WorldWideScience

Sample records for acoustic impedance

  1. Experimental Verification of Acoustic Impedance Inversion

    Institute of Scientific and Technical Information of China (English)

    郭永刚; 王宁; 林俊轩

    2003-01-01

    Well controlled model experiments were carried out to verify acoustic impedance inversion scheme, and different methods of extracting impulse responses were investigated by practical data. The acoustic impedance profiles reconstructed from impulse responses are in good agreement with the measured value and theoretical value.

  2. Acoustic impedances of ear canals measured by impedance tube

    DEFF Research Database (Denmark)

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...

  3. Acoustic Impedance Inversion VIa Wavelet Transform COnstraints

    Institute of Scientific and Technical Information of China (English)

    HuiyanZHANG; BainianLU; 等

    1998-01-01

    As is well known,the acoustic impedance inversion problem is,in general.an underdetermined inverse problem and some constraints about the model have to be incorporated in the inversion scheme,In this article,we assume that a prioir scale information about the model is available to constrain the inversion.We then explore another approach by means of the wavelet transform.WT,where we are specifically concerned with the selection and application of a priori scale information in the wavelet domain to reconstruct the acoustic impedance model.A simple example is explored,which show that the WT approach improves results in comparison with the conventional approach.

  4. New methods of measuring normal acoustic impedance

    OpenAIRE

    Wayman, James L.

    1984-01-01

    In recent years new methods based on signal processing technical have been developed to measure the normal acoustic impedance of materials. These methods proved to be considerably faster easier to implement than the SRW method rhey replace. Mathematical, hardware and software aspects of these techniques are discussed and results obtained over a frequency range of 200-4000 Hz for several architectural materials are presented. NPS Foundation Research Program http://archive....

  5. Ultrasonic flow measurement and wall acoustic impedance effects.

    Science.gov (United States)

    Willatzen, M

    2004-03-01

    An examination of the influence of wall acoustic impedance effects on sound propagation in flowing liquids confined by cylindrical walls is presented. Special focus is given to the importance of the wall acoustic impedance value for ultrasonic flow meter performance. The mathematical model presented allows any radially-dependent axial flow profile to be examined in the linear flow acoustics regime where fluid flow speed is much smaller than the fluid sound speed everywhere in the fluid medium. PMID:14996531

  6. Modifying the acoustic impedance of polyurea-based composites

    Science.gov (United States)

    Nantasetphong, Wiroj; Amirkhizi, Alireza V.; Jia, Zhanzhan; Nemat-Nasser, Sia

    2013-04-01

    Acoustic impedance is a material property that depends on mass density and acoustic wave speed. An impedance mismatch between two media leads to the partial reflection of an acoustic wave sent from one medium to another. Active sonar is one example of a useful application of this phenomenon, where reflected and scattered acoustic waves enable the detection of objects. If the impedance of an object is matched to that of the surrounding medium, however, the object may be hidden from observation (at least directly) by sonar. In this study, polyurea composites are developed to facilitate such impedance matching. Polyurea is used due to its excellent blast-mitigating properties, easy casting, corrosion protection, abrasion resistance, and various uses in current military technology. Since pure polyurea has impedance higher than that of water (the current medium of interest), low mass density phenolic microballoon particles are added to create composite materials with reduced effective impedances. The volume fraction of particles is varied to study the effect of filler quantity on the acoustic impedance of the resulting composite. The composites are experimentally characterized via ultrasonic measurements. Computational models based on the method of dilute-randomly-distributed inclusions are developed and compared with the experimental results. These experiments and models will facilitate the design of new elastomeric composites with desirable acoustic impedances.

  7. Acoustic Wavefront Manipulation: Impedance Inhomogeneity and Extraordinary Reflection

    CERN Document Server

    Zhao, Jiajun; Chen, Zhining; Li, Baowen

    2013-01-01

    Optical wavefront can be manipulated by interfering elementary beams with phase inhomogeneity. Therefore a surface allowing huge, abrupt and position-variant phase change would enable all possibilities of wavefront engineering. However, one may not have the luxury of efficient abrupt-phase-changing materials in acoustics. This motivates us to establish a counterpart mechanism for acoustics, in order to empower the wide spectrum of novel acoustic applications. Remarkably, the proposed impedance-governed generalized Snell's law (IGSL) of reflection is distinguished from that in optics. Via the manipulation of inhomogeneous acoustic impedance, extraordinary reflection can be tailored for unprecedented wavefront manipulation while ordinary reflection can be surprisingly switched on or off. Our results may power the acoustic-wave manipulation and engineering. We demonstrate novel acoustic applications by planar surfaces designed with IGSL.

  8. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  9. Effect of rib-cage structure on acoustic chest impedance

    DEFF Research Database (Denmark)

    Zimmermann, Niels Henrik; Møller, Henrik; Hansen, John;

    2011-01-01

    When a stethoscope is placed on the surface of the chest, the coupler picks up sound from heart and lungs transmitted through the tissues of the ribcage and from the surface of the skin. If the acoustic impedance of the chest surface is known, it is possible to optimize the coupler for picking up...

  10. Acoustic impedance inversion of zero-offset VSP data

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Liu Yang; Sun Zhe; Tian Hong; Su Hua; Zhao Qianhua; Liu Yingyu

    2009-01-01

    Highly precise acoustic impedance inversion is a key technology for pre-drilling prediction by VSP data. In this paper, based on the facts that VSP data has high resolution, high signal to noise ratio, and the downgoing and upgoing waves can be accurately separated, we propose a method of predicting the impedance below the borehole in front of the bit using VSP data. First, the method of nonlinear iterative inversion is adopted to invert for impedance using the VSP corridor stack. Then, by modifying the damping factor in the iteration and using the preconditioned conjugate gradient method to solve the equations, the stability and convergence of the inversion results can be enhanced. The results of theoretical models and actual data demonstrate that the method is effective for pre-drilling prediction using VSP data.

  11. Tunable acoustic radiation pattern assisted by effective impedance boundary

    Science.gov (United States)

    Qian, Feng; Quan, Li; Wang, Li-Wei; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2016-02-01

    The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no fingerprint of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No.11474160), the Fundamental Research Funds for Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201401), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  12. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    Science.gov (United States)

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  13. Broadband acoustic diode by using two structured impedance-matched acoustic metasurfaces

    Science.gov (United States)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Liang, Qing-Xuan; Song, Ai-Ling

    2016-07-01

    An acoustic diode (AD) is proposed and designed based on a mechanism different from the previous designs by using two structured impedance-matched acoustic metasurfaces. This AD can realize unidirectional acoustic transmission within a broad band with high transmission efficiency due to the impedance-matching condition while allowing other entities such as objects or fluids to pass freely. What is more, the backtracking waves that come from the incoming waves can be efficiently prevented and cannot disturb the source. The acoustic pressure field distribution, intensity distribution, and transmission efficiency are calculated by using the finite element method. The simulation results agree well with the theoretical predictions. Our proposed mechanism can experimentally provide a simple approach to design an AD and have potential applications in various fields such as medical ultrasound and noise insulation.

  14. A state feedback electro-acoustic transducer for active control of acoustic impedance

    Science.gov (United States)

    Samejima, Toshiya

    2003-03-01

    In this paper, a new control system in which the acoustic impedance of an electro-acoustic transducer diaphragm can be actively varied by modifying design parameters is presented and its effectiveness is theoretically investigated. The proposed control system is based on a state-space description of the control system derived from an electrical equivalent circuit of an electro-acoustic transducer to which a differentiating circuit is connected, and is designed using modern control theory. The optimal quadratic regulator is used in the control system design, with its quadratic performance index formulated for producing desired acoustic impedance. Computer simulations indicate that the acoustic impedance of the diaphragm can be significantly varied over a wide frequency range that includes the range below the resonance frequency of the electro-acoustic transducer. A computer model of the proposed control system is used to illustrate its application to semi-active noise control in a duct. It is demonstrated that the proposed control system provides substantial reductions in the noise radiating from the outlet of the duct, both in the stiffness control range and in the mass control range.

  15. Optimization of Acoustic Pressure Measurements for Impedance Eduction

    Science.gov (United States)

    Jones, M. G.; Watson, W. R.; Nark, D. M.

    2007-01-01

    As noise constraints become increasingly stringent, there is continued emphasis on the development of improved acoustic liner concepts to reduce the amount of fan noise radiated to communities surrounding airports. As a result, multiple analytical prediction tools and experimental rigs have been developed by industry and academia to support liner evaluation. NASA Langley has also placed considerable effort in this area over the last three decades. More recently, a finite element code (Q3D) based on a quasi-3D implementation of the convected Helmholtz equation has been combined with measured data acquired in the Langley Grazing Incidence Tube (GIT) to reduce liner impedance in the presence of grazing flow. A new Curved Duct Test Rig (CDTR) has also been developed to allow evaluation of liners in the presence of grazing flow and controlled, higher-order modes, with straight and curved waveguides. Upgraded versions of each of these two test rigs are expected to begin operation by early 2008. The Grazing Flow Impedance Tube (GFIT) will replace the GIT, and additional capabilities will be incorporated into the CDTR. The current investigation uses the Q3D finite element code to evaluate some of the key capabilities of these two test rigs. First, the Q3D code is used to evaluate the microphone distribution designed for the GFIT. Liners ranging in length from 51 to 610 mm are investigated to determine whether acceptable impedance eduction can be achieved with microphones placed on the wall opposite the liner. This analysis indicates the best results are achieved for liner lengths of at least 203 mm. Next, the effects of moving this GFIT microphone array to the wall adjacent to the liner are evaluated, and acceptable results are achieved if the microphones are placed off the centerline. Finally, the code is used to investigate potential microphone placements in the CDTR rigid wall adjacent to the wall containing an acoustic liner, to determine if sufficient fidelity can be

  16. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal

    Science.gov (United States)

    Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le

    2016-08-01

    The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.

  17. Gas hydrate saturation from acoustic impedance and resistivity logs in the shenhu area, south china sea

    Science.gov (United States)

    Wang, X.; Wu, S.; Lee, M.; Guo, Y.; Yang, S.; Liang, J.

    2011-01-01

    During the China's first gas hydrate drilling expedition -1 (GMGS-1), gas hydrate was discovered in layers ranging from 10 to 25 m above the base of gas hydrate stability zone in the Shenhu area, South China Sea. Water chemistry, electrical resistivity logs, and acoustic impedance were used to estimate gas hydrate saturations. Gas hydrate saturations estimated from the chloride concentrations range from 0 to 43% of the pore space. The higher gas hydrate saturations were present in the depth from 152 to 177 m at site SH7 and from 190 to 225 m at site SH2, respectively. Gas hydrate saturations estimated from the resistivity using Archie equation have similar trends to those from chloride concentrations. To examine the variability of gas hydrate saturations away from the wells, acoustic impedances calculated from the 3 D seismic data using constrained sparse inversion method were used. Well logs acquired at site SH7 were incorporated into the inversion by establishing a relation between the water-filled porosity, calculated using gas hydrate saturations estimated from the resistivity logs, and the acoustic impedance, calculated from density and velocity logs. Gas hydrate saturations estimated from acoustic impedance of seismic data are ???10-23% of the pore space and are comparable to those estimated from the well logs. The uncertainties in estimated gas hydrate saturations from seismic acoustic impedances were mainly from uncertainties associated with inverted acoustic impedance, the empirical relation between the water-filled porosities and acoustic impedances, and assumed background resistivity. ?? 2011 Elsevier Ltd.

  18. Development of Adaptive Acoustic Impedance Control Technologies of Acoustic Duct Liner

    Directory of Open Access Journals (Sweden)

    Hiroshi Kobayashi

    2011-01-01

    Full Text Available This paper describes the development of adaptive acoustic impedance control (AAC technologies to achieve a larger fan noise reduction, by adaptively adjusting reactance and resistance of the acoustic liner impedance. For the actual proof of the AAC technology III performance, the advanced fan noise absorption control duct liner II was made on trial basis, with the simple control system and the plain device. And, then, the duct liner II was examined for the AAC technology I, II, and III models, using the high speed fan test facility. The test results made clear that the duct liner II of the AAC technology III model could achieve the fan noise reduction higher than O.A. SPL 10 dB (A at the maximum fan speed 6000 rpm, containing the reduction of fundamental BPF tone of 18 dB and 2nd BPF tone of 10 dB in response to the fan peed change from 3000 to 6000 rpm.

  19. Transmission Characteristics in Tubular Acoustic Metamaterials Studied with Fluid Impedance Theory

    Institute of Scientific and Technical Information of China (English)

    FAN Li; ZHANG Shu-Yi; ZHANG Hui

    2011-01-01

    Tubular acoustic metamaterials with negative densities composed of periodical membranes set up along pipes are studied with the fluid impedance theory. In addition to the conventional forbidden bands induced by the Bragg-scattering due to the periodic distributions of different acoustic impedances, the low-frequency forbidden band (LFB) with the low-frequency limit of zero Hertz is studied, in which the LFB is explained with acoustic impedance matching and the Bloch theory. Furthermore, the influences of the structural parameters of the tubular acoustic metamaterials on the transmission characteristics, such as the transmission coefficients, dispersion curves, widths of forbidden and pass bands, fluctuations in pass bands, etc., are evaluated, which can be used in the optimization of the acoustic insulation ability of the metamaterials.%Tubular acoustic metamaterials with negative densities composed of periodical membranes set up along pipes are studied with the fluid impedance theory.In addition to the conventional forbidden bands induced by the Bragg-scattering due to the periodic distributions of different acoustic impedances,the low-frequency forbidden band (LFB) with the low-frequency limit of zero Hertz is studied,in which the LFB is explained with acoustic impedance matching and the Bloch theory.Furthermore,the influences of the structural parameters of the tubular acoustic metamaterials on the transmission characteristics,such as the transmission coefficients,dispersion curves,widths of forbidden and pass bands,fluctuations in pass bands,etc.,are evaluated,which can be used in the optimization of the acoustic insulation ability of the metamaterials.Like electromagnetic metamaterials,acoustic metamaterials have been presented with different structures,which have negative constitutive parameters of acoustic propagation and can realize unique acoustic characteristics and applications.[1-5] Recently,acoustic metamaterials were introduced into acoustic resonance

  20. Characterization of electro-acoustics impedance and its application to active noise control

    Institute of Scientific and Technical Information of China (English)

    HOU Hong; YANG Jianhua

    2004-01-01

    Characteristics of radiation impedance and its inducing variation of electrical impedance for a controllable source have been investigated. An impedance-based error criterion has been proposed and its application to Active Noise Control is demonstrated through a coil driven loudspeaker. A general formula of radiation impedance is derived for two control strategies, according to the criterion of total acoustic power output. The radiation impedances of some commonly used sound sources are calculated. We discuss in detail the relation between variation of the input electrical impedance and radiation impedance for the two control strategies. The measured data of the input electrical impedance from a loudspeaker agree fairly well with theoretical analysis. An AC- bridge circuit is designed in order to measure the weak variation of electrical impedance resulted from radiation impedance. The bridge relative output is unique for a certain control strategy, from which an impedance-based error criterion is then proposed and the implementation of its application to an active control system is analyzed.Numerical results of such criterion are presented. An analogue control system is set up and experiments are carried out in a semi-anechoic chamber to verify the new control approach.

  1. Acoustic input impedance of the avian inner ear measured in ostrich (Struthio camelus).

    Science.gov (United States)

    Muyshondt, Pieter G G; Aerts, Peter; Dirckx, Joris J J

    2016-09-01

    In both mammals and birds, the mechanical behavior of the middle ear structures is affected by the mechanical impedance of the inner ear. In this study, the aim was to quantify the acoustic impedance of the avian inner ear in the ostrich, which allows us to determine the effect on columellar vibrations and middle ear power flow in future studies. To determine the inner ear impedance, vibrations of the columella were measured for both the quasi-static and acoustic stimulus frequencies. In the frequency range of 0.3-4 kHz, we used electromagnetic stimulation of the ossicle and a laser Doppler vibrometer to measure the vibration response. At low frequencies, harmonic displacements were imposed on the columella using piezo stimulation and the resulting force response was measured with a force sensor. From these measurement data, the acoustic impedance of the inner ear could be determined. A simple RLC model in series of the impedance measurements resulted in a stiffness reactance of KIE = 0.20·10(12) Pa/m³, an inertial impedance of MIE = 0.652·10(6) Pa s(2)/m³, and a resistance of RIE = 1.57·10(9) Pa s/m. We found that values of the inner ear impedance in the ostrich are one to two orders in magnitude smaller than what is found in mammal ears. PMID:27473506

  2. Absorption and impedance boundary conditions for phased geometrical-acoustics methods

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2012-01-01

    developed on which boundary condition produces accurate results. In this study, various boundary conditions in terms of normal, random, and field incidence absorption coefficients and normal incidence surface impedance are used in a phased beam tracing model, and the simulated results are validated......Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been...... with boundary element solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. Effects of the neglect of reflection phase shift are also investigated. It is concluded that the impedance, random incidence, and field incidence absorption boundary conditions produce...

  3. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    Energy Technology Data Exchange (ETDEWEB)

    Amami, Souhail [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)], E-mail: souhail.amami@utc.fr; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)

    2010-05-15

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  4. Underwater asymmetric acoustic transmission structure using the medium with gradient change of impedance

    Science.gov (United States)

    Bo, Hu; Jie, Shi; Sheng-Guo, Shi; Yu, Sun; Zhong-Rui, Zhu

    2016-02-01

    We propose an underwater asymmetric acoustic transmission structure comprised of two media each with a gradient change of acoustic impedance. By gradually increasing the acoustic impedances of the media, the propagating direction of the acoustic wave can be continuously bent, resulting in allowing the acoustic wave to pass through along the positive direction and blocking acoustic waves from the negative one. The main advantages of this structure are that the asymmetric transmission effect of this structure can be realized and enhanced more easily in water. We investigate both numerically and experimentally the asymmetric transmission effect. The experimental results show that a highly efficient asymmetric acoustic transmission can be yielded within a remarkable broadband frequency range, which agrees well with the numerical prediction. It is of potential practical significance for various underwater applications such as reducing vibration and noise. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204049 and 11204050), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1228), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20122304120023 and 20122304120011).

  5. Acoustic impedance rhinometry (AIR): a technique for monitoring dynamic changes in nasal congestion

    International Nuclear Information System (INIS)

    We describe a simple and inexpensive method for monitoring nasal air flow resistance using measurement of the small-signal acoustic input impedance of the nasal passage, similar to the audiological measurement of ear drum compliance with acoustic tympanometry. The method requires generation of a fixed sinusoidal volume–velocity stimulus using ear-bud speakers, and an electret microphone to monitor the resultant pressure fluctuation in the nasal passage. Both are coupled to the nose via high impedance silastic tubing and a small plastic nose insert. The acoustic impedance is monitored in real-time using a laptop soundcard and custom-written software developed in LabView 7.0 (National Instruments). The compact, lightweight equipment and fast time resolution lends the technique to research into the small and rapid reflexive changes in nasal resistance caused by environmental and local neurological influences. The acoustic impedance rhinometry technique has the potential to be developed for use in a clinical setting, where the need exists for a simple and inexpensive objective nasal resistance measurement technique. (paper)

  6. Analogy electromagnetism-acoustics: Validation and application to local impedance active control for sound absorption

    OpenAIRE

    Nicolas, Laurent; Furstoss, M.; Galland, Marie-Annick

    1998-01-01

    An analogy between electromagnetism and acoustics is presented in 2D. The propagation of sound in presence of absorbing material is modeled using an open boundary microwave package. Validation is performed through analytical and experimental results. Application to local impedance active control for free field sound absorption is finally described.

  7. The sound power emitted by a source of low acoustic impedance

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Verholt, Lars M.

    1998-01-01

    Several authors have maintained that a source of low acoustic impedance (which includes standardised reference sources of the aerodynamic type) would radiate less than the free field power in a reverberation room. However, neither computer simulations nor experiments have confirmed this assertion....

  8. Inverse estimation of the acoustic impedance of a porous woven hose from measured transmission coefficients.

    Science.gov (United States)

    Park, Chul-Min; Ih, Jeong-Guon; Nakayama, Yoshio; Takao, Hideo

    2003-01-01

    A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake noise. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. However, the accurate measurement of the wall impedance of a porous woven hose is not easy because of its peculiar acoustical and structural characteristics. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement setup, and, as a result, it is very simple. A variation of the proposed method, an inverse estimation method using one of the four-pole parameters is also proposed. An error sensitivity analysis was performed to investigate the effect of measurement error on the accuracy of the final result. The measured TL for samples with arbitrary lengths and arbitrary porous frequency are in reasonably good agreement with values predicted from curve-fitted impedance data. PMID:12558253

  9. Acoustical impedance defined by wave-function solutions of the reduced Webster equation.

    Science.gov (United States)

    Forbes, Barbara J

    2005-07-01

    The electrical impedance was first defined by Heaviside in 1884, and the analogy of the acoustical impedance was made by Webster in 1919. However, it can be shown that Webster did not draw a full analogy with the electromagnetic potential, the potential energy per unit charge. This paper shows that the analogous "acoustical potential" the potential energy per unit displacement of fluid, corresponds to the wave function Psi of the reduced Webster equation, which is of Klein-Gordon form. The wave function is found to obey all of Dirichlet, Von Neumann, and mixed (Robins) boundary conditions, and the latter give rise to resonance phenomena that are not elucidated by Webster's analysis. It is shown that the exact Heaviside analogy yields a complete analytic account of the one-dimensional input impedance, that accounts for both plane- and dispersive-wave propagation both at the origin and throughout the duct.

  10. Measurement of cantilever vibration using impedance-loaded surface acoustic wave sensor

    Science.gov (United States)

    Oishi, Masaki; Hamashima, Hiromitsu; Kondoh, Jun

    2016-07-01

    In this study, an impedance-loaded surface acoustic wave (SAW) sensor was demonstrated to monitor the vibration frequency. Commercialized pressure sensors and a variable capacitor were chosen as external sensors, which were connected to a reflector on a SAW device. As the reflection coefficient of the reflector depended on the impedance, the echo amplitude was influenced by changes in the impedance of the external sensor. The vibration frequency of the cantilever was determined by monitoring the echo amplitude of the SAW device. Moreover, the attenuation constant of an envelope was estimated. The results of our feasibility study indicate that the impedance-loaded SAW sensor can be applied as a detector for structural health monitoring.

  11. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    Science.gov (United States)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  12. Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces

    Science.gov (United States)

    Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung

    2016-01-01

    Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication. PMID:27562634

  13. Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces

    Science.gov (United States)

    Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung

    2016-08-01

    Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication.

  14. Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces.

    Science.gov (United States)

    Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung

    2016-01-01

    Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication. PMID:27562634

  15. Finite volume time domain room acoustics simulation under general impedance boundary conditions

    OpenAIRE

    Bilbao, Stefan; Hamilton, Brian; Botts, Jonathan; Savioja, Lauri

    2016-01-01

    In room acoustics simulation and virtualization applications, accurate wall termination is a perceptually crucial feature. It is particularly important in the setting of wave-based modeling of 3D spaces, using methods such as the finite difference time domain method or finite volume time domain method. In this article, general locally reactive impedance boundary conditions are incorporated into a 3D finite volume time domain formulation, which may be specialized to the various types of finite...

  16. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    Directory of Open Access Journals (Sweden)

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  17. Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices

    Science.gov (United States)

    Su, J.; Rupp, J.; Garmory, A.; Carrotte, J. F.

    2015-09-01

    The response of orifices to incident acoustic waves, which is important for many engineering applications, is investigated with an approach combining both experimental measurements and numerical simulations. This paper presents experimental data on acoustic impedance of orifices, which is subsequently used for validation of a numerical technique developed for the purpose of predicting the acoustic response of a range of geometries with moderate computational cost. Measurements are conducted for orifices with length to diameter ratios, L/D, of 0.5, 5 and 10. The experimental data is obtained for a range of frequencies using a configuration in which a mean (or bias) flow passes from a duct through the test orifices before issuing into a plenum. Acoustic waves are provided by a sound generator on the upstream side of the orifices. Computational fluid dynamics (CFD) calculations of the same configuration have also been performed. These have been undertaken using an unsteady Reynolds averaged Navier-Stokes (URANS) approach with a pressure based compressible formulation with appropriate characteristic based boundary conditions to simulate the correct acoustic behaviour at the boundaries. The CFD predictions are in very good agreement with the experimental data, predicting the correct trend with both frequency and orifice L/D in a way not seen with analytical models. The CFD was also able to successfully predict a negative resistance, and hence a reflection coefficient greater than unity for the L / D = 0.5 case.

  18. Development of a pressure based room acoustic model using impedance descriptions of surfaces

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho;

    2013-01-01

    If a simulation tool is to be used for the optimization of absorbent ceilings, it is important that the simulation tool includes a good description of the surface. This study therefore aims at developing a model which can describe surfaces by their impedance values and not just by their statistical...... absorption coefficient, thus retaining the phase and the angle dependence. The approach of the proposed model will be to calculate the pressure impulse response using a combination of the image source method and acoustic radiosity. The image source method will account for the specular reflections...... and acoustic radiosity will account for the diffuse reflections. This paper presents the motivation for the new model in the form of results in literature, which show the importance of retaining the angle dependence and phase information in reflections along with simple examples of angle dependent reflection...

  19. Controllable transmission and total reflection through an impedance-matched acoustic metasurface

    KAUST Repository

    Mei, Jun

    2014-12-02

    A general design paradigm for a novel type of acoustic metasurface is proposed by introducing periodically repeated supercells on a rigid thin plate, where each supercell contains multiple cut-through slits that are filled with materials possessing different refractive indices but the same impedance as that of the host medium. When the wavelength of the incident wave is smaller than the periodicity, the direction of the transmitted wave with nearly unity transmittance can be chosen by engineering the phase discontinuities along the transverse direction. When the wavelength is larger than the periodicity, even though the metasurface is impedance matched to the host medium, most of the incident energy is reflected back and the remaining portion is converted into a surface-bound mode. We show that both the transmitted wave control and the high reflection with the surface mode excitation can be interpreted by a unified analytic model based on mode-coupling theory. Our general design principle not only supplies the functionalities of reflection-type acoustic metasurfaces, but also exhibits unprecedented flexibility and efficiency in various domains of wave manipulation for possible applications in fields like refracting, collimating, focusing or absorbing wave energy.

  20. A combined complex electrical impedance and acoustic emission study in limestone samples under uniaxial loading

    Science.gov (United States)

    Saltas, V.; Fitilis, I.; Vallianatos, F.

    2014-12-01

    In the present work, complex electrical impedance measurements in the frequency range of 10 mHz to 1 MHz were carried out in conjunction with acoustic emission monitoring in limestone samples subjected to linear and stepped-like uniaxial loading, up to ultimate failure. Cole-Cole plots of the complex impedance during the stepped loading of limestone have been used to discriminate the contributions of grains interior, grain boundaries and electrode polarization effects to the overall electrical behavior. The latter is well-described with an equivalent-circuit model which comprises components of constant phase elements and resistances in parallel connection. Electrical conductivity increases upon uniaxial loading giving rise to negative values of effective activation volume. This is a strong experimental evidence for the generation of transient electric signals recorded prior to seismic events and may be attributed to charge transfer (proton conduction) due to cracks generation and propagation as a result of the applied stress. The time-series of ac-conductivity at two distinct frequencies (10 kHz, 200 kHz) during linear loading of limestone samples exhibits a strong correlation with the acoustic emission activity obeying the same general self-similar law for critical phenomena that has been reported for the energy release before materials fracture.

  1. Evaluation of a Variable-Impedance Ceramic Matrix Composite Acoustic Liner

    Science.gov (United States)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2014-01-01

    As a result of significant progress in the reduction of fan and jet noise, there is growing concern regarding core noise. One method for achieving core noise reduction is via the use of acoustic liners. However, these liners must be constructed with materials suitable for high temperature environments and should be designed for optimum absorption of the broadband core noise spectrum. This paper presents results of tests conducted in the NASA Langley Liner Technology Facility to evaluate a variable-impedance ceramic matrix composite acoustic liner that offers the potential to achieve each of these goals. One concern is the porosity of the ceramic matrix composite material, and whether this might affect the predictability of liners constructed with this material. Comparisons between two variable-depth liners, one constructed with ceramic matrix composite material and the other constructed via stereolithography, are used to demonstrate this material porosity is not a concern. Also, some interesting observations are noted regarding the orientation of variable-depth liners. Finally, two propagation codes are validated via comparisons of predicted and measured acoustic pressure profiles for a variable-depth liner.

  2. Contribution to classification of buried objects based on acoustic impedance matching.

    Science.gov (United States)

    Stepanić, J; Wüstenberg, H; Krstelj, V; Mrasek, H

    2003-03-01

    Determination of material the buried objects are made of could contribute significantly to their recognition, or classification. This is important in detecting buried antipersonnel landmines within the context of humanitarian demining, as well as in a variety of other applications. In this article the concept has been formulated of the approach to buried object's material determination starting with ultrasonic impulse propagation analysis in a particular testing set configuration. The impulse propagates through a characterized transfer material in such a way that a part of it, a reflected wave, carries the information about the buried object's surface material acoustic impedance. The limit of resolution capability is theoretically analyzed and experimentally evaluated and the influencing factors described. Among these, the contact between clean surfaces of the transfer material and buried object is emphasized. PMID:12565075

  3. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    Science.gov (United States)

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. PMID:25465962

  4. Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic induction (MAT-MI).

    Science.gov (United States)

    Li, Xu; Xu, Yuan; He, Bin

    2007-02-01

    We have conducted computer simulation and experimental studies on magnetoacoustic-tomography with magnetic induction (MAT-MI) for electrical impedance imaging. In MAT-MI, the object to be imaged is placed in a static magnetic field, while pulsed magnetic stimulation is applied in order to induce eddy current in the object. In the static magnetic field, the Lorentz force acts upon the eddy current and causes acoustic vibrations in the object. The propagated acoustic wave is then measured around the object to reconstruct the electrical impedance distribution. In the present simulation study, a two-layer spherical model is used. Parameters of the model such as sample size, conductivity values, strength of the static and pulsed magnetic field, are set to simulate features of biological tissue samples and feasible experimental constraints. In the forward simulation, the electrical potential and current density are solved using Poisson's equation, and the acoustic pressure is calculated as the forward solution. The electrical impedance distribution is then reconstructed from the simulated pressure distribution surrounding the sample. The present computer simulation results suggest that MAT-MI can reconstruct conductivity images of biological tissue with high spatial resolution and high contrast. The feasibility of MAT-MI in providing high spatial resolution images containing impedance-related information has also been demonstrated in a phantom experiment.

  5. The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering

    Science.gov (United States)

    Erhard, Klaus; Potthast, Roland

    2003-10-01

    We employ the point source method (PSM) for the reconstruction of some field u on parts of a domain Omega from the Cauchy data for the field on the boundary partialOmega of the domain. Then, the boundary condition for a perfectly conducting inclusion or a sound-soft object in Omega can be used to find the location and shape of the inhomogeneity. The results show that we can detect perfectly conducting inclusions in impedance tomography from the voltages for one injected current. For acoustic scattering a sound-soft object is found from the knowledge of one (total) field and its normal derivative on partialOmega. The work redesigns the PSM, which was first proposed in the framework of inverse scattering, to solve inverse boundary value problems. Numerical examples are provided for impedance tomography and the sound-soft acoustic boundary value problem.

  6. Construction of reservoir flow models using deterministic and stochastic methods and driven by seismic acoustic impedance--a Gulf of Mexico example

    Energy Technology Data Exchange (ETDEWEB)

    Meanley, E.; Guderjahn, C.; Litvak, M. [BP Exploration, Houston, TX (United States)] [and others

    1995-08-01

    Rapid and accurate subsurface descriptions and flow predictions contribute to profitable field development, particularly for deep water fields of modest size. This paper shows how 3-D seismic acoustic impedance played an essential roll in that process. This Tertiary field example exhibits a classic Gulf of Mexico {open_quotes}bright{close_quotes} seismic response. The slope channel deposits yielded reflections from stacked pay zones that were often interfering vertically and laterally variable. Seismic acoustic impedance inversion for volume estimation, well placement and flow model construction. Flow model construction was facilitated using Stratamodel, where reservoir boundaries, porosity and permeability were estimated from seismic acoustic impedance. This provided a {open_quotes}deterministic{close_quotes} flow model with which well choices and development economics were explored. Alternate flow models were developed in which the effect of fine scale (sub-seismic) heterogeneities were investigated. A 3-D {open_quotes}stochastic{close_quotes} model was developed that honored geostatistical parameters as well as seismic acoustic impedance. This gave insight to permeability distributions and confirmed that connectivity between scattered sand bodies would not significantly degrade the field performance predicted by deterministic models.

  7. Scatterer size and concentration estimation technique based on a 3D acoustic impedance map from histologic sections

    Science.gov (United States)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2001-05-01

    Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.

  8. Applications of Lorentz force in medical acoustics: Lorentz force hydrophone, Lorentz Force Electrical Impedance Tomography, Imaging of shear waves induced by Lorentz force

    CERN Document Server

    Grasland-Mongrain, Pol

    2014-01-01

    The ability of the Lorentz force to link a mechanical displacement to an electrical current presents a strong interest for medical acoustics, and three applications were studied in this thesis. In the first part of this work, a hydrophone was developed for mapping the particle velocity of an acoustic field. This hydrophone was constructed using a thin copper wire and an external magnetic field. A model was elaborated to determine the relationship between the acoustic pressure and the measured electrical current, which is induced by Lorentz force when the wire vibrates in the acoustic field of an ultrasound transducer. The built prototype was characterized and its spatial resolution, frequency response, sensitivity, robustness and directivity response were investigated. An imaging method called Lorentz Force Electrical Impedance Tomography was also studied. In this method, a biological tissue is vibrated by ultrasound in a magnetic field, which induces an electrical current by Lorentz force. The electrical imp...

  9. Study on acoustic radiation impedance at aperture of a waveguide with circular cross section taking account of interaction between different guided modes

    CERN Document Server

    Won, Kyong-Su; Im, Song-Jin

    2014-01-01

    In this paper we simulated self- and mutual- acoustic impedances of guided modes at the aperture and estimated accuracy of the piston radiation approximation. We used the Rayleigh integral to simulate the interactions between different guided modes at the aperture, with low time-consuming. This kind of guided-wave technique can be utilized to solve problems in diverse fields of wave science such as acoustics, electromagnetism and optics. For acoustic waves emitted through a horn or a waveguide with an aperture much smaller than the wavelength, there are only plane wave modes in the waveguide and the aperture of horn can therefore be considered as a piston radiator. However if an acoustic wave with high frequency such as ultrasonic wave is radiated, there can exist several guided modes in the duct. For arbitrary shape and size of waveguide, interactions between different modes must be taken into account to evaluate sound field in the duct and total acoustic power from its aperture. In this paper we simulated s...

  10. 粘弹性材料声阻抗非局域特性的数值研究%Study of the numerical simulation of a non-local property of acoustic impedance in viscoelastic material

    Institute of Scientific and Technical Information of China (English)

    杨明绥; 王同庆; 范真真

    2011-01-01

    A model of the acoustic impedance matrix was proposed to describe the local and non-local properties of acoustic scattering. The derivation of an acoustic impedance matrix and its algebraic model were completed. On the basis of the viscoelastic finite element method a numerical calculation code was programmed. The code validation and its calculation precision were proven. Finally, an acoustic impedance matrix was computed for a viscoelastic plate backed by a rigid body, and its parameters from an algebraic model were fitted. The local and non-local properties of acoustic impedance and the variation of parameters in the model were analyzed in detail. The results of the experiment show that the non-local properties of viscoelastic material surface acoustic scattering impedance can be described, both qualitatively and quantitatively by the acoustic impedance matrix and non-local acoustic impedance algebraic model. Therefore, an effective numerical calculation method was proposed to research the non-local properties of acoustic impedance.%针对刚性背衬下的粘弹性材料层,提出了一种能够描述表面声散射的局域/非局域特性的声阻抗矩阵模型,进行了声阻抗矩阵及代数模型的推导.以粘弹性有限元为基础完成了数值计算工具的开发,并对自编代码进行了校核,表明数值工具具有较高的计算精度.计算了刚性背衬下粘弹性板的声阻抗矩阵,并拟合得到声阻抗模型参数,分析了声阻抗局域、非局域特性及代数模型中各参数的变化规律.实际计算结果表明:声阻抗矩阵和非局域声阻抗代数模型能够定性和定量描述粘弹性材料表面声散射阻抗的非局域特性,为声阻抗非局域特性的研究提供了一个有效的数值分析方法.

  11. Acoustic Treatment Design Scaling Methods. Volume 4; Numerical Simulation of the Nonlinear Acoustic Impedance of a Perforated Plate Single-Degree-of-Freedom Resonator Using a Time-Domain Finite Difference Method

    Science.gov (United States)

    Kraft, R. E.

    1999-01-01

    Single-degree-of-freedom resonators consisting of honeycomb cells covered by perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine ducts. The acoustic resistance and mass reactance of such liners are known to vary with the intensity of the sound incident upon the panel. Since the pressure drop across a perforated liner facesheet increases quadratically with the flow velocity through the facesheet, this is known as the nonlinear resistance effect. In the past, two different empirical frequency domain models have been used to predict the Sound Pressure Level effect of the incident wave on the perforated liner impedance, one that uses the incident particle velocity in isolated narrowbands, and one that models the particle velocity as the overall velocity. In the absence of grazing flow, neither frequency domain model is entirely accurate in predicting the nonlinear effect that is measured for typical perforated sheets. The time domain model is developed in an attempt to understand and improve the model for the effect of spectral shape and amplitude of multi-frequency incident sound pressure on the liner impedance. A computer code for the time-domain finite difference model is developed and predictions using the models are compared to current frequency-domain models.

  12. The Effect of Acoustic Impedance on Subsurface Absorber Geometry Reconstruction using 1D Frequency-Domain Photoacoustics

    Directory of Open Access Journals (Sweden)

    Natalie Baddour

    2015-12-01

    Full Text Available This paper considers the effect of an impedance mismatch between the absorber and its surroundings on the aborber reconstructions from the photoacoustic signal profile, in particular when a non-delta input pulse is used. A transfer function approach is taken, demonstrating in the case of impedance mismatch how the total response can be modeled using the sum of the mismatch-free response and its time-delayed, time-reversed replicas, which may or may not overlap. It is shown how this approach can be exploited to accommodate the effects of non-delta pulses and/or pulse-equivalent waveforms such as linear-frequency-modulated (LFM chirps, and impedance mismatches in any inversion algorithms, even in the presence of large reflection coefficients. As a consequence, for simple-absorber reconstruction algorithms that assume impulses or ‘short enough’ pulses, the compressive portion of the measured response may be used in reconstruction formulas that do not model the impedance mismatch, regardless of the size of the mismatch. For longer-duration input waveforms, it is demonstrated how existing reconstruction methods can be successfully adapted to include the effect of the impedance mismatch. Simulations are used to illustrate these ideas. The gained physical insight into how components of the generated pressure wave carry absorber information is then exploited for signal inversion and absorber reconstruction in the frequency domain when multi-frequency modulation chirps are used for photoacoustic radar pressure measurements. The foundational theoretical developments ultimately address impendance mismatch issues germane to the major photoacoustic frequency-domain imaging modality to-date, which is the photoacoustic radar.

  13. Electroless deposition of metallic silver from a choline chloride-based ionic liquid: a study using acoustic impedance spectroscopy, SEM and atomic force microscopy.

    Science.gov (United States)

    Abbott, Andrew P; Nandhra, Satvinder; Postlethwaite, Stella; Smith, Emma L; Ryder, Karl S

    2007-07-28

    In this paper, we describe the first example of a sustained galvanic coating deposited on a surface from a non-aqueous liquid. We present the surface characterization of electroless silver deposits on copper substrates from a solution of Ag(+) ions in an ionic liquid based on a choline chloride (ChCl) eutectic. Through a study of these deposits and the mechanism of formation using acoustic impedance spectroscopy (QCM), probe microscopy (AFM) and electron microscopy (SEM/EDX), we demonstrate that sustained growth of the silver deposit is facilitated by the porous nature of the silver. This is in contrast to the dip-coating reaction of silver ions in aqueous media, where the reaction stops when surface coverage is reached. Electroless silver deposits of up to several microns have been obtained by dip coating in ionic liquids without the use of catalysts of strong inorganic acids. PMID:17622408

  14. Determination of ammonium in Kjeldahl digests by gas-diffusion flow-injection analysis with a bulk acoustic wave-impedance sensor.

    Science.gov (United States)

    Su, X L; Nie, L H; Yao, S Z

    1997-11-01

    A novel flow-injection analysis (FIA) system has been developed for the rapid and direct determination of ammonium in Kjeldahl digests. The method is based on diffusion of ammonia across a PTFE gas-permeable membrane from an alkaline (NaOH/EDTA) stream into a stream of diluted boric acid. The trapped ammonium in the acceptor is determined on line by a bulk acoustic wave (BAW)-impedance sensor and the signal is proportional to the ammonium concentration present in the digests. The proposed system exhibits a favorable frequency response to 5.0 x 10(-6)-4.0 x 10(-3) mol l(-1) ammonium with a detection limit of 1.0 x 10(-6) mol l(-1), and the precision was better than 1% (RSD) for 0.025-1.0 mM ammonium at a through-put of 45-50 samples h(-1). Results obtained for nitrogen determination in amino acids and for proteins determination in blood products are in good agreement with those obtained by the conventional distillation/titration method, respectively. The effects of composition of acceptor stream, cell constant of conductivity electrode, sample volume, flow rates and potential interferents on the FIA signals were discussed in detail.

  15. Impedance modelling of pipes

    Science.gov (United States)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  16. Flat acoustic lens by acoustic grating with curled slits

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  17. 3D geostatistic modelling of the acoustic impedance for the characterization of Namorado oil field, Brazil; Modelagem geoestatistica 3D da impedancia acustica para a caracterizacao do Campo de Namorado

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Alexandre Campane; Sancevero, Sergio Sacani; Remacre, Armando Zaupa; Costanzo, Caetano Pontes [UNICAMP, Instituto de Geociencias, Dept. de Geologia e Recursos Naturais, Campinas, SP (Brazil)], E-mails: vidal@ige.unicamp.br, sacani@ige.unicamp.br, geden@ige.unicamp.br, caetano.costanzo@gmail.com

    2007-07-15

    The aim of this work is analyze the vertical seismic resolution of the turbidity reservoir of Namorado Field. In this work the seismic modeling was accomplished using the convolution method. The wavelet used was the Ricker type with dominant frequency of 20 hz, 35 hz and 50 hz. The results show that wavelet with frequencies of 35 hz and 50 hz have better seismic resolution than wavelets of 20 hz, however all frequencies delimit top and base of the reservoir. From the acoustic impedance model, obtained from the synthetic seismogram, was possible, knowing the correlation of this variable with reservoir rocks, determine the distribution of reservoir facies. For that was used the geostatistical analysis that still enabled the studies regarding to the scenarios analysis by means of the application of stochastic methods. (author)

  18. The role of inversion for acoustic impedance in the seismic characterization process of reservoirs; O papel da inversao para a impedancia acustica no processo de caracterizacao sismica de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Sancevero, Sergio Sacani; Remacre, Armando Zaupa; Portugal, Rodrigo de Souza [Dept. de Geologia e Recursos Naturais (DGRN), Inst. de Geociencias, Universidade Estadual de Campinas (UNICAMP), SP (Brazil)], E-mails: sacani@ige.unicamp.br, armando@ige.unicamp.br, portugal@ige.unicamp.br

    2006-10-15

    The reservoir characterization process can be defined as the three-dimensional and quantitative determination of structure and petrophysical properties of the oil field. The use of 3D seismic data in the reservoir characterization process has become more frequent mainly in the identification of the shape and the size of the sand bodies that constitute the reservoir. However, in some situations as the deep water turbidity reservoirs of Campos Basin, that are characterized by a complex distribution of sand bodies and sub seismic thickness, the use of the conventional seismic amplitude data can result in serious mistakes in the definition of reservoir model. To solve the problem of the vertical seismic resolution limitation, is necessary to build an integrated model that use all information available about the reservoir. The most effective way to integrate the seismic data in the reservoir characterization process is by using acoustic impedance models, obtained by seismic inversion. The aim of this work is to show how the seismic inversion to acoustic impedance can support and improve the characterization of the reservoirs, when comparing the results obtained by the application of two seismic inversion methods, the recursive inversion and the constrained sparse-spike inversion. The seismic inversion methods are applied in a wedge synthetic reference model, that represent some features find in the deep water turbidity reservoir, like stratigraphic thinning and pinch-outs. Based on these results we can see the advantages in use the seismic inversion methods in the determination of geometry of sand bodies and in the calculation of petrophysical properties, and as a consequence more accuracy models can be generated and the forecasts about the behavior of the field can be done in most effective way. (author)

  19. A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?

    Directory of Open Access Journals (Sweden)

    Jan Gimsa

    2014-11-01

    Full Text Available Lab-on-chip systems (LOCs can be used as in vitro systems for cell culture or manipulation in order to analyze or monitor physiological cell parameters. LOCs may combine microfluidic structures with integrated elements such as piezo-transducers, optical tweezers or electrodes for AC-electrokinetic cell and media manipulations. The wide frequency band (<1 kHz to >1 GHz usable for AC-electrokinetic manipulation and characterization permits avoiding electrochemical electrode processes, undesired cell damage, and provides a choice between different polarization effects that permit a high electric contrast between the cells and the external medium as well as the differentiation between cellular subpopulations according to a variety of parameters. It has been shown that structural polarization effects do not only determine the impedance of cell suspensions and the force effects in AC-electrokinetics but can also be used for the manipulation of media with inhomogeneous temperature distributions. This manuscript considers the interrelations of the impedance of suspensions of cells and AC-electrokinetic single cell effects, such as electroorientation, electrodeformation, dielectrophoresis, electrorotation, and travelling wave (TW dielectrophoresis. Unified models have allowed us to derive new characteristic equations for the impedance of a suspension of spherical cells, TW dielectrophoresis, and TW pumping. A critical review of the working principles of electro-osmotic, TW and electrothermal micropumps shows the superiority of the electrothermal pumps. Finally, examples are shown for LOC elements that can be produced as metallic structures on glass chips, which may form the bottom plate for self-sealing microfluidic systems. The structures can be used for cell characterization and manipulation but also to realize micropumps or sensors for pH, metabolites, cell-adhesion, etc.

  20. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  1. The 2.5D MST for sound propagation through an array of acoustically rigid cylinders perpendicular to an impedance surface

    International Nuclear Information System (INIS)

    In this work a study of sound propagation through arrays of semi-infinitely long cylinders placed perpendicular to an impedance surface has been carried out. The cross sections of the structures are assumed to be invariant along the main axis of the cylinders, and the cylinders are considered rigid. It is further assumed that the structures are insonified by a monopole source placed above the impedance surface. To study such configurations, we introduce the two-and-a-half-dimensional multiple scattering theory (2.5D MST), which essentially solves the pressure in a three-dimensional domain by post-processing a set of precomputed solutions obtained in a two-dimensional domain. The total pressure can then be obtained by complex addition of four contributions: source-to-receiver, source-to-array-to-receiver, image source-to-receiver, and image source-to-array-to-receiver. The proposed method is validated using both analytical and numerical tools, showing very good agreement for all studied cases. Among other things, we show that a cylinder array placed on top of flat rigid ground can deteriorate the ground interference dips that exist without the array. In addition, we show that the characteristic response of the cylinder array, i.e. in terms of pass and stop bands, may be shifted up in frequency due to a projection phenomenon, which happens when the source or receiver is elevated along the main axis of the cylinders. (paper)

  2. Absorption boundary conditions for geomertical acoustics

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....

  3. Graphical Acoustic Liner Design and Analysis Tool

    Science.gov (United States)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  4. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  5. Modelling of acoustic transmission through perforated layer

    Directory of Open Access Journals (Sweden)

    Lukeš V.

    2007-10-01

    Full Text Available The paper deals with modeling the acoustic transmission through a perforated interface plane separating two halfspaces occupied by the acoustic medium. We considered the two-scale homogenization limit of the standard acoustic problem imposed in the layer with the perforated periodic structure embedded inside. The homogenized transmission conditions govern the interface discontinuity of the acoustic pressure associated with the two halfspaces and the magnitude of the fictitious transversal acoustic velocity. By numerical examples we illustrate this novel approach of modeling the acoustic impedance of perforated interfaces.

  6. An acoustic invisible gateway

    CERN Document Server

    Zhu, Yi-Fan; Liang, Bin; Kan, Wei-Wei; Yang, Jun; Cheng, Jian-Chun

    2015-01-01

    The recently-emerged concept of "invisible gateway" with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of "restoring" a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the "gate" to mimic a rigid "wall" and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet ef...

  7. Acoustic metasurface with hybrid resonances.

    Science.gov (United States)

    Ma, Guancong; Yang, Min; Xiao, Songwen; Yang, Zhiyu; Sheng, Ping

    2014-09-01

    An impedance-matched surface has the property that an incident wave generates no reflection. Here we demonstrate that by using a simple construction, an acoustically reflecting surface can acquire hybrid resonances and becomes impedance-matched to airborne sound at tunable frequencies, such that no reflection is generated. Each resonant cell of the metasurface is deep-subwavelength in all its spatial dimensions, with its thickness less than the peak absorption wavelength by two orders of magnitude. As there can be no transmission, the impedance-matched acoustic wave is hence either completely absorbed at one or multiple frequencies, or converted into other form(s) of energy, such as an electrical current. A high acoustic-electrical energy conversion efficiency of 23% is achieved. PMID:24880731

  8. Lorentz Force Electrical Impedance Tomography

    CERN Document Server

    Grasland-Mongrain, Pol; Chapelon, Jean-Yves; Lafon, Cyril

    2014-01-01

    This article describes a method called Lorentz Force Electrical Impedance Tomography. The electrical conductivity of biological tissues can be measured through their sonication in a magnetic field: the vibration of the tissues inside the field induces an electrical current by Lorentz force. This current, detected by electrodes placed around the sample, is proportional to the ultrasonic pressure, to the strength of the magnetic field and to the electrical conductivity gradient along the acoustic axis. By focusing at different places inside the sample, a map of the electrical conductivity gradient can be established. In this study experiments were conducted on a gelatin phantom and on a beef sample, successively placed in a 300 mT magnetic field and sonicated with an ultrasonic transducer focused at 21 cm emitting 500 kHz bursts. Although all interfaces are not visible, in this exploratory study a good correlation is observed between the electrical conductivity image and the ultrasonic image. This method offers...

  9. Wakefields and coupling impedances

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Superconducting Super Collider Laboratory, 2550 Beckleymeade Ave., Dallas, Texas 75237 (United States))

    1995-02-01

    After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example. [copyright] 1995 [ital American] [ital Institute] [ital of] [ital Physics

  10. Wakefields and coupling impedances

    Science.gov (United States)

    Kurennoy, Sergey

    1995-02-01

    After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example.

  11. Impedance model for nanostructures

    Directory of Open Access Journals (Sweden)

    R. S. Akhmedov

    2007-06-01

    Full Text Available The application of the impedance model for nanoelectronic quantum-mechanical structures modelling is described. Characteristics illustrating the efficiency of the model are presented.

  12. Dry acoustic microscope for visualizing the defects in electronic devices

    International Nuclear Information System (INIS)

    Acoustic microscopy/imaging has been widely used in electronics industry for the non-destructive detection and evaluation of defects in electronic devices. However, the conventional acoustic microscope requires the immersion of the samples in water, which puts a limitation on the samples that can be analyzed. To realize the high-resolution acoustic inspection of electronic devices without immersing them in water, the dry acoustic microscope, where a polymer film is inserted between water and the devices, has been developed, In this paper, we demonstrate the high-resolution acoustic imaging of two types of electronic devices under the dry environment by the present dry acoustic microscope. One is the silicon chip package with high acoustic impedance, and the other is the plastic package with low acoustic impedance.

  13. Dry acoustic microscope for visualizing the defects in eletronic devices

    International Nuclear Information System (INIS)

    Acoustic microscopy/imaging has been widely used in electronics industry for the non-destructive detection and evaluation of defects in electronic devices. However, the conventional acoustic microscope requires the immersion of the samples in water, which puts a limitation on the samples that can be analyzed. To realize the high-resolution acoustic inspection of electronic devices without immersing them in water, the dry acoustic microscope, where a polymer film is inserted between water and the devices, has been developed, In this paper, we demonstrate the high-resolution acoustic imaging of two types of electronic devices under the dry environment by the present dry acoustic microscope. One is the silicon chip package with high acoustic impedance, and the other is the plastic package with low acoustic impedance.

  14. Impedance and Collective Effects

    CERN Document Server

    Metral, E; Rumolo, R; Herr, W

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling

  15. Mutual Radiation Impedance of Uncollapsed CMUT Cells with Different Radii

    CERN Document Server

    Ozgurluk, Alper; Atalar, Abdullah; Koymen, Hayrettin

    2015-01-01

    A polynomial approximation is proposed for the mutual acoustic impedance between uncollapsed capacitive micromachined ultrasonic transducer (CMUT) cells with different radii in an infinite rigid baffle. The resulting approximation is employed in simulating CMUTs with a circuit model. A very good agreement is obtained with the corresponding finite element simulation (FEM) result.

  16. Impedance and component heating

    CERN Document Server

    Métral, E; Mounet, N; Pieloni, T; Salvant, B

    2015-01-01

    The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.

  17. The LEP impedance model

    Energy Technology Data Exchange (ETDEWEB)

    Zotter, B. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-08-01

    This report describes a number of measurements and computations of the impedance of the Large Electron Positron collider LEP at CERN. The work has been performed over several years, together with D. Brandt, K. Cornelis, A. Hofmann, G. Sabbi and many others. The agreement between measurements of single bunch instabilities on the machine and computer simulations is in general excellent and gives confidence in the impedance model used. (author)

  18. A study on the multi-freedom broadband impedance model for time-domain simulations

    Institute of Scientific and Technical Information of China (English)

    LI Xiaodong; LI Xiaoyan

    2012-01-01

    The purpose of this paper is to construct a general broadband impedance model, which is suited for predicting acoustic propagation problems in time domain. A multi-freedom broadband impedance model for sound propagation over impedance surfaces is proposed and the corresponding time domain impedance boundary condition is presented. Basing on the extended Helmholtz resonator, the multi-freedom impedance model is constructed through combing with a sum of rational functions in the form of general complex-conjugate pole-residue pairs and it is proved that the impedance model is well posed. The impedance boundary condition can be implemented into a computational aeroacoustics solver by a rectlrsive convolution technique, which results in a fast and computationally efficient algorithm. The two dimensional and three dimensional benchmark problems are selected to validate the accuracy of the proposed impedance model and time domain simulations. The numerical results are in good agreement with the reference solutions. It is demonstrated that the proposed impedance model can be used to describe the broadband characteristics of acoustic liners, and the corresponding time domain impedance boundary condition is viable and accurate for the prediction of sound propagation over broadband impedance surfaces.

  19. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  20. Micro-Horn Arrays for Ultrasonic Impedance Matching

    Science.gov (United States)

    Rao, Shanti; Palmer, Dean

    2009-01-01

    Thin-layered structures containing arrays of micromachined horns, denoted solid micro-horn arrays (SMIHAs), have been conceived as improved means of matching acoustic impedances between ultrasonic transducers and the media with which the transducers are required to exchange acoustic energy. Typically, ultrasonic transducers (e.g., those used in medical imaging) are piezoelectric or similar devices, which produce small displacements at large stresses. However, larger displacements at smaller stresses are required in the target media (e.g., human tissues) with which acoustic energy is to be exchanged. Heretofore, efficiencies in transmission of acoustic energy between ultrasonic transducers and target media have been severely limited because substantial mismatches of acoustic impedances have remained, even when coupling material layers have been interposed between the transducers and the target media. In contrast, SMIHAs can, in principle, be designed to effect more nearly complete acoustic impedance matching, leading to power transmission efficiencies of 90 percent or even greater. The SMIHA concept is based on extension, into the higher-frequency/ lower-wavelength ultrasonic range, of the use of horns to match acoustic impedances in the audible and lower-frequency ultrasonic ranges. In matching acoustic impedance in transmission from a higher-impedance acoustic source (e.g., a piezoelectric transducer) and a lowerimpedance target medium (e.g., air or human tissue), a horn acts as a mechanical amplifier. The shape and size of the horn can be optimized for matching acoustic impedance in a specified frequency range. A typical SMIHA would consist of a base plate, a face plate, and an array of horns that would constitute pillars that connect the two plates (see figure). In use, the base plate would be connected to an ultrasonic transducer and the face plate would be placed in contact with the target medium. As at lower frequencies, the sizes and shapes of the pillars

  1. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  2. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  3. Lecture Notes On Acoustics

    International Nuclear Information System (INIS)

    This book mentions string vibration and wave, one-dimension wave and wave equation, characteristic impedance, governing equation of string, and wave energy from string, wave equation of wave and basic physical quantity like one-dimension wave equation, sound unit, sound intensity and energy, sound movement in a surface of discontinuity with transmission loss of sound by partition, and Snell's law, radiation, scatter and diffraction and sound in closed space with Sabine's theory, sound characteristic of closed space and duct acoustics.

  4. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    Science.gov (United States)

    Augustsson, Per; Karlsen, Jonas T.; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-05-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.

  5. Modeling and Measuring the Effects of Mutual Impedance on Multi-Cell CMUT Configurations

    OpenAIRE

    Park, K. K.; Kupnik, M.; Lee, H. J.; Khuri-Yakub, B. T.; Wygant, I. O.

    2010-01-01

    This paper presents a numerical method for calculating the frequency response of a CMUT with a large number of cells. In a multi-cell configuration, commonly found in CMUTs, each cell is affected by the acoustic loading from neighboring cells. Thus, for an accurate model of a multi-cell CMUT element it is better to consider the mutual acoustic impedance instead of the acoustic impedance of a single cell only. We calculate the velocity of every cell (plate movement) simultaneously, with the mu...

  6. Impeded Dark Matter

    CERN Document Server

    Kopp, Joachim; Slatyer, Tracy R; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppress...

  7. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor...... cells through experimental studies and mathematical modelling. These studies all revolve around the electrochemical impedance spectroscopy (EIS) characterisation method. EIS is performed by applying a sinusoidal current or voltage signal to the fuel cell and calculating the impedance from the response...

  8. Acoustic reflex and general anaesthesia.

    Science.gov (United States)

    Farkas, Z

    1983-01-01

    Infant and small children are not always able to cooperate in impedance measurements. For this reason it was decided, -in special cases, -to perform acoustic reflex examination under general anaesthesia. The first report on stapedius reflex and general anaesthesia was published by Mink et al. in 1981. Under the effect of Tiobutabarbital, Propanidid and Diazepam there is no reflex response. Acoustic reflex can be elicited with Ketamin-hydrochlorid and Alphaxalone-alphadolone acetate narcosis. The reflex threshold remains unchanged and the amplitude of muscle contraction is somewhat increased. The method was used: 1. to assess the type and degree of hearing loss in children with cleft palate and/or lip prior to surgery. 2. to exclude neuromuscular disorders with indication of pharyngoplasties. 3. to quantify hearing level in children--mostly multiply handicapped--with retarded speech development. The results of Behavioral Observation and Impedance Audiometry are discussed and evaluated.

  9. Implantable Impedance Plethysmography

    Directory of Open Access Journals (Sweden)

    Michael Theodor

    2014-08-01

    Full Text Available We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term.

  10. Uncertainty Analysis of the Grazing Flow Impedance Tube

    Science.gov (United States)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  11. Are active elements necessary in the basilar membrane impedance?

    Science.gov (United States)

    Diependaal, R J; Viergever, M A; de Boer, E

    1986-07-01

    This article is motivated by the current hypothesis [Kim et al., Psychological, Physiological and Behavioural Studies in Hearing (Delft U. P., The Netherlands, 1980); Neely, Doctoral dissertation, Washington University, St. Louis, MO (1981); de Boer, J. Acoust. Soc. Am. 73, 567-573 (1983a) and 73, 574-576 (1983b)] that it is necessary to include active elements in the basilar membrane (BM) impedance in order to explain recent data on the vibration of the BM [Khanna and Leonard, Science 215, 305-306 (1982); Sellick et al., J. Acoust. Soc. Am. 72, 131-141 (1982); Robles et al., Peripheral Auditory Mechanisms (Springer, New York, 1986)]. In order to test this hypothesis, first, a method which is an inversion of the customary description of cochlear mechanics is described. Instead of computing the BM velocity for a given point impedance of the membrane, we show how to compute the impedance function from a given BM velocity pattern in response to a sinusoidal input at the stapes. This method is then used to study the sensitivity of the recovered impedance to perturbations in the velocity pattern. The simulations used show that the real part of the impedance is extremely sensitive to such perturbations. Therefore, measured velocity patterns are unlikely to resolve the issue of whether active elements should be included. Frequency responses measured at a few points on the membrane are even less likely to do so.

  12. Acoustics of the piezo-electric pressure probe

    Science.gov (United States)

    Dutt, G. S.

    1974-01-01

    Acoustical properties of a piezoelectric device are reported for measuring the pressure in the plasma flow from an MPD arc. A description and analysis of the acoustical behavior in a piezoelectric probe is presented for impedance matching and damping. The experimental results are presented in a set of oscillographic records.

  13. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  14. Impedance calculation for ferrite inserts

    Energy Technology Data Exchange (ETDEWEB)

    Breitzmann, S.C.; Lee, S.Y.; /Indiana U.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  15. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  16. Development and Validation of an Interactive Liner Design and Impedance Modeling Tool

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.; Buckley, James L.

    2012-01-01

    The Interactive Liner Impedance Analysis and Design (ILIAD) tool is a LabVIEW-based software package used to design the composite surface impedance of a series of small-diameter quarter-wavelength resonators incorporating variable depth and sharp bends. Such structures are useful for packaging broadband acoustic liners into constrained spaces for turbofan engine noise control applications. ILIAD s graphical user interface allows the acoustic channel geometry to be drawn in the liner volume while the surface impedance and absorption coefficient calculations are updated in real-time. A one-dimensional transmission line model serves as the basis for the impedance calculation and can be applied to many liner configurations. Experimentally, tonal and broadband acoustic data were acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3000 Hz at 120 and 140 dB SPL. Normalized impedance spectra were measured using the Two-Microphone Method for the various combinations of channel configurations. Comparisons between the computed and measured impedances show excellent agreement for broadband liners comprised of multiple, variable-depth channels. The software can be used to design arrays of resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  17. Impeded Dark Matter

    OpenAIRE

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonst...

  18. Inverse potential scattering in duct acoustics.

    Science.gov (United States)

    Forbes, Barbara J; Pike, E Roy; Sharp, David B; Aktosun, Tuncay

    2006-01-01

    The inverse problem of the noninvasive measurement of the shape of an acoustical duct in which one-dimensional wave propagation can be assumed is examined within the theoretical framework of the governing Klein-Gordon equation. Previous deterministic methods developed over the last 40 years have all required direct measurement of the reflectance or input impedance but now, by application of the methods of inverse quantum scattering to the acoustical system, it is shown that the reflectance can be algorithmically derived from the radiated wave. The potential and area functions of the duct can subsequently be reconstructed. The results are discussed with particular reference to acoustic pulse reflectometry.

  19. Gynecologic electrical impedance tomograph

    Science.gov (United States)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  20. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  1. RADIATION AND REFLECTION IN A RECTANGULAR CROSS-SECTION WAVEGUIDE: FINITE DIFFERENCE SIMULATION AND THEORETICAL FREQUENCY DOMAIN IMPEDANCE

    OpenAIRE

    Kemp, J.; Bilbao, Stefan

    2010-01-01

    If a theoretical expression is known for the radiation impedance then it may be projected to predict the input impedance and input impulse response in an acoustic waveguide. Radiation impedance may be derived from integration of Green's functions and so are based on continuous expressions in the frequency domain. In this study the finite difference technique will be used to simulate the reflections of a band limited impulse as it travels down a horn and partially radiates and reflects from th...

  2. Design and Analysis of Impedance Pumps Utilizing Electromagnetic Actuation

    OpenAIRE

    Yu-Hisang Wang; Yao-Wen Tsai; Chien-Hsiung Tsai; Chia-Yen Lee; Lung-Ming Fu

    2010-01-01

    This study designs and analyzes an impedance pump utilizing an electromagnetic actuator. The pump is designed to have three major components, namely a lower glass substrate patterned with a copper micro-coil, a microchannel, and an upper glass cover plate attached a magnetic PDMS diaphragm. When a current is passed through the micro-coil, an electromagnetic force is established between the coil and the magnetic diaphragm. The resulting deflection of the PDMS diaphragm creates an acoustic impe...

  3. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  4. Impedance group summary

    Science.gov (United States)

    Blaskiewicz, M.; Dooling, J.; Dyachkov, M.; Fedotov, A.; Gluckstern, R.; Hahn, H.; Huang, H.; Kurennoy, S.; Linnecar, T.; Shaposhnikova, E.; Stupakov, G.; Toyama, T.; Wang, J. G.; Weng, W. T.; Zhang, S. Y.; Zotter, B.

    1999-12-01

    The impedance working group was charged to reply to the following 8 questions relevant to the design of high-intensity proton machines such as the SNS or the FNAL driver. These questions were first discussed one by one in the whole group, then each ne of them assigned to one member to summarize. On the lst morning these contributions were publicly read, re-discussed and re-written where required—hence they are not the opinion of a particular person, but rather the averaged opinion of all members of the working group. (AIP)

  5. Acoustic Properties of Lens Materials for Ultrasonic Probes

    Science.gov (United States)

    Fujii, Hideji; Nakaya, Chitose; Takeuchi, Hiroshi; Kondo, Toshio; Ishikawa, Yasuo

    1995-01-01

    The acoustic velocities and densities of 20 types of commercial rubber have been measured at a frequency of 2 MHz at room temperature, and they are evaluated in terms of their application to an acoustic lens or an acoustic window of probes of an ultrasonic diagnostic instrument. Fluorosilicone rubber and phoshazene rubber have lower acoustic velocities than the human body, and they have excellent impedance matching with the human body. Both the acoustic velocities and densities of butadiene rubber, polybutadiene rubber, acrylic rubber and polyurethane match those of the human body. It is also described that rubber having good impedance matching with the human body can be fabricated by adjusting the volume fraction of the added filler.

  6. A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Galigekere, Veda Prakash;

    2016-01-01

    A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance S...... with an example single-switch 400 W dc-dc converter. For the closed-loop control design and stability assessment, a small signal model and its analysis of the proposed network are also presented in brief.......A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance...

  7. Microwave Impedance Measurement for Nanoelectronics

    Directory of Open Access Journals (Sweden)

    M. Randus

    2011-04-01

    Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.

  8. Influence of impedance phase angle on sound pressures and reverberation times in a rectangular room

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Lee, Doheon; Santurette, Sébastien;

    2014-01-01

    In most room acoustic predictions, phase shift on reflection has been overlooked. This study aims to quantify the effects of the surface impedance phase angle of the boundary surfaces on room acoustic conditions. As a preliminary attempt, a medium-sized rectangular room is simulated by a phased......, but with an absorptive ceiling are investigated. The zero phase angle, which has commonly been assumed in practice, is regarded as reference and differences in the sound pressure level and early decay time from the reference are quantified. As expected, larger differences in the room acoustic parameters are found......-uniform settings, the change in the impedance phase angle of the ceiling does not affect the acoustic conditions significantly....

  9. Optically stimulated differential impedance spectroscopy

    Science.gov (United States)

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  10. Buck-Boost Impedance Networks

    DEFF Research Database (Denmark)

    Goh, Ailian; Gao, Feng; Loh, Pon Chiang;

    2007-01-01

    control, and push up the overall system costs. Therefore, alternative topological solutions are of interest, and should preferably be implemented using only passive LC elements and diodes, connected as unique impedance networks. A number of possible network configurations are now investigated...... in this paper, and are respectively named as Z-source, H-source, EZ-source and their respective "inverted" variants. The presented impedance networks can either be used with a traditional voltage-source or current-source inverter, and can either be powered by a voltage or current source. All impedance networks...... the practicalities and performances of the described impedance networks....

  11. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  12. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  13. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  14. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  15. Analyzing Impedance Spectroscopy Results

    Institute of Scientific and Technical Information of China (English)

    Yoed Tsur; Sioma Baltianski

    2006-01-01

    In this contribution we briefly discuss several analysis techniques for impedance spectroscopy experiments. A number of different approaches, which differ even by the definition of the problem, are used in the literature. Some aimed towards finding an equivalent circuit. Others aimed towards finding directly dielectric properties of the material under an assumed model. Others towards finding distribution of relaxation times, either parametric or point-by point. No matter what the approach is, this will always be an ill-posed problem in the sense that there exist a large number of possible solutions that solve the problem (mathematically) equally well. Therefore some a-priori knowledge about the system must be used. In addition, we should remember that the ultimate goal is to get physical insight about the system.

  16. Materials analyses and electrochemical impedance of implantable metal electrodes.

    Science.gov (United States)

    Howlader, Matiar M R; Ul Alam, Arif; Sharma, Rahul P; Deen, M Jamal

    2015-04-21

    Implantable electrodes with high flexibility, high mechanical fixation and low electrochemical impedance are desirable for neuromuscular activation because they provide safe, effective and stable stimulation. In this paper, we report on detailed materials and electrical analyses of three metal implantable electrodes - gold (Au), platinum (Pt) and titanium (Ti) - using X-ray photoelectron spectroscopy (XPS), scanning acoustic microscopy, drop shape analysis and electrochemical impedance spectroscopy. We investigated the cause of changes in electrochemical impedance of long-term immersed Au, Pt and Ti electrodes on liquid crystal polymers (LCPs) in phosphate buffered saline (PBS). We analyzed the surface wettability, surface and interface defects and the elemental depth profile of the electrode-adhesion layers on the LCP. The impedance of the electrodes decreased at lower frequencies, but increased at higher frequencies compared with that of the short-term immersion. The increase of impedances was influenced by the oxidation of the electrode/adhesion-layers that affected the double layer capacitance behavior of the electrode/PBS. The oxidation of the adhesion layer for all the electrodes was confirmed by XPS. Alkali ions (sodium) were adsorbed on the Au and Pt surfaces, but diffused into the Ti electrode and LCPs. The Pt electrode showed a higher sensitivity to surface and interface defects than that of Ti and Au electrodes. These findings may be useful when designing electrodes for long-term implantable devices.

  17. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    Science.gov (United States)

    Tian, Ye; Wei, Qi; Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-11-01

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  18. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye; Wei, Qi, E-mail: weiqi@nju.edu.cn; Cheng, Ying [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Xu, Zheng [School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Liu, Xiaojun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-11-30

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  19. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  20. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  1. Acoustic sensor array extracts physiology during movement

    Science.gov (United States)

    Scanlon, Michael V.

    2001-08-01

    An acoustic sensor attached to a person's neck can extract heart and breath sounds, as well as voice and other physiology related to their health and performance. Soldiers, firefighters, law enforcement, and rescue personnel, as well as people at home or in health care facilities, can benefit form being remotely monitored. ARLs acoustic sensor, when worn around a person's neck, picks up the carotid artery and breath sounds very well by matching the sensor's acoustic impedance to that of the body via a gel pad, while airborne noise is minimized by an impedance mismatch. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that obscure the meaningful physiology. To exacerbate signal extraction, these interfering signals are usually covariant with the heart sounds, in that as a person walks faster the heart tends to beat faster, and motion noises tend to contain low frequency component similar to the heart sounds. A noise-canceling configuration developed by ARL uses two acoustic sensor on the front sides of the neck as physiology sensors, and two additional acoustic sensor on the back sides of the neck as noise references. Breath and heart sounds, which occur with near symmetry and simultaneously at the two front sensor, will correlate well. The motion noise present on all four sensor will be used to cancel the noise on the two physiology sensors. This report will compare heart rate variability derived from both the acoustic array and from ECG data taken simultaneously on a treadmill test. Acoustically derived breath rate and volume approximations will be introduced as well. A miniature 3- axis accelerometer on the same neckband provides additional noise references to validate footfall and motion activity.

  2. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    Science.gov (United States)

    Richardson, John G.

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  3. Acoustic emission

    International Nuclear Information System (INIS)

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  4. Numerical Techniques for Acoustic Modelling and Design of Brass Wind Instruments

    OpenAIRE

    Noreland, Daniel

    2003-01-01

    Acoustic horns are used in musical instruments and loudspeakers in order to provide an impedance match between an acoustic source and the surrounding air. The aim of this study is to develop numerical tools for the analysis and optimisation of such horns, with respect to their input impedance spectra. Important effects such as visco-thermal damping and modal conversion are shown to be localised to different parts of a typical brass instrument. This makes it possible to construct hybrid method...

  5. Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.

    Science.gov (United States)

    Toda, Minoru

    2002-03-01

    A new matching layer design concept has been proposed for narrowband continuous wave (CW) devices. Analysis has shown that the mechanical impedance of a resonant-type transducer in thickness mode CW operation does not equal its acoustic impedance rhoVs but roughly equals rhoVs/Q, where p is density, Vs is acoustic velocity, and Q is the mechanical quality factor. The value of rhoVs/Q is much lower than the acoustic impedance of water for any transducer material, including lead zirconium titanate (PZT), single crystals, or polyvinylidene fluoride (PVDF). With this new approach, the impedance of the matching layer must also be between water and pVs/Q, but there are few such practical low impedance materials. To realize equivalent low impedance structure, a novel double layer design is presented: a relatively low impedance material (such as polyethylene or polyurethane) on the inside and a relatively high impedance material (such as polyester or metal) on the outside. A high power CW transducer structure was designed and fabricated with PVDF-TrFE (polyvinylidene fluoride trifluoroethylene) to operate at 1.4 MHz. The basic quarter wavelength resonator structure is 0.7-mm alumina/0.2-mm piezo-polymer/0.25-mm polyester, and the matching section is 0.2-mm polyurethane and 0.25-mm polyester. A maximum power output of 6 to 9 W/cm2 with conversion efficiency of 30 to 35% was observed. For the transducer without matching section, the observed power was 3 to 4 W/cm2. Mason's model analyses (1) predict that the traditional matching layer is for broadband purposes and reduces output power both for PZT and PVDF-TrFE (2); this new matching scheme can be applied to PZT high power transducer. This high efficiency technique has application in various CW systems, such as Doppler sensors, interferometry, phase-sensitive imaging, or high energy focused beam systems. PMID:12322878

  6. Impedance measurement techniques for one-port and two-port networks.

    Science.gov (United States)

    Bai, Mingsian R; Lo, Yi-Yang; Chen, You Siang

    2015-10-01

    A microphone array impedance matrix measurement technique is presented for linear and passive acoustic two-port networks. Two impedance tubes fitted with three non-uniformly spaced microphones are required in the measurement. The non-uniform spacing is intended to avoid ill-posedness problems in calculating two plane-wave components traveling in opposite directions. Based on the one-port measurement, acoustic two-port networks modeled with the source and the load connected are examined. Three experimental procedures, the two-load measurement method (TLMM), the reciprocal-constrained method (RCM), and the reciprocity-symmetry-constrained method (RSCM), are developed to measure the acoustic impedance matrix. Experiments are conducted for several acoustic two-port systems to verify the proposed techniques. The results demonstrate the efficacy of the three experimental procedures when applied to symmetrical and reciprocal systems. For asymmetrical systems, the TLMM and RCM are preferred over the RSCM for measuring the impedance matrix. On top of that, the non-uniform array in conjunction with TLMM is extended to a general electroacoustic two-port system, which can be regarded as a unique contribution of the present work. PMID:26520309

  7. LDV measurement of bird ear vibrations to determine inner ear impedance and middle ear power flow

    Science.gov (United States)

    Muyshondt, Pieter G. G.; Pires, Felipe; Dirckx, Joris J. J.

    2016-06-01

    The mechanical behavior of the middle ear structures in birds and mammals is affected by the fluids in the inner ear (IE) that are present behind the oval window. In this study, the aim was to gather knowledge of the acoustic impedance of the IE in the ostrich, to be able to determine the effect on vibrations and power flow in the single-ossicle bird middle ear for future studies. To determine the IE impedance, vibrations of the ossicle were measured for both the quasi-static and acoustic stimulus frequencies. In the acoustic regime, vibrations were measured with a laser Doppler vibrometer and electromagnetic stimulation of the ossicle. The impedance of the inner ear could be determined by means of a simple RLC model in series, which resulted in a stiffness reactance of KIE = 0.20.1012 Pa/m3, an inertial impedance of MIE = 0.652.106 Pa s2/m3, and a resistance of RIE = 1.57.109 Pa s/m. The measured impedance is found to be considerably smaller than what is found for the human IE.

  8. IMPEDANCE CHARACTERISTICS OF POLYFURAN FILMS

    Institute of Scientific and Technical Information of China (English)

    Liang Li; Xiao-bo Wan; Gi Xue

    2002-01-01

    Electrochemical impedance spectroscopy (EIS) was first used for the characterization of polyfuran (PFu) films that had been formed electrochemically on an Au electrode. The polyfuran was measured in high oxidation state, intermediate oxidation state and reduction state, respectively. As the oxidation level is increased, the ionic conductivity of PFu/BF4-increases. And impedance studies on PFu show that the anion BF4- appears to be mobile with a high diffusion coefficient of approximately 10-8 cm2 @ s-1.

  9. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    Science.gov (United States)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  10. A Numerical Theory for Impedance Education in Three-Dimensional Normal Incidence Tubes

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2016-01-01

    A method for educing the locally-reacting acoustic impedance of a test sample mounted in a 3-D normal incidence impedance tube is presented and validated. The unique feature of the method is that the excitation frequency (or duct geometry) may be such that high-order duct modes may exist. The method educes the impedance, iteratively, by minimizing an objective function consisting of the difference between the measured and numerically computed acoustic pressure at preselected measurement points in the duct. The method is validated on planar and high-order mode sources with data synthesized from exact mode theory. These data are then subjected to random jitter to simulate the effects of measurement uncertainties on the educed impedance spectrum. The primary conclusions of the study are 1) Without random jitter the method is in excellent agreement with that for known impedance samples, and 2) Random jitter that is compatible to that found in a typical experiment has minimal impact on the accuracy of the educed impedance.

  11. The effect of vocal tract impedance on the vocal folds

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Selamtzis, Andreas

    2011-01-01

    for the Neutral mode compared to the other, so-called metallic modes. The differences in waveform between Curbing, Overdrive and Edge modes are minor. However, the spectrum of the Overdrive mode shows stronger 2nd harmonic and weaker 4th and 6th harmonic compared to Curbing and Edge. Finally the Overdrive mode......, which is the mode that is most limited in pitch range, was tested at its pitch limit C5 (523 Hz) under normal conditions and when the singer has inhaled Helium. When inhaling Helium the acoustic impedance of the vocal tract is reduced in magnitude and the resonances are scaled upwards in frequency due...

  12. Ensemble averaged surface normal impedance of material using an in-situ technique: preliminary study using boundary element method.

    Science.gov (United States)

    Otsuru, Toru; Tomiku, Reiji; Din, Nazli Bin Che; Okamoto, Noriko; Murakami, Masahiko

    2009-06-01

    An in-situ measurement technique of a material surface normal impedance is proposed. It includes a concept of "ensemble averaged" surface normal impedance that extends the usage of obtained values to various applications such as architectural acoustics and computational simulations, especially those based on the wave theory. The measurement technique itself is a refinement of a method using a two-microphone technique and environmental anonymous noise, or diffused ambient noise, as proposed by Takahashi et al. [Appl. Acoust. 66, 845-865 (2005)]. Measured impedance can be regarded as time-space averaged normal impedance at the material surface. As a preliminary study using numerical simulations based on the boundary element method, normal incidence and random incidence measurements are compared numerically: results clarify that ensemble averaging is an effective mode of measuring sound absorption characteristics of materials with practical sizes in the lower frequency range of 100-1000 Hz, as confirmed by practical measurements. PMID:19507960

  13. [Monitoring cervical dilatation by impedance].

    Science.gov (United States)

    Salvat, J; Lassen, M; Sauze, C; Baud, S; Salvat, F

    1992-01-01

    Several different physics procedures have been tried to mechanize the recording of partograms. Can a measure of impedance of tissue Z using potential difference V, according to Ohm's law V = Z1, and 1 is a constant, be correlated with a measure of cervical dilatation using vaginal examination? This was our hypothesis. The tissue impedance meter was made to our design and applied according to a bipolar procedure. Our work was carried out on 28 patients. 10 patients were registered before labour started in order to test the apparatus and to record the impedance variations without labour taking place, and 18 patients were registered in labour to see whether there was any correlation. The level of impedance in the cervix without labour was 302.7 Ohms with a deviation of 8.2. Using student's t tests it was found that there was a significant correlation (p less than 0.001) in four measurements between the impedance measure and measures obtained by extrapolating the degrees of dilatation calculated from vaginal examination. This is a preliminary study in which we have defined the conditions that are necessary to confirm these first results and to further develop the method. PMID:1401774

  14. Report of the SSC impedance workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-10-28

    This workshop focused attention on the transverse, single-bunch instability and the detailed analysis of the broadband impedance which would drive it. Issues discussed included: (1) single bunch stability -- impact of impedance frequency shape, coupled-mode vs. fast blowup regimes, possible stopband structure; (2) numerical estimates of transverse impedance of inner bellows and sliding contact shielded bellows; (3) analytic estimates of pickup and kicker impedance contributions; and (4) feasibility studies of wire and beam measurements of component impedance.

  15. Lateral mode coupling to reduce the electrical impedance of small elements required for high power ultrasound therapy phased arrays

    OpenAIRE

    Hynynen, Kullervo; Yin, Jianhua

    2009-01-01

    A method that uses lateral coupling to reduce the electrical impedance of small transducer elements in generating ultrasound waves was tested. Cylindrical, radially-polled transducer elements were driven at their length resonance frequency. Computer simulation and experimental studies showed that the electrical impedance of the transducer element could be controlled by the cylinder wall thickness, while the operation frequency was determined by the cylinder length. Acoustic intensity (average...

  16. Investigating oboe manufacturing consistency by comparing the acoustical properties of five nominally identical instruments

    OpenAIRE

    MAMOU-MANI, Adrien; Sharp, David; Meurisse, Thibaut; Ring, William

    2010-01-01

    For large-scale musical instrument makers, the ability to produce instruments with exactly the same playing characteristics is a constant aim. Modern acoustical measurement techniques (such as acoustic pulse reflectometry and input impedance measurement methods) together with psychoacoustical testing, can help this goal be reached. This paper investigates the issue of instrument manufacturing consistency by comparing the acoustical properties and the perceptual qualities of five Howarth S10 s...

  17. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    CERN Document Server

    Grasland-Mongrain, Pol; Mari, Jean-Martial; Souchon, Remi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-01-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence ...

  18. Transverse Impedance of LHC Collimators

    CERN Document Server

    Métral, E; Assmann, Ralph Wolfgang; Boccardi, A; Bracco, C; Bohl, T; Caspers, Friedhelm; Gasior, M; Jones, O R; Kasinski, K; Kroyer, T; Redaelli, S; Robert-Demolaize, R; Roncarolo, F; Rumolo, G; Salvant, B; Steinhagen, R; Weiler, T; Zimmermann, F

    2007-01-01

    The transverse impedance in the LHC is expected to be dominated by the numerous collimators, most of which are made of Fibre-Reinforced-Carbon to withstand the impacts of high intensity proton beams in case of failures, and which will be moved very close to the beam, with full gaps of few millimetres, in order to protect surrounding super-conducting equipments. We present an estimate of the transverse resistive-wall impedance of the LHC collimators, the total impedance in the LHC at injection and top energy, the induced coupled-bunch growth rates and tune shifts, and finally the result of the comparison of the theoretical predictions with measurements performed in 2004 and 2006 on a prototype collimator installed in the SPS.

  19. Definition of the characteristic impedance

    Institute of Scientific and Technical Information of China (English)

    徐云生; Abbas Sayed OMAR

    1996-01-01

    Currently available definitions of the characteristic impedance are ambiguous andior inaccurate.A general definition,based on the description of discontinuities between adjacent waveguides,is given.This definition is accurate and independent of the structure concerned.So it can be applied to the design of passive components in any type of transmission lines.Using this definition,a given structure can be uniquely characterized,but the absolute value of the characteristic impedance has no sense any more.As an example,the design of a microstrip impedance transformer using this new definition is presented.Numerical results using the mode-matching method prove the accuracy of the theory.

  20. Hybrid-Source Impedance Networks

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang;

    2010-01-01

    Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters with another three types summarized...... for current-type inverters. These impedance networks can in principle be combined into two generic network entities, before multiple of them can further be connected together by applying any of the two proposed generalized cascading concepts. The resulting two-level and three-level inverters implemented using...... the cascaded networks would have a higher output voltage gain and other unique advantages that currently have not been investigated yet. It is anticipated that these advantages would help the formed inverters find applications in photovoltaic and other renewable systems, where a high voltage gain is usually...

  1. Impedances of Laminated Vacuum Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  2. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  3. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    Science.gov (United States)

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  4. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...... kinds of problems at different locations in the grid. This means that the best measurement methodology changes depending on the location in the grid. Three typical examples with different measurement problems at 400 kV, 132 kV and 400 V voltage level are discussed....

  5. Y-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Loh, Poh Chiang; Blaabjerg, Frede;

    2014-01-01

    This letter introduces a new versatile Y-shaped impedance network for realizing converters that demand a very high-voltage gain, while using a small duty ratio. To achieve that, the proposed network uses a tightly coupled transformer with three windings, whose obtained gain is presently not matched...... by existing networks operated at the same duty ratio. The proposed impedance network also has more degrees of freedom for varying its gain, and hence, more design freedom for meeting requirements demanded from it. This capability has been demonstrated by mathematical derivation, and proven in experiment...

  6. Input impedance characteristics of microstrip structures

    Directory of Open Access Journals (Sweden)

    A. I. Nazarko

    2015-06-01

    Full Text Available Introduction. Electromagnetic crystals (EC and EC-inhomogeneities are one of the main directions of microstrip devices development. In the article the input impedance characteristics of EC- and traditional microstrip inhomogeneities and filter based on EC-inhomogeneities are investigated. Transmission coefficient characteristics. Transmission coefficient characteristics of low impedance EC- and traditional inhomogeneities are considered. Characteristics are calculated in the software package Microwave Studio. It is shown that the efficiency of EC-inhomogeneity is much higher. Input impedance characteristics of low impedance inhomogeneities. Dependences of input impedance active and reactive parts of EC- and traditional inhomogeneities are given. Dependences of the active part illustrate significant low impedance transformation of nominal impedance. The conditions of impedance matching of structure and input medium are set. Input impedance characteristics of high impedance inhomogeneities. Input impedance characteristics of high impedance EC- and traditional inhomogeneities are considered. It was shown that the band of transformation by high impedance inhomogeneities is much narrower than one by low impedance inhomogeneities. Characteristics of the reflection coefficient of inhomogeneities are presented. Input impedance characteristics of narrowband filter. The structure of narrowband filter based on the scheme of Fabry-Perot resonator is presented. The structure of the filter is fulfilled by high impedance EC-inhomogeneities as a reflectors. Experimental and theoretical amplitude-frequency characteristics of the filter are presented. Input impedance characteristics of the filter are shown. Conclusions. Input impedance characteristics of the structure allow to analyse its wave properties, especially resonant. EC-inhomogeneity compared with traditional microstrip provide substantially more significant transformation of the the input impedance.

  7. A reconstruction algorithm of magnetoacoustic tomography with magnetic induction for an acoustically inhomogeneous tissue.

    Science.gov (United States)

    Zhou, Lian; Zhu, Shanan; He, Bin

    2014-06-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive electrical conductivity imaging approach that measures ultrasound wave induced by magnetic stimulation, for reconstructing the distribution of electrical impedance in a biological tissue. Existing reconstruction algorithms for MAT-MI are based on the assumption that the acoustic properties in the tissue are homogeneous. However, the tissue in most parts of human body has heterogeneous acoustic properties, which leads to potential distortion and blurring of small buried objects in the impedance images. In this study, we proposed a new algorithm for MAT-MI to image the impedance distribution in tissues with inhomogeneous acoustic speed distributions. With a computer head model constructed from MR images of a human subject, a series of numerical simulation experiments were conducted. The present results indicate that the inhomogeneous acoustic properties of tissues in terms of speed variation can be incorporated in MAT-MI imaging. PMID:24845284

  8. A Comparative Study of Four Impedance Eduction Methodologies Using Several Test Liners

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2013-01-01

    A comparative study of four commonly used impedance eduction methods is presented for a range of liner structures and test conditions. Two of the methods are restricted to uniform flow while the other two accommodate both uniform and boundary layer flows. Measurements on five liner structures (a rigid-wall insert, a ceramic tubular liner, a wire mesh liner, a low porosity conventional liner, and a high porosity conventional liner) are obtained using the NASA Langley Grazing Flow Impedance Tube. The educed impedance of each liner is presented for forty-two test conditions (three Mach numbers and fourteen frequencies). In addition, the effects of moving the acoustic source from upstream to downstream and the refractive effects of the mean boundary layer on the wire mesh liner are investigated. The primary conclusions of the study are that: (1) more accurate results are obtained for the upstream source, (2) the uniform flow methods produce nearly identical impedance spectra at and below Mach 0.3 but significant scatter in the educed impedance occurs at the higher Mach number, (3) there is better agreement in educed impedance among the methods for the conventional liners than for the rigid-wall insert, ceramic, or wire mesh liner, and (4) the refractive effects of the mean boundary layer on the educed impedance of the wire mesh liner are generally small except at Mach 0.5.

  9. HADES - Hydrophone for Acoustic Detection at South Pole

    CERN Document Server

    Semburg, Benjamin

    2008-01-01

    The South Pole Acoustic Test Setup (SPATS) is located in the upper part of the optical neutrino observatory IceCube, currently under construction. SPATS consists of four strings at depths between 80 m and 500 m below the surface of the ice with seven stages per string. Each stage is equipped with an acoustic sensor and a transmitter. Three strings (string A-C) were deployed in the austral summer 2006/07. SPATS was extended by a fourth string (string D) with second generation sensors and transmitters in 2007/08. One second generation sensor type HADES (Hydrophone for Acoustic Detection at South Pole) consists of a ring-shaped piezo-electric element coated with polyurethane. The development of the sensor, optimization of acoustic transmission by acoustic impedance matching and first in-situ results will be discussed.

  10. Laser-induced acoustic imaging of underground objects

    Science.gov (United States)

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  11. The Aberdeen Impedance Imaging System.

    Science.gov (United States)

    Kulkarni, V; Hutchison, J M; Mallard, J R

    1989-01-01

    The Aberdeen Impedance Imaging System is designed to reconstruct 2 dimensional images of the average distribution of the amplitude and phase of the complex impedance within a 3 dimensional region. The system uses the four electrode technique in a 16 electrode split-array. The system hardware consists of task-orientated electronic modules for: driving a constant current, multiplexing the current drive, demultiplexing peripheral voltages, differential amplification, phase sensitive detection and low-pass filtration, digitisation with a 14 bit analog to digital converter (ADC), and -control logic for the ADC and multiplexors. A BBC microprocessor (Master series), initiates a controlled sequence for the collection of a number of data sets which are averaged and stored on disk. Image reconstruction is by a process of convolution-backprojection similar to the fan-beam reconstruction of computerised tomography and is also known as Equipotential Backprojection. In imaging impedance changes associated with fracture healing the changes may be large enough to allow retrieval of both the amplitude and phase of the complex impedance. Sequential imaging of these changes would necessitate monitoring electronic and electrode drift by imaging an equivalent region of the contralateral limb. Differential images could be retrieved when the image of the normal limb is the image template. Better characterisation of tissues would necessitate a cleaner retrieval of the quadrature signal. PMID:2742979

  12. Small Signal Loudspeaker Impedance Emulator

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold

    2014-01-01

    from driver to driver. Therefore, a loudspeaker emulator capable of adjusting its impedance to that of a given driver is desired for measurement purposes. This paper proposes a loudspeaker emulator circuit for small signals. Simulations and experimental results are compared and show that it is possible...

  13. A straightforward method for wall impedance eduction in a flow duct.

    Science.gov (United States)

    Jing, Xiaodong; Peng, Sen; Sun, Xiaofeng

    2008-07-01

    The development of the advanced liner technology for aeroengine noise control necessitates the impedance measurement method under realistic flow conditions. Currently, the methods for this need are mainly based on the inverse impedance eduction principle, confronting with the problems of initial guess, high computation cost, and low convergence. In view of this, a new strategy is developed that straightforwardly educes the impedance from the sound pressure information measured on the duct wall opposing to the test acoustic liner embedded in a flow duct. Here, the key insight is that the modal nature of the duct acoustic field renders a summed-exponential representation of the measured sound pressure; thus, the characterizing axial wave number can be readily extracted by means of Prony's method, and further the unknown impedance is calculated from the eigenvalue and dispersion relations based on the classical mode-decomposition analysis. This straightforward method is simple in its basic principle but remarkably has the advantages of ultimately overcoming the drawbacks inherent to the inverse methods, incorporating the realistic multimode nonprogressive wave effects, high computational efficiency, possibly reducing the measurement points, and even avoiding the necessity of the duct exit impedance that bothers perhaps all the existing waveguide methods.

  14. Acoustic evaluation of cementing quality using obliquely incident ultrasonic signals

    Institute of Scientific and Technical Information of China (English)

    Duan Wen-Xing; Qiao Wen-Xiao; Che Xiao-Hua; Xie Hui

    2014-01-01

    Ultrasonic cement bond logging is a widely used method for evaluating cementing quality. Conventional ultrasonic cement bond logging uses vertical incidence and cannot accurately evaluate lightweight cement bonding. Oblique incidence is a new technology for evaluating cement quality with improved accuracy for lightweight cements. In this study, we simulated models of acoustic impedance of cement and cementing quality using ultrasonic oblique incidence, and we obtained the relation between cementing quality, acoustic impedance of cement, and the acoustic attenuation coeffi cient of the A0-mode and S0-mode Lamb waves. Then, we simulated models of different cement thickness and we obtained the relation between cement thickness and the time difference of the arrival between the A0 and A0′ modes.

  15. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  16. Optimal impedance on transmission of Lorentz force EMATs

    Science.gov (United States)

    Isla, Julio; Seher, Matthias; Challis, Richard; Cegla, Frederic

    2016-02-01

    Electromagnetic-acoustic transducers (EMATs) are attractive for non-destructive inspections because direct contact with the specimen under test is not required. This advantage comes at a high cost in sensitivity and therefore it is important to optimise every aspect of an EMAT. The signal strength produced by EMATs is in part determined by the coil impedance regardless of the transduction mechanism (e.g. Lorentz force, magnetostriction, etc.). There is very little literature on how to select the coil impedance that maximises the wave intensity; this paper addresses that gap. A transformer circuit is used to model the interaction between the EMAT coil and the eddy currents that are generated beneath the coil in the conducting specimen. Expressions for the coil impedances that satisfy the maximum efficiency and maximum power transfer conditions on transmission are presented. To support this analysis, a tunable coil that consists of stacked identical thin layers independently accessed is used so that the coil inductance can be modified while leaving the radiation pattern of the EMAT unaffected.

  17. Design and Analysis of Impedance Pumps Utilizing Electromagnetic Actuation

    Directory of Open Access Journals (Sweden)

    Yu-Hisang Wang

    2010-04-01

    Full Text Available This study designs and analyzes an impedance pump utilizing an electromagnetic actuator. The pump is designed to have three major components, namely a lower glass substrate patterned with a copper micro-coil, a microchannel, and an upper glass cover plate attached a magnetic PDMS diaphragm. When a current is passed through the micro-coil, an electromagnetic force is established between the coil and the magnetic diaphragm. The resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within the microchannel, which results in a net flow. In performing the analysis, simulated models of the magnetic field, the diaphragm displacement and the flow rate are developed using Ansoft/Maxwell3D, ANSYS FEA and FLUENT 6.3 CFD software, respectively. Overall, the simulated results reveal that a net flow rate of 52.8 μL/min can be obtained using a diaphragm displacement of 31.5 μm induced by a micro-coil input current of 0.5 A. The impedance pump proposed in this study provides a valuable contribution to the ongoing development of Lab-on-Chips (LoCs systems.

  18. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available Educational Video Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video ... for pre- and post-treatment acoustic neuroma patients. Home What is an AN What is an Acoustic ...

  19. Acoustic cryocooler

    Science.gov (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  20. Beam Coupling Impedances of Small Discontinuities

    CERN Document Server

    Kurennoy, S S

    2000-01-01

    A general derivation of the beam coupling impedances produced by small discontinuities on the wall of the vacuum chamber of an accelerator is reviewed. A collection of analytical formulas for the impedances of small obstacles is presented.

  1. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  2. Middle ear impedance studies in elderly patients implications on age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Olusola Ayodele Sogebi

    2015-04-01

    Full Text Available INTRODUCTION: Controversies arise with respect to functioning of the middle ear over time.OBJECTIVE: To assess changes in middle ear impedance that may be related to aging, and/or if there was an association of these changes with those of the inner ear in the elderly patients.METHODS: Cross-sectional, comparative study of elderly patients managed in ear, nose and throat clinics. A structured questionnaire was administered to obtain clinical information. Pure tone audiometry, tympanometry, and acoustic reflexes were performed. Comparative analyses were performed to detect intergroup differences between clinico-audiometric findings and middle ear measures, viz. tympanograms and acoustic reflexes.RESULTS: One hundred and three elderly patients participated in the study; 52.4% were male, averagely 70.0 ± 6.3 years old, age-related hearing loss in 59.2%, abnormal tympanograms in 39.3%, absent acoustic reflex in 37.9%. There was no association between age and gender in patients with abnormal tympanograms and absent acoustic reflex. Significantly more patients with different forms and grades of age-related hearing loss had abnormal tympanometry and absent acoustic reflex.CONCLUSION: Some abnormalities were observed in the impedance audiometric measures of elderly patients, which were significantly associated with parameters connected to age-related hearing loss.

  3. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  4. A membrane-type acoustic metamaterial with adjustable acoustic properties

    Science.gov (United States)

    Langfeldt, F.; Riecken, J.; Gleine, W.; von Estorff, O.

    2016-07-01

    A new realization of a membrane-type acoustic metamaterial (MAM) with adjustable sound transmission properties is presented. The proposed design distinguishes itself from other realizations by a stacked arrangement of two MAMs which is inflated using pressurized air. The static pressurization leads to large nonlinear deformations and, consequently, geometrical stiffening of the MAMs which is exploited to adjust the eigenmodes and sound transmission loss of the structure. A theoretical analysis of the proposed inflatable MAM design using numerical and analytical models is performed in order to identify two important mechanisms, namely the shifting of the eigenfrequencies and modal residuals due to the pressurization, responsible for the transmission loss adjustment. Analytical formulas are provided for predicting the eigenmode shifting and normal incidence sound transmission loss of inflated single and double MAMs using the concept of effective mass. The investigations are concluded with results from a test sample measurement inside an impedance tube, which confirm the theoretical predictions.

  5. Modal vibrations of a cylindrical radiator over an impedance plane

    Science.gov (United States)

    Hasheminejad, S. M.; Azarpeyvand, M.

    2004-12-01

    The problem of acoustic radiation from an infinite cylinder undergoing harmonic modal surface vibrations near a locally reacting planar boundary is considered. The formulation utilizes the appropriate wave field expansions, the classical method of images, and the translational addition theorem for cylindrical wave functions, along with a simple local surface reaction model involving a complex amplitude wave reflection coefficient applied to simulate the relevant boundary conditions for the given configuration. The analytical results are illustrated with a numerical example in which the cylindrical surface is immersed near a layer of fibrous material set on an impervious rigid wall. The numerical results reveal the important effects of interface local surface reaction and source position on the computed modal impedance component values and the radiated on-axis far-field pressure. The benchmark solution presented can lead to a better understanding of acoustic radiation from near-interface two-dimensional sources, which are commonly encountered problems in outdoor acoustics and noise control engineering. Eventually, it could be used to validate those found by numerical approximation techniques.

  6. Acoustic dispersive prism

    OpenAIRE

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  7. Reducing the SPS Machine Impedance

    CERN Document Server

    Collier, Paul; Guinand, R; Jiménez, J M; Rizzo, A; Spinks, Alan; Weiss, K

    2002-01-01

    The SPS as LHC Injector project has been working for some time to prepare the SPS for its role as final injector for the LHC. This included major work related to injection, acceleration, extraction and beam instrumentation for the LHC beams [1]. Measurements carried out with the high brightness LHC beam showed that a major improvement of the machine impedance would also be necessary [2]. In addition to removing all lepton related components (once LEP operation ended in 2000), the decision was made to shield the vacuum system pumping port cavities. These accidental cavities had been identified as having characteristic frequencies in the 1-1.5GHz range. Since the SPS vacuum system contains roughly 1000 of these cavities, they constitute a major fraction of the machine impedance. As removal of the ports and associated bellows is not possible, transition shields (PPS) had to be designed to insert within the pumping port cavities.

  8. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  9. A spatial impedance controller for robotic manipulation

    NARCIS (Netherlands)

    Fasse, Ernest D.; Broenink, Jan F.

    1997-01-01

    Mechanical impedance is the dynamic generalization of stiffness, and determines interactive behavior by definition. Although the argument for explicitly controlling impedance is strong, impedance control has had only a modest impact on robotic manipulator control practice. This is due in part to the

  10. A new acoustic lens material for large area detectors in photoacoustic breast tomography

    CERN Document Server

    Xia, Wenfeng; van Hespen, Johan C G; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Acoustic lenses made of acrylic plastic (PMMA) have been used to enlarge the acceptance angle of sensitive large surface area detectors and improve lateral resolution. However, PMMA lenses introduce image artifacts due to ultrasound internal reflections within the lenses. In this work we investigated this issue proposing a new lens material Stycast 1090SI. We characterized the acoustic properties of the proposed material in comparison with PMMA. Detector performance using negative lenses with the two materials, was tested using finite element simulation and experiment. Further the image quality of a photoacoustic tomography system was studied using k-Wave simulation and experiment. Our acoustic characterization showed that Stycast 1090SI has tissue-like acoustic impedance, high speed of sound and low acoustic attenuation. Both acoustic lenses show significant enlargement of detector acceptance angle and lateral resolution improvement. However, image artifacts induced by acoustic lenses are reduced using the p...

  11. Hierarchical Assembly of Tungsten Spheres and Epoxy Composites in Three-Dimensional Graphene Foam and Its Enhanced Acoustic Performance as a Backing Material.

    Science.gov (United States)

    Qiu, Yunfeng; Liu, Jingjing; Lu, Yue; Zhang, Rui; Cao, Wenwu; Hu, PingAn

    2016-07-20

    Backing materials play important role in enhancing the acoustic performance of an ultrasonic transducer. Most backing materials prepared by conventional methods failed to show both high acoustic impedance and attenuation, which however determine the bandwidth and axial resolution of acoustic transducer, respectively. In the present work, taking advantage of the structural feature of 3D graphene foam as a confined space for dense packing of tungsten spheres with the assistance of centrifugal force, the desired structural requirement for high impedance is obtained. Meanwhile, superior thermal conductivity of graphene contributes to the acoustic attenuation via the conversion of acoustic waves to thermal energy. The tight contact between tungstate spheres, epoxy matrix, or graphene makes the acoustic wave depleted easily for the absence of air barrier. The as-prepared 3DG/W80 wt %/epoxy film in 1 mm, prepared using ∼41 μm W spheres in diameter, not only displays acoustic impedance of 13.05 ± 0.11 MRayl but also illustrates acoustic attenuation of 110.15 ± 1.23 dB/cm MHz. Additionally, the composite film exhibits a high acoustic absorption coefficient, which is 94.4% at 1 MHz and 100% at 3 MHz, respectively. Present composite film outperforms most of the reported backing materials consisting of metal fillers/polymer blending in terms of the acoustic impedance and attenuation. PMID:27352024

  12. Estimation of pressure-particle velocity impedance measurement uncertainty using the Monte Carlo method.

    Science.gov (United States)

    Brandão, Eric; Flesch, Rodolfo C C; Lenzi, Arcanjo; Flesch, Carlos A

    2011-07-01

    The pressure-particle velocity (PU) impedance measurement technique is an experimental method used to measure the surface impedance and the absorption coefficient of acoustic samples in situ or under free-field conditions. In this paper, the measurement uncertainty of the the absorption coefficient determined using the PU technique is explored applying the Monte Carlo method. It is shown that because of the uncertainty, it is particularly difficult to measure samples with low absorption and that difficulties associated with the localization of the acoustic centers of the sound source and the PU sensor affect the quality of the measurement roughly to the same extent as the errors in the transfer function between pressure and particle velocity do.

  13. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  14. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  15. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  16. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  17. A compact broadband nonsynchronous noncommensurate impedance transformer

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Kim, Kseniya; Narenda, Kumar

    2012-01-01

    Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison to the tradit......Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison...... to the traditional tapered line transformers. This flexibility of the broadband nonsynchronous noncommensurate impedance transformers is experimentally demonstrated in this article allowing the length reduction by almost three times. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:1832–1835, 2012; View...

  18. Compressible turbulent channel flow with impedance boundary conditions

    Science.gov (United States)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.

    2015-03-01

    We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with

  19. Design and Development of a High Impedance Amplifier For Use With Piezoelectric Infrasound Microphones

    Science.gov (United States)

    Kleinert, D. E.; Talmadge, C. L.

    2011-12-01

    The National Center for Physical Acoustics (NCPA) has developed a new class of high fidelity low cost piezoelectric infrasound sensors. One of the key electronic issues has been the design and development of the appropriate high impedance amplifiers including material specification as well as circuit layout and fabrication. The high impedance amplifier is required to allow the piezoelectronic sensor to operate over its entire bandwidth as the sensor itself has high impedance at the low frequency end of its operation. The specifications include a flat frequency response from at least .01 Hz to 500 Hz, a dynamic range suitable to feed a 24 bit ADC and reasonably low power (mW levels). There has been extensive field testing of the resulting amplifier in conjunction with the piezoelectric microphone, also developed at NCPA, in a variety of locations and climates using various sources, including hurricanes, tornados and high explosive detonations.

  20. Multiple Exhaust Nozzle Effects on J-2X Gas Generator Outlet Impedance

    Science.gov (United States)

    Kenny, R. Jeremy; Muss, Jeffrey; Hulka, James R.; Casiano, Matthew

    2010-01-01

    The current test setup of the J-2X gas generator system uses a multiple nozzle configuration to exhaust hot gases to drive the propellant supply turbines. Combustion stability assessment of this gas generator design requires knowledge of the impedance effects the multiple nozzle configuration creates on the combustion chamber acoustic modes. Parallel work between NASA and Sierra Engineering is presented, showing two methods used to calculate the effective end impedance resulting from multiple nozzle configurations. The NASA method is a simple estimate of the effective impedance using the long wavelength approximation. Sierra Engineering has developed a more robust numerical integration method implemented in ROCCID to accommodate for multiple nozzles. Analysis using both methods are compared to J-2X gas generator test data collected over the past year.

  1. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  2. Advanced Nacelle Acoustic Lining Concepts Development

    Science.gov (United States)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  3. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S.

    1995-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impendance. This paper discusses three aspects of broadband impendance modeling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f cavity. The last is a discussion of requirements for the mathematical form of an impendance which follow from the general properties of impendances.

  4. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Maximillian J. Kieba

    2002-08-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  5. Impedance spectroscopy of food mycotoxins

    Science.gov (United States)

    Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.

    2012-01-01

    A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.

  6. Acoustic metasurface-based perfect absorber with deep subwavelength thickness

    Science.gov (United States)

    Li, Yong; Assouar, Badreddine M.

    2016-02-01

    Conventional acoustic absorbers are used to have a structure with a thickness comparable to the working wavelength, resulting in major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in an extremely low frequency region. The metasurface possessing a deep subwavelength thickness down to a feature size of ˜ λ / 223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have an high impact on amount of applications due to the extremely thin thickness, easy fabrication, and high efficiency of the proposed structure.

  7. Development of an analytical solution of modified Biot's equations for the optimization of lightweight acoustic protection.

    Science.gov (United States)

    Kanfoud, Jamil; Ali Hamdi, Mohamed; Becot, François-Xavier; Jaouen, Luc

    2009-02-01

    During lift-off, space launchers are submitted to high-level of acoustic loads, which may damage sensitive equipments. A special acoustic absorber has been previously integrated inside the fairing of space launchers to protect the payload. A new research project has been launched to develop a low cost fairing acoustic protection system using optimized layers of porous materials covered by a thin layer of fabric. An analytical model is used for the analysis of acoustic wave propagation within the multilayer porous media. Results have been validated by impedance tube measurements. A parametric study has been conducted to determine optimal mechanical and acoustical properties of the acoustic protection under dimensional thickness constraints. The effect of the mounting conditions has been studied. Results reveal the importance of the lateral constraints on the absorption coefficient particularly in the low frequency range. A transmission study has been carried out, where the fairing structure has been simulated by a limp mass layer. The transmission loss and noise reduction factors have been computed using Biot's theory and the local acoustic impedance approximation to represent the porous layer effect. Comparisons between the two models show the frequency domains for which the local impedance model is valid. PMID:19206863

  8. An overview of acoustic telemetry

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, D.S.

    1992-01-01

    Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quire low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested; existing field test data need to be analyzed for transmission bandwidth and attenuation; and the new and less expensive methods of collecting data on transmission path quality need to be incorporated into this effort. 11 refs.

  9. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew Ways to Give ANA Discussion Forum ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA.org Connect with us! Educational Video ...

  10. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and...

  11. Cystic acoustic neuromas

    OpenAIRE

    Chitkara, Naveen; Chanda, Rakesh; Yadav, S. P. S.; N.K. Sharma

    2002-01-01

    Predominantly cystic acoustic neuromas are rare and they usually present with clinical and radiological features different from their more common solid counterparts. Two cases of cystic acoustic neuromas are reported here.

  12. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ...

  13. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Resources Patient Surveys Related Links Clinical Trials.gov Health Care Insurance Toolkit Additional Resources ANA Public Webinars © 2016 Acoustic Neuroma Association Acoustic Neuroma Association ® • ...

  15. Spheromak Impedance and Current Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  16. Broadband solid cloak for underwater acoustics

    CERN Document Server

    Chen, Yi; Liu, Xiaoning; Bi, Yafeng; Sun, Zhaoyong; Xiang, Ping; Yang, Jun; Hu, Gengkai

    2016-01-01

    Shielding an object to be undetectable is an important issue for engineering applications. Cloaking is the ultimate shielding example, routing waves around an object without mutual interaction, demonstrated as possible in principle by transformation and metamaterial techniques. Example applications have been successfully designed and validated for electromagnetic wave, thin plate flexural wave, thermal flux, and airborne sound. However, for underwater acoustics, the commonly used scheme based on meta-fluids with anisotropic density for airborne sound is unworkable since an acoustic rigid material is required with mass density three orders of magnitude higher than water. Material with such high density is impossible using even the heaviest metal, and may suffer from a narrow working frequency band even if realized with locally resonant techniques. An alternative solution was recently suggested based on solid pentamode material, which can be impedance matched with water and has anisotropic modulus. Here, we rep...

  17. Acoustic radiation analysis and experimental verification of a broadband dense plane array

    Institute of Scientific and Technical Information of China (English)

    LIU Wangsheng; LI Ya'an; YU Hongpei

    2011-01-01

    The sound field distribution of a broadband array is calculated using the acoustics FEM and BEM. The FEM-BEM model is established for a nine-element plane array and its numerical method of calculating mutual radiation impedance among the transducers is given. The changing law of mutual radiation impedance influencing acoustics performances is analyzed. The directivity and beam width of the plane array are calculated at three resonance frequencies. A broadband dense plane array with nine elements is developed using triply resonant transducers. The input impedance and directivity of the plane array are measured in anechoic water tank. Results show that it is reasonable to design the array according to the half wavelengh of the first resonance frequency of the array element. The numerical solution agrees with the measuring results well, which indicates the FEM-BEM method is feasible to calculate sound field distribution and analyze mutual impedances.

  18. The comparison of some hemodynamics parameters, obtained by two non-invasive measurement methods - echocardiography and impedance cardiography (HOTMAN System) by patients with systemic hypertension

    OpenAIRE

    SASSMANNOVÁ, Anna

    2007-01-01

    Echocardiography is an investigation of heart via scan. This enables to intend the moving and the locality of heart structures via scan pulse waves which are repulsed with acoustic interfaces. Impedance measuring of the thorax hemodynamics is based on changes of electrical impedance. These changes happen mainly because of the heart function. By its rhytmical function the heart periodically changes the conditions of blood flow through all vessels. By this we can explain periodical changes of i...

  19. Pumping slots: impedances and power losses

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. [Maryland Univ., College Park, MD (United States). Dept. of Physics

    1996-08-01

    Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)

  20. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  1. High frequency impedances in European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, Martin; Zagorodnov, Igor; Zagorodnova, Olga

    2010-06-15

    The method of the optical approximation is used to estimate the high frequency impedances of different vacuum chamber transitions of the European XFEL beam line. The approximations of the longitudinal impedances are obtained in terms of simple one-dimensional integrals. The transverse impedances are written in analytical closed form. The analytical results are compared with the results obtained by numerical solution of Maxwell's equations. (orig.)

  2. Wave impedance retrieving via Bloch modes analysis

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, S.; Sukhorukov, A.;

    2011-01-01

    The main bottleneck in the restoration of electromagnetic effective parameters is connected to the impedance retrieving. The S-parameters method gives the input (Bloch) impedance, which, being then used for permittivity and permeability determination, causes some fundamental physics prin......-ciples violation, like antiresonance behaviour with Im(ε) fundamental) Bloch mode. Then it is possible to determine the Bloch and wave impedances by the surface and volume aver-aging of the electromagnetic field...

  3. Acoustic imaging systems (for robotic object acquisition)

    Science.gov (United States)

    Richardson, J. M.; Martin, J. F.; Marsh, K. A.; Schoenwald, J. S.

    1985-03-01

    The long-term objective of the effort is to establish successful approaches for 3D acoustic imaging of dense solid objects in air to provide the information required for acquisition and manipulation of these objects by a robotic system. The objective of this first year's work was to achieve and demonstrate the determination of the external geometry (shape) of such objects with a fixed sparse array of sensors, without the aid of geometrical models or extensive training procedures. Conventional approaches for acoustic imaging fall into two basic categories. The first category is used exclusively for dense solid objects. It involves echo-ranging from a large number of sensor positions, achieved either through the use of a larger array of transducers or through extensive physical scanning of a small array. This approach determines the distance to specular reflection points from each sensor position; with suitable processing an image can be inferred. The second category uses the full acoustic waveforms to provide an image, but is strictly applicable only to weak inhomogeneities. The most familiar example is medical imaging of the soft tissue portions of the body where the range of acoustic impedance is relatively small.

  4. Lightweight acoustic treatments for aerospace applications

    Science.gov (United States)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their

  5. A MEMS-based valveless impedance pump utilizing electromagnetic actuation

    International Nuclear Information System (INIS)

    This study presents a planar valveless impedance-based micro pump for biomedical applications. The micro pump comprises four major components, namely a lower glass substrate containing a copper micro coil, a microchannel, an upper glass cover plate and a PDMS diaphragm with a magnet mounted on its upper surface. When a current is passed through the micro coil, an electromagnetic force is established between the coil and the magnet. The resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within the microchannel, which results in a net flow. The performance of the micro pump is characterized both experimentally and numerically using Ansoft/Maxwell3D FEA software. The results show that the mechanical integrity of the micro pump is assured provided that the diaphragm deflection does not exceed 110 µm. This deflection is obtained by supplying the micro coil with an input current of 0.6 A, and results in a flow rate of 7.2 ml min−1 when the PDMS membrane is driven by an actuating frequency of 200 Hz

  6. A MEMS-based valveless impedance pump utilizing electromagnetic actuation

    Science.gov (United States)

    Lee, Chia-Yen; Chang, Hsien-Tsung; Wen, Chih-Yung

    2008-03-01

    This study presents a planar valveless impedance-based micro pump for biomedical applications. The micro pump comprises four major components, namely a lower glass substrate containing a copper micro coil, a microchannel, an upper glass cover plate and a PDMS diaphragm with a magnet mounted on its upper surface. When a current is passed through the micro coil, an electromagnetic force is established between the coil and the magnet. The resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within the microchannel, which results in a net flow. The performance of the micro pump is characterized both experimentally and numerically using Ansoft/Maxwell3D FEA software. The results show that the mechanical integrity of the micro pump is assured provided that the diaphragm deflection does not exceed 110 µm. This deflection is obtained by supplying the micro coil with an input current of 0.6 A, and results in a flow rate of 7.2 ml min-1 when the PDMS membrane is driven by an actuating frequency of 200 Hz.

  7. Acoustic elliptical cylindrical cloaks

    Institute of Scientific and Technical Information of China (English)

    Ma Hua; Qu Shao-Bo; Xu Zhuo; Wang Jia-Fu

    2009-01-01

    By making a comparison between the acoustic equations and the 2-dimensional (2D) Maxwell equations, we obtain the material parameter equations (MPE) for acoustic elliptical cylindrical cloaks. Both the theoretical results and the numerical results indicate that an elliptical cylindrical cloak can realize perfect acoustic invisibility when the spatial distributions of mass density and bulk modulus are exactly configured according to the proposed equations. The present work is the meaningful exploration of designing acoustic cloaks that are neither sphere nor circular cylinder in shape, and opens up possibilities for making complex and multiplex acoustic cloaks with simple models such as spheres, circular or elliptic cylinders.

  8. Acoustical properties of selected tissue phantom materials for ultrasound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zell, K [Chair for Analytical Chemistry, Technische Universitaet Muenchen, Munich (Germany); Sperl, J I [GE Global Research-Europe, Advanced Medical Applications Laboratory, Garching (Germany); Vogel, M W [GE Global Research-Europe, Advanced Medical Applications Laboratory, Garching (Germany); Niessner, R [Chair for Analytical Chemistry, Technische Universitaet Muenchen, Munich (Germany); Haisch, C [Chair for Analytical Chemistry, Technische Universitaet Muenchen, Munich (Germany)

    2007-10-21

    This note summarizes the characterization of the acoustic properties of four materials intended for the development of tissue, and especially breast tissue, phantoms for the use in photoacoustic and ultrasound imaging. The materials are agar, silicone, polyvinyl alcohol gel (PVA) and polyacrylamide gel (PAA). The acoustical properties, i.e., the speed of sound, impedance and acoustic attenuation, are determined by transmission measurements of sound waves at room temperature under controlled conditions. Although the materials are tested for application such as photoacoustic phantoms, we focus here on the acoustic properties, while the optical properties will be discussed elsewhere. To obtain the acoustic attenuation in a frequency range from 4 MHz to 14 MHz, two ultrasound sources of 5 MHz and 10 MHz core frequencies are used. For preparation, each sample is cast into blocks of three different thicknesses. Agar, PVA and PAA show similar acoustic properties as water. Within silicone polymer, a significantly lower speed of sound and higher acoustical attenuation than in water and human tissue were found. All materials can be cast into arbitrary shapes and are suitable for tissue-mimicking phantoms. Due to its lower speed of sound, silicone is generally less suitable than the other presented materials. (note)

  9. Y-source impedance network

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede;

    2014-01-01

    This paper introduces a Y-shaped impedance network for realizing converters that demand a high voltage gain while using a small duty ratio. To achieve that, the proposed network uses a tightly coupled transformer with three windings, whose obtained gain is presently not matched by existing networks...... operated at the same duty ratio. This capability has been demonstrated by mathematical derivation for the proposed network in comparison with other recently reported networks. To further prove the network performance, a single-switch dc-dc converter has been implemented with the network, before testing...... it experimentally. The results obtained clearly verify the network performance in addition to its higher power density that can generally be achieved by coupled magnetics....

  10. ACOUSTICAL STANDARDS NEWS.

    Science.gov (United States)

    Stremmel, Neil; Struck, Christopher J

    2016-07-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27475185

  11. Acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Tribler, Peter Muller

    , the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...... work. Based on first- and second-order perturbation theory, assuming small acoustic amplitudes, we derived the time-dependent governing equations under adiabatic conditions. The adiabatic first- and second-order equations are solved analytically for the acoustic field between two orthogonally......-of-the-art in the field. Furthermore, the analytical solution for the acoustic streaming in rectangular channels with arbitrary large height-to-width ratios is derived. This accommodates the analytical theory of acoustic streaming to applications within acoustofluidics....

  12. Anomalous acoustic reflection on a sliding interface or a shear band

    OpenAIRE

    Caroli, C.; Velicky, B.

    2003-01-01

    We study the reflection of an acoustic plane wave from a steadily sliding planar interface with velocity strengthening friction or a shear band in a confined granular medium. The corresponding acoustic impedance is utterly different from that of the static interface. In particular, the system being open, the energy of an in-plane polarized wave is no longer conserved, the work of the external pulling force being partitioned between frictional dissipation and gain (of either sign) of coherent ...

  13. Bimodal Interaction: The Role of Visual Information in Performing Acoustic Assessment in Architecture

    OpenAIRE

    Defays, Aurore; Safin, Stéphane; Billon, Alexis; Decaestecker, Christine; Warzée, Nadine; Leclercq, Pierre; Nyssen, Anne-Sophie

    2014-01-01

    In the framework of the design process of a multimodal 3D simulation environment to support architects’ acoustic tasks, we wanted to gain a better understanding of how architects are able to discriminate the sounds using audio and/or visual inputs. This study explores how 2D pictures of rooms do support or impede the auditory evaluation of a space (specifically reverberation). The paper describes an experiment evaluating participants rankings of perceived acoustic reverberation when presented...

  14. Padé approximants for the acoustical characteristics of rigid frame porous media

    OpenAIRE

    Chandler-Wilde, S.N.

    1995-01-01

    In this paper it is shown that a number of theoretical models of the acoustical properties of rigid frame porous media, especially those involving ratios of Bessel functions of complex argument, can be accurately approximated and greatly simplified by the use of Padé approximation techniques. In the case of the model of Attenborough [J. Acoust. Soc. Am. 81, 93–102 (1987)] rational approximations are produced for the characteristic impedance, propagation constant, dynamic compressibility, and ...

  15. Possibilities of electrical impedance tomography in gynecology

    Science.gov (United States)

    V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.

    2013-04-01

    The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.

  16. Esophageal Impedance Monitoring: Clinical Pearls and Pitfalls.

    Science.gov (United States)

    Ravi, Karthik; Katzka, David A

    2016-09-01

    The development of intraluminal esophageal impedance monitoring has improved our ability to detect and measure gastroesophageal reflux without dependence on acid content. This ability to detect previously unrecognized weak or nonacid reflux episodes has had important clinical implications in the diagnosis and management of gastroesophageal reflux disease (GERD). In addition, with the ability to assess bolus transit within the esophageal lumen, impedance monitoring has enhanced the recognition and characterization of esophageal motility disorders in patients with nonobstructive dysphagia. The assessment of the intraluminal movement of gas and liquid has also been proven to be of diagnostic value in conditions such as rumination syndrome and excessive belching. Further, alternative applications of impedance monitoring, such as the measurement of mucosal impedance, have provided novel insights into assessing esophageal mucosal integrity changes as a consequence of inflammatory change. Future applications for esophageal impedance monitoring also hold promise in esophageal conditions other than GERD. However, despite all of the clinical benefits afforded by esophageal impedance monitoring, important clinical and technical shortcomings limit its diagnostic value and must be considered when interpreting study results. Overinterpretation of studies or application of impedance monitoring in patients can have deleterious clinical implications. This review will highlight the clinical benefits and limitations of esophageal impedance monitoring and provide clinical pearls and pitfalls associated with this technology. PMID:27325223

  17. Active impedance matching of complex structural systems

    Science.gov (United States)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  18. Impedance of a slotted-pipe kicker

    Energy Technology Data Exchange (ETDEWEB)

    Feng Zhou [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics

    1996-08-01

    This paper introduces the principle of a new slotted kicker simply, which is made by using vacuum pipe itself with proper slits as current conductors, and then, presents a rough estimation of its longitudinal and transverse impedance, respectively. Calculation shows that its impedance is reduced significantly compared to our present air-coil kicker. (author)

  19. Far-infrared embedding impedance measurements

    Science.gov (United States)

    Neikirk, D. P.; Rutledge, D. B.

    1984-01-01

    A technique which allows the measurement of detector embedding impedance has been developed. By using a bismuth microbolometer as a variable resistance load the impedance of one element in a bow-tie antenna array operating at 94 GHz was inferred. The technique is frequency insensitive, and could be used throughout the far-infrared.

  20. Estimating the short-circuit impedance

    DEFF Research Database (Denmark)

    Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Poulsen, Niels Kjølstad

    1997-01-01

    A method for establishing a complex value of the short-circuit impedance from naturally occurring variations in voltage and current is discussed. It is the symmetrical three phase impedance at the fundamental grid frequency there is looked for. The positive sequence components in voltage and curr...

  1. Fractional Order Element Based Impedance Matching

    KAUST Repository

    Radwan, Ahmed Gomaa

    2014-06-24

    Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha.|.noteq.1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.

  2. Identification of irradiated potatoes by impedance measurements

    International Nuclear Information System (INIS)

    Measuring the impedance was found to be a highly reliable and practical technique for identifying irradiated potatoes. Impedance was measured by puncturing a potato tuber with a steel electrode and passing a 3 -- 5 mA alternating current through it. Three parameters were determined: Z0/Z180 (impedance ratio at 5 kHz, 0 to 180 seconds after puncturing), Z sub(50k)/Z sub(0.5k) (impedance ratio at 50 kHz to 0.5 kHz) and Z sub(50k)/Z sub(5k) (impedance ratio at 50 kHz to 5 kHz). Among these, parameter Z sub(50k)/Z sub(5k) was the most favourable index. The technique allowed not only differentiation between unirradiated and irradiated potatoes but an estimation of the irradiation dose for up to six months after irradiation, independent of the potato storage condition. (author)

  3. Surface impedance design with ground corrugation for mitigation of large-calibre gun blast noise

    Science.gov (United States)

    Tong, Mei Song; Chew, Weng Cho; White, Michael J.

    The surface impedance design approach is proposed for mitigating large-calibre gun blast noise. Surrounding the blast noise, we employ a group of concentric trenches with critical depths to dampen the propagation of the acoustic wave. These trenches behave like quarter-wavelength resonators and produce acoustic soft surfaces at their openings. The sound pressure is then mitigated over these soft surfaces by destructive interference and the wave attenuates rapidly along the ground surface. To evaluate the overall acoustic performance of such a design, we develop an efficient numerical solver by treating the geometry as a body of revolution (BOR). The symmetry of the structure in the revolution direction allows the 3D boundary integral equation (BIE) for acoustic wave scattering to be reduced to a 2D integral equation by the use of Fourier series expansions. Numerical experiments show that this model can effectively suppress the acoustic wave propagation horizontally and the reduction can reach about 15 dB for large-calibre gun noise with very low-frequency components.

  4. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  5. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  6. Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.

    Science.gov (United States)

    Qian, Y; Harris, N R

    2014-02-01

    This work describes a new approach to impedance matching for ultrasonic transducers. A single matching layer with high acoustic impedance of 16 MRayls is demonstrated to show a bandwidth of around 70%, compared with conventional single matching layer designs of around 50%. Although as a consequence of this improvement in bandwidth, there is a loss in sensitivity, this is found to be similar to an equivalent double matching layer design. Designs are calculated by using the KLM model and are then verified by FEA simulation, with very good agreement Considering the fabrication difficulties encountered in creating a high-frequency double matched design due to the requirement for materials with specific acoustic impedances, the need to accurately control the thickness of layers, and the relatively narrow bandwidths available for conventional single matched designs, the new approach shows advantages in that alternative (and perhaps more practical) materials become available, and offers a bandwidth close to that of a double layer design with the simplicity of a single layer design. The disadvantage is a trade-off in sensitivity. A typical example of a piezoceramic transducer matched to water can give a 70% fractional bandwidth (comparable to an ideal double matched design of 72%) with a 3dB penalty in insertion loss.

  7. Rotor damage detection by using piezoelectric impedance

    Science.gov (United States)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  8. Measurements of electrical impedance of biomedical objects.

    Science.gov (United States)

    Frączek, Marcin; Kręcicki, Tomasz; Moron, Zbigniew; Krzywaźnia, Adam; Ociepka, Janusz; Rucki, Zbigniew; Szczepanik, Zdzisław

    2016-01-01

    Some basic problems related to measurements of electrical impedance of biological objects (bioimpedance) have been presented in this paper. Particularly problems arising from impedance occurring at the sensor-tissue interface (interfacial impedances) in contact measuring methods have been discussed. The influence of finite values of impedances of the current source and voltage measuring device has also been taken into consideration. A model of the impedance sensor for the four-electrode measurement method containing the interfacial, source and measuring device impedances has been given and its frequency characteristics obtained by the computer simulation have been presented. The influence of these impedances on the shape of frequency characteristic of the sensor model has been discussed. Measurements of bioimpedance of healthy and anomalous soft tissues have been described. Some experimental results, particularly the frequency characteristics of bioimpedance, have been shown. The presented results of measurement show that bioimpedance can be a valuable source of information about the tissues, so measurement of bioimpedance can be a useful supplement to other medical diagnostic methods. PMID:27151250

  9. Tracking of electrochemical impedance of batteries

    Science.gov (United States)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  10. Linkage between acoustic parameters and seabed sediment properties in the south-western Baltic Sea

    Science.gov (United States)

    Endler, Michael; Endler, Rudolf; Bobertz, Bernd; Leipe, Thomas; Arz, Helge W.

    2015-04-01

    Acoustic profiling methods are widely used to provide a rapid view into geological structures. For the interpretation of acoustic profiling results (single- and multi-beam), reliable geo-acoustic models are needed. Suitable geo-acoustic models covering a wide range of sediment types do not exist to date for the Baltic Sea. Based on surface sediment datasets, geo-acoustic models have been set up for the prediction of acoustical parameters derived from sedimentological data for south-western Baltic Sea surface sediments. Empirical relationships were created to predict key in situ parameters (p-wave velocity, wet bulk density) from sedimentological core data, notably grain density and water content. The Gassmann-Hamilton equations were used to set up a more generic physically based model. For the first time semi-empirical equations for the calculation of the elastic frame modulus and the solid sediment particle modulus were established by an iterative Gassmann-Hamilton fitting procedure. The resulting models have a remarkably good performance with, for example, a calculated sound velocity accuracy of about 17-32 m s-1 depending on model input data. The acoustic impedance of seafloor sediments can be estimated from single-beam echosounding if the contribution of seafloor reflectivity is extracted from the total acoustic signal. The data reveal a strong linkage between acoustic impedance and selected sediment properties (e.g. grain size, water content). This underlines the potential for effective mapping of seafloor sediment properties (e.g. habitat mapping). Furthermore, these geo-acoustic models can be used by marine geologists for a precise linkage between sediment facies identified in longer cores and corresponding acoustic facies recorded by high-resolution seismic profiling in future work.

  11. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  12. Low frequency acoustic microscope

    Science.gov (United States)

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  13. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  14. Localized acoustic surface modes

    Science.gov (United States)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  15. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  16. SPATIAL VARIABILITY OF PEDOZEMS MECHANICAL IMPEDANCE

    Directory of Open Access Journals (Sweden)

    Zhukov A.V.

    2013-04-01

    Full Text Available We studied the spatial variability of pedozem mechanical impedance in ResearchRemediation Center of the Dnipropetrovsk State Agrarian University in Ordzhonikidze. Thestatistical distribution of the soil mechanical impedance within the studied area is characterized by deviation from the normal law in 0–10 and 30–50 cm layers from the surface. 2D and 3D modeling shows the structural design of the soil as locations of high mechanical impedance which found in the soils with less hardness.

  17. Universal impedance fluctuations in wave chaotic systems.

    Science.gov (United States)

    Hemmady, Sameer; Zheng, Xing; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M

    2005-01-14

    We experimentally investigate theoretical predictions of universal impedance fluctuations in wave chaotic systems using a microwave analog of a quantum chaotic infinite square well potential. We emphasize the use of the radiation impedance to remove the nonuniversal effects of the particular coupling between the outside world and the scatterer. Specific predictions that we test include the probability density functions (PDFs) of the real and imaginary parts of the universal impedance, the equality of the variances of these PDFs, and the dependence of these PDFs on a single loss parameter.

  18. Impedance Spectroscopy of Dielectrics and Electronic Conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross

    2013-01-01

    Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...

  19. Design of sandwich acoustic window for sonar domes

    Institute of Scientific and Technical Information of China (English)

    YU Mengsa; LI Dongsheng; GONG Li; XU Jian

    2005-01-01

    Aimed at the low noise design of sonar dome in ships, a method has been presented for calculating the sonar self noise of a simplified sonar dome consisting of sandwich acoustic window and parallel acoustic cavity, which is excited by stationary random pressure fluctuation of turbulence boundary layer, using temporal and spatial double Fourier transform and wavenumber-frequency spectrum analysis. After numerically analyzing the influence of geometrical and physical parameters of acoustic window on the sonar self noise, the design method and reasonable parameters for sandwich acoustic window are proposed. The results show that the property of low noise induced by acoustic window of sandwich is dominated by the cut-off effect of longitudinal wave and transverse wave propagating in the visco-elastic layer of sandwich as well as the mismatch effect of impedance. If the thickness, density, Young's modulus and damping factor of plates and visco-elastic layer as well as the sound speed of longitudinal wave and transverse wave in the visco-elastic layer are selected reasonably, the maximum noise reduction of sandwich acoustic window is 6.5 dB greater than that of a single glass fiber reinforced plastic plate.

  20. What Is an Acoustic Neuroma

    Science.gov (United States)

    ... org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important Points ... Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, ...

  1. Acoustic carpet cloak based on an ultrathin metasurface

    Science.gov (United States)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-07-01

    An acoustic metasurface carpet cloak based on membrane-capped cavities is proposed and investigated numerically. This design has been chosen for allowing ultrathin geometries, although adapted to airborne sound frequencies in the range of 1 kHz (λ ≈30 cm), surpassing the designs reported in the literature in terms of thinness. A formulation of generalized Snell's laws is first proposed, mapping the directions of the incident and reflected waves to the metasurface phase function. This relation is then applied to achieve a prescribed wavefront reflection direction, for a given incident direction, by controlling the acoustic impedance grading along the metasurface. The carpet cloak performance of the proposed acoustic metasurface is then assessed on a triangular bump obstacle, generally considered as a baseline configuration in the literature.

  2. Acoustic Rhinometry (AR): An alternative method to image nasal airway geometry

    DEFF Research Database (Denmark)

    Straszek, Sune

    2007-01-01

    In acoustic rhinometry (AR) a soud pulse enters the nasal cavity, where it is reflected due to changes in the local impedances. From the incident and reflected sound signal we use the Ware-Aki algorithm to calculate an area-distance relationship. The method has been validated in nasal cavity mode...

  3. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might be explai......Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...... with surface scattering is presented. Each of the two scattering effects is modeled as frequency dependent functions....

  4. An Overview of Acoustic Telemetry

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, D.S.

    1992-03-24

    Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The oil and gas industry has led in most of the attempts to develop this type of telemetry system; however, very substantial efforts have also been made through government sponsored work in the geothermal industry. None of these previous attempts have lead to a commercial telemetry system. Conceptually, the problem looks easy. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quite low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal Waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested

  5. New Regularization Method in Electrical Impedance Tomography

    Institute of Scientific and Technical Information of China (English)

    侯卫东; 莫玉龙

    2002-01-01

    Image reconstruction in elecrical impedance tomography(EIT)is a highly ill-posed inverse problem,Regularization techniques must be used in order to solve the problem,In this paper,a new regularization method based on the spatial filtering theory is proposed.The new regularized reconstruction for EIT is independent of the estimation of impedance distribution,so it can be implemented more easily than the maxiumum a posteriori(MAP) method.The regularization level in our proposed method varies spatially so as to be suited to the correlation character of the object's impedance distribution.We implemented our regularization method with two dimensional computer simulations.The experimental results indicate that the quality of the reconstructed impedance images with the descibed regularization method based on spatial filtering theory is better than that with Tikhonov method.

  6. Impedance and collective effects in the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gareyte, J. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-08-01

    After a review of the main LHC parameters, and a brief description of the RF and vacuum systems, the coupling impedances of the main machine elements are given, as well as the resulting thresholds for instabilities. (author)

  7. Impedance feedback control for scanning electrochemical microscopy.

    Science.gov (United States)

    Alpuche-Aviles, M A; Wipf, D O

    2001-10-15

    A new constant-distance imaging method based on the relationship between tip impedance and tip-substrate separation has been developed for the scanning electrochemical microscope. The tip impedance is monitored by application of a high-frequency ac voltage bias between the tip and auxiliary electrode. The high-frequency ac current is easily separated from the dc-level faradaic electrochemistry with a simple RC filter, which allows impedance measurements during feedback or generation/collection experiments. By employing a piezo-based feedback controller, we are able to maintain the impedance at a constant value and, thus, maintain a constant tip-substrate separation. Application of the method to feedback and generation/collection experiments with tip electrodes as small as 2 microm is presented. PMID:11681463

  8. Interpretation of faradaic impedance for Corrosion monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, M.; Taya, A.; Imamura, M.; Saruwatari, R.; Watanabe, K. [Science University of Tokyo, Chiba (Japan)

    2004-02-15

    A polarization resistance is generally used to estimate the corrosion rate in the corrosion monitoring by an electrochemical impedance method. When the Faradaic impedance has a time constant due to the reaction intermediate, the electrochemical impedance describes more than one loop on the complex plane. For example, the electrochemical impedance of iron in acidic solution shows capacitive and inductive loops on the complex plane. In this case, the charge transfer resistance and the polarization resistance are determined at middle and low frequency ranges, respectively. Which should be selected for corrosion resistance in corrosion monitoring, the charge transfer resistance or the polarization resistance? In the present paper, the above-mentioned question is examined theoretically and experimentally

  9. Electrochemical Impedance Studies of SOFC Cathodes

    DEFF Research Database (Denmark)

    Hjelm, Johan; Søgaard, Martin; Wandel, Marie;

    2007-01-01

    Mixed ion- and electron-conducting composite electrodes consisting of doped ceria and perovskite have been studied by electrochemical impedance spectroscopy (EIS) at different temperatures and oxygen partial pressures. This paper aims to describe the different contributions to the polarisation...

  10. Thermal Impedance of Rectangular Microwave Oven Linings

    Institute of Scientific and Technical Information of China (English)

    SHIShang-zhao; XUFu-qiu; 等

    1996-01-01

    Amodel was preseted for calcultaing the thermal impedance of the insulation and refractory linings of rectangular microwave ovens,of which the oven cavity's dimensions are relatively small,while the linings re relatively thick.

  11. Modeling degradation in SOEC impedance spectra

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Hauch, Anne; Knibbe, Ruth;

    2013-01-01

    Solid oxide cell (SOC) performance is limited by various processes. One way to investigate these processes is by electrochemical impedance spectroscopy. In order to quantify and characterize the processes, an equivalent circuit can be used to model the SOC impedance spectra (IS). Unfortunately......, the optimal equivalent circuit is often unknown and to complicate matters further, several processes contribute to the SOC impedance - making detailed process characterization difficult. In this work we analyze and model a series of IS measured during steam electrolysis operation of an SOC. During testing......, degradation is only observed in the Ni/YSZ electrode and not in the electrolyte or the LSM/YSZ electrode. A batch fit of the differences between the IS shows that a modified Gerischer element provides a better fit to the Ni/YSZ electrode impedance than the frequently used RQ element - albeit neither...

  12. Analysis of impedance measurements of a suspension of microcapsules using a variable length impedance measurement cell

    Directory of Open Access Journals (Sweden)

    Dejan Krizaj

    2012-10-01

    Full Text Available Electrical impedance measurements of the suspensions have to take into account the double layer impedance that is due to a very thin charged layer formed at the electrode-electrolite interface. A dedicated measuring cell that enables variation of the distance between the electrodes was developed for investigation of electrical properties of suspensions using two electrode impedance measurements. By varying the distance between the electrodes it is possible to separate the double layer and the suspension impedance from the measured data. From measured and extracted impedances electrical lumped models have been developed. The error of non inclusion of the double layer impedance has been analyzed. The error depends on the frequency of the measurements as well as on the distance between the electrodes.

  13. CSR Impedance for Non-Ultrarelativistic Beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui [Jefferson Lab., Newport News, VA (United States); Tsai, Cheng Y. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jefferson Lab., Newport News, VA (United States)

    2015-09-01

    For the analysis of the coherent synchrotron radiation (CSR)-induced microbunching gain in the low energy regime, such as when a high-brightness electron beam is transported through a low-energy merger in an energy-recovery linac (ERL) design, it is necessary to extend the CSR impedance expression in the ultrarelativistic limit to the non-ultrarelativistic regime. This paper presents our analysis of CSR impedance for general beam energies.

  14. Acoustic pollution in hospital environments

    Science.gov (United States)

    Olivera, J. M.; Rocha, L. A.; Rotger, V. I.; Herrera, M. C.

    2011-12-01

    There are many different services within a hospital. This means different types of noise which can be considered as acoustic pollution. Knowing that preterm infants exposed to high amounts of noise in the NICU are at a much higher risk because of their neurologic immaturity and physiologic instability, that excessive levels of noise also affect the persons and it can also impede some studies on patients, it was proposed to evaluate the Sound Pressure Level in some services of the Instituto de Maternidad, Tucumán, Argentina. There were evaluated the Level III NICU, the laundry service, a physical space destined for a service of evoked potential and a neonatal incubator under working conditions. The measurements were performed with a type II sonometer (CENTER 322) and it was also used an incubator analyzer (FLUKE INCU) for the incubator. The average values obtained were of 63.6 dBA for the NICU, 82.5dBA for the laundry room, 52.7 dBA for the evoked potential room and 62.8 dBA in the inside of the incubator under 64 dBA in the outside. The reports were documented in compliance with the appropriate standards.

  15. Acoustic pollution in hospital environments

    International Nuclear Information System (INIS)

    There are many different services within a hospital. This means different types of noise which can be considered as acoustic pollution. Knowing that preterm infants exposed to high amounts of noise in the NICU are at a much higher risk because of their neurologic immaturity and physiologic instability, that excessive levels of noise also affect the persons and it can also impede some studies on patients, it was proposed to evaluate the Sound Pressure Level in some services of the Instituto de Maternidad, Tucumán, Argentina. There were evaluated the Level III NICU, the laundry service, a physical space destined for a service of evoked potential and a neonatal incubator under working conditions. The measurements were performed with a type II sonometer (CENTER 322) and it was also used an incubator analyzer (FLUKE INCU) for the incubator. The average values obtained were of 63.6 dBA for the NICU, 82.5dBA for the laundry room, 52.7 dBA for the evoked potential room and 62.8 dBA in the inside of the incubator under 64 dBA in the outside. The reports were documented in compliance with the appropriate standards.

  16. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  17. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  18. Ocean acoustic hurricane classification.

    Science.gov (United States)

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  19. Cochlear bionic acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  20. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  1. A study on calculation method for mechanical impedance of air spring

    Science.gov (United States)

    Changgeng, SHUAI; Penghui, LI; Rustighi, Emiliano

    2016-09-01

    This paper proposes an approximate analytic method of obtaining the mechanical impedance of air spring. The sound pressure distribution in cylindrical air spring is calculated based on the linear air wave theory. The influences of different boundary conditions on the acoustic pressure field distribution in cylindrical air spring are analysed. A 1-order ordinary differential matrix equation for the state vector of revolutionary shells under internal pressure is derived based on the non-moment theory of elastic thin shell. Referring to the transfer matrix method, a kind of expanded homogeneous capacity high precision integration method is introduced to solve the non-homogeneous matrix differential equation. Combined the solved stress field of shell with the calculated sound pressure field in air spring under the displacement harmonic excitation, the approximate analytical expression of the input and transfer mechanical impedance for the air spring can be achieved. The numerical simulation with the Comsol Multiphysics software verifies the correctness of theoretical analysis result.

  2. Analysis of formulas used in coupling impedance coaxial-wire measurements for distributed impedances

    International Nuclear Information System (INIS)

    In this paper the authors study the validity of coupling impedance bench measurements for distributed impedances, comparing the commonly used log formula to the result obtained applying a modified version of Bethe's theory of diffraction to a long slot in a coaxial beam pipe. The equations found provide a quantitative expression for the influence of the wire thickness used in the measurement of the real and imaginary part of the longitudinal impedance. The precision achievable in an actual measurement is therefore discussed. The method presented has also been applied in the presence of lumped impedances

  3. Propellant injection strategy for suppressing acoustic combustion instability

    Science.gov (United States)

    Diao, Qina

    Shear-coaxial injector elements are often used in liquid-propellant-rocket thrust chambers, where combustion instabilities remain a significant problem. A conventional solution to the combustion instability problem relies on passive control techniques that use empirically-developed hardware such as acoustic baffles and tuned cavities. In addition to adding weight and decreasing engine performance, these devices are designed using trial-and-error methods, which do not provide the capability to predict the overall system stability characteristics in advance. In this thesis, two novel control strategies that are based on propellant fluid dynamics were investigated for mitigating acoustic instability involving shear-coaxial injector elements. The new control strategies would use a set of controlled injectors allowing local adjustment of propellant flow patterns for each operating condition, particularly when instability could become a problem. One strategy relies on reducing the oxidizer-fuel density gradient by blending heavier methane with the main fuel, hydrogen. Another strategy utilizes modifying the equivalence ratio to affect the acoustic impedance through mixing and reaction rate changes. The potential effectiveness of these strategies was assessed by conducting unit-physics experiments. Two different model combustors, one simulating a single-element injector test and the other a double-element injector test, were designed and tested for flame-acoustic interaction. For these experiments, the Reynolds number of the central oxygen jet was kept between 4700 and 5500 making the injector flames sufficiently turbulent. A compression driver, mounted on one side of the combustor wall, provided controlled acoustic excitation to the injector flames, simulating the initial phase of flame-acoustic interaction. Acoustic excitation was applied either as band-limited white noise forcing between 100 Hz and 5000 Hz or as single-frequency, fixed-amplitude forcing at 1150 Hz

  4. Study on resonance frequency distribution of high-overtone bulk acoustic resonators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; WANG Zuoqing; ZHANG Shuyi

    2005-01-01

    Based on the method of characterizing piezo-films by the resonance frequency distributions, the factors influencing the resonance frequency distribution of a High-overtone Bulk Acoustic Resonator (HBAR) consisting of a piezoelectric thin film with twoelectrodes and a substrate are studied. Some HBARs are simulated. The results manifest that changing the acoustic impedance ratio of the substrate to piezo-film the distribution of the space of the parallel resonance frequency and the effective electromechanical coupling factor are changed. When the fundamental mode of the piezo-film is at high frequency, changing the acoustic impedance ratio of the electrode to piezo-film and the thickness of the electrodes make the resonance frequency distribution of HBARs change. These results manifest that the HBARs can be resonant at specified frequencies by means of adjusting the factors affecting the resonance frequency distribution.

  5. Experimental study on the detection of free fluids and gases in waste packages by acoustic methods

    International Nuclear Information System (INIS)

    The objective of the project was to evaluate the potential and the limits of various nondestructive methods for testing the contents of 200-litre drums filled with radioactive waste. The following test problems were to be studied: 1. Detection of free water on the surface of the waste matrix (concrete); 2. Determination of the waste matrix level; 3. Determination of internal gas pressure. The following methods were found to be suitable: For Test problem 1: Measurement of Lamb wave attenuation, Acoustic impedance measurement (AIM) and Analysis of swash sound; For Test problem 2: Acoustic impedance measurement (AIM) and Measurement of Lamb wave attenuation; For Test problem 3: A method of pressure compensation and Analysis of cover resonances after striking the cover. It was not possible, however, to detect the concrete level by localisation of friction points using acoustic emission methods. 53 figs

  6. Physico-chemical properties of binary mixtures of aliphatic and aromatic solvents at 313 K on acoustical data

    Science.gov (United States)

    Dahire, S. L.; Morey, Y. C.; Agrawal, P. S.

    2015-12-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) of binary mixtures of aliphatic solvents like dimethylformamide (DMF) and dimethylsulfoxide (DMSO) with aromatic solvents viz. chlorobenzene (CB), bromobenzene (BB), and nitrobenzene (NB) have been determined at 313 K. These parameters were used to calculate the adiabatic compressibility (β), intermolecular free length ( L f), molar volume ( V m), and acoustic impedance ( Z). From the experimental data excess molar volume ( V m E ), excess intermolecular free length ( L f E )), excess adiabatic compressibility (βE), and excess acoustic impedance ( Z E) have been computed. The excess values were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations (σ).

  7. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  8. Acoustic sniper localization system

    Science.gov (United States)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  9. Electromagnetic Wave Scattering By the Coated Impedance Cylinder

    Directory of Open Access Journals (Sweden)

    V.I. Vyunnik

    2010-01-01

    Full Text Available In this work the boundary conditions for the impedance circular cylinder coated by a low contrast dielectric thin layer are derived. Expression for the reduced impedance of the cylinder is obtained. Conditions and applicability limits of the proposed approach are defined. Influence of the coating impedance on the reduced impedance of the cylinder is investigated.

  10. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    OpenAIRE

    Schmidt, Anne Marie Due; KIRKEGAARD, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to inve...

  11. Underwater Applications of Acoustical Holography

    Directory of Open Access Journals (Sweden)

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  12. VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. I. Bankov

    2016-01-01

    Full Text Available Objective. Investigation the opportunity for measurement of biological tissue impedance to visualize its parameters.Materials and methods. Studies were undertook on the experimental facility, consists of registrating measuring cell, constructed from flat inductors system, formed in oscillatory circuit, herewith investigated biological tissue is the part of this oscillatory circuit. An excitation of oscillatory circuit fulfilled by means of exciter inductor which forms impulse complex modulated electromagnetic field (ICM EMF. The measurement process and visualizations provided by set of certificated instruments: a digital oscillograph AKTAKOM ADS-2221MV, a digital generator АКТАКОМ AWG-4150 (both with software and a gauge RLC E7-22. Comparative dynamic studies of fixed volume and weight pig’s blood, adipose tissue, muscular tissue impedance were conducted by contact versus contactless methods. Contactless method in contrast to contact method gives opportunity to obtain the real morphological visualization of biological tissue irrespective of their nature.Results. Comparison of contact and contactless methods of impedance measurement shows that the inductance to capacitance ratio X(L / X(C was equal: 17 – for muscular tissue, 4 – for blood, 1 – for adipose tissue. It demonstrates the technical correspondence of both impedance registration methods. If propose the base relevance of X (L and X (C parameters for biological tissue impedance so contactless measurement method for sure shows insulating properties of adipose tissue and high conductivity for blood and muscular tissue in fixed volume-weight parameters. Registration of biological tissue impedance complex parameters by contactless method with the help of induced ICM EMF in fixed volume of biological tissue uncovers the most important informative volumes to characterize morphofunctional condition of biological tissue namely X (L / X (C.Conclusion. Contactless method of biological

  13. Resonant impedance of bellows above cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky, S

    1980-01-01

    The perturbation method of Chatard-Moulin and Papiernik is used to calculate the longitudinal and transverse impedances, Z(..omega..) and Z/sub perpendicular/(..omega..), of a bellows. The bellows shape is defined by its radius a(z) = a (1 + epsilons(z)), where a is the mean radius, epsilon a small parameter, and s(z) describes the convolution of the bellows. A finite wall conductivity is considered and the resonant contribution to the impedance above the cutoff frequency of the unperturbed chamber is determined, obtaining analytic approximations to the resonant frequencies, quality factors, and shunt impedances. The relation Z/sub perpendicular/(..omega..) = (2c/a/sup 2/)Z(..omega..)/..omega.., of course, does not hold as an identity, but it is found to be a useful relation for the shunt impedances, holding exactly for one family of transverse modes and providing an upper bound on the shunt impedances of the second set of transverse modes.

  14. KAJIAN SIFAT AKUSTIK BUAH MANGGIS(Gracinia mangostana L DENGAN MENGGUNAKAN GELOMBANG ULTRASONIK [Acoustic Study Of Mangosteene (Gracinia mangostana L By Using Ultrasonic Wave

    Directory of Open Access Journals (Sweden)

    Jajang juansah 1

    2007-06-01

    Full Text Available The wave used to study the acoustic properties of mangosteen is ultrasonic wave. Ultrasonic wave with frequency of 50 KHz was used to determine acoustic properties of mangosteen. The main wave properties were the attenuation, impedance of acoustic and acoustic velocity at mangosteen. Others have been evaluated were the correlation of attenuation and acoustic velocity at parts of mangosteen with its intact mangosteen. The acoustic parameters were related to the physic-chemical parameters of the fruit (TDS and hardness. This relationship was used to study mangosteen properties and quality. Because of mangosteen structure and it’s pores (saw with low density, acoustic wave in manggosteen have low amplitude signal. It was saw with spectrum and FFT signal mangosteen and reference medium / air (1.4:2.3.The fruit with increasing maturity mount (from color index 2 to 5 will experience hardness degradation, improvement of TDS, which are related to degradation of acoustic attenuation, improvement of acoustic speed and impedance. Multiple regression method was used to get empiric equation of wave in mixture of flesh-seed, husk and mangosteen (parts of mangosteen with its intact mangosteen. That saw in equation 1 and 2. the velocity and attenuation of ultrasonic wave in mixture of flesh – seed have higher effect equation on mangosteen than husk. It means that acoustic properties of mixture of flesh – seed has more contribution than husk.

  15. Investigation on nonlinear thermo-acoustic characteristics of Rijke tube

    Institute of Scientific and Technical Information of China (English)

    DENG Kai; WU Yunfei; LI Hua; FANG Deming; ZHONG Yingjie

    2011-01-01

    Based on the energy conservation relationship, nonlinear thermo-acoustic effects of Rijke tube including instability range, saturation processes and higher harmonics modes were investigated. With coupling between the external flow and the inner space of a Rijke tube, the acoustic characteristics of self-excited oscillation were simulated. The experimental study was also carried out and the results were compared with those from simulation. The nonlinear factors which distort the acoustic waveform distortion were analyzed. From the results, it is seen that varying size of the nozzle outlet changes the acoustic impedance in the boundary, and leads to reduction of the nonlinear effects. The results show that the modes of self-excited oscillation could be influenced by the position of higher harmonics. In the large amplitude oscillation, the distortion of pressure wave within Rijke tube could be induced by the acoustic losses due to vortices on nozzle. It is found that the waveform distortion could be avoided by the shrinkage of nozzle.

  16. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  17. Acoustic integrated extinction

    CERN Document Server

    Norris, Andrew N

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross-section as a function of wavelength. Sohl et al. [1] derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  18. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  19. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  20. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  1. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... treatment Summary Types Of Post-treatment Issues Resources Medical Resources Considerations When Selecting a Healthcare Professional Healthcare ... ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma ...

  2. Acoustics lecturing in Mexico

    Science.gov (United States)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  3. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  4. Acoustic sensors in the helmet detect voice and physiology

    Science.gov (United States)

    Scanlon, Michael V.

    2003-09-01

    The Army Research Laboratory has developed body-contacting acoustic sensors that detect diverse physiological sounds such as heartbeats and breaths, high quality speech, and activity. These sensors use an acoustic impedance-matching gel contained in a soft, compliant pad to enhance the body borne sounds, yet significantly repel airborne noises due to an acoustic impedance mismatch. The signals from such a sensor can be used as a microphone with embedded physiology, or a dedicated digital signal processor can process packetized data to separate physiological parameters from voice, and log parameter trends for performance surveillance. Acoustic sensors were placed inside soldier helmets to monitor voice, physiology, activity, and situational awareness clues such as bullet shockwaves from sniper activity and explosions. The sensors were also incorporated into firefighter breathing masks, neck and wrist straps, and other protective equipment. Heart rate, breath rate, blood pressure, voice and activity can be derived from these sensors (reports at www.arl.army.mil/acoustics). Having numerous sensors at various locations provides a means for array processing to reduce motion artifacts, calculate pulse transit time for passive blood pressure measurement, and the origin of blunt/penetrating traumas such as ballistic wounding. These types of sensors give us the ability to monitor soldiers and civilian emergency first-responders in demanding environments, and provide vital signs information to assess their health status and how that person is interacting with the environment and mission at hand. The Objective Force Warrior, Scorpion, Land Warrior, Warrior Medic, and other military and civilian programs can potentially benefit from these sensors.

  5. Micro- and Macro-Fluid Dynamics and Acoustics of Resonant Liners

    Science.gov (United States)

    Tam, Christopher K. W.; Watson, Willie (Technical Monitor)

    2002-01-01

    The objectives of this project are to perform direct numerical simulation of the micro-fluid and acoustic fields of a resonant acoustic liner and to investigate the physical processes by which incident sound waves are damped by the acoustic liner. We would like to report that our research work and results have fulfilled both objectives of the grant. The following is a summary of the important accomplishments: (1) Two dimensional direct numerical simulation of the flow and acoustic field around the cavity of resonant liner were successfully carried out; (2) The simulations of (1) were extended to include a laminar grazing flow; (3) The numerical simulations provided strong evidence that there are two principal mechanisms by which a resonant liner damps out an incident acoustic wave; (4) A validation test was performed by comparing the computed dissipation coefficients (not impedance) with impedance tube measurements done at GTRI; and (5) Some resources of this grant were used to support the development of new CAA methods. (Our work on numerical simulation of acoustic liners has benefited by the availability of these improved methods).

  6. Wavelet analysis of the impedance cardiogram waveforms

    Science.gov (United States)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  7. Ferrofluid Microwave Devices With Magnetically Controlled Impedances

    Science.gov (United States)

    Fannin, P. C.; Stefu, N.; Marin, C. N.; Malaescu, I.; Totoreanu, R.

    2010-08-01

    Ferrofluid filled transmission lines are microwave electronic devices. The complex dielectric permittivity and the complex magnetic permeability of a kerosene based ferrofluid with magnetite nanoparticles, in the frequency range (0.5-6) GHz were measured, for several values of polarising field, H. Afterwards, the input impedance of a short-circuited transmission line filled with this ferrofluid was computed using the equation Z = Zc tanh(γl). Here Zc and l are the characteristic impedance and the length of the coaxial line and γ is the propagation constant, depending on the dielectric and magnetic parameters of the material within the line. It is demonstrated how the impedance displays a frequency and polarizing field dependence, which has application in the design of magnetically controlled microwave devices.

  8. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  9. Acoustic surface cavitation

    OpenAIRE

    Zijlstra, Aaldert Geert

    2011-01-01

    Merely the presence of compressible entities, known as bubbles, greatly enriches the physical phenomena encountered when introducing ultrasound in a liquid. Mediated by the response of these bubbles, the otherwise diffuse and relatively low energy density of the acoustic field can induce strong, localized liquid motion, high internal temperatures and pressures as well as secondary acoustic emissions. In turn, these effects give rise to considerable stresses exerted on nearby objects and molec...

  10. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    Science.gov (United States)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  11. Assessing the accuracy of auralizations computed using a hybrid geometrical-acoustics and wave-acoustics method

    Science.gov (United States)

    Summers, Jason E.; Takahashi, Kengo; Shimizu, Yasushi; Yamakawa, Takashi

    2001-05-01

    When based on geometrical acoustics, computational models used for auralization of auditorium sound fields are physically inaccurate at low frequencies. To increase accuracy while keeping computation tractable, hybrid methods using computational wave acoustics at low frequencies have been proposed and implemented in small enclosures such as simplified models of car cabins [Granier et al., J. Audio Eng. Soc. 44, 835-849 (1996)]. The present work extends such an approach to an actual 2400-m3 auditorium using the boundary-element method for frequencies below 100 Hz. The effect of including wave-acoustics at low frequencies is assessed by comparing the predictions of the hybrid model with those of the geometrical-acoustics model and comparing both with measurements. Conventional room-acoustical metrics are used together with new methods based on two-dimensional distance measures applied to time-frequency representations of impulse responses. Despite in situ measurements of boundary impedance, uncertainties in input parameters limit the accuracy of the computed results at low frequencies. However, aural perception ultimately defines the required accuracy of computational models. An algorithmic method for making such evaluations is proposed based on correlating listening-test results with distance measures between time-frequency representations derived from auditory models of the ear-brain system. Preliminary results are presented.

  12. Pumping slots: Coupling impedance calculations and estimates

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.

    1993-08-01

    Coupling impedances of small pumping holes in vacuum-chamber walls have been calculated at low frequencies, i.e., for wavelengths large compared to a typical hole size, in terms of electric and magnetic polarizabilities of the hole. The polarizabilities can be found by solving and electro- or magnetostatic problem and are known analytically for the case of the elliptic shape of the hole in a thin wall. The present paper studies the case of pumping slots. Using results of numerical calculations and analytical approximations of polarizabilities, we give formulae for practically important estimates of slot contribution to low-frequency coupling impedances.

  13. On coupling impedances of pumping holes

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.

    1993-04-01

    Coupling impedances of a single small hole in vacuum-chamber walls have been calculated at low frequencies. To generalize these results for higher frequencies and/or larger holes one needs to solve coupled integral equations for the effective currents. These equations are solved for two specific hole shapes. The effects of many holes at high frequencies where the impedances are not additive are studied using a perturbation-theory method. The periodic versus random distributions of the pumping holes in the Superconducting Super Collider liner are compared.

  14. Numerical modelling errors in electrical impedance tomography.

    Science.gov (United States)

    Dehghani, Hamid; Soleimani, Manuchehr

    2007-07-01

    Electrical impedance tomography (EIT) is a non-invasive technique that aims to reconstruct images of internal impedance values of a volume of interest, based on measurements taken on the external boundary. Since most reconstruction algorithms rely on model-based approximations, it is important to ensure numerical accuracy for the model being used. This work demonstrates and highlights the importance of accurate modelling in terms of model discretization (meshing) and shows that although the predicted boundary data from a forward model may be within an accepted error, the calculated internal field, which is often used for image reconstruction, may contain errors, based on the mesh quality that will result in image artefacts.

  15. Electrical impedance measurement of irradiated potatoes

    International Nuclear Information System (INIS)

    Several chemical, biochemical and histological methods have been suggested for the identification of irradiated potatoes but these methods are either time consuming or lack the reliability and precision to be of much practical use. Measurement of electrical conductivity or impedance appears to be a simple and reliable technique. We have examined the suitability of electrical impedance method for potatoes grown in our country after exposing to a sprout inhibiting dose of 0.1 kGy. The results of this study are described. 10 refs., 3 figs., 2 tabs

  16. Thorax mapping for localised lung impedance change using focused impedance measurement (FIM: A pilot study

    Directory of Open Access Journals (Sweden)

    Humayra Ferdous

    2013-12-01

    Full Text Available Focused Impedance Measurement (FIM is a technique where impedance can be measured with the optimum level of localization without much increase in complexity of measuring instrument. The electrodes are applied on the skin surface but the organs inside also contributes to the measurement, as the body is a volume conductor. In a healthy and disease free lung region, the air enters at breathe-in increases the impedance of the lung and impedance reduces during breathe-out. In contrast, for a diseased lung, where part of the lungs is filled with water or some fluid, air will not enter into this zone reducing impedance change between inspiration and expiration. With this idea, the current work had been executed to have general view of localised impedance change throughout thorax using 6-electrode FIM. This generated a matrix mapping from both the front and from the back of the thorax, which  afterwards provided that how impedance change due to ventilation varies from frontal plane to back plane of human bodies.

  17. Locating Impedance Change in Electrical Impedance Tomography Based on Multilevel BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    彭源; 莫玉龙

    2003-01-01

    Electrical impedance tomography (EIT) is a new computer tomography technology, which reconstructs an impedance (resistivity, conductivity) distribution, or change of impedance, by making voltage and current measurements on the object's periphery.Image reconstruction in EIT is an ill-posed, non-linear inverse problem. A method for finding the place of impedance change in EIT is proposed in this paper, in which a multilevel BP neural network (MBPNN) is used to express the non-linear relation between theimpedance change inside the object and the voltage change measured on the surface of the object. Thus, the location of the impedance change can be decided by the measured voltage variation on the surface. The impedance change is then reconstructed using a linear approximate method. MBPNN can decide the impedance change location exactly without long training time. It alleviates some noise effects and can be expanded, ensuring high precision and space resolution of the reconstructed image that are not possible by using the back projection method.

  18. Semi-active control of piezoelectric coating's underwater sound absorption by combining design of the shunt impedances

    Science.gov (United States)

    Sun, Yang; Li, Zhaohui; Huang, Aigen; Li, Qihu

    2015-10-01

    Piezoelectric shunt damping technology has been applied in the field of underwater sound absorption in recent years. In order to achieve broadband echo reduction, semi-active control of sound absorption of multi-layered piezoelectric coating by shunt damping is significant. In this paper, a practical method is proposed to control the underwater sound absorption coefficients of piezoelectric coating layers by combining design of the shunt impedance that allows certain sound absorption coefficients at setting frequencies. A one-dimensional electro-acoustic model of the piezoelectric coating and the backing is established based on the Mason equivalent circuit theory. First, the shunt impedance of the coating is derived under the constraint of sound absorption coefficient at one frequency. Then, taking the 1-3 piezoelectric composite coating as an example, the sound absorption properties of the coating shunted to the designed shunt impedance are investigated. Next, on the basis of that, an iterative method for two constrained frequencies and an optimizing algorithm for multiple constrained frequencies are provided for combining design of the shunt impedances. At last, an experimental sample with four piezoelectric material layers is manufactured, of which the sound absorption coefficients are measured in an impedance tube. The experimental results show good agreement with the finite element simulation results. It is proved that a serial R-L circuit can control the peak frequency, maximum and bandwidth of the sound absorption coefficient and the combining R-L circuits shunted to multiple layers can control the sound absorption coefficients at multiple frequencies.

  19. Acoustic vector sensor signal processing

    Institute of Scientific and Technical Information of China (English)

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  20. Electrical Impedance Tomography Technology (EITT) Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.

  1. Impedance and collective effects in the KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Yongho [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Oide, Katsunobu

    1996-08-01

    This paper focuses on beam instabilities due to single-beam collective effects, impedances from various beamline elements, ion trapping, photo-electrons, and other issues in the KEKB. We will also discuss the power deposition generated by a beam in the form of the Higher-Order-Mode (HOM) losses by interacting with its surroundings. (author)

  2. Identification of irradiated potatoes by impedance measurements

    International Nuclear Information System (INIS)

    A variety of parameters drawn from impedance measurements are tested to distinguish between irradiated and non-irradiated potatoes. Some of these parameters are able to identify the irradiated potatoes. The identification is still possible after a storage time of 3 months. (author)

  3. Identification of irradiated potatoes by impedance measurements

    International Nuclear Information System (INIS)

    Identification of irradiated potatoes (Alpha variety) by electrical impedance measurements has been carried out. Experiments were performed by passing ∼3m A alternating current through the potato tubers that were punctured with the galvanized metallic electrodes. The parameters Z0/Z180 (impedance ratio at 50 Hz zero to 180 seconds post puncturing) Z50 k/Z5 k, Z0.5 k/ Z50 k/Z0.05 k (impedance ratio at 50 khz, and 0.05 khz, respectively) were determined at various temperatures and the best temperature for the measurement was obtained. The selection of the identification parameter was based on its constancy over the post irrigation storage time (six months), as well as, its dependency on the magnitude of the absorbed dose.Based on the above criteria, the impedance ratio of Z50 k/Z5 k was determined to be the best identification parameter.The obtained empirical formulas allow to estimate the applied dose and also to differentiation between the irradiated and unirradiated potatoes at the temperature of the (20-30digc)

  4. Detection of irradiated potatoes by impedance measurement

    International Nuclear Information System (INIS)

    Potato is one of the major food items to be treated with ionising radiation and potatoes are irradiated on a large scale in several countries. Every year around 15,000 t of potatoes are irradiated at doses of 60 to 150 Gy (average dose is about 100 Gy) in Japan. Although various methods to detect irradiated potatoes have been investigated, no established method has been reported. Measuring electrical conductivity or impedance of potatoes has been reported as a promising method for the detection of irradiated potatoes. In previous studies it has been found that the ratio of impedance magnitude at 50 kHz to that at 5 kHz, measured immediately after puncturing a potato tuber, is dependent upon the dose applied to the tuber, independent of storage temperature and stable during storage after irradiation. The aim of this study was to establish the optimum conditions for impedance measurement and to examine the applicability of the impedance measuring method to various cultivars (cv.) of potatoes. (author)

  5. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf;

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC equ...

  6. Impedance-matched drilling telemetry system

    Science.gov (United States)

    Normann, Randy A.; Mansure, Arthur J.

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  7. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  8. Phononic crystals and acoustic metamaterials

    Directory of Open Access Journals (Sweden)

    Ming-Hui Lu

    2009-12-01

    Full Text Available Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surface evanescent waves have also been recognized to play key roles to reach acoustic subwavelength imaging and enhanced transmission.

  9. Acoustical Behaviour of Sodium Nitroprusside in Aquo-Organic Solvent Media at 308.15 K

    Directory of Open Access Journals (Sweden)

    Monalisa Das

    2013-01-01

    Full Text Available Density and ultrasonic velocity have been measured for sodium nitroprusside in aqueous solutions of CH3OH, ethylene glycol, DMSO, and n-propanol solvents at 308.15 K. A quantitative relationship has been established among the acoustical properties like ultrasonic velocity (U, adiabatic compressibility (β, intermolecular free length (Lf, acoustic impedance (Z, apparent molar compressibility (Kϕ, apparent molar volume (Vϕ, limiting apparent molar compressibility (Kϕ0 limiting apparent molar volume (Vϕ0, and their constants (SK, Sv. From the obtained values, molecular interaction study has been made successfully in the light of these acoustical properties through hydrogen bonding in solute and solvent mixture.

  10. SU-8 photoresist and SU-8 based nanocomposites for broadband acoustical matching at 1 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Ndieguene, A; Campistron, P; Carlier, J; Wang, S; Callens-Debavelaere, D; Nongaillard, B, E-mail: Assane.Ndieguene@meletu.univ-valenciennes.f [Univ Lille Nord de France, F-59000 Lille (France)

    2009-11-01

    So as to integrate acoustic functions in BioMEMS using 1 GHz ZnO transducers deposited on silicon substrates, acoustic waves propagation through the silicon substrate and its transmission in water needs to be maximized (the insertion losses at the Si / water interface are about 6dB). In the context of integration, it is interesting for mechanical impedance matching to use photosensitive materials such as SU-8 so that patterns may be obtained. Nanocomposite materials based on SU-8 mixed with nanoparticles having adequate impedances were fabricated. These new materials are characterized in terms of their acoustic velocity, impedance and attenuation. For this, the nanocomposite layers are deposited on the substrate by spin coating to obtain a thickness of about 10 {mu}m, in order to separate acoustic echoes from the material (even if {lambda}/4 layer thickness is lower than 1 {mu}m). The insertion losses of the device immersed in water can be simulated as a function of frequency for a given reflection coefficient between the silicon substrate and the photoresist. The characteristics of some nanocomposites made with SU-8 and various concentrations of nanoparticles like Ti0{sub 2}, SrTiO{sub 3} or W have been determined.

  11. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn [Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-14

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  12. Beam measurements of the LHC impedance and validation of the impedance model

    CERN Document Server

    Esteban Müller, J F; Bohl, T; Mounet, N; Shaposhnikova, E; Timko, H

    2014-01-01

    Different measurements of the longitudinal impedance of the LHC done with single bunches with various intensities and longitudinal emittances during measurement sessions in 2011-2012 are compared with particle simulations based on the existing LHC impedance model. The very low reactive impedance of the LHC, with Im Z=n = 0.08, is not easy to measure. The most sensitive observation is the loss of Landau damping, which shows at which energy bunches become unstable depending on their parameters. In addition, the synchrotron frequency shift due to the reactive impedance was estimated following two methods. Firstly, it was obtained from the peak-detected Schottky spectrum. Secondly, a sine modulation in the RF phase was applied to the bunches of different intensities and the modulation frequency was scanned. In both cases, the synchrotron frequency shift was of the order of the measurement precision.

  13. Dynamic electrochemical impedance spectroscopy reconstructed from continuous impedance measurement of single frequency during charging/discharging

    Science.gov (United States)

    Huang, Jun; Li, Zhe; Zhang, Jianbo

    2015-01-01

    In this study, a novel implementation of dynamic electrochemical impedance spectroscopy (DEIS) is proposed. The method first measures the impedance continuously at a single frequency during one charging/discharging cycle, then repeats the measurement at a number of other selected frequencies. The impedance spectrum at a specific SOC is obtained by interpolating and collecting the impedance at all of the selected frequencies. The charge transfer resistance, Rct, from the DEIS is smaller than that from the steady EIS in a wide state-of-charge (SOC) range from 0.4 to 1.0, the Rct during charging is generally smaller than that during discharging for the battery chemistry used in this study.

  14. Aircraft panel with sensorless active sound power reduction capabilities through virtual mechanical impedances

    Science.gov (United States)

    Boulandet, R.; Michau, M.; Micheau, P.; Berry, A.

    2016-01-01

    This paper deals with an active structural acoustic control approach to reduce the transmission of tonal noise in aircraft cabins. The focus is on the practical implementation of the virtual mechanical impedances method by using sensoriactuators instead of conventional control units composed of separate sensors and actuators. The experimental setup includes two sensoriactuators developed from the electrodynamic inertial exciter and distributed over an aircraft trim panel which is subject to a time-harmonic diffuse sound field. The target mechanical impedances are first defined by solving a linear optimization problem from sound power measurements before being applied to the test panel using a complex envelope controller. Measured data are compared to results obtained with sensor-actuator pairs consisting of an accelerometer and an inertial exciter, particularly as regards sound power reduction. It is shown that the two types of control unit provide similar performance, and that here virtual impedance control stands apart from conventional active damping. In particular, it is clear from this study that extra vibrational energy must be provided by the actuators for optimal sound power reduction, mainly due to the high structural damping in the aircraft trim panel. Concluding remarks on the benefits of using these electrodynamic sensoriactuators to control tonal disturbances are also provided.

  15. Wavefront Modulation and Subwavelength Diffractive Acoustics with an Acoustic Metasurface

    OpenAIRE

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-01-01

    Metasurfaces are a family of novel wavefront shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality as their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a desig...

  16. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    Science.gov (United States)

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  17. Acoustic wipeouts over the continental margins off Krishna, Godavari and Mahanadi river basins, East coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Rao, T.C.S.

    the continental slope at a depth of around 900 m. The surface layer of high acoustic impedance appears to be cut by a huge heap of light material which rises nearly 150 to 200 m above the top surface. However, bathymetric section along this profUe indicates...

  18. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    Science.gov (United States)

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors. PMID:23192819

  19. Measurement errors in multifrequency bioelectrical impedance analyzers with and without impedance electrode mismatch

    International Nuclear Information System (INIS)

    The purpose of this study is to compare measurement errors in two commercially available multi-frequency bioimpedance analyzers, a Xitron 4000B and an ImpediMed SFB7, including electrode impedance mismatch. The comparison was made using resistive electrical models and in ten human volunteers. We used three different electrical models simulating three different body segments: the right-side, leg and thorax. In the electrical models, we tested the effect of the capacitive coupling of the patient to ground and the skin–electrode impedance mismatch. Results showed that both sets of equipment are optimized for right-side measurements and for moderate skin–electrode impedance mismatch. In right-side measurements with mismatch electrode, 4000B is more accurate than SFB7. When an electrode impedance mismatch was simulated, errors increased in both bioimpedance analyzers and the effect of the mismatch in the voltage detection leads was greater than that in current injection leads. For segments with lower impedance as the leg and thorax, SFB7 is more accurate than 4000B and also shows less dependence on electrode mismatch. In both devices, impedance measurements were not significantly affected (p > 0.05) by the capacitive coupling to ground

  20. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  1. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  2. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  3. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  4. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  5. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  6. Acoustical, morphological and optical properties of oral rehydration salts (ORS)

    Energy Technology Data Exchange (ETDEWEB)

    George, Preetha Mary, E-mail: preethageoti@gmail.com, E-mail: jayakumars030@gmail.com; Divya, P. [Department of Physics, Dr M.G.R Educational and Research Institute University Chennai- (India); Jayakumar, S., E-mail: preethageoti@gmail.com, E-mail: jayakumars030@gmail.com; Subhashree, N. S. [Department of Physics, RKM Vivekananda College, Chennai-600004 (India); Ahmed, M. Anees [Department of Physics, New College, Chennai (India)

    2015-06-24

    Ultrasonic velocity, density and viscosity were measured in different concentrations of oral rehydration salts (ORS) at room temperature 303 k. From the experimental data other related thermodynamic parameters, viz adiabatic compressibility, intermolecular free length, acoustic impedence, relaxation time are calculated. The experimental data were discussed in the light of molecular interaction existing in the liquid mixtures. The results have been discussed in terms of solute-solvent interaction between the components. Structural characterization is important for development of new material. The morphology, structure and grain size of the samples are investigated by SEM. The optical properties of the sample have been studied using UV Visible spectroscopy.

  7. A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials

    Science.gov (United States)

    Song; Bolton

    2000-03-01

    A method for evaluating the acoustical properties of homogeneous and isotropic porous materials that may be modeled as fluids having complex properties is described here. To implement the procedure, a conventional, two-microphone standing wave tube was modified to include: a new sample holder; a section downstream of the sample holder that accommodated a second pair of microphone holders and an approximately anechoic termination. Sound-pressure measurements at two upstream and two downstream locations were then used to estimate the two-by-two transfer matrix of porous material samples. The experimental transfer matrix method has been most widely used in the past to measure the acoustical properties of silencer system components. That procedure was made more efficient here by taking advantage of the reciprocal nature of sound transmission through homogeneous and isotropic porous layers. The transfer matrix of a homogeneous and isotropic, rigid or limp porous layer can easily be used to identify the material's characteristic impedance and wave number, from which other acoustical quantities of interest can be calculated. The procedure has been used to estimate the acoustical properties of a glass fiber material: good agreement was found between the estimated acoustical properties and those predicted by using the formulas of Delany and Bazley.

  8. Acoustic metamaterials for new two-dimensional sonic devices

    International Nuclear Information System (INIS)

    It has been shown that two-dimensional arrays of rigid or fluidlike cylinders in a fluid or a gas define, in the limit of large wavelengths, a class of acoustic metamaterials whose effective parameters (sound velocity and density) can be tailored up to a certain limit. This work goes a step further by considering arrays of solid cylinders in which the elastic properties of cylinders are taken into account. We have also treated mixtures of two different elastic cylinders. It is shown that both effects broaden the range of acoustic parameters available for designing metamaterials. For example, it is predicted that metamaterials with perfect matching of impedance with air are now possible by using aerogel and rigid cylinders equally distributed in a square lattice. As a potential application of the proposed metamaterial, we present a gradient index lens for airborne sound (i.e. a sonic Wood lens) whose functionality is demonstrated by multiple scattering simulations

  9. Inter-Changeability of Impedance Devices for Lymphedema Assessment.

    Science.gov (United States)

    van Zanten, Malou; Piller, Neil; Ward, Leigh C

    2016-06-01

    Impedance technology is a popular technique for the early detection of lymphedema. The preferred approach is to use bioimpedance spectroscopy (BIS), with measurements being made with the subject lying supine, although attempts have been made to use single or multiple frequency impedance measurements obtained while the subject is standing. The aim of the present study was to determine the equivalence of these different approaches. Impedance measurements of the individual limbs of 37 healthy individuals were determined using both a stand-on, multi-frequency impedance device and a supine impedance spectroscopy instrument. Significant differences were found between the instruments in both absolute impedance values and, importantly, inter-limb impedance ratios. Since impedance ratios in healthy individuals provide the reference standard for detection of lymphedema, these data indicate that the methods are not interchangeable. Consideration of the errors associated with each method indicates that the BIS remains the preferred method for lymphedema detection. PMID:26574711

  10. Electrochemical Impedance of Ethanol Oxidation in Alkaline Media

    Institute of Scientific and Technical Information of China (English)

    DANAEE Iman; JAFARIAN Majid; GOBAL Fereydoon; SHARAFI Mahboobeh; MAHJANI Mohammad-ghasem

    2012-01-01

    Nickel modified NiOOH electrodes were used for the electrocatalytic oxidation of ethanol in alkaline solutions.The electro-oxidation of ethanol in a 1 mol/L NaOH solution at different concentrations of ethanol was studied by ac impedance spectroscopy.Electrooxidation of ethanol on Ni shows negative resistance on impedance plots.The impedance shows different patterns at different applied anodic potential.The influence of the electrode potential on impedance was studied and a quantitative explanation for the impedance of ethanol oxidation was given by means of a proposed mathematical model.At potentials higher than 0.52 V(vs.Ag/AgCl),a pseudoinductive behavior was observed,but at those higher than 0.57 V,impedance patterns were reversed to the second and third quadrants.The conditions required for the reversing of impedance pattern were delineated with the impedance model.

  11. Densitometry By Acoustic Levitation

    Science.gov (United States)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  12. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... of descriptors, number of classes, and class intervals occurred between national schemes. However, a proposal “acoustic classification scheme for dwellings” has been developed recently in the European COST Action TU0901 with 32 member countries. This proposal has been accepted as an ISO work item. This paper...

  13. Strong acoustic wave action

    Science.gov (United States)

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  14. Structural Acoustics and Vibrations

    Science.gov (United States)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  15. Segmental and whole body electrical impedance measurements in dialysis patients

    OpenAIRE

    Nescolarde Selva, Lexa

    2006-01-01

    The main objective of this thesis is to contribute to the prevention and control of the cardiovascular risk, hydration state and nutritional state in dialysis patients using non-invasive electrical impedance measurements. The thesis is structured in three parts with the following objectives: 1) to establish electrical impedance reference data for healthy Cuban population, 2)to improve the diagnostic based on impedance methods in Cuban hemodialysis (HD)patients and 3) to develop the impedance ...

  16. Using A Particular Sampling Method for Impedance Measurement

    OpenAIRE

    Lentka Grzegorz

    2014-01-01

    The paper presents an impedance measurement method using a particular sampling method which is an alternative to DFT calculation. The method uses a sine excitation signal and sampling response signals proportional to current flowing through and voltage across the measured impedance. The object impedance is calculated without using Fourier transform. The method was first evaluated in MATLAB by means of simulation. The method was then practically verified in a constructed simple impedance measu...

  17. Variable-Position Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  18. Are patents impeding medical care and innovation?

    Directory of Open Access Journals (Sweden)

    E Richard Gold

    2010-01-01

    Full Text Available BACKGROUND TO THE DEBATE: Pharmaceutical and medical device manufacturers argue that the current patent system is crucial for stimulating research and development (R&D, leading to new products that improve medical care. The financial return on their investments that is afforded by patent protection, they claim, is an incentive toward innovation and reinvestment into further R&D. But this view has been challenged in recent years. Many commentators argue that patents are stifling biomedical research, for example by preventing researchers from accessing patented materials or methods they need for their studies. Patents have also been blamed for impeding medical care by raising prices of essential medicines, such as antiretroviral drugs, in poor countries. This debate examines whether and how patents are impeding health care and innovation.

  19. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan Christian

    2005-01-01

    is discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0 to 3 Hz. Analyses show that soil stratification may lead to a significant changes in the impedance related......Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soil-structure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  20. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan

    2007-01-01

    is discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0-3 Hz. Analyses show that soil stratification may lead to significant changes in the impedance related......Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soilstructure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  1. Assessment of chest impedance in relation to phonocardiography

    DEFF Research Database (Denmark)

    Zimmermann, Niels Henrik; Møller, Henrik; Hammershøi, Dorte;

    2010-01-01

    ), it is possible to measure the impedance of the surface of the skin and at the same time investigate the influence of different pressures and diameters of a transducer. The impedance tube is made specifically with the purpose of measuring chest impedances in the frequency range from 50 Hz to 5 kHz. An MLS...

  2. Estimating the Transverse Impedance in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Robert [Fermilab; Adamson, Philip [Fermilab; Burov, Alexey [Fermilab; Kourbanis, Ioanis [Fermilab; Yang, Ming-Jen [Fermilab

    2016-06-01

    Impedance could represent a limitation of running high intensity bunches in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this, studies have been performed measuring the tune shift as a function of bunch intensity allowing the transverse impedance to be derived.

  3. Impedance Interaction Modeling and Analysis for Bidirectional Cascaded Converters

    DEFF Research Database (Denmark)

    Tian, Yanjun; Deng, Fujin; Chen, Zhe;

    2015-01-01

    For the cascaded converter system, the output impedance of source converter interacts with the input impedance of load converter, and the interaction may cause the system instability. In bidirectional applications, when the power flow is reversed, the impedance interaction also varies, which brin...

  4. PHEMT Distributed Power Amplifier Adopting Broadband Impedance Transformer

    DEFF Research Database (Denmark)

    Narendra, K.; Limiti, E.; Paoloni, C.;

    2013-01-01

    A non-uniform drain line distributed power amplifier (DPA) employing a broadband impedance transformer is presented. The DPA is based on GaAs PHEMT technology. The impedance transformer employs asymmetric coupled lines and transforms a low output impedance of the amplifier to a standard 50 Ω...

  5. Bioelectrical Impedance Assessment of Wound Healing

    OpenAIRE

    Lukaski, Henry C.; Moore, Micheal

    2012-01-01

    Objective assessment of wound healing is fundamental to evaluate therapeutic and nutritional interventions and to identify complications. Despite availability of many techniques to monitor wounds, there is a need for a safe, practical, accurate, and effective method. A new method is localized bioelectrical impedance analysis (BIA) that noninvasively provides information describing cellular changes that occur during healing and signal complications to wound healing. This article describes the ...

  6. Detection of irradiated potatoes by impedance measurements

    International Nuclear Information System (INIS)

    The impedance ratio at 5kHz to 50kHz (Z6K/Z50K) determined at 22degC at an apical region of potato tuber which was pre-incubated at 22degC for 3 days or longer resulted in the best detection of radian treatment. Irradiated potatoes of 10 cultivars could be detected with this method, and potatoes 'Danshaku' commercially irradiated at Shihoro could be distinguished from unirradiated 'Danshaku'. (author)

  7. Giant Magneto-Impedance and its Applications

    CERN Document Server

    Tannous, C

    2002-01-01

    The status of Giant Magneto-Impedance effect is reviewed in Wires, Ribbons and Multilayered Soft Ferromagnetic Thin Films. After establishing the theoretical framework for the description of the effect, and the constraints any material should have in order to show the effect, experimental work in Wires, Ribbons and Multilayered Thin Films is described. Existing and potential applications of the effect in Electronics and Sensing are highlighted.

  8. Impedance Matched Absorptive Thermal Blocking Filters

    CERN Document Server

    Wollack, E J; Rostem, K; U-Yen, K

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match $50\\,\\Omega$ and its response has been validated from 0-to-50\\,GHz. The observed return loss in the 0-to-20\\,GHz design band is greater than $20\\,$dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  9. Electrode models in electrical impedance tomography

    Institute of Scientific and Technical Information of China (English)

    WANG M.

    2005-01-01

    This paper presents different views on electrode modelling, which include electrode electrochemistry models for modelling the effects of electrode-electrolyte interface, electric field electrode models for modelling electrode geometry, and electrode models for modelling the effects of electrode common mode voltage and double layer capacitance. Taking the full electrode models into consideration .in electrical impedance tomography (EIT) will greatly help the optimised approach to a good solution and further understanding of the measurement principle.

  10. Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

    KAUST Repository

    Adler, S. B.

    2013-08-31

    This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible to establish quantitative links between electrochemical kinetics and materials properties, even when systems are unstable with time. After a brief review of the method, this paper summarizes recent results analyzing the effects of Sr segregation in thin-film LSC electrodes. © The Electrochemical Society.

  11. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...

  12. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors

    Directory of Open Access Journals (Sweden)

    Lei Qin

    2014-10-01

    Full Text Available Acoustic emission (AE is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1–3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  13. Bioelectrical impedance analysis of bovine milk fat

    International Nuclear Information System (INIS)

    Three samples of 250ml at home temperature of 20°C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  14. Application of impedance spectroscopy to SOFC research

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, G.; Mason, T.O. [Northwestern Univ., Evanston, IL (United States); Pederson, L.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  15. Comparison of Howland and General Impedance Converter (GIC) circuit based current sources for bio-impedance measurements

    OpenAIRE

    Qureshi, Tabassum-Ur-Razaq; Chatwin, Chris; Huber, Nicolas; Zarafshani, Ali; Tunstall, Benjamin; Wang, Wei

    2010-01-01

    The current source is a key component in bio-impedance measurement systems. The accuracy of the current source can be measured in terms of its output impedance together with other parameters, with certain applications demanding extremely high output impedance. This paper presents an investigation and comparison of different current source designs based on the Enhanced Howland circuit combined with a General Impedance Converter (GIC) circuit using both ideal and non-ideal operational amplifier...

  16. Underwater Acoustic Networking Techniques

    CERN Document Server

    Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele

    2012-01-01

    This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.

  17. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  18. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  19. Portable acoustic myography

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Danneskiold-Samsøe, Bente; Bartels, Else Marie

    2013-01-01

    Muscle sound gives a local picture of muscles involved in a particular movement and is independent of electrical signals between nerve and muscle. Sound recording (acoustic myography) is a well-known noninvasive technique that has suffered from not being easily applicable, as well as not being ab...

  20. New Modified Band Limited Impedance (BLIMP) Inversion Method Using Envelope Attribute

    Science.gov (United States)

    Maulana, Z. L.; Saputro, O. D.; Latief, F. D. E.

    2016-01-01

    Earth attenuates high frequencies from seismic wavelet. Low frequency seismics cannot be obtained by low quality geophone. The low frequencies (0-10 Hz) that are not present in seismic data are important to obtain a good result in acoustic impedance (AI) inversion. AI is important to determine reservoir quality by converting AI to reservoir properties like porosity, permeability and water saturation. The low frequencies can be supplied from impedance log (AI logs), velocity analysis, and from the combination of both data. In this study, we propose that the low frequencies could be obtained from the envelope seismic attribute. This new proposed method is essentially a modified BLIMP (Band Limited Impedance) inversion method, in which the AI logs for BLIMP substituted with the envelope attribute. In low frequency domain (0-10 Hz), the envelope attribute produces high amplitude. This low frequency from the envelope attribute is utilized to replace low frequency from AI logs in BLIMP. Linear trend in this method is acquired from the AI logs. In this study, the method is applied on synthetic seismograms created from impedance log from well ‘X’. The mean squared error from the modified BLIMP inversion is 2-4% for each trace (variation in error is caused by different normalization constant), lower than the conventional BLIMP inversion which produces error of 8%. The new method is also applied on Marmousi2 dataset and show promising result. The modified BLIMP inversion result from Marmousi2 by using one log AI is better than the one produced from the conventional method.

  1. Holograms for acoustics

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  2. Impedance spectroscopy and electrical modeling of electrowetting on dielectric devices

    International Nuclear Information System (INIS)

    Using impedance spectroscopy, we have determined models for the elements which determine the ac electrical behavior in electrowetting on dielectric (EWOD) systems. Three commonly used EWOD electrode configurations were analyzed. In each case, the impedance can be modeled by a combination of elements, including the solution resistance, the capacitance of the dielectric layer, and the constant phase impedance of the electrode double layers. The sensitivity of the system’s impedance to variations in the electrowetted area is also analyzed for these common configurations. We also demonstrate that the impedance per unit area of typical EWOD systems is invariant to bias voltage. (paper)

  3. Wakefield and impedance studies of a liner using MAFIA

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.; Barts, T.

    1993-03-01

    The liner is a perforated beam tube that is coaxial with an outer bore tube. The 3D code MAFIA (version 3.1) is used to study the wakefields, impedances, and resonances of this structure. The short-range wakes and low-frequency (below the cutoff) impedances are in agreement with the theoretical model. The long-range wakes and high-frequency resonances are associated with the distribution of the holes (or slots). The dependence of the impedance on the size, shape, and pattern of the holes (or slots) is studied. The impact of the liner impedance on the Superconducting Super Collider impedance budget is discussed.

  4. Wakefield and impedance studies of a liner using MAFIA

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.; Barts, T. (SSC Laboratory, Dallas, Texas 75237 (United States))

    1993-12-25

    The liner is a perforated beam tube which is coaxial with an outer bore tube. The 3D code MAFIA version 3.1 is used to study the wakefields, impedances, and resonances of this structure. The short range wakes and low frequency (below the cutoff) impedances are in agreement with the theoretical model. The long range wakes and high frequency resonances are associated with the distribution of the holes (or slots). The dependence of the impedance on the size, shape, and pattern of the holes (or slots) is studied. The impact of the liner impedance on the SSC impedance budget is discussed.

  5. Wakefield and impedance studies of a liner using MAFIA

    Science.gov (United States)

    Chou, W.; Barts, T.

    1993-12-01

    The liner is a perforated beam tube which is coaxial with an outer bore tube. The 3D code MAFIA version 3.1 is used to study the wakefields, impedances, and resonances of this structure. The short range wakes and low frequency (below the cutoff) impedances are in agreement with the theoretical model. The long range wakes and high frequency resonances are associated with the distribution of the holes (or slots). The dependence of the impedance on the size, shape, and pattern of the holes (or slots) is studied. The impact of the liner impedance on the SSC impedance budget is discussed.

  6. Impedance adaptation for optimal robot-environment interaction

    Science.gov (United States)

    Ge, Shuzhi Sam; Li, Yanan; Wang, Chen

    2014-02-01

    In this paper, impedance adaptation is investigated for robots interacting with unknown environments. Impedance control is employed for the physical interaction between robots and environments, subject to unknown and uncertain environments dynamics. The unknown environments are described as linear systems with unknown dynamics, based on which the desired impedance model is obtained. A cost function that measures the tracking error and interaction force is defined, and the critical impedance parameters are found to minimise it. Without requiring the information of the environments dynamics, the proposed impedance adaptation is feasible in a large number of applications where robots physically interact with unknown environments. The validity of the proposed method is verified through simulation studies.

  7. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  8. Impedance analysis of fibroblastic cell layers measured by electric cell-substrate impedance sensing

    Science.gov (United States)

    Lo, Chun-Min; Ferrier, Jack

    1998-06-01

    Impedance measurements of cell layers cultured on gold electrode surfaces obtained by electric cell-substrate impedance sensing provide morphological information such as junctional resistance and cell-substrate separation. Previously, a model that assumes that cells have a disklike shape and that electric currents flow radially underneath the ventral cell surface and then through the paracellular space has been used to theoretically calculate the impedance of the cell-covered electrode. In this paper we propose an extended model of impedance analysis for cell layers where cellular shape is rectangular. This is especially appropriate for normal fibroblasts in culture. To verify the model, we analyze impedance data obtained from four different kinds of fibroblasts that display a long rectangular shape. In addition, we measure the average cell-substrate separation of human gingival fibroblasts at different temperatures. At temperatures of 37, 22, and 4 °C, the average separation between ventral cell surface and substratum are 46, 55, and 89 nm, respectively.

  9. Oblique impacts into low impedance layers

    Science.gov (United States)

    Stickle, A. M.; Schultz, P. H.

    2009-12-01

    Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA

  10. Impedance Changes and Fibrous Tissue Growth after Cochlear Implantation Are Correlated and Can Be Reduced Using a Dexamethasone Eluting Electrode.

    Directory of Open Access Journals (Sweden)

    Maciej Wilk

    Full Text Available The efficiency of cochlear implants (CIs is affected by postoperative connective tissue growth around the electrode array. This tissue formation is thought to be the cause behind post-operative increases in impedance. Dexamethasone (DEX eluting CIs may reduce fibrous tissue growth around the electrode array subsequently moderating elevations in impedance of the electrode contacts.For this study, DEX was incorporated into the silicone of the CI electrode arrays at 1% and 10% (w/w concentration. Electrodes prepared by the same process but without dexamethasone served as controls. All electrodes were implanted into guinea pig cochleae though the round window membrane approach. Potential additive or synergistic effects of electrical stimulation (60 minutes were investigated by measuring impedances before and after stimulation (days 0, 7, 28, 56 and 91. Acoustically evoked auditory brainstem responses were recorded before and after CI insertion as well as on experimental days 7, 28, 56, and 91. Additionally, histology performed on epoxy embedded samples enabled measurement of the area of scala tympani occupied with fibrous tissue.In all experimental groups, the highest levels of fibrous tissue were detected in the basal region of the cochlea in vicinity to the round window niche. Both DEX concentrations, 10% and 1% (w/w, significantly reduced fibrosis around the electrode array of the CI. Following 3 months of implantation impedance levels in both DEX-eluting groups were significantly lower compared to the control group, the 10% group producing a greater effect. The same effects were observed before and after electrical stimulation.To our knowledge, this is the first study to demonstrate a correlation between the extent of new tissue growth around the electrode and impedance changes after cochlear implantation. We conclude that DEX-eluting CIs are a means to reduce this tissue reaction and improve the functional benefits of the implant by attenuating

  11. Coherent heat transport in 2D phononic crystals with acoustic impedance mismatch

    Science.gov (United States)

    Arantes, A.; Anjos, V.

    2016-03-01

    In this work we have calculated the cumulative thermal conductivities of micro-phononic crystals formed by different combinations of inclusions and matrices at a sub-Kelvin temperature regime. The low-frequency phonon spectra (up to tens of GHz) were obtained by solving the generalized wave equation for inhomogeneous media with the plane wave expansion method. The thermal conductivity was calculated from Boltzmann transport theory highlighting the role of the low-frequency thermal phonons and neglecting phonon-phonon scattering. A purely coherent thermal transport regime was assumed throughout the structures. Our findings show that the cumulative thermal conductivity drops dramatically when compared with their bulk counterpart. Depending on the structural composition this reduction may be attributed to the phonon group velocity due to a flattening of the phonon dispersion relation, the extinction of phonon modes in the density of states or due to the presence of complete band gaps. According to the contrast between the inclusions and the matrices, three types of two dimensional phononic crystals were considered: carbon/epoxy, carbon/polyethylene and tungsten/silicon, which correspond respectively to a moderate, strong and very strong mismatch in the mechanical properties of these materials.

  12. Impedance Tuning: A Method for Active Control of the Acoustic Boundary Conditions of Combustion Test Rigs

    OpenAIRE

    Bothien, Mirko Ruben

    2009-01-01

    Eine der größten Herausforderungen für die Entwicklung zukünftiger schadstoffarmer Gasturbinenkraftwerke ist die Gewährleistung eines stabilen Verbrennungsprozesses. Um die immer strikter werdenden Emissionsrichtlinien, vor allem hinsichtlich NOx, zu erfüllen, führte die Gasturbinenindustrie die Mager-Vormisch-Verbrennung ein. Zwar kann so den Regierungsvorgaben entsprochen werden, jedoch ist diese Art der Verbrennung anfälliger für das Auftreten selbsterregter Verbrennungsschwingungen. Diese...

  13. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    OpenAIRE

    Mitri, F. G.

    2016-01-01

    Analytical expressions for the axial and transverse acoustic radiation forces as well as the radiation torque per length are derived for a rigid elliptical cylinder placed arbitrarily in the field of in plane progressive, quasi-standing or standing waves. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a fluid particle suspended in air, because of the significant acoustic impedance mismatch at the particle's boundary. Based on...

  14. Theoretical analysis and experiment study on the acoustic parameters of metal rubber materials

    Institute of Scientific and Technical Information of China (English)

    JIANG Hongyuan; WU Guoqi; E.A.Izzheurov

    2008-01-01

    The acoustic parameters of metal rubber materials were theoretically and experimentally investigated.Under the assumption that metal rubber materials were homogenous,isotropic and porous structures,formulas were deduced for the calculations of effective sound velocity,characteristic impedance,propagation constant,structural constant and flow resistivity.The structural constant of metal rubber materials with different structural parameters were obtained and analyzed by using experiments.The experimental and theoretical values of characteristic impedance and propagation constant were compared and analyzed.It is shown that the proposed theoretic method based on the homogenous,isotropic and porous material model is suitable to calculate the acoustic parameters of metal rubber materials.

  15. Superconducting fault current-limiter with variable shunt impedance

    Science.gov (United States)

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  16. A review of impedance measurements of whole cells.

    Science.gov (United States)

    Xu, Youchun; Xie, Xinwu; Duan, Yong; Wang, Lei; Cheng, Zhen; Cheng, Jing

    2016-03-15

    Impedance measurement of live biological cells is widely accepted as a label free, non-invasive and quantitative analytical method to assess cell status. This method is easy-to-use and flexible for device design and fabrication. In this review, three typical techniques for impedance measurement, i.e., electric cell-substrate impedance sensing, Impedance flow cytometry and electric impedance spectroscopy, are reviewed from the aspects of theory, to electrode design and fabrication, and applications. Benefiting from the integration of microelectronic and microfluidic techniques, impedance sensing methods have expanded their applications to nearly all aspects of biology, including living cell counting and analysis, cell biology research, cancer research, drug screening, and food and environmental safety monitoring. The integration with other techniques, the fabrication of devices for certain biological assays, and the development of point-of-need diagnosis devices is predicted to be future trend for impedance sensing techniques. PMID:26513290

  17. Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap)

    International Nuclear Information System (INIS)

    We report on the impedance mapping of in vitro cellular morphology by electrical impedance spectroscopy, using microelectrodes. A micro multielectrode system was designed, fabricated, assembled, tested and demonstrated for the monitoring of anchorage-dependent cell behavior and morphology. This system allowed continuous, label-free, quantitative monitoring and visualization of cell adhesion, spreading, proliferation and detachment due to cell cycle processes as well as cell–drug interaction, with spatio-temporal resolution. OvCa429 ovarian cancer cells were monitored in vitro over a period of 70 hours by inoculating the cell suspension directly on the multielectrode device. The phase angle of impedance was observed to develop a distinctive shape as a result of cell attachment and proliferation. The shape of the phase angle curve reverted back to the pre-attachment shape upon detachment of cells from the substrate, caused by the addition of trypsin to the cell culture medium. The impedance data of the cell culture were then successfully modeled as a multi-parametric equivalent circuit. The model incorporated both interfacial and cell-layer impedance parameters. Upon addition of trypsin, the cell-layer parameters showed a marked decline and were eventually eliminated from the multi-parametric model, confirming the correlation of the model to the electrode–cell–electrolyte system. These experiments demonstrate the applicability of the impedance mapping technique in visualizing and quantifying physiological changes in the cell layer due to cellular processes as well as the effect of external chemical stimulus on cells (cell–drug interaction)

  18. HIFU scattering by the ribs: constrained optimisation with a complex surface impedance boundary condition

    Science.gov (United States)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2014-04-01

    High intensity focused ultrasound (HIFU) enables highly localised, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more established treatment modalities such as resection, chemotherapy and ionising radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element (BE) approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. Dissipative mechanisms inside the propagating medium have since been implemented, together with a complex surface impedance condition at the surface of the ribs. A reformulation of the boundary element equations as a constrained optimisation problem was carried out to determine the complex surface velocities of a multi-element HIFU array which generated the acoustic pressure field that best fitted a required acoustic pressure distribution in a least-squares sense. This was done whilst ensuring that an acoustic dose rate parameter at the surface of the ribs was kept below a specified threshold. The methodology was tested at an

  19. Nano-structured TiO2 film fabricated at room temperature and its acoustic properties

    OpenAIRE

    Zhu, Jie; Cao, Wenwu; Jiang, Bei; Zhang, D.S.; Zheng, H.; Zhou, Q.; Shung, K. K.

    2008-01-01

    Nano-structured TiO2 thin film has been successfully fabricated at room temperature. Using a quarter wavelength characterization method, we have measured the acoustic impedance of this porous film, which can be adjusted from 5.3 to 7.19 Mrayl by curing it at different temperatures. The uniform microstructure and easy fabrication at room temperature make this material an excellent candidate for matching layers of ultra-high frequency ultrasonic imaging transducers.

  20. Nano-structured TiO2 film fabricated at room temperature and its acoustic properties

    International Nuclear Information System (INIS)

    Nano-structured TiO2 thin film has been successfully fabricated at room temperature. Using a quarter wavelength characterization method, we have measured the acoustic impedance of this porous film, which can be adjusted from 5.3 to 7.19 Mrayl by curing it at different temperatures. The uniform microstructure and easy fabrication at room temperature make this material an excellent candidate for matching layers of ultra-high frequency ultrasonic imaging transducers. (fast track communication)

  1. A Novel Cell-Based Hybrid Acoustic Wave Biosensor with Impedimetric Sensing Capabilities

    OpenAIRE

    Ioana Voiculescu; Anis Nurashikin Nordin; Fang Li; Fei Liu

    2013-01-01

    A novel multiparametric biosensor system based on living cells will be presented. The biosensor system includes two biosensing techniques on a single device: resonant frequency measurements and electric cell-substrate impedance sensing (ECIS). The multiparametric sensor system is based on the innovative use of the upper electrode of a quartz crystal microbalance (QCM) resonator as working electrode for the ECIS technique. The QCM acoustic wave sensor consists of a thin AT-cut quartz substrate...

  2. Results From a Parametric Acoustic Liner Experiment Using P and W GEN1 HSR Mixer/Ejector Model

    Science.gov (United States)

    Boyd, Kathleen C.; Wolter, John D.

    2004-01-01

    This report documents the results of an acoustic liner test performed using a Gen 1 HSR mixer/ejector model installed on the Jet Exit Rig in the Nozzle Acoustic Test Rig in the Aeroacoustic Propulsion Laboratory or NASA Glenn Research Center. Acoustic liner effectiveness and single-component thrust performance results are discussed. Results from 26 different types of single-degree-of-freedom and bulk material liners are compared with each other and against a hardwall baseline. Design parameters involving all aspects of the facesheet, the backing cavity, and the type of bulk material were varied in order to study the effects of these design features on the acoustic impedance, acoustic effectiveness and on nozzle thrust performance. Overall, the bulk absorber liners are more effective at reducing the jet noise than the single-degree-of-freedom liners. Many of the design parameters had little effect on acoustic effectiveness, such as facesheeet hole diameter and honeycomb cell size. A relatively large variation in the impedance of the bulk absorber in a bulk liner is required to have a significant impact on the noise reduction. The thrust results exhibit a number of consistent trends, supporting the validity of this new addition to the facility. In general, the thrust results indicate that thrust performance benefits from increased facesheet thickness and decreased facesheet porosity.

  3. Acoustic energy harvesting based on a planar acoustic metamaterial

    Science.gov (United States)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  4. Impedance analysis of an enhanced piezoelectric biosensor

    Science.gov (United States)

    Kim, Gi-Ho

    This study investigated the usefulness and characteristics of a five-megahertz quartz crystal resonator oscillating in a thickness-shear mode as a sensor of biological pathogens such as Salmonella typhimurium . An impedance analyzer measured the impedance of the oscillating quartz crystal, which determined all mechanical properties of the oscillating quartz and its immediate environment. In this study, the impedance behavior of the bare crystal was characterized in air and in potassium phosphate buffer solution. The potassium phosphate buffer was a Newtonian liquid. The resonance frequency of the oscillating quartz shifted down about 900 Hz by contacting with the buffer. An immobilized-antibody layer on the quartz surface behaved like a rigid mass when immersed in the buffer solution. The quartz crystal with immobilized antibodies was characterized in various solutions containing antibody- coated paramagnetic microspheres and varying concentrations of Salmonella typhimurium (102 - 108 cells/ml). The Salmonella cells were captured by antibody- coated paramagnetic microspheres, and then these complexes were moved magnetically to the oscillating quartz and were captured by antibodies immobilized on the crystal surface. The response of the crystal was expressed in terms of equivalent circuit parameters. The motional inductance and the motional resistance increased as a function of the concentration of Salmonella. The viscous damping was the main contribution to the resistance and the inductance in a liquid environment. The load resistance was the most effective and sensitive circuit parameter. A magnetic force was a useful method to collect the complexes of Salmonella-microspheres on the crystal surface and enhance the response sensor. In this system, the detection limit, based on resistance monitoring, was about 103 cells/ml.

  5. Acoustics Discipline Overview

    Science.gov (United States)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.

  6. Acoustic Tractor Beam

    Science.gov (United States)

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  7. Acoustic absorption by sunspots

    Science.gov (United States)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  8. Acoustic absorption by sunspots

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.C.; Labonte, B.J.; Duvall, T.L. Jr.

    1987-08-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity. 10 references.

  9. Transferring human impedance regulation skills to robots

    CERN Document Server

    Ajoudani, Arash

    2016-01-01

    This book introduces novel thinking and techniques to the control of robotic manipulation. In particular, the concept of teleimpedance control as an alternative method to bilateral force-reflecting teleoperation control for robotic manipulation is introduced. In teleimpedance control, a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller. This concept forms a basis for the development of the controllers for a robotic arm, a dual-arm setup, a synergy-driven robotic hand, and a compliant exoskeleton for improved interaction performance.

  10. Development of the impedance void meter

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.

  11. Bioelectrical impedance modelling of gentamicin pharmacokinetic parameters.

    Science.gov (United States)

    Zarowitz, B J; Pilla, A M; Peterson, E L

    1989-10-01

    1. Bioelectrical impedance analysis was used to develop descriptive models of gentamicin pharmacokinetic parameters in 30 adult in-patients receiving therapy with gentamicin. 2. Serial blood samples obtained from each subject at steady state were analyzed and used to derive gentamicin pharmacokinetic parameters. 3. Multiple regression equations were developed for clearance, elimination rate constant and volume of distribution at steady state and were all statistically significant at P less than 0.05. 4. Clinical validation of this innovative technique is warranted before clinical use is recommended.

  12. Bioelectrical impedance analysis--part I

    DEFF Research Database (Denmark)

    Kyle, Ursula G; Bosaeus, Ingvar; De Lorenzo, Antonio D;

    2004-01-01

    The use of bioelectrical impedance analysis (BIA) is widespread both in healthy subjects and patients, but suffers from a lack of standardized method and quality control procedures. BIA allows the determination of the fat-free mass (FFM) and total body water (TBW) in subjects without significant...... of the estimate. The determination of changes in body cell mass (BCM), extra cellular (ECW) and intra cellular water (ICW) requires further research using a valid model that guarantees that ECW changes do not corrupt the ICW. The use of segmental-BIA, multifrequency BIA, or bioelectrical spectroscopy in altered...

  13. Method for conducting nonlinear electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  14. Coupled Transmission Lines as Impedance Transformer

    DEFF Research Database (Denmark)

    Jensen, Thomas; Zhurbenko, Vitaliy; Krozer, Viktor;

    2007-01-01

    A theoretical investigation of the use of a coupled line section as an impedance transformer is presented. We show how to properly select the terminations of the coupled line structures for effective matching of real and complex loads in both narrow and wide frequency ranges. The corresponding....... Wideband matching performance with relative bandwidth beyond 100% and return loss > 20 dB is demonstrated both theoretically and experimentally. Good agreement is achieved between the measured and predicted performance of the coupled line transformer section....

  15. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.

    2010-07-01

    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  16. The acoustics of snoring.

    Science.gov (United States)

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as judged by the bed partner, is due to an altered sound spectrum. Whether some acoustic aspects of snoring, such as changes in pitch, have predictive value for the presence of

  17. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  18. Acoustics, computers and measurements

    Science.gov (United States)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  19. EXPERIMENTAL STUDY ON NATURAL FIBRES FOR GREEN ACOUSTIC ABSORPTION MATERIALS

    Directory of Open Access Journals (Sweden)

    Lamyaa Abd ALRahman

    2013-01-01

    Full Text Available Natural fibre materials are one of the major ways to improve environmental pollution and new materials need to be considered to find the best solutions. This study presents an experimental investigation on pure micro porous materials from two types of fibres: Date Palm Fibre (DPF and Coconut Coir Fibre (CCF. This study was conducted to examine the potential for using these two types of fibres as sound absorbers. To account for the effects of the characteristics of these materials, such as thickness and density, on the acoustic absorption coefficient of a sound absorber, the measurements were conducted in an impedance tube on normal incidence acoustic absorption. The experimental data indicate that two peak values of Acoustic Absorption Coefficient (AAC are 0.98 at 1381.25 Hz-1506.25 Hz for the 40 mm thick sample and the AAC at high frequency for the same thickness is 0.99 at 4521.88-4906.25 Hz; for 20 mm thickness, the peak value is 0.84 at 2606.25-3025 Hz. The AAC of the CCF sample is 0.77 at 2434.38-2543.75 Hz for a 40 mm thickness, but for 20 mm thickness, the value is 0.71 at 4184.38-4575 Hz. The Acoustic Absorption Coefficients (AAC of the two types of materials were increased at all frequencies when the thickness of the sample was increased. The results show that date palm fibre and coconut coir fibre have good acoustic properties at low and high frequencies and can be used as an alternative replacement to conventional products. The comparisons between the two panels show a good potential because they are cheaper and lighter in comparison to asbestos and rock wool industrial materials.

  20. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  1. Latest Trends in Acoustic Sensing

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  2. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  3. Study on Impedance Characteristics of Aircraft Cables

    Directory of Open Access Journals (Sweden)

    Weilin Li

    2016-01-01

    Full Text Available Voltage decrease and power loss in distribution lines of aircraft electric power system are harmful to the normal operation of electrical equipment and may even threaten the safety of aircraft. This study investigates how the gap distance (the distance between aircraft cables and aircraft skin and voltage frequency (variable frequency power supply will be adopted for next generation aircraft will affect the impedance of aircraft cables. To be more precise, the forming mechanism of cable resistance and inductance is illustrated in detail and their changing trends with frequency and gap distance are analyzed with the help of electromagnetic theoretical analysis. An aircraft cable simulation model is built with Maxwell 2D and the simulation results are consistent with the conclusions drawn from the theoretical analysis. The changing trends of the four core parameters of interest are analyzed: resistance, inductance, reactance, and impedance. The research results can be used as reference for the applications in Variable Speed Variable Frequency (VSVF aircraft electric power system.

  4. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  5. AC Impedance Behaviour of Black Diamond Films

    Institute of Scientific and Technical Information of China (English)

    Haitao YE; Olivier GAUDIN; Richard B.JACKMAN

    2005-01-01

    The first measurement of impedance on free-standing diamond films from 0.1 Hz to 10 MHz up to 300℃ were reported. A wide range of chemical vapour deposition (CVD) materials were investigated, but here we concentrate are well fitted to a RC parallel circuit model and the equivalent resistance and capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 62 MΩ at room temperature to 4 kΩ at300℃, with an activation energy around 0.51 eV. The equivalent capacitance is maintained at the level of 100 pF up to 300℃ suggesting that the diamond grain boundaries are dominating the conduction. At 400℃, the impedance at low frequencies shows a linear tail, which can be explained that the AC polarization of diamond/Au interface occurs.

  6. Impedance matching for broadband piezoelectric energy harvesting

    Science.gov (United States)

    Hagedorn, F.; Leicht, J.; Sanchez, D.; Hehn, T.; Manoli, Y.

    2013-12-01

    This paper presents a system design for broadband piezoelectric energy harvesting by means of impedance matching. An inductive load impedance is emulated by controlling the output current of the piezoelectric harvester with a bipolar boost converter. The reference current is derived from the low pass filtered voltage measured at the harvester terminals. In order to maximize the harvested power especially for nonresonant frequencies the filter parameters are adjusted by a simple optimization algorithm. However the amount of harvested power is limited by the efficiency of the bipolar boost converter. Therefore an additional switch in the bipolar boost converter is proposed to reduce the capacitive switching losses. The proposed system is simulated using numerical parameters of available discrete components. Using the additional switch, the harvested power is increased by 20%. The proposed system constantly harvests 80% of the theoretically available power over frequency. The usable frequency range of ±4Hz around the resonance frequency of the piezoelectric harvester is mainly limited due to the boost converter topology. This comparison does not include the power dissipation of the control circuit.

  7. Acoustical coupling of lizard eardrums

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob; Manley, Geoffrey A

    2008-01-01

    Lizard ears are clear examples of two-input pressure-difference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi- and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct...... is caused by the acoustic interaction of the two eardrums. The results can be largely explained by a simple acoustical model based on an electrical analog circuit....

  8. Room acoustic auralization with Ambisonics

    OpenAIRE

    Polack, Jean-Dominique; Leão Figueiredo, Fábio

    2012-01-01

    International audience During the year of 2009, the room acoustics group of the LAM (Équipe Lutheries, Acoustique, Musique de l’Institut Jean Le Rond d’Alembert - Université Pierre et Marie Curie, Paris) performed a series of acoustical measurements in music halls in Paris. The halls were chosen in regarding their importance to the historic, architectural or acoustic domains. The measured ensemble of fourteen rooms includes quite different architectural designs. The measurements were carri...

  9. Design and simulation of superconducting Lorentz Force Electrical Impedance Tomography (LFEIT)

    Science.gov (United States)

    Shen, Boyang; Fu, Lin; Geng, Jianzhao; Zhang, Xiuchang; Zhang, Heng; Dong, Qihuan; Li, Chao; Li, Jing; Coombs, T. A.

    2016-05-01

    Lorentz Force Electrical Impedance Tomography (LFEIT) is a hybrid diagnostic scanner with strong capability for biological imaging, particularly in cancer and haemorrhages detection. This paper presents the design and simulation of a novel combination: a superconducting magnet together with LFEIT system. Superconducting magnets can generate magnetic field with high intensity and homogeneity, which could significantly enhance the imaging performance. The modelling of superconducting magnets was carried out using Finite Element Method (FEM) package, COMSOL Multiphysics, which was based on Partial Differential Equation (PDE) model with H-formulation coupling B-dependent critical current density and bulk approximation. The mathematical model for LFEIT system was built based on the theory of magneto-acoustic effect. The magnetic field properties from magnet design were imported into the LFEIT model. The basic imaging of electrical signal was developed using MATLAB codes. The LFEIT model simulated two samples located in three different magnetic fields with varying magnetic strength and homogeneity.

  10. Exact solutions for sound radiation from a moving monopole above an impedance plane.

    Science.gov (United States)

    Ochmann, Martin

    2013-04-01

    The acoustic field of a monopole source moving with constant velocity at constant height above an infinite locally reacting plane can be expressed in analytical form by combining the Lorentz transformation with the method of superimposing complex or real point sources. For a plane with masslike response, the solution in Lorentz space consists of a superposition of monopoles only and therefore, does not differ in principle from the solution for the corresponding stationary boundary value problem. However, by considering a frequency independent surface impedance, e.g., with pure absorbing behavior, the half-space Green's function is now comprised of not only a line of monopoles but also of dipoles. For certain field points at a special line g, this solution can be written explicitly by using an exponential integral. For arbitrary field points, the method of stationary phase leads to an asymptotic solution for the reflection coefficient which agrees with prior results from the literature. PMID:23556561

  11. Assessment of a direct acoustic cochlear stimulator.

    Science.gov (United States)

    Chatzimichalis, Michail; Sim, Jae Hoon; Huber, Alexander M

    2012-01-01

    This study aimed to assess the functional results of a new, active, acoustic-mechanical hearing implant, the Direct Acoustic Cochlear Stimulation Partial Implant (DACS PI), in a preclinical study. The DACS PI is an electromagnetic device fixed to the mastoid by screws and coupled to a standard stapes prosthesis by an artificial incus (AI). The function of the DACS PI-aided reconstruction was assessed by determining: (1) the maximum equivalent sound pressure level (SPL) of the implant, which was obtained from measurements of the volume displacement at the round window in normal and implanted ears, and (2) the quality at the coupling interface between the AI of the DACS and the stapes prosthesis, which was quantified from measurements of relative motions between the AI and the prosthesis. Both measurements were performed with fresh temporal bones using a scanning laser Doppler interferometry system. The expected maximum equivalent SPL with a typical driving voltage of 0.3 V was about 115-125 dB SPL up to 1.5 kHz in reconstruction with the DACS PI, and decreased with a roll-off slope of about 65 dB/decade, reaching 90 dB SPL at 8 kHz. The large roll-off relative to a normal ear was presumed to be a relatively high inductive impedance of the coil of the DACS PI actuator at higher frequencies. Good coupling quality between the AI and the prosthesis was achieved below the resonance (∼1.5 kHz) of the DACS PI for all tested stapes prostheses. Above the resonance, the SMart Piston, which is composed of a shape-memory alloy, had the best coupling quality.

  12. Combined Environment Acoustic Chamber (CEAC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  13. Transverse impedance measurement in RHIC and the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Biancacci, Nicolo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  14. Electrical impedance tomography: so close to touching the holy grail

    Science.gov (United States)

    2014-01-01

    Electrical impedance tomography is a new technology giving us lung imaging that may allow lung function to be monitored at the bedside. Several applications have been studied to guide mechanical ventilation at the bedside with electrical impedance tomography. Positive end-expiratory pressure trials guided by electrical impedance tomography are relevant in terms of recruited volume or homogeneity of the lung. Tidal impedance variation is a new parameter of electrical impedance tomography that may help physicians with ventilator settings in acute respiratory distress syndrome patients. This parameter is able to identify the onset of overdistention in the nondependent part and recruitment in the dependent part. Electrical impedance tomography presents a big step forward in mechanical ventilation. PMID:25041593

  15. Breathing detection with a portable impedance measurement system: first measurements.

    Science.gov (United States)

    Cordes, Axel; Foussier, Jerome; Leonhardt, Steffen

    2009-01-01

    For monitoring the health status of individuals, detection of breathing and heart activity is important. From an electrical point of view, it is known that breathing and heart activity change the electrical impedance distribution in the human body over the time due to ventilation (high impedance) and blood shifts (low impedance). Thus, it is possible to detect both important vital parameters by measuring the impedance of the thorax or the region around lung and heart. For some measurement scenarios it is also essential to detect these parameters contactless. For instance, monitoring bus drivers health could help to limit accidents, but directly connected systems limit the drivers free moving space. One measurement technology for measuring the impedance changes in the chest without cables is the magnetic impedance tomography (MIT). This article describes a portable measurement system we developed for this scenario that allows to measure breathing contactless. Furthermore, first measurements with five volunteers were performed and analyzed.

  16. Transverse beam coupling impedance of the CERN Proton Synchrotron

    Science.gov (United States)

    Persichelli, S.; Migliorati, M.; Biancacci, N.; Gilardoni, S.; Metral, E.; Salvant, B.

    2016-04-01

    Beam coupling impedance is a fundamental parameter to characterize the electromagnetic interaction of a particle beam with the surrounding environment. Synchrotron machine performances are critically affected by instabilities and collective effects triggered by beam coupling impedance. In particular, transverse beam coupling impedance is expected to impact beam dynamics of the CERN Proton Synchrotron (PS), since a significant increase in beam intensity is foreseen within the framework of the LHC Injectors Upgrade (LIU) project. In this paper we describe the study of the transverse beam coupling impedance of the PS, taking into account the main sources of geometrical impedance and the contribution of indirect space charge at different energies. The total machine impedance budget, determined from beam-based dedicated machine measurement sessions, is also discussed and compared with the theoretical model.

  17. Harmonic analysis for identification of nonlinearities in impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, M.; Bohlen, O.; Sauer, D.U. [Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University (Germany)

    2008-10-30

    Though impedance is only defined for linear systems, impedance spectroscopy is also successfully applied to nonlinear systems such as fuel cells and batteries. The influence of nonlinearities on measurement results in impedance spectroscopy is therefore discussed on a theoretical and simulative basis. The basis is a simplified Randles model of an electrochemical cell, on which a simulated impedance spectroscopy in galvanostatic mode is performed. For the investigation the focus is on the Butler-Vollmer equation in order to describe the nonlinearity. Furthermore, a linear model for comparison is used, in which the Butler-Volmer nonlinearity is replaced by a linear resistor to show the differences in impedance measurement. In order to find a correlation, also the occurring harmonics are observed. The results are discussed and several methods are suggested for maintaining a quasi-linear impedance measurement by controlling the amplitude of the excitation signal. (author)

  18. Capacitive Ultrasonic Transducer Development for Acoustic Anemometry on Mars

    Science.gov (United States)

    Leonard-Pugh, Eurion; Wilson, C.; Calcutt, S.; Davis, L.

    2012-10-01

    Previous Mars missions have used either mechanical or thermal anemometry techniques. The moving parts of mechanical anemometers are prone to damage during launch and landing and their inertia makes them unsuited for turbulence studies. Thermal anemometers have been used successfully on Mars but are difficult to calibrate and susceptible to varying ambient temperatures. In ultrasonic anemometry, wind speed and sound speed are calculated from two-way time-of-flight measurements between pairs of transducers; three pairs of transducers are used to return a 3-D wind vector. These high-frequency measurements are highly reliable and immune from drift. Piezo-electric ultrasonic anemometers are widely used on Earth due to their full-range accuracy and high measurement frequency. However these transducers have high acoustic impedances and would not work on Mars. We are developing low-mass capacitive ultrasonic transducers for Mars missions which have significantly lower acoustic impedances and would therefore have a much stronger coupling to the Martian atmosphere. These transducers consist of a metallised polymer film pulled taught against a machined metal backplane. The film is drawn towards the backplane by a DC bias voltage. A varying signal is used on top of the DC bias to oscillate the film; generating acoustic waves. This poster will look at the operation of such sensors and the developments necessary to operate the devices under Martian conditions. Transducer performance is determined primarily by two elements; the front film and the backplane. The sensitivity of the transducer is affected by the thickness of the front film; as well as the diameter, curvature and roughness of the metal backplane. We present data on the performance of the sensors and instrument design considerations including signal shapes and transducer arrangements.

  19. Design and optimization of membrane-type acoustic metamaterials

    Science.gov (United States)

    Blevins, Matthew Grant

    One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.

  20. Unattended acoustic sensor simulation of TG25 trials using CHORALE workshop

    Science.gov (United States)

    Gozard, Patrick; Le Goff, Alain; Naz, Pierre; Cathala, Thierry; Latger, Jean; Dupuy, Yann

    2004-08-01

    The simulation workshop CHORALE of the French DGA is used by government services and industrial companies for weapon system validation and qualification trials in the infrared domain, and detection of moving vehicles in the acoustic domain. Recently, acoustic simulation tests were performed on the 3D geometrical database of the DGA/DCE/ETBS proving ground. Results have been compared to the acoustic measurements of the NATO-TG25 trials. This article describes the trials, the modeling of the 3D geometrical database and the comparison between acoustic simulation results and measurements. The 3D scene is described by a set of polygons. Each polygon is characterized by its acoustic resistivity or its complex impedance. Sound sources are associated with moving vehicles and are characterized by their spectra and directivities. A microphone sensor is defined by its position, its frequency band and its directivity. For each trial, atmospheric profiles (air temperature, pressure and humidity according to altitude), trajectories and sound spectrum of moving objects were measured. These data were used to prepare the scenario for the acoustic simulation.

  1. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    Science.gov (United States)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-01-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  2. Active impedance metasurface with full 360° reflection phase tuning

    OpenAIRE

    Zhu, Bo O.; Junming Zhao; Yijun Feng

    2013-01-01

    Impedance metasurface is composed of electrical small scatters in two dimensional plane, of which the surface impedance can be designed to produce desired reflection phase. Tunable reflection phase can be achieved by incorporating active element into the scatters, but the tuning range of the reflection phase is limited. In this paper, an active impedance metasurface with full 360° reflection phase control is presented to remove the phase tuning deficiency in conventional approach. The unit ce...

  3. Reciprocity and mutual impedance formulas within lossy cavities

    Directory of Open Access Journals (Sweden)

    F. Gronwald

    2005-01-01

    Full Text Available We discuss the validity of reciprocity and mutual impedance formulas within lossy cavities. Mutual impedance formulas are well-known from antenna theory and useful to describe the electromagnetic coupling between electromagnetic interference sources and victims. As an example the mutual impedance between two dipole antennas within a lossy rectangular cavity is calculated from a system of coupled Hallén's equations that efficiently is solved by the method of moments.

  4. Effects of temperature on the electrical impedance of piezoelectric elements

    OpenAIRE

    Krishnamurthy, Karthik Chandran

    1996-01-01

    A structural health monitoring technique, developed at the Center for Intelligent Material Systems and Structures, employs piezoelectric (PZT) materials for tracking the structural impedance to qualitatively identify damage. The mechanical impedance of a structure is a function of the structure's mass, stiffness, damping, and structural boundary conditions. Changes in any of the above-mentioned properties lead to a change in the mechanical impedance of the structure and a chang...

  5. On the Passivity Based Impedance Control of Flexible Joint Robots

    OpenAIRE

    Ott, Christian; Albu-Schäffer, Alin; Kugi, A; Hirzinger, Gerd

    2008-01-01

    In this work a novel type of impedance controllers for flexible joint robots is proposed. As a target impedance a desired stiffness and damping are considered without inertia shaping. For this problem two controllers of different complexity are proposed. Both have a cascaded structure with an inner torque feedback loop and an outer impedance controller. For the torque feedback, a physical interpretation as a scaling of the motor inertia is given, which allows to incorpora...

  6. Impedance Studies on Starch-NH_4NO_3 Films

    Institute of Scientific and Technical Information of China (English)

    A.Muda; A.S.A; Khiar; A.K.Arof

    2007-01-01

    1 Results Starch is considered a suitable source material because of its inherent biodegradability,ready viability and relatively low cost[1].In the present work,polymer electrolytes based on starch have been prepared by the solution cast technique.The conductivity of the films is characterized using impedance spectroscopy at room temperatures.The imaginary impedance (Zi) versus real impedance (ZR) plot of pure starch films consists of a semicircle.The bulk resistance (Rb) was taken from the intercept o...

  7. Qualitative Model of the Input Impedance of Rectangular Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Saeed Reza Ostadzadeh

    Full Text Available In this paper, a fuzzy-based approach is proposed so as to predict the input impedance of the rectangular microstrip antenna. In the proposed approach, at first, behavior of single microstrip antenna is represented as simple and unchanged membership functions, and the feed probe effect on the input impedance is then extracted as simple curves so that the input impedance of microstrip antenna in despite of other existing models is efficiently predicted.

  8. Positive impedance humidity sensors via single-component materials

    OpenAIRE

    Jingwen Qian; Zhijian Peng; Zhenguang Shen; Zengying Zhao; Guoliang Zhang; Xiuli Fu

    2016-01-01

    Resistivity-type humidity sensors have been investigated with great interest due to the increasing demands in industry, agriculture and daily life. To date, most of the available humidity sensors have been fabricated based on negative humidity impedance, in which the electrical resistance decreases as the humidity increases, and only several carbon composites have been reported to present positive humidity impedance. However, here we fabricate positive impedance humidity sensors only via sing...

  9. Line Impedance Estimation Using Active and Reactive Power Variations

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile; Rodriguez, Pedro; Teodorescu, Remus;

    2007-01-01

    This paper proposes an estimation method of power system impedance based on power variations caused by a distributed power generation system (DPGS) at the point of common coupling (PCC). The proposed algorithm is computationally simple and uses the voltage variations at the point of common coupling...... (PCC) caused by the variations of the power delivered to utility network to derive the value of grid impedance. Accurate estimation of both resistive and inductive part of the impedance is obtained, as the results presented show....

  10. Effect of Solvents on the Ultrasonic Velocity and Acoustic Parameters of Polyvinylidene Fluoride Solutions

    Directory of Open Access Journals (Sweden)

    S. S. Kulkarni

    2016-01-01

    Full Text Available Ultrasonic studies provide a wealth of information in understanding the molecular behavior and intermolecular interaction of polymer solvent mixtures. Attempts were made to measure ultrasonic velocity, density, and viscosity for the mixture of polyvinylidene fluoride (PVDF in acetone and dimethylformamide (DMF of various stoichiometric ratios at 300 K using crystal controlled ultrasonic interferometer (Mittal make, pyknometer (specific gravity bottle, and Ostwald viscometer, respectively. The acoustic parameters adiabatic compressibility (β, intermolecular free path length (Lf, acoustic impedance (Z, relative association (RA, ultrasonic attenuation (α/f2, and relaxation time (τ have been estimated using experimental data with well-known techniques. The variation of these acoustic parameters is explained in terms of solute-solvent molecular interaction in a polymer solution.

  11. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    Science.gov (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  12. Analytical models for use in fan inflow control structure design. Inflow distortion and acoustic transmission models

    Science.gov (United States)

    Gedge, M. R.

    1979-01-01

    Analytical models were developed to study the effect of flow contraction and screening on inflow distortions to identify qualitative design criteria. Results of the study are that: (1) static testing distortions are due to atmospheric turbulence, nacelle boundary layer, exhaust flow reingestion, flow over stand, ground plane, and engine casing; (2) flow contraction suppresses, initially, turbulent axial velocity distortions and magnifies turbulent transverse velocity distortions; (3) perforated plate and gauze screens suppress axial components of velocity distortions to a degree determined by the screen pressure loss coefficient; (4) honeycomb screen suppress transverse components of velocity distortions to a degree determined by the length to diameter ratio of the honeycomb; (5) acoustic transmission loss of perforated plate is controlled by the reactance of its acoustic impedance; (6) acoustic transmission loss of honeycomb screens is negligible; and (7) a model for the direction change due to a corner between honeycomb panels compares favorably with measured data.

  13. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  14. [Cardiac output monitoring by impedance cardiography in cardiac surgery].

    Science.gov (United States)

    Shimizu, H; Seki, S; Mizuguchi, A; Tsuchida, H; Watanabe, H; Namiki, A

    1990-04-01

    The cardiac output monitoring by impedance cardiography, NCCOM3, was evaluated in adult patients (n = 12) who were subjected to coronary artery bypass grafting. Values of cardiac output measured by impedance cardiography were compared to those by the thermodilution method. Changes of base impedance level used as an index of thoracic fluid volume were also investigated before and after cardiopulmonary bypass (CPB). Correlation coefficient (r) of the values obtained by thermodilution with impedance cardiography was 0.79 and the mean difference was 1.29 +/- 16.9 (SD)% during induction of anesthesia. During the operation, r was 0.83 and the mean difference was -14.6 +/- 18.7%. The measurement by impedance cardiography could be carried out through the operation except when electro-cautery was used. Base impedance level before CPB was significantly lower as compared with that after CPB. There was a negative correlation between the base impedance level and central venous pressure (CVP). No patients showed any signs suggesting lung edema and all the values of CVP, pulmonary artery pressure and blood gas analysis were within normal ranges. From the result of this study, it was concluded that cardiac output monitoring by impedance cardiography was useful in cardiac surgery, but further detailed examinations will be necessary on the relationship between the numerical values of base impedance and the clinical state of the patients. PMID:2362347

  15. Transverse impedance measurements in RHIC and the AGS

    CERN Document Server

    Biancacci, N; Blaskiewicz, M; Liu, C; Mernick, K; Minty, M; White, S

    2014-01-01

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance represents a source of detrimental effects for beam quality and stability at high bunch intensities. In this paper, we evaluate the global transverse impedance in both the AGS and RHIC with measurements of tune shift as a function of bunch intensity. The results are compared to past measurements and the present impedance model. First attempts at transverse impedance localization are as well presented for the RHIC Blue ring.

  16. Impedance characterization of PV modules in outdoor conditions

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Spataru, Sergiu; Sera, Dezso;

    2016-01-01

    Impedance spectroscopy (IS) has been used for laboratory characterizations of photovoltaic (PV) technologies under well controlled conditions. This work applies IS for outdoor characterization of PV panels, in order to observe the effect of irradiance (G) and temperature (T) on the PV module’s...... impedance spectrum, and further construct an impedance model that can link environmental changes to the model’s parameters. To achieve this, an optimized setup has been developed for long-term impedance spectra monitoring synchronised with accurate irradiance and temperature data. Preliminary results show...

  17. Comprehensive characterization of thermophysical properties in solids using thermal impedance

    Science.gov (United States)

    Martínez-Flores, J. J.; Licea-Jiménez, L.; Pérez García, S. A.; Rodríguez-Viejo, J.; Alvarez-Quintana, J.

    2012-11-01

    Thermal impedance Zth(iω) is a way of defining the thermophysical characteristics and behavior of thermal systems. Existing photoacoustic and photothermal approaches based on thermal impedance formalism merely allows a partial thermal characterization of the materials (generally, either thermal diffusivity or thermal effusivity). In this work, a new approach based on the thermal impedance concept in terms of its characteristic thermal time constant is developed from thermal quadrupoles formalism. The approach outlined in this contribution presents a set of analytical equations in which through a single measurement of thermal impedance is sufficient to obtain a comprehensive characterization of the thermophysical properties of solid materials in a simple way.

  18. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer; Knudsen, Kim

    2014-01-01

    For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...... be based on a theoretical analysis of the underlying inverse problem....

  19. Proceedings of the impedance and bunch instability workshop

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    This report discusses the following topics: impedance and bunch lengthening; single bunch stability in the ESRF; a longitudinal mode-coupling instability model for bunch lengthening; high-frequency behavior of longitudinal coupling impedance; beam-induced energy spreads at beam-pipe transitions; on the calculation of wake functions using MAFIA-T3 code; preliminary measurements of the bunch length and the impedance of LEP; measurements and simulations of collective effects in the CERN SPS; bunch lengthening in the SLC damping rings; and status of impedance measurements for the spring-8 storage ring.

  20. Electrode contact impedance sensitivity to variations in geometry

    International Nuclear Information System (INIS)

    Electrode contact impedance is a crucial factor in physiological measurements and can be an accuracy-limiting factor when performing electroencephalography and electrical impedance tomography. In this work, standard flat electrodes and micromachined multipoint spiked electrodes are characterized with a finite-element method electromagnetic solver and the dependence of the contact impedance on geometrical factors is explored. It is found that flat electrodes are sensitive to changes in the outer skin layer properties related to hydration and thickness, while spike electrodes are not. The impedance as a function of the effective contact area, number of spikes and penetration depth has also been studied and characterized. (paper)

  1. Impedance of the PEP-II DIP screen

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.-K. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Weiland, T.

    1996-08-01

    The vacuum chamber of a storage ring normally consists of periodically spaced pumping slots. The longitudinal impedance of slots are analyzed in this paper. It is found that although the broad-band impedance is tolerable, the narrow-band impedance, as a consequence of the periodicity of the slots, may exceed the stability limit given by natural damping with no feedback system on. Based on this analysis, the PEP-II distributed-ion-pump (DIP) screen uses long grooves with hidden holes cut halfway to reduce both the broad-band and narrow-band impedances. (author)

  2. Frequency Bandwidth of Half-Wave Impedance Repeater

    Directory of Open Access Journals (Sweden)

    Marek Dvorsky

    2012-01-01

    Full Text Available This article brings in the second part general information about half-wave impedance repeater. The third part describes the basic functional principles of the half-wave impedance repeater using Smith chart. The main attention is focused in part four on the derivation of repeater frequency bandwidth depending on characteristics and load impedance of unknown feeder line. Derived dependences are based on the elementary features of the feeder lines with specific length. The described functionality is proved in part 4.3 by measurement of transformed impedance using vector several unbalanced feeder lines and network analyzer VNWA3+.

  3. Impedance Localization Measurements using AC Dipoles in the LHC

    CERN Document Server

    Biancacci, Nicolo; Papotti, Giulia; Persson, Tobias; Salvant, Benoit; Tomás, Rogelio

    2016-01-01

    The knowledge of the LHC impedance is of primary importance to predict the machine performance and allow for the HL-LHC upgrade. The developed impedance model can be benchmarked with beam measurements in order to assess its validity and limit. This is routinely done, for example, moving the LHC collimator jaws and measuring the induced tune shift. In order to localize possible unknown impedance sources, the variation of phase advance with intensity between beam position monitors can be measured. In this work we will present the impedance localization measurements performed at injection in the LHC using AC dipoles as exciter as well as the underlying theory.

  4. Line impedance estimation using model based identification technique

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus

    2011-01-01

    into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance. The quasi......The estimation of the line impedance can be used by the control of numerous grid-connected systems, such as active filters, islanding detection techniques, non-linear current controllers, detection of the on/off grid operation mode. Therefore, estimating the line impedance can add extra functions...

  5. Distribution transformer specifiers should reconsider altering natural impedances

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D

    1991-02-01

    Loss evaluation formulae cause modern transformer manufacturers to produce designs which are optimized to achieve the most competitive balance between evaluated losses and cost. If impedance is not presented as a constraint, its value may be quite high or low, and could lead to concern about fault protection where impedance is low, or regulation where impedance is high. The effects on impedance of evaluation formulae from three major Canadian utilities are tabulated. Reasons for the setting of constraints on impedance include the avoidance of an unacceptable level of voltage regulation by setting an upper limit, avoiding failure of the transformer due to load-side faults by applying a lower limit, coordinating system protection devices, or matching impedances of similar transformers purchased from different manufacturers. An urban type of formula will likely result in a transformer with low impedance down to 1.3%, causing concern about the ability of the transformer to withstand short circuit conditions, however the probability of this occurrence is very low, and circuit impedance increases rapidly as one moves from the tranformer to the load location. Thus, a transformer with an impedance value that appears low is not likely to make a system any less reliable, and it is recommended that the optimum loss design be accepted in such situations. 2 figs., 5 tabs.

  6. Simulation of the low-frequency collimator impedance

    CERN Document Server

    Kroyer, T

    2008-01-01

    The low-frequency transverse collimator impedance constitutes a major part of the LHC impedance budget. In this paper numerical simulations for frequencies below 1 MHz using a commercial package are presented. From the 3D field solution of the two-wire simulations the transverse impedance is directly calculated. After a cross-check with theory for rotationally symmetric structures a geometry with two jaws and an LHC graphite collimator is examined. Furthermore, a simple physics picture that explains the principal characteristics of the impedance at high and low frequencies is given.

  7. Electrochemical Impedance of a Battery Electrode with Anisotropic Active Particles

    CERN Document Server

    Song, J

    2013-01-01

    Electrochemical impedance spectra for battery electrodes are usually interpreted using models that assume isotropic active particles, having uniform current density and symmetric diffusivities. While this can be reasonable for amorphous or polycrystalline materials with randomly oriented grains, modern electrode materials increasingly consist of highly anisotropic, single-crystalline, nanoparticles, with different impedance characteristics. In this paper, analytical expressions are derived for the impedance of anisotropic particles with tensorial diffusivities and orientation-dependent surface reaction rates and capacitances. The resulting impedance spectrum contains clear signatures of the anisotropic material properties and aspect ratio, as well as statistical variations in any of these parameters.

  8. Acoustic Mechanical Feedthroughs

    Science.gov (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  9. Time-domain implementation of an impedance boundary condition with boundary layer correction

    Science.gov (United States)

    Brambley, E. J.; Gabard, G.

    2016-09-01

    A time-domain boundary condition is derived that accounts for the acoustic impedance of a thin boundary layer over an impedance boundary, based on the asymptotic frequency-domain boundary condition of Brambley (2011) [25]. A finite-difference reference implementation of this condition is presented and carefully validated against both an analytic solution and a discrete dispersion analysis for a simple test case. The discrete dispersion analysis enables the distinction between real physical instabilities and artificial numerical instabilities. The cause of the latter is suggested to be a combination of the real physical instabilities present and the aliasing and artificial zero group velocity of finite-difference schemes. It is suggested that these are general properties of any numerical discretization of an unstable system. Existing numerical filters are found to be inadequate to remove these artificial instabilities as they have a too wide pass band. The properties of numerical filters required to address this issue are discussed and a number of selective filters are presented that may prove useful in general. These filters are capable of removing only the artificial numerical instabilities, allowing the reference implementation to correctly reproduce the stability properties of the analytic solution.

  10. Taming Acoustic Cavitation

    CERN Document Server

    Rivas, David Fernandez; Enriquez, Oscar R; Versluis, Michel; Prosperetti, Andrea; Gardeniers, Han; Lohse, Detlef

    2012-01-01

    In this fluid dynamics video we show acoustic cavitation occurring from pits etched on a silicon surface. By immersing the surface in a liquid, gas pockets are entrapped in the pits which upon ultrasonic insonation, are observed to shed cavitation bubbles. Modulating the driving pressure it is possible to induce different behaviours based on the force balance that determines the interaction among bubbles and the silicon surface. This system can be used for several applications like sonochemical water treatment, cleaning of surfaces with deposited materials such as biofilms.

  11. Dynamic acoustic tractor beams

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology – ETC, Santa Fe, New Mexico 87508 (United States)

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  12. Dynamic acoustic tractor beams

    Science.gov (United States)

    Mitri, F. G.

    2015-03-01

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  13. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Science.gov (United States)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  14. Magnetically Coupled Impedance-Source Inverters

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2013-01-01

    input-to-output gain and the presence of an impedance network. The former means a high dc-link voltage, which can stress the semiconductor switches unnecessarily. The latter leads to increases in cost and size, which similarly are undesirable. To lessen these concerns, an interesting approach is to use......Z-source inverters are a new class of inverters proposed with output voltage or current buck-boost ability. Despite their general attractiveness, there are some present limitations faced by existing Z-source inverters, most of which are linked to their requirement for low modulation ratio at high...... magnetically coupled transformers or inductors to raise the gain and modulation ratio simultaneously, while reducing the number of passive components needed. A study of the approach is now presented to show how various existing magnetically coupled inverters can be derived by applying a generic methodology...

  15. Magnetically coupled impedance-source inverters

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2012-01-01

    input-to-output gain, and the presence of an impedance network. The former means a high dc-link voltage, which can stress the semiconductor switches unnecessarily. The latter leads to increases in cost and size, which similarly are undesirable. To lessen these concerns, an interesting approach is to use......Z-source inverters are a new class of inverters proposed with output voltage or current buck-boost ability. Despite their general attractiveness, there are some present limitations faced by existing Z-source inverters. Most of which are linked to their requirement for low modulation ratio at high...... magnetically coupled transformers or inductors to raise the gain and modulation ratio simultaneously, while reducing the number of passive components needed. A study of the approach is now presented to show how various existing magnetically coupled inverters can be derived by applying a generic methodology...

  16. The sensitivity in Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    A. I. Rybin

    2013-12-01

    Full Text Available Introduction. The concept of sensitivity in Electrical Impedance Tomography is introduced (first – fourth type. The experimental researches measuring the voltages on the phantom outline are conducted on the created layout (for uniform cylindrical vessel with brine and placed inhomogeneities in a vessel. The main part. The inverse problems are solved for simulated on PC phantom (the third type sensitivity and from measured results (the fourth type sensitivity by conductivity zones method using regularization by A. Tykhonov. The sensitivity to conductivity increasing of elements inside the phantom is significantly less than the sensitivity to resistance increasing. The results of measured voltages processing and the results of projection reconstruction (obtained from mathematical model and from measured results are described. Conclusions. The satisfactory agreements of reconstruction results between themselves and with mathematical and measured phantoms are shown.

  17. Quartz tuning fork based microwave impedance microscopy

    Science.gov (United States)

    Cui, Yong-Tao; Ma, Eric Yue; Shen, Zhi-Xun

    2016-06-01

    Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor.

  18. Sensing Estrogen with Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Li, Jing; Kim, Byung Kun; Im, Ji-Eun; Choi, Han Nim; Kim, Dong-Hwan; Cho, Seong In

    2016-01-01

    This study demonstrates the application feasibility of electrochemical impedance spectroscopy (EIS) in measuring estrogen (17β-estradiol) in gas phase. The present biosensor gives a linear response (R2 = 0.999) for 17β-estradiol vapor concentration from 3.7 ng/L to 3.7 × 10−4 ng/L with a limit of detection (3.7 × 10−4 ng/L). The results show that the fabricated biosensor demonstrates better detection limit of 17β-estradiol in gas phase than the previous report with GC-MS method. This estrogen biosensor has many potential applications for on-site detection of a variety of endocrine disrupting compounds (EDCs) in the gas phase.

  19. The vacuum impedance and unit systems

    CERN Document Server

    Kitano, M

    2006-01-01

    In electromagnetism, the vacuum impedance $Z_0$ is a universal constant, which is as important as the velocity of light $c$ in vacuum. Unfortunately, however, its significance does not seem to be appreciated so well and sometimes the presence itself is ignored. It is partly because in the Gaussian system of units, which has widely been used for long time, $Z_0$ is a dimensionless constant and of unit magnitude. In this paper, we clarify that $Z_0$ is a fundamental parameter in electromagnetism and plays major roles in the following scenes: reorganizing the structure of the electromagnetic formula in reference to the relativity; renormalizing the quantities toward natural unit systems starting from the SI unit system; and defining the magnitudes of electromagnetic units.

  20. Sensing Estrogen with Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-01-01

    Full Text Available This study demonstrates the application feasibility of electrochemical impedance spectroscopy (EIS in measuring estrogen (17β-estradiol in gas phase. The present biosensor gives a linear response (R2=0.999 for 17β-estradiol vapor concentration from 3.7 ng/L to 3.7 × 10−4 ng/L with a limit of detection (3.7 × 10−4 ng/L. The results show that the fabricated biosensor demonstrates better detection limit of 17β-estradiol in gas phase than the previous report with GC-MS method. This estrogen biosensor has many potential applications for on-site detection of a variety of endocrine disrupting compounds (EDCs in the gas phase.

  1. Relating membrane potential to impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Eugen Gheorghiu

    2011-12-01

    Full Text Available Non-invasive, label-free assessment of membrane potential of living cells is still a challenging task. The theory linking membrane potential to the low frequency α dispersion exhibited by suspensions of spherical shelled particles (presenting a net charge distribution on the inner side of the shell has been pioneered in our previous studies with emphasis on the permittivity spectra. Whereas α dispersion is related to a rather large variation exhibited by the permittivity spectrum, we report that the related decrement presented by the impedance magnitude spectrum is either extremely small, or occurs (for large cells at very small frequencies (~mHz explaining the lack of experimental bioimpedance data on the matter. We stress that appropriate choice of the parameters (as revealed by the microscopic model may enable access to membrane potential as well as to other relevant parameters when investigating living cells and charged lipid vesicles. We analyse the effect on the low frequency of the permittivity and impedance spectra of: I. Parameters pertaining to cell membrane i.e. (i membrane potential (through the amount of the net charge on the inner side of the membrane, (ii size of the cells/vesicles, (iii conductivity of the membrane; II. Parameters of the extra cellular medium (viscosity and conductivity. The applicability of the study has far reaching implications for basic (life sciences (providing non-invasive access to the dynamics of relevant cell parameters as well as for biosensing applications, e.g. assessment of cytotoxicity of a wide range of stimuli. doi:10.5617/jeb.214 J Electr Bioimp, vol. 2, pp. 93-97, 2011

  2. Bioelectric impedance phase angle in breast carcinoma

    Directory of Open Access Journals (Sweden)

    Ruchi Tyagi

    2014-01-01

    Full Text Available Context: Worldwide breast cancer is the most frequently diagnosed life threatening cancer and the leading cause of death in women. Bioelectric impedance analysis (BIA affords an emerging opportunity to assess prognosis because of its ability to non invasively assess cell and plasma membrane structure and function by means of phase angle. Aims: To compare the phase angle between patients of breast cancer and their matched control with the help of BIA. Settings and Design: After taking clearance from ethical committee, a total of 34 female cases of histologically proven infiltrating ductal breast carcinoma were included from the surgery IPD, department of surgery. Equal numbers of the matched controls were recruited from the friends and relatives of cases. Materials and Methods: Bio Electrical Impedance Analyzer (BIA BODY STAT QUAD SCAN 4000 was used to measure resistance (R and reactance (Xc by recording a voltage drop in applied current. Phase angle is the ratio of reactance to resistance and is a measure of cell vitality. Statistical analysis used: Unpaired "t" test was applied. Results: In control group, the phase angle showed a mean of 5.479 whereas in test group, it showed a mean value of 4.726. The P value showed a significant difference (P < 0.0001. The smaller the phase angle values were higher was the tumor, nodes, metastases (TNM staging. The phase angles differed significantly from the healthy age matched control values. Conclusions: This study demonstrated that phase angle is a strong predictor of severity of breast cancer and differed significantly between the two groups.

  3. Design and evaluation of a portable device for the measurement of bio-impedance cardiography

    OpenAIRE

    Shi, Qinghai; Heinig, Andreas; Kanoun, Olfa

    2011-01-01

    Electrical impedance of biological matter is known as electrical bio-impedance or simply as bio-impedance. Bio-impedance devices are of great value for monitoring the pathological and physiological status of biological tissues in clinical and home environments. The technological progress in instrumentation has significantly contributed to the progress that has been observed during the last past decades in impedance spectroscopy and electrical impedance cardiograph. Although bio-impedance is n...

  4. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based on Impedance Based Harmonic Analysis

    DEFF Research Database (Denmark)

    Kwon, JunBum; Wang, Xiongfei; Bak, Claus Leth;

    2014-01-01

    This paper addresses the harmonic compensation error problem existing with parallel connected inverter in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid...... impedance can make influence to each other if they each have a harmonic compensation function. The analysis method proposed in this paper is based on the relationship between the overall output impedance and input impedance of parallel connected inverter, where controller gain design method, which can...

  5. Acoustic Similarity and Dichotic Listening.

    Science.gov (United States)

    Benson, Peter

    1978-01-01

    An experiment tests conjectures that right ear advantage (REA) has an auditory origin in competition or interference between acoustically similar stimuli and that feature-sharing effect (FSE) has its origin in assignment of features of phonetically similar stimuli. No effect on the REA for acoustic similarity, and a clear effect of acoustic…

  6. Acoustic Center or Time Origin?

    DEFF Research Database (Denmark)

    Staffeldt, Henrik

    1999-01-01

    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  7. Digital Controller For Acoustic Levitation

    Science.gov (United States)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  8. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  9. Acoustics of Jet Surface Interaction - Scrubbing Noise

    Science.gov (United States)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity to the structure or embedded in the airframe. While such integrated systems are intended to shield noise from the community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Green's function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Green's function decreases with increasing source frequency and/or jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Green's function in the absence of the surface, and flight effects are also investigated

  10. MEMS Based Acoustic Array

    Science.gov (United States)

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  11. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  12. Acoustic data transmission method

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, A.

    1991-09-17

    This patent describes a method for transmitting time line data through a drillstring having drill pipe sections connected end-to-end by joints from a first location below the surface of the earth to a second location at or near the surface of the earth, the length and cross-sectional area of the drill pipe sections being different from the length and cross-sectional area of the joints. It comprises generating acoustic data signals having a single frequency content in at least one passband of the drillstring; transmitting the data signals through the drillstring from either the first location to the second location or from the second location to the first location during a time period prior to the onset of reflective interference caused by the data signals reflecting from along the length of the drillstring, the time period being equal to or less than the time for the data signals to travel three lengths of the drillstring; stopping the transmission of data signals at the onset of the reflective interference and allowing the acoustic signals to substantially attenuate; and detecting the data signals at the respective first or second location.

  13. Measurement of ventilation and cardiac related impedance changes with electrical impedance tomography

    OpenAIRE

    Grant, Caroline A; Pham, Trang; Hough, Judith; Riedel, Thomas; Stocker, Christian; Schibler, Andreas

    2011-01-01

    Introduction Electrical impedance tomography (EIT) has been shown to be able to distinguish both ventilation and perfusion. With adequate filtering the regional distributions of both ventilation and perfusion and their relationships could be analysed. Several methods of separation have been suggested previously, including breath holding, electrocardiograph (ECG) gating and frequency filtering. Many of these methods require interventions inappropriate in a clinical setting. This study ther...

  14. Measurement errors in multifrequency bioelectrical impedance analyzers with and without impedance electrode mismatch.

    OpenAIRE

    Bogónez Franco, Francisco; Nescolarde Selva, Lexa Digna; Bragós Bardia, Ramon; Rosell Ferrer, Francisco Javier; Yandiola, Iñigo

    2009-01-01

    The purpose of this study is to compare measurement errors in two commercially available multi-frequency bioimpedance analyzers, a Xitron 4000B and an ImpediMed SFB7, including electrode impedance mismatch. The comparison was made using resistive electrical models and in ten human volunteers. We used three different electrical models simulating three different body segments: the right-side, leg and thorax. In the electrical models, we tested the effect of the capacitive coupling of the ...

  15. Broadband electrical impedance spectroscopy for dynamic electrical bio-impedance characterization

    OpenAIRE

    Sánchez Terrones, Benjamín

    2012-01-01

    The electrical impedance of biological samples is known in the literature as Electrical Bioimpedance (EBI). The Electrical Bioimpedance enables to characterize physiological conditions and events that are interesting for physiological research and medical diagnosis. Although the Electrical Bioimpedance weakness is that it depends on many physiological parameters, on the other hand, it is suitable for many medical applications where minimally invasive and real-time measurements with simple and...

  16. Improvements to the Two-Thickness Method for Deriving Acoustic Properties of Materials

    Science.gov (United States)

    Palumbo, Daniel L.; Jones, Michael G.; Klos, Jacob; Park, Junhong

    2004-01-01

    The characteristic impedance and other derivative acoustic properties of a material can be derived from impedance tube data using the specific impedance measured from samples with two different thicknesses. In practice, samples are chosen so that their respective thicknesses differ by a factor of 2. This simplifies the solution of the equations relating the properties of the two samples so that the computation of the characteristic impedance is straightforward. This approach has at least two drawbacks. One is that it is often difficult to acquire or produce samples with precisely a factor of 2 difference in thickness. A second drawback is that the phase information contained in the imaginary part of the propagation constant must be unwrapped before subsequent computations are performed. For well-behaved samples, this is not a problem. For ill behaved samples of unknown properties, the phase unwrapping process can be tedious and difficult to automate. Two alternative approaches have been evaluated which remove the factor-of-2 sample thickness requirement and directly compute unwrapped phase angles. One uses a Newton-Raphson approach to solve for the roots of the samples' simultaneous equations. The other produces a wave number space diagram in which the roots are clearly discernable and easily extracted. Results are presented which illustrate the flexibility of analysis provided by the new approaches and how this can be used to better understand the limitations of the impedance tube data.

  17. Preliminary Results on Different Impedance Contrast Agents for Pulmonary Perfusion Imaging with Electrical Impedance Tomography

    Science.gov (United States)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Pouliopoulos, J.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    Recent studies in animal models suggest that the use of small volume boluses of NaCl as an impedance contrast agent can significantly improve pulmonary perfusion imaging by Electrical Impedance Tomography (EIT). However, these studies used highly concentrated NaCl solution (20%) which may have adverse effects on the patients. In a pilot experiment, we address this problem by comparing a number of different Impedance Contrast Boluses (ICBs). Conductivity changes in the lungs of a sheep after the injection of four different ICBs were compared, including three NaCl-based ICBs and one glucose-based ICB. The following procedure was followed for each ICB. Firstly, ventilation was turned off to provide an apneic window of approximately 40s to image the conductivity changes due to the ICB. Each ICB was then injected through a pig-tail catheter directly into the right atrium. EIT images were acquired throughout the apnea to capture the conductivity change. For each ICB, the experiment was repeated three times. The three NaCl-based ICB exhibited similar behaviour in which following the injection of each of these ICBs, the conductivity of each lung predictably increased. The effect of the ICB of 5% glucose solution was inconclusive. A small decrease in conductivity in the left lung was observed in two out of three cases and none was discernible in the right lung.

  18. Equivalent circuit models for ac impedance data analysis

    Science.gov (United States)

    Danford, M. D.

    1990-01-01

    A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.

  19. Equivalent Circuits For AC-Impedance Analysis Of Corrosion

    Science.gov (United States)

    Danford, M. D.

    1992-01-01

    Report presents investigation of equivalent circuits for ac-impedance analysis of corrosion. Impedance between specimen and electrolyte measured as function of frequency. Data used to characterize corrosion electrochemical system in terms of equivalent circuit. Eleven resistor/capacitor equivalent-circuit models were analyzed.

  20. Analysis and design of complex impedance transforming marchand baluns

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2014-01-01

    A new type of Marchand balun is presented in this paper, which has the property of complex impedance transformation. To allow the Marchand balun to transform between arbitrary complex impedances, three reactances should be added to the circuit. A detailed analysis of the circuit gives the governing...

  1. Induced optical metric in the non-impedance-matched media

    Science.gov (United States)

    Mousavi, S. A.; Roknizadeh, R.; Sahebdivan, S.

    2016-11-01

    In non-magnetic anisotropic media, the behavior of electromagnetic waves depends on the polarization and direction of the incident light. Therefore, to tame the unwanted wave responses such as polarization dependent reflections, the artificial impedance-matched media are suggested to be used in optical devices like invisibility cloak or super lenses. Nevertheless, developing the impedance-matched media is far from trivial in practice. In this paper, we are comparing the samples of both impedance-matched and non-impedance-matched (non-magnetic) media regarding their electromagnetic response in constructing a well-defined optical metric. In the case of similar anisotropic patterns, we show that the optical metric in an impedance-matched medium for unpolarized light is the same as the optical metric of an electrical birefringent medium when the extraordinary mode is concerned. By comparing the eikonal equation in an empty curved space-time and its counterparts in the medium, we have shown that a non-impedance-matched medium can resemble an optical metric for a particular polarization. As an example of non-impedance-matched materials, we are studying a medium with varying optical axis profile. We show that such a medium can be an alternative to impedance-matched materials in various optical devices.

  2. Beam Coupling Impedances of Obstacles Protruding into Beam Pipe

    CERN Document Server

    Kurennoy, S S

    1997-01-01

    The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases are presented which allow simple practical estimates of the broad-band impedance contributions from such discontinuities.

  3. Application of dynamic impedance spectroscopy to atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Kazimierz Darowicki, Artur Zieliński and Krzysztof J Kurzydłowski

    2008-01-01

    Full Text Available Atomic force microscopy (AFM is a universal imaging technique, while impedance spectroscopy is a fundamental method of determining the electrical properties of materials. It is useful to combine those techniques to obtain the spatial distribution of an impedance vector. This paper proposes a new combining approach utilizing multifrequency scanning and simultaneous AFM scanning of an investigated surface.

  4. Surface impedance in the anomalous skin effect regime

    Science.gov (United States)

    Chrzanowski, Janusz; Kirkiewicz, Józef

    2008-12-01

    An analytical solution of the surface impedance is obtained using the kinetic equation with the collision integral that takes into account the Fermi liquid effects. It is assumed that the reflection of electrons is purely diffusive. Particular attention is paid to the influence of external magnetic field and polarization of the incident wave on the real and imagine part of the surface impedance.

  5. Synthesis of adaptive impedance control for bipedal robot mechanisms

    Directory of Open Access Journals (Sweden)

    Petrović Milena

    2008-01-01

    Full Text Available The paper describes the impedance algorithm in locomotion of humanoid robot with proposed parameter modulation depending on the gate phase. The analysis shows influence of walking speed and foot elevation on regulator's parameters. Chosen criterion cares for footpath tracking and needed energy for that way of walking. The experiments give recommendation for impedance regulator tuning.

  6. Flip-Chip Carrier Would Match Microwave FET Impedances

    Science.gov (United States)

    Huang, H. C.

    1982-01-01

    Proposed field-effect transistor consists of three cells which make up one complete FET pellet. Pellet is flip-chip mounted on carrier with source grounded gate and drain posts connected directly to impedance-matching transmission-line segments. Impedance transformers are part of mounting and contact strips.

  7. Impedance-Source Networks for Electric Power Conversion Part II

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede;

    2015-01-01

    Impedance-source networks cover the entire spectrum of electric power conversion applications (dc-dc, dc-ac, ac-dc, ac-ac) controlled and modulated by different modulation strategies to generate the desired dc or ac voltage and current at the output. A comprehensive review of various impedance...

  8. Impedance Matching of Tapered Slot Antenna using a Dielectric Transformer

    Science.gov (United States)

    Simons, R. N.; Lee, R. Q.

    1998-01-01

    A new impedance matching technique for tapered slot antennas using a dielectric transformer is presented. The technique is demonstrated by measuring the input impedance, Voltage Standing Wave Ratio (VSWR) and the gain of a Vivaldi antenna (VA). Measured results at Ka-Band frequencies are presented and discussed.

  9. Reconstruction of a potential from the impedance boundary map

    CERN Document Server

    Isaev, Mikhail

    2012-01-01

    We give formulas and equations for finding generalized scattering data for the Schr\\"odinger equation in open bounded domain at fixed energy from the impedance boundary map (or Robin-to-Robin map). Combining these results with results of the inverse scattering theory we obtain efficient methods for reconstructing potential from the impedance boundary map.

  10. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    Science.gov (United States)

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  11. Electrochemical impedance spectroscopy in solid state ionics: recent advances

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2004-01-01

    Electrochemical Impedance Spectroscopy (EIS) has become an important research tool in Solid State Ionics. Some new developments are highlighted: new methods of automatic parameter extraction from impedance measurements are briefly discussed. The Kramers–Kronig data validation test presents another p

  12. Development on electromagnetic impedance function modeling and its estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sutarno, D., E-mail: Sutarno@fi.itb.ac.id [Earth Physics and Complex System Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (Indonesia)

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  13. [Effects of different electrodes on bioelectrical impedance values].

    Science.gov (United States)

    Nakadomo, F; Tanaka, K; Yokoyama, T; Maeda, K

    1990-01-01

    Effects of different electrodes on bioelectrical impedance values measured by the Selco bioelectrical impedance plethysmograph (SIF-881, Japan) were investigated using 8 adult females (age: 35.3 +/- 7.6 yr, Ht: 156.9 +/- 3.8 cm, Wt: 57.1 +/- 9.9 kg, and hydrodensitometrically determined body fat: 29.4 +/- 6.0%). The Lectec MP3000 electrode (Liberty Carton, USA) and the Bipolar electrode (Sanwa, Japan) produced significantly higher impedance values when compared to the Disposable electrode (Adovance, Japan) and the ECG electrode (Nihon Kohden, Japan). The coefficient of variation was significantly lower for the Disposable electrode (0.8%) and the ECG electrode (0.2%) than that for the Lectec MP3000 electrode (2.3%) and the Bipolar electrode (4.9%). In conclusion, the ECG electrode provides higher bioelectrical impedance values with the highest reproducibility in the assessment of human body composition by the bioelectrical impedance plethysmography.

  14. A Multisection Broadband Impedance Transforming Branch-Line Hybrid

    CERN Document Server

    Kumar, S; Danshin, T

    1995-01-01

    Measurements and design equations for a two section impedance transforming hybrid suitable for MMIC applications and a new method of synthesis for multisection branch-line hybrids are reported. The synthesis method allows the response to be specified either of Butterworth or Chebyshev type. Both symmetric (with equal input and output impedances) and non-symmetric (impedance transforming) designs are feasible. Starting from a given number of sections, type of response, and impedance transformation ratio and for a specified midband coupling, power division ratio, isolation or directivity ripple bandwidth, the set of constants needed for the evaluation of the reflection coefficient response is first calculated. The latter is used to define a driving point impedance of the circuit, synthesize it and obtain the branch line immittances with the use of the concept of double length unit elements (DLUE). The experimental results obtained with microstrip hybrids constructed to test the validity of the brute force optim...

  15. Finite difference time domain implementation of surface impedance boundary conditions

    Science.gov (United States)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.

  16. Optical approximation in the theory of geometric impedance

    CERN Document Server

    Stupakov, G; Zagorodnov, I

    2007-01-01

    In this paper we introduce an optical approximation into the theory of impedance calculation, one valid in the limit of high frequencies. This approximation neglects diffraction effects in the radiation process, and is conceptually equivalent to the approximation of geometric optics in electromagnetic theory. Using this approximation, we derive equations for the longitudinal impedance for arbitrary offsets, with respect to a reference orbit, of source and test particles. With the help of the Panofsky-Wenzel theorem we also obtain expressions for the transverse impedance (also for arbitrary offsets). We further simplify these expressions for the case of the small offsets that are typical for practical applications. Our final expressions for the impedance, in the general case, involve two dimensional integrals over various cross-sections of the transition. We further demonstrate, for several known axisymmetric examples, how our method is applied to the calculation of impedances. Finally, we discuss the accuracy...

  17. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...... physical parameters such as the cathode thickness. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  18. Plasmonic-Based Electrochemical Impedance Spectroscopy: Application to Molecular Binding

    Science.gov (United States)

    Lu, Jin; Wang, Wei; Wang, Shaopeng; Shan, Xiaonan; Li, Jinghong; Tao, Nongjian

    2012-01-01

    Plasmonic-based electrochemical impedance spectroscopy (P-EIS) is developed to investigate molecular binding on surfaces. Its basic principle relies on the sensitive dependence of surface plasmon resonance (SPR) signal on surface charge density, which is modulated by applying an AC potential to a SPR chip surface. The AC component of the SPR response gives the electrochemical impedance, and the DC component provides the conventional SPR detection. The plasmonic-based impedance measured over a range of frequency is in quantitative agreement with the conventional electrochemical impedance. Compared to the conventional SPR detection, P-EIS is sensitive to molecular binding taking place on the chip surface, and less sensitive to bulk refractive index changes or non-specific binding. Moreover, this new approach allows for simultaneous SPR and surface impedance analysis of molecular binding processes. PMID:22122514

  19. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number...... techniques to provide good guesses for the modeling parameters, like transforming the impedance data to the distribution of relaxation times (DRT), together with experimental parameter sensitivity studies, is the state-of-the-art approach to achieve good EC model fits. Here we present new impedance modeling...... electrode and 2-D gas transport models which have fewer unknown parameters for the same number of processes, (ii) use of a new model fitting algorithm, “multi-fitting”, in which multiple impedance spectra are fit simultaneously with parameters linked based on the variation of measurement conditions, (iii...

  20. Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hjelm, Johan

    2014-01-01

    It was shown through a comprehensive impedance spectroscopy study that the impedance of the classic composite LSM:YSZ (lanthanum strontium manganite and yttria stabilized zirconia) solid oxide fuel cell (SOFC) cathode can be described well with porous electrode theory. Furthermore, it was illustr...