of two eye models,which are widely applied at present,the effect of lens surfaces and its refractive index distribution on optical imaging is analyzed with the optical design software ZEMAX (Zemax Development Co.,San Diego,USA).The result shows that good image quality can be provided by the aspheric lens surfaces or (and) the gradient-index (GRIN) distribution.It has great potential in the design of intraocular lens (IOL).The eye models with an intraocular implantation are presented.

  5. Regional multiaxial mechanical properties of the porcine anterior lens capsule.

    David, G; Pedrigi, R M; Heistand, M R; Humphrey, J D

    2007-02-01

    The lens capsule of the eye plays fundamental biomechanical roles in both normal physiological processes and clinical interventions. There has been modest attention given to the mechanical properties of this important membrane, however, and prior studies have focused on 1-D analyses of the data. We present results that suggest that the porcine anterior lens capsule has a complex, regionally dependent, nonlinear, anisotropic behavior. Specifically, using a subdomain inverse finite element method to analyze data collected via a new biplane video-based test system, we found that the lens capsule is nearly isotropic (in-plane) near the pole but progressively stiffer in the circumferential compared to the meridional direction as one approaches the equator. Because the porcine capsule is a good model of the young human capsule, there is strong motivation to determine if similar regional variations exist in the human lens capsule for knowledge of such complexities may allow us to improve the design of surgical procedures and implants.

  6. Ultra-precision molding of chalcogenide glass aspherical lens

    Zhang, Feng; Wang, Zhibin; Zhang, Yunlong; Su, Ying; Guo, Rui; Xu, Zengqi; Liu, Xuanmin

    2016-10-01

    With the development of infrared optical systems in military and civil areas, chalcogenide glass aspherical lens possess some advantages, such as large infrared transmission, good thermal stability performance and image quality. Aspherical lens using chalcogenide glass can satisfy the requirements of modern infrared optical systems. Therefore, precision manufacturing of chalcogenide glass aspheric has received more and more attention. The molding technology of chalcogenide glass aspheric has become a research hotspot, because it can achieve mass and low cost manufacturing. The article of molding technology is focusing on a kind of chalcogenide glass aspherical lens. We report on design and fabrication of the mold that through simulation analysis of molding. Finally, through molding test, the fabrication of mold's surface and parameters of molding has been optimized, ensuring the indicators of chalcogenide glass aspherical lens meet the requirements.

  7. Acoustically-driven microfluidic systems

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  8. Acoustic Multipurpose Cargo Transfer Bag

    Baccus, Shelley

    2015-01-01

    The Logistics Reduction (LR) project within the Advanced Exploration Systems (AES) program is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) are designed to be the same external volume as a regular cargo transfer bag, the common logistics carrier for the International Space Station. After use as a cargo bag, the MCTB can be unzipped and unfolded to be reused. This Acoustic MCTBs transform into acoustic blankets after the initial logistics carrying objective is complete.

  9. Lens Systems for Sky Surveys and Space Surveillance

    Ackermann, M.; McGraw, J.; Zimmer, P.

    2013-09-01

    Since the early days of astrophotography, lens systems have played a key role in capturing images of the night sky. The first images were attempted with visual-refractors. These were soon followed with color-corrected refractors and finally specially designed photo-refractors. Being telescopes, these instruments were of long-focus and imaged narrow fields of view. Simple photographic lenses were soon put into service to capture wide-field images. These lenses also had the advantage of requiring shorter exposure times than possible using large refractors. Eventually, lenses were specifically designed for astrophotography. With the introduction of the Schmidt-camera and related catadioptric systems, the popularity of astrograph lenses declined, but surprisingly, a few remained in use. Over the last 30 years, as small CCDs have displaced large photographic plates, lens systems have again found favor for their ability to image great swaths of sky in a relatively small and simple package. In this paper, we follow the development of lens-based astrograph systems from their beginnings through the current use of both commercial and custom lens systems for sky surveys and space surveillance. Some of the optical milestones discussed include the early Petzval-type portrait lenses, the Ross astrographic lens and the current generation of optics such as the commercial 200mm camera lens by Canon, and the Russian VT-53e in service with ISON.

  10. Bio-inspired fluidic lens surgical camera for MIS.

    Tsai, Frank S; Johnson, Daniel; Cho, Sung Hwan; Qiao, Wen; Arianpour, Ashkan; Lo, Yu-Hwa

    2009-01-01

    We report a new type of surgical camera that will greatly improve minimally invasive surgery (MIS). The key enabling technology for this camera is a unique type of lens-bio-inspired fluidic lens, which is a bio-mimetic lens that can change its curvature, just like the way human crystalline lens can accommodate. Because of its curvature changing capability, it is now possible to design a new regime of optical systems where auto-focusing and optical zoom can be performed without moving the lens positions, as is done in typical cameras. Hence, miniaturized imaging system with high functionality can be achieved with such technology. MIS is a surgical technique where small incisions are made on the abdominal wall as opposed to a large cut in open surgery. This type of surgery ensures faster patient recovery. The key tool for MIS is its surgical camera, or laparoscope. Traditional laparoscope is long and rigid and limits the field of view. To further advance MIS technology, we utilized bio-inspired fluidic lens to design a highly versatile imager that is small, can change its field of view or zoom optically, works in low light conditions, and varies the viewing angles. The surgical camera prototype is small (total track<17 mm), possesses 3X optical zoom, operates with light emitting diode (LED) lighting, among many other unique features.

  11. Retina projection using curved lens arrays

    Yen, Hao-Ren; Su, Guo-Dung J.

    2016-09-01

    In this paper, we propose a multi-channel imaging system which combines the principles of an insect's compound eye and optical cluster eye. The system consists of two curved structure lens arrays with different pitches. Both of them have the same curvature and the radiuses of the lenses in the arrays are optimized to focus rays on the retina. The optical axes of different channels are tilted to each other in order to reduce the optical system volume and transmit a wide field of view. Each channel of an array of multiple optical system transfers only a part of the field of view. Each partial image passes through each channel and stitches together on the retina to reconstruct a complete image. In order to simulate the image stitching, we also build an eye model. The thickness from the panel to the last surface of lens group is less than 25mm. The panel size is designed to be 4 inch which is the scale of eyeglass. The system can provide a large field of view about 150 degrees which is much wider than the commercial products. By using the 3D printer, we can make a model of lens array to achieve our design.

  12. Ultrasound field measurement using a binary lens

    Clement, Gregory T; Kamakura, Tomoo

    2014-01-01

    Field characterization methods using a scattering target in the absence of a point-like receiver have been well described in which scattering is recorded by a relatively large receiver located outside the field of measurement. Unfortunately, such methods are prone to artifacts due to averaging across the receiver surface. To avoid this problem while simultaneously increasing the gain of a received signal, the present study introduces a binary plate lens designed to focus spherically-spreading waves onto a planar region having a nearly-uniform phase proportional to that of the target location. The lens is similar to a zone plate, but modified to produce a bi-convex-like behavior, such that it focuses both planar and spherically spreading waves. A measurement device suitable for characterizing narrowband ultrasound signals in air is designed around this lens by coupling it to a target and planar receiver. A prototype device is constructed and used to characterize the field of a highly-focused 400 kHz air transd...

  13. A polycarbonate ophthalmic-prescription lens series.

    Davis, J K

    1978-08-01

    Improvements in polycarbonate material, production techniques, and scratch-resistant coatings, combined with a process-oriented design, have resulted in a precision lens series. Surface quality is comparable to that of untreated glass ophthalmic lenses. The repeatability of the process results in closely controlled axial power and off-axis performance. For most lens prescriptions, the ANSI Z80.1 optical-center specifications for prescription accuracy are maintained through a total field of view of 40 deg for an 8-mm range of center-of-rotation distances. Off-axis astigmatism is controlled for near-point seeing. The lenses are both lighter and thinner than those of crown glass. A scratch-resistant coating reduces the reflections normally associated with high-index (1.586) materials. Impact resistance exceeds that required by ANSI Z80.7 and is many times that required by ANSI Z80.1.

  14. Software for the design of acoustical steam silencers of the reaction-absorption type; Software para el diseno de silenciadores acusticos de vapor del tipo reaccion-absorcion

    Buendia Dominguez, Eduardo H.; Alvarez Chavez, Jose M. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    This paper describes the computer program named SILRA, that determines the outline dimensions of an acoustic steam silencer of the reaction-absorption type. These silencers are employed in the geothermoelectric power plants to lower the high levels of pressure and sound caused by the steam discharge to the surrounding atmosphere. The program has the capacity of predicting the noise level generated by the discharge without silencer depending on the emitting source. On SIRLA was successfully coupled the theory described in specialized literature with optimization techniques and experiences acquired in former designs. SIRLA is a powerful tool that allows the designer to optimize the equipment as well as the design time. [Espanol] En este trabajo se describe el programa de computo SILRA, que determina las dimensiones generales de un silenciador acustico de vapor tipo reaccion-absorcion, estos silenciadores se emplean en las centrales geotermoelectricas para abatir los altos niveles de presion de sonido provocados por la descarga del vapor a la atmosfera. El programa tiene la capacidad de predecir el nivel de ruido que genera la descarga sin silenciador, dependiendo de la fuente emisora. En SILRA se acoplaron con exito la teoria descrita en la literatura especializada con tecnicas de optimacion y experiencias adquiridas en disenos anteriores. SILRA es una poderosa herramienta que permite al disenador optimar tanto el equipo como el tiempo de diseno.

  15. Shape-adaptable hyperlens for acoustic magnifying imaging

    Zhang, Hongkuan; Zhou, Xiaoming; Hu, Gengkai

    2016-11-01

    Previous prototypes of acoustic hyperlens consist of rigid channels, which are unable to adapt in shape to the object under detection. We propose to overcome this limitation by employing soft plastic tubes that could guide acoustics with robustness against bending deformation. Based on the idea of soft-tube acoustics, acoustic magnifying hyperlens with planar input and output surfaces has been fabricated and validated experimentally. The shape-adaption capability of the soft-tube hyperlens is demonstrated by a controlled experiment, in which the magnifying super-resolution images remain stable when the lens input surface is curved. Our study suggests a feasible route toward constructing the flexible channel-structured acoustic metamaterials with the shape-adaption capability, opening then an additional degree of freedom for full control of sound.

  16. 船舶舱室声能量分析及预测设计%Acoustic Energy Analysis and Prediction Design of Ship Cabins

    黄志武; 叶林昌; 童宗鹏

    2016-01-01

    An electric propulsion ship with serious noise limitation is studied. Based on the statistical energy analysis (SEA) method, the VA One software is used to calculate the noise of the whole ship. The acoustic energy of the cabins is analyzed and the noise reduction and prediction method is studied. Through the analysis and evaluation of the acoustic energy contribution of the main noise sources, a rational quantitative distribution of the noise reduction is realized. Aiming at the difficulty that the noise of the key cabin exceeds the critical value of 50 dB(A) by 40 dB(A), several innovative technologies, such as the low noise package module of the generator, the hard elastic composite isolation system for the propulsion motor and vibration damping system for the base, are designed and applied. Through analyzing the transfer path of the acoustic energy of the main noise sources, the noise absorption and isolation measures are applied in the path. After the de-noising process, the SPL of the real ship can meet the noise reduction requirements.%以一艘高噪声指标要求的电力推进船舶为研究对象,基于统计能量理论利用VA One软件进行全船的舱室声能量分析及降噪预测设计研究。通过评估分析主要噪声源的声能量贡献度,实现降噪指标的定量分配,针对关键舱室的噪声比50 dB(A)限值高出约40 dB(A)的降噪难点,采用柴油发电机组低噪声箱装体设计,应用推进电机硬弹性复合隔振、基座阻尼减振等技术;分析主要噪声源能量传递路径,在路径上采取吸隔声处理措施。降噪处理后,实船效果满足噪声指标要求。

  17. Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials

    Li, Yanfei; Shen, Huijie; Zhang, Linke; Su, Yongsheng; Yu, Dianlong

    2016-07-01

    Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range.

  18. Acoustic performance of two 1.83-meter-diameter fans designed for a wind-tunnel drive system

    Soderman, P. R.; Page, V. R.

    1977-01-01

    A parametric study was made of the noise generated by two 1.83-m (6-ft) diameter fans operating up to a maximum pressure ratio of 1.03. One fan had 15 rotor blades, 23 stator blades, and a maximum rotational speed of 1200 rpm. The other fan had 9 rotor blades, 13 stator blades, and a maximum speed of 2,000 rpm. The fans were approximately 1/7-scale models of the 12.2-m (40-ft) diameter fans proposed for repowering the NASA-Ames 40- by 80 foot wind tunnel. The fans were operated individually in a 23.8-m (78-ft) long duct. Sound pressure levels in the duct were used to determine radiated acoustic power as fan speed, blade angle, and mass flow were varied. Results show that the low speed fan was slightly quieter than the high speed fan and, when scaled to full scale, would be 16 db quieter than the present wind tunnel fans. The fan noise varied directly with thrust regardless of whether thrust was varied by rotational speed or blade setting for the ranges studied.

  19. 结构设计及气泡型填料对水声吸声材料的影响综述%Review for influence of structure design and packings containing air bubble on underwater acoustic absorption materials

    孙卫红; 晏欣

    2012-01-01

    The status of structure design of the underwater acoustic absorption materials and the research survey of the materials modified with packings containing air bubble were summarized, the progress in the research of synthetic resin micro-particles which was expected to be an acoustic absorption ma- terials was introduced with 54 references. The trend of novel underwater acoustic absorption materials was pointed out.%综述了水声吸声材料的结构设计现状以及气泡型填科改性水声吸声材料的研究概况,介绍了有望作为水声吸声材料的高分子树脂颗粒吸声材料的研究进展,指出了新型水下吸声材料的发展趋势.

  20. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  1. Acoustic dose and acoustic dose-rate.

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  2. Analysis of a time-lens based optical frame synchronizer and retimer for 10G Ethernet aiming at a Tb/s optical router/switch design

    Laguardia Areal, Janaina; Hu, Hao; Peucheret, Christophe

    2010-01-01

    This paper analyzes experimentally and by numerical simulations an optical frame retimer and synchronizer unit for 10 Gbit/s Ethernet input frames. The unit is envisaged to be applied in the design of an optically transparent router for Optical Time Division Multiplexed (OTDM) links, aggregating...

  3. Bionic optical imaging system with aspheric solid-liquid mixed variable-focus lens

    Du, Jia-Wei; Wang, Xuan-Yin; Liang, Dan

    2016-02-01

    A bionic optical imaging system with an aspheric solid-liquid mixed variable-focus lens was designed and fabricated. The entire system mainly consisted of a doublet lens, a solid-liquid mixed variable-focus lens, a connecting part, and a CCD imaging device. To mimic the structure of the crystalline lens, the solid-liquid mixed variable-focus lens consisted of a polydimethylsiloxane (PDMS) lens, a polymethyl methacrylate lens, and the liquid of ethyl silicone oil. By pumping liquid in or out of the cavity using a microinjector, the curvatures of the front and rear surfaces of the PDMS lens were varied, resulting in a change of focal length. The overall structure of the system was presented, as well as a detailed description of the solid-liquid mixed variable-focus lens, material, and fabrication process. Under different injection volumes, the deformation of the PDMS lens was measured and simulated, pictures were captured, and the optical performance was analyzed in simulations and experiments. The focal length of the system ranged from 25.05 to 14.61 mm, and the variation of the diopter was 28.5D, which was larger than that of the human eye.

  4. Topology optimization for acoustic problems

    Dühring, Maria Bayard

    2006-01-01

    In this paper a method to control acoustic properties in a room with topology optimization is presented. It is shown how the squared sound pressure amplitude in a certain part of a room can be minimized by distribution of material in a design domain along the ceiling in 2D and 3D. Nice 0-1 design...

  5. Simulation-based conceptual design of an acoustic metamaterial with full band gap using an air-based 1-3 piezoelectric composite for ultrasonic noise control

    Rezaei, Shahrokh; Eskandari-Ghadi, Morteza; Rahimian, Mohammad

    2017-02-01

    This paper aims at proposing a novel type of acoustic metamaterials with complete band gap composed of piezoelectric rods with square array as inclusions embedded in an air background (matrix). A modified plane wave expansion method accompanied with the principles of the Bloch-Floquet method with electromechanical coupling effect and also impedance spectra are used to get a band frequency and to investigate the passband for the selected cut of piezoelectric rods. We investigate both the electromechanical coupling coefficient and mechanical quality factor and their dependency to passband and bandwidth, which depends on both the density and the wave impedance of the matrix and the inclusions (rods). The ratio of the volume of inclusion to the matrix is used to define the fill factor or the so-called inclusion ratio, to introduce the bandwidth as a function of that. Furthermore, the fabrication method is presented in this paper. The results make a suitable foundation for design purposes and may develop an inherently passive ultrasonic noise control. In addition, the results provide the required guidance for a simulation-based design of elastic wave filters or wave guide that might be useful in high-precision mechanical systems operated in certain frequency ranges and switches made of piezoelectric materials; they also propose a novel type of elastic metamaterials, which is independent of the wave direction and has an equal sensitivity in all directions in which it reacts omnidirectionally and mitigates the occupational noise exposure.

  6. Acoustic Mechanical Feedthroughs

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  7. Design and Modelling of a Two-port Surface Acoustic WaveResonator using Coupling-of-modes Theory

    Mamta Khaneja

    2008-05-01

    Full Text Available In this present paper the coupling-of-modes theory has been used to design and simulatethe characteristics of a two-port SAW resonator with shorted reflection gratings to define theresonance cavity. A resonator device at 150 MHz has been designed and fabricated on ST-Quartz. It is found that the simulated and experimental characteristics of the device are in closeagreement. The results show that the SAW designs based on coupling-of-modes formulationare adequate for most applications.

  8. Phakic Intraocular lens- a review

    Cruz, Francisco Miguel

    2015-01-01

    Introduction: Intraocular refractive procedures with the implantation of a Phakic Intraocular lens have become a safe efficient and predictable alternative for treating high ametropias when the use of corneal photoablative procedures is not possible. The implantation of Phakic intraocular lens preservs the accomodative function,is a reversable refractive procedure, with minimal induction of higher order aberrations compaed with corneal photoablative procedures. Methods: An analytical review o...

  9. Ascorbate in the ocular lens

    Mody, Vino C. Jr

    2006-01-01

    Purpose: First, we intended to establish a method for sample preparation for measurement of ascorbate in whole rat and guinea pig lenses utilizing ultrafiltration and high performance liquid chromatography with ultraviolet radiation detection. Then, we aimed to investigate whether, in the albino rat, lens ascorbate concentration depends on solid dietary intake. Finally, we investigated if, in the pigmented guinea pig, lens ascorbate concentration may be elevated with drinkin...

  10. Gravitational lens surveys with LOFAR

    Wucknitz, O

    2008-01-01

    Deep surveys planned as a Key Science Project of LOFAR provide completely new opportunities for gravitational lens searches. For the first time do large-scale surveys reach the resolution required for a direct selection of lens candidates using morphological criteria. We briefly describe the strategies that we will use to exploit this potential. The long baselines of an international E-LOFAR are essential for this project.

  11. The influence of basic design variables on the acoustics of concert halls; new results derived from analysing a large number of existing halls

    Gade, Anders Christian

    1997-01-01

    A large data base over values of various room acoustic parameters has provided the basis for statistical analyses of how and how much the acoustic properties of conert halls are influenced by their size, shape and absorption area (as deduced from measured reverberation time). The data have been...

  12. The design, characterization, and comparison of MEMS comb-drive acoustic emission transducers with the principles of area-change and gap-change

    Kabir, Minoo; Saboonchi, Hossain; Ozevin, Didem

    2015-04-01

    Comb-drive transducers are made of interdigitized fingers formed by the stationary part known as stator and the moving part known as rotor, and based on the transduction principle of capacitance change. They can be designed as area-change or gap-change mechanism to convert the mechanical signal at in-plane direction into electrical output. The comb-drive transducers can be utilized to differentiate the wave motion in orthogonal directions when they are utilized with the outof- plane transducers. However, their sensitivity is weak to detect the wave motion released by newly formed damage surfaces. In this study, Micro-Electro-Mechanical System (MEMS) comb-drive Acoustic Emission (AE) transducer designs with two different mechanisms are designed, characterized and compared for sensing high frequency wave propagation. The MEMS AE transducers are manufactured using MetalMUMPs (Metal Multi-User MEMS Processes), which use electroplating technique for highly elevated microstructure geometries. Each type of the transducers is numerically modeled using COMSOL Multiphysics program in order to determine the sensitivity based on the applied load. The transducers are experimentally characterized and compared to the numerical models. The experiments include laser excitation to control the direction of the wave generation, and actual crack growth monitoring of aluminum 7075 specimens loaded under fatigue. Behavior and responses of the transducers are compared based on the parameters such as waveform signature, peak frequency, damping, sensitivity, and signal to noise ratio. The comparisons between the measured parameters are scaled according to the respective capacitance of each sensor in order to determine the most sensitive design geometry.

  13. THE DESIGN OF AUDITORIUM DEPENDING ON THE INTERACTION BETWEEN ARCHITECTURE AND ACOUSTICS%协作的艺术——建筑与声学互动下的演艺建筑观众厅设计

    程翌

    2012-01-01

    By analyzing the cases of new venues around the world, this paper tries to illustrate the new design approach of auditorium depending on the modern acoustic technology. This paper paints out that the design of auditorium is a collaboration arts: the space concept of architects should start with the acoustic concept, while, acoustic consultants could inspire the new acoustic idea from the bold originality of architects.%本文通过对全球新建演艺建筑的案例分析,来探讨在现代声学技术支持下,观众厅设计的新方式。指出观众厅的设计是一个协作的艺术,建筑师的空间设计以声学概念为起点:而声学顾问能因建筑师的大胆创意而激发出声学新概念。

  14. Acoustic absorption by sunspots

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  15. ACOUSTIC EMISSION ANALYZER

    J. J. Almeida-Pérez

    2004-12-01

    Full Text Available In this paper appears a solution for acoustic emission analysis commonly known as noise. For the accomplishmentof this work a personal computer is used, besides sensors (microphones and boards designed and built for signalconditioning. These components are part of a virtual instrument used for monitoring the acoustical emission. Themain goal of this work is to develop a virtual instrument that supplies many important data as the result of ananalysis allowing to have information in an easy and friendly way. Moreover this information is very useful forstudying and resolving several situations in planning, production and testing areas.The main characteristics of the virtual instrument are: signal analysis in time, effective power measurement inDecibels (dB, average intensity taken from the principle of paired microphones, as well as the data analysis infrequency. These characteristics are included to handle two information channels.

  16. Electromagnetic acoustic imaging.

    Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A

    2013-02-01

    Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.

  17. The Lissajous lens: a three-dimensional absolute optical instrument without spherical symmetry.

    Danner, Aaron J; Dao, H L; Tyc, Tomáš

    2015-03-09

    We propose a three dimensional optical instrument with an isotropic gradient index in which all ray trajectories form Lissajous curves. The lens represents the first absolute optical instrument discovered to exist without spherical symmetry (other than trivial cases such as the plane mirror or conformal maps of spherically-symmetric lenses). An important property of this lens is that a three-dimensional region of space can be imaged stigmatically with no aberrations, with a point and its image not necessarily lying on a straight line with the lens center as in all other absolute optical instruments. In addition, rays in the Lissajous lens are not confined to planes. The lens can optionally be designed such that no rays except those along coordinate axes form closed trajectories, and conformal maps of the Lissajous lens form a rich new class of optical instruments.

  18. Handbook of optical design

    Malacara-Hernández, Daniel

    2013-01-01

    Handbook of Optical Design, Third Edition covers the fundamental principles of geometric optics and their application to lens design in one volume. It incorporates classic aspects of lens design along with important modern methods, tools, and instruments, including contemporary astronomical telescopes, Gaussian beams, and computer lens design. Written by respected researchers, the book has been extensively classroom-tested and developed in their lens design courses. This well-illustrated handbook clearly and concisely explains the intricacies of optical system design and evaluation. It also di

  19. Conceptual design study of advanced acoustic composite nacelle. [for achieving reductions in community noise and operating expense

    Goodall, R. G.; Painter, G. W.

    1975-01-01

    Conceptual nacelle designs for wide-bodied and for advanced-technology transports were studied with the objective of achieving significant reductions in community noise with minimum penalties in airplane weight, cost, and in operating expense by the application of advanced composite materials to nacelle structure and sound suppression elements. Nacelle concepts using advanced liners, annular splitters, radial splitters, translating centerbody inlets, and mixed-flow nozzles were evaluated and a preferred concept selected. A preliminary design study of the selected concept, a mixed flow nacelle with extended inlet and no splitters, was conducted and the effects on noise, direct operating cost, and return on investment determined.

  20. Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies

    Kotynski, R.; Baghdasaryan, H.; Stefaniuk, T.;

    2010-01-01

    We characterize the sensitivity of imaging properties of a layered silver-TiO2 flat lens to fabrication inaccuracies. The lens is designed for approximately diffraction-free imaging with subwavelength resolution at distances in the order of a wavelength. Its operation may be attributed to self...

  1. Three-element zoom lens with fixed distance between focal points.

    Mikš, Antonin; Novák, Jiří; Novák, Pavel

    2012-06-15

    This work deals with a theoretical analysis of zoom lenses with a fixed distance between focal points. Equations are derived for the primary (paraxial) design of the basic parameters of a three-element zoom lens. It is shown that the number of optical elements for such a lens must be larger than two.

  2. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    Peters, E.M.; Masso, J.D. [AOtec, Southbridge, MA (United States)

    1995-10-01

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  3. An electrostatic deceleration lens for highly charged ions.

    Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P

    2010-04-01

    The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.

  4. Broadband Wide Angle Lens Implemented with Dielectric Metamaterials

    Anthony Starr

    2011-08-01

    Full Text Available The Luneburg lens is a powerful imaging device, exhibiting aberration free focusing for parallel rays incident from any direction. However, its advantages are offset by a focal surface that is spherical and thus difficult to integrate with standard planar detector and emitter arrays. Using the recently developed technique of transformation optics, it is possible to transform the curved focal surface to a flat plane while maintaining the perfect focusing behavior of the Luneburg over a wide field of view. Here we apply these techniques to a lesser-known refractive Luneburg lens and implement the design with a metamaterial composed of a semi-crystalline distribution of holes drilled in a dielectric. In addition, we investigate the aberrations introduced by various approximations made in the implementation of the lens. The resulting design approach has improved mechanical strength with small aberrations and is ideally suited to implementation at infrared and visible wavelengths.

  5. Broadband Wide Angle Lens Implemented with Dielectric Metamaterials

    Hunt, John; Kundtz, Nathan; Landy, Nathan; Nguyen, Vinh; Perram, Tim; Starr, Anthony; Smith, David R.

    2011-01-01

    The Luneburg lens is a powerful imaging device, exhibiting aberration free focusing for parallel rays incident from any direction. However, its advantages are offset by a focal surface that is spherical and thus difficult to integrate with standard planar detector and emitter arrays. Using the recently developed technique of transformation optics, it is possible to transform the curved focal surface to a flat plane while maintaining the perfect focusing behavior of the Luneburg over a wide field of view. Here we apply these techniques to a lesser-known refractive Luneburg lens and implement the design with a metamaterial composed of a semi-crystalline distribution of holes drilled in a dielectric. In addition, we investigate the aberrations introduced by various approximations made in the implementation of the lens. The resulting design approach has improved mechanical strength with small aberrations and is ideally suited to implementation at infrared and visible wavelengths. PMID:22164056

  6. Integration of Acoustic Detection Equipment into ANTARES

    Lahmann, R; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Naumann, C; Salomon, K

    2005-01-01

    The ANTARES group at the University of Erlangen is working towards the integration of a set of acoustic sensors into the ANTARES Neutrino Telescope. With this setup, tests of acoustic particle detection methods and background studies shall be performed. The ANTARES Neutrino Telescope, which is currently being constructed in the Mediterranean Sea, will be equipped with the infrastructure to accommodate a 3-dimensional array of photomultipliers for the detection of Cherenkov light. Within this infrastructure, the required resources for acoustic sensors are available: Bandwidth for the transmission of the acoustic data to the shore, electrical power for the off-shore electronics and physical space to install the acoustic sensors and to route the connecting cables (transmitting signals and power) into the electronics containers. It will be explained how the integration will be performed with minimal modifications of the existing ANTARES design and which setup is foreseen for the acquisition of the acoustic data.

  7. Acoustics in rock and pop music halls

    Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of rhythmic music, including rock and pop. Objective measurements were made of the acoustics of twenty rock music venues...

  8. 基于无缝平凹透镜阵列的LCD背光模组设计%Design of LCD Backlight Module Based on Piano-Concave Lens Array

    谢莉; 孙可; 刘浩; 陈刚

    2011-01-01

    针对大尺寸LCD直下式背光模组的均匀性问题提出了一种无缝平凹透镜阵列,用以代替常用的扩散膜.模拟了106.68 mm(42 in)LED背光源的光学分布,得到了合适的透镜半径、结构以及LED阵列间距,分析了平凹透镜阵列半径和平凹透镜阵列与光源的相对位置对匀光作用的影响.结果表明:半径为1 mm、厚度为2 mm的无缝平凹透镜阵列较好地起到了匀光的效果,接收面的照度均匀性为88.61%.%In order to improve the uniformity of the LCD backlight, a kind of plano-concave lens array was used in straight down type LCD backlight module instead of the diffusion films. For 106. 68 mm (42 in) LCD monitor LED backlight, the illuminance distribution was simulated, and the optimized lens radius,structure, distance of LED array were determined. The effect of different lens radius and lens array position on the uniformity of backlight was also discussed. The results show that the plano-concave lens array can diffuses lights better when the radius of lens is 1 mm and the thickness of lens is 2 mm, the uniformity of light reaches 88.61%.

  9. An "ESA-affordable" Laue-lens

    Lund, Niels

    2005-01-01

    With ESA's INTEGRAL mission gamma-ray astronomy has advanced to the point where major scientific advances must be expected from detailed studies of the many new point sources. The interest in developing focusing telescopes operating in the soft gamma-ray regime up to 1 MeV is therefore mounting...... constraints of a specific medium size launch vehicle. The introduction of the lens mass as a primary design driver has some surprising effects for the choice of material for the crystals and new tradeoff considerations are introduced....

  10. Design and Practice of Acoustics of a Small Room%小体量空间的室内音质对比设计及实践

    万宇鹏; 姚小兵; 谢荣基

    2014-01-01

    以小空间的室内声场为研究对象,针对两个同等规模的小空间分别采用ODEON和CARA CAD对其声场进行设计和模拟,然后根据声场设计方案和仿真结果对两个小空间实施声学装修,再分别对两个小空间的声场进行检测和分析。通过小空间的音质设计和实践来阐述基于ODEON及CARA两种声场设计软件设计的效果及特点。最后从声学设计的正确性、合理性、实施性三个方面对声场设计指标进行验证和分析,对这两种软件在小空间声场设计中的表现给出了评价和建议。%The indoor acoustic field of a small room is studied. The other two small rooms of the same size are taken as reference rooms, and ODEON code and CARA CAD code are used to design and simulate the sound fields of the two rooms. Afterwards, the two rooms are decorated according to the sound field design and simulation results. Then, the sound fields of the two rooms are tested and analyzed respectively. Through the sound quality design and practice in the two small rooms, the effect and characteristics of the two codes, ODEON and CARA, for sound field design are expounded. Finally, the correctness, rationality and feasibility of the sound field design are verified by analyzing the results, and the evaluation and suggestion of the two codes, ODEON and CARA, used in the design of small rooms are given.

  11. 基于声学测温的炉膛 SNCR 喷氨设计%Acoustic thermometry based SNCR ammonia injection design

    沈国清; 蒋泓亮; 张世平

    2015-01-01

    To improve the temperature window selection and ammonia injection design,the Fluent software was adopted to simulate the temperature field in the furnace.On this basis,the acoustic thermometry tech﹣nology was to be employed to carry out effective temperature measurement and real﹣time monitoring on the upper part of the furnace combustion zone,then to find out a suitable reaction temperature window and put forward a reasonable layout scheme for ammonia injection.%针对目前选择性非催化还原(SNCR)脱硝系统温度窗口选择及喷氨设计方式的不足,在 Flu﹣ent 软件模拟炉内温度场的基础上,拟定运用声学测温技术对炉膛燃烧区域上部进行有效的温度测量和实时监测,找出合适的脱硝反应温度窗口,并且设计合理的还原剂喷口布置方案。

  12. International Workshop on Detection, Classification and Localization of Marine Mammals Using Passive Acoustics (4th). International Workshop on Density Estimation of Marine Mammals Using Passive Acoustics (1st)

    2009-09-13

    PRESENTATION 11 WORKSHOPS PROGRAM 13 ORAL COMMUNICATIONS DCL WORKSHOP 19 Lazzaro Spallanzani: a hero of pre-animal welfare experimental biology...Filho 62 Using Passive Acoustic Monitoring to Evaluate the Impact of Anthropogenic Noise on Cetacean Vocal Activity Cholewiak Danielle, Vu Elizabeth...La Manna 69 ORAL COMMUNICATIONS DE WORKSHOP 71 Review of methods for estimating cetacean density from passive acoustics Len Thomas and Tiago A.Marques

  13. Electro-optically actuated liquid-lens zoom

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  14. Adaptable Design Improvements for Electromagnetic Shock Wave Lithotripters and Techniques for Controlling Cavitation

    Smith, Nathan Birchard

    In this dissertation work, the aim was to garner better mechanistic understanding of how shock wave lithotripsy (SWL) breaks stones in order to guide design improvements to modern electromagnetic (EM) shock wave lithotripters. To accomplish this goal, experimental studies were carefully designed to isolate mechanisms of fragmentation, and models for wave propagation, fragmentation, and stone motion were developed. In the initial study, a representative EM lithotripter was characterized and tested for in vitro stone comminution efficiency at a variety of field positions and doses using phantom kidney stones of variable physical properties, and in different fluid mediums to isolate the contribution of cavitation. Through parametric analysis of the acoustic field measurements alongside comminution results, a logarithmic correlation was determined between average peak pressure incident on the stone surface and comminution efficiency. It was also noted that for a given stone type, the correlations converged to an average peak pressure threshold for fragmentation, independent of fluid medium in use. The correlation of average peak pressure to efficacy supports the rationale for the acoustic lens modifications, which were pursued to simultaneously enhance beam width and optimize the pulse profile of the lithotripter shock wave (LSW) via in situ pulse superposition for improved stone fragmentation by stress waves and cavitation, respectively. In parallel, a numerical model for wave propagation was used to investigate the variations of critical parameters with changes in lens geometry. A consensus was reached on a new lens design based on high-speed imaging and stone comminution experiments against the original lens at a fixed acoustic energy setting. The results have demonstrated that the new lens has improved efficacy away from the focus, where stones may move due to respiration, fragmentation, acoustic radiation forces, or voluntary patient movements. Using the

  15. Elasticity of the eye's crystalline lens: A Brillouin light scattering study.

    Bailey, S.; Gump, J.; Sooryakumar, R.; Jayaprakash, C.; Venkiteshwar, M. S.; Bullimore, M.; Twa, M.

    2009-03-01

    Focusing the eye on a near object results in an increase in its optical power brought about by contraction of the ciliary muscles and an increase in the lens surface curvature. Distant vision occurs when the muscular force flattens the lens. Central to the ability of the lens to alter shape are its mechanical properties. Thus, given that hardening of the lens would impede deformation and reduce its ability to undergo the changes required for accommodation, a noninvasive approach to measure the elastic properties of the lens is valuable. We present results of Brillouin scattering from bovine and human lenses (from the organ donor program at The Ohio State University) that measure their high frequency acoustic response. These measurements are conducted with a few milli-watts of laser power and, in the case of bovine lenses, from entire intact eye globes, allow the stiffness of the lens to be mapped across its cross-section. The results will be compared to values of the shear- and bulk-moduli determined from other techniques and the implications of differences in these moduli discussed.

  16. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  17. Designing an array for performing Near-field Acoustic Holography with a small number of p-u probes

    Fernandez Comesaña, Daniel; Wen, Junjie; Fernandez Grande, Efren

    2016-01-01

    , such approaches usually require that a large number of transducers is spatially distributed over the area of interest. This paper describes some practical considerations for the design and optimization of a compact sensor array for performing NAH with a small number of sound intensity p-u probes. Two sensor...... geometries based on hexagonal lattice and polar sampling are assessed and compared to a regular square grid via Monte Carlo simulations accounting for multiple source configurations. Results show that transducer placement plays an important role in the robustness and accuracy of the results, specially...

  18. Database Design of Underwater Acoustic Target Based on Visual C++%基于Visual C++的水声目标数据库设计

    巩健文; 杨日杰

    2016-01-01

    针对水声目标实测数据量庞大,LOFAR和DEMON分析计算量大的问题,设计了一个基于Visual C++6.0的数据库管理系统。管理系统通过ADO接口实现与SQL Server 2005数据库管理程序的数据交换,保证了数据稳定存储和高效传输。通过内存映射文件技术,实现了对大数据文件的快速读取。采用CPU与GPU并行计算进行了LO-FAR和DEMON分析,实现了LOFAR和DEMON谱图的实时显示。整个数据库管理系统操作简洁高效,可靠性高,具有广泛的实际应用价值。%To deal with large amount of underwater acoustic target measured data and large amount of cal-culation of LOFAR and DEMON,a database management system based on Visual C++6.0 was designed. The system exchanged data with SQL Sever 2005 database management program through ADO interface in order to ensure a stable storage and efficient data transmission.The system read data using memory map-ping file,which can improve the efficiency of file read.The system analyzed LOFAR and DEMON using parallel computing based on CPU and GPU,which can real-timely display the spectrogram of LOFAR and DEMON.The system designed concisely,efficiently and of high reliability,which has extensive practical application value.

  19. Effects of contact lens wearing on keratoconus: a confocal microscopy observation

    Ghosh, Somnath; Mutalib, Haliza A; Sharanjeet-Kaur; Ghoshal, Rituparna; Retnasabapathy, Shamala

    2017-01-01

    AIM To evaluate the corneal cell morphology of new keratoconus patients wearing two different types of rigid gas-permeable (RGP) contact lenses for 1y. METHODS Thirty nine eyes of 39 new keratoconus patients were selected and randomly fitted with two types of RGP contact lenses. Group 1 had 21 eyes with regular rigid gas-permeable (RRGP) contact lens and rest 18 eyes were in group 2 with specially designed rigid gas-permeable (SRGP) contact lens. Corneal cell morphology was evaluated using a slit scanning confocal microscope at no-lens wear and after 1y of contact lens wearing. RESULTS After 1y of contact lens wearing in group 1, the mean anterior and posterior stromal keratocyte density were significantly less (P=0.006 and P=0.001, respectively) compared to no-lens wear. The mean cell area of anterior and posterior stromal keratocyte were also significantly different (P=0.005 and P=0.001) from no-lens wear. The anterior and posterior stromal haze increased by 18.74% and 23.81%, respectively after 1y of contact lens wearing. Whereas in group 2, statistically significant changes were observed only in cell density & area of anterior stroma (P=0.001 and P=0.001, respectively) after 1y. While, level of anterior and posterior stromal haze increased by 16.67% and 11.11% after 1y of contact lens wearing. Polymegathism and pleomorphism also increased after 1y of contact lens wearing in both the contact lens groups. CONCLUSION Confocal microscopy observation shows the significant alterations in corneal cell morphology of keratoconic corneas wearing contact lenses especially in group 1. The type of contact lens must be carefully selected to minimize changes in corneal cell morphology. PMID:28251081

  20. Wide-aperture aspherical lens for high-resolution terahertz imaging

    Chernomyrdin, Nikita V.; Frolov, Maxim E.; Lebedev, Sergey P.; Reshetov, Igor V.; Spektor, Igor E.; Tolstoguzov, Viktor L.; Karasik, Valeriy E.; Khorokhorov, Alexei M.; Koshelev, Kirill I.; Schadko, Aleksander O.; Yurchenko, Stanislav O.; Zaytsev, Kirill I.

    2017-01-01

    In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.

  1. Modeling Attitude Variance in Small UAS’s for Acoustic Signature Simplification Using Experimental Design in a Hardware-in-the-Loop Simulation

    2015-03-26

    MODELING ATTITUDE VARIANCE IN SMALL UAS’S FOR ACOUSTIC SIGNATURE SIMPLIFICATION USING EXPERIMENTAL...and is not subject to copyright protection in the United States. AFIT-ENS-MS-15-M-110 MODELING ATTITUDE VARIANCE IN SMALL UAS’S FOR ACOUSTIC...USAF March 2015 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENS-MS-15-M-110 MODELING ATTITUDE VARIANCE

  2. Use of acoustic vortices in acoustic levitation

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  3. Acoustic cryocooler

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  4. Planar immersion lens with metasurfaces

    Ho, John S; Tanabe, Yuji; Yeh, Alexander J; Fan, Shanhui; Poon, Ada S Y

    2015-01-01

    The solid immersion lens is a powerful optical tool that allows light entering material from air or vacuum to focus to a spot much smaller than the free-space wavelength. Conventionally, however, they rely on semispherical topographies and are non-planar and bulky, which limits their integration in many applications. Recently, there has been considerable interest in using planar structures, referred to as metasurfaces, to construct flat optical components for manipulating light in unusual ways. Here, we propose and demonstrate the concept of a planar immersion lens based on metasurfaces. The resulting planar device, when placed near an interface between air and dielectric material, can focus electromagnetic radiation incident from air to a spot in material smaller than the free-space wavelength. As an experimental demonstration, we fabricate an ultrathin and flexible microwave lens and further show that it achieves wireless energy transfer in material mimicking biological tissue.

  5. Tinting of intraocular lens implants

    Zigman, S.

    1982-06-01

    Intraocular lens (IOL) implants of polymethyl methacrylate (PMMA) lack an important yellow pigment useful as a filter in the visual process and in the protection of the retina from short-wavelength radiant energy. The ability to produce a yellow pigment in the PMMA used in IOL implants by exposure to near-ultraviolet (UV) light was tested. It was found that the highly cross-linked material in Copeland lens blanks was tinted slightly because of this exposure. The absorptive properties of lens blanks treated with near-UV light in this way approached that of the absorptive properties of human lenses. This finding shows that it is possible to alter IOL implants simply so as to induce a pale-yellow pigment in them to improve the visual process and to protect the retinas of IOL users.

  6. International rigid contact lens prescribing.

    Efron, Nathan; Morgan, Philip B; Helland, Magne; Itoi, Motozumi; Jones, Deborah; Nichols, Jason J; van der Worp, Eef; Woods, Craig A

    2010-06-01

    Rigid lenses have been fitted less since the introduction of soft lenses nearly 40 years ago. Data that we have gathered from annual contact lens fitting surveys conducted in Australia, Canada, Japan, the Netherlands, Norway, the UK and the USA between 2000 and 2008 facilitate an accurate characterization of the pattern of the decline of rigid lens fitting during the first decade of this century. There is a trend for rigid lenses to be utilized primarily for refitting those patients who are already successful rigid lens wearers-most typically older females being refit with higher Dk materials. Rigid lenses are generally fitted on a full-time basis (four or more days of wear per week) without a planned replacement schedule. Orthokeratology is especially popular in the Netherlands, but is seldom prescribed in the other countries surveyed.

  7. Algebraic Lens Distortion Model Estimation

    Luis Alvarez

    2010-07-01

    Full Text Available A very important property of the usual pinhole model for camera projection is that 3D lines in the scene are projected to 2D lines. Unfortunately, wide-angle lenses (specially low-cost lenses may introduce a strong barrel distortion, which makes the usual pinhole model fail. Lens distortion models try to correct such distortion. We propose an algebraic approach to the estimation of the lens distortion parameters based on the rectification of lines in the image. Using the proposed method, the lens distortion parameters are obtained by minimizing a 4 total-degree polynomial in several variables. We perform numerical experiments using calibration patterns and real scenes to show the performance of the proposed method.

  8. Acoustic telemetry.

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  9. Integrated Lens Antennas for Multi-Pixel Receivers

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi

  10. 新型智能材料微小型光学镜头致动器的设计与性能研究%Design and Performance Investigation for Miniature Optical Lens IPMC Actuators

    王延杰; 王永泉; 陈花玲; 朱子才; 罗斌

    2012-01-01

    为了使微小型光学镜头驱动系统满足低能耗、高稳定性以及结构简单的要求,采用新型智能材料IPMC设计了一种微小型的光学镜头致动器,并对其输出力、位移及响应速度等性能进行了研究.根据直线驱动要求确定了瓣形和环形结构;通过化学还原方法制备了IPMC材料,采用激光切割技术分别制作出5种形状的环形和瓣形致动器,并对其性能进行了测试.利用有限元软件,通过等效热模型分析了致动器的基本性能,结果表明:实验测试与理论分析结果一致,误差率在10%以内;瓣形致动器的总体位移性能比环形致动器的好;在3V驱动电压下两者的位移均大于200 μm;当内圆半径为2 mm、瓣数为8时,致动器的最大位移与响应速度均最佳.%To meet the requirements of low consumption, high stability and simplicity for the op-tical lens driving system, ionic polymer-metal composite (IPMC) , a new kind of intelligent mate-rial is adopted to design a miniature optical lens actuator, and its output force, displacement, and response speed are investigated respectively. For the purpose of linear driving, two kinds of actu-ating structures, the petal-shaped and annular structures are determined. Then, IPMC is pre-pared by chemical reduction method and five kinds of petal-shaped and annular actuators are man-ufactured by laser cutting and their performances arc tested. The performances of the actuators with different structure parameters are analyzed using an equivalent thermal model via software FEA. The analytical results coincide well with the experimental ones with error less than 10%, and the displacement performance of petal-shaped actuator is better than that of the annular one. Under actuation voltage of 3 V, both actuators can get displacement over 200 μa The annular actuator with an inner radius of 2 mm and the petal-shaped actuator with 8 petals achieve better performances in both displacement and

  11. Gravitational Lens Modeling with Genetic Algorithms and Particle Swarm Optimizers

    Rogers, Adam

    2011-01-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automa...

  12. Acoustic propagation in viscous fluid with uniform flow and a novel design methodology for ultrasonic flow meter.

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-02-01

    Ultrasonic flow meter with non-invasive no-moving-parts construction has good prospective application for space on-orbit fluid gauging. In traditional pulse transit time flow meter, inconsistency of ultrasonic transducers leads to measurement error and plane wave theory, bases of transit time flow meter, is valuable only for low-frequency wave propagation in inviscid fluid and will lose feasibility when fluid viscosity is considered. In this paper, based on the hydrodynamics of viscous fluid, wave propagation with uniform flow profile is mathematically formulated and a novel solution for viscous fluid using potential theory is firstly presented. Then a novel design methodology of continuous ultrasonic flow meter is proposed, where high measurement rangeability and accuracy are guaranteed individually by solving the integral ambiguity using multi-tone wide laning strategy and the fractional phase shift using phase lock loop tracking method. A comparison with transit time ultrasonic flow meter shows the advantage of proposed methodology. In the end, parametric analysis of viscosity on wave propagation and ultrasonic flow meter is compressively investigated.

  13. SimpLens: Interactive gravitational lensing simulator

    Saha, Prasenjit; Williams, Liliya L. R.

    2016-06-01

    SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.

  14. Reconfigurable origami-inspired acoustic waveguides.

    Babaee, Sahab; Overvelde, Johannes T B; Chen, Elizabeth R; Tournat, Vincent; Bertoldi, Katia

    2016-11-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems.

  15. Reconfigurable origami-inspired acoustic waveguides

    Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia

    2016-01-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527

  16. Characterization of an aerodynamic lens for transmitting particles > 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer

    L. R. Williams

    2013-06-01

    Full Text Available We have designed and characterized a new inlet and aerodynamic lens for the Aerodyne aerosol mass spectrometer (AMS that transmits particles between 80 nm and more than 3 μm in diameter. The design of the inlet and lens was optimized with computational fluid dynamics (CFD modeling of particle trajectories. Major changes include a redesigned critical orifice holder and valve assembly, addition of a relaxation chamber behind the critical orifice, and a higher lens operating pressure. The transmission efficiency of the new inlet and lens was characterized experimentally with size-selected particles. Experimental measurements are in good agreement with the calculated transmission efficiency.

  17. Acoustic Emission Health Monitoring of Fill Purge COPV's Used in Aerospace and Automotive Applications and Designed for Long Cycle Life

    Waller, Jess

    2013-01-01

    Cumulative composite damage in composite pressure vessels (CPVs) currently is not monitored on-orbit. Consequently, hazards due to catastrophic burst before leak (BBL) or compromised CPV reliability cannot be ascertained or mitigated, posing a risk to crew and mission assurance. The energy associated with CPV rupture can be significant, especially with high pressure gases are under containment, and the energy releases can be severe enough to cause injury, death, loss of assets or mission. Dual-Use Rationale: CPVs similar to those used by NASA on ISS, for example, are finding increasing use in automotive and transportation industry applications. These CPVs generally have a nonload sharing liner and are repeatedly filled over their service lifetime, typically with hydrogen or compressed natural gas (CNG). The same structural health monitoring equipment and software developed by NASA WSTF for evaluating, in real-time, the health of NASA CPVs on ISS will be used to evaluate the health of automotive CPVs, the only differences being the type and design of the CPV, and the in-service lifetime pressure histories. HSF Need(s)/Performance Characteristic(s) Supported: 1) Enable on-board vehicle systems management for mission critical functions at destinations with > 3 second time delay 2) Enable autonomous nominal operations and FDIR for crewed and un-crewed systems 3) Reduce on-board crew time to sustain and manage vehicle by factor of 2x at destinations with > 6 second time delay (see Crew Autonomy sheet) 4) Reduce earth-based mission ops "back room engineering" requirements for distant mission support delay (see Mission Autonomy sheet)

  18. Acoustic Bessel-like beam formation by an axisymmetric grating

    Jiménez, N.; Romero-García, V.; Picó, R.; Cebrecos, A.; Sánchez-Morcillo, V. J.; Garcia-Raffi, L. M.; Sánchez-Pérez, J. V.; Staliunas, K.

    2014-04-01

    We report Bessel-like beam formation of acoustic waves by means of an axisymmetric grating of rigid tori. The results show that the generated beam pattern is similar to that of Bessel beams, characterized by elongated non-diffracting focal spots. A multiple foci structure is observed, due to the finite size of the lens. The dependence of the focal distance on the frequency is also discussed, on the basis of an extended grating theory. Experimental validation of acoustic Bessel-like beam formation is also reported for sound waves. The results can be generalized to wave beams of different nature, as optical or matter waves.

  19. Measurement of acoustical characteristics of mosques in Saudi Arabia

    Abdou, Adel A.

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.

  20. Iris reconstruction combined with iris-claw intraocular lens implantation for the management of iris-lens injured patients

    Hu, Shufang; Wang, Mingling; Xiao, Tianlin; Zhao, Zhenquan

    2016-01-01

    Aim: To study the efficiency and safety of iris reconstruction combined with iris-claw intraocular lens (IOL) implantation in the patients with iris-lens injuries. Settings and Design: Retrospective, noncomparable consecutive case series study. Materials and Methods: Eleven patients (11 eyes) following iris-lens injuries underwent iris reconstructions combined with iris-claw IOL implantations. Clinical data, such as cause and time of injury, visual acuity (VA), iris and lens injuries, surgical intervention, follow-up period, corneal endothelial cell count, and optical coherence tomography, were collected. Results: Uncorrected VA (UCVA) in all injured eyes before combined surgery was equal to or <20/1000. Within a 1.1–4.2-year follow-up period, a significant increase, equal to or better than 20/66, in UCVA was observed in six (55%) cases, and in best-corrected VA (BCVA) was observed in nine (82%) cases. Postoperative BCVA was 20/40 or better in seven cases (64%). After combined surgery, the iris returned to its natural round shape or smaller pupil, and the iris-claw IOLs in the 11 eyes were well-positioned on the anterior surface of reconstructed iris. No complications occurred in those patients. Conclusions: Iris reconstruction combined with iris-claw IOL implantation is a safe and efficient procedure for an eye with iris-lens injury in the absence of capsular support. PMID:27146932

  1. Gravitational Lens: Deep Space Probe Design

    2012-03-01

    R0 will maximize α0, l, and as a result q. However, at this point and with the information provided thus far, utilizing the trigonometry of Figure 2.1...engineers lifetimes, which would introduce even more risk. Furthermore, if this mission were to fly successfully in spite of the obstacles the total gain

  2. An acoustic double fishnet using Helmholtz resonators.

    Murray, A R J; Summers, I R; Sambles, J R; Hibbins, A P

    2014-09-01

    The acoustic transmission of a closely spaced pair of patterned and perforated rigid plates is explored in air. The structure resembles an acoustic double fishnet design, with each plate modified such that the gap between them acts as an array of Helmholtz resonators. This allows the center frequency of the stop band to be reduced by a factor greater than 2 from the value obtained for the conventional acoustic double fishnet design. Experimental results accord well with the predictions of a finite element model.

  3. 21 CFR 886.3600 - Intraocular lens.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraocular lens. 886.3600 Section 886.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3600 Intraocular lens. (a) Identification. An intraocular lens is a device made of materials...

  4. In vivo human crystalline lens topography.

    Ortiz, Sergio; Pérez-Merino, Pablo; Gambra, Enrique; de Castro, Alberto; Marcos, Susana

    2012-10-01

    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from -0.04 to -1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism ([Formula: see text] ranging from -11 to -1 µm) and the posterior lens showing vertical astigmatism ([Formula: see text] ranging from 6 to 10 µm).

  5. Design of fiber acoustic sensors based on 3 ×3 coupler phase demodulation%基于3×3耦合器相位解调的光纤声音传感器设计

    吴锋; 吴柏昆; 余文志; 钱银博; 何岩

    2016-01-01

    In order to transport acoustic signal passively in some emergent cases , a fiber acoustic sensor was designed based on the principle of an optical fiber Michelson interferometer , processing techniques of elastic discs and optical fiber adhesion , 3 ×3 coupler phase demodulation .The expressions of three phase differences of output signals were presented , and the average phase differences were calculated based on the least square method .Simulation data and test data were acquired .Experimental results demonstrate that a fiber acoustic sensor can restore acoustic signal accurately and effectively within designed bandwidth .A fiber acoustic sensor can be used in emergent environments such as severe electro -magnetic situation .The test results verify the feasibility of a fiber acoustic sensor .%为了在某些应急情况下无源传输声音信号,采用基于光纤迈克尔逊干涉仪原理光纤声音传感的方法结合了收音弹性盘片和光纤粘接的工艺设计,使用3×3耦合器相位解调方法对传感信号进行相位解调,实现了一种新型光纤声音传感器系统. 给出了干涉仪3路输出信号相位差的表达式,利用最小二乘法拟合求出干涉仪3路输出信号的平均相位差,取得了仿真与实际测试数据. 经过测试,该系统可以准确有效地还原出设计带宽内的声音信号. 结果表明,该光纤声音传感器系统适用于电磁恶劣等应急环境中,验证了该设计方案的可行性.

  6. Photoacoustic cell using elliptical acoustic focusing

    Heritier, J.-M.; Fouquet, J. E.; Siegman, A. E.

    1982-01-01

    A photoacoustic cell has been developed in the form of an elliptical cylinder in which essentially all the acoustic energy generated by a laser beam passing down one axis is focused onto a cylindrical acoustic tranducer located along the other axis. Preliminary measurements on a liquid-filled cell of this design show high sensitivity and a notably clean impulse response. A similar design may be useful for photoacoustic measurements in vapors as well.

  7. Springer Handbook of Acoustics

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  8. Professoren og Ålen

    Poulsen, Bo

    2016-01-01

    Biolog og havforsker Johannes Schmidt regnes for at være Danmarks mest betydningsfulde havforsker gennem tiderne. Hans mange forskningsbaserede jordomsejlinger bragte ham til eksotiske egne og til opdagelsen af adskillige nye dyrearter. Dog blev særligt ålen og dens gydepladser et hovedfokus for ...

  9. Professoren og Ålen

    Poulsen, Bo

    2016-01-01

    Biolog og havforsker Johannes Schmidt regnes for at være Danmarks mest betydningsfulde havforsker gennem tiderne. Hans mange forskningsbaserede jordomsejlinger bragte ham til eksotiske egne og til opdagelsen af adskillige nye dyrearter. Dog blev særligt ålen og dens gydepladser et hovedfokus...

  10. Classroom acoustics: Three pilot studies

    Smaldino, Joseph J.

    2005-04-01

    This paper summarizes three related pilot projects designed to focus on the possible effects of classroom acoustics on fine auditory discrimination as it relates to language acquisition, especially English as a second language. The first study investigated the influence of improving the signal-to-noise ratio on the differentiation of English phonemes. The results showed better differentiation with better signal-to-noise ratio. The second studied speech perception in noise by young adults for whom English was a second language. The outcome indicated that the second language learners required a better signal-to-noise ratio to perform equally to the native language participants. The last study surveyed the acoustic conditions of preschool and day care classrooms, wherein first and second language learning occurs. The survey suggested an unfavorable acoustic environment for language learning.

  11. Acoustical Design of the Provincial Capital of Jinan Cultural Arts Center%济南市省会文化艺术中心大剧院的建声设计

    杨志刚

    2014-01-01

    This paper mainly introduced the acoustical design and acoustic test results of some new cultural venues, su main venue of the 10th China Art Festival-Provincial culture and Art Center/Jinan (including 1 800 seats opera house, 1 500 seats concert hall and a 500 seats multifunctional hall).%介绍第十届中国艺术节的主场馆--济南市省会文化艺术中心大剧院(包括1800座歌剧厅、1500座音乐厅和500座多功能厅)的建声设计,以及声学测试结果等。

  12. Estimation of the hybrid lens parameters through rigid gas permeable lens fitting

    Hasani, Mohammadali; Hashemi, Hassan; Jafarzadehpur, Ebrahim; Yekta, Abbas Ali; Dadbin, Nooshin; khabazkhoob, Mehdi

    2016-01-01

    Purpose To estimate the fitting parameters of the hybrid contact lens in patients with corneal ectasia using the rigid gas permeable (RGP) lens. Methods Thirty-four eyes with corneal ectasia were evaluated in this study. The patients were examined once with the RGP lens and once with the hybrid contact lens. The relationship between the base curvature of the RGP and the vault of the hybrid lens and the correlation between their powers were analyzed. Results We found a linear relationship betw...

  13. Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator

    Elayouch, A.

    2017-01-05

    We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties. Our study reveals that the phenomenon of acoustically induced transparency is accompanied by an effect of near-zero density. Indeed, the dynamic effective parameters obtained from experimental data show the presence of a frequency band where the effective mass density is close to zero, with high transmission levels reaching 0.7. Furthermore, we demonstrate that such effective parameters lead to wave guiding in a 90-degrees-bent channel. This kind of acoustic metamaterial can, therefore, give rise to acoustic functions like controlling the wavefront, which may lead to very promising applications in acoustic cloacking or imaging.

  14. Acoustic Spatiality

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  15. Acoustic Neurinomas

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  16. 室内可见光通信系统中菲涅尔透镜接收天线的设计研究∗%Design and study of Fresnel lens for an antenna in indo or visible light communication system

    李湘; 蓝天; 王云; 王龙辉

    2015-01-01

    针对基于白光LED室内可见光无线光通信技术的应用需求,设计了等齿距平面菲涅尔透镜.相比常规透镜光接收天线,菲涅尔透镜具有聚焦能力强、焦距短、透镜厚度薄、重量轻、成本低等优点.利用Trace pro软件对设计进行了模拟仿真,分析了透镜不同设计参数对接收天线光学增益、光学效率及光斑尺寸的影响,讨论了透镜在平行光斜入射时的会聚情况.结果表明,平面点聚焦菲涅尔透镜的光学效率可达92.1%,适用于小视场、高增益接收光学系统前端.%Indoor visible light communication is a novel wireless communication based on white LED technology. For its application needs, equal-pitch flat Fresnel lens is designed. Compared with traditional lens, Fresnel lens has several advantages including strong focus ability, short focal length, thin thickness, light weight, low cost, etc. The optical concentration ratio, the optical efficiency and the spot size of these Fresnel lenses are analyzed respectively with different parameters by means of Trace pro. Furthermore, the concentration performance is discussed at different incident angles. The results indicate that this kind of Fresnel lens could be used as an antenna of high-gain and small field, and the optical efficiency could be obtained to be 92.1%.

  17. Lens stem cells may reside outside the lens capsule: an hypothesis

    Meyer Rita A

    2007-06-01

    Full Text Available Abstract In this paper, we consider the ocular lens in the context of contemporary developments in biological ideas. We attempt to reconcile lens biology with stem cell concepts and a dearth of lens tumors. Historically, the lens has been viewed as a closed system, in which cells at the periphery of the lens epithelium differentiate into fiber cells. Theoretical considerations led us to question whether the intracapsular lens is indeed self-contained. Since stem cells generate tumors and the lens does not naturally develop tumors, we reasoned that lens stem cells may not be present within the capsule. We hypothesize that lens stem cells reside outside the lens capsule, in the nearby ciliary body. Our ideas challenge the existing lens biology paradigm. We begin our discussion with lens background information, in order to describe our lens stem cell hypothesis in the context of published data. Then we present the ciliary body as a possible source for lens stem cells, and conclude by comparing the ocular lens with the corneal epithelium.

  18. Acoustic Treatment Design Scaling Methods. Volume 4; Numerical Simulation of the Nonlinear Acoustic Impedance of a Perforated Plate Single-Degree-of-Freedom Resonator Using a Time-Domain Finite Difference Method

    Kraft, R. E.

    1999-01-01

    Single-degree-of-freedom resonators consisting of honeycomb cells covered by perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine ducts. The acoustic resistance and mass reactance of such liners are known to vary with the intensity of the sound incident upon the panel. Since the pressure drop across a perforated liner facesheet increases quadratically with the flow velocity through the facesheet, this is known as the nonlinear resistance effect. In the past, two different empirical frequency domain models have been used to predict the Sound Pressure Level effect of the incident wave on the perforated liner impedance, one that uses the incident particle velocity in isolated narrowbands, and one that models the particle velocity as the overall velocity. In the absence of grazing flow, neither frequency domain model is entirely accurate in predicting the nonlinear effect that is measured for typical perforated sheets. The time domain model is developed in an attempt to understand and improve the model for the effect of spectral shape and amplitude of multi-frequency incident sound pressure on the liner impedance. A computer code for the time-domain finite difference model is developed and predictions using the models are compared to current frequency-domain models.

  19. Acoustic source for generating an acoustic beam

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  20. Parameters measurement of rigid gas permeable contact lens based on optical coherence tomography

    Zhu, Dexi; Shen, Meixiao; Li, Yiyu

    2012-10-01

    Spectral domain optical coherence tomography (OCT) was developed in order to measure the geometric parameters of rigid gas permeable (RGP) contact lens. With custom designed OCT system, an ultra-high axial resolution of 3.3 μm in lens was achieved. The OCT image was corrected to eliminate the optical distortion and actual surfaces of lens were shown in contour map. Central thickness, lens diameter, base curve and front surface curvature at optical zone were calculated from the contour map. The results match well with the real values measured by conventional instruments. Our research indicates that OCT can be used to test the RGP lens in a simple and exact way.