WorldWideScience

Sample records for acoustic impedance inversion

  1. Estimating surface acoustic impedance with the inverse method.

    Science.gov (United States)

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.

  2. Acoustic Impedance Inversion of Seismic Data Using Genetic Algorithm

    Science.gov (United States)

    Eladj, Said; Djarfour, Noureddine; Ferahtia, Djalal; Ouadfeul, Sid-Ali

    2013-04-01

    The inversion of seismic data can be used to constrain estimates of the Earth's acoustic impedance structure. This kind of problem is usually known to be non-linear, high-dimensional, with a complex search space which may be riddled with many local minima, and results in irregular objective functions. We investigate here the performance and the application of a genetic algorithm, in the inversion of seismic data. The proposed algorithm has the advantage of being easily implemented without getting stuck in local minima. The effects of population size, Elitism strategy, uniform cross-over and lower mutation are examined. The optimum solution parameters and performance were decided as a function of the testing error convergence with respect to the generation number. To calculate the fitness function, we used L2 norm of the sample-to-sample difference between the reference and the inverted trace. The cross-over probability is of 0.9-0.95 and mutation has been tested at 0.01 probability. The application of such a genetic algorithm to synthetic data shows that the inverted acoustic impedance section was efficient. Keywords: Seismic, Inversion, acoustic impedance, genetic algorithm, fitness functions, cross-over, mutation.

  3. Acoustic Impedance Inversion To Identify Oligo-Miocene Carbonate Facies As Reservoir At Kangean Offshore Area

    Science.gov (United States)

    Zuli Purnama, Arif; Ariyani Machmud, Pritta; Eka Nurcahya, Budi; Yusro, Miftahul; Gunawan, Agung; Rahmadi, Dicky

    2018-03-01

    Model based inversion was applied to inversion process of 2D seismic data in Kangean Offshore Area. Integration acoustic impedance from wells and seismic data was expected showing physical property, facies separation and reservoir quality of carbonate rock, particularly in Kangean Offshore Area. Quantitative and qualitative analysis has been conducted on the inversion results to characterize the carbonate reservoir part of Kujung and correlate it to depositional facies type. Main target exploration in Kangean Offshore Area is Kujung Formation (Oligo-Miocene Carbonate). The type of reservoir in this area generate from reef growing on the platform. Carbonate rock is a reservoir which has various type and scale of porosity. Facies determination is required to to predict reservoir quality, because each facies has its own porosity value. Acoustic impedance is used to identify and characterize Kujung carbonate facies, also could be used to predict the distribution of porosity. Low acoustic impedance correlated with packstone facies that has acoustic impedance value below 7400 gr/cc*m/s. In other situation, high acoustic impedance characterized by wackestone facies above 7400 gr/cc*m/s. The interpretation result indicated that Kujung carbonate rock dominated by packstone facies in the upper part of build-up and it has ideal porosity for hydrocarbon reservoir.

  4. Stochastic Gabor reflectivity and acoustic impedance inversion

    Science.gov (United States)

    Hariri Naghadeh, Diako; Morley, Christopher Keith; Ferguson, Angus John

    2018-02-01

    To delineate subsurface lithology to estimate petrophysical properties of a reservoir, it is possible to use acoustic impedance (AI) which is the result of seismic inversion. To change amplitude to AI, removal of wavelet effects from the seismic signal in order to get a reflection series, and subsequently transforming those reflections to AI, is vital. To carry out seismic inversion correctly it is important to not assume that the seismic signal is stationary. However, all stationary deconvolution methods are designed following that assumption. To increase temporal resolution and interpretation ability, amplitude compensation and phase correction are inevitable. Those are pitfalls of stationary reflectivity inversion. Although stationary reflectivity inversion methods are trying to estimate reflectivity series, because of incorrect assumptions their estimations will not be correct, but may be useful. Trying to convert those reflection series to AI, also merging with the low frequency initial model, can help us. The aim of this study was to apply non-stationary deconvolution to eliminate time variant wavelet effects from the signal and to convert the estimated reflection series to the absolute AI by getting bias from well logs. To carry out this aim, stochastic Gabor inversion in the time domain was used. The Gabor transform derived the signal’s time-frequency analysis and estimated wavelet properties from different windows. Dealing with different time windows gave an ability to create a time-variant kernel matrix, which was used to remove matrix effects from seismic data. The result was a reflection series that does not follow the stationary assumption. The subsequent step was to convert those reflections to AI using well information. Synthetic and real data sets were used to show the ability of the introduced method. The results highlight that the time cost to get seismic inversion is negligible related to general Gabor inversion in the frequency domain. Also

  5. Bayesian seismic inversion based on rock-physics prior modeling for the joint estimation of acoustic impedance, porosity and lithofacies

    Energy Technology Data Exchange (ETDEWEB)

    Passos de Figueiredo, Leandro, E-mail: leandrop.fgr@gmail.com [Physics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Grana, Dario [Department of Geology and Geophysics, University of Wyoming, Laramie (United States); Santos, Marcio; Figueiredo, Wagner [Physics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Roisenberg, Mauro [Informatic and Statistics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Schwedersky Neto, Guenther [Petrobras Research Center, Rio de Janeiro (Brazil)

    2017-05-01

    We propose a Bayesian approach for seismic inversion to estimate acoustic impedance, porosity and lithofacies within the reservoir conditioned to post-stack seismic and well data. The link between elastic and petrophysical properties is given by a joint prior distribution for the logarithm of impedance and porosity, based on a rock-physics model. The well conditioning is performed through a background model obtained by well log interpolation. Two different approaches are presented: in the first approach, the prior is defined by a single Gaussian distribution, whereas in the second approach it is defined by a Gaussian mixture to represent the well data multimodal distribution and link the Gaussian components to different geological lithofacies. The forward model is based on a linearized convolutional model. For the single Gaussian case, we obtain an analytical expression for the posterior distribution, resulting in a fast algorithm to compute the solution of the inverse problem, i.e. the posterior distribution of acoustic impedance and porosity as well as the facies probability given the observed data. For the Gaussian mixture prior, it is not possible to obtain the distributions analytically, hence we propose a Gibbs algorithm to perform the posterior sampling and obtain several reservoir model realizations, allowing an uncertainty analysis of the estimated properties and lithofacies. Both methodologies are applied to a real seismic dataset with three wells to obtain 3D models of acoustic impedance, porosity and lithofacies. The methodologies are validated through a blind well test and compared to a standard Bayesian inversion approach. Using the probability of the reservoir lithofacies, we also compute a 3D isosurface probability model of the main oil reservoir in the studied field.

  6. Blocky inversion of multichannel elastic impedance for elastic parameters

    Science.gov (United States)

    Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza

    2018-04-01

    Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.

  7. Gas hydrate saturation from acoustic impedance and resistivity logs in the shenhu area, south china sea

    Science.gov (United States)

    Wang, X.; Wu, S.; Lee, M.; Guo, Y.; Yang, S.; Liang, J.

    2011-01-01

    During the China's first gas hydrate drilling expedition -1 (GMGS-1), gas hydrate was discovered in layers ranging from 10 to 25 m above the base of gas hydrate stability zone in the Shenhu area, South China Sea. Water chemistry, electrical resistivity logs, and acoustic impedance were used to estimate gas hydrate saturations. Gas hydrate saturations estimated from the chloride concentrations range from 0 to 43% of the pore space. The higher gas hydrate saturations were present in the depth from 152 to 177 m at site SH7 and from 190 to 225 m at site SH2, respectively. Gas hydrate saturations estimated from the resistivity using Archie equation have similar trends to those from chloride concentrations. To examine the variability of gas hydrate saturations away from the wells, acoustic impedances calculated from the 3 D seismic data using constrained sparse inversion method were used. Well logs acquired at site SH7 were incorporated into the inversion by establishing a relation between the water-filled porosity, calculated using gas hydrate saturations estimated from the resistivity logs, and the acoustic impedance, calculated from density and velocity logs. Gas hydrate saturations estimated from acoustic impedance of seismic data are ???10-23% of the pore space and are comparable to those estimated from the well logs. The uncertainties in estimated gas hydrate saturations from seismic acoustic impedances were mainly from uncertainties associated with inverted acoustic impedance, the empirical relation between the water-filled porosities and acoustic impedances, and assumed background resistivity. ?? 2011 Elsevier Ltd.

  8. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  9. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha; Wu, Ying

    2016-01-01

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  10. Bayesian-based estimation of acoustic surface impedance: Finite difference frequency domain approach.

    Science.gov (United States)

    Bockman, Alexander; Fackler, Cameron; Xiang, Ning

    2015-04-01

    Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.

  11. Acoustic impedances of ear canals measured by impedance tube

    DEFF Research Database (Denmark)

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... in the transmission such as the earphone impedance. In order to determine the acoustic impedances of human ear canals, the standardized method for measurement of complex impedances used for the measurement of the audiometric earphone impedances is applied. It is based on the transfer function between two microphone...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...

  12. Compensating for evanescent modes and estimating characteristic impedance in waveguide acoustic impedance measurements

    DEFF Research Database (Denmark)

    Nørgaard, Kren Rahbek; Fernandez Grande, Efren

    2017-01-01

    The ear-canal acoustic impedance and reflectance are useful for assessing conductive hearing disorders and calibrating stimulus levels in situ. However, such probe-based measurements are affected by errors due to the presence of evanescent modes and incorrect estimates or assumptions regarding...... characteristic impedance. This paper proposes a method to compensate for evanescent modes in measurements of acoustic impedance, reflectance, and sound pressure in waveguides, as well as estimating the characteristic impedance immediately in front of the probe. This is achieved by adjusting the characteristic...... impedance and subtracting an acoustic inertance from the measured impedance such that the non-causality in the reflectance is minimized in the frequency domain using the Hilbert transform. The method is thus capable of estimating plane-wave quantities of the sought-for parameters by supplying only...

  13. Characterizing a porous road pavement using surface impedance measurement: a guided numerical inversion procedure.

    Science.gov (United States)

    Benoit, Gaëlle; Heinkélé, Christophe; Gourdon, Emmanuel

    2013-12-01

    This paper deals with a numerical procedure to identify the acoustical parameters of road pavement from surface impedance measurements. This procedure comprises three steps. First, a suitable equivalent fluid model for the acoustical properties porous media is chosen, the variation ranges for the model parameters are set, and a sensitivity analysis for this model is performed. Second, this model is used in the parameter inversion process, which is performed with simulated annealing in a selected frequency range. Third, the sensitivity analysis and inversion process are repeated to estimate each parameter in turn. This approach is tested on data obtained for porous bituminous concrete and using the Zwikker and Kosten equivalent fluid model. This work provides a good foundation for the development of non-destructive in situ methods for the acoustical characterization of road pavements.

  14. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    Science.gov (United States)

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-08-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.

  15. Support minimized inversion of acoustic and elastic wave scattering

    International Nuclear Information System (INIS)

    Safaeinili, A.

    1994-01-01

    This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion

  16. A Two-Dimensional Post-Stack Seismic Inversion for Acoustic Impedance of Gas and Hydrate Bearing Deep-Water Sediments Within the Continental Slope of the Ulleung Basin, East Sea, Korea

    Directory of Open Access Journals (Sweden)

    Keumsuk Lee

    2013-01-01

    Full Text Available A post-stack inversion of 2D seismic data was conducted to estimate the spatial distribution of acoustic impedance associated with gas and hydrates in the Ulleung Basin, East Sea, Korea constrained by logs from three boreholes drilled on its continental margin. A model-based inversion was applied to a Plio-Quaternary succession composed of alternations of unconsolidated mass-flow deposits/turbidites. A comparison of seismic reflections and synthetic data computed from impedance logs is shown for two zones. An upper (steep slope zone contains a moderately continuous, possibly bottom-simulating reflector feature along the corresponding section. This feature may be associated with a lithology boundary near a drill site in addition to, or instead of, a stability boundary of gas hydrates (i.e., gas below and hydrates above. The lower (gentle slope zone has locally cross-cutting reflection patterns that are more likely to be attributed to gas- and hydrate-related physical phenomena than to spatiotemporal changes in lithology. This seismic inversion is informative and useful, making a contribution to enhance the interpretability of the seismic profiles for a potential hydrate recovery.

  17. Development of a Multifidelity Approach to Acoustic Liner Impedance Eduction

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.

    2017-01-01

    The use of acoustic liners has proven to be extremely effective in reducing aircraft engine fan noise transmission/radiation. However, the introduction of advanced fan designs and shorter engine nacelles has highlighted a need for novel acoustic liner designs that provide increased fan noise reduction over a broader frequency range. To achieve aggressive noise reduction goals, advanced broadband liner designs, such as zone liners and variable impedance liners, will likely depart from conventional uniform impedance configurations. Therefore, educing the impedance of these axial- and/or spanwise-variable impedance liners will require models that account for three-dimensional effects, thereby increasing computational expense. Thus, it would seem advantageous to investigate the use of multifidelity modeling approaches to impedance eduction for these advanced designs. This paper describes an extension of the use of the CDUCT-LaRC code to acoustic liner impedance eduction. The proposed approach is applied to a hardwall insert and conventional liner using simulated data. Educed values compare well with those educed using two extensively tested and validated approaches. The results are very promising and provide justification to further pursue the complementary use of CDUCT-LaRC with the currently used finite element codes to increase the efficiency of the eduction process for configurations involving three-dimensional effects.

  18. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    Science.gov (United States)

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  19. Development of Adaptive Acoustic Impedance Control Technologies of Acoustic Duct Liner

    Directory of Open Access Journals (Sweden)

    Hiroshi Kobayashi

    2011-01-01

    Full Text Available This paper describes the development of adaptive acoustic impedance control (AAC technologies to achieve a larger fan noise reduction, by adaptively adjusting reactance and resistance of the acoustic liner impedance. For the actual proof of the AAC technology III performance, the advanced fan noise absorption control duct liner II was made on trial basis, with the simple control system and the plain device. And, then, the duct liner II was examined for the AAC technology I, II, and III models, using the high speed fan test facility. The test results made clear that the duct liner II of the AAC technology III model could achieve the fan noise reduction higher than O.A. SPL 10 dB (A at the maximum fan speed 6000 rpm, containing the reduction of fundamental BPF tone of 18 dB and 2nd BPF tone of 10 dB in response to the fan peed change from 3000 to 6000 rpm.

  20. Acoustic impedance rhinometry (AIR): a technique for monitoring dynamic changes in nasal congestion

    International Nuclear Information System (INIS)

    Patuzzi, Robert; Cook, Alison

    2014-01-01

    We describe a simple and inexpensive method for monitoring nasal air flow resistance using measurement of the small-signal acoustic input impedance of the nasal passage, similar to the audiological measurement of ear drum compliance with acoustic tympanometry. The method requires generation of a fixed sinusoidal volume–velocity stimulus using ear-bud speakers, and an electret microphone to monitor the resultant pressure fluctuation in the nasal passage. Both are coupled to the nose via high impedance silastic tubing and a small plastic nose insert. The acoustic impedance is monitored in real-time using a laptop soundcard and custom-written software developed in LabView 7.0 (National Instruments). The compact, lightweight equipment and fast time resolution lends the technique to research into the small and rapid reflexive changes in nasal resistance caused by environmental and local neurological influences. The acoustic impedance rhinometry technique has the potential to be developed for use in a clinical setting, where the need exists for a simple and inexpensive objective nasal resistance measurement technique. (paper)

  1. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer; Knudsen, Kim

    2014-01-01

    For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...

  2. Effects of anticancer drugs on glia-glioma brain tumor model characterized by acoustic impedance microscopy

    Science.gov (United States)

    Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko

    2017-07-01

    An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.

  3. 2D acoustic-elastic coupled waveform inversion in the Laplace domain

    KAUST Repository

    Bae, Hoseuk

    2010-04-01

    Although waveform inversion has been intensively studied in an effort to properly delineate the Earth\\'s structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non-linear objective function and the unreliable low-frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace-domain waveform inversion has been proposed. The Laplace-domain waveform inversion has been known to provide a long-wavelength velocity model even for field data, which may be because it employs the zero-frequency component of the damped wavefield and a well-behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media.We extend the Laplace-domain waveform inversion algorithm to a 2D acoustic-elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic-elastic coupled media, the Laplace-domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic-elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid-solid interfaces.Our Laplace-domain waveform inversion algorithm is also based on the finite-element method and logarithmic wavefields. To compute gradient direction, we apply the back-propagation technique. Under the assumption that density is fixed, P- and S-wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace-domain waveform inversion

  4. Stochastic estimation of acoustic impedance of glass-reinforced epoxy coating 128-134

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu [School of MechatronicEngineering, Korea University of Technology and Education, Chunan (Korea, Republic of); Nah, Hwan Seon [Structural Engineering Lab., Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

  5. Stochastic estimation of acoustic impedance of glass-reinforced epoxy coating 128-134

    International Nuclear Information System (INIS)

    Kim, No Hyu; Nah, Hwan Seon

    2014-01-01

    An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

  6. Elastic versus acoustic inversion for marine surveys

    Science.gov (United States)

    Mora, Peter; Wu, Zedong

    2018-04-01

    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory - at least for a hard water bottom case - it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  7. Impact of acoustic impedance and flow resistance on the power output capacity of the regenerators in travelling-wave thermoacoustic engines

    International Nuclear Information System (INIS)

    Yu Zhibin; Jaworski, Artur J.

    2010-01-01

    This paper considers the role of acoustic impedance, flow resistance, configuration and geometrical dimensions of regenerators on the power produced in travelling-wave thermoacoustic engines. The effects are modelled assuming a pure travelling-wave and ideal gas, which allows defining a pair of dimensionless factors based on the 'net' acoustic power production. Based on the analysis provided, the acoustic power flow in the regenerators is investigated numerically. It is shown that impedance essentially reflects the proportion between the acoustic power produced from heat energy through the thermoacoustic processes and the acoustic power dissipated by viscous and thermal-relaxation effects in the regenerators. Viscous resistance of the regenerator mainly determines the magnitude of the volumetric velocity and then affects the magnitude of acoustic impedance. High impedance and high volumetric velocity are both required in the regenerators for high power engines. The results also show that the optimum transverse dimension of the gas passage exists, but depends on the local acoustic impedance. In principle, it is possible to obtain an optimum combination between these two parameters.

  8. Active acoustical impedance using distributed electrodynamical transducers.

    Science.gov (United States)

    Collet, M; David, P; Berthillier, M

    2009-02-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system's efficiency.

  9. Effect of rib-cage structure on acoustic chest impedance

    DEFF Research Database (Denmark)

    Zimmermann, Niels Henrik; Møller, Henrik; Hansen, John

    2011-01-01

    When a stethoscope is placed on the surface of the chest, the coupler picks up sound from heart and lungs transmitted through the tissues of the ribcage and from the surface of the skin. If the acoustic impedance of the chest surface is known, it is possible to optimize the coupler for picking up...

  10. Elastic versus acoustic inversion for marine surveys

    KAUST Repository

    Mora, Peter

    2018-04-24

    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may be tempted to assume acoustic FWI is sufficient given that only pressure waves exist in the water layer. In this paper, we pose the question as to whether or not in theory – at least for a hard water bottom case – it should be possible to resolve the shear modulus or S-wave velocity in a marine setting using large offset data. We therefore conduct numerical experiments with idealized marine data calculated with the elastic wave equation. We study two cases, FWI of data due to a diffractor model, and FWI of data due to a fault model. We find that at least in idealized situation, elastic FWI of hard waterbottom data is capable of resolving between the two Lamé parameters λ and μ. Another numerical experiment with a soft waterbottom layer gives the same result. In contrast, acoustic FWI of the synthetic elastic data results in a single image of the first Lamé parameter λ which contains severe artefacts for diffraction data and noticable artefacts for layer reflection data. Based on these results, it would appear that at least, inversions of large offset marine data should be fully elastic rather than acoustic unless it has been demonstrated that for the specific case in question (offsets, model and water depth, practical issues such as soft sediment attenuation of shear waves or computational time), that an acoustic only inversion provides a reasonably good quality of image comparable to that of an elastic inversion. Further research with real data is required to determine the degree to which practical issues such as shear wave attenuation in soft sediments may affect this result.

  11. Support Minimized Inversion of Acoustic and Elastic Wave Scattering

    Science.gov (United States)

    Safaeinili, Ali

    Inversion of limited data is common in many areas of NDE such as X-ray Computed Tomography (CT), Ultrasonic and eddy current flaw characterization and imaging. In many applications, it is common to have a bias toward a solution with minimum (L^2)^2 norm without any physical justification. When it is a priori known that objects are compact as, say, with cracks and voids, by choosing "Minimum Support" functional instead of the minimum (L^2)^2 norm, an image can be obtained that is equally in agreement with the available data, while it is more consistent with what is most probably seen in the real world. We have utilized a minimum support functional to find a solution with the smallest volume. This inversion algorithm is most successful in reconstructing objects that are compact like voids and cracks. To verify this idea, we first performed a variational nonlinear inversion of acoustic backscatter data using minimum support objective function. A full nonlinear forward model was used to accurately study the effectiveness of the minimized support inversion without error due to the linear (Born) approximation. After successful inversions using a full nonlinear forward model, a linearized acoustic inversion was developed to increase speed and efficiency in imaging process. The results indicate that by using minimum support functional, we can accurately size and characterize voids and/or cracks which otherwise might be uncharacterizable. An extremely important feature of support minimized inversion is its ability to compensate for unknown absolute phase (zero-of-time). Zero-of-time ambiguity is a serious problem in the inversion of the pulse-echo data. The minimum support inversion was successfully used for the inversion of acoustic backscatter data due to compact scatterers without the knowledge of the zero-of-time. The main drawback to this type of inversion is its computer intensiveness. In order to make this type of constrained inversion available for common use, work

  12. Waveform-preserved unidirectional acoustic transmission based on impedance-matched acoustic metasurface and phononic crystal

    Science.gov (United States)

    Song, Ai-Ling; Chen, Tian-Ning; Wang, Xiao-Peng; Wan, Le-Le

    2016-08-01

    The waveform distortion happens in most of the unidirectional acoustic transmission (UAT) devices proposed before. In this paper, a novel type of waveform-preserved UAT device composed of an impedance-matched acoustic metasurface (AMS) and a phononic crystal (PC) structure is proposed and numerically investigated. The acoustic pressure field distributions and transmittance are calculated by using the finite element method. The subwavelength AMS that can modulate the wavefront of the transmitted wave at will is designed and the band structure of the PC structure is calculated and analyzed. The sound pressure field distributions demonstrate that the unidirectional acoustic transmission can be realized by the proposed UAT device without changing the waveforms of the output waves, which is the distinctive feature compared with the previous UAT devices. The physical mechanism of the unidirectional acoustic transmission is discussed by analyzing the refraction angle changes and partial band gap map. The calculated transmission spectra show that the UAT device is valid within a relatively broad frequency range. The simulation results agree well with the theoretical predictions. The proposed UAT device provides a good reference for designing waveform-preserved UAT devices and has potential applications in many fields, such as medical ultrasound, acoustic rectifiers, and noise insulation.

  13. The sound power emitted by a source of low acoustic impedance

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Verholt, Lars M.

    1998-01-01

    Several authors have maintained that a source of low acoustic impedance (which includes standardised reference sources of the aerodynamic type) would radiate less than the free field power in a reverberation room. However, neither computer simulations nor experiments have confirmed this assertion....

  14. Fast evaluation of the Rayleigh integral and applications to inverse acoustics

    NARCIS (Netherlands)

    Wind, Jelmer; Wijnant, Ysbrand H.; de Boer, Andries

    2006-01-01

    In this paper we present a fast evaluation of the Rayleigh integral, which leads to fast and robust solutions in inverse acoustics. The method commonly used to reconstruct acoustic sources on a plane in space is Planar Nearfield Acoustic Holography (PNAH). Some of the most important recent

  15. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.

    Science.gov (United States)

    Saffar, Saber; Abdullah, Amir

    2012-01-01

    The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the

  16. Inverse acoustic problem of N homogeneous scatterers

    DEFF Research Database (Denmark)

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  17. Inverse problem of Ocean Acoustic Tomography (OAT) - A numerical experiment

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Somayajulu, Y.K.; Mahadevan, R.; Murty, C.S.

    Acoustic model simulation experiments related to the forward and inverse aspects of ocean tomography have been taken up with a view to estimate the vertical sound speed field by inverting the travel time data. Two methods of inversion have been...

  18. Sound reflection in an acoustic impedance tube terminated with a loudspeaker shunted by a negative impedance converter

    Czech Academy of Sciences Publication Activity Database

    Černík, M.; Mokrý, Pavel

    2012-01-01

    Roč. 21, č. 11 (2012), s. 115016-115016 ISSN 0964-1726 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0079 Institutional research plan: CEZ:AV0Z20430508 Keywords : Sound absorption * electromagnetic shunt damping * electrodynamic loudspeaker * negative impedance converter Subject RIV: BI - Acoustics Impact factor: 2.024, year: 2012

  19. Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models.

    Science.gov (United States)

    Monteghetti, Florian; Matignon, Denis; Piot, Estelle; Pascal, Lucas

    2016-09-01

    A methodology to design broadband time-domain impedance boundary conditions (TDIBCs) from the analysis of acoustical models is presented. The derived TDIBCs are recast exclusively as first-order differential equations, well-suited for high-order numerical simulations. Broadband approximations are yielded from an elementary linear least squares optimization that is, for most models, independent of the absorbing material geometry. This methodology relies on a mathematical technique referred to as the oscillatory-diffusive (or poles and cuts) representation, and is applied to a wide range of acoustical models, drawn from duct acoustics and outdoor sound propagation, which covers perforates, semi-infinite ground layers, as well as cavities filled with a porous medium. It is shown that each of these impedance models leads to a different TDIBC. Comparison with existing numerical models, such as multi-pole or extended Helmholtz resonator, provides insights into their suitability. Additionally, the broadly-applicable fractional polynomial impedance models are analyzed using fractional calculus.

  20. Frequency Domain Multi-parameter Full Waveform Inversion for Acoustic VTI Media

    KAUST Repository

    Djebbi, Ramzi

    2017-05-26

    Multi-parameter full waveform inversion (FWI) for transversely isotropic (TI) media with vertical axis of symmetry (VTI) suffers from the trade-off between the parameters. The trade-off results in the leakage of one parameter\\'s update into the other during the inversion. It affects the accuracy and convergence of the inversion. The sensitivity analyses suggested a parameterisation using the horizontal velocity vh, epsilon and eta to reduce the trade-off for surface recorded seismic data.We test the (vh, epsilon, eta) parameterisation for acoustic VTI media using a scattering integral (SI) based inversion. The data is modeled in frequency domain and the model is updated using a preconditioned conjugate gradient method. We applied the method to the VTI Marmousi II model and in the inversion, we keep eta parameter fixed as the background initial model and we invert simultaneously for both vh and epsilon. The results show the suitability of the parameterisation for multi-parameter VTI acoustic inversion as well as the accuracy of the inversion approach.

  1. Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps

    International Nuclear Information System (INIS)

    Raum, Kay; Cleveland, Robin O; Peyrin, Francoise; Laugier, Pascal

    2006-01-01

    200 MHz acoustic impedance maps and site-matched synchrotron radiation micro computed tomography (SR-μCT) maps of tissue degree of mineralization of bone (DMB) were used to derive the elastic coefficient c 33 in cross sections of human cortical bone. To accomplish this goal, a model was developed to relate the DMB accessible with SR-μCT to mass density. The formulation incorporates the volume fractions and densities of the major bone tissue components (collagen, mineral and water), and accounts for tissue porosity. We found that the mass density can be well modelled by a second-order polynomial fit to DMB (R 2 = 0.999) and appears to be consistent with measurements of many different types of mineralized tissues. The derived elastic coefficient c 33 correlated more strongly with the acoustic impedance (R 2 = 0.996) than with mass density (R 2 = 0.310). This finding suggests that estimates of c 33 made from measurements of the acoustic impedance are more reliable than those made from density measurements. Mass density and elastic coefficient were in the range between 1.66 and 2.00 g cm -3 and 14.8 and 75.4 GPa, respectively. Although SAM inspection is limited to the evaluation of carefully prepared sample surfaces, it provides a two-dimensional quantitative estimate of elastic tissue properties at the tissue level

  2. A semi-analytical model for the acoustic impedance of finite length circular holes with mean flow

    Science.gov (United States)

    Yang, Dong; Morgans, Aimee S.

    2016-12-01

    The acoustic response of a circular hole with mean flow passing through it is highly relevant to Helmholtz resonators, fuel injectors, perforated plates, screens, liners and many other engineering applications. A widely used analytical model [M.S. Howe. "Onthe theory of unsteady high Reynolds number flow through a circular aperture", Proc. of the Royal Soc. A. 366, 1725 (1979), 205-223] which assumes an infinitesimally short hole was recently shown to be insufficient for predicting the impedance of holes with a finite length. In the present work, an analytical model based on Green's function method is developed to take the hole length into consideration for "short" holes. The importance of capturing the modified vortex noise accurately is shown. The vortices shed at the hole inlet edge are convected to the hole outlet and further downstream to form a vortex sheet. This couples with the acoustic waves and this coupling has the potential to generate as well as absorb acoustic energy in the low frequency region. The impedance predicted by this model shows the importance of capturing the path of the shed vortex. When the vortex path is captured accurately, the impedance predictions agree well with previous experimental and CFD results, for example predicting the potential for generation of acoustic energy at higher frequencies. For "long" holes, a simplified model which combines Howe's model with plane acoustic waves within the hole is developed. It is shown that the most important effect in this case is the acoustic non-compactness of the hole.

  3. Full Waveform Inversion of Diving & Reflected Waves based on Scale Separation for Velocity and Impedance Imaging

    Science.gov (United States)

    Brossier, Romain; Zhou, Wei; Operto, Stéphane; Virieux, Jean

    2015-04-01

    high wavenumber impedance model and low wavenumber velocity model is performed to iteratively improve subsurface models. References : Brossier, R., Operto, S. & Virieux, J., 2014. Velocity model building from seismic reflection data by full waveform inversion, Geophysical Prospecting, doi:10.1111/1365-2478.12190 Chavent, G., Clément, F. & Gomez, S., 1994.Automatic determination of velocities via migration-based traveltime waveform inversion: A synthetic data example, SEG Technical Program Expanded Abstracts 1994, pp. 1179--1182. Ma, Y. & Hale, D., 2013. Wave-equation reflection traveltime inversion with dynamic warping and full waveform inversion, Geophysics, 78(6), R223--R233. Symes, W.W. & Carazzone, J.J., 1991. Velocity inversion by differential semblance optimization, Geophysics, 56, 654--663. Virieux, J. & Operto, S., 2009. An overview of full waveform inversion in exploration geophysics, Geophysics, 74(6), WCC1--WCC26. Xu, S., Wang, D., Chen, F., Lambaré, G. & Zhang, Y., 2012. Inversion on reflected seismic wave, SEG Technical Program Expanded Abstracts 2012, pp. 1--7. Zhou, W., Brossier, R., Operto, S., & Virieux, J., 2014. Acoustic multiparameter full-waveform inversion through a hierachical scheme, in SEG Technical Program Expanded Abstracts 2014, pp. 1249--1253

  4. Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors

    KAUST Repository

    Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping

    2018-01-01

    A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes

  5. Experimental study of geo-acoustic inversion uncertainty due to ocean sound-speed fluctuations.

    NARCIS (Netherlands)

    Siderius, M.; Nielsen, P.L.; Sellschopp, J.; Snellen, M.; Simons, D.G.

    2001-01-01

    Acoustic data measured in the ocean fluctuate due to the complex time-varying properties of the channel. When measured data are used for model-based, geo-acoustic inversion, how do acoustic fluctuations impact estimates for the seabed properties? In May 1999 SACLANT Undersea Research Center and

  6. Influence of acoustic dominant mode propagation in a trifurcated lined duct with different impedances

    International Nuclear Information System (INIS)

    Ayub, M; Tiwana, M H; Mann, A B

    2010-01-01

    In this study, we analyzed the diffraction of the acoustic dominant mode in a parallel-plate trifurcated waveguide with normal impedance boundary conditions in the case where surface impedances of the upper and lower infinite plates are different from each other. The acoustic dominant mode is incident in a soft/hard semi-infinite duct located symmetrically in the infinite lined duct. The solution of the boundary value problem using Fourier transform leads to two simultaneous modified Wiener-Hopf equations that are uncoupled using the pole removal technique. Two infinite sets of unknown coefficients are involved in the solution, which satisfy two infinite systems of linear algebraic equations. These systems are solved numerically. The new kernel functions are factorized. Some graphical results showing the influence of sundry parameters of interest on the reflection coefficient are presented.

  7. Source Identification in Structural Acoustics with an Inverse Frequency Response Function Technique

    NARCIS (Netherlands)

    Visser, Rene

    2002-01-01

    Inverse source identification based on acoustic measurements is essential for the investigation and understanding of sound fields generated by structural vibrations of various devices and machinery. Acoustic pressure measurements performed on a grid in the nearfield of a surface can be used to

  8. On uniqueness of an inverse problem in electromagnetic obstacle scattering for an impedance cylinder

    International Nuclear Information System (INIS)

    Nakamura, Gen; Wang, Haibing; Sleeman, Brian D

    2012-01-01

    We consider an inverse problem for the scattering of an obliquely incident electromagnetic wave by an impedance cylinder. In previous work, we have shown that the direct scattering problem is governed by a pair of Helmholtz equations subject to coupled oblique boundary conditions, where the wave number depends on the frequency and the incident angle with respect to the axis of the cylinder. In this paper, we are concerned with the inverse problem of uniquely identifying the cross-section of an unknown cylinder and the impedance function from the far-field patterns at fixed frequency and a range of incident angles. A uniqueness result for such an inverse scattering problem is established. Our method is based on the analyticity of solution to the direct scattering problem, which is justified by using the Lax–Phillips method together with the perturbation theory of Fredholm operators. (paper)

  9. Controllable transmission and total reflection through an impedance-matched acoustic metasurface

    KAUST Repository

    Mei, Jun

    2014-12-02

    A general design paradigm for a novel type of acoustic metasurface is proposed by introducing periodically repeated supercells on a rigid thin plate, where each supercell contains multiple cut-through slits that are filled with materials possessing different refractive indices but the same impedance as that of the host medium. When the wavelength of the incident wave is smaller than the periodicity, the direction of the transmitted wave with nearly unity transmittance can be chosen by engineering the phase discontinuities along the transverse direction. When the wavelength is larger than the periodicity, even though the metasurface is impedance matched to the host medium, most of the incident energy is reflected back and the remaining portion is converted into a surface-bound mode. We show that both the transmitted wave control and the high reflection with the surface mode excitation can be interpreted by a unified analytic model based on mode-coupling theory. Our general design principle not only supplies the functionalities of reflection-type acoustic metasurfaces, but also exhibits unprecedented flexibility and efficiency in various domains of wave manipulation for possible applications in fields like refracting, collimating, focusing or absorbing wave energy.

  10. Analysis of smart beams with piezoelectric elements using impedance matrix and inverse Laplace transform

    International Nuclear Information System (INIS)

    Li, Guo-Qing; Miao, Xing-Yuan; Hu, Yuan-Tai; Wang, Ji

    2013-01-01

    A comprehensive study on smart beams with piezoelectric elements using an impedance matrix and the inverse Laplace transform is presented. Based on the authors’ previous work, the dynamics of some elements in beam-like smart structures are represented by impedance matrix equations, including a piezoelectric stack, a piezoelectric bimorph, an elastic straight beam or a circular curved beam. A further transform is applied to the impedance matrix to obtain a set of implicit transfer function matrices. Apart from the analytical solutions to the matrices of smart beams, one computation procedure is proposed to obtained the impedance matrices and transfer function matrices using FEA. By these means the dynamic solution of the elements in the frequency domain is transformed to that in Laplacian s-domain and then inversely transformed to time domain. The connections between the elements and boundary conditions of the smart structures are investigated in detail, and one integrated system equation is finally obtained using the symbolic operation of TF matrices. A procedure is proposed for dynamic analysis and control analysis of the smart beam system using mode superposition and a numerical inverse Laplace transform. The first example is given to demonstrate building transfer function associated impedance matrices using both FEA and analytical solutions. The second example is to verify the ability of control analysis using a suspended beam with PZT patches under close-loop control. The third example is designed for dynamic analysis of beams with a piezoelectric stack and a piezoelectric bimorph under various excitations. The last example of one smart beam with a PPF controller shows the applicability to the control analysis of complex systems using the proposed method. All results show good agreement with the other results in the previous literature. The advantages of the proposed methods are also discussed at the end of this paper. (paper)

  11. Full 3-D stratigraphic inversion with a priori information: a powerful way to optimize data integration

    Energy Technology Data Exchange (ETDEWEB)

    Grizon, L.; Leger, M.; Dequirez, P.Y.; Dumont, F.; Richard, V.

    1998-12-31

    Integration between seismic and geological data is crucial to ensure that a reservoir study is accurate and reliable. To reach this goal, there is used a post-stack stratigraphic inversion with a priori information. The global cost-function combines two types of constraints. One is relevant to seismic amplitudes, and the other to an a priori impedance model. This paper presents this flexible and interpretative inversion to determine acoustic impedances constrained by seismic data, log data and geologic information. 5 refs., 8 figs.

  12. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  13. INVERSION OF FULL ACOUSTIC WAVEFIELD IN LOCAL HELIOSEISMOLOGY: A STUDY WITH SYNTHETIC DATA

    International Nuclear Information System (INIS)

    Cobden, L. J.; Warner, M. R.; Tong, C. H.

    2011-01-01

    We present the first results from the inversion of full acoustic wavefield in the helioseismic context. In contrast to time-distance helioseismology, which involves analyzing the travel times of seismic waves propagating into the solar interior, wavefield tomography models both the travel times and amplitude variations present in the entire seismic record. Unlike the use of ray-based, Fresnel-zone, Born, or Rytov approximations in previous time-distance studies, this method does not require any simplifications to be made to the sensitivity kernel in the inversion. In this study, the acoustic wavefield is simulated for all iterations in the inversion. The sensitivity kernel is therefore updated while lateral variations in sound-speed structure in the model emerge during the course of the inversion. Our results demonstrate that the amplitude-based inversion approach is capable of resolving sound-speed structures defined by relatively sharp vertical and horizontal boundaries. This study therefore provides the foundation for a new type of subsurface imaging in local helioseismology that is based on the inversion of the entire seismic wavefield.

  14. Structural damage identification using piezoelectric impedance measurement with sparse inverse analysis

    Science.gov (United States)

    Cao, Pei; Qi, Shuai; Tang, J.

    2018-03-01

    The impedance/admittance measurements of a piezoelectric transducer bonded to or embedded in a host structure can be used as damage indicator. When a credible model of the healthy structure, such as the finite element model, is available, using the impedance/admittance change information as input, it is possible to identify both the location and severity of damage. The inverse analysis, however, may be under-determined as the number of unknowns in high-frequency analysis is usually large while available input information is limited. The fundamental challenge thus is how to find a small set of solutions that cover the true damage scenario. In this research we cast the damage identification problem into a multi-objective optimization framework to tackle this challenge. With damage locations and severities as unknown variables, one of the objective functions is the difference between impedance-based model prediction in the parametric space and the actual measurements. Considering that damage occurrence generally affects only a small number of elements, we choose the sparsity of the unknown variables as another objective function, deliberately, the l 0 norm. Subsequently, a multi-objective Dividing RECTangles (DIRECT) algorithm is developed to facilitate the inverse analysis where the sparsity is further emphasized by sigmoid transformation. As a deterministic technique, this approach yields results that are repeatable and conclusive. In addition, only one algorithmic parameter, the number of function evaluations, is needed. Numerical and experimental case studies demonstrate that the proposed framework is capable of obtaining high-quality damage identification solutions with limited measurement information.

  15. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    International Nuclear Information System (INIS)

    Amami, Souhail; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim

    2010-01-01

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  16. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    Energy Technology Data Exchange (ETDEWEB)

    Amami, Souhail [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)], E-mail: souhail.amami@utc.fr; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)

    2010-05-15

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  17. Normalized inverse characterization of sound absorbing rigid porous media.

    Science.gov (United States)

    Zieliński, Tomasz G

    2015-06-01

    This paper presents a methodology for the inverse characterization of sound absorbing rigid porous media, based on standard measurements of the surface acoustic impedance of a porous sample. The model parameters need to be normalized to have a robust identification procedure which fits the model-predicted impedance curves with the measured ones. Such a normalization provides a substitute set of dimensionless (normalized) parameters unambiguously related to the original model parameters. Moreover, two scaling frequencies are introduced, however, they are not additional parameters and for different, yet reasonable, assumptions of their values, the identification procedure should eventually lead to the same solution. The proposed identification technique uses measured and computed impedance curves for a porous sample not only in the standard configuration, that is, set to the rigid termination piston in an impedance tube, but also with air gaps of known thicknesses between the sample and the piston. Therefore, all necessary analytical formulas for sound propagation in double-layered media are provided. The methodology is illustrated by one numerical test and by two examples based on the experimental measurements of the acoustic impedance and absorption of porous ceramic samples of different thicknesses and a sample of polyurethane foam.

  18. Optimal Inversion Parameters for Full Waveform Inversion using OBS Data Set

    Science.gov (United States)

    Kim, S.; Chung, W.; Shin, S.; Kim, D.; Lee, D.

    2017-12-01

    In recent years, full Waveform Inversion (FWI) has been the most researched technique in seismic data processing. It uses the residuals between observed and modeled data as an objective function; thereafter, the final subsurface velocity model is generated through a series of iterations meant to minimize the residuals.Research on FWI has expanded from acoustic media to elastic media. In acoustic media, the subsurface property is defined by P-velocity; however, in elastic media, properties are defined by multiple parameters, such as P-velocity, S-velocity, and density. Further, the elastic media can also be defined by Lamé constants, density or impedance PI, SI; consequently, research is being carried out to ascertain the optimal parameters.From results of advanced exploration equipment and Ocean Bottom Seismic (OBS) survey, it is now possible to obtain multi-component seismic data. However, to perform FWI on these data and generate an accurate subsurface model, it is important to determine optimal inversion parameters among (Vp, Vs, ρ), (λ, μ, ρ), and (PI, SI) in elastic media. In this study, staggered grid finite difference method was applied to simulate OBS survey. As in inversion, l2-norm was set as objective function. Further, the accurate computation of gradient direction was performed using the back-propagation technique and its scaling was done using the Pseudo-hessian matrix.In acoustic media, only Vp is used as the inversion parameter. In contrast, various sets of parameters, such as (Vp, Vs, ρ) and (λ, μ, ρ) can be used to define inversion in elastic media. Therefore, it is important to ascertain the parameter that gives the most accurate result for inversion with OBS data set.In this study, we generated Vp and Vs subsurface models by using (λ, μ, ρ) and (Vp, Vs, ρ) as inversion parameters in every iteration, and compared the final two FWI results.This research was supported by the Basic Research Project(17-3312) of the Korea Institute of

  19. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    Directory of Open Access Journals (Sweden)

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  20. Bayesian seismic AVO inversion

    Energy Technology Data Exchange (ETDEWEB)

    Buland, Arild

    2002-07-01

    A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S

  1. The acoustic center of laboratory standard microphones

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2006-01-01

    An experimental procedure is described for obtaining the effective acoustic distance between pairs of microphones coupled by a free field, leading to the determination of the position of the acoustic center of the microphones. The procedure, which is based on measuring the modulus of the electrical...... transfer impedance, has been applied to a large number of microphones. In all cases effects due to reflections from the walls of the anechoic chamber and the interference between the microphones have been removed using a time-selective technique. The procedure of determining the position of the acoustic...... center from the inverse distance law is analyzed. Experimental values of the acoustic center of laboratory standard microphones are presented, and numerical results obtained using the boundary element method supplement the experimental data. Estimated uncertainties are also presented. The results...

  2. Sound Propagation An impedance Based Approach

    CERN Document Server

    Kim, Yang-Hann

    2010-01-01

    In Sound Propagation: An Impedance Based Approach , Professor Yang-Hann Kim introduces acoustics and sound fields by using the concept of impedance. Kim starts with vibrations and waves, demonstrating how vibration can be envisaged as a kind of wave, mathematically and physically. One-dimensional waves are used to convey the fundamental concepts. Readers can then understand wave propagation in terms of characteristic and driving point impedance. The essential measures for acoustic waves, such as dB scale, octave scale, acoustic pressure, energy, and intensity, are explained. These measures are

  3. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    Science.gov (United States)

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  4. A new parameterization for waveform inversion in acoustic orthorhombic media

    KAUST Repository

    Masmoudi, Nabil

    2016-05-26

    Orthorhombic anisotropic model inversion is extra challenging because of the multiple parameter nature of the inversion problem. The high number of parameters required to describe the medium exerts considerable trade-off and additional nonlinearity to a full-waveform inversion (FWI) application. Choosing a suitable set of parameters to describe the model and designing an effective inversion strategy can help in mitigating this problem. Using the Born approximation, which is the central ingredient of the FWI update process, we have derived radiation patterns for the different acoustic orthorhombic parameterizations. Analyzing the angular dependence of scattering (radiation patterns) of the parameters of different parameterizations starting with the often used Thomsen-Tsvankin parameterization, we have assessed the potential trade-off between the parameters and the resolution in describing the data and inverting for the parameters. The analysis led us to introduce new parameters ϵd, δd, and ηd, which have azimuthally dependent radiation patterns, but keep the scattering potential of the transversely isotropic parameters stationary with azimuth (azimuth independent). The novel parameters ϵd, δd, and ηd are dimensionless and represent a measure of deviation between the vertical planes in orthorhombic anisotropy. Therefore, these deviation parameters offer a new parameterization style for an acoustic orthorhombic medium described by six parameters: three vertical transversely isotropic (VTI) parameters, two deviation parameters, and one parameter describing the anisotropy in the horizontal symmetry plane. The main feature of any parameterization based on the deviation parameters, is the azimuthal independency of the modeled data with respect to the VTI parameters, which allowed us to propose practical inversion strategies based on our experience with the VTI parameters. This feature of the new parameterization style holds for even the long-wavelength components of

  5. Digital PIV Measurements of Acoustic Particle Displacements in a Normal Incidence Impedance Tube

    Science.gov (United States)

    Humphreys, William M., Jr.; Bartram, Scott M.; Parrott, Tony L.; Jones, Michael G.

    1998-01-01

    Acoustic particle displacements and velocities inside a normal incidence impedance tube have been successfully measured for a variety of pure tone sound fields using Digital Particle Image Velocimetry (DPIV). The DPIV system utilized two 600-mj Nd:YAG lasers to generate a double-pulsed light sheet synchronized with the sound field and used to illuminate a portion of the oscillatory flow inside the tube. A high resolution (1320 x 1035 pixel), 8-bit camera was used to capture double-exposed images of 2.7-micron hollow silicon dioxide tracer particles inside the tube. Classical spatial autocorrelation analysis techniques were used to ascertain the acoustic particle displacements and associated velocities for various sound field intensities and frequencies. The results show that particle displacements spanning a range of 1-60 microns can be measured for incident sound pressure levels of 100-130 dB and for frequencies spanning 500-1000 Hz. The ability to resolve 1 micron particle displacements at sound pressure levels in the 100 dB range allows the use of DPIV systems for measurement of sound fields at much lower sound pressure levels than had been previously possible. Representative impedance tube data as well as an uncertainty analysis for the measurements are presented.

  6. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  7. Image Reconstruction Based on Homotopy Perturbation Inversion Method for Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2013-01-01

    Full Text Available The image reconstruction for electrical impedance tomography (EIT mathematically is a typed nonlinear ill-posed inverse problem. In this paper, a novel iteration regularization scheme based on the homotopy perturbation technique, namely, homotopy perturbation inversion method, is applied to investigate the EIT image reconstruction problem. To verify the feasibility and effectiveness, simulations of image reconstruction have been performed in terms of considering different locations, sizes, and numbers of the inclusions, as well as robustness to data noise. Numerical results indicate that this method can overcome the numerical instability and is robust to data noise in the EIT image reconstruction. Moreover, compared with the classical Landweber iteration method, our approach improves the convergence rate. The results are promising.

  8. Inverse Relation between Condition of Heart Failure and Intrathoracic Impedance Measured by Implantable Cardioverter Defibrillator—A case report—

    Directory of Open Access Journals (Sweden)

    Kohei Matsushita, MD

    2005-01-01

    Full Text Available The patient was a 78-year-old man with dilated cardiomyopathy. His cardio-thoracic ratio was 60.4% and left ventricular ejection fraction (LVEF was 33%. He had been repeatedly admitted for congestive heart failure. He underwent implantation of an implantable cardioverter-defibrillator (ICD for ventricular fibrillation. We compared the values of BNP and shock impedance stored by the ICD. The correlation coefficient (p-value between BNP and shock impedance was −0.700 (p < 0.0005, increase of BNP and shock impedance was −0.778 (p < 0.0001, percent increase of BNP and shock impedance was −0.767 (p < 0.0005. In conclusion, there is an inverse relation between BNP and shock impedance, and measurements of shock impedance may be useful in the management of congestive heart failure.

  9. Acoustic 2D full waveform inversion to solve gas cloud challenges

    Directory of Open Access Journals (Sweden)

    Srichand Prajapati

    2015-09-01

    Full Text Available The existing conventional inversion algorithm does not provide satisfactory results due to the complexity of propagated wavefield though the gas cloud. Acoustic full waveform inversion has been developed and applied to a realistic synthetic offshore shallow gas cloud feature with Student-t approach, with and without simultaneous sources encoding. As a modeling operator, we implemented the grid based finite-difference method in frequency domain using second order elastic wave equation. Jacobin operator and its adjoint provide a necessary platform for solving full waveform inversion problem in a reduced Hessian matrix. We invert gas cloud model in 5 frequency band selected from 1 to 12 Hz, each band contains 3 frequencies. The inversion results are highly sensitive to the misfit. The model allows better convergence and recovery of amplitude losses. This approach gives better resolution then the existing least-squares approach. In this paper, we implement the full waveform inversion for low frequency model with minimum number of iteration providing a better resolution of inversion results.

  10. The Mathematical Basis of the Inverse Scattering Problem for Cracks from Near-Field Data

    Directory of Open Access Journals (Sweden)

    Yao Mao

    2015-01-01

    Full Text Available We consider the acoustic scattering problem from a crack which has Dirichlet boundary condition on one side and impedance boundary condition on the other side. The inverse scattering problem in this paper tries to determine the shape of the crack and the surface impedance coefficient from the near-field measurements of the scattered waves, while the source point is placed on a closed curve. We firstly establish a near-field operator and focus on the operator’s mathematical analysis. Secondly, we obtain a uniqueness theorem for the shape and surface impedance. Finally, by using the operator’s properties and modified linear sampling method, we reconstruct the shape and surface impedance.

  11. Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors

    KAUST Repository

    Yu, Han

    2018-02-23

    A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.

  12. Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors

    Science.gov (United States)

    Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping

    2018-04-01

    A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.

  13. Experimental implementation of acoustic impedance control by a 2D network of distributed smart cells

    International Nuclear Information System (INIS)

    David, P; Collet, M; Cote, J-M

    2010-01-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. Smart structures combining large arrays of elementary motion pixels are thus being studied so that fundamental properties could be dynamically adjusted. This paper investigates the acoustical capabilities of a network of distributed transducers connected with a suitable controlling strategy. The research aims at designing an integrated active interface for sound attenuation by using suitable changes of acoustical impedance. The control strategy is based on partial differential equations (PDE) and the multiscaled physics of electromechanical elements. Specific techniques based on PDE control theory have provided a simple boundary control equation able to annihilate the reflections of acoustic waves. To experimentally implement the method, the control strategy is discretized as a first order time–space operator. The obtained quasi-collocated architecture, composed of a large number of sensors and actuators, provides high robustness and stability. The experimental results demonstrate how a well controlled active skin can substantially modify sound reflectivity of the acoustical interface and reduce the propagation of acoustic waves

  14. Experimental implementation of acoustic impedance control by a 2D network of distributed smart cells

    Science.gov (United States)

    David, P.; Collet, M.; Cote, J.-M.

    2010-03-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. Smart structures combining large arrays of elementary motion pixels are thus being studied so that fundamental properties could be dynamically adjusted. This paper investigates the acoustical capabilities of a network of distributed transducers connected with a suitable controlling strategy. The research aims at designing an integrated active interface for sound attenuation by using suitable changes of acoustical impedance. The control strategy is based on partial differential equations (PDE) and the multiscaled physics of electromechanical elements. Specific techniques based on PDE control theory have provided a simple boundary control equation able to annihilate the reflections of acoustic waves. To experimentally implement the method, the control strategy is discretized as a first order time-space operator. The obtained quasi-collocated architecture, composed of a large number of sensors and actuators, provides high robustness and stability. The experimental results demonstrate how a well controlled active skin can substantially modify sound reflectivity of the acoustical interface and reduce the propagation of acoustic waves.

  15. Bonding and impedance matching of acoustic transducers using silver epoxy.

    Science.gov (United States)

    Son, Kyu Tak; Lee, Chin C

    2012-04-01

    Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  17. Impedance analysis of subwoofer systems

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    The electrical impedance of four low-frequency loudspeaker systems is analyzed. The expression for this impedance is obtained directly from the acoustical analogous circuit. Formulas are derived for calculating the small-signal parameters from the frequencies of impedance minima and maxima of two

  18. Acoustic impedance properties of seafloor sediments off the coast of Southeastern Hainan, South China Sea

    Science.gov (United States)

    Hou, Zhengyu; Chen, Zhong; Wang, Jingqiang; Zheng, Xufeng; Yan, Wen; Tian, Yuhang; Luo, Yun

    2018-04-01

    Geoacoustic parameters are essential inputs to sediment wave propagation theories and are vital to underwater acoustic environment and explorations of the sea bottom. In this study, 21 seafloor sediment samples were collected off the coast of southeastern Hainan in the South China Sea. The sound speed was measured using a portable WSD-3 digital sonic instrument and the coaxial differential distance measurement method. Based on the measured sound speed and physical properties, the acoustic impedance and the pore-water-independent index of impedance (IOI) were calculated in this study. Similar to the sound speed, the IOI values are closely related to the sediment physical properties and change gradually from the northwest to the southeast. The relations between IOI and physical properties were studied and compared to the relations between the sound speed and physical properties. IOI is better correlated to physical properties than sound speed. This study also uses an error norm method to analyze the sensitivity of IOI to the physical parameters in the double-parameter equations and finds that the most influential physical parameters are as follows: wet bulk density > porosity > clay content > mean particle size.

  19. A spherically-shaped PZT thin film ultrasonic transducer with an acoustic impedance gradient matching layer based on a micromachined periodically structured flexible substrate.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-10-09

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20-50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a -6 dB bandwidth of approximately 65%.

  20. Inversion of full acoustic wavefield in local helioseismology: A study with synthetic data

    NARCIS (Netherlands)

    Cobden, L.J.; Tong, C.H.; Warner, M.R.

    We present the first results from the inversion of full acoustic wavefield in the helioseismic context. In contrast to time-distance helioseismology, which involves analyzing the travel times of seismic waves propagating into the solar interior, wavefield tomography models both the travel times and

  1. Impedance analysis of acupuncture points and pathways

    International Nuclear Information System (INIS)

    Teplan, Michal; Kukucka, Marek; Ondrejkovicová, Alena

    2011-01-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  2. Waveform inversion in acoustic orthorhombic media with a practical set of parameters

    KAUST Repository

    Masmoudi, Nabil; Alkhalifah, Tariq Ali

    2017-01-01

    Full-waveform inversion (FWI) in anisotropic media is overall challenging, mainly because of the large computational cost, especially in 3D, and the potential trade-offs between the model parameters needed to describe such a media. We propose an efficient 3D FWI implementation for orthorhombic anisotropy under the acoustic assumption. Our modeling is based on solving the pseudo-differential orthorhombic wave equation split into a differential operator and a scalar one. The modeling is computationally efficient and free of shear wave artifacts. Using the adjoint state method, we derive the gradients with respect to a practical set of parameters describing the acoustic orthorhombic model, made of one velocity and five dimensionless parameters. This parameterization allows us to use a multi-stage model inversion strategy based on the continuity of the scattering potential of the parameters as we go from higher symmetry anisotropy to lower ones. We apply the proposed approach on a modified SEG-EAGE overthrust synthetic model. The quality of the inverted model suggest that we may recover only 4 parameters, with different resolution scales depending on the scattering potential of these parameters.

  3. Waveform inversion in acoustic orthorhombic media with a practical set of parameters

    KAUST Repository

    Masmoudi, Nabil

    2017-08-17

    Full-waveform inversion (FWI) in anisotropic media is overall challenging, mainly because of the large computational cost, especially in 3D, and the potential trade-offs between the model parameters needed to describe such a media. We propose an efficient 3D FWI implementation for orthorhombic anisotropy under the acoustic assumption. Our modeling is based on solving the pseudo-differential orthorhombic wave equation split into a differential operator and a scalar one. The modeling is computationally efficient and free of shear wave artifacts. Using the adjoint state method, we derive the gradients with respect to a practical set of parameters describing the acoustic orthorhombic model, made of one velocity and five dimensionless parameters. This parameterization allows us to use a multi-stage model inversion strategy based on the continuity of the scattering potential of the parameters as we go from higher symmetry anisotropy to lower ones. We apply the proposed approach on a modified SEG-EAGE overthrust synthetic model. The quality of the inverted model suggest that we may recover only 4 parameters, with different resolution scales depending on the scattering potential of these parameters.

  4. Forward and inverse problems for surface acoustic waves in anisotropic media: A Ritz-Rayleigh method based approach

    Czech Academy of Sciences Publication Activity Database

    Stoklasová, Pavla; Sedlák, Petr; Seiner, Hanuš; Landa, Michal

    2015-01-01

    Roč. 56, February 2015 (2015), s. 381-389 ISSN 0041-624X R&D Projects: GA ČR GPP101/12/P428 Institutional support: RVO:61388998 Keywords : surface acoustic waves * anisotropic materials * Ritz-Rayleigh method * inverse problem Subject RIV: BI - Acoustics Impact factor: 1.954, year: 2015 http://www.sciencedirect.com/science/article/pii/S0041624X14002686

  5. Waterfall notch-filtering for restoration of acoustic backscatter records from Admiralty Bay, Antarctica

    Science.gov (United States)

    Fonseca, Luciano; Hung, Edson Mintsu; Neto, Arthur Ayres; Magrani, Fábio José Guedes

    2018-06-01

    A series of multibeam sonar surveys were conducted from 2009 to 2013 around Admiralty Bay, Shetland Islands, Antarctica. These surveys provided a detailed bathymetric model that helped understand and characterize the bottom geology of this remote area. Unfortunately, the acoustic backscatter records registered during these bathymetric surveys were heavily contaminated with noise and motion artifacts. These artifacts persisted in the backscatter records despite the fact that the proper acquisition geometry and the necessary offsets and delays were applied during the survey and in post-processing. These noisy backscatter records were very difficult to interpret and to correlate with gravity-core samples acquired in the same area. In order to address this issue, a directional notch-filter was applied to the backscatter waterfall in the along-track direction. The proposed filter provided better estimates for the backscatter strength of each sample by considerably reducing residual motion artifacts. The restoration of individual samples was possible since the waterfall frame of reference preserves the acquisition geometry. Then, a remote seafloor characterization procedure based on an acoustic model inversion was applied to the restored backscatter samples, generating remote estimates of acoustic impedance. These remote estimates were compared to Multi Sensor Core Logger measurements of acoustic impedance obtained from gravity core samples. The remote estimates and the Core Logger measurements of acoustic impedance were comparable when the shallow seafloor was homogeneous. The proposed waterfall notch-filtering approach can be applied to any sonar record, provided that we know the system ping-rate and sampling frequency.

  6. Transition section for acoustic waveguides

    International Nuclear Information System (INIS)

    Karplus, H.H.B.

    1975-01-01

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation

  7. Characterization of full set material constants of piezoelectric materials based on ultrasonic method and inverse impedance spectroscopy using only one sample.

    Science.gov (United States)

    Li, Shiyang; Zheng, Limei; Jiang, Wenhua; Sahul, Raffi; Gopalan, Venkatraman; Cao, Wenwu

    2013-09-14

    The most difficult task in the characterization of complete set material properties for piezoelectric materials is self-consistency. Because there are many independent elastic, dielectric, and piezoelectric constants, several samples are needed to obtain the full set constants. Property variation from sample to sample often makes the obtained data set lack of self-consistency. Here, we present a method, based on pulse-echo ultrasound and inverse impedance spectroscopy, to precisely determine the full set physical properties of piezoelectric materials using only one small sample, which eliminated the sample to sample variation problem to guarantee self-consistency. The method has been applied to characterize the [001] C poled Mn modified 0.27Pb(In 1/2 Nb 1/2 )O 3 -0.46Pb(Mg 1/3 Nb 2/3 )O 3 -0.27PbTiO 3 single crystal and the validity of the measured data is confirmed by a previously established method. For the inverse calculations using impedance spectrum, the stability of reconstructed results is analyzed by fluctuation analysis of input data. In contrast to conventional regression methods, our method here takes the full advantage of both ultrasonic and inverse impedance spectroscopy methods to extract all constants from only one small sample. The method provides a powerful tool for assisting novel piezoelectric materials of small size and for generating needed input data sets for device designs using finite element simulations.

  8. 3-D acoustic waveform simulation and inversion supplemented by infrasound sensors on a tethered weather balloon at Yasur Volcano, Vanuatu

    Science.gov (United States)

    Iezzi, A. M.; Fee, D.; Matoza, R. S.; Jolly, A. D.; Kim, K.; Christenson, B. W.; Johnson, R.; Kilgour, G.; Garaebiti, E.; Austin, A.; Kennedy, B.; Fitzgerald, R.; Gomez, C.; Key, N.

    2017-12-01

    Well-constrained acoustic waveform inversion can provide robust estimates of erupted volume and mass flux, increasing our ability to monitor volcanic emissions (potentially in real-time). Previous studies have made assumptions about the multipole source mechanism, which can be represented as the combination of pressure fluctuations from a volume change, directionality, and turbulence. The vertical dipole has not been addressed due to ground-based recording limitations. In this study we deployed a high-density seismo-acoustic network around Yasur Volcano, Vanuatu, including multiple acoustic sensors along a tethered balloon that was moved every 15-60 minutes. Yasur has frequent strombolian eruptions every 1-4 minutes from any one of three active vents within a 400 m diameter crater. Our experiment captured several explosions from each vent at 38 tether locations covering 200 in azimuth and a take-off range of 50 (Jolly et. al., in review). Additionally, FLIR, FTIR, and a variety of visual imagery were collected during the deployment to aid in the seismo-acoustic interpretations. The third dimension (vertical) of pressure sensor coverage allows us to more completely constrain the acoustic source. Our analysis employs Finite-Difference Time-Domain (FDTD) modeling to obtain the full 3-D Green's functions for each propagation path. This method, following Kim et al. (2015), takes into account realistic topographic scattering based on a high-resolution digital elevation model created using structure-from-motion techniques. We then invert for the source location and multipole source-time function using a grid-search approach. We perform this inversion for multiple events from vents A and C to examine the source characteristics of the vents, including an infrasound-derived volume flux as a function of time. These volumes fluxes are then compared to those derived independently from geochemical and seismic inversion techniques. Jolly, A., Matoza, R., Fee, D., Kennedy, B

  9. Acoustic source for generating an acoustic beam

    Science.gov (United States)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  10. A bio-electromechanical imaging technique with combined electrical impedance and ultrasound tomography

    International Nuclear Information System (INIS)

    Steiner, G; Watzenig, D; Soleimani, M

    2008-01-01

    Electrical impedance tomography (EIT) seeks to image the electrical conductivity of an object using electrical impedance measurement data at its periphery. Ultrasound reflection tomography (URT) is an imaging modality that is able to generate images of mechanical properties of the object in terms of acoustic impedance changes. Both URT and EIT have the potential to be used in various medical applications. In this paper we focus on breast tumour detection. Both URT and EIT belong to soft field tomography and suffer from the small amounts of available data and the inherently ill-posed nature of the inverse problems. These facts result in limited achievable reconstruction accuracy and resolution. A dual bio-electromechanical tomography system using ultrasound and electrical tomography is proposed in this paper to improve the detection of the small-size tumour. Data fusion techniques are implemented to combine the EIT/URT data. Based on simulations, we demonstrate the improvement of detection of small size anomalies and improved depth detection compared to single modality soft field tomography

  11. Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar

    Science.gov (United States)

    Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.

    2017-12-01

    Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater

  12. Matching Impedances and Modes in Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.

    1985-01-01

    Temperature differences accommodated with tunable coupler. Report discusses schemes for coupling sound efficiently from cool outside atmosphere into hot acoustic-levitation chamber. Theoretical studies have practical implications for material-processing systems that employ acoustic levitation.

  13. The acoustic field of a point source in a uniform boundary layer over an impedance plane

    Science.gov (United States)

    Zorumski, W. E.; Willshire, W. L., Jr.

    1986-01-01

    The acoustic field of a point source in a boundary layer above an impedance plane is investigated anatytically using Obukhov quasi-potential functions, extending the normal-mode theory of Chunchuzov (1984) to account for the effects of finite ground-plane impedance and source height. The solution is found to be asymptotic to the surface-wave term studies by Wenzel (1974) in the limit of vanishing wind speed, suggesting that normal-mode theory can be used to model the effects of an atmospheric boundary layer on infrasonic sound radiation. Model predictions are derived for noise-generation data obtained by Willshire (1985) at the Medicine Bow wind-turbine facility. Long-range downwind propagation is found to behave as a cylindrical wave, with attention proportional to the wind speed, the boundary-layer displacement thickness, the real part of the ground admittance, and the square of the frequency.

  14. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    International Nuclear Information System (INIS)

    Grasland-Mongrain, Pol; Destrempes, François; Cloutier, Guy; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril

    2015-01-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging. (paper)

  15. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    Science.gov (United States)

    Grasland-Mongrain, Pol; Destrempes, François; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-05-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging.

  16. Graphical Acoustic Liner Design and Analysis Tool

    Science.gov (United States)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  17. Estimation of Gas Hydrate Saturation Using Constrained Sparse Spike Inversion: Case Study from the Northern South China Sea

    Directory of Open Access Journals (Sweden)

    Xiujuan Wang

    2006-01-01

    Full Text Available Bottom-simulating reflectors (BSRs were observed beneath the seafloor in the northern continental margin of the South China Sea (SCS. Acoustic impedance profile was derived by Constrained Sparse Spike Inversion (CSSI method to provide information on rock properties and to estimate gas hydrate or free gas saturations in the sediments where BSRs are present. In general, gas hydrate-bearing sediments have positive impedance anomalies and free gas-bearing sediments have negative impedance anomalies. Based on well log data and Archie's equation, gas hydrate saturation can be estimated. But in regions where well log data is not available, a quantitative estimate of gas hydrate or free gas saturation is inferred by fitting the theoretical acoustic impedance to sediment impedance obtained by CSSI. Our study suggests that gas hydrate saturation in the Taixinan Basin is about 10 - 20% of the pore space, with the highest value of 50%, and free gas saturation below BSR is about 2 - 3% of the pore space, that can rise to 8 - 10% at a topographic high. The free gas is non-continuous and has low content in the southeastern slope of the Dongsha Islands. Moreover, BSR in the northern continental margin of the SCS is related to the presence of free gas. BSR is strong where free gas occurs.

  18. Transition operators in acoustic-wave diffraction theory. I - General theory. II - Short-wavelength behavior, dominant singularities of Zk0 and Zk0 exp -1

    Science.gov (United States)

    Hahne, G. E.

    1991-01-01

    A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.

  19. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    Science.gov (United States)

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A comparison of inverse boundary element method and near-field acoustical holography

    DEFF Research Database (Denmark)

    Schuhmacher, Andreas; Hald, Jørgen; Saemann, E.-U.

    1999-01-01

    An inverse boundary element method (IBEM) is used to estimate the surface velocity of a rolling tyre from measurements of the near-field pressure. Subsequently, the sound pressure is calculated over a finite plane surface next to the tyre from the reconstructed velocity field on the tyre surface........ In order to verify the reconstruction process, part of the measurement data is used together with Near-Field Acoustical Holography (NAH). Estimated distributions of sound pressure and particle velocity over a plane surface obtained from the two methods are compared....

  1. The direct and inverse problems of an air-saturated poroelastic cylinder submitted to acoustic radiation

    Directory of Open Access Journals (Sweden)

    Erick Ogam

    2011-09-01

    Full Text Available A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory (MBT and plane-wave decomposition using orthogonal cylindrical functions is developed. The model is employed to recover from real data acquired in an anechoic chamber, the poromechanical properties of a soft cellular melamine cylinder submitted to an audible acoustic radiation. The inverse problem of acoustic diffraction is solved by constructing the objective functional given by the total square of the difference between predictions from the MBT interaction model and diffracted field data from experiment. The faculty of retrieval of the intrinsic poromechanical parameters from the diffracted acoustic fields, indicate that a wave initially propagating in a light fluid (air medium, is able to carry in the absence of mechanical excitation of the specimen, information on the macroscopic mechanical properties which depend on the microstructural and intrinsic properties of the solid phase.

  2. A robust probabilistic approach for variational inversion in shallow water acoustic tomography

    International Nuclear Information System (INIS)

    Berrada, M; Badran, F; Crépon, M; Thiria, S; Hermand, J-P

    2009-01-01

    This paper presents a variational methodology for inverting shallow water acoustic tomography (SWAT) measurements. The aim is to determine the vertical profile of the speed of sound c(z), knowing the acoustic pressures generated by a frequency source and collected by a sparse vertical hydrophone array (VRA). A variational approach that minimizes a cost function measuring the distance between observations and their modeled equivalents is used. A regularization term in the form of a quadratic restoring term to a background is also added. To avoid inverting the variance–covariance matrix associated with the above-weighted quadratic background, this work proposes to model the sound speed vector using probabilistic principal component analysis (PPCA). The PPCA introduces an optimum reduced number of non-correlated latent variables η, which determine a new control vector and a new regularization term, expressed as η T η. The PPCA represents a rigorous formalism for the use of a priori information and allows an efficient implementation of the variational inverse method

  3. Reconstruction Methods for Inverse Problems with Partial Data

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer

    This thesis presents a theoretical and numerical analysis of a general mathematical formulation of hybrid inverse problems in impedance tomography. This includes problems from several existing hybrid imaging modalities such as Current Density Impedance Imaging, Magnetic Resonance Electrical...... Impedance Tomography, and Ultrasound Modulated Electrical Impedance Tomography. After giving an introduction to hybrid inverse problems in impedance tomography and the mathematical tools that facilitate the related analysis, we explain in detail the stability properties associated with the classification...... of a linearised hybrid inverse problem. This is done using pseudo-differential calculus and theory for overdetermined boundary value problem. Using microlocal analysis we then present novel results on the propagation of singularities, which give a precise description of the distinct features of solutions...

  4. Laboratory scale tests of electrical impedence tomography

    International Nuclear Information System (INIS)

    Binley, A; Daily, W; LaBredcque, D; Ramirez, A.

    1998-01-01

    Electrical impedance tomographs (magnitude and phase) of known, laboratory-scale targets are reported. Three methods are used to invert electrical impedance data and their tomographs compared. The first method uses an electrical resistance tomography (ERT) algonthm (designed for DC resistivity inversion) to perform impedance magnitude inversion and a linearized perturbation approach (PA) to invert the imaginary part. The second approximate method compares ERT magnitude inversions at two frequencies and uses the frequency effect (FE) to compute phase tomographs. The third approach, electrrcal impedance tomography (EIT), employs fully complex algebra to account for the real and imaginary components of electrical impedance data. The EIT approach provided useful magnitude and phase images for the frequency range of 0.0625 to 64 Hz; images for higher frequencies were not reliable. Comparisons of the ERT and EIT magnitude images show that both methods provided equivalent results for the water blank, copper rod and PVC rod targets. The EIT magnitude images showed better spatial resolutron for a sand-lead mixture target. Phase images located anomalies of both high and low contrast IP and provided better spatial resolution than the magnitude images. When IP was absent from the data, the EIT algorithm reconstructed phase values consistent with the data noise levels

  5. Iterative and range test methods for an inverse source problem for acoustic waves

    International Nuclear Information System (INIS)

    Alves, Carlos; Kress, Rainer; Serranho, Pedro

    2009-01-01

    We propose two methods for solving an inverse source problem for time-harmonic acoustic waves. Based on the reciprocity gap principle a nonlinear equation is presented for the locations and intensities of the point sources that can be solved via Newton iterations. To provide an initial guess for this iteration we suggest a range test algorithm for approximating the source locations. We give a mathematical foundation for the range test and exhibit its feasibility in connection with the iteration method by some numerical examples

  6. Compressible turbulent channel flow with impedance boundary conditions

    Science.gov (United States)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.

    2015-03-01

    We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with

  7. Concentric artificial impedance surface for directional sound beamforming

    Directory of Open Access Journals (Sweden)

    Kyungjun Song

    2017-03-01

    Full Text Available Utilizing acoustic metasurfaces consisting of subwavelength resonant textures, we design an artificial impedance surface by creating a new boundary condition. We demonstrate a circular artificial impedance surface with surface impedance modulation for directional sound beamforming in three-dimensional space. This artificial impedance surface is implemented by revolving two-dimensional Helmholtz resonators with varying internal coiled path. Physically, the textured surface has inductive surface impedance on its inner circular patterns and capacitive surface impedance on its outer circular patterns. Directional receive beamforming can be achieved using an omnidirectional microphone located at the focal point formed by the gradient-impeding surface. In addition, the uniaxial surface impedance patterning inside the circular aperture can be used for steering the direction of the main lobe of the radiation pattern.

  8. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Science.gov (United States)

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  9. A Numerical Theory for Impedance Education in Three-Dimensional Normal Incidence Tubes

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2016-01-01

    A method for educing the locally-reacting acoustic impedance of a test sample mounted in a 3-D normal incidence impedance tube is presented and validated. The unique feature of the method is that the excitation frequency (or duct geometry) may be such that high-order duct modes may exist. The method educes the impedance, iteratively, by minimizing an objective function consisting of the difference between the measured and numerically computed acoustic pressure at preselected measurement points in the duct. The method is validated on planar and high-order mode sources with data synthesized from exact mode theory. These data are then subjected to random jitter to simulate the effects of measurement uncertainties on the educed impedance spectrum. The primary conclusions of the study are 1) Without random jitter the method is in excellent agreement with that for known impedance samples, and 2) Random jitter that is compatible to that found in a typical experiment has minimal impact on the accuracy of the educed impedance.

  10. Limitations of the acoustic approximation for seismic crosshole tomography

    Science.gov (United States)

    Marelli, Stefano; Maurer, Hansruedi

    2010-05-01

    Modelling and inversion of seismic crosshole data is a challenging task in terms of computational resources. Even with the significant increase in power of modern supercomputers, full three-dimensional elastic modelling of high-frequency waveforms generated from hundreds of source positions in several boreholes is still an intractable task. However, it has been recognised that full waveform inversion offers substantially more information compared with traditional travel time tomography. A common strategy to reduce the computational burden for tomographic inversion is to approximate the true elastic wave propagation by acoustic modelling. This approximation assumes that the solid rock units can be treated like fluids (with no shear wave propagation) and is generally considered to be satisfactory so long as only the earliest portions of the recorded seismograms are considered. The main assumption is that most of the energy in the early parts of the recorded seismograms is carried by the faster compressional (P-) waves. Although a limited number of studies exist on the effects of this approximation for surface/marine synthetic reflection seismic data, and show it to be generally acceptable for models with low to moderate impedance contrasts, to our knowledge no comparable studies have been published on the effects for cross-borehole transmission data. An obvious question is whether transmission tomography should be less affected by elastic effects than surface reflection data when only short time windows are applied to primarily capture the first arriving wavetrains. To answer this question we have performed 2D and 3D investigations on the validity of the acoustic approximation for an elastic medium and using crosshole source-receiver configurations. In order to generate consistent acoustic and elastic data sets, we ran the synthetic tests using the same finite-differences time-domain elastic modelling code for both types of simulations. The acoustic approximation was

  11. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai; Xiao, Bingmu; Wu, Ying

    2014-01-01

    and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  12. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    DEFF Research Database (Denmark)

    Augustsson, Per; Karlsen, Jonas Tobias; Su, Hao-Wei

    2016-01-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance...... of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide...... theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic...

  13. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    Science.gov (United States)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  14. Propagation of singularities for linearised hybrid data impedance tomography

    DEFF Research Database (Denmark)

    Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim

    2017-01-01

    For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non-elliptic con......For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non...

  15. Computational study on full-wave inversion based on the acoustic wave-equation; Onkyoha hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan); Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-01

    The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.

  16. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-01-01

    -domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original

  17. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping.

    Science.gov (United States)

    Augustsson, Per; Karlsen, Jonas T; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-05-16

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.

  18. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  19. Auto-identification of engine fault acoustic signal through inverse trigonometric instantaneous frequency analysis

    Directory of Open Access Journals (Sweden)

    Dayong Ning

    2016-03-01

    Full Text Available The acoustic signals of internal combustion engines contain valuable information about the condition of engines. These signals can be used to detect incipient faults in engines. However, these signals are complex and composed of a faulty component and other noise signals of background. As such, engine conditions’ characteristics are difficult to extract through wavelet transformation and acoustic emission techniques. In this study, an instantaneous frequency analysis method was proposed. A new time–frequency model was constructed using a fixed amplitude and a variable cycle sine function to fit adjacent points gradually from a time domain signal. The instantaneous frequency corresponds to single value at any time. This study also introduced instantaneous frequency calculation on the basis of an inverse trigonometric fitting method at any time. The mean value of all local maximum values was then considered to identify the engine condition automatically. Results revealed that the mean of local maximum values under faulty conditions differs from the normal mean. An experiment case was also conducted to illustrate the availability of the proposed method. Using the proposed time–frequency model, we can identify engine condition and determine abnormal sound produced by faulty engines.

  20. Detailed geological characterisation from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Peter Hatherly; Binzhong Zhou; Troy Peters; Milovan Urosevic [CRC Mining (Australia)

    2009-02-15

    The use of seismic reflection surveying continues to grow within Australia's underground coal mining regions of the Sydney and Bowen Basins. For this project, the potential for acoustic impedance inversion to complement the information available from conventional seismic surveys was investigated. Acoustic impedance is defined by the product of seismic P-wave velocity and rock density. The methods of seismic inversion have been developed mainly for the investigation of petroleum reservoirs. Commercial software packages are available and for this project we utilised the Hampson and Russell software available at Curtin University of Technology. For the true amplitude processing of the seismic data, the Promax software operated at Velseis Processing was used. Inversions were undertaken for three 3D seismic surveys and two 2D surveys. The sites were at Grasstree and North Goonyella Mines in the Bowen Basin and at West Cliff and Dendrobium Collieries in the Sydney Basin. An empirical relationship was derived between acoustic impedance and the newly developed Geophysical Strata Rating (GSR). This allows impedance values to be converted into GSR values that have more meaning in geotechnical assessment. To obtain satisfactory inversions, we used the model based approach.

  1. Loudspeaker impedance emulator for multi resonant systems

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold

    2015-01-01

    Specifying the performance of audio amplifiers is typically done by playing sine waves into a pure ohmic load. However real loudspeaker impedances are not purely ohmic but characterised by its electrical, mechanical and acoustical properties. Therefore a loudspeaker emulator capable of adjusting...... its impedance to that of a given loudspeaker is desired for measurement purposes. An adjustable RLC based emulator is implemented with switch controlled capacitors, air gap controlled inductors and potentiometers. Calculations and experimental results are compared and show that it is possible...... to emulate the loudspeaker impedance infinite baffle-, closed box- and the multi resonant vented box-loudspeaker by tuning the component values in the proposed circuit. Future work is outlined and encourage that the proposed impedance emulator is used as part of a control circuit in a switch-mode based...

  2. An efficient Helmholtz solver for acoustic transversely isotropic media

    KAUST Repository

    Wu, Zedong

    2017-11-11

    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  3. An efficient Helmholtz solver for acoustic transversely isotropic media

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2017-01-01

    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  4. Toward wideband steerable acoustic metasurfaces with arrays of active electroacoustic resonators

    Science.gov (United States)

    Lissek, Hervé; Rivet, Etienne; Laurence, Thomas; Fleury, Romain

    2018-03-01

    We introduce an active concept for achieving acoustic metasurfaces with steerable reflection properties, effective over a wide frequency band. The proposed active acoustic metasurface consists of a surface array of subwavelength loudspeaker diaphragms, each with programmable individual active acoustic impedances allowing for local control over the different reflection phases over the metasurface. The active control framework used for controlling the reflection phase over the metasurface is derived from the Active Electroacoustic Resonator concept. Each unit-cell simply consists of a current-driven electrodynamic loudspeaker in a closed box, whose acoustic impedance at the diaphragm is judiciously adjusted by connecting an active electrical control circuit. The control is known to achieve a wide variety of acoustic impedances on a single loudspeaker diaphragm used as an acoustic resonator, with the possibility to shift its resonance frequency by more than one octave. This paper presents a methodology for designing such active metasurface elements. An experimental validation of the achieved individual reflection coefficients is presented, and full wave simulations present a few examples of achievable reflection properties, with a focus on the bandwidth of operation of the proposed control concept.

  5. Simultaneous reconstruction of shape and generalized impedance functions in electrostatic imaging

    International Nuclear Information System (INIS)

    Cakoni, Fioralba; Hu, Yuqing; Kress, Rainer

    2014-01-01

    Determining the geometry and the physical nature of an inclusion within a conducting medium from voltage and current measurements on the accessible boundary of the medium can be modeled as an inverse boundary value problem for the Laplace equation subject to appropriate boundary conditions on the inclusion. We continue the investigations on the particular inverse problem with a generalized impedance condition started in Cakoni and Kress (2013 Inverse Problems 29 015005) by presenting an inverse algorithm for the simultaneous reconstruction of both the shape of the inclusion and the two impedance functions via a boundary integral equation approach. In addition to describing the reconstruction algorithm and illustrating its feasibility by numerical examples we also provide some extensions to the uniqueness results in Cakoni and Kress (2013 Inverse Problems 29 015005). (paper)

  6. Transmission characteristics of acoustic amplifier in thermoacoustic engine

    International Nuclear Information System (INIS)

    Sun Daming; Qiu Limin; Wang Bo; Xiao Yong

    2008-01-01

    Thermoacoustic engines are promising in practical applications for the merits of simple configuration, reliable operation and environmentally friendly working gas. An acoustic amplifier can increase the output pressure amplitude of a thermoacoustic engine (TE) and improve the matching between the engine and its load. In order to make full use of an acoustic amplifier, the transmission characteristics are studied based on linear thermoacoustic theory. Computational and experimental results show that the amplifying ability of an acoustic amplifier is mainly determined by its geometry parameters and output resistance impedance. The amplifying ability of an acoustic amplifier with appropriate length and diameter reaches its maximum when the output resistance impedance is infinite. It is also shown that the acoustic amplifier consumes an amount of acoustic power when amplifying pressure amplitude and the acoustic power consumption increases with amplifying ratio. Furthermore, a novel cascade acoustic amplifier is proposed, which has a much stronger amplifying ability with reduced acoustic power consumption. In experiments, a two-stage cascade acoustic amplifier amplifies the pressure ratio from 1.177 to 1.62 and produces a pressure amplitude of 0.547 MPa with nitrogen of 2.20 MPa as working gas. Good agreements are obtained between the theoretical analysis and experimental results. This research is instructive for comprehensively understanding the mechanism and making full use of the acoustic amplifier

  7. Acoustic Green's function extraction in the ocean

    Science.gov (United States)

    Zang, Xiaoqin

    that can result in coherence loss and undermine the utility of coherent stacking. The third one is the downward refracting sound speed profile, which impedes strong coupling between near surface noise sources and the near-bottom instruments. The active method of inverse filter processing was tested in a long-range deep-ocean environment. The high-power sound source, which was located near the sound channel axis, transmitted a pre-designed signal that was composed of a precursor signal and a communication signal. After traveling 1428.5 km distance in the north Pacific Ocean, the transmitted signal was detected by the receiver and was processed using the inverse filter. The probe signal, which was composed of M sequences and was known at the receiver, was utilized for the GF extraction in the inverse filter; the communication signal was then interpreted with the extracted GF. With a glitch in the length of communication signal, the inverse filter processing method was shown to be effective for long-range low-frequency deep ocean acoustic communication. (Abstract shortened by ProQuest.).

  8. The Microflown, an acoustic particle velocity sensor

    NARCIS (Netherlands)

    de Bree, H.E.

    2003-01-01

    The Microflown is an acoustic sensor directly measuring particle velocity instead of sound pressure, which is usually measured by conventional microphones. Since its invention in 1994 it is mostly used for measurement purposes (broadband1D and 3D-sound intensity measurement and acoustic impedance).

  9. Acoustic transmittance of an aperiodic deterministic multilayer structure

    International Nuclear Information System (INIS)

    Madrigal-Melchor, J; Enciso-Muñoz, A; Contreras-Solorio, D A

    2013-01-01

    We study theoretically the acoustic transmission for a multilayer structure where the characteristic acoustic impedance follows the values generated by the self-similar sequence called the 1 s counting sequence . The transmission spectrum shows clearly self-similarity characteristics.

  10. Multi-parameter Full-waveform Inversion for Acoustic VTI Medium with Surface Seismic Data

    Science.gov (United States)

    Cheng, X.; Jiao, K.; Sun, D.; Huang, W.; Vigh, D.

    2013-12-01

    Full-waveform Inversion (FWI) attracts wide attention recently in oil and gas industry as a new promising tool for high resolution subsurface velocity model building. While the traditional common image point gather based tomography method aims to focus post-migrated data in depth domain, FWI aims to directly fit the observed seismic waveform in either time or frequency domain. The inversion is performed iteratively by updating the velocity fields to reduce the difference between the observed and the simulated data. It has been shown the inversion is very sensitive to the starting velocity fields, and data with long offsets and low frequencies is crucial for the success of FWI to overcome this sensitivity. Considering the importance of data with long offsets and low frequencies, in most geologic environment, anisotropy is an unavoidable topic for FWI especially at long offsets, since anisotropy tends to have more pronounced effects on waves traveled for a great distance. In VTI medium, this means more horizontal velocity will be registered in middle-to-long offset data, while more vertical velocity will be registered in near-to-middle offset data. Up to date, most of real world applications of FWI still remain in isotropic medium, and only a few studies have been shown to account for anisotropy. And most of those studies only account for anisotropy in waveform simulation, but not invert for those anisotropy fields. Multi-parameter inversion for anisotropy fields, even in VTI medium, remains as a hot topic in the field. In this study, we develop a strategy for multi-parameter FWI for acoustic VTI medium with surface seismic data. Because surface seismic data is insensitivity to the delta fields, we decide to hold the delta fields unchanged during our inversion, and invert only for vertical velocity and epsilon fields. Through parameterization analysis and synthetic tests, we find that it is more feasible to invert for the parameterization as vertical and horizontal

  11. A study of acoustic-to-articulatory inversion of speech by analysis-by-synthesis using chain matrices and the Maeda articulatory model

    Science.gov (United States)

    Panchapagesan, Sankaran; Alwan, Abeer

    2011-01-01

    In this paper, a quantitative study of acoustic-to-articulatory inversion for vowel speech sounds by analysis-by-synthesis using the Maeda articulatory model is performed. For chain matrix calculation of vocal tract (VT) acoustics, the chain matrix derivatives with respect to area function are calculated and used in a quasi-Newton method for optimizing articulatory trajectories. The cost function includes a distance measure between natural and synthesized first three formants, and parameter regularization and continuity terms. Calibration of the Maeda model to two speakers, one male and one female, from the University of Wisconsin x-ray microbeam (XRMB) database, using a cost function, is discussed. Model adaptation includes scaling the overall VT and the pharyngeal region and modifying the outer VT outline using measured palate and pharyngeal traces. The inversion optimization is initialized by a fast search of an articulatory codebook, which was pruned using XRMB data to improve inversion results. Good agreement between estimated midsagittal VT outlines and measured XRMB tongue pellet positions was achieved for several vowels and diphthongs for the male speaker, with average pellet-VT outline distances around 0.15 cm, smooth articulatory trajectories, and less than 1% average error in the first three formants. PMID:21476670

  12. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    Science.gov (United States)

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.

  13. The effect of vocal tract impedance on the vocal folds

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Selamtzis, Andreas

    2011-01-01

    frontend is used to measure the electroglottograph signal which reflects the opening and closing pattern of the vocal folds. The measurements were carried out for all four modes (Neutral, Curbing, Overdrive and Edge) for the vowel [a] in three different pitches: C3(131 Hz), G3 (196 Hz) and C4 (262Hz......The importance of the interaction between the acoustic impedance of the vocal tract with the flow across the vocal cords is well established. In this paper we are investigating the changes in vocal tract impedance when using the different modes of phonation according to Sadolin [1], going from...... the soft levels of the Neutral mode to the high levels of the fully ‘metallic’ Edge mode. The acoustic impedance of vocal tract as seen from the mouth opening is measured via a microphone placed close to the mouth when exciting the system with a volume velocity source [2]. At the same time a Laryngograph...

  14. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam

    2018-03-13

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  15. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam; Zhao, Jiajun; Prather, Wayne E.; Wu, Ying; Zhang, Likun

    2018-01-01

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  16. Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method

    Science.gov (United States)

    Alekseev, G.; Tokhtina, A.; Soboleva, O.

    2017-10-01

    Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.

  17. Stabilizing inverse problems by internal data

    KAUST Repository

    Kuchment, Peter; Steinhauer, Dustin

    2012-01-01

    Several newly developing hybrid imaging methods (e.g., those combining electrical impedance or optical imaging with acoustics) enable one to obtain some auxiliary interior information (usually some combination of the electrical conductivity

  18. Validation of Standing Wave Liner Impedance Measurement Method, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hersh Acoustical Engineering, Inc. proposes to establish the feasibility and practicality of using the Standing Wave Method (SWM) to measure the impedance of...

  19. Theoretical Model of Acoustic Wave Propagation in Shallow Water

    Directory of Open Access Journals (Sweden)

    Kozaczka Eugeniusz

    2017-06-01

    Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.

  20. Inverse logarithmic potential problem

    CERN Document Server

    Cherednichenko, V G

    1996-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  1. Acoustics of the piezo-electric pressure probe

    Science.gov (United States)

    Dutt, G. S.

    1974-01-01

    Acoustical properties of a piezoelectric device are reported for measuring the pressure in the plasma flow from an MPD arc. A description and analysis of the acoustical behavior in a piezoelectric probe is presented for impedance matching and damping. The experimental results are presented in a set of oscillographic records.

  2. SU-E-T-14: A Comparative Study Between Forward and Inverse Planning in Gamma Knife Radiosurgery for Acoustic Neuroma Tumours

    Energy Technology Data Exchange (ETDEWEB)

    Gopishankar, N; Agarwal, Priyanka; Bisht, Raj Kishor; Kale, S S; Rath, G K; Chander, S; Sharma, B S [All India Institute of Medical Sciences, New Delhi (India)

    2015-06-15

    Purpose: To evaluate forward and inverse planning methods for acoustic neuroma cases treated in Gamma Knife Perfexion. Methods: Five patients with acoustic neuroma tumour abutting brainstem were planned twice in LGP TPS (Version 10.1) using TMR10 algorithm. First plan was entirely based on forward planning (FP) in which each shot was chosen manually. Second plan was generated using inverse planning (IP) for which planning parameters like coverage, selectivity, gradient index (GI) and beam-on time threshold were set. Number of shots in IP was automatically selected by objective function using iterative process. In both planning methods MRI MPRAGE sequence images were used for tumour localization and planning. A planning dose of 12Gy at 50% isodose level was chosen. Results and Discussion: Number of shots used in FP was greater than IP and beam-on time in FP was in average 1.4 times more than IP. One advantage of FP was that the brainstem volume subjected to 6Gy dose (25% isodose) was less in FP than IP. Our results showed use of more number of shots as in FP results in GI less than or equal to 2.55 which is close to its lower limit. Dose homogeneity index (DHI) analysis of FP and IP showed average values of 0.59 and 0.67 respectively. General trend in GK for planning in acoustic neuroma cases is to use small collimator shots to avoid dose to adjacent critical structures. More number of shots and prolonged treatment time causes inconvenience to the patients. Similarly overuse of automatic shot shaping as in IP results in increased scatter dose. A compromise is required in shot selection for these cases. Conclusion: IP method could be used in acoustic neuroma cases to decrease treatment time provided the source sector openings near brainstem are shielded or adjusted appropriately to reduce brainstem dose.

  3. Stochastic modelling of porosity using seismic impedances on a volume of chalk in the Dan Field

    Energy Technology Data Exchange (ETDEWEB)

    Vejbaek, O.V.

    1995-12-31

    Seismic impedances calculated from logs show very good correlation to log porosities in wells penetrating the chalk reservoir in the Dan Field, Danish North Sea. This is the basis for an attempt to use seismic impedances derived from inversion as soft data for geostatistical reservoir characterization. The study focusses on porosity description of the Maastrichtian chalk reservoir unit, laterally restricted to an area covered by a subset of a 3D seismic survey. This seismic volume was inverted using the ISIS software producing a volume of seismic impedances. Spatial porosity realizations are produced using a gaussian collocated co-simulation algorithm, where well log porosities constitute the hard data input and seismic impedances are the soft data input. The simulated volume measures 1400 m x 1525 m x 102 m and is oriented parallel to lines and cross lines in the seismic dataset. Simulated blocks measures 25 m x 25 m x 6 m equivalent to twice the line and trace spacing, and approximately equivalent to the seismic sample rate. The correlation coefficient between log porosities and impedances calculated from logs alone are shown to be misleading since they suggest unrealistic high coefficients. However, the actual data used, namely inversion derived impedances and log porosities, still show correlation coefficients in the order of -0,45, which is quite sufficient to make the inversion results very useful. It is remarkable that the calculated correlation coefficient is based on 15 wells, and the inversion is based on only one well. The negative correlation coefficient indicate that high impedances correspond to low porosities and vice-versa. The impedance data indicate the level of average porosities at locations between wells. The fine structure is produced by the geostatistic process, with averages constrained by seismic impedances. The seismic impedances derived from the inversion process are thus shown to constitute useful primary data to constrain reservoir

  4. Outdoor Acoustics as a General Discipline

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1999-01-01

    A tutorial paper exploring the characteristics of sound outdoors. Outdoor acoustics is contrasted to room acoustics. A number of important aspects of outdoor acoustics are exemplified and theoretical approaches are outlined. These are influence of ground impedance, influence of weather, screening...... to the application in question. In this way results providing a certain level of accuracy are obtained using methods which are balanced with the accuracy of the input data. Advanced measurement techniques are looked into and suggestions for future research are made...

  5. Time-dependent stochastic inversion in acoustic tomography of the atmosphere with reciprocal sound transmission

    International Nuclear Information System (INIS)

    Vecherin, Sergey N; Ostashev, Vladimir E; Wilson, D Keith; Ziemann, A

    2008-01-01

    Time-dependent stochastic inversion (TDSI) was recently developed for acoustic travel-time tomography of the atmosphere. This type of tomography allows reconstruction of temperature and wind-velocity fields given the location of sound sources and receivers and the travel times between all source–receiver pairs. The quality of reconstruction provided by TDSI depends on the geometry of the transducer array. However, TDSI has not been studied for the geometry with reciprocal sound transmission. This paper is focused on three aspects of TDSI. First, the use of TDSI in reciprocal sound transmission arrays is studied in numerical and physical experiments. Second, efficiency of time-dependent and ordinary stochastic inversion (SI) algorithms is studied in numerical experiments. Third, a new model of noise in the input data for TDSI is developed that accounts for systematic errors in transducer positions. It is shown that (i) a separation of the travel times into temperature and wind-velocity components in tomography with reciprocal transmission does not improve the reconstruction, (ii) TDSI yields a better reconstruction than SI and (iii) the developed model of noise yields an accurate reconstruction of turbulent fields and estimation of errors in the reconstruction

  6. Metasurface-based angle-selective multichannel acoustic refractor

    Science.gov (United States)

    Liu, Bingyi; Jiang, Yongyuan

    2018-05-01

    We theoretically study the angle-selective refractions of an impedance-matched acoustic gradient-index metasurface, which is integrated with a rigid bar array of a deep subwavelength period. An interesting refraction order appears under the all-angle incidence despite the existence of a critical angle, and notably, the odevity of the phase-discretization level apparently selects the transmitted diffraction orders. We utilize the strategy of multilayered media design to realize a three-channel acoustic refractor, which shows good promise for constructing multifunctional diffractive acoustic elements for acoustic communication.

  7. The stochastic inverse method for ocean acoustic tomography studies

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Mahadevan, R.

    stream_size 10 stream_content_type text/plain stream_name Acoust_Lett_19_15.pdf.txt stream_source_info Acoust_Lett_19_15.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  8. Acoustic interactions between inversion symmetric and asymmetric two-level systems

    International Nuclear Information System (INIS)

    Churkin, A; Schechter, M; Barash, D

    2014-01-01

    Amorphous solids, as well as many disordered lattices, display remarkable universality in their low temperature acoustic properties. This universality is attributed to the attenuation of phonons by tunneling two-level systems (TLSs), facilitated by the interaction of the TLSs with the phonon field. TLS-phonon interaction also mediates effective TLS–TLS interactions, which dictates the existence of a glassy phase and its low energy properties. Here we consider KBr:CN, the archetypal disordered lattice showing universality. We calculate numerically, using conjugate gradients method, the effective TLS–TLS interactions for inversion symmetric (CN flips) and asymmetric (CN rotations) TLSs, in the absence and presence of disorder, in two and three dimensions. The observed dependence of the magnitude and spatial power law of the interaction on TLS symmetry, and its change with disorder, characterizes TLS–TLS interactions in disordered lattices in both extreme and moderate dilutions. Our results are in good agreement with the two-TLS model, recently introduced to explain long-standing questions regarding the quantitative universality of phonon attenuation and the energy scale of ≈1–3 K below which universality is observed. (paper)

  9. Hot topics: Signal processing in acoustics

    Science.gov (United States)

    Gaumond, Charles F.

    2005-09-01

    Signal processing in acoustics is a multidisciplinary group of people that work in many areas of acoustics. We have chosen two areas that have shown exciting new applications of signal processing to acoustics or have shown exciting and important results from the use of signal processing. In this session, two hot topics are shown: the use of noiselike acoustic fields to determine sound propagation structure and the use of localization to determine animal behaviors. The first topic shows the application of correlation on geo-acoustic fields to determine the Greens function for propagation through the Earth. These results can then be further used to solve geo-acoustic inverse problems. The first topic also shows the application of correlation using oceanic noise fields to determine the Greens function through the ocean. These results also have utility for oceanic inverse problems. The second topic shows exciting results from the detection, localization, and tracking of marine mammals by two different groups. Results from detection and localization of bullfrogs are shown, too. Each of these studies contributed to the knowledge of animal behavior. [Work supported by ONR.

  10. Elastic reflection waveform inversion with variable density

    KAUST Repository

    Li, Yuanyuan; Li, Zhenchun; Alkhalifah, Tariq Ali; Guo, Qiang

    2017-01-01

    Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion

  11. A new acoustic lens material for large area detectors in photoacoustic breast tomography

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; van Hespen, Johannes C.G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Objectives We introduce a new acoustic lens material for photoacoustic tomography (PAT) to improve lateral resolution while possessing excellent acoustic acoustic impedance matching with tissue to minimize lens induced image artifacts. Background A large surface area detector due to its high

  12. Inverse problems for Maxwell's equations

    CERN Document Server

    Romanov, V G

    1994-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  13. Spin Start Line Effects on the J2X Gas Generator Chamber Acoustics

    Science.gov (United States)

    Kenny, R. Jeremy

    2011-01-01

    The J2X Gas Generator engine design has a spin start line connected near to the turbine inlet vanes. This line provides helium during engine startup to begin turbomachinery operation. The spin start line also acts as an acoustic side branch which alters the chamber's acoustic modes. The side branch effectively creates 'split modes' in the chamber longitudinal modes, in particular below the first longitudinal mode and within the frequency range associated with the injection-coupled response of the Gas Generator. Interaction between the spin start-modified chamber acoustics and the injection-driven response can create a higher system response than without the spin start attached to the chamber. This work reviews the acoustic effects of the spin start line as seen throughout the workhorse gas generator test program. A simple impedance model of the spin start line is reviewed. Tests were run with no initial spin start gas existing in the line, as well as being initially filled with nitrogen gas. Tests were also run with varying spin start line lengths from 0" to 40". Acoustic impedance changes due to different spin start gas constituents and line lengths are shown. Collected thermocouple and static pressure data in the spin start line was used to help estimate the fluid properties along the line length. The side branch impedance model was coupled to a chamber impedance model to show the effects on the overall chamber response. Predictions of the spin start acoustic behavior for helium operation are shown and compared against available data.

  14. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  15. Sediment Types Determination Using Acoustic Techniques in the Northeastern Gulf of Mexico

    National Research Council Canada - National Science Library

    Kim, Gil

    2004-01-01

    ... those (acoustic impedance and grain size) in the northeastern Gulf of Mexico. The acoustic data were acquired using a 11 kHz normal incident echo sounder over approximately 2000 km of track line...

  16. High sound screening in low impedance slit arrays

    International Nuclear Information System (INIS)

    Estrada, Hector; Bravo, Jose Maria; Meseguer, Francisco

    2011-01-01

    We report on the key role of the acoustical impedance ratio between the solid and the host fluid in the transmission properties of slit arrays. Numerical calculations predict huge sound screening effects up to 60 dB for low impedance ratio values. The screening band appears over a broad frequency region and is very robust against dissipative losses of the material as well as against the sound incident angle. This counterintuitive result is discussed in terms of the hydrodynamic short circuit, where the fluid and the solid at the radiating interface vibrate out of phase, resulting in a huge sound blocking effect.

  17. Variational constraints for electrical-impedance tomography

    International Nuclear Information System (INIS)

    Berryman, J.G.; Kohn, R.V.

    1990-01-01

    The task of electrical-impedance tomography is to invert boundary measurements for the conductivity distribution of a body. This inverse problem can be formulated so the primary data are the measured powers dissipated across injection electrodes. Then, since these powers are minima of the pertinent (dual) variational principles, feasibility constraints can be found for the nonlinear inversion problem. When power may be measured accurately, the existence of these dual variational principles implies that any exact solution must lie at a point of intersection of the two feasibility boundaries

  18. Multiparameter Elastic Full Waveform Inversion With Facies Constraints

    KAUST Repository

    Zhang, Zhendong; Alkhalifah, Tariq Ali; Naeini, Ehsan Zabihi

    2017-01-01

    Full waveform inversion (FWI) aims fully benefit from all the data characteristics to estimate the parameters describing the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion as a tool beyond acoustic

  19. Acoustic properties of perforates under high level multi-tone excitation

    OpenAIRE

    Bodén, Hans

    2013-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. Compared to previously published results the present investigation concentrates on the effect of multiple harmonics. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perfo...

  20. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    International Nuclear Information System (INIS)

    Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen

    2011-01-01

    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied. (interdisciplinary physics and related areas of science and technology)

  1. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    Science.gov (United States)

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  2. Microlocal analysis of a seismic linearized inverse problem

    NARCIS (Netherlands)

    Stolk, C.C.

    1999-01-01

    The seismic inverse problem is to determine the wavespeed c x in the interior of a medium from measurements at the boundary In this paper we analyze the linearized inverse problem in general acoustic media The problem is to nd a left inverse of the linearized forward map F or equivalently to nd the

  3. [The role of acoustic impedance test in the diagnosis for occupational noise induced deafness].

    Science.gov (United States)

    Chen, H; Xue, L J; Yang, A C; Liang, X Y; Chen, Z Q; Zheng, Q L

    2018-01-20

    Objective: To investigate the characteristics of acoustic impedance test and its diagnostic role for occupational noise induced deafness, in order to provide an objective basis for the differential diagnosis of occupational noise induced deafness. Methods: A retrospective study was conducted to investigate the cases on the diagnosis of occupational noise-induced deafness in Guangdong province hospital for occupational disease prevention and treatment from January 2016 to January 2017. A total of 198 cases (396 ears) were divided into occupation disease group and non occupation disease group based on the diagnostic criteria of occupational noise deafness in 2014 edition, acoustic conductivity test results of two groups were compared including tympanograms types, external auditory canal volume, tympanic pressure, static compliance and slope. Results: In the occupational disease group, 204 ears were found to have 187 ears (91.67%) of type A, which were significantly higher than those in the non occupational disease group 143/192 (74.48%) , the difference was statistically significant (χ(2)=21.038, P occupation disease group in other type were 16/204 (7.84%) , 3/204 (1.47%) , were lower than Ad or As type of occupation disease group (15.63%) , other type (9.38%) , the differences were statistically significant[ (χ(2)=5.834, P Occupation disease group canal volume average (1.68±0.39) ml higher than that of non occupation disease group (1.57 ± 0.47) ml, the difference was statistically significant ( t =2.756, P occupation disease group mean static compliance (1.06±0.82) ml higher than that of non occupation disease group (0.89±0.64) ml. The difference was statistically singificant ( t =2.59, P occupational noise induced deafness, More than 90% of the confirmed cases showed an A-form tympanograms, it is one of the objective examination methods which can be used in the differential diagnosis of pseudo deafness.

  4. A Conventional Liner Acoustic/Drag Interaction Benchmark Database

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2017-01-01

    The aerodynamic drag of acoustic liners has become a significant topic in the design of such for aircraft noise applications. In order to evaluate the benefits of concepts designed to reduce liner drag, it is necessary to establish the baseline performance of liners employing the typical design features of conventional configurations. This paper details a set of experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of a number of perforate-over-honeycomb liner configurations at flow speeds of M=0.3 and 0.5. These conventional liners are investigated to determine their resistance factors using a static pressure drop approach. Comparison of the resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 Hz at source sound pressure levels of 140 and 150 dB. Educed impedance and attenuation spectra are used to determine the interaction between acoustic performance and drag.

  5. Acoustic parametric pumping of spin waves

    Science.gov (United States)

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2014-11-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  6. Acoustic parametric pumping of spin waves

    OpenAIRE

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2013-01-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  7. Acoustic coupling of two parallel shells in compressible fluid

    International Nuclear Information System (INIS)

    Gerges, S.N.Y.

    1982-01-01

    Modifications are done in the acoustic impedance for a vibrating shell, due to the pressure of another similar shell. The multi-analysis method of scattering is used. The results of the impedance in function of the shell radius, the wave length, the distance between the shell axis and its vibration models are presented. (E.G.) [pt

  8. Differentiate low impedance media in closed steel tank using ultrasonic wave tunneling.

    Science.gov (United States)

    Wang, Chunying; Chen, Zhaojiang; Cao, Wenwu

    2018-01-01

    Ultrasonic wave tunneling through seriously mismatched media, such as steel and water, is possible only when the frequency matches the resonance of the steel plate. But it is nearly impossible to realize continuous wave tunneling if the low acoustic impedance media is air because the transducer frequency cannot be made so accurate. The issue might be resolved using tone-burst signals. Using finite element simulations, we found that for air media when the cycle number is 20, the -6dB bandwidth of energy transmission increased from 0.001% to 5.9% compared with that of continuous waves. We show that the tunneling waves can give us enough information to distinguish low acoustic impedance media inside a steel tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints

    KAUST Repository

    Zhang, Zhendong; Alkhalifah, Tariq Ali; Naeini, Ehsan Zabihi; Sun, Bingbing

    2018-01-01

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like

  10. Source identification in acoustics and structural mechanics using Sierra/SD.

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Timothy Francis; Aquino, Wilkins [Duke University Durham, NC; Ross, Michael

    2013-03-01

    In this report we derive both time and frequency-domain methods for inverse identification of sources in elastodynamics and acoustics. The inverse/design problem is cast in a PDE-constrained optimization framework with efficient computation of gradients using the adjoint method. The implementation of source inversion in Sierra/SD is described, and results from both time and frequency domain source inversion are compared to actual experimental data for a weapon store used in captive carry on a military aircraft. The inverse methodology is advantageous in that it provides a method for creating ground based acoustic and vibration tests that can reduce the actual number of flight tests, and thus, saving costs and time for the program.

  11. Carbon Nanotube Underwater Acoustic Thermophone

    Science.gov (United States)

    2016-09-23

    nanotubes (unless encapsulated or housed) are quite fragile and are susceptible to disintegration especially if the nanotubes are touched or moved too...The acoustic impedance (defined as the product of material density and sound speed) of the top shell 12 should match the Attorney Docket No. 300009

  12. VLF surface-impedance modelling techniques for coal exploration

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.; Thiel, D.; O' Keefe, S. [Central Queensland University, Rockhampton, Qld. (Australia). Faculty of Engineering and Physical Systems

    2000-10-01

    New and efficient computational techniques are required for geophysical investigations of coal. This will allow automated inverse analysis procedures to be used for interpretation of field data. In this paper, a number of methods of modelling electromagnetic surface impedance measurements are reviewed, particularly as applied to typical coal seam geology found in the Bowen Basin. At present, the Impedance method and the finite-difference time-domain (FDTD) method appear to offer viable solutions although both have problems. The Impedance method is currently slightly inaccurate, and the FDTD method has large computational demands. In this paper both methods are described and results are presented for a number of geological targets. 17 refs., 14 figs.

  13. Bayesian Markov Chain Monte Carlo inversion for weak anisotropy parameters and fracture weaknesses using azimuthal elastic impedance

    Science.gov (United States)

    Chen, Huaizhen; Pan, Xinpeng; Ji, Yuxin; Zhang, Guangzhi

    2017-08-01

    A system of aligned vertical fractures and fine horizontal shale layers combine to form equivalent orthorhombic media. Weak anisotropy parameters and fracture weaknesses play an important role in the description of orthorhombic anisotropy (OA). We propose a novel approach of utilizing seismic reflection amplitudes to estimate weak anisotropy parameters and fracture weaknesses from observed seismic data, based on azimuthal elastic impedance (EI). We first propose perturbation in stiffness matrix in terms of weak anisotropy parameters and fracture weaknesses, and using the perturbation and scattering function, we derive PP-wave reflection coefficient and azimuthal EI for the case of an interface separating two OA media. Then we demonstrate an approach to first use a model constrained damped least-squares algorithm to estimate azimuthal EI from partially incidence-phase-angle-stack seismic reflection data at different azimuths, and then extract weak anisotropy parameters and fracture weaknesses from the estimated azimuthal EI using a Bayesian Markov Chain Monte Carlo inversion method. In addition, a new procedure to construct rock physics effective model is presented to estimate weak anisotropy parameters and fracture weaknesses from well log interpretation results (minerals and their volumes, porosity, saturation, fracture density, etc.). Tests on synthetic and real data indicate that unknown parameters including elastic properties (P- and S-wave impedances and density), weak anisotropy parameters and fracture weaknesses can be estimated stably in the case of seismic data containing a moderate noise, and our approach can make a reasonable estimation of anisotropy in a fractured shale reservoir.

  14. Enhancing phonon flow through one-dimensional interfaces by impedance matching

    Science.gov (United States)

    Polanco, Carlos A.; Ghosh, Avik W.

    2014-08-01

    We extend concepts from microwave engineering to thermal interfaces and explore the principles of impedance matching in 1D. The extension is based on the generalization of acoustic impedance to nonlinear dispersions using the contact broadening matrix Γ(ω), extracted from the phonon self energy. For a single junction, we find that for coherent and incoherent phonons, the optimal thermal conductance occurs when the matching Γ(ω) equals the Geometric Mean of the contact broadenings. This criterion favors the transmission of both low and high frequency phonons by requiring that (1) the low frequency acoustic impedance of the junction matches that of the two contacts by minimizing the sum of interfacial resistances and (2) the cut-off frequency is near the minimum of the two contacts, thereby reducing the spillage of the states into the tunneling regime. For an ultimately scaled single atom/spring junction, the matching criterion transforms to the arithmetic mean for mass and the harmonic mean for spring constant. The matching can be further improved using a composite graded junction with an exponential varying broadening that functions like a broadband antireflection coating. There is, however, a trade off as the increased length of the interface brings in additional intrinsic sources of scattering.

  15. GPR impedance inversion for imaging and characterization of buried archaeological remains: A case study at Mudu city cite in Suzhou, China

    Science.gov (United States)

    Liu, Yu; Shi, Zhanjie; Wang, Bangbing; Yu, Tianxiang

    2018-01-01

    As a method with high resolution, GPR has been extensively used in archaeological surveys. However, conventional GPR profile can only provide limited geometry information, such as the shape or location of the interface, but can't give the distribution of physical properties which could help identify the historical remains more directly. A common way for GPR to map parameter distribution is the common-midpoint velocity analysis, but it provides limited resolution. Another research hotspot, the full-waveform inversion, is unstable and relatively dependent on the initial model. Coring method could give direct information in drilling site, while the accurate result is only limited in several boreholes. In this paper, we propose a new scheme to enhance imaging and characterization of archaeological targets by fusion of GPR and coring data. The scheme mainly involves the impedance inversion of conventional common-offset GPR data, which uses well log to compensate GPR data and finally obtains a high-resolution estimation of permittivity. The core analysis result also contributes to interpretation of the inversion result. To test this method, we did a case study at Mudu city site in Suzhou, China. The results provide clear images of the ancient city's moat and wall subsurface and improve the characterization of archaeological targets. It is shown that this method is effective and feasible for archaeological exploration.

  16. Target detection and localization in shallow water: an experimental demonstration of the acoustic barrier problem at the laboratory scale.

    Science.gov (United States)

    Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme

    2011-01-01

    This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.

  17. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    International Nuclear Information System (INIS)

    Tian, Ye; Wei, Qi; Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-01-01

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing

  18. Analysis of Human Fibroadenomas Using Three-Dimensional Impedance Maps

    Science.gov (United States)

    Dapore, Alexander J.; King, Michael R.; Harter, Josephine; Sarwate, Sandhya; Oelze, Michael L.; Zagzebski, James A.; Do, Minh N.; Hall, Timothy J.

    2012-01-01

    Three-dimensional impedance maps (3DZMs) are virtual volumes of acoustic impedance values constructed from histology to represent tissue microstructure acoustically. From the 3DZM, the ultrasonic backscattered power spectrum can be predicted and model based scatterer properties, such as effective scatterer diameter (ESD), can be estimated. Additionally, the 3DZM can be exploited to visualize and identify possible scattering sites, which may aid in the development of more effective scattering models to better represent the ultrasonic interaction with underlying tissue microstructure. In this study, 3DZMs were created from a set of human fibroadenoma samples. ESD estimates were made assuming a fluid-filled sphere form factor model from 3DZMs of volume 300 × 300 × 300 µm. For a collection of 33 independent human fibroadenoma tissue samples, the ESD was estimated to be 111 ± 40.7 µm. The 3DZMs were then investigated visually to identify possible scattering sources which conformed to the estimated model scatterer dimensions. This estimation technique allowed a better understanding of the spatial distribution and variability of the estimates throughout the volume. PMID:21278015

  19. A Survey on Inverse Problems for Applied Sciences

    Directory of Open Access Journals (Sweden)

    Fatih Yaman

    2013-01-01

    Full Text Available The aim of this paper is to introduce inversion-based engineering applications and to investigate some of the important ones from mathematical point of view. To do this we employ acoustic, electromagnetic, and elastic waves for presenting different types of inverse problems. More specifically, we first study location, shape, and boundary parameter reconstruction algorithms for the inaccessible targets in acoustics. The inverse problems for the time-dependent differential equations of isotropic and anisotropic elasticity are reviewed in the following section of the paper. These problems were the objects of the study by many authors in the last several decades. The physical interpretations for almost all of these problems are given, and the geophysical applications for some of them are described. In our last section, an introduction with many links into the literature is given for modern algorithms which combine techniques from classical inverse problems with stochastic tools into ensemble methods both for data assimilation as well as for forecasting.

  20. Determination of the shear impedance of viscoelastic liquids using cylindrical piezoceramic resonators.

    Science.gov (United States)

    Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek

    2003-03-01

    In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.

  1. The factorization method for inverse acoustic scattering in a layered medium

    International Nuclear Information System (INIS)

    Bondarenko, Oleksandr; Kirsch, Andreas; Liu, Xiaodong

    2013-01-01

    In this paper, we consider a problem of inverse acoustic scattering by an impenetrable obstacle embedded in a layered medium. We will show that the factorization method can be applied to recover the embedded obstacle; that is, the equation F-tilde g =φ z is solvable if and only if the sampling point z is in the interior of the unknown obstacle. Here, F-tilde is a self-adjoint operator related to the far field operator and ϕ z is the far field pattern of the Green function with respect to the problem of scattering by the background medium for point z. The validity of the factorization method is proven with the help of a mixed reciprocity principle and an application of the scattering operator. Due to the established mixed reciprocity principle, knowledge of the Green function for the background medium is no longer required, which makes the method attractive from the computational point of view. The paper is only concerned with sound-soft obstacles, but the analysis can be easily extended for sound-hard obstacles, or obstacles with separated sound-soft and sound-hard parts. Finally, we provide an explicit example for a radially symmetric case and present some numerical examples. (paper)

  2. Simple analytic formula for the period of the nonlinear pendulum via the Struve function: connection to acoustical impedance matching

    International Nuclear Information System (INIS)

    Douvropoulos, Theodosios G

    2012-01-01

    An approximate formula for the period of pendulum motion beyond the small amplitude regime is obtained based on physical arguments. Two different schemes of different accuracy are developed: in the first less accurate scheme, emphasis is given on the non-quadratic form of the potential in connection to isochronism, and a specific form of a generic formula that is met in many previous works is produced, while the second and main result contains the Struve function which is further approximated by a simple sinusoidal expression based on its maximum value. The accuracy of the final formula gives a relative error of less than 0.2% for angles up to 140°. In addition, a simple relation between the Struve function and the complete elliptic integral of the first kind is produced, since they both constitute solutions of the pendulum period. This relation makes it possible for someone to connect different areas in physics and solve a difficult task by comparison with another much more simple one. As an example, a connection between the pendulum period and the acoustical radiation impedance is proposed through impedance matching and some interesting relations are produced. This paper is intended for undergraduate students to be useful for analysing pendulum experiments in introductory physics labs and it is also believed to offer valuable insight into some properties of the simple pendulum in undergraduate courses on general physics. (paper)

  3. Formulas in inverse and ill-posed problems

    CERN Document Server

    Anikonov, Yu E

    1997-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  4. Dielectric and acoustical high frequency characterisation of PZT thin films

    International Nuclear Information System (INIS)

    Conde, Janine; Muralt, Paul

    2010-01-01

    Pb(Zr, Ti)O 3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  5. Dielectric and acoustical high frequency characterisation of PZT thin films

    Science.gov (United States)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  6. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  7. Laser-induced acoustic imaging of underground objects

    Science.gov (United States)

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  8. Comparison of Estimation Techniques for Vibro-Acoustic Transfer Path Analysis

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo França Padilha

    2006-01-01

    Full Text Available Vibro-acoustic Transfer Path Analysis (TPA is a tool to evaluate the contribution of different energy propagation paths between a source and a receiver, linked to each other by a number of connections. TPA is typically used to quantify and rank the relative importance of these paths in a given frequency band, determining the most significant one to the receiver. Basically, two quantities have to be determined for TPA: the operational forces at each transfer path and the Frequency Response Functions (FRF of these paths. The FRF are obtained either experimentally or analytically, and the influence of the mechanical impedance of the source can be taken into account or not. The operational forces can be directly obtained from measurements using force transducers or indirectly estimated from auxiliary response measurements. Two methods to obtain the operational forces indirectly – the Complex Stiffness Method (CSM and the Matrix Inversion Method (MIM – associated with two possible configurations to determine the FRF – including and excluding the source impedance – are presented and discussed in this paper. The effect of weak and strong coupling among the paths is also commented considering the techniques previously presented. The main conclusion is that, with the source removed, CSM gives more accurate results. On the other hand, with the source present, MIM is preferable. In the latter case, CSM should be used only if there is a high impedance mismatch between the source and the receiver. Both methods are not affected by a higher or lower degree of coupling among the transfer paths.

  9. Electrochemical impedance measurement of a carbon nanotube probe electrode

    International Nuclear Information System (INIS)

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Shimoyama, Isao; Matsumoto, Kiyoshi

    2012-01-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1–10 nm in CNT diameter, 80–300 nm in insulator diameter, 0.5–4 μm in exposed CNT length and 1–10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible. (paper)

  10. Waveform inversion for acoustic VTI media in frequency domain

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2016-01-01

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the background model using a single scattered wavefield from an inverted perturbation. However, current

  11. Perforated membrane-type acoustic metamaterials

    International Nuclear Information System (INIS)

    Langfeldt, F.; Kemsies, H.; Gleine, W.; Estorff, O. von

    2017-01-01

    This letter introduces a modified design of membrane-type acoustic metamaterials (MAMs) with a ring mass and a perforation so that an airflow through the membrane is enabled. Simplified analytical investigations of the perforated MAM (PMAM) indicate that the perforation introduces a second anti-resonance, where the effective surface mass density of the PMAM is much higher than the static value. The theoretical results are validated using impedance tube measurements, indicating good agreement between the theoretical predictions and the measured data. The anti-resonances yield high low-frequency sound transmission loss values with peak values over 25 dB higher than the corresponding mass-law. - Highlights: • A new membrane-type acoustic metamaterial exhibiting negative density is presented. • The metamaterial design contains a ring mass with a perforation through the membrane. • The sound transmission loss exhibits narrow-band peaks much higher than the mass-law. • The emergence of the peaks is explained using a simple theoretical model. • Impedance tube measurements are used to validate the theoretical predictions.

  12. Perforated membrane-type acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Langfeldt, F., E-mail: Felix.Langfeldt@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Kemsies, H., E-mail: Hannes.Kemsies@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Gleine, W., E-mail: Wolfgang.Gleine@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Estorff, O. von, E-mail: estorff@tu-harburg.de [Institute of Modelling and Computation, Hamburg University of Technology, Denickestr. 17, D-21073 Hamburg (Germany)

    2017-04-25

    This letter introduces a modified design of membrane-type acoustic metamaterials (MAMs) with a ring mass and a perforation so that an airflow through the membrane is enabled. Simplified analytical investigations of the perforated MAM (PMAM) indicate that the perforation introduces a second anti-resonance, where the effective surface mass density of the PMAM is much higher than the static value. The theoretical results are validated using impedance tube measurements, indicating good agreement between the theoretical predictions and the measured data. The anti-resonances yield high low-frequency sound transmission loss values with peak values over 25 dB higher than the corresponding mass-law. - Highlights: • A new membrane-type acoustic metamaterial exhibiting negative density is presented. • The metamaterial design contains a ring mass with a perforation through the membrane. • The sound transmission loss exhibits narrow-band peaks much higher than the mass-law. • The emergence of the peaks is explained using a simple theoretical model. • Impedance tube measurements are used to validate the theoretical predictions.

  13. Dielectric and acoustical high frequency characterisation of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Janine; Muralt, Paul, E-mail: janine.conde@epfl.ch [Department of Materials Science, EPFL (Switzerland)

    2010-02-15

    Pb(Zr, Ti)O{sub 3} (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {l_brace}100{r_brace} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  14. A note on the concept of acoustic center

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Barrera Figueroa, Salvador; Rasmussen, Knud

    2004-01-01

    The acoustic center of a reciprocal transducer is defined as the point from which spherical waves seem to be diverging when the transducer is acting as a source. This paper examines various ways of determining the acoustic center of a source, including methods based on deviations from the inverse...

  15. Acoustic topological insulator and robust one-way sound transport

    Science.gov (United States)

    He, Cheng; Ni, Xu; Ge, Hao; Sun, Xiao-Chen; Chen, Yan-Bin; Lu, Ming-Hui; Liu, Xiao-Ping; Chen, Yan-Feng

    2016-12-01

    Topological design of materials enables topological symmetries and facilitates unique backscattering-immune wave transport. In airborne acoustics, however, the intrinsic longitudinal nature of sound polarization makes the use of the conventional spin-orbital interaction mechanism impossible for achieving band inversion. The topological gauge flux is then typically introduced with a moving background in theoretical models. Its practical implementation is a serious challenge, though, due to inherent dynamic instabilities and noise. Here we realize the inversion of acoustic energy bands at a double Dirac cone and provide an experimental demonstration of an acoustic topological insulator. By manipulating the hopping interaction of neighbouring ’atoms’ in this new topological material, we successfully demonstrate the acoustic quantum spin Hall effect, characterized by robust pseudospin-dependent one-way edge sound transport. Our results are promising for the exploration of new routes for experimentally studying topological phenomena and related applications, for example, sound-noise reduction.

  16. Estimation of surface impedance using different types of microphone arrays

    DEFF Research Database (Denmark)

    Richard, Antoine Philippe André; Fernandez Grande, Efren; Brunskog, Jonas

    2017-01-01

    This study investigates microphone array methods to measure the angle dependent surface impedance of acoustic materials. The methods are based on the reconstruction of the sound field on the surface of the material, using a wave expansion formulation. The reconstruction of both the pressure...... and the particle velocity leads to an estimation of the surface impedance for a given angle of incidence. A porous type absorber sample is tested experimentally in anechoic conditions for different array geometries, sample sizes, incidence angles, and distances between the array and sample. In particular......, the performances of a rigid spherical array and a double layer planar array are examined. The use of sparse array processing methods and conventional regulariation approaches are studied. In addition, the influence of the size of the sample on the surface impedance estimation is investigated using both...

  17. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    Directory of Open Access Journals (Sweden)

    T. Petrut

    2018-01-01

    Full Text Available Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  18. Passive acoustic measurement of bedload grain size distribution using self-generated noise

    Science.gov (United States)

    Petrut, Teodor; Geay, Thomas; Gervaise, Cédric; Belleudy, Philippe; Zanker, Sebastien

    2018-01-01

    Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.

  19. Unwrapped phase inversion for near surface seismic data

    KAUST Repository

    Choi, Yun Seok

    2012-11-04

    The Phase-wrapping is one of the main obstacles of waveform inversion. We use an inversion algorithm based on the instantaneous-traveltime that overcomes the phase-wrapping problem. With a high damping factor, the frequency-dependent instantaneous-traveltime inversion provides the stability of refraction tomography, with higher resolution results, and no arrival picking involved. We apply the instantaneous-traveltime inversion to the synthetic data generated by the elastic time-domain modeling. The synthetic data is a representative of the near surface seismic data. Although the inversion algorithm is based on the acoustic wave equation, the numerical examples show that the instantaneous-traveltime inversion generates a convergent velocity model, very similar to what we see from traveltime tomography.

  20. The use of Acoustic Radiation Force decorrelation-weighted pulse inversion (ADW-PI) for enhanced ultrasound contrast imaging

    Science.gov (United States)

    Herbst, Elizabeth; Unnikrishnan, Sunil; Wang, Shiying; Klibanov, Alexander L.; Hossack, John A.; Mauldin, F. William

    2016-01-01

    Objectives The use of ultrasound imaging for cancer diagnosis and screening can be enhanced with the use of molecularly targeted microbubbles. Nonlinear imaging strategies such as pulse inversion (PI) and “contrast pulse sequences” (CPS) can be used to differentiate microbubble signal, but often fail to suppress highly echogenic tissue interfaces. This failure results in false positive detection and potential misdiagnosis. In this study, a novel Acoustic Radiation Force (ARF) based approach was developed for superior microbubble signal detection. The feasibility of this technique, termed ARF-decorrelation-weighted PI (ADW-PI), was demonstrated in vivo using a subcutaneous mouse tumor model. Materials and Methods Tumors were implanted in the hindlimb of C57BL/6 mice by subcutaneous injection of MC38 cells. Lipid-shelled microbubbles were conjugated to anti-VEGFR2 antibody and administered via bolus injection. An image sequence using ARF pulses to generate microbubble motion was combined with PI imaging on a Verasonics Vantage programmable scanner. ADW-PI images were generated by combining PI images with inter-frame signal decorrelation data. For comparison, CPS images of the same mouse tumor were acquired using a Siemens Sequoia clinical scanner. Results Microbubble-bound regions in the tumor interior exhibited significantly higher signal decorrelation than static tissue (n = 9, p < 0.001). The application of ARF significantly increased microbubble signal decorrelation (n = 9, p < 0.01). Using these decorrelation measurements, ADW-PI imaging demonstrated significantly improved microbubble contrast-to-tissue ratio (CTR) when compared to corresponding CPS or PI images (n = 9, p < 0.001). CTR improved with ADW-PI by approximately 3 dB compared to PI images and 2 dB compared to CPS images. Conclusions Acoustic radiation force can be used to generate adherent microbubble signal decorrelation without microbubble bursting. When combined with pulse inversion

  1. Observations of atmospheric structure using an acoustic sounder

    International Nuclear Information System (INIS)

    Shaw, N.A.

    1974-11-01

    An acoustic sounder has been used to monitor the vertical temperature structure of the lowest 1.5 km of the atmosphere over the meteorological field site at Argonne National Laboratory since February 1972. Additional records were obtained near St. Louis, Mo., during the month of August. Sounder records obtained during cloudless days on which no major synoptic events occurred are separated into three characteristic phases. The first phase is the rise of the morning inversion associated with increasing solar heating of the surface after dawn. The second phase is the period of strong convective activity that usually exists between about 1100 and 1600 local time in summer and which typically destroys the inversion. The third phase includes the gradual regeneration of the low level inversion through radiation cooling of the lowest levels, followed by a period of persistence throughout the night until the first phase begins again after sunrise. Analysis of records obtained from a single acoustic sounder operating in the vertically-pointing, monostatic mode is subject to the usual ambiguity regarding the relative importance of advective effects and local changes with time. To provide a spatial sampling facility, a mobile acoustic sounding system was constructed during 1972. Details of the mobile antenna acoustic baffle or cuff are given in the Appendix. (19 figures, 1 table) (U.S.)

  2. The whole space three-dimensional magnetotelluric inversion algorithm with static shift correction

    Science.gov (United States)

    Zhang, K.

    2016-12-01

    Base on the previous studies on the static shift correction and 3D inversion algorithms, we improve the NLCG 3D inversion method and propose a new static shift correction method which work in the inversion. The static shift correction method is based on the 3D theory and real data. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with 0 cost, and avoids the additional field work and indoor processing with good results.The 3D inversion algorithm is improved (Zhang et al., 2013) base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the parallel structure, improved the computational efficiency, reduced the memory of computer and added the topographic and marine factors. So the 3D inversion could work in general PC with high efficiency and accuracy. And all the MT data of surface stations, seabed stations and underground stations can be used in the inversion algorithm. The verification and application example of 3D inversion algorithm is shown in Figure 1. From the comparison of figure 1, the inversion model can reflect all the abnormal bodies and terrain clearly regardless of what type of data (impedance/tipper/impedance and tipper). And the resolution of the bodies' boundary can be improved by using tipper data. The algorithm is very effective for terrain inversion. So it is very useful for the study of continental shelf with continuous exploration of land, marine and underground.The three-dimensional electrical model of the ore zone reflects the basic information of stratum, rock and structure. Although it cannot indicate the ore body position directly, the important clues are provided for prospecting work by the delineation of diorite pluton uplift range. The test results show that, the high quality of

  3. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  4. SU-8 photoresist and SU-8 based nanocomposites for broadband acoustical matching at 1 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Ndieguene, A; Campistron, P; Carlier, J; Wang, S; Callens-Debavelaere, D; Nongaillard, B, E-mail: Assane.Ndieguene@meletu.univ-valenciennes.f [Univ Lille Nord de France, F-59000 Lille (France)

    2009-11-01

    So as to integrate acoustic functions in BioMEMS using 1 GHz ZnO transducers deposited on silicon substrates, acoustic waves propagation through the silicon substrate and its transmission in water needs to be maximized (the insertion losses at the Si / water interface are about 6dB). In the context of integration, it is interesting for mechanical impedance matching to use photosensitive materials such as SU-8 so that patterns may be obtained. Nanocomposite materials based on SU-8 mixed with nanoparticles having adequate impedances were fabricated. These new materials are characterized in terms of their acoustic velocity, impedance and attenuation. For this, the nanocomposite layers are deposited on the substrate by spin coating to obtain a thickness of about 10 {mu}m, in order to separate acoustic echoes from the material (even if {lambda}/4 layer thickness is lower than 1 {mu}m). The insertion losses of the device immersed in water can be simulated as a function of frequency for a given reflection coefficient between the silicon substrate and the photoresist. The characteristics of some nanocomposites made with SU-8 and various concentrations of nanoparticles like Ti0{sub 2}, SrTiO{sub 3} or W have been determined.

  5. Elastic versus acoustic inversion for marine surveys

    KAUST Repository

    Mora, Peter; Wu, Zedong

    2018-01-01

    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may

  6. Electrochemical Impedance Imaging via the Distribution of Diffusion Times

    Science.gov (United States)

    Song, Juhyun; Bazant, Martin Z.

    2018-03-01

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  7. Controllable transmission and total reflection through an impedance-matched acoustic metasurface

    KAUST Repository

    Mei, Jun; Wu, Ying

    2014-01-01

    supplies the functionalities of reflection-type acoustic metasurfaces, but also exhibits unprecedented flexibility and efficiency in various domains of wave manipulation for possible applications in fields like refracting, collimating, focusing or absorbing

  8. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  9. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P. [Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, building 7, Moscow, 125009 (Russian Federation)

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  10. The effect of high level multi-tone excitation on the acoustic properties of perforates and liner samples

    OpenAIRE

    Bodén, Hans

    2012-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates and liner samples. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perforates at other frequencies, thereby changing the boundary condition seen by the acoustic waves. Thi...

  11. Stabilization of time domain acoustic boundary element method for the interior problem with impedance boundary conditions.

    Science.gov (United States)

    Jang, Hae-Won; Ih, Jeong-Guon

    2012-04-01

    The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.

  12. Waveform inversion for acoustic VTI media in frequency domain

    KAUST Repository

    Wu, Zedong

    2016-09-06

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the background model using a single scattered wavefield from an inverted perturbation. However, current RWI methods are mostly based on isotropic media assumption. We extend the idea of the combining inversion for the background model and perturbations to address transversely isotropic with a vertical axis of symmetry (VTI) media taking into consideration of the optimal parameter sensitivity information. As a result, we apply Born modeling corresponding to perturbations in only for the variable e to derive the relative reflected waveform inversion formulation. To reduce the number of parameters, we assume the background part of η = ε and work with a single variable to describe the anisotropic part of the wave propagation. Thus, the optimization variables are the horizontal velocity v, η = ε and the e perturbation. Application to the anisotropic version of Marmousi model with a single frequency of 2.5 Hz shows that this method can converge to the accurate result starting from a linearly increasing isotropic initial velocity. Application to a real dataset demonstrates the versatility of the approach.

  13. Frequency domain, waveform inversion of laboratory crosswell radar data

    Science.gov (United States)

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2010-01-01

    A new waveform inversion for crosswell radar is formulated in the frequency-domain for a 2.5D model. The inversion simulates radar waves using the vector Helmholtz equation for electromagnetic waves. The objective function is minimized using a backpropagation method suitable for a 2.5D model. The inversion is tested by processing crosswell radar data collected in a laboratory tank. The estimated model is consistent with the known electromagnetic properties of the tank. The formulation for the 2.5D model can be extended to inversions of acoustic and elastic data.

  14. A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion

    Science.gov (United States)

    CUI, C.; Hou, W.

    2017-12-01

    Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope extraction, DFT (discrete Fourier transform) calculation and gradients calculation. Numerical tests demonstrated that the combined envelope inversion + hybrid-domain FWI could obtain much faithful and accurate result than conventional hybrid-domain FWI. The CPU/GPU heterogeneous parallel computation could improve the performance speed.

  15. Acoustic propagational characteristics and tomography studies of the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Somayajulu, Y.K.; Murty, T.V.R.

    , is dealt with in section 2, followed by the simulation results in section 3, using a ray acoustic model and reference sound speed profile to delineate the acoustic waveguide characteristics in the context of tomography. The generalised inversion model...

  16. A comparison of SONAH and IBEM for near-field acoustic holography

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    2008-01-01

    Among the popular techniques for acoustic source identification in complex environments are the Statistically Optimal Near Acoustic Holography (SONAH) and the Inverse Boundary Element Method (IBEM). These two methods are quite different regarding the underlying assumptions and the practical...

  17. 3rd Annual Workshop on Inverse Problem

    CERN Document Server

    2015-01-01

    This proceeding volume is based on papers presented on the Third Annual Workshop on Inverse Problems which was organized by the Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, and took place in May 2013 in Stockholm. The purpose of this workshop was to present new analytical developments and numerical techniques for solution of inverse problems for a wide range of applications in acoustics, electromagnetics, optical fibers, medical imaging, geophysics, etc. The contributions in this volume reflect these themes and will be beneficial to researchers who are working in the area of applied inverse problems.

  18. False Paradoxes of Superposition in Electric and Acoustic Waves.

    Science.gov (United States)

    Levine, Richard C.

    1980-01-01

    Corrected are several misconceptions concerning the apparently "missing" energy that results when acoustic or electromagnetic waves cancel by destructive interference and the wave impedance reflected to the sources of the wave energy changes so that the input power is reduced. (Author/CS)

  19. Numerical Laplace inversion in problems of elastodynamics: Comparison of four algorithms

    Czech Academy of Sciences Publication Activity Database

    Adámek, V.; Valeš, František; Červ, Jan

    2017-01-01

    Roč. 113, November (2017), s. 120-129 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 Keywords : inverse Laplace transform * numerical algorithm * wave propagation * multi-precision computation * Maple code Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 3.000, year: 2016

  20. Long Elastic Open Neck Acoustic Resonator for low frequency absorption

    Science.gov (United States)

    Simon, Frank

    2018-05-01

    Passive acoustic liners, used in aeronautic engine nacelles to reduce radiated fan noise, have a quarter-wavelength behavior, because of perforated sheets backed by honeycombs (with one or two degrees of freedom). However, their acoustic absorption ability is naturally limited to medium and high frequencies because of constraints in thickness. The low ratio "plate thickness/hole diameter" generates impedance levels dependent on the incident sound pressure level and the grazing mean flow (by a mechanism of nonlinear dissipation through vortex shedding), which penalises the optimal design of liners. The aim of this paper is to overcome this problem by a concept called LEONAR ("Long Elastic Open Neck Acoustic Resonator"), in which a perforated plate is coupled with tubes of variable lengths inserted in a limited volume of a back cavity. To do this, experimental and theoretical studies, using different types of liners (material nature, hole diameter, tube length, cavity thickness) are described in this paper. It is shown that the impedance can be precisely determined with an analytical approach based on parallel transfer matrices of tubes coupled to the cavity. Moreover, the introduction of tubes in a cavity of a conventional resonator generates a significant shift in the frequency range of absorption towards lower frequencies or allows a reduction of cavity thickness. The impedance is practically independent of sound pressure level because of a high ratio "tube length/tube hole diameter". Finally, a test led in an aeroacoustic bench suggests that a grazing flow at a bulk Mach number of 0.3 has little impact on the impedance value. These first results allow considering these resonators with linear behavior as an alternative to classical resonators, in particular, as needed for future Ultra High Bypass Ratio engines with shorter and thinner nacelles.

  1. Inverse Edelstein effect induced by magnon-phonon coupling

    Science.gov (United States)

    Xu, Mingran; Puebla, Jorge; Auvray, Florent; Rana, Bivas; Kondou, Kouta; Otani, Yoshichika

    2018-05-01

    We demonstrate a spin to charge current conversion via magnon-phonon coupling and an inverse Edelstein effect on the hybrid device Ni/Cu (Ag )/Bi 2O3 . The generation of spin current (Js≈108A/m2 ) due to magnon-phonon coupling reveals the viability of acoustic spin pumping as a mechanism for the development of spintronic devices. A full in-plane magnetic field angle dependence of the power absorption and a combination of longitudinal and transverse voltage detection reveals the symmetric and asymmetric components of the inverse Edelstein effect voltage induced by Rayleigh-type surface acoustic waves. While the symmetric components are well studied, asymmetric components still need to be explored. We assign the asymmetric contributions to the interference between longitudinal and shear waves and an anisotropic charge distribution in our hybrid device.

  2. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  3. Acoustic reflection log in transversely isotropic formations

    Science.gov (United States)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.

    2018-01-01

    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  4. Acoustically Driven Fluid and Particle Motion in Confined and Leaky Systems

    Science.gov (United States)

    Barnkob, Rune; Nama, Nitesh; Ren, Liqiang; Huang, Tony Jun; Costanzo, Francesco; Kähler, Christian J.

    2018-01-01

    The acoustic motion of fluids and particles in confined and acoustically leaky systems is receiving increasing attention for its use in medicine and biotechnology. A number of contradicting physical and numerical models currently exist, but their validity is uncertain due to the unavailability of hard-to-access experimental data for validation. We provide experimental benchmarking data by measuring 3D particle trajectories and demonstrate that the particle trajectories can be described numerically without any fitting parameter by a reduced-fluid model with leaky impedance-wall conditions. The results reveal the hitherto unknown existence of a pseudo-standing wave that drives the acoustic streaming as well as the acoustic radiation force on suspended particles.

  5. Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2017-01-01

    Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.

  6. Design and simulation of superconducting Lorentz Force Electrical Impedance Tomography (LFEIT)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Boyang, E-mail: bs506@cam.ac.uk; Fu, Lin, E-mail: lf359@cam.ac.uk; Geng, Jianzhao, E-mail: jg717@cam.ac.uk; Zhang, Xiuchang, E-mail: xz326@cam.ac.uk; Zhang, Heng, E-mail: hz301@cam.ac.uk; Dong, Qihuan, E-mail: qd210@cam.ac.uk; Li, Chao, E-mail: cl644@cam.ac.uk; Li, Jing, E-mail: jl908@cam.ac.uk; Coombs, T.A., E-mail: tac1000@cam.ac.uk

    2016-05-15

    Highlights: • Design of superconducting magnets using Halbach Array configuration. • Combination of superconducting magnets together with Lorentz Force Electrical Impedance Tomography (LFEIT) system. • Simulation of superconducting LFEIT system based on the theory of magneto-acoustic effect. - Abstract: Lorentz Force Electrical Impedance Tomography (LFEIT) is a hybrid diagnostic scanner with strong capability for biological imaging, particularly in cancer and haemorrhages detection. This paper presents the design and simulation of a novel combination: a superconducting magnet together with LFEIT system. Superconducting magnets can generate magnetic field with high intensity and homogeneity, which could significantly enhance the imaging performance. The modelling of superconducting magnets was carried out using Finite Element Method (FEM) package, COMSOL Multiphysics, which was based on Partial Differential Equation (PDE) model with H-formulation coupling B-dependent critical current density and bulk approximation. The mathematical model for LFEIT system was built based on the theory of magneto-acoustic effect. The magnetic field properties from magnet design were imported into the LFEIT model. The basic imaging of electrical signal was developed using MATLAB codes. The LFEIT model simulated two samples located in three different magnetic fields with varying magnetic strength and homogeneity.

  7. Seismic transmission operator reciprocity - II: impedance-operator symmetry via elastic lateral modes

    Science.gov (United States)

    Thomson, C. J.

    2015-08-01

    The properties of the overburden transmission response are of particular interest for the analysis of reflectivity illumination or blurring in seismic depth imaging. The first step to showing a transmission-operator reciprocity property is to identify the symmetry of the so-called displacement-to-traction operators. The latter are analogous to Dirichlet-to-Neumann operators and they may also be called impedance operators. Their symmetry is deduced here after development of a formal spectral or modal theory of lateral wavefunctions in a laterally heterogeneous generally anisotropic elastic medium. The elastic lateral modes are displacement-traction 6-vectors and they are built from two auxiliary 3-vector lateral-mode bases. These auxiliary modes arise from Hermitian and anti-Hermitian operators, so they have familiar properties such as orthogonality. There is no assumption of down/up symmetry of the elasticity tensor, but basic assumptions are made about the existence and completeness of the elastic modes. A point-symmetry property appears and plays a central role. The 6-vector elastic modes have a symplectic orthogonality property, which facilitates the development of modal expansions for 6-vector functions of the lateral coordinates when completeness is assumed. While the elastic modal theory is consistent with the laterally homogeneous case, numerical work would provide confidence that it is correct in general. An appendix contains an introductory overview of acoustic lateral modes that were studied by other authors, given from the perspective of this new work. A distinction is drawn between unit normalization of scalar auxiliary modes and a separate energy-flux normalization of 2-vector acoustic modes. Neither is crucial to the form of acoustic pressure-to-velocity or impedance operators. This statement carries over to the elastic case for the 3-vector auxiliary- and 6-vector elastic-mode normalizations. The modal theory is used to construct the kernel of the

  8. Interferogram analysis using the Abel inversion technique

    International Nuclear Information System (INIS)

    Yusof Munajat; Mohamad Kadim Suaidi

    2000-01-01

    High speed and high resolution optical detection system were used to capture the image of acoustic waves propagation. The freeze image in the form of interferogram was analysed to calculate the transient pressure profile of the acoustic waves. The interferogram analysis was based on the fringe shift and the application of the Abel inversion technique. An easier approach was made by mean of using MathCAD program as a tool in the programming; yet powerful enough to make such calculation, plotting and transfer of file. (Author)

  9. Determination of the acoustic damping characteristics of an annular tail pipe

    OpenAIRE

    Boonen, Rene; Sas, Paul; Van den Bulck, Eric

    2010-01-01

    A damping device, consisting of an annular tail-pipe, has been developed. It is applicable in situations wherein acoustic damping is required in combination with low flow resistance. Examples are ventilation systems, turbo- engines, intake and exhaust systems for internal combustion engines. The device consists of a central tube surrounded by a narrow slit. The central tube has an acoustic mass which impedance increases with frequency. When the frequency has been increased sufficiently, a con...

  10. Impedance Scaling and Impedance Control

    International Nuclear Information System (INIS)

    Chou, W.; Griffin, J.

    1997-06-01

    When a machine becomes really large, such as the Very Large Hadron Collider (VLHC), of which the circumference could reach the order of megameters, beam instability could be an essential bottleneck. This paper studies the scaling of the instability threshold vs. machine size when the coupling impedance scales in a ''normal'' way. It is shown that the beam would be intrinsically unstable for the VLHC. As a possible solution to this problem, it is proposed to introduce local impedance inserts for controlling the machine impedance. In the longitudinal plane, this could be done by using a heavily detuned rf cavity (e.g., a biconical structure), which could provide large imaginary impedance with the right sign (i.e., inductive or capacitive) while keeping the real part small. In the transverse direction, a carefully designed variation of the cross section of a beam pipe could generate negative impedance that would partially compensate the transverse impedance in one plane

  11. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi

    2013-08-19

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it\\'s kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  12. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2013-01-01

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it's kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  13. Duality reconstruction algorithm for use in electrical impedance tomography

    International Nuclear Information System (INIS)

    Abdullah, M.Z.; Dickin, F.J.

    1996-01-01

    A duality reconstruction algorithm for solving the inverse problem in electrical impedance tomography (EIT) is described. In this method, an algorithm based on the Geselowitz compensation (GC) theorem is used first to reconstruct an approximate version of the image. It is then fed as a first guessed data to the modified Newton-Raphson (MNR) algorithm which iteratively correct the image until a final acceptable solution is reached. The implementation of the GC and MNR based algorithms using the finite element method will be discussed. Reconstructed images produced by the algorithm will also be presented. Consideration is also given to the most computationally intensive aspects of the algorithm, namely the inversion of the large and sparse matrices. The methods taken to approximately compute the inverse ot those matrices will be outlined. (author)

  14. Development of a pressure based room acoustic model using impedance descriptions of surfaces

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2013-01-01

    absorption coefficient, thus retaining the phase and the angle dependence. The approach of the proposed model will be to calculate the pressure impulse response using a combination of the image source method and acoustic radiosity. The image source method will account for the specular reflections...... and acoustic radiosity will account for the diffuse reflections. This paper presents the motivation for the new model in the form of results in literature, which show the importance of retaining the angle dependence and phase information in reflections along with simple examples of angle dependent reflection...

  15. Experimental study on the detection of free fluids and gases in waste packages by acoustic methods

    International Nuclear Information System (INIS)

    Eisenblaetter, J.; Schaefer, P.; Weib, R.

    1992-01-01

    The objective of the project was to evaluate the potential and the limits of various nondestructive methods for testing the contents of 200-litre drums filled with radioactive waste. The following test problems were to be studied: 1. Detection of free water on the surface of the waste matrix (concrete); 2. Determination of the waste matrix level; 3. Determination of internal gas pressure. The following methods were found to be suitable: For Test problem 1: Measurement of Lamb wave attenuation, Acoustic impedance measurement (AIM) and Analysis of swash sound; For Test problem 2: Acoustic impedance measurement (AIM) and Measurement of Lamb wave attenuation; For Test problem 3: A method of pressure compensation and Analysis of cover resonances after striking the cover. It was not possible, however, to detect the concrete level by localisation of friction points using acoustic emission methods. 53 figs

  16. Skeletonized Wave Equation Inversion in VTI Media without too much Math

    KAUST Repository

    Feng, Shihang

    2017-05-17

    We present a tutorial for skeletonized inversion of pseudo-acoustic anisotropic VTI data. We first invert for the anisotropic models using wave equation traveltime inversion. Here, the skeletonized data are the traveltimes of transmitted and/or reflected arrivals that lead to simpler misfit functions and more robust convergence compared to full waveform inversion. This provides a good starting model for waveform inversion. The effectiveness of this procedure is illustrated with synthetic data examples and a marine data set recorded in the Gulf of Mexico.

  17. Skeletonized Wave Equation Inversion in VTI Media without too much Math

    KAUST Repository

    Feng, Shihang; Schuster, Gerard T.

    2017-01-01

    We present a tutorial for skeletonized inversion of pseudo-acoustic anisotropic VTI data. We first invert for the anisotropic models using wave equation traveltime inversion. Here, the skeletonized data are the traveltimes of transmitted and/or reflected arrivals that lead to simpler misfit functions and more robust convergence compared to full waveform inversion. This provides a good starting model for waveform inversion. The effectiveness of this procedure is illustrated with synthetic data examples and a marine data set recorded in the Gulf of Mexico.

  18. Time domain localization technique with sparsity constraint for imaging acoustic sources

    Science.gov (United States)

    Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain

    2017-09-01

    This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.

  19. 2D seismostratigraphic inversion applied to a thin reservoir characterization; Inversao sismoestratigrafica 2D aplicada a caracterizacao de um reservatorio delgado

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Antonio Carlos de Almeida

    1998-12-01

    The purpose of this work is to estimate thin reservoir properties even without counting on a good quality and a homogeneous database. Following a regional geological setting, well data such as logs, reports, cores had led to an interpretation of the depositional model in which the sandstone interval is inserted as an filling an incised valley system. This knowledge is essential to provide elements for a final work judgement. The main geological properties were then extracted from logs. The geophysical approach has counted on a 1D modeling of the main well acoustic parameters and a 2D Seismostratigraphic Inversion with a {alpha} priori acoustic impedance, which was able to enhance the frequency content of the original data. After the interpretation of the inverted data, seismic attributes were then extracted. A multivariate statistics was performed in order to establish which correlations between geological and seismic would be carried forward. An Ordinary Kriging was applied to the 2D seismic attributes. The External Drift Kriging was used to derive maps of the geological properties with the constraint of seismic variables. The final geological properties maps are similar in shape and coherent with the depositional model proposed. (author)

  20. Inverse problem of solar oscillations

    International Nuclear Information System (INIS)

    Sekii, T.; Shibahashi, H.

    1987-01-01

    The authors present some preliminary results of numerical simulation to infer the sound velocity distribution in the solar interior from the oscillation data of the Sun as the inverse problem. They analyze the acoustic potential itself by taking account of some factors other than the sound velocity, and infer the sound velocity distribution in the deep interior of the Sun

  1. Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces

    Science.gov (United States)

    Navidi, Sal; Agdinaoay, Rodell; Walter, Keith

    2013-01-01

    High-speed serial communication (i.e., Gigabit Ethernet) requires differential transmission and controlled impedances. Impedance control is essential throughout cabling, connector, and circuit board construction. An impedance discontinuity arises at the interface of a high-speed quadrax and twinax connectors and the attached printed circuit board (PCB). This discontinuity usually is lower impedance since the relative dielectric constant of the board is higher (i.e., polyimide approx. = 4) than the connector (Teflon approx. = 2.25). The discontinuity can be observed in transmit or receive eye diagrams, and can reduce the effective link margin of serial data networks. High-speed serial data network transmission improvements can be made at the connector-to-board interfaces as well as improving differential via hole impedances. The impedance discontinuity was improved by 10 percent by drilling a 20-mil (approx. = 0.5-mm) hole in between the pin of a differential connector spaced 55 mils (approx. = 1.4 mm) apart as it is attached to the PCB. The effective dielectric constant of the board can be lowered by drilling holes into the board material between the differential lines in a quadrax or twinax connector attachment points. The differential impedance is inversely proportional to the square root of the relative dielectric constant. This increases the differential impedance and thus reduces the above described impedance discontinuity. The differential via hole impedance can also be increased in the same manner. This technique can be extended to multiple smaller drilled holes as well as tapered holes (i.e., big in the middle followed by smaller ones diagonally).

  2. Riemann–Hilbert problem approach for two-dimensional flow inverse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Agaltsov, A. D., E-mail: agalets@gmail.com [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr [CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau (France); IEPT RAS, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation)

    2014-10-15

    We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.

  3. Riemann–Hilbert problem approach for two-dimensional flow inverse scattering

    International Nuclear Information System (INIS)

    Agaltsov, A. D.; Novikov, R. G.

    2014-01-01

    We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given

  4. Accuracy of acoustic respiration rate monitoring in pediatric patients.

    Science.gov (United States)

    Patino, Mario; Redford, Daniel T; Quigley, Thomas W; Mahmoud, Mohamed; Kurth, C Dean; Szmuk, Peter

    2013-12-01

    Rainbow acoustic monitoring (RRa) utilizes acoustic technology to continuously and noninvasively determine respiratory rate from an adhesive sensor located on the neck. We sought to validate the accuracy of RRa, by comparing it to capnography, impedance pneumography, and to a reference method of counting breaths in postsurgical children. Continuous respiration rate data were recorded from RRa and capnography. In a subset of patients, intermittent respiration rate from thoracic impedance pneumography was also recorded. The reference method, counted respiratory rate by the retrospective analysis of the RRa, and capnographic waveforms while listening to recorded breath sounds were used to compare respiration rate of both capnography and RRa. Bias, precision, and limits of agreement of RRa compared with capnography and RRa and capnography compared with the reference method were calculated. Tolerance and reliability to the acoustic sensor and nasal cannula were also assessed. Thirty-nine of 40 patients (97.5%) demonstrated good tolerance of the acoustic sensor, whereas 25 of 40 patients (62.5%) demonstrated good tolerance of the nasal cannula. Intermittent thoracic impedance produced erroneous respiratory rates (>50 b·min(-1) from the other methods) on 47% of occasions. The bias ± SD and limits of agreement were -0.30 ± 3.5 b·min(-1) and -7.3 to 6.6 b·min(-1) for RRa compared with capnography; -0.1 ± 2.5 b·min(-1) and -5.0 to 5.0 b·min(-1) for RRa compared with the reference method; and 0.2 ± 3.4 b·min(-1) and -6.8 to 6.7 b·min(-1) for capnography compared with the reference method. When compared to nasal capnography, RRa showed good agreement and similar accuracy and precision but was better tolerated in postsurgical pediatric patients. © 2013 John Wiley & Sons Ltd.

  5. Stratigraphic inversion of pre-stack multicomponent data; Inversion stratigraphique multicomposante avant sommation

    Energy Technology Data Exchange (ETDEWEB)

    Agullo, Y.

    2005-09-15

    This thesis present the extension of mono-component seismic pre-stack data stratigraphical inversion method to multicomponent data, with the objective of improving the determination of reservoir elastic parameters. In addiction to the PP pressure waves, the PS converted waves proved their interest for imaging under gas clouds; and their potential is highly significant for the characterization of lithologies, fluids, fractures... Nevertheless the simultaneous use ol PP and PS data remains problematic because of their different the time scales. To jointly use the information contained in PP and PS data, we propose a method in three steps first, mono-component stratigraphic inversions of PP then PS data; second, estimation of the PP to PS time conversion law; third, multicomponent stratigraphic inversion. For the second point, the estimation of the PP to PS conversion law is based on minimizing the difference between the S impedances obtained from PP and PS mono-component stratigraphic inversion. The pre-stack mono-component stratigraphic inversions was adapted to the case of multicomponent data by leaving each type of data in its own time scale in order to avoid the distortion of the seismic wavelet. The results obtained on a realistic synthetic PP-PS case show on one hand that determining PP to PS conversion law (from the mono-component inversion results) is feasible, and on the other hand that the joint inversion of PP and PS data with this conversion law improves the results compared to the mono-component inversion ones. Although this is presented within the framework of the PP and PS multi-component data, the developed methodology adapts directly to PP and SS data for example. (author)

  6. Mapping thunder sources by inverting acoustic and electromagnetic observations

    Science.gov (United States)

    Anderson, J. F.; Johnson, J. B.; Arechiga, R. O.; Thomas, R. J.

    2014-12-01

    We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is considered to consist of a weighted superposition of these acoustic signals. We calculate the posterior distribution of acoustic source energy for each channel with a Markov Chain Monte Carlo inversion that fits power envelopes of modeled and recorded thunder; these results show which parts of the flash carry current and produce thunder. We examine the effects of RF pulse location imprecision and atmospheric winds on quality of results and apply this method to several lightning flashes over the Magdalena Mountains in New Mexico, USA. This method will enable more detailed study of lightning phenomena by allowing researchers to map current flow in addition to leader propagation.

  7. Lecture Notes On Acoustics

    International Nuclear Information System (INIS)

    Kim, Yang Han

    2005-09-01

    This book mentions string vibration and wave, one-dimension wave and wave equation, characteristic impedance, governing equation of string, and wave energy from string, wave equation of wave and basic physical quantity like one-dimension wave equation, sound unit, sound intensity and energy, sound movement in a surface of discontinuity with transmission loss of sound by partition, and Snell's law, radiation, scatter and diffraction and sound in closed space with Sabine's theory, sound characteristic of closed space and duct acoustics.

  8. 2D acoustic-elastic coupled waveform inversion in the Laplace domain

    KAUST Repository

    Bae, Hoseuk; Shin, Changsoo; Cha, Youngho; Choi, Yun Seok; Min, Dongjoo

    2010-01-01

    Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations

  9. The Analyzing of Ultrasound Propagation Wawes through a Piezoelectric Transducer in Function of Acoustic Charge

    OpenAIRE

    Grigore Liviu Odobescu

    2010-01-01

    The nature of acoustic charge, which works with an electronic generator to generate high intensity ultra-acoustic field is very various in function of application used [2]. The values of elements from equivalent scheme may be to vary in time in function of technologic process [3]. This fact determines the variation of accord frequencies and value of acoustic charge. In this manner the efficiency can be modified in time if it no take measures to minimize these influences of complex impedance t...

  10. Stabilizing inverse problems by internal data

    International Nuclear Information System (INIS)

    Kuchment, Peter; Steinhauer, Dustin

    2012-01-01

    Several newly developing hybrid imaging methods (e.g., those combining electrical impedance or optical imaging with acoustics) enable one to obtain some auxiliary interior information (usually some combination of the electrical conductivity and the current) about the parameters of the tissues. This information, in turn, happens to stabilize the exponentially unstable and thus low-resolution optical and electrical impedance tomography. Various known instances of this effect have been studied individually. We show that there is a simple general technique (covering all known cases) that shows what kinds of interior data stabilize the reconstruction, and why. Namely, we show when the linearized problem becomes an elliptic pseudo-differential one, and thus stable. Stability here is meant as the problem being Fredholm, so the local uniqueness is not shown and probably does not hold in such generality. (paper)

  11. Stabilizing inverse problems by internal data

    KAUST Repository

    Kuchment, Peter

    2012-07-30

    Several newly developing hybrid imaging methods (e.g., those combining electrical impedance or optical imaging with acoustics) enable one to obtain some auxiliary interior information (usually some combination of the electrical conductivity and the current) about the parameters of the tissues. This information, in turn, happens to stabilize the exponentially unstable and thus low-resolution optical and electrical impedance tomography. Various known instances of this effect have been studied individually. We show that there is a simple general technique (covering all known cases) that shows what kinds of interior data stabilize the reconstruction, and why. Namely, we show when the linearized problem becomes an elliptic pseudo-differential one, and thus stable. Stability here is meant as the problem being Fredholm, so the local uniqueness is not shown and probably does not hold in such generality. © 2012 IOP Publishing Ltd.

  12. Elastic full-waveform inversion of transmission data in 2D VTI media

    KAUST Repository

    Kamath, Nishant; Tsvankin, Ilya

    2014-01-01

    Full-waveform inversion (FWI) has been implemented mostly for isotropic media, with extensions to anisotropic models typically limited to acoustic approximations. Here, we develop elastic FWI for transmitted waves in 2D heterogeneous VTI (transversely isotropic with a vertical symmetry axis) media. The model is parameterized in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. To test the FWI algorithm, we introduce Gaussian anomalies in the Thomsen parameters of a homogeneous VTI medium and perform FWI of transmission data for different configurations of the source and receiver arrays. The inversion results strongly depend on the acquisition geometry and the aperture because of the parameter trade-offs. In contrast to acoustic FWI, the elastic inversion helps constrain the S-wave vertical velocity, which for our model is decoupled from the other parameters.

  13. Elastic full-waveform inversion of transmission data in 2D VTI media

    KAUST Repository

    Kamath, Nishant

    2014-08-05

    Full-waveform inversion (FWI) has been implemented mostly for isotropic media, with extensions to anisotropic models typically limited to acoustic approximations. Here, we develop elastic FWI for transmitted waves in 2D heterogeneous VTI (transversely isotropic with a vertical symmetry axis) media. The model is parameterized in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. To test the FWI algorithm, we introduce Gaussian anomalies in the Thomsen parameters of a homogeneous VTI medium and perform FWI of transmission data for different configurations of the source and receiver arrays. The inversion results strongly depend on the acquisition geometry and the aperture because of the parameter trade-offs. In contrast to acoustic FWI, the elastic inversion helps constrain the S-wave vertical velocity, which for our model is decoupled from the other parameters.

  14. Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials

    Science.gov (United States)

    Wang, Xiaole; Luo, Xudong; Zhao, Hui; Huang, Zhenyu

    2018-01-01

    We report the mechanism for simultaneous realization of acoustic perfect absorption (PA) and broadband insulation (BI) in the acoustic free field by a layered acoustic metamaterial (LAM). The proposed LAM comprises two critically coupled membrane-type acoustic metamaterials sandwiching a porous material layer. Both theoretical and experimental results verify that the proposed LAM sample can achieve nearly PA (98.4% in experiments) at 312 Hz with a thickness of 15 mm (1/73 of wavelength) and BI in the frequency range of 200-1000 Hz with an areal density of 2.2 kg/m2. In addition, the real parts of both the effective dynamic density and bulk modulus reach zero precisely at the critical frequency of 312 Hz, arising from the monopolar eigenmode of LAM. Our work advances the concept of synthetic design of sound absorption and insulation properties of multi-impedance-coupled acoustic systems and promotes membrane-type acoustic metamaterials to more practical engineering applications.

  15. Identification of source velocities on 3D structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method

    Science.gov (United States)

    Aucejo, M.; Totaro, N.; Guyader, J.-L.

    2010-08-01

    In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.

  16. Physico-chemical properties of binary mixtures of aliphatic and aromatic solvents at 313 K on acoustical data

    Science.gov (United States)

    Dahire, S. L.; Morey, Y. C.; Agrawal, P. S.

    2015-12-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) of binary mixtures of aliphatic solvents like dimethylformamide (DMF) and dimethylsulfoxide (DMSO) with aromatic solvents viz. chlorobenzene (CB), bromobenzene (BB), and nitrobenzene (NB) have been determined at 313 K. These parameters were used to calculate the adiabatic compressibility (β), intermolecular free length ( L f), molar volume ( V m), and acoustic impedance ( Z). From the experimental data excess molar volume ( V m E ), excess intermolecular free length ( L f E )), excess adiabatic compressibility (βE), and excess acoustic impedance ( Z E) have been computed. The excess values were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations (σ).

  17. A neural network image reconstruction technique for electrical impedance tomography

    International Nuclear Information System (INIS)

    Adler, A.; Guardo, R.

    1994-01-01

    Reconstruction of Images in Electrical Impedance Tomography requires the solution of a nonlinear inverse problem on noisy data. This problem is typically ill-conditioned and requires either simplifying assumptions or regularization based on a priori knowledge. This paper presents a reconstruction algorithm using neural network techniques which calculates a linear approximation of the inverse problem directly from finite element simulations of the forward problem. This inverse is adapted to the geometry of the medium and the signal-to-noise ratio (SNR) used during network training. Results show good conductivity reconstruction where measurement SNR is similar to the training conditions. The advantages of this method are its conceptual simplicity and ease of implementation, and the ability to control the compromise between the noise performance and resolution of the image reconstruction

  18. Full Waveform Inversion Using Oriented Time Migration Method

    KAUST Repository

    Zhang, Zhendong

    2016-04-12

    Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have an inaccurate update direction leading the inversion to converge into what we refer to as local minima of the objective function. In this thesis, I first look into the subject of full model wavenumber to analysis the root of local minima and suggest the possible ways to avoid this problem. And then I analysis the possibility of recovering the corresponding wavenumber components through the existing inversion and migration algorithms. Migration can be taken as a generalized inversion method which mainly retrieves the high wavenumber part of the model. Conventional impedance inversion method gives a mapping relationship between the migration image (high wavenumber) and model parameters (full wavenumber) and thus provides a possible cascade inversion strategy to retrieve the full wavenumber components from seismic data. In the proposed approach, consider a mild lateral variation in the model, I find an analytical Frechet derivation corresponding to the new objective function. In the proposed approach, the gradient is given by the oriented time-domain imaging method. This is independent of the background velocity. Specifically, I apply the oriented time-domain imaging (which depends on the reflection slope instead of a background velocity) on the data residual to obtain the geometrical features of the velocity perturbation. Assuming that density is constant, the conventional 1D impedance inversion method is also applicable for 2D or 3D velocity inversion within the process of FWI. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reflection response. To eliminate the cross-talk artifacts between different parameters, I

  19. Sparse Spike Inversion Predicts Lateral Variation of Porosity La méthode Sparse Spike Inversion de prévision des variations latérales de porosité

    OpenAIRE

    Alam A.; Ardali A.

    2006-01-01

    The sparse spike inversion method estimates from deconvolved seismic data that reflectivity which has the minimum sum of absolute values subject to two constraints. First, the reflectivity spectrum matches the seismic data spectrum over a specified bandwidth. Second, the impedance function resulting from integration of the reflectivity passes through a set of impedance windows, specified at interpreted horizon times. We use an interactive workstation to identify the phase of the residual wave...

  20. Sound source reconstruction using inverse boundary element calculations

    DEFF Research Database (Denmark)

    Schuhmacher, Andreas; Hald, Jørgen; Rasmussen, Karsten Bo

    2003-01-01

    Whereas standard boundary element calculations focus on the forward problem of computing the radiated acoustic field from a vibrating structure, the aim in this work is to reverse the process, i.e., to determine vibration from acoustic field data. This inverse problem is brought on a form suited ...... it is demonstrated that the L-curve criterion is robust with respect to the errors in a real measurement situation. In particular, it is shown that the L-curve criterion is superior to the more conventional generalized cross-validation (GCV) approach for the present tire noise studies....

  1. Interpretaion of synthetic seismic time-lapse monitoring data for Korea CCS project based on the acoustic-elastic coupled inversion

    Science.gov (United States)

    Oh, J.; Min, D.; Kim, W.; Huh, C.; Kang, S.

    2012-12-01

    Recently, the CCS (Carbon Capture and Storage) is one of the promising methods to reduce the CO2 emission. To evaluate the success of the CCS project, various geophysical monitoring techniques have been applied. Among them, the time-lapse seismic monitoring is one of the effective methods to investigate the migration of CO2 plume. To monitor the injected CO2 plume accurately, it is needed to interpret seismic monitoring data using not only the imaging technique but also the full waveform inversion, because subsurface material properties can be estimated through the inversion. However, previous works for interpreting seismic monitoring data are mainly based on the imaging technique. In this study, we perform the frequency-domain full waveform inversion for synthetic data obtained by the acoustic-elastic coupled modeling for the geological model made after Ulleung Basin, which is one of the CO2 storage prospects in Korea. We suppose the injection layer is located in fault-related anticlines in the Dolgorae Deformed Belt and, for more realistic situation, we contaminate the synthetic monitoring data with random noise and outliers. We perform the time-lapse full waveform inversion in two scenarios. One scenario is that the injected CO2 plume migrates within the injection layer and is stably captured. The other scenario is that the injected CO2 plume leaks through the weak part of the cap rock. Using the inverted P- and S-wave velocities and Poisson's ratio, we were able to detect the migration of the injected CO2 plume. Acknowledgment This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).

  2. Joint Eglin Acoustics Week 2013 Data Report

    Science.gov (United States)

    2017-10-01

    were acquired simultaneously with the acoustic data. This paper describes the test aircraft, onboard instrumentation, ground instrumentation, and the...Vehicle position and state data, as well as weather data, were acquired simultaneously with the acoustic data. This paper describes the test...14-1 11:21:58 11:22:57 A2 80 6 70.5 0.0 27 nose left sideslip (~20°)-- temperature inversion (+8°F over 300’) 327 15-1 11:27:09 11:28:34 A3 70 3

  3. Longitudinal acoustic properties of poly(lactic acid) and poly(lactic-co-glycolic acid)

    International Nuclear Information System (INIS)

    Parker, N G; Povey, M J W; Mather, M L; Morgan, S P

    2010-01-01

    Acoustics offers rich possibilities for characterizing and monitoring the biopolymer structures being employed in the field of biomedical engineering. Here we explore the rudimentary acoustic properties of two common biodegradable polymers: poly(lactic acid) and poly(lactic-co-glycolic acid). A pulse-echo technique is developed to reveal the bulk speed of sound, acoustic impedance and acoustic attenuation of small samples of the polymer across a pertinent temperature range of 0-70 0 C. The glass transition appears markedly as both a discontinuity in the first derivative of the speed of sound and a sharp increase in the acoustic attenuation. We further extend our analysis to consider the role of ethanol, whose presence is observed to dramatically modify the acoustic properties and reduce the glass transition temperature of the polymers. Our results highlight the sensitivity of acoustic properties to a range of bulk properties, including visco-elasticity, molecular weight, co-polymer ratio, crystallinity and the presence of plasticizers.

  4. Acoustic probe for solid-gas-liquid suspensions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Greenwood, M.S.; Sangani, A.S.; Tavlarides, L.L.

    1998-01-01

    'The proposed research will develop an acoustic probe for monitoring particle size and volume fraction in slurries in the absence and presence of gas. The goals are to commission and verify the probe components and system operation, develop theory for the forward and inverse problems for acoustic wave propagation through a three phase medium, and experimentally verify the theoretical analysis. The acoustic probe will permit measurement of solid content in gas-liquid-solid waste slurries in tanks across the DOE complex.'

  5. High-power ion beam generation with an inverse reflex tetrode

    International Nuclear Information System (INIS)

    Pasour, J.A.; Mahaffey, R.A.; Golden, J.; Kapetanakos, C.A.

    1980-01-01

    A new reflexing-electron ion source is described. The device produces a unidirectional ion beam with relatively high efficiency even when the applied magnetic field exceeds the self-field. This new source operates at a low, constant impedance during much of the applied voltage pulse and is better matched to available high-power, low-impedance generators than previous reflexing-electron devices. Proton pulses with peak current approx.500 kA have been produced with the inverse reflex tetrode coupled to the Gamble II generator

  6. Reconstruction of sound speed profile through natural generalized inverse technique

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Somayajulu, Y.K.; Murty, C.S.

    An acoustic model has been developed for reconstruction of vertical sound speed in a near stable or stratified ocean. Generalized inverse method is utilised in the model development. Numerical experiments have been carried out to account...

  7. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Science.gov (United States)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  8. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors.

    Science.gov (United States)

    Qin, Lei; Ren, Hong-Wei; Dong, Bi-Qin; Xing, Feng

    2014-10-02

    Acoustic emission (AE) is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1-3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  9. The Use of Acoustic Radiation Force Decorrelation-Weighted Pulse Inversion for Enhanced Ultrasound Contrast Imaging.

    Science.gov (United States)

    Herbst, Elizabeth B; Unnikrishnan, Sunil; Wang, Shiying; Klibanov, Alexander L; Hossack, John A; Mauldin, Frank William

    2017-02-01

    The use of ultrasound imaging for cancer diagnosis and screening can be enhanced with the use of molecularly targeted microbubbles. Nonlinear imaging strategies such as pulse inversion (PI) and "contrast pulse sequences" (CPS) can be used to differentiate microbubble signal, but often fail to suppress highly echogenic tissue interfaces. This failure results in false-positive detection and potential misdiagnosis. In this study, a novel acoustic radiation force (ARF)-based approach was developed for superior microbubble signal detection. The feasibility of this technique, termed ARF decorrelation-weighted PI (ADW-PI), was demonstrated in vivo using a subcutaneous mouse tumor model. Tumors were implanted in the hindlimb of C57BL/6 mice by subcutaneous injection of MC38 cells. Lipid-shelled microbubbles were conjugated to anti-VEGFR2 antibody and administered via bolus injection. An image sequence using ARF pulses to generate microbubble motion was combined with PI imaging on a Verasonics Vantage programmable scanner. ADW-PI images were generated by combining PI images with interframe signal decorrelation data. For comparison, CPS images of the same mouse tumor were acquired using a Siemens Sequoia clinical scanner. Microbubble-bound regions in the tumor interior exhibited significantly higher signal decorrelation than static tissue (n = 9, P < 0.001). The application of ARF significantly increased microbubble signal decorrelation (n = 9, P < 0.01). Using these decorrelation measurements, ADW-PI imaging demonstrated significantly improved microbubble contrast-to-tissue ratio when compared with corresponding CPS or PI images (n = 9, P < 0.001). Contrast-to-tissue ratio improved with ADW-PI by approximately 3 dB compared with PI images and 2 dB compared with CPS images. Acoustic radiation force can be used to generate adherent microbubble signal decorrelation without microbubble bursting. When combined with PI, measurements of the resulting microbubble signal

  10. Helioseismology in a bottle: modal acoustic velocimetry

    International Nuclear Information System (INIS)

    Triana, Santiago Andrés; Zimmerman, Daniel S; Lathrop, Daniel P; Nataf, Henri-Claude; Thorette, Aurélien; Lekic, Vedran

    2014-01-01

    Measurement of the differential rotation of the Sun's interior is one of the great achievements of helioseismology, providing important constraints for stellar physics. The technique relies on observing and analyzing rotationally-induced splittings of p-modes in the star. Here, we demonstrate the first use of the technique in a laboratory setting. We apply it in a spherical cavity with a spinning central core (spherical-Couette flow) to determine the mean azimuthal velocity of the air filling the cavity. We excite a number of acoustic resonances (analogous to p-modes in the Sun) using a speaker and record the response with an array of small microphones on the outer sphere. Many observed acoustic modes show rotationally-induced splittings, which allow us to perform an inversion to determine the air's azimuthal velocity as a function of both radius and latitude. We validate the method by comparing the velocity field obtained through inversion against the velocity profile measured with a calibrated hot film anemometer. This modal acoustic velocimetry technique has great potential for laboratory setups involving rotating fluids in axisymmetric cavities. It will be useful especially in liquid metals where direct optical methods are unsuitable and ultrasonic techniques very challenging at best. (paper)

  11. Recently Developed Formulations of the Inverse Problem in Acoustics and Electromagnetics

    Science.gov (United States)

    1974-12-01

    solution for scattering by a sphere. The inverse transform of irs?(K) is calculated, this function yielding --y (x). Figure 4.2 is a graph of this...time or decays "sufficiently rapidly", then T+- o. In this case, we may let T -1 in (8.9) and obtain the inverse transform (k = w/c) of (5.6) as the

  12. A solution to the inverse problem in ocean acoustics

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Somayajulu, Y.K.; Mahadevan, R.; Murty, C.S.; Sastry, J.S.

    stratified ocean, considering the range independent nature of the medium, geophysical inverse techniques are employed to reconstruct the sound speed profile. The reconstructed profile for a six layer ocean, with five energetic modes, is in good agreement...

  13. Flow profiling of a surface-acoustic-wave nanopump

    Science.gov (United States)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  14. Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements

    Science.gov (United States)

    Qu, Fenglong; Yang, Jiaqing; Zhang, Bo

    2018-01-01

    Consider the inverse scattering problem of time-harmonic acoustic waves by a 3D bounded elastic obstacle which may contain embedded impenetrable obstacles inside. We propose a novel and simple technique to show that the elastic obstacle can be uniquely recovered by the acoustic far-field pattern at a fixed frequency, disregarding its contents. Our method is based on constructing a well-posed modified interior transmission problem on a small domain and makes use of an a priori estimate for both the acoustic and elastic wave fields in the usual H 1-norm. In the case when there is no obstacle embedded inside the elastic body, our method gives a much simpler proof for the uniqueness result obtained previously in the literature (Natroshvili et al 2000 Rend. Mat. Serie VII 20 57-92 Monk and Selgas 2009 Inverse Problems Imaging 3 173-98).

  15. Acoustic Source Localization in Aircraft Interiors Using Microphone Array Technologies

    Science.gov (United States)

    Sklanka, Bernard J.; Tuss, Joel R.; Buehrle, Ralph D.; Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas

    2006-01-01

    Using three microphone array configurations at two aircraft body stations on a Boeing 777-300ER flight test, the acoustic radiation characteristics of the sidewall and outboard floor system are investigated by experimental measurement. Analysis of the experimental data is performed using sound intensity calculations for closely spaced microphones, PATCH Inverse Boundary Element Nearfield Acoustic Holography, and Spherical Nearfield Acoustic Holography. Each method is compared assessing strengths and weaknesses, evaluating source identification capability for both broadband and narrowband sources, evaluating sources during transient and steady-state conditions, and quantifying field reconstruction continuity using multiple array positions.

  16. Intracardiac impedance response during acute AF internal cardioversion using novel rectilinear and capacitor-discharge waveforms.

    Science.gov (United States)

    Rababah, A S; Walsh, S J; Manoharan, G; Walsh, P R; Escalona, O J

    2016-07-01

    Intracardiac impedance (ICI) is a major determinant of success during internal cardioversion of atrial fibrillation (AF). However, there have been few studies that have examined the dynamic behaviour of atrial impedance during internal cardioversion in relation to clinical outcome. In this study, voltage and current waveforms captured during internal cardioversion of acute AF in ovine models using novel radiofrequency (RF) generated low-tilt rectilinear and conventional capacitor-discharge based shock waveforms were retrospectively analysed using a digital signal processing algorithm to investigate the dynamic behaviour of atrial impedance during cardioversion. The algorithm was specifically designed to facilitate the simultaneous analysis of multiple impedance parameters, including: mean intracardiac impedance (Z M), intracardiac impedance variance (ICIV) and impedance amplitude spectrum area (IAMSA) for each cardioversion event. A significant reduction in ICI was observed when comparing two successive shocks of increasing energy where cardioversion outcome was successful. In addition, ICIV and IAMSA variables were found to inversely correlate to the magnitude of energy delivered; with a stronger correlation found to the former parameter. In conclusion, ICIV and IAMSA have been evidenced as two key dynamic intracardiac impedance variables that may prove useful in better understanding of the cardioversion process and that could potentially act as prognostic markers with respect to clinical outcome.

  17. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    International Nuclear Information System (INIS)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen; Liu, Xiaozhou

    2014-01-01

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  18. A model for acoustic absorbent materials derived from coconut fiber

    Directory of Open Access Journals (Sweden)

    Ramis, J.

    2014-03-01

    Full Text Available In the present paper, a methodology is proposed for obtaining empirical equations describing the sound absorption characteristics of an absorbing material obtained from natural fibers, specifically from coconut. The method, which was previously applied to other materials, requires performing measurements of air-flow resistivity and of acoustic impedance for samples of the material under study. The equations that govern the acoustic behavior of the material are then derived by means of a least-squares fit of the acoustic impedance and of the propagation constant. These results can be useful since they allow the empirically obtained analytical equations to be easily incorporated in prediction and simulation models of acoustic systems for noise control that incorporate the studied materials.En este trabajo se describe el proceso seguido para obtener ecuaciones empíricas del comportamiento acústico de un material absorbente obtenido a partir de fibras naturales, concretamente el coco. El procedimiento, que ha sido ensayado con éxito en otros materiales, implica la realización de medidas de impedancia y resistencia al flujo de muestras del material bajo estudio. Las ecuaciones que gobiernan el comportamiento desde el punto de vista acústico del material se obtienen a partir del ajuste de ecuaciones de comportamiento de la impedancia acústica y la constante de propagación del material. Los resultados son útiles ya que, al disponer de ecuaciones analíticas obtenidas empíricamente, facilitan la incorporación de estos materiales en predicciones mediante métodos numéricos del comportamiento cuando son instalados formando parte de dispositivos para el control del ruido.

  19. Acoustic response of Helmholtz dampers in the presence of hot grazing flow

    Science.gov (United States)

    Ćosić, B.; Wassmer, D.; Terhaar, S.; Paschereit, C. O.

    2015-01-01

    Thermoacoustic instabilities are high amplitude instabilities of premixed gas turbine combustors. Cooled passive dampers are used to attenuate or suppress these instabilities in the combustion chamber. For the first time, the influence of temperature differences between the grazing flow in the combustor and the cross-flow emanating from the Helmholtz damper is comprehensively investigated in the linear and nonlinear amplitude regime. The flow field inside the resonator and in the vicinity of the neck is measured with high-speed particle image velocimetry for various amplitudes and at different momentum-flux ratios of grazing and purging flow. Seeding is used as a tracer to qualitatively assess the mixing of the grazing and purging flow as well as the ingestion into the neck of the resonator. Experimentally, the acoustic response for various temperature differences between grazing and purging flow is investigated. The multi-microphone method, in combination with two microphones flush-mounted in the resonator volume and two microphones in the plane of the resonator entrance, is used to determine the impedance of the Helmholtz resonator in the linear and nonlinear amplitude regime for various temperatures and different momentum-flux ratios. Additionally, a thermocouple was used to measure the temperature in the neck. The acoustic response and the temperature measurements are used to obtain the virtual neck length and the effective area jump from a detailed impedance model. This model is extended to include the observed acoustic energy dissipation caused by the density gradients at the neck vicinity. A clear correlation between temperature differences and changes of the mass end-correction is confirmed. The capabilities of the impedance model are demonstrated.

  20. Axial vibrations of brass wind instrument bells and their acoustical influence: Theory and simulations.

    Science.gov (United States)

    Kausel, Wilfried; Chatziioannou, Vasileios; Moore, Thomas R; Gorman, Britta R; Rokni, Michelle

    2015-06-01

    Previous work has demonstrated that structural vibrations of brass wind instruments can audibly affect the radiated sound. Furthermore, these broadband effects are not explainable by assuming perfect coincidence of the frequency of elliptical structural modes with air column resonances. In this work a mechanism is proposed that has the potential to explain the broadband influences of structural vibrations on acoustical characteristics such as input impedance, transfer function, and radiated sound. The proposed mechanism involves the coupling of axial bell vibrations to the internal air column. The acoustical effects of such axial bell vibrations have been studied by extending an existing transmission line model to include the effects of a parasitic flow into vibrating walls, as well as distributed sound pressure sources due to periodic volume fluctuations in a duct with oscillating boundaries. The magnitude of these influences in typical trumpet bells, as well as in a complete instrument with an unbraced loop, has been studied theoretically. The model results in predictions of input impedance and acoustical transfer function differences that are approximately 1 dB for straight instruments and significantly higher when coiled tubes are involved or when very thin brass is used.

  1. Point sources and multipoles in inverse scattering theory

    CERN Document Server

    Potthast, Roland

    2001-01-01

    Over the last twenty years, the growing availability of computing power has had an enormous impact on the classical fields of direct and inverse scattering. The study of inverse scattering, in particular, has developed rapidly with the ability to perform computational simulations of scattering processes and led to remarkable advances in a range of applications, from medical imaging and radar to remote sensing and seismic exploration. Point Sources and Multipoles in Inverse Scattering Theory provides a survey of recent developments in inverse acoustic and electromagnetic scattering theory. Focusing on methods developed over the last six years by Colton, Kirsch, and the author, this treatment uses point sources combined with several far-reaching techniques to obtain qualitative reconstruction methods. The author addresses questions of uniqueness, stability, and reconstructions for both two-and three-dimensional problems.With interest in extracting information about an object through scattered waves at an all-ti...

  2. Applications of elliptic Carleman inequalities to Cauchy and inverse problems

    CERN Document Server

    Choulli, Mourad

    2016-01-01

    This book presents a unified approach to studying the stability of both elliptic Cauchy problems and selected inverse problems. Based on elementary Carleman inequalities, it establishes three-ball inequalities, which are the key to deriving logarithmic stability estimates for elliptic Cauchy problems and are also useful in proving stability estimates for certain elliptic inverse problems. The book presents three inverse problems, the first of which consists in determining the surface impedance of an obstacle from the far field pattern. The second problem investigates the detection of corrosion by electric measurement, while the third concerns the determination of an attenuation coefficient from internal data, which is motivated by a problem encountered in biomedical imaging.

  3. A passive inverse filter for Green's function retrieval.

    Science.gov (United States)

    Gallot, Thomas; Catheline, Stefan; Roux, Philippe; Campillo, Michel

    2012-01-01

    Passive methods for the recovery of Green's functions from ambient noise require strong hypotheses, including isotropic distribution of the noise sources. Very often, this distribution is nonisotropic, which introduces bias in the Green's function reconstruction. To minimize this bias, a spatiotemporal inverse filter is proposed. The method is tested on a directive noise field computed from an experimental active seismic data set. The results indicate that the passive inverse filter allows the manipulation of the spatiotemporal degrees of freedom of a complex wave field, and it can efficiently compensate for the noise wavefield directivity. © 2012 Acoustical Society of America.

  4. Enhancement of acoustical performance of hollow tube sound absorber

    International Nuclear Information System (INIS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-01-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  5. Enhancement of acoustical performance of hollow tube sound absorber

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Azma, E-mail: azma.putra@utem.edu.my; Khair, Fazlin Abd, E-mail: fazlinabdkhair@student.utem.edu.my; Nor, Mohd Jailani Mohd, E-mail: jai@utem.edu.my [Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal Melaka 76100 Malaysia (Malaysia)

    2016-03-29

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  6. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    Science.gov (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  7. Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol

    Science.gov (United States)

    Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh

    2017-07-01

    Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.

  8. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  9. Lightweight acoustic treatments for aerospace applications

    Science.gov (United States)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their

  10. Second-mode control in hypersonic boundary layers over assigned complex wall impedance

    Science.gov (United States)

    Sousa, Victor; Patel, Danish; Chapelier, Jean-Baptiste; Scalo, Carlo

    2017-11-01

    The durability and aerodynamic performance of hypersonic vehicles greatly relies on the ability to delay transition to turbulence. Passive aerodynamic flow control devices such as porous acoustic absorbers are a very attractive means to damp ultrasonic second-mode waves, which govern transition in hypersonic boundary layers under idealized flow conditions (smooth walls, slender geometries, small angles of attack). The talk will discuss numerical simulations modeling such absorbers via the time-domain impedance boundary condition (TD-IBC) approach by Scalo et al. in a hypersonic boundary layer flow over a 7-degree wedge at freestream Mach numbers M∞ = 7.3 and Reynolds numbers Rem = 1.46 .106 . A three-parameter impedance model tuned to the second-mode waves is tested first with varying resistance, R, and damping ratio, ζ, revealing complete mode attenuation for R workers at DLR-Göttingen.

  11. A review of bias flow liners for acoustic damping in gas turbine combustors

    Science.gov (United States)

    Lahiri, C.; Bake, F.

    2017-07-01

    The optimized design of bias flow liner is a key element for the development of low emission combustion systems in modern gas turbines and aero-engines. The research of bias flow liners has a fairly long history concerning both the parameter dependencies as well as the methods to model the acoustic behaviour of bias flow liners under the variety of different bias and grazing flow conditions. In order to establish an overview over the state of the art, this paper provides a comprehensive review about the published research on bias flow liners and modelling approaches with an extensive study of the most relevant parameters determining the acoustic behaviour of these liners. The paper starts with a historical description of available investigations aiming on the characterization of the bias flow absorption principle. This chronological compendium is extended by the recent and ongoing developments in this field. In a next step the fundamental acoustic property of bias flow liner in terms of the wall impedance is introduced and the different derivations and formulations of this impedance yielding the different published model descriptions are explained and compared. Finally, a parametric study reveals the most relevant parameters for the acoustic damping behaviour of bias flow liners and how this is reflected by the various model representations. Although the general trend of the investigated acoustic behaviour is captured by the different models fairly well for a certain range of parameters, in the transition region between the resonance dominated and the purely bias flow related regime all models lack the correct damping prediction. This seems to be connected to the proper implementation of the reactance as a function of bias flow Mach number.

  12. Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials

    Directory of Open Access Journals (Sweden)

    Weihua Chen

    2016-01-01

    Full Text Available To investigate the changing rules between sound absorbing performance and geometrical parameters of porous fibrous metal materials (PFMMs, this paper presents a fractal acoustic model by incorporating the static flow resistivity based on Biot-Allard model. Static flow resistivity is essential for an accurate assessment of the acoustic performance of the PFMM. However, it is quite difficult to evaluate the static flow resistivity from the microstructure of the PFMM because of a large number of disordered pores. In order to overcome this difficulty, we firstly established a static flow resistivity formula for the PFMM based on fractal theory. Secondly, a fractal acoustic model was derived on the basis of the static flow resistivity formula. The sound absorption coefficients calculated by the presented acoustic model were validated by the values of Biot-Allard model and experimental data. Finally, the variation of the surface acoustic impedance, the complex wave number, and the sound absorption coefficient with the fractal dimensions were discussed. The research results can reveal the relationship between sound absorption and geometrical parameters and provide a basis for improving the sound absorption capability of the PFMMs.

  13. Inverse estimation of the temperature field within a gas-filled duct section by use of acoustic data

    International Nuclear Information System (INIS)

    Kim, Tae-Kyoon; Ih, Jeong-Guon

    2015-01-01

    Knowledge of the temperature distribution of an in-duct gaseous medium is essential in the monitoring of combustion status. To obtain the temperature distribution, an inverse relationship based on the Radon transform is formulated by using the measured time retardation data from a set of acoustic sensors and actuators. The entire spatial distribution can be obtained by interpolating the estimated discrete temperature data using either a path-based or spaced-based method. An interpolation method then determines the precision of the final imaging result. The characteristics and performance of two interpolation methods are investigated in a simulation study by reconstructing the temperature distribution of a rectangular cross-section. To calculate the temperature field, the path-based interpolation method adopts a direct expression of temperature variation along the propagation path, whereas the space-based interpolation method uses data obtained at predetermined points deployed inside the field. The average reconstruction accuracy of the space-based interpolation for temperature fields with 1 and 4 local maxima is 22% and 183% better than that of path-based interpolation, respectively. Also, the space-based interpolation method is more robust with regard to measurement noise than the path-based interpolation method. (paper)

  14. Multiscale Phase Inversion of Seismic Data

    KAUST Repository

    Fu, Lei

    2017-12-02

    We present a scheme for multiscale phase inversion (MPI) of seismic data that is less sensitive to the unmodeled physics of wave propagation and a poor starting model than standard full waveform inversion (FWI). To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. The input data are also filtered into different narrow frequency bands for the MPI implementation. At low frequencies, we show that MPI with windowed reflections approximates wave equation inversion of the reflection traveltimes, except no traveltime picking is needed. Numerical results with synthetic acoustic data show that MPI is more robust than conventional multiscale FWI when the initial model is far from the true model. Results from synthetic viscoacoustic and elastic data show that MPI is less sensitive than FWI to some of the unmodeled physics. Inversion of marine data shows that MPI is more robust and produces modestly more accurate results than FWI for this data set.

  15. Semi-local inversion of the geodesic ray transform in the hyperbolic plane

    International Nuclear Information System (INIS)

    Courdurier, Matias; Saez, Mariel

    2013-01-01

    The inversion of the ray transform on the hyperbolic plane has applications in geophysical exploration and in medical imaging techniques (such as electrical impedance tomography). The geodesic ray transform has been studied in more general geometries and including attenuation, but all of the available inversion formulas require knowledge of the ray transform for all the geodesics. In this paper we present a different inversion formula for the ray transform on the hyperbolic plane, which has the advantage of only requiring knowledge of the ray transform in a reduced family of geodesics. The required family of geodesics is directly related to the set where the original function is to be recovered. (paper)

  16. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    International Nuclear Information System (INIS)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed

  17. Broadband manipulation of refracted wavefronts by gradient acoustic metasurface with V-shape structure

    Science.gov (United States)

    Lan, Jun; Li, Yifeng; Liu, Xiaozhou

    2017-12-01

    We present a space folding acoustic metasurface with a V-shaped structure, which exhibits ultra-broadband and high efficiency transmission compared to previously investigated space folding metasurfaces. The proposal employs a gradient refractive index profile to redirect the refracted wave arbitrarily and an existence of air channels with direct sound propagation to improve impedance matching between the metasurface and the background medium. As expected from frequency-independent generalized Snell's law, the demonstrated acoustic metasurface can steer refracted wavefronts at will, including anomalous refraction, non-diffracting Bessel beam, sub-wavelength flat lens, and conversion of the propagating wave into the surface wave. The designed V-shape metasurface overcomes the limitation of narrowband, which may offer potential applications in medical ultrasound imaging and broadband acoustical devices.

  18. Development of Lightweight, Compact, Structurally-Integrated Acoustic Liners for Broadband Low-Frequency Noise Mitigation

    Science.gov (United States)

    Chambers, Andrew T.

    Airborne noise with a low dominant frequency content (scope of conventional acoustic noise mitigation techniques using liners, foams or claddings owing to mass and volume considerations. Its low evanescence contributes significantly to environmental noise pollution, and unwanted structural vibrations causing diminished efficiency, comfort, payload integrity and mission capabilities. An alternative approach using liner configurations with realistic mass and volume constraints having innovative 'folded' core geometries is investigated to ascertain its low-frequency noise absorption characteristics. In contrast to mass-driven approaches, the folded core approach relies on tailoring interactions between acoustic resonances to tune the liner's impedance to suit the dominant low-frequency content of the source. This allows to keep non-structural mass-addition to a minimum, while retaining an overall thickness comparable to conventional liners for these low-frequency liner designs. The relative acoustic performance of various candidate folded core designs is evaluated by means of a new composite metric termed the Low-Frequency Performance (LFP) factor, which is educed from the absorption coefficient spectrum obtained using Zwikker-Kosten Transmission Line (ZKTL) theory-based numerical studies. An LFP-based software tool is developed to determine optimal 3D cavity packing for a prescribed liner volume and target frequency range. ZKTL-based parametric studies on core dimensions and face sheet porosity are utilized for detailed design of test articles. Experimental verification of absorption coefficient spectra conducted using 3D printed test articles in a normal incidence acoustic impedance tube yield good correlation with simulations. More than 100 Hz of continuous bandwidth with an absorption coefficient greater than 0.6 is shown to be possible in the 300 to 400 Hz range with a 38.1-mm (1.5-inch) thick liner. Further, the influence of face sheet type, Mach number, and

  19. A study on calculation method for mechanical impedance of air spring

    International Nuclear Information System (INIS)

    Changgeng, Shuai; Penghui, Li; Rustighi, Emiliano

    2016-01-01

    This paper proposes an approximate analytic method of obtaining the mechanical impedance of air spring. The sound pressure distribution in cylindrical air spring is calculated based on the linear air wave theory. The influences of different boundary conditions on the acoustic pressure field distribution in cylindrical air spring are analysed. A 1-order ordinary differential matrix equation for the state vector of revolutionary shells under internal pressure is derived based on the non-moment theory of elastic thin shell. Referring to the transfer matrix method, a kind of expanded homogeneous capacity high precision integration method is introduced to solve the non-homogeneous matrix differential equation. Combined the solved stress field of shell with the calculated sound pressure field in air spring under the displacement harmonic excitation, the approximate analytical expression of the input and transfer mechanical impedance for the air spring can be achieved. The numerical simulation with the Comsol Multiphysics software verifies the correctness of theoretical analysis result. (paper)

  20. Inverse problems and inverse scattering of plane waves

    CERN Document Server

    Ghosh Roy, Dilip N

    2001-01-01

    The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.

  1. Embedded 3D electromechanical impedance model for strength monitoring of concrete using a PZT transducer

    International Nuclear Information System (INIS)

    Wang, Dansheng; Song, Hongyuan; Zhu, Hongping

    2014-01-01

    The electromechanical (EM) impedance approach in which piezoelectric ceramics (PZT) simultaneously act as both a sensor and an actuator due to their direct and inverse piezoelectric effects has emerged as a powerful tool for structural health monitoring in recent years. This paper formulates a new 3D electromechanical impedance model that characterizes the interaction between an embedded square PZT transducer and the host structure based on the effective impedance. The proposed formulations can be conveniently used to extract the mechanical impedance of the host structure from the electromechanical admittance measurements of an embedded PZT patch. The proposed model is verified by experimental and numerical results from a smart concrete cube in which a square PZT transducer is embedded. Subsequently, this paper also presents a new methodology to monitor the compressive strength of concrete based on the effective mechanical impedance. By extracting the effective mechanical impedances from the electromechanical admittance signatures, measuring the compressive strength of the concrete cubes at different ages and combining these measurements with the index of the correlation coefficient (CC), a linear correlation between the concrete strength gain and the CC of the real mechanical admittances was found. The proposed approach is found to be feasible to monitor the compressive strength of concrete by age. (paper)

  2. Acoustic reflections in the water column of Krishna-Godavari offshore basin, Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sinha, S.K.; Dewangan, P.; Sain, K.

    reflection seismic data. Remarkable similarities between the reflection seismic and the salinity profile in the upper thermocline suggest the importance of salinity variations on the water column reflection. Furthermore, impedance inversion...

  3. Blind Tests of Inversion Package for Stratigraphic Interpretation Test en aveugle de logiciels d'inversion pour l'interprétation stratigraphique

    Directory of Open Access Journals (Sweden)

    Lailly P.

    2006-11-01

    Full Text Available This paper presents the blind test experiment set up for the EAEG workshop on Practical Aspects of Seismic Inversion(Berlin, 1989. The target was to review the possibilities provided by seismic data inversion at the end of the 1980's. This blind test consisted in deriving an acoustic impedance cross-section from a poststack seismic section and an impedance log. The control of the solution was made by comparison of the solution with logs at different well locations, these logs being kept hidden before the workshop. We give a mathematical formulation of the considered seismic inverse problem and we describe in detail the blind test experiment. We present the results obtained during this blind test with two software packages: SPIDER (Elf Aquitaine and INTEGRATE (Jason Geosystems. These results and other results presented during the workshop (see the papers in this issue illustrate the effectiveness of seismic inversion and the importance of integrating geological information during the inversion process. L'inversion de données sismiques est un problème qui a suscité l'intérêt des géophysiciens pendant les dernières décennies (Kunetz, 1963; Bamberger et al, 1977, 1982; Lavergne et Willm, 1977; Gjevik et at, 1976; Lindseth, 1979; Oldenburg et al, 1983; Duijndam et Van Riel, 1980, . . . . L'intérêt de cette approche est de fournir à partir des données sismiques une estimation quantitative des distributions de certains paramètres physiques caractéristiques du sous-sol. De plus certaines de ces méthodes permettent d'intégrer des données non sismiques (données de puits, information géologique pour la construction du résultat. Ces méthodes débouchent donc sur une autre conception de l'interprétation stratigraphique : la section à interpréter est une distribution de paramètre physique (souvent l'impédance acoustique qui est censée intégrer toutes les informations manipulées par l'interprétateur (sismique, diagraphies

  4. Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements

    International Nuclear Information System (INIS)

    Borcea, L; Mamonov, A V; Druskin, V; Vasquez, F Guevara

    2010-01-01

    We introduce an inversion algorithm for electrical impedance tomography (EIT) with partial boundary measurements in two dimensions. It gives stable and fast reconstructions using sparse parameterizations of the unknown conductivity on optimal grids that are computed as part of the inversion. We follow the approach in Borcea et al (2008 Inverse Problems 24 035013) and Vasquez (2006 PhD thesis Rice University, Houston, TX, USA) that connects inverse discrete problems for resistor networks to continuum EIT problems, using optimal grids. The algorithm in Borcea et al (2008 Inverse Problems 24 035013) and Vasquez (2006 PhD Thesis Rice University, Houston, TX, USA) is based on circular resistor networks, and solves the EIT problem with full boundary measurements. It is extended in Borcea et al (2010 Inverse Problems 26 045010) to EIT with partial boundary measurements, using extremal quasi-conformal mappings that transform the problem to one with full boundary measurements. Here we introduce a different class of optimal grids, based on resistor networks with pyramidal topology, that is better suited for the partial measurements setup. We prove the unique solvability of the discrete inverse problem for these networks and develop an algorithm for finding them from the measurements of the Dirichlet to Neumann map. Then, we show how to use the networks to define the optimal grids and to approximate the unknown conductivity. We assess the performance of our approach with numerical simulations and compare the results with those in Borcea et al (2010)

  5. The acoustics of the echo cornet

    Science.gov (United States)

    Pyle, Robert W., Jr.; Klaus, Sabine K.

    2002-11-01

    The echo cornet was an instrument produced by a number of makers in several countries from about the middle of the nineteenth to the early twentieth centuries. It consists of an ordinary three-valve cornet to which a fourth valve has been added, downstream of the three normal valves. The extra valve diverts the airstream from the normal bell to an ''echo'' bell that gives a muted tone quality. Although the air column through the echo bell is typically 15 cm longer than the path through the normal bell, there is no appreciable change of playing pitch when the echo bell is in use. Acoustic input impedance and impulse response measurements and consideration of the standing-wave pattern within the echo bell show how this can be so. Acoustically, the echo bell is more closely related to hand-stopping on the French horn than to the mutes commonly used on the trumpet and cornet.

  6. A real-time acoustic violin emulator for electric violins

    OpenAIRE

    GAYDECKI , Patrick

    2012-01-01

    International audience; A stand-alone electronic device has been developed that processes the raw electrical output produced by an electric violin, generating an output signal which, when fed to an amplifier, produces a sound that approximates closely the timbre of an acoustic or wooden instrument. The system comprises a high-impedance preamplifier, a 24-bit sigma delta codec and a digital signal processor (DSP) operating at 600 million multiplications-accumulations per second (MMACs). The de...

  7. Respiratory impedance is correlated with airway narrowing in asthma using three-dimensional computed tomography.

    Science.gov (United States)

    Karayama, M; Inui, N; Mori, K; Kono, M; Hozumi, H; Suzuki, Y; Furuhashi, K; Hashimoto, D; Enomoto, N; Fujisawa, T; Nakamura, Y; Watanabe, H; Suda, T

    2018-03-01

    Respiratory impedance comprises the resistance and reactance of the respiratory system and can provide detailed information on respiratory function. However, details of the relationship between impedance and morphological airway changes in asthma are unknown. We aimed to evaluate the correlation between imaging-based airway changes and respiratory impedance in patients with asthma. Respiratory impedance and spirometric data were evaluated in 72 patients with asthma and 29 reference subjects. We measured the intraluminal area (Ai) and wall thickness (WT) of third- to sixth-generation bronchi using three-dimensional computed tomographic analyses, and values were adjusted by body surface area (BSA, Ai/BSA, and WT/the square root (√) of BSA). Asthma patients had significantly increased respiratory impedance, decreased Ai/BSA, and increased WT/√BSA, as was the case in those without airflow limitation as assessed by spirometry. Ai/BSA was inversely correlated with respiratory resistance at 5 Hz (R5) and 20 Hz (R20). R20 had a stronger correlation with Ai/BSA than did R5. Ai/BSA was positively correlated with forced expiratory volume in 1 second/forced vital capacity ratio, percentage predicted forced expiratory volume in 1 second, and percentage predicted mid-expiratory flow. WT/√BSA had no significant correlation with spirometry or respiratory impedance. Respiratory resistance is associated with airway narrowing. © 2018 John Wiley & Sons Ltd.

  8. The Effect of Electrical Impedance Matching on the Electromechanical Characteristics of Sandwiched Piezoelectric Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Yuan Yang

    2017-12-01

    Full Text Available For achieving the power maximum transmission, the electrical impedance matching (EIM for piezoelectric ultrasonic transducers is highly required. In this paper, the effect of EIM networks on the electromechanical characteristics of sandwiched piezoelectric ultrasonic transducers is investigated in time and frequency domains, based on the PSpice model of single sandwiched piezoelectric ultrasonic transducer. The above-mentioned EIM networks include, series capacitance and parallel inductance (I type and series inductance and parallel capacitance (II type. It is shown that when I and II type EIM networks are used, the resonance and anti-resonance frequencies and the received signal tailing are decreased; II type makes the electro-acoustic power ratio and the signal tailing smaller whereas it makes the electro-acoustic gain ratio larger at resonance frequency. In addition, I type makes the effective electromechanical coupling coefficient increase and II type makes it decrease; II type make the power spectral density at resonance frequency more dramatically increased. Specially, the electro-acoustic power ratio has maximum value near anti-resonance frequency, while the electro-acoustic gain ratio has maximum value near resonance frequency. It can be found that the theoretically analyzed results have good consistency with the measured ones.

  9. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    Science.gov (United States)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.

  10. Weighted least-squares criteria for electrical impedance tomography

    International Nuclear Information System (INIS)

    Kallman, J.S.; Berryman, J.G.

    1992-01-01

    Methods are developed for design of electrical impedance tomographic reconstruction algorithms with specified properties. Assuming a starting model with constant conductivity or some other specified background distribution, an algorithm with the following properties is found: (1) the optimum constant for the starting model is determined automatically; (2) the weighted least-squares error between the predicted and measured power dissipation data is as small as possible; (3) the variance of the reconstructed conductivity from the starting model is minimized; (4) potential distributions with the largest volume integral of gradient squared have the least influence on the reconstructed conductivity, and therefore distributions most likely to be corrupted by contact impedance effects are deemphasized; (5) cells that dissipate the most power during the current injection tests tend to deviate least from the background value. The resulting algorithm maps the reconstruction problem into a vector space where the contribution to the inversion from the background conductivity remains invariant, while the optimum contributions in orthogonal directions are found. For a starting model with nonconstant conductivity, the reconstruction algorithm has analogous properties

  11. Y-source impedance-network-based isolated boost DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Town, Graham; Loh, Poh Chiang

    2014-01-01

    A dc-dc converter with very high voltage gain is proposed in this paper for any medium-power application requiring a high voltage boost with galvanic isolation. The proposed converter topology can be realized using only two switches. With this topology a very high voltage boost can be achieved even...... with a relatively low duty cycle of the switches, and the gain obtainable is presently not matched by any existing impedance network based converter operated at the same duty ratio. The proposed converter has a Y-source impedance network to boost the voltage at the intermediate dc-link side and a push......-pull transformer for square-wave AC inversion and isolation. The voltage-doubler rectifier provides a constant dc voltage at the output stage. A theoretical analysis of the converter is presented, supported by simulation and experimental results. A 250 W down-scaled prototype was implemented in the laboratory...

  12. 3D Acoustic Modelling of Dissipative Silencers with Nonhomogeneous Properties and Mean Flow

    Directory of Open Access Journals (Sweden)

    E. M. Sánchez-Orgaz

    2014-07-01

    Full Text Available A finite element approach is proposed for the acoustic analysis of automotive silencers including a perforated duct with uniform axial mean flow and an outer chamber with heterogeneous absorbent material. This material can be characterized by means of its equivalent acoustic properties, considered coordinate-dependent via the introduction of a heterogeneous bulk density, and the corresponding material airflow resistivity variations. An approach has been implemented to solve the pressure wave equation for a nonmoving heterogeneous medium, associated with the problem of sound propagation in the outer chamber. On the other hand, the governing equation in the central duct has been solved in terms of the acoustic velocity potential considering the presence of a moving medium. The coupling between both regions and the corresponding acoustic fields has been carried out by means of a perforated duct and its acoustic impedance, adapted here to include absorbent material heterogeneities and mean flow effects simultaneously. It has been found that bulk density heterogeneities have a considerable influence on the silencer transmission loss.

  13. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    Energy Technology Data Exchange (ETDEWEB)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G., E-mail: akosovichev@solar.stanford.edu [Stanford University, HEPL, Stanford, CA 94305 (United States)

    2014-04-10

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  14. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    International Nuclear Information System (INIS)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G.

    2014-01-01

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  15. 基于直接寻找法的电阻抗断层成像%Electrical Impedance Tomography Based on Direct Search Method

    Institute of Scientific and Technical Information of China (English)

    蔡畅; 严壮志

    2005-01-01

    Solution to impedance distribution in electrical impedance tomography (EIT) is an ill-posed nonlinear inverse problem. It is especially difficult to reconstruct an EIT image in the center area of a measured object. Tikhonov regularization with some prior information is a sound regularization method for static electrical impedance tomography under the condition that some true impedance distribution information is known a priori. This paper presents a direct search method (DSM) as pretreatment of image reconstruction through which one not only can construct a regularization matrix which maylocate in areas of impedance change, but also can obtain an initial impedance distribution more similar to the true impedance distribution, as well as better current modes which can better distinguish the initial distribution and the true distribution. Simulation results indicate that, by using DSM, resolution in the center area of the measured object can be improved significantly.

  16. The Analyzing of Ultrasound Propagation Wawes through a Piezoelectric Transducer in Function of Acoustic Charge

    Directory of Open Access Journals (Sweden)

    Grigore Liviu Odobescu

    2010-01-01

    Full Text Available The nature of acoustic charge, which works with an electronic generator to generate high intensity ultra-acoustic field is very various in function of application used [2]. The values of elements from equivalent scheme may be to vary in time in function of technologic process [3]. This fact determines the variation of accord frequencies and value of acoustic charge. In this manner the efficiency can be modified in time if it no take measures to minimize these influences of complex impedance that works with electronic generator [4]. In this paper it is presented a method to analysis the influence of variation of acoustic charge and to minimize this influences for to assure an optimum operation of electronic generator, it is presented a program to calculate the power variation in function of acoustic charge and to chart the diagram of this variation. It is presented the experimental results obtained with the theory presented.

  17. Effect of holed reflector on acoustic radiation force in noncontact ultrasonic dispensing of small droplets

    Science.gov (United States)

    Tanaka, Hiroki; Wada, Yuji; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We investigated the fundamental aspects of droplet dispensing, which is an important procedure in the noncontact ultrasonic manipulation of droplets in air. A holed reflector was used to dispense a droplet from a 27.4 kHz standing-wave acoustic field to a well. First, the relationship between the hole diameter of the reflector and the acoustic radiation force acting on a levitated droplet was clarified by calculating the acoustic impedance of the point just above the hole. When the hole diameter was half of (or equal to) the acoustic wavelength λ, the acoustic radiation force was ∼80% (or 50%) of that without a hole. The maximal diameters of droplets levitated above the holes through flat and half-cylindrical reflectors were then experimentally investigated. For instance, with the half-cylindrical reflector, the maximal diameter was 5.0 mm for a hole diameter of 6.0 mm, and droplets were levitatable up to a hole diameter of 12 mm (∼λ).

  18. Design and optimization of membrane-type acoustic metamaterials

    Science.gov (United States)

    Blevins, Matthew Grant

    One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.

  19. Plane wave diffraction by a finite plate with impedance boundary conditions.

    Science.gov (United States)

    Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal

    2014-01-01

    In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.

  20. Theoretical and experimental examination of near-field acoustic levitation.

    Science.gov (United States)

    Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa

    2002-04-01

    A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense.

  1. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    International Nuclear Information System (INIS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-01-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results. (paper)

  2. Injection locking of optomechanical oscillators via acoustic waves

    Science.gov (United States)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-01

    Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  3. Time-varying impedance of the human ankle in the sagittal and frontal planes during straight walk and turning steps.

    Science.gov (United States)

    Ficanha, Evandro M; Ribeiro, Guilherme A; Knop, Lauren; Rastgaar, Mo

    2017-07-01

    This paper describes the methods and experiment protocols for estimation of the human ankle impedance during turning and straight line walking. The ankle impedance of two human subjects during the stance phase of walking in both dorsiflexion plantarflexion (DP) and inversion eversion (IE) were estimated. The impedance was estimated about 8 axes of rotations of the human ankle combining different amounts of DP and IE rotations, and differentiating among positive and negative rotations at 5 instants of the stance length (SL). Specifically, the impedance was estimated at 10%, 30%, 50%, 70% and 90% of the SL. The ankle impedance showed great variability across time, and across the axes of rotation, with consistent larger stiffness and damping in DP than IE. When comparing straight walking and turning, the main differences were in damping at 50%, 70%, and 90% of the SL with an increase in damping at all axes of rotation during turning.

  4. Experimental observation of azimuthal shock waves on nonlinear acoustical vortices

    International Nuclear Information System (INIS)

    Brunet, Thomas; Thomas, Jean-Louis; Marchiano, Regis; Coulouvrat, Francois

    2009-01-01

    Thanks to a new focused array of piezoelectric transducers, experimental results are reported here to evidence helical acoustical shock waves resulting from the nonlinear propagation of acoustical vortices (AVs). These shock waves have a three-dimensional spiral shape, from which both the longitudinal and azimuthal components are studied. The inverse filter technique used to synthesize AVs allows various parameters to be varied, especially the topological charge which is the key parameter describing screw dislocations. Firstly, an analysis of the longitudinal modes in the frequency domain reveals a wide cascade of harmonics (up to the 60th order) leading to the formation of the shock waves. Then, an original measurement in the transverse plane exhibits azimuthal behaviour which has never been observed until now for acoustical shock waves. Finally, these new experimental results suggest interesting potential applications of nonlinear effects in terms of acoustics spanners in order to manipulate small objects.

  5. On Impedance Spectroscopy of Supercapacitors

    Science.gov (United States)

    Uchaikin, V. V.; Sibatov, R. T.; Ambrozevich, A. S.

    2016-10-01

    Supercapacitors are often characterized by responses measured by methods of impedance spectroscopy. In the frequency domain these responses have the form of power-law functions or their linear combinations. The inverse Fourier transform leads to relaxation equations with integro-differential operators of fractional order under assumption that the frequency response is independent of the working voltage. To compare long-term relaxation kinetics predicted by these equations with the observed one, charging-discharging of supercapacitors (with nominal capacitances of 0.22, 0.47, and 1.0 F) have been studied by means of registration of the current response to a step voltage signal. It is established that the reaction of devices under study to variations of the charging regime disagrees with the model of a homogeneous linear response. It is demonstrated that relaxation is well described by a fractional stretched exponent.

  6. Parameterization analysis and inversion for orthorhombic media

    KAUST Repository

    Masmoudi, Nabil

    2018-05-01

    Accounting for azimuthal anisotropy is necessary for the processing and inversion of wide-azimuth and wide-aperture seismic data because wave speeds naturally depend on the wave propagation direction. Orthorhombic anisotropy is considered the most effective anisotropic model that approximates the azimuthal anisotropy we observe in seismic data. In the framework of full wave form inversion (FWI), the large number of parameters describing orthorhombic media exerts a considerable trade-off and increases the non-linearity of the inversion problem. Choosing a suitable parameterization for the model, and identifying which parameters in that parameterization could be well resolved, are essential to a successful inversion. In this thesis, I derive the radiation patterns for different acoustic orthorhombic parameterization. Analyzing the angular dependence of the scattering of the parameters of different parameterizations starting with the conventionally used notation, I assess the potential trade-off between the parameters and the resolution in describing the data and inverting for the parameters. In order to build practical inversion strategies, I suggest new parameters (called deviation parameters) for a new parameterization style in orthorhombic media. The novel parameters denoted ∈d, ƞd and δd are dimensionless and represent a measure of deviation between the vertical planes in orthorhombic anisotropy. The main feature of the deviation parameters consists of keeping the scattering of the vertical transversely isotropic (VTI) parameters stationary with azimuth. Using these scattering features, we can condition FWI to invert for the parameters which the data are sensitive to, at different stages, scales, and locations in the model. With this parameterization, the data are mainly sensitive to the scattering of 3 parameters (out of six that describe an acoustic orthorhombic medium): the horizontal velocity in the x1 direction, ∈1 which provides scattering mainly near

  7. Facies Constrained Elastic Full Waveform Inversion

    KAUST Repository

    Zhang, Z.

    2017-05-26

    Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.

  8. Facies Constrained Elastic Full Waveform Inversion

    KAUST Repository

    Zhang, Z.; Zabihi Naeini, E.; Alkhalifah, Tariq Ali

    2017-01-01

    Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.

  9. Plane wave diffraction by a finite plate with impedance boundary conditions.

    Directory of Open Access Journals (Sweden)

    Rab Nawaz

    Full Text Available In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.

  10. Effect of the carbonyl iron particles on acoustic absorption properties of magnetic polyurethane foam

    Science.gov (United States)

    Geng, Jialu; Wang, Caiping; Zhu, Honglang; Wang, Xiaojie

    2018-03-01

    Elastomeric matrix embedded with magnetic micro-sized particles has magnetically controllable properties, which has been investigated extensively in the last decades. In this study we develop a new magnetically controllable elastomeric material for acoustic applications at lower frequencies. The soft polyurethane foam is used as matrix material due to its extraordinary elastic and acoustic absorption properties. One-step method is used to synthesize polyurethane foam, in which all components including polyether polyols 330N, MDI, deionized water, silicone oil, carbonyl iron particle (CIP) and catalyst are put into one container for curing. Changing any component can induce the change of polyurethane foam's properties, such as physical and acoustic properties. The effect of the content of MDI on acoustic absorption is studied. The CIPs are aligned under extra magnetic field during the foaming process. And the property of polyurethane foam with aligned CIPs is also investigated. Scanning electron microscope (SEM) is used to observe the structure of pore and particle-chain. The two-microphone impedance tube and the transfer function method are used to test acoustic absorption property of the magnetic foams.

  11. Alternating minimisation for glottal inverse filtering

    International Nuclear Information System (INIS)

    Bleyer, Ismael Rodrigo; Lybeck, Lasse; Auvinen, Harri; Siltanen, Samuli; Airaksinen, Manu; Alku, Paavo

    2017-01-01

    A new method is proposed for solving the glottal inverse filtering (GIF) problem. The goal of GIF is to separate an acoustical speech signal into two parts: the glottal airflow excitation and the vocal tract filter. To recover such information one has to deal with a blind deconvolution problem. This ill-posed inverse problem is solved under a deterministic setting, considering unknowns on both sides of the underlying operator equation. A stable reconstruction is obtained using a double regularization strategy, alternating between fixing either the glottal source signal or the vocal tract filter. This enables not only splitting the nonlinear and nonconvex problem into two linear and convex problems, but also allows the use of the best parameters and constraints to recover each variable at a time. This new technique, called alternating minimization glottal inverse filtering (AM-GIF), is compared with two other approaches: Markov chain Monte Carlo glottal inverse filtering (MCMC-GIF), and iterative adaptive inverse filtering (IAIF), using synthetic speech signals. The recent MCMC-GIF has good reconstruction quality but high computational cost. The state-of-the-art IAIF method is computationally fast but its accuracy deteriorates, particularly for speech signals of high fundamental frequency ( F 0). The results show the competitive performance of the new method: With high F 0, the reconstruction quality is better than that of IAIF and close to MCMC-GIF while reducing the computational complexity by two orders of magnitude. (paper)

  12. Advances In Impedance Theory

    International Nuclear Information System (INIS)

    Stupakov, G.

    2009-01-01

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  13. An acoustic pyrometer system for tomographic thermal imaging in power plant boilers

    OpenAIRE

    Bramanti, Mauro; Gray, Antoinia; Pasini, Sauro; Salerno, Emanuele; Tonazzini, Anna

    1994-01-01

    The paper presents an acoustic pyrometry method for the reconstruction of temperature maps inside power plant boilers. It is based on measuring times-of-flight of acoustic waves along a number of straight paths in a cross-section of the boiler; via an integral relationship, these times depend on the temperature of the gaseous medium along the paths. On this basis, 2D temperature maps can be reconstructed using" suitable inversion techniques. The structure of a particular 'system for the measu...

  14. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    Science.gov (United States)

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  15. Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating

    International Nuclear Information System (INIS)

    Huang Ling-Zhi; Xiao Yong; Wen Ji-Hong; Yang Hai-Bin; Wen Xi-Sen

    2016-01-01

    This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agreements between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure. (paper)

  16. Recent Progress on the Factorization Method for Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Bastian Harrach

    2013-01-01

    method was introduced by Kirsch for inverse scattering problems and extended to electrical impedance tomography (EIT by Brühl and Hanke. Since these pioneering works, substantial progress has been made on the theoretical foundations of the method. The necessary assumptions have been weakened, and the proofs have been considerably simplified. In this work, we aim to summarize this progress and present a state-of-the-art formulation of the Factorization Method for EIT with continuous data. In particular, we formulate the method for general piecewise analytic conductivities and give short and self-contained proofs.

  17. Sparse Spike Inversion Predicts Lateral Variation of Porosity La méthode Sparse Spike Inversion de prévision des variations latérales de porosité

    Directory of Open Access Journals (Sweden)

    Alam A.

    2006-11-01

    Full Text Available The sparse spike inversion method estimates from deconvolved seismic data that reflectivity which has the minimum sum of absolute values subject to two constraints. First, the reflectivity spectrum matches the seismic data spectrum over a specified bandwidth. Second, the impedance function resulting from integration of the reflectivity passes through a set of impedance windows, specified at interpreted horizon times. We use an interactive workstation to identify the phase of the residual wavelet, set horizon impedance constraints and monitor impedance of a large data set run in batch mode. The result is a laterally continuous estimate of the impedance function. The 1989 EAEG Inversion Workshop provided a 2-D, relative-amplitude-processed stack section. A limestone reservoir with an average reflection time of 890 ms and a temporal thickness of about 20 ms appears on the stack as an event with a laterally changing waveform and amplitude. These changes are considered to be a result of the interference between reflections from the top and bottom of the reservoir which has laterally varying porosity and thickness. Four wells are located on this line, but the impedance log for Well 1 was the only one supplied to calibrate the inversion. Other wells were blind , i. e. those wells for which logs were unavailable prior to the inversion workshop. The object of the study was to delineate the reservoir and predict impedances and porosities in the three blind wells. We applied the sparse-spike method to the stack section. The interpretation of thickness and impedance from the estimated impedance section agreed with, the lithologic description of the reservoir presented by organizers during the workshop. Also, the wall-to-wall relative variations of estimated impedance in the reservoir followed the pattern of actual impedance variation among the known well and the three blind wells. After the workshop, we used the porosity for Well 1 to perform a porosity

  18. Optimized simultaneous inversion of primary and multiple reflections; Inversion linearisee simultanee des reflexions primaires et des reflexions multiples

    Energy Technology Data Exchange (ETDEWEB)

    Pelle, L.

    2003-12-01

    The removal of multiple reflections remains a real problem in seismic imaging. Many preprocessing methods have been developed to attenuate multiples in seismic data but none of them is satisfactory in 3D. The objective of this thesis is to develop a new method to remove multiples, extensible in 3D. Contrary to the existing methods, our approach is not a preprocessing step: we directly include the multiple removal in the imaging process by means of a simultaneous inversion of primaries and multiples. We then propose to improve the standard linearized inversion so as to make it insensitive to the presence of multiples in the data. We exploit kinematics differences between primaries and multiples. We propose to pick in the data the kinematics of the multiples we want to remove. The wave field is decomposed into primaries and multiples. Primaries are modeled by the Ray+Born operator from perturbations of the logarithm of impedance, given the velocity field. Multiples are modeled by the Transport operator from an initial trace, given the picking. The inverse problem simultaneously fits primaries and multiples to the data. To solve this problem with two unknowns, we take advantage of the isometric nature of the Transport operator, which allows to drastically reduce the CPU time: this simultaneous inversion is this almost as fast as the standard linearized inversion. This gain of time opens the way to different applications to multiple removal and in particular, allows to foresee the straightforward 3D extension. (author)

  19. Full-waveform inversion with reflected waves for 2D VTI media

    KAUST Repository

    Pattnaik, Sonali

    2016-09-06

    Full-waveform inversion in anisotropic media using reflected waves suffers from the strong non-linearity of the objective function and trade-offs between model parameters. Estimating long-wavelength model components by fixing parameter perturbations, referred to as reflection-waveform inversion (RWI), can mitigate nonlinearity-related inversion issues. Here, we extend RWI to acoustic VTI (transversely isotropic with a vertical symmetry axis) media. To minimize trade-offs between the model parameters, we employ a new hierarchical two-stage approach that operates with the P-wave normal-moveout velocity and anisotropy coefficents ζ and η. First, is estimated using a fixed perturbation in ζ, and then we invert for η by fixing the updated perturbation in . The proposed 2D algorithm is tested on a horizontally layered VTI model.

  20. Viscoacoustic wave-equation traveltime inversion with correct and incorrect attenuation profiles

    KAUST Repository

    Yu, Han

    2017-08-17

    A visco-acoustic wave-equation traveltime inversion method is presented that inverts for a shallow subsurface velocity distribution with correct and incorrect attenuation profiles. Similar to the classical wave equation traveltime inversion, this method applies the misfit functional that minimizes the first break differences between the observed and predicted data. Although, WT can partly avoid the cycle skipping problem, an initial velocity model approaches to the right or wrong velocity models under different setups of the attenuation profiles. However, with a Q model far away from the real model, the inverted tomogram is obviously different from the true velocity model while a small change of the Q model does not improve the inversion quality in a strong manner if low frequency information is not lost.

  1. The effects of environmental variability and spatial sampling on the three-dimensional inversion problem.

    Science.gov (United States)

    Bender, Christopher M; Ballard, Megan S; Wilson, Preston S

    2014-06-01

    The overall goal of this work is to quantify the effects of environmental variability and spatial sampling on the accuracy and uncertainty of estimates of the three-dimensional ocean sound-speed field. In this work, ocean sound speed estimates are obtained with acoustic data measured by a sparse autonomous observing system using a perturbative inversion scheme [Rajan, Lynch, and Frisk, J. Acoust. Soc. Am. 82, 998-1017 (1987)]. The vertical and horizontal resolution of the solution depends on the bandwidth of acoustic data and on the quantity of sources and receivers, respectively. Thus, for a simple, range-independent ocean sound speed profile, a single source-receiver pair is sufficient to estimate the water-column sound-speed field. On the other hand, an environment with significant variability may not be fully characterized by a large number of sources and receivers, resulting in uncertainty in the solution. This work explores the interrelated effects of environmental variability and spatial sampling on the accuracy and uncertainty of the inversion solution though a set of case studies. Synthetic data representative of the ocean variability on the New Jersey shelf are used.

  2. Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Arnason, Knutur; Eysteinsson, Hjalmar; Hersir, Gylfi Pall [ISOR-Iceland GeoSurvey, Grensasvegi 9, 108 Reykjavik (Iceland)

    2010-03-15

    An extensive study of the resistivity structure of the Hengill area in SW Iceland was carried out by the combined use of TEM and MT soundings. Joint inversion of the collected data can correct for static shifts in the MT data, which can be severe due to large near-surface resistivity contrasts. Joint 1D inversion of 148 TEM/MT sounding pairs and a 3D inversion of a 60 sounding subset of the MT data were performed. The 3D inversion was based on full MT impedance tensors previously corrected for static shift. Both inversion approaches gave qualitatively similar results, and revealed a shallow resistivity layer reflecting conductive alteration minerals at temperatures of 100-240 C. They also delineated a deep conductor at 3-10 km depth. The reason for this deep-seated high conductivity is not fully understood. The distribution of the deep conductors correlates with a positive residual Bouguer gravity anomaly, and with transform tectonics inferred from seismicity. One model of the Hengill that is consistent with the well temperature data and the deep conductor that does not attenuate S-waves, is a group of hot, solidified, but still ductile magmatic intrusions that are closely associated with the heat source for the geothermal system. (author)

  3. Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

    Directory of Open Access Journals (Sweden)

    Moslem Moradi

    2015-06-01

    Full Text Available Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior information in Bayesian statistics. Data integration leads to a probability density function (named as a posteriori probability that can yield a model of subsurface. The Markov Chain Monte Carlo (MCMC method is used to sample the posterior probability distribution, and the subsurface model characteristics can be extracted by analyzing a set of the samples. In this study, the theory of stochastic seismic inversion in a Bayesian framework was described and applied to infer P-impedance and porosity models. The comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more detailed information of subsurface character. Since multiple realizations are extracted by this method, an estimation of pore volume and uncertainty in the estimation were analyzed.

  4. Objective mapping of observed sub-surface mesoscale cold core eddy in the Bay of Bengal by stochastic inverse technique with tomographically simulated travel times

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Rao, M.M.M.; Sadhuram, Y.; Sridevi, B.; Maneesha, K.; SujithKumar, S.; Prasanna, P.L.; Murthy, K.S.R.

    of Bengal during south-west monsoon season and explore possibility to reconstruct the acoustic profile of the eddy by Stochastic Inverse Technique. A simulation experiment on forward and inverse problems for observed sound velocity perturbation field has...

  5. Solid state opto-impedance of LiNiVO4 and LiMn2O4

    International Nuclear Information System (INIS)

    Kalyani, P; Sivasubramanian, S; Prabhu, S Naveen; Ragavendran, K; Kalaiselvi, N; Ranganathan, N G; Madhu, S; SundaraRaj, A; Manoharan, S P; Jagannathan, R

    2005-01-01

    Spinel type LiMn 2 O 4 and inverse spinel LiNiVO 4 systems serve as standard cathode materials or potential cathode systems for application in high energy density lithium-ion batteries. Upon photo-excitation using UV radiation of energy ∼5 eV, the LiNiVO 4 system shows significant modification in the solid state impedance pattern while the LiMn 2 O 4 system does not. This study has revealed a significant difference in the opto-impedance pattern for LiNiVO 4 with respect to LiMn 2 O 4 , which may be due to the different electronic processes involved. An attempt has been made to study this behaviour from the solid-state viewpoint

  6. Injection locking of optomechanical oscillators via acoustic waves.

    Science.gov (United States)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-02

    Injection locking is an effective technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators. As such, exploring new mechanisms for injection locking of emerging oscillators is important for their usage in various systems. Here, we present the first demonstration of injection locking of a radiation pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can be easily implemented on various platforms to lock different types of OMOs independent of their size and structure. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance, matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity, and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology, and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  7. Inverse transport theory of photoacoustics

    International Nuclear Information System (INIS)

    Bal, Guillaume; Jollivet, Alexandre; Jugnon, Vincent

    2010-01-01

    We consider the reconstruction of optical parameters in a domain of interest from photoacoustic data. Photoacoustic tomography (PAT) radiates high-frequency electromagnetic waves into the domain and measures acoustic signals emitted by the resulting thermal expansion. Acoustic signals are then used to construct the deposited thermal energy map. The latter depends on the constitutive optical parameters in a nontrivial manner. In this paper, we develop and use an inverse transport theory with internal measurements to extract information on the optical coefficients from knowledge of the deposited thermal energy map. We consider the multi-measurement setting in which many electromagnetic radiation patterns are used to probe the domain of interest. By developing an expansion of the measurement operator into singular components, we show that the spatial variations of the intrinsic attenuation and the scattering coefficients may be reconstructed. We also reconstruct coefficients describing anisotropic scattering of photons, such as the anisotropy coefficient g(x) in a Henyey–Greenstein phase function model. Finally, we derive stability estimates for the reconstructions

  8. Hybrid inverse problems for a system of Maxwell’s equations

    International Nuclear Information System (INIS)

    Bal, Guillaume; Zhou, Ting

    2014-01-01

    This paper concerns the quantitative step of the medical imaging modality thermo-acoustic tomography (TAT). We model the radiation propagation by a system of Maxwell’s equations. We show that the index of refraction of light and the absorption coefficient (conductivity) can be uniquely and stably reconstructed from a sufficiently large number of TAT measurements. Our method is based on verifying that the linearization of the inverse problem forms a redundant elliptic system of equations. We also observe that the reconstructions are qualitatively quite different from the setting where radiation is modeled by a scalar Helmholtz equation as in Bal G et al (2011 Inverse Problems 27 055007). (paper)

  9. Frequency Domain Multi-parameter Full Waveform Inversion for Acoustic VTI Media

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2017-01-01

    Multi-parameter full waveform inversion (FWI) for transversely isotropic (TI) media with vertical axis of symmetry (VTI) suffers from the trade-off between the parameters. The trade-off results in the leakage of one parameter's update into the other

  10. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California

    Science.gov (United States)

    Tietze, Kristina; Ritter, Oliver

    2013-10-01

    3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency

  11. Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan [Comparison of eruption masses at Sakurajima Volcano, Japan calculated by infrasound waveform inversion and ground-based sampling

    International Nuclear Information System (INIS)

    Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn

    2017-01-01

    Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.

  12. A Literature Survey on Inverse Scattering for Electron Density Profile Determination. Volume II.

    Science.gov (United States)

    1981-09-24

    THE INVERSE SCATTERING PROBLEM4 FOR THE EQUAT ION Of ACOUSTIC$ AVILA, G.S.S. DEPT. DE MATEMATICA . INST. DE CIENCIAS EXATAS. UNIV. Of BRASILIA...of Colict support Portinari. Joao C. Departamento do Matematica . Pontificia Universidade Catolica do Rio de Janeiro, Rio do Janeiro. Brasil J. Math

  13. Aircraft panel with sensorless active sound power reduction capabilities through virtual mechanical impedances

    Science.gov (United States)

    Boulandet, R.; Michau, M.; Micheau, P.; Berry, A.

    2016-01-01

    This paper deals with an active structural acoustic control approach to reduce the transmission of tonal noise in aircraft cabins. The focus is on the practical implementation of the virtual mechanical impedances method by using sensoriactuators instead of conventional control units composed of separate sensors and actuators. The experimental setup includes two sensoriactuators developed from the electrodynamic inertial exciter and distributed over an aircraft trim panel which is subject to a time-harmonic diffuse sound field. The target mechanical impedances are first defined by solving a linear optimization problem from sound power measurements before being applied to the test panel using a complex envelope controller. Measured data are compared to results obtained with sensor-actuator pairs consisting of an accelerometer and an inertial exciter, particularly as regards sound power reduction. It is shown that the two types of control unit provide similar performance, and that here virtual impedance control stands apart from conventional active damping. In particular, it is clear from this study that extra vibrational energy must be provided by the actuators for optimal sound power reduction, mainly due to the high structural damping in the aircraft trim panel. Concluding remarks on the benefits of using these electrodynamic sensoriactuators to control tonal disturbances are also provided.

  14. Nonsynchronous Noncommensurate Impedance Transformers

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Kim, K

    2012-01-01

    Nonsynchronous noncommensurate impedance transformers consist of a combination of two types of transmission lines: transmission lines with a characteristic impedance equal to the impedance of the source, and transmission lines with a characteristic impedance equal to the load. The practical...... advantage of such transformers is that they can be constructed using sections of transmission lines with a limited variety of characteristic impedances. These transformers also provide comparatively compact size in applications where a wide transformation ratio is required. This paper presents the data...... matrix approach and experimentally verified by synthesizing a 12-section nonsynchronous noncommensurate impedance transformer. The measured characteristics of the transformer are compared to the characteristics of a conventional tapered line transformer....

  15. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  16. Preliminary results of an acoustic tomography experiment (ATE-93) in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Somayajulu, Y.K.; Murty, T.V.R.; Navelkar, G.S.; Saran, A.K.; Almeida, A.M.; Murty, C.S.

    consisted of 511 digit phase coded shift register sequences. From the measured acoustic multipath arrivals, significant peaks were identified. This information was utilised to derive the layer-wise sound speed perturbation field following generalized inverse...

  17. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  18. Determination of acoustic properties of thin polymer films utilizing the frequency dependence of the reflection coefficient of ultrasound.

    Science.gov (United States)

    Tohmyoh, Hironori; Sakamoto, Yuhei

    2015-11-01

    This paper reports on a technique to measure the acoustic properties of a thin polymer film utilizing the frequency dependence of the reflection coefficient of ultrasound reflected back from a system comprising a reflection plate, the film, and a material that covers the film. The frequency components of the echo reflected from the back of the plate, where the film is attached, take their minimum values at the resonant frequency, and from these frequency characteristics, the acoustic impedance, sound velocity, and the density of the film can be determined. We applied this technique to characterize an ion exchange membrane, which has high water absorbability, and successfully determined the acoustic properties of the membrane without getting it wet.

  19. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction

    Science.gov (United States)

    Brantut, Nicolas

    2018-02-01

    Acoustic emission and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenised wave velocity measurements and approximate source locations. Here I present a numerical method and its implementation in a free software to perform a joint inversion of acoustic emission locations together with the three-dimensional, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from acoustic emissions and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of acoustic emissions progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse acoustic emissions are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15%, with an increase in anisotropy of up to 20%. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localised changes associated with microcracking and damage generation.

  20. Propagation of singularities for linearised hybrid data impedance tomography

    Science.gov (United States)

    Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim

    2018-02-01

    For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non-elliptic conditions, and the associated directions of propagation are precisely identified relative to the directions in which ellipticity is lost. The same result is found in the setting for the corresponding normal formulation of the scalar pseudo-differential equations. A numerical reconstruction procedure based of the least squares finite element method is derived, and a series of numerical experiments visualise exactly how the loss of ellipticity manifests itself as propagating singularities.

  1. Acoustic metamaterials for new two-dimensional sonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera sn, E-46022 Valencia (Spain)

    2007-09-15

    It has been shown that two-dimensional arrays of rigid or fluidlike cylinders in a fluid or a gas define, in the limit of large wavelengths, a class of acoustic metamaterials whose effective parameters (sound velocity and density) can be tailored up to a certain limit. This work goes a step further by considering arrays of solid cylinders in which the elastic properties of cylinders are taken into account. We have also treated mixtures of two different elastic cylinders. It is shown that both effects broaden the range of acoustic parameters available for designing metamaterials. For example, it is predicted that metamaterials with perfect matching of impedance with air are now possible by using aerogel and rigid cylinders equally distributed in a square lattice. As a potential application of the proposed metamaterial, we present a gradient index lens for airborne sound (i.e. a sonic Wood lens) whose functionality is demonstrated by multiple scattering simulations.

  2. A 3D inversion for all-space magnetotelluric data with static shift correction

    Science.gov (United States)

    Zhang, Kun

    2017-04-01

    Base on the previous studies on the static shift correction and 3D inversion algorithms, we improve the NLCG 3D inversion method and propose a new static shift correction method which work in the inversion. The static shift correction method is based on the 3D theory and real data. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with 0 cost, and avoids the additional field work and indoor processing with good results. The 3D inversion algorithm is improved (Zhang et al., 2013) base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the parallel structure, improved the computational efficiency, reduced the memory of computer and added the topographic and marine factors. So the 3D inversion could work in general PC with high efficiency and accuracy. And all the MT data of surface stations, seabed stations and underground stations can be used in the inversion algorithm.

  3. Surface acoustic impediography: a new technology for fingerprint mapping and biometric identification: a numerical study

    Science.gov (United States)

    Schmitt, Rainer M.; Scott, W. Guy; Irving, Richard D.; Arnold, Joe; Bardons, Charles; Halpert, Daniel; Parker, Lawrence

    2004-09-01

    A new type of fingerprint sensor is presented. The sensor maps the acoustic impedance of the fingerprint pattern by estimating the electrical impedance of its sensor elements. The sensor substrate, made of 1-3 piezo-ceramic, which is fabricated inexpensively at large scales, can provide a resolution up to 50 μm over an area of 20 x 25 mm2. Using FE modeling the paper presents the numerical validation of the basic principle. It evaluates an optimized pillar aspect ratio, estimates spatial resolution and the point spread function for a 100 μm and 50 μm pitch model. In addition, first fingerprints obtained with the prototype sensor are presented.

  4. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    Directory of Open Access Journals (Sweden)

    P. Mokrý

    2015-02-01

    Full Text Available The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH. The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV. The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.

  5. Dispersion, dissipation and refraction of shock waves in acoustically treated turbofan inlets

    Science.gov (United States)

    Prasad, Dilip; Li, Ding; A. Topol, David

    2015-09-01

    This paper describes a numerical investigation of the effects of the inlet duct liner on the acoustics of a high-bypass ratio turbofan rotor operating at supersonic tip relative flow conditions. The near field of the blade row is then composed of periodic shocks that evolve spatially both because of the varying mean flow and because of the presence of acoustic treatment. The evolution of this shock system is studied using a Computational Fluid Dynamics-based method incorporating a wall impedance boundary condition. The configuration examined is representative of a fan operating near the takeoff condition. The behavior of the acoustic power and the associated waveforms reveal that significant dispersion occurs to the extent that there are no shocks in the perturbation field leaving the entrance plane of the duct. The effect of wave refraction due to the high degree of shear in the mean flow near the entrance plane of the inlet is examined, and numerical experiments are conducted to show that the incorporation of liners in this region can be highly beneficial. The implications of these results for the design of aircraft engine acoustic liners are discussed.

  6. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  7. Solving inverse problems through a smooth formulation of multiple-point geostatistics

    DEFF Research Database (Denmark)

    Melnikova, Yulia

    be inferred, for instance, from a conceptual geological model termed a training image.The main motivation for this study was the challenge posed by history matching, an inverse problem aimed at estimating rock properties from production data. We addressed two main difficulties of the history matching problem...... corresponding inverse problems. However, noise in data, non-linear relationships and sparse observations impede creation of realistic reservoir models. Including complex a priori information on reservoir parameters facilitates the process of obtaining acceptable solutions. Such a priori knowledge may...... strategies including both theoretical motivation and practical aspects of implementation. Finally, it is complemented by six research papers submitted, reviewed and/or published in the period 2010 - 2013....

  8. Reaction time to changes in the tempo of acoustic pulse trains.

    Science.gov (United States)

    Smith, R. P.; Warm, J. S.; Westendorf, D. H.

    1973-01-01

    Investigation of the ability of human observers to detect accelerations and decelerations in the rate of presentation of pulsed stimuli, i.e., changes in the tempo of acoustic pulse trains. Response times to accelerations in tempo were faster than to decelerations. Overall speed of response was inversely related to the pulse repetition rate.

  9. Propellant injection strategy for suppressing acoustic combustion instability

    Science.gov (United States)

    Diao, Qina

    Shear-coaxial injector elements are often used in liquid-propellant-rocket thrust chambers, where combustion instabilities remain a significant problem. A conventional solution to the combustion instability problem relies on passive control techniques that use empirically-developed hardware such as acoustic baffles and tuned cavities. In addition to adding weight and decreasing engine performance, these devices are designed using trial-and-error methods, which do not provide the capability to predict the overall system stability characteristics in advance. In this thesis, two novel control strategies that are based on propellant fluid dynamics were investigated for mitigating acoustic instability involving shear-coaxial injector elements. The new control strategies would use a set of controlled injectors allowing local adjustment of propellant flow patterns for each operating condition, particularly when instability could become a problem. One strategy relies on reducing the oxidizer-fuel density gradient by blending heavier methane with the main fuel, hydrogen. Another strategy utilizes modifying the equivalence ratio to affect the acoustic impedance through mixing and reaction rate changes. The potential effectiveness of these strategies was assessed by conducting unit-physics experiments. Two different model combustors, one simulating a single-element injector test and the other a double-element injector test, were designed and tested for flame-acoustic interaction. For these experiments, the Reynolds number of the central oxygen jet was kept between 4700 and 5500 making the injector flames sufficiently turbulent. A compression driver, mounted on one side of the combustor wall, provided controlled acoustic excitation to the injector flames, simulating the initial phase of flame-acoustic interaction. Acoustic excitation was applied either as band-limited white noise forcing between 100 Hz and 5000 Hz or as single-frequency, fixed-amplitude forcing at 1150 Hz

  10. Acoustic Velocity and Attenuation in Magnetorhelogical fluids based on an effective density fluid model

    Directory of Open Access Journals (Sweden)

    Shen Min

    2016-01-01

    Full Text Available Magnetrohelogical fluids (MRFs represent a class of smart materials whose rheological properties change in response to the magnetic field, which resulting in the drastic change of the acoustic impedance. This paper presents an acoustic propagation model that approximates a fluid-saturated porous medium as a fluid with a bulk modulus and effective density (EDFM to study the acoustic propagation in the MRF materials under magnetic field. The effective density fluid model derived from the Biot’s theory. Some minor changes to the theory had to be applied, modeling both fluid-like and solid-like state of the MRF material. The attenuation and velocity variation of the MRF are numerical calculated. The calculated results show that for the MRF material the attenuation and velocity predicted with this effective density fluid model are close agreement with the previous predictions by Biot’s theory. We demonstrate that for the MRF material acoustic prediction the effective density fluid model is an accurate alternative to full Biot’s theory and is much simpler to implement.

  11. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    Science.gov (United States)

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  12. Sampling of finite elements for sparse recovery in large scale 3D electrical impedance tomography

    International Nuclear Information System (INIS)

    Javaherian, Ashkan; Moeller, Knut; Soleimani, Manuchehr

    2015-01-01

    This study proposes a method to improve performance of sparse recovery inverse solvers in 3D electrical impedance tomography (3D EIT), especially when the volume under study contains small-sized inclusions, e.g. 3D imaging of breast tumours. Initially, a quadratic regularized inverse solver is applied in a fast manner with a stopping threshold much greater than the optimum. Based on assuming a fixed level of sparsity for the conductivity field, finite elements are then sampled via applying a compressive sensing (CS) algorithm to the rough blurred estimation previously made by the quadratic solver. Finally, a sparse inverse solver is applied solely to the sampled finite elements, with the solution to the CS as its initial guess. The results show the great potential of the proposed CS-based sparse recovery in improving accuracy of sparse solution to the large-size 3D EIT. (paper)

  13. Focal hepatic lesions: contrast-enhancement patterns at pulse-inversion harmonic US using a microbubble contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-A; Yoon, Kwon-Ha; Lee, Young-Hwan; Kim, Hye-Won; Juhng, Seon-Kwan; Won, Jong-Jin [Wonkwang University, Iksan (Korea, Republic of)

    2003-12-15

    To analyze the contrast-enhancement patterns obtained at pulse-inversion harmonic imaging (PIHI) of focal hepatic lesions, and to thus determine tumor vascularity and the acoustic emission effect. We reviewed pulse-inversion images in 90 consecutive patients with focal hepatic lesions, namely hepatocellular carcinoma (HHC) (n=43), metastases (n=30), and hemangioma (n=17). Vascular and delayed phase images were obtained immediately and five minutes following the injection of a microbubble contrast agent. Tumoral vascularity at vascular phase imaging and the acoustic emission effect at delayed phase imaging were each classified as one of four patterns. Vascular phase images depicted internal vessels in 93% of HCCs, marginal vessels in 83% of metastases, and peripheral enhancement in 71% of hemangiomas. Delayed phase images showed inhomogeneous enhancement in 86% of HCCs; hypoechoic, decreased enhancement in 93% of metastases; and hypoechoic and reversed echogenicity in 65% of hemangiomas. Vascular and delayed phase enhancement patterns were associated with a specificity of 91% or greater, and 92% or greater, respectively, and with positive predictive values of 71% or greater, and 85% or greater, respectively. Contrast-enhancement patterns depicting tumoral vascularity and the acoustic emission effect at PIHI can help differentiate focal hepatic lesions.

  14. Elastic reflection waveform inversion with variable density

    KAUST Repository

    Li, Yuanyuan

    2017-08-17

    Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion (RWI) provides a method to build a good background model, which can serve as an initial model for elastic FWI. Therefore, we introduce the concept of RWI for elastic media, and propose elastic RWI with variable density. We apply Born modeling to generate the synthetic reflection data by using optimized perturbations of P- and S-wave velocities and density. The inversion for the perturbations in P- and S-wave velocities and density is similar to elastic least-squares reverse time migration (LSRTM). An incorrect initial model will lead to some misfits at the far offsets of reflections; thus, can be utilized to update the background velocity. We optimize the perturbation and background models in a nested approach. Numerical tests on the Marmousi model demonstrate that our method is able to build reasonably good background models for elastic FWI with absence of low frequencies, and it can deal with the variable density, which is needed in real cases.

  15. Acoustic and social design of schools-ways to improve the school listening environment

    Science.gov (United States)

    Hagen, Mechthild

    2005-04-01

    Results of noise research indicate that communication, and as a result, teaching, learning and the social atmosphere are impeded by noise in schools. The development of strategies to reduce noise levels has often not been effective. A more promising approach seems to be to pro-actively support the ability to listen and to understand. The presentation describes the approach to an acoustic and social school design developed and explored within the project ``GanzOhrSein'' by the Education Department of the Ludwig-Maximilians-University of Munich. The scope includes an analysis of the current ``school soundscape,'' an introduction to the concept of the project to improve individual listening abilities and the conditions for listening, as well as practical examples and relevant research results. We conclude that an acoustic school design should combine acoustic changes in classrooms with educational activities to support listening at schools and thus contribute to improving individual learning conditions and to reducing stress on both pupils and teachers.

  16. Inverse mass matrix via the method of localized lagrange multipliers

    Czech Academy of Sciences Publication Activity Database

    González, José A.; Kolman, Radek; Cho, S.S.; Felippa, C.A.; Park, K.C.

    2018-01-01

    Roč. 113, č. 2 (2018), s. 277-295 ISSN 0029-5981 R&D Projects: GA MŠk(CZ) EF15_003/0000493; GA ČR GA17-22615S Institutional support: RVO:61388998 Keywords : explicit time integration * inverse mass matrix * localized Lagrange multipliers * partitioned analysis Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 2.162, year: 2016 https://onlinelibrary.wiley.com/doi/10.1002/nme.5613

  17. 4-D imaging of seepage in earthen embankments with time-lapse inversion of self-potential data constrained by acoustic emissions localization

    Science.gov (United States)

    Rittgers, J. B.; Revil, A.; Planes, T.; Mooney, M. A.; Koelewijn, A. R.

    2015-02-01

    New methods are required to combine the information contained in the passive electrical and seismic signals to detect, localize and monitor hydromechanical disturbances in porous media. We propose a field experiment showing how passive seismic and electrical data can be combined together to detect a preferential flow path associated with internal erosion in a Earth dam. Continuous passive seismic and electrical (self-potential) monitoring data were recorded during a 7-d full-scale levee (earthen embankment) failure test, conducted in Booneschans, Netherlands in 2012. Spatially coherent acoustic emissions events and the development of a self-potential anomaly, associated with induced concentrated seepage and internal erosion phenomena, were identified and imaged near the downstream toe of the embankment, in an area that subsequently developed a series of concentrated water flows and sand boils, and where liquefaction of the embankment toe eventually developed. We present a new 4-D grid-search algorithm for acoustic emissions localization in both time and space, and the application of the localization results to add spatially varying constraints to time-lapse 3-D modelling of self-potential data in the terms of source current localization. Seismic signal localization results are utilized to build a set of time-invariant yet spatially varying model weights used for the inversion of the self-potential data. Results from the combination of these two passive techniques show results that are more consistent in terms of focused ground water flow with respect to visual observation on the embankment. This approach to geophysical monitoring of earthen embankments provides an improved approach for early detection and imaging of the development of embankment defects associated with concentrated seepage and internal erosion phenomena. The same approach can be used to detect various types of hydromechanical disturbances at larger scales.

  18. A nonlinear approach of elastic reflection waveform inversion

    KAUST Repository

    Guo, Qiang

    2016-09-06

    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  19. A nonlinear approach of elastic reflection waveform inversion

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali

    2016-01-01

    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  20. A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Galigekere, Veda Prakash

    2016-01-01

    A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance S...

  1. Topological Creation of Acoustic Pseudospin Multipoles in a Flow-Free Symmetry-Broken Metamaterial Lattice

    Science.gov (United States)

    Zhang, Zhiwang; Wei, Qi; Cheng, Ying; Zhang, Ting; Wu, Dajian; Liu, Xiaojun

    2017-02-01

    The discovery of topological acoustics has revolutionized fundamental concepts of sound propagation, giving rise to strikingly unconventional acoustic edge modes immune to scattering. Because of the spinless nature of sound, the "spinlike" degree of freedom crucial to topological states in acoustic systems is commonly realized with circulating background flow or preset coupled resonator ring waveguides, which drastically increases the engineering complexity. Here we realize the acoustic pseudospin multipolar states in a simple flow-free symmetry-broken metamaterial lattice, where the clockwise (anticlockwise) sound propagation within each metamolecule emulates pseudospin down (pseudospin up). We demonstrate that tuning the strength of intermolecular coupling by simply contracting or expanding the metamolecule can induce the band inversion effect between the pseudospin dipole and quadrupole, which leads to a topological phase transition. Topologically protected edge states and reconfigurable topological one-way transmission for sound are further demonstrated. These results provide diverse routes to construct novel acoustic topological insulators with versatile applications.

  2. Analysis of the multi-component pseudo-pure-mode qP-wave inversion in vertical transverse isotropic (VTI) media

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2014-01-01

    Multi-parameter inversion in anisotropic media suffers from the inherent trade-off between the anisotropic parameters, even under the acoustic assumption. Multi-component data, often acquired nowadays in ocean bottom acquisition and land data

  3. A wireless acoustic emission sensor remotely powered by light

    International Nuclear Information System (INIS)

    Zahedi, F; Huang, H

    2014-01-01

    In this paper, wireless sensing of acoustic emission (AE) signals using a battery-free sensor node remotely powered by light is presented. The wireless sensor consists of a piezoelectric wafer active sensor (PWAS) for AE signal acquisition and a wireless transponder that performs signal conditioning, frequency conversion, and wireless transmission. For signal conditioning, a voltage follower that consumes less than 2 mW was introduced to buffer the high impedance of the PWAS from the low impedance of the wireless transponder. A photocell-based energy harvester with a stable voltage output was developed to power the voltage follower so that the wireless AE sensor can operate without an external power source. The principle of operation of the battery-free wireless AE sensor node and the sensor interrogation system is described, followed by a detailed description of the hardware implementation. The voltage follower and the wireless channel were characterized by ultrasound pitch–catch and pencil lead break experiments. (paper)

  4. Anomaly detection in random heterogeneous media Feynman-Kac formulae, stochastic homogenization and statistical inversion

    CERN Document Server

    Simon, Martin

    2015-01-01

    This monograph is concerned with the analysis and numerical solution of a stochastic inverse anomaly detection problem in electrical impedance tomography (EIT). Martin Simon studies the problem of detecting a parameterized anomaly in an isotropic, stationary and ergodic conductivity random field whose realizations are rapidly oscillating. For this purpose, he derives Feynman-Kac formulae to rigorously justify stochastic homogenization in the case of the underlying stochastic boundary value problem. The author combines techniques from the theory of partial differential equations and functional analysis with probabilistic ideas, paving the way to new mathematical theorems which may be fruitfully used in the treatment of the problem at hand. Moreover, the author proposes an efficient numerical method in the framework of Bayesian inversion for the practical solution of the stochastic inverse anomaly detection problem.   Contents Feynman-Kac formulae Stochastic homogenization Statistical inverse problems  Targe...

  5. Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis

    International Nuclear Information System (INIS)

    Boaga, J; Vignoli, G; Cassiani, G

    2011-01-01

    Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the

  6. An analysis of electrical impedance tomography with applications to Tikhonov regularization

    KAUST Repository

    Jin, Bangti

    2012-01-16

    This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in L p-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important properties, e.g., existence, stability, consistency and convergence rates, are established. This provides some theoretical justifications of their practical usage. © EDP Sciences, SMAI, 2012.

  7. An analysis of electrical impedance tomography with applications to Tikhonov regularization

    KAUST Repository

    Jin, Bangti; Maass, Peter

    2012-01-01

    This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in L p-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov regularization, for both linearized and nonlinear models. Some important properties, e.g., existence, stability, consistency and convergence rates, are established. This provides some theoretical justifications of their practical usage. © EDP Sciences, SMAI, 2012.

  8. D33 mode piezoelectric diaphragm based acoustic transducer with high sensitivity

    KAUST Repository

    Shen, Zhiyuan; Lu, Jingyu; Tan, Cheewee; Miao, Jianmin; Wang, Zhihong

    2013-01-01

    This paper presents the design, fabrication, and characterization of an acoustic transducer using a piezoelectric freestanding bulk diaphragm as the sensing element. The diaphragm bearing the spiral electrode operates in d 33 mode, which allows the in-plane deformation of the diaphragm to be converted to the out-of-plane deformation and generates an acoustic wave in the same direction. A finite element code is developed to reorient the material polarization distribution according to the poling field calculated. The first four resonance modes have been simulated and verified by impedance and velocity spectra. The sensitivity and the sound pressure level of the transducer were characterized. The realized sensitivity of 126.21 μV/Pa at 1 kHz is nearly twenty times of the sensitivity of a sandwich d31 mode transducer. © 2012 Elsevier B.V.

  9. Comparing Acoustic Tag Attachments Designed for Mobile Tracking of Hatchling Sea Turtles

    OpenAIRE

    Hoover, Aimee L.; Shillinger, George L.; Swiggs, Jennifer; Bailey, Helen

    2017-01-01

    The poorly understood movements of sea turtles during the “lost years” of their early life history have been characterized as a “passive drifter” stage. Biologging technology allows us to study patterns of dispersal, but the small body size of young life stages requires particular consideration that such tagging does not significantly impede animal movements. We tested the effect of instrument attachment methods for mobile acoustic tracking of hatchling sea turtles, including a design that wo...

  10. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  11. Three forms of omnidirectional acoustic invisibility engineered using fast elastodynamic transfer-matrix method

    International Nuclear Information System (INIS)

    Bowen, Patrick T; Urzhumov, Yaroslav A

    2016-01-01

    Acoustic metamaterial structures with discrete and continuous rotational symmetries attract interest of theorists and engineers due to the relative simplicity of their design and fabrication. They are also likely candidates for omnidirectional acoustic cloaking and other transformation-acoustical novelties. In this paper, we employ a stratified description of such structures, and develop the theory and an efficient symbolic/numerical algorithm for analyzing the scattering properties of such structures immersed in homogeneous fluid environments. The algorithm calculates the partial scattering amplitudes and the related scattering phases for an arbitrary layered distribution of acoustic material properties. The efficiency of the algorithm enables us to find approximate solutions to certain inverse scattering problems through quasi-global optimization. The scattering problems addressed here are the three forms of cloaking: (1) extinction cross-section suppression, the canonical form of cloaking, (2) monostatic sonar invisibility (backscattering suppression), and (3) acoustic force cloaking (transport cross-section suppression). We also address the efficiency-bandwidth tradeoff and design approximate cloaks with wider bandwidth using a new optimization formulation. (paper)

  12. Three forms of omnidirectional acoustic invisibility engineered using fast elastodynamic transfer-matrix method

    Science.gov (United States)

    Bowen, Patrick T.; Urzhumov, Yaroslav A.

    2016-04-01

    Acoustic metamaterial structures with discrete and continuous rotational symmetries attract interest of theorists and engineers due to the relative simplicity of their design and fabrication. They are also likely candidates for omnidirectional acoustic cloaking and other transformation-acoustical novelties. In this paper, we employ a stratified description of such structures, and develop the theory and an efficient symbolic/numerical algorithm for analyzing the scattering properties of such structures immersed in homogeneous fluid environments. The algorithm calculates the partial scattering amplitudes and the related scattering phases for an arbitrary layered distribution of acoustic material properties. The efficiency of the algorithm enables us to find approximate solutions to certain inverse scattering problems through quasi-global optimization. The scattering problems addressed here are the three forms of cloaking: (1) extinction cross-section suppression, the canonical form of cloaking, (2) monostatic sonar invisibility (backscattering suppression), and (3) acoustic force cloaking (transport cross-section suppression). We also address the efficiency-bandwidth tradeoff and design approximate cloaks with wider bandwidth using a new optimization formulation.

  13. Determination of particle size distributions from acoustic wave propagation measurements

    International Nuclear Information System (INIS)

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-01-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. 51, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. copyright 1999 American Institute of Physics

  14. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    Science.gov (United States)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  15. Short climatology of the atmospheric boundary layer using acoustic methods

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1975-06-01

    A climatology of the boundary layer of the atmosphere at the Savannah River Laboratory is being compiled using acoustic methods. The atmospheric phenomenon as depicted on the facsimile recorder is classified and then placed into one of sixteen categories. After classification, the height of the boundary layer is measured. From this information, frequency tables of boundary layer height and category are created and then analyzed for the percentage of time that each category was detected by the acoustic sounder. The sounder also accurately depicts the diurnal cycle of the boundary layer and, depending on the sensitivity of the system, shows microstructure that is normally unavailable using other methods of profiling. The acoustic sounder provides a means for continuous, real time measurements of the time rate of change of the depth of the boundary layer. This continuous record of the boundary layer with its convective cells, gravity waves, inversions, and frontal system passages permits the synoptic and complex climatology of the local area to be compiled. (U.S.)

  16. A statistical-based approach for acoustic tomography of the atmosphere.

    Science.gov (United States)

    Kolouri, Soheil; Azimi-Sadjadi, Mahmood R; Ziemann, Astrid

    2014-01-01

    Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a statistical-based acoustic travel-time tomography algorithm based on dual state-parameter unscented Kalman filter (UKF) which is capable of reconstructing and tracking, in time, temperature, and wind velocity fields (state variables) as well as the dynamic model parameters within a specified investigation area. An adaptive 3-D spatial-temporal autoregressive model is used to capture the state evolution in the UKF. The observations used in the dual state-parameter UKF process consist of the acoustic time of arrivals measured for every pair of transmitter/receiver nodes deployed in the investigation area. The proposed method is then applied to the data set collected at the Meteorological Observatory Lindenberg, Germany, as part of the STINHO experiment, and the reconstruction results are presented.

  17. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators

    Energy Technology Data Exchange (ETDEWEB)

    Guianvarc' h, Cecile; Pitre, Laurent [Laboratoire Commun de Metrologie LNE/Cnam, 61 rue du Landy, 93210 La Plaine Saint Denis (France); Gavioso, Roberto M.; Benedetto, Giuliana [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin (Italy); Bruneau, Michel [Laboratoire d' Acoustique de l' Universite du Maine UMR CNRS 6613, av. Olivier Messiaen, 72085 Le Mans Cedex 9 (France)

    2009-07-15

    Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.

  18. Novel Magnetic Field Meter Based on Giant Magneto-impedance (GMI Effect

    Directory of Open Access Journals (Sweden)

    K. Nesteruk

    2006-03-01

    Full Text Available A novel magnetic field GMI-sensor/meter has been invented and designed. Its laboratory model was constructed and tested, demonstrating the sensitivity of 1.10–8 T (100 mGs. The principle of operation of this meter is based on changes of the quality factor of the resonance circuit a part of which is a magnetic GMI sensing element.These changes are due to variations in the real component of the impedance of this element caused by an external DC-field. The sensing element is in the form of a piece of the “non-magnetostrictive” amorphous ribbon. Magnetic field modulation of an acoustic frequency and feedback circuit (compensating field applied to the device, significantly increases stability and linearity of the measuring system.

  19. Circular resistor networks for electrical impedance tomography with partial boundary measurements

    International Nuclear Information System (INIS)

    Borcea, L; Mamonov, A V; Druskin, V

    2010-01-01

    We introduce an algorithm for the numerical solution of electrical impedance tomography (EIT) in two dimensions, with partial boundary measurements. The algorithm is an extension of the one in Borcea et al (2008 Inverse Problems 24 035013 (31pp)) and Vasquez (2006 PhD Thesis Rice University, Houston, TX, USA) for EIT with full boundary measurements. It is based on resistor networks that arise in finite volume discretizations of the elliptic partial differential equation for the potential on so-called optimal grids that are computed as part of the problem. The grids are adaptively refined near the boundary, where we measure and expect better resolution of the images. They can be used very efficiently in inversion, by defining a reconstruction mapping that is an approximate inverse of the forward map, and acts therefore as a preconditioner in any iterative scheme that solves the inverse problem via optimization. The main result in this paper is the construction of optimal grids for EIT with partial measurements by extremal quasiconformal (Teichmüller) transformations of the optimal grids for EIT with full boundary measurements. We present the algorithm for computing the reconstruction mapping on such grids, and we illustrate its performance with numerical simulations. The results show an interesting trade-off between the resolution of the reconstruction in the domain of the solution and distortions due to artificial anisotropy induced by the distribution of the measurement points on the accessible boundary

  20. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  1. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  2. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  3. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J S [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  4. Acoustic characterization of a nonlinear vibroacoustic absorber at low frequencies and high sound levels

    Science.gov (United States)

    Chauvin, A.; Monteil, M.; Bellizzi, S.; Côte, R.; Herzog, Ph.; Pachebat, M.

    2018-03-01

    A nonlinear vibroacoustic absorber (Nonlinear Energy Sink: NES), involving a clamped thin membrane made in Latex, is assessed in the acoustic domain. This NES is here considered as an one-port acoustic system, analyzed at low frequencies and for increasing excitation levels. This dynamic and frequency range requires a suitable experimental technique, which is presented first. It involves a specific impedance tube able to deal with samples of sufficient size, and reaching high sound levels with a guaranteed linear response thank's to a specific acoustic source. The identification method presented here requires a single pressure measurement, and is calibrated from a set of known acoustic loads. The NES reflection coefficient is then estimated at increasing source levels, showing its strong level dependency. This is presented as a mean to understand energy dissipation. The results of the experimental tests are first compared to a nonlinear viscoelastic model of the membrane absorber. In a second step, a family of one degree of freedom models, treated as equivalent Helmholtz resonators is identified from the measurements, allowing a parametric description of the NES behavior over a wide range of levels.

  5. Inversion for Sound Speed Profile by Using a Bottom Mounted Horizontal Line Array in Shallow Water

    International Nuclear Information System (INIS)

    Feng-Hua, Li; Ren-He, Zhang

    2010-01-01

    Ocean acoustic tomography is an appealing technique for remote monitoring of the ocean environment. In shallow water, matched field processing (MFP) with a vertical line array is one of the widely used methods for inverting the sound speed profile (SSP) of water column. The approach adopted is to invert the SSP with a bottom mounted horizontal line array (HLA) based on MFP. Empirical orthonormal functions are used to express the SSP, and perturbation theory is used in the forward sound field calculation. This inversion method is applied to the data measured in a shallow water acoustic experiment performed in 2003. Successful results show that the bottom mounted HLA is able to estimate the SSP. One of the most important advantages of the inversion method with bottom mounted HLA is that the bottom mounted HLA can keep a stable array shape and is safe in a relatively long period. (fundamental areas of phenomenology (including applications))

  6. Measurement errors in multifrequency bioelectrical impedance analyzers with and without impedance electrode mismatch

    International Nuclear Information System (INIS)

    Bogónez-Franco, P; Nescolarde, L; Bragós, R; Rosell-Ferrer, J; Yandiola, I

    2009-01-01

    The purpose of this study is to compare measurement errors in two commercially available multi-frequency bioimpedance analyzers, a Xitron 4000B and an ImpediMed SFB7, including electrode impedance mismatch. The comparison was made using resistive electrical models and in ten human volunteers. We used three different electrical models simulating three different body segments: the right-side, leg and thorax. In the electrical models, we tested the effect of the capacitive coupling of the patient to ground and the skin–electrode impedance mismatch. Results showed that both sets of equipment are optimized for right-side measurements and for moderate skin–electrode impedance mismatch. In right-side measurements with mismatch electrode, 4000B is more accurate than SFB7. When an electrode impedance mismatch was simulated, errors increased in both bioimpedance analyzers and the effect of the mismatch in the voltage detection leads was greater than that in current injection leads. For segments with lower impedance as the leg and thorax, SFB7 is more accurate than 4000B and also shows less dependence on electrode mismatch. In both devices, impedance measurements were not significantly affected (p > 0.05) by the capacitive coupling to ground

  7. Applications of Electrical Impedance Tomography (EIT): A Short Review

    Science.gov (United States)

    Kanti Bera, Tushar

    2018-03-01

    Electrical Impedance Tomography (EIT) is a tomographic imaging method which solves an ill posed inverse problem using the boundary voltage-current data collected from the surface of the object under test. Though the spatial resolution is comparatively low compared to conventional tomographic imaging modalities, due to several advantages EIT has been studied for a number of applications such as medical imaging, material engineering, civil engineering, biotechnology, chemical engineering, MEMS and other fields of engineering and applied sciences. In this paper, the applications of EIT have been reviewed and presented as a short summary. The working principal, instrumentation and advantages are briefly discussed followed by a detail discussion on the applications of EIT technology in different areas of engineering, technology and applied sciences.

  8. Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures.

    Science.gov (United States)

    Yang, Yaowen; Hu, Yuhang; Lu, Yong

    2008-01-21

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanicalimpedance (EMI) technique for structural health monitoring (SHM) has been successfullyapplied to various engineering systems. However, fundamental research work on thesensitivity of the PZT impedance sensors for damage detection is still in need. In thetraditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of theimpedance) is used as damage indicator, which is difficult to specify the effect of damage onstructural properties. This paper uses the structural mechanical impedance (SMI) extractedfrom the PZT EM admittance signature as the damage indicator. A comparison study on thesensitivity of the EM admittance and the structural mechanical impedance to the damages ina concrete structure is conducted. Results show that the SMI is more sensitive to the damagethan the EM admittance thus a better indicator for damage detection. Furthermore, this paperproposes a dynamic system consisting of a number of single-degree-of-freedom elementswith mass, spring and damper components to model the SMI. A genetic algorithm isemployed to search for the optimal value of the unknown parameters in the dynamic system.An experiment is carried out on a two-storey concrete frame subjected to base vibrations thatsimulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the framestructure to acquire PZT EM admittance signatures. The relationship between the damageindex and the distance of the PZT sensor from the damage is studied. Consequently, thesensitivity of the PZT sensors is discussed and their sensing region in concrete is derived.

  9. Impedance Source Power Electronic Converters

    DEFF Research Database (Denmark)

    Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...... features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding...

  10. Application of maximum entropy to statistical inference for inversion of data from a single track segment.

    Science.gov (United States)

    Stotts, Steven A; Koch, Robert A

    2017-08-01

    In this paper an approach is presented to estimate the constraint required to apply maximum entropy (ME) for statistical inference with underwater acoustic data from a single track segment. Previous algorithms for estimating the ME constraint require multiple source track segments to determine the constraint. The approach is relevant for addressing model mismatch effects, i.e., inaccuracies in parameter values determined from inversions because the propagation model does not account for all acoustic processes that contribute to the measured data. One effect of model mismatch is that the lowest cost inversion solution may be well outside a relatively well-known parameter value's uncertainty interval (prior), e.g., source speed from track reconstruction or towed source levels. The approach requires, for some particular parameter value, the ME constraint to produce an inferred uncertainty interval that encompasses the prior. Motivating this approach is the hypothesis that the proposed constraint determination procedure would produce a posterior probability density that accounts for the effect of model mismatch on inferred values of other inversion parameters for which the priors might be quite broad. Applications to both measured and simulated data are presented for model mismatch that produces minimum cost solutions either inside or outside some priors.

  11. The Effects of Sediment Properties on Low Frequency Acoustic Propagation

    Science.gov (United States)

    2013-09-30

    boring 5 locations (BH-15 and BH-8). We used three different correlation relationships to convert the reported N -values from the borings to a...to converge to the correct result. Adjoint inversions were performed in this study using synthetic acoustic data created using glider based sound...shear speed values estimated from the SPT blow counts (using three different methods) contained in boring log BH-15. Right panel shows the

  12. Opto-acoustic microscopy reveals adhesion mechanics of single cells.

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  13. Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites.

    Science.gov (United States)

    Bindi, Luca; Griffin, William L; Panero, Wendy R; Sirotkina, Ekaterina; Bobrov, Andrey; Irifune, Tetsuo

    2018-04-03

    Tibetan ophiolites are shallow mantle material and crustal slabs that were subducted as deep as the mantle transition zone, a conclusion supported by the discovery of high-pressure phases like inverse ringwoodite in these sequences. Ringwoodite, Mg 2 SiO 4 , exhibits the normal spinel structure, with Mg in the octahedral A site and Si in the tetrahedral B site. Through A and B site-disorder, the inverse spinel has four-coordinated A cations and the six-coordinated site hosts a mixture of A and B cations. This process affects the density and impedance contrasts across the boundaries in the transition zone and seismic-wave velocities in this portion of the Earth. We report the first synthesis at high pressure (20 GPa) and high temperature (1600 °C) of a Cr-bearing ringwoodite with a completely inverse-spinel structure. Chemical, structural, and computational analysis confirm the stability of inverse ringwoodite and add further constraints to the subduction history of the Luobusa peridotite of the Tibetan ophiolites.

  14. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    Science.gov (United States)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  15. Beam measurements of the LHC impedance and validation of the impedance model

    CERN Document Server

    Esteban Müller, J F; Bohl, T; Mounet, N; Shaposhnikova, E; Timko, H

    2014-01-01

    Different measurements of the longitudinal impedance of the LHC done with single bunches with various intensities and longitudinal emittances during measurement sessions in 2011-2012 are compared with particle simulations based on the existing LHC impedance model. The very low reactive impedance of the LHC, with Im Z=n = 0.08, is not easy to measure. The most sensitive observation is the loss of Landau damping, which shows at which energy bunches become unstable depending on their parameters. In addition, the synchrotron frequency shift due to the reactive impedance was estimated following two methods. Firstly, it was obtained from the peak-detected Schottky spectrum. Secondly, a sine modulation in the RF phase was applied to the bunches of different intensities and the modulation frequency was scanned. In both cases, the synchrotron frequency shift was of the order of the measurement precision.

  16. Reducing extrinsic damping of surface acoustic waves at gigahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Gelda, Dhruv, E-mail: gelda2@illinois.edu; Sadhu, Jyothi; Ghossoub, Marc G.; Ertekin, Elif [Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Sinha, Sanjiv [Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Micro and Nanotechnology Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-04-28

    High-frequency surface acoustic waves (SAWs) in the gigahertz range can be generated using absorption from an ultrafast laser in a patterned metallic grating on a substrate. Reducing the attenuation at these frequencies can yield better sensors as well as enable them to better probe phonon and electron-phonon interactions near surfaces. It is not clear from existing experiments which mechanisms dominate damping at high frequencies. We calculate damping times of SAWs due to various mechanisms in the 1–100 GHz range to find that mechanical loading of the grating on the substrate dominates dissipation by radiating energy from the surface into the bulk. To overcome this and enable future measurements to probe intrinsic damping, we propose incorporating distributed acoustic Bragg reflectors in the experimental structure. Layers of alternating materials with contrasting acoustic impedances embedded a wavelength away from the surface serve to reflect energy back to the surface. Using numerical simulations, we show that a single Bragg reflector is sufficient to increase the energy density at the surface by more than five times. We quantify the resulting damping time to find that it is longer than the intrinsic damping time. The proposed structure can enable future measurements of intrinsic damping in SAWs at ∼100 GHz.

  17. One-dimensional pressure transfer models for acoustic-electric transmission channels

    Science.gov (United States)

    Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.

    2015-09-01

    A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.

  18. Microwave Impedance Measurement for Nanoelectronics

    Directory of Open Access Journals (Sweden)

    M. Randus

    2011-04-01

    Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.

  19. Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions.

    Science.gov (United States)

    McCollom, Brittany A; Collis, Jon M

    2014-09-01

    A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.

  20. Impedance and Collective Effects

    CERN Document Server

    Metral, E; Rumolo, R; Herr, W

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling

  1. Seismic Characterization and Continuity Analysis of Gas Hydrate Horizons Near the Mallik Research Wells, Mackenzie Delta, Canada

    Science.gov (United States)

    Bellefleur, G.; Riedel, M.; Brent, T.

    2005-12-01

    Gas hydrate deposits in arctic environment generally lack the BSR signature diagnostic of their presence in marine seismic data. The absence of the BSR signature complicates the estimation of the resources within or below the permafrost and the determination of their potential impact on future energy supplies, geohazard and climate change. We present results from a detailed seismic characterization of three gas hydrate horizons (A, B and C) intersected below the permafrost in five wells of the Mallik gas hydrate field located in the Mackenzie delta (Northwest Territories, Canada). The detailed seismic characterization included attribute analyses, synthetic modeling and acoustic impedance inversion and allowed estimation of the lateral continuity of the three horizons in the vicinity of the wells. Vertical Seismic Profiling (VSP) data, 3D and 2D industry seismic data and the 5L/2L-38 geophysical logs (density, P-wave sonic velocity) were used for this study. Synthetic modeling using the sonic and density logs reveals that the base of the lower gas hydrate horizons B and C can be identified on the industry 3D and 2D seismic sections as prominent isolated reflections. The uppermost gas hydrate occurrence (horizon A) and potentially other additional smaller-scale layers are identified only on the higher-resolution VSP data. The 3D industry seismic data set processed to preserve the relative true-amplitudes was used for attribute calculations and acoustic impedance inversion. The attribute maps defined areas of continuous reflectivity for horizons B and C and structural features disrupting them. Results from impedance inversion indicate that such continuous reflectivity around the wells is most likely attributable to gas hydrates. The middle gas hydrate occurrence (horizon B) covers an area of approximately 25 000m2. Horizon C, which marks the base of gas hydrate occurrence zone, extends over a larger area of approximately 120 000m2.

  2. Wave Characteristics of Temperature Inversion Process of Nighttime Radiation,

    Science.gov (United States)

    1983-12-09

    CHARACTERISTICS OF TEMPERATURE INVERSION PROCESS OF NIGHTTIME RADIATION By: Zhou Mingyu and Zhang ¥i English pages: 8 Source: Kexue Tongbao, 1982, pp. 156...lJournal of Meteorology], 39 (1981), 1:70-81. 3. Drazin, P. G., J. Fluid. Mech., 4 (1958), 214-224. 4. Zhou Mingyu et al., QIXIANG XUEBAO, 38 (1980), 3: 250...258. 5. Emnanuel, C. B., B-L. Meteor., 5(1973), N(1/2)8 19-27. 6. Zhou Mingyu et al., J. Acoust. Soc., A. m., 68 (1980), 1: 303-308. 8 I iI

  3. A unified inversion scheme to process multifrequency measurements of various dispersive electromagnetic properties

    Science.gov (United States)

    Han, Y.; Misra, S.

    2018-04-01

    Multi-frequency measurement of a dispersive electromagnetic (EM) property, such as electrical conductivity, dielectric permittivity, or magnetic permeability, is commonly analyzed for purposes of material characterization. Such an analysis requires inversion of the multi-frequency measurement based on a specific relaxation model, such as Cole-Cole model or Pelton's model. We develop a unified inversion scheme that can be coupled to various type of relaxation models to independently process multi-frequency measurement of varied EM properties for purposes of improved EM-based geomaterial characterization. The proposed inversion scheme is firstly tested in few synthetic cases in which different relaxation models are coupled into the inversion scheme and then applied to multi-frequency complex conductivity, complex resistivity, complex permittivity, and complex impedance measurements. The method estimates up to seven relaxation-model parameters exhibiting convergence and accuracy for random initializations of the relaxation-model parameters within up to 3-orders of magnitude variation around the true parameter values. The proposed inversion method implements a bounded Levenberg algorithm with tuning initial values of damping parameter and its iterative adjustment factor, which are fixed in all the cases shown in this paper and irrespective of the type of measured EM property and the type of relaxation model. Notably, jump-out step and jump-back-in step are implemented as automated methods in the inversion scheme to prevent the inversion from getting trapped around local minima and to honor physical bounds of model parameters. The proposed inversion scheme can be easily used to process various types of EM measurements without major changes to the inversion scheme.

  4. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States)

    2010-09-15

    This article describes an experimental investigation of the forced response of a swirl-stabilized partially premixed flame when it is subjected to acoustic velocity and equivalence ratio fluctuations. The flame's response is analyzed using phase-resolved CH{sup *} chemiluminescence images and flame transfer function (FTF) measurements, and compared with the response of a perfectly premixed flame under acoustic perturbations. The nonlinear response of the partially premixed flame is manifested by a partial extinction of the reaction zone, leading to rapid reduction of flame surface area. This nonlinearity, however, is observed only when the phase difference between the acoustic velocity and the equivalence ratio at the combustor inlet is close to zero. The condition, {delta}{phi}{sub {phi}}'-V'{approx}0 , indicates that reactant mixtures with high equivalence ratio impinge on the flame front with high velocity, inducing large fluctuations of the rate of heat release. It is found that the phase difference between the acoustic velocity and equivalence ratio nonuniformities is a key parameter governing the linear/nonlinear response of a partially premixed flame, and it is a function of modulation frequency, inlet velocity, fuel injection location, and fuel injector impedance. The results presented in this article will provide insight into the response of a partially premixed flame, which has not been well explored to date. (author)

  5. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Lani, Shane W., E-mail: shane.w.lani@gmail.com, E-mail: karim.sabra@me.gatech.edu, E-mail: levent.degertekin@me.gatech.edu; Sabra, Karim G. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); Wasequr Rashid, M.; Hasler, Jennifer [School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States); Levent Degertekin, F. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States)

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  6. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  7. Hybrid-Source Impedance Networks

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang

    2010-01-01

    Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters with another three types summarized...... for current-type inverters. These impedance networks can in principle be combined into two generic network entities, before multiple of them can further be connected together by applying any of the two proposed generalized cascading concepts. The resulting two-level and three-level inverters implemented using...

  8. Computer based ultrasonic system for mechanical and acoustical characterization of materials

    International Nuclear Information System (INIS)

    Rosly Jaafar; Mohd Rozni Mohd Yusof; Khaidzir Hamzah; Md Supar Rohani; Rashdi Shah Ahmad; Amiruddin Shaari

    2001-01-01

    Propagation of both modes of ultrasonic waves velocity i.e. longitudinal (compressional) and transverse (shear), propagating in a material are closely linked with the material's physical and mechanical properties. By measuring both velocity modes, materials' properties such as Young's, bulk and shear moduli, compressibility, Poisson ratio and acoustic impedance can be determined. This paper describes the development of a system that is able to perform the above tasks and is known as Computer Based Ultrasonic for Mechanical and Acoustical Characterisation of Materials (UMC). The system was developed in the NDT Instrumentation and Signal Processing (NDTSP) laboratory of the Physics Department, Universiti Teknologi Malaysia. Measurements were made on four solid samples, namely, glass, copper, mild steel and aluminium. The results of measurements obtained were found to be in good agreement with the values of measurements made using standard methods. The main advantage of using this system over other methods is that single measurement of two ultrasonic velocity modes yields six material's properties. (Author)

  9. Retrieving Tract Variables From Acoustics: A Comparison of Different Machine Learning Strategies.

    Science.gov (United States)

    Mitra, Vikramjit; Nam, Hosung; Espy-Wilson, Carol Y; Saltzman, Elliot; Goldstein, Louis

    2010-09-13

    Many different studies have claimed that articulatory information can be used to improve the performance of automatic speech recognition systems. Unfortunately, such articulatory information is not readily available in typical speaker-listener situations. Consequently, such information has to be estimated from the acoustic signal in a process which is usually termed "speech-inversion." This study aims to propose and compare various machine learning strategies for speech inversion: Trajectory mixture density networks (TMDNs), feedforward artificial neural networks (FF-ANN), support vector regression (SVR), autoregressive artificial neural network (AR-ANN), and distal supervised learning (DSL). Further, using a database generated by the Haskins Laboratories speech production model, we test the claim that information regarding constrictions produced by the distinct organs of the vocal tract (vocal tract variables) is superior to flesh-point information (articulatory pellet trajectories) for the inversion process.

  10. Pumping slots: impedances and power losses

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S [Maryland Univ., College Park, MD (United States). Dept. of Physics

    1996-08-01

    Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)

  11. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  12. Correlation between hypersensitivity induced by esophageal acid infusion and the baseline impedance level in patients with suspected gastroesophageal reflux.

    Science.gov (United States)

    Seo, A Young; Shin, Cheol Min; Kim, Nayoung; Yoon, Hyuk; Park, Young Soo; Lee, Dong Ho

    2015-07-01

    To evaluate the relevance between the pH parameters and baseline impedance level or esophageal hypomotility in patients with suspected gastroesophageal reflux. The recordings of 51 patients with heartburn, acid regurgitation, globus or noncardiac chest pain were analyzed. Evaluation included a 24-h multichannel intraluminal impedance-pH test while on off-proton pump inhibitor therapy over 1 week, high-resolution manometry and Bernstein test. Mean baseline impedance level at the most distal portion of the impedance channel was assessed manually. Esophageal hypomotility was evaluated using transitional zone defect (TZD) and distal break (DB) length measurement. In the study subjects (n = 51), 6 had a DeMeester score of more than 14.7 and 14 had a positive symptom index. The Bernstein test was positive in ten patients. The baseline impedance level was inversely correlated with the acid exposure time % (r = -0.660, P reflux and weakly acid reflux time % measured by impedance monitoring showed a weak correlation with TZD + DB length (r = 0.327 and 0.324, P = 0.019 and 0.020, respectively). Although a positive Bernstein test has no relevance for the acid exposure time or acid-related symptoms as represented by the DeMeester score or symptom index, the baseline impedance level was significantly lower in patients with a positive Bernstein test than in those with a negative one (2,628.4 ± 862.7 vs. 1,752.2 ± 611.1 Ω, P = 0.004). A lower baseline impedance level is closely related to increased esophageal acid exposure. Hypersensitivity induced by esophageal acid infusion might be attributed to acid-induced mucosal changes of the esophagus.

  13. Multiparameter Elastic Full Waveform Inversion With Facies Constraints

    KAUST Repository

    Zhang, Zhendong

    2017-08-17

    Full waveform inversion (FWI) aims fully benefit from all the data characteristics to estimate the parameters describing the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion as a tool beyond acoustic imaging applications, for example in reservoir analysis, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Adding rock physics constraints does help to mitigate these issues, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a boundary condition for the whole area. Since certain rock formations inside the Earth admit consistent elastic properties and relative values of elastic and anisotropic parameters (facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel confidence map based approach to utilize the facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such a confidence map using Bayesian theory, in which the confidence map is updated at each iteration of the inversion using both the inverted models and a prior information. The numerical examples show that the proposed method can reduce the trade-offs and also can improve the resolution of the inverted elastic and anisotropic properties.

  14. High-precision measurement of tidal current structures using coastal acoustic tomography

    Science.gov (United States)

    Zhang, Chuanzheng; Zhu, Xiao-Hua; Zhu, Ze-Nan; Liu, Wenhu; Zhang, Zhongzhe; Fan, Xiaopeng; Zhao, Ruixiang; Dong, Menghong; Wang, Min

    2017-07-01

    A high-precision coastal acoustic tomography (CAT) experiment for reconstructing the current variation in Dalian Bay (DLB) was successfully conducted by 11 coastal acoustic tomography systems during March 7-8, 2015. The horizontal distributions of tidal currents and residual currents were mapped well by the inverse method, which used reciprocal travel time data along 51 successful sound transmission rays. The semi-diurnal tide is dominant in DLB, with a maximum speed of 0.69 m s-1 at the eastern and southwestern parts near the bay mouth that gradually decreases toward the inner bay with an average velocity of 0.31 m s-1. The residual current enters the observational domain from the two flanks of the bay mouth and flows out in the inner bay. One anticyclone and one cyclone were noted inside DLB as was one cyclone at the bay mouth. The maximum residual current in the observational domain reached 0.11 m s-1, with a mean residual current of 0.03 m s-1. The upper 15-m depth-averaged inverse velocities were in excellent agreement with the moored Acoustic Doppler Current Profiler (ADCP) at the center of the bay, with a root-mean-square difference (RMSD) of 0.04 m s-1 for the eastward and northward components. The precision of the present tomography measurements was the highest thus far owing to the largest number of transmission rays ever recorded. Sensitivity experiments showed that the RMSD between CAT and moored-ADCP increased from 0.04 m s-1 to 0.08 m s-1 for both the eastward and northward velocities when reducing the number of transmission rays from 51 to 11. The observational accuracy was determined by the spatial resolution of acoustic ray in the CAT measurements. The cost-optimal scheme consisted of 29 transmission rays with a spatial resolution of acoustic ray of 2.03 √{ km2 / ray numbers } . Moreover, a dynamic analysis of the residual currents showed that the horizontal pressure gradient of residual sea level and Coriolis force contribute 38.3% and 36

  15. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  16. A hierarchical generalization of the acoustic reciprocity theorem involving higher-order derivatives and interaction quantities.

    Science.gov (United States)

    Lin, Ju; Li, Jie; Li, Xiaolei; Wang, Ning

    2016-10-01

    An acoustic reciprocity theorem is generalized, for a smoothly varying perturbed medium, to a hierarchy of reciprocity theorems including higher-order derivatives of acoustic fields. The standard reciprocity theorem is the first member of the hierarchy. It is shown that the conservation of higher-order interaction quantities is related closely to higher-order derivative distributions of perturbed media. Then integral reciprocity theorems are obtained by applying Gauss's divergence theorem, which give explicit integral representations connecting higher-order interactions and higher-order derivative distributions of perturbed media. Some possible applications to an inverse problem are also discussed.

  17. Delayed changes in auditory status in cochlear implant users with preserved acoustic hearing.

    Science.gov (United States)

    Scheperle, Rachel A; Tejani, Viral D; Omtvedt, Julia K; Brown, Carolyn J; Abbas, Paul J; Hansen, Marlan R; Gantz, Bruce J; Oleson, Jacob J; Ozanne, Marie V

    2017-07-01

    This retrospective review explores delayed-onset hearing loss in 85 individuals receiving cochlear implants designed to preserve acoustic hearing at the University of Iowa Hospitals and Clinics between 2001 and 2015. Repeated measures of unaided behavioral audiometric thresholds, electrode impedance, and electrically evoked compound action potential (ECAP) amplitude growth functions were used to characterize longitudinal changes in auditory status. Participants were grouped into two primary categories according to changes in unaided behavioral thresholds: (1) stable hearing or symmetrical hearing loss and (2) delayed loss of hearing in the implanted ear. Thirty-eight percent of this sample presented with delayed-onset hearing loss of various degrees and rates of change. Neither array type nor insertion approach (round window or cochleostomy) had a significant effect on prevalence. Electrode impedance increased abruptly for many individuals exhibiting precipitous hearing loss; the increase was often transient. The impedance increases were significantly larger than the impedance changes observed for individuals with stable or symmetrical hearing loss. Moreover, the impedance changes were associated with changes in behavioral thresholds for individuals with a precipitous drop in behavioral thresholds. These findings suggest a change in the electrode environment coincident with the change in auditory status. Changes in ECAP thresholds, growth function slopes, and suprathreshold amplitudes were not correlated with changes in behavioral thresholds, suggesting that neural responsiveness in the region excited by the implant is relatively stable. Further exploration into etiology of delayed-onset hearing loss post implantation is needed, with particular interest in mechanisms associated with changes in the intracochlear environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. 12th Anglo-French Physical Acoustics Conference (AFPAC2013)

    Science.gov (United States)

    2014-04-01

    The Anglo-French Physical Acoustics Conference (AFPAC) had its 12th annual meeting in Villa Clythia, Fréjus, France, from 16th to 18th January 2013. This series of meetings is a collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique. This year, attendees got the opportunity to see the French Riviera with its Mediterranean vegetation covered by a nice thick snow layer. The participants heard 34 excellent oral presentations and saw 3 posters covering an exciting and diverse range of subjects and of frequencies, from ultrasonic wave propagation in chocolate to metamaterials applied to seismic waves for protecting buildings. Among them, invited talks were given by Pr F A Duck ( Enhanced healing by ultrasound: clinical effects and mechanisms), Pr. J-C Valiére, who actually gave two invited talks ( 1. Measurement of audible acoustic particle velocity using laser: Principles, signal processing and applications, 2. Acoustic pots in ancient and medieval buildings: Literary analysis of ancient texts and comparison with recent observations in French churches), Dr P Huthwaite ( Ultrasonic imaging through the resolution of inverse problems), Dr X Lurton ( Underwater acoustic systems on oceanographic research vessels: principles and applications), Dr S Guenneau ( From platonics to seismic metamaterials). For the fifth consecutive year AFPAC is followed by the publication of its proceedings with 12 peer-reviewed papers which cover the most recent research developments in the field of Physical Acoustics in the UK and France. Alain Lhémery (CEA, France) and Nader Saffari (UCL, United Kingdom) French Riviera 12th AFPAC — Villa Clythia, Fréjus (French Riviera), the 17th of January 2013

  19. Impedance and component heating

    CERN Document Server

    Métral, E; Mounet, N; Pieloni, T; Salvant, B

    2015-01-01

    The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.

  20. Experimental Evaluation of Acoustic Engine Liner Models Developed with COMSOL Multiphysics

    Science.gov (United States)

    Schiller, Noah H.; Jones, Michael G.; Bertolucci, Brandon

    2017-01-01

    Accurate modeling tools are needed to design new engine liners capable of reducing aircraft noise. The purpose of this study is to determine if a commercially-available finite element package, COMSOL Multiphysics, can be used to accurately model a range of different acoustic engine liner designs, and in the process, collect and document a benchmark dataset that can be used in both current and future code evaluation activities. To achieve these goals, a variety of liner samples, ranging from conventional perforate-over-honeycomb to extended-reaction designs, were installed in one wall of the grazing flow impedance tube at the NASA Langley Research Center. The liners were exposed to high sound pressure levels and grazing flow, and the effect of the liner on the sound field in the flow duct was measured. These measurements were then compared with predictions. While this report only includes comparisons for a subset of the configurations, the full database of all measurements and predictions is available in electronic format upon request. The results demonstrate that both conventional perforate-over-honeycomb and extended-reaction liners can be accurately modeled using COMSOL. Therefore, this modeling tool can be used with confidence to supplement the current suite of acoustic propagation codes, and ultimately develop new acoustic engine liners designed to reduce aircraft noise.

  1. Frequency Shift of a Rotating Mass-Imbalance Immersed in an Acoustic Fluid

    International Nuclear Information System (INIS)

    Stephen R. Novascone; David M. Weinberg; Michael J. Anderson

    2005-01-01

    In this paper, we describe a physical mechanism that relates a measurable behavior of a vibrating device to the physical properties of a surrounding acoustic medium. The vibrating device under consideration is a rotating imbalance immersed in an unbounded acoustic fluid. It is assumed that the rotating imbalance is driven by an electromagnetic motor excited by a given DC voltage. If nonlinearities are ignored, the steady state operational frequency of such a device is determined by a balance between the applied electromagnetic and opposing frictional torque on the rotating imbalance. If nonlinearities are retained, it is shown that under certain circumstances, the surrounding acoustic medium exerts an additional time-averaged opposing torque on the rotating imbalance that reduces the operational frequency of the device. Consequently, the operational frequency of the device becomes linked to the physical properties of the surrounding medium. Analytical calculations showed that the radiative resistance of an acoustic fluid caused the opposing torque. The shift in frequency is proportional to the radiative resistance and the square of the rotating eccentricity, but inversely proportional the total transducer mass and the damping effect of the DC motor

  2. Solid state opto-impedance of LiNiVO{sub 4} and LiMn{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kalyani, P; Sivasubramanian, S; Prabhu, S Naveen; Ragavendran, K; Kalaiselvi, N; Ranganathan, N G; Madhu, S; SundaraRaj, A; Manoharan, S P; Jagannathan, R [Central Electrochemical Research Institute, Karaikudi-630006, Tamil Nadu (India)

    2005-04-07

    Spinel type LiMn{sub 2}O{sub 4} and inverse spinel LiNiVO{sub 4} systems serve as standard cathode materials or potential cathode systems for application in high energy density lithium-ion batteries. Upon photo-excitation using UV radiation of energy {approx}5 eV, the LiNiVO{sub 4} system shows significant modification in the solid state impedance pattern while the LiMn{sub 2}O{sub 4} system does not. This study has revealed a significant difference in the opto-impedance pattern for LiNiVO{sub 4} with respect to LiMn{sub 2}O{sub 4}, which may be due to the different electronic processes involved. An attempt has been made to study this behaviour from the solid-state viewpoint.

  3. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  4. Translational illusion of acoustic sources by transformation acoustics.

    Science.gov (United States)

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  5. Impedance Based Analysis and Design of Harmonic Resonant Controller for a Wide Range of Grid Impedance

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    This paper investigates the effect of grid impedance variation on harmonic resonant current controllers for gridconnected voltage source converters by means of impedance-based analysis. It reveals that the negative harmonic resistances tend to be derived from harmonic resonant controllers...... in the closed-loop output admittance of converter. Such negative resistances may interact with the grid impedance resulting in steady state error or unstable harmonic compensation. To deal with this problem, a design guideline for harmonic resonant controllers under a wide range of grid impedance is proposed...

  6. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor

    Directory of Open Access Journals (Sweden)

    Lidewei L Vergeynst

    2015-07-01

    Full Text Available When drought occurs in plants, acoustic emission signals can be detected, but the actual causes of these signals are still unknown. By analyzing the waveforms of the measured signals, it should however be possible to trace the characteristics of the acoustic emission source and get information about the underlying physiological processes. A problem encountered during this analysis is that the waveform changes significantly from source to sensor and lack of knowledge on wave propagation impedes research progress made in this field. We used finite element modeling and the well-known pencil lead break source to investigate wave propagation in a branch. A cylindrical rod of polyvinyl chloride was first used to identify the theoretical propagation modes. Two wave propagation modes could be distinguished and we used the finite element model to interpret their behavior in terms of source position for both the PVC rod and a wooden rod. Both wave propagation modes were also identified in drying-induced signals from woody branches, and we used the obtained insights to provide recommendations for further acoustic emission research in plant science.

  7. Acoustic VTI wavefield tomography of P-wave surface and VSP data

    KAUST Repository

    Li, Vladimir

    2017-08-17

    Transversely isotropic (TI) models have become standard in depth imaging and are often used in waveform inversion. Here, we develop a robust wave-equation-based tomographic algorithm for building acoustic VTI (transversely isotropic with a vertical symmetry axis) velocity models from P-wave surface reflection and vertical seismic profiling (VSP) data. Wavefield extrapolation is performed with an integral operator to avoid generating shear-wave artifacts. Focusing energy in extended images produced by reverse-time migration (RTM) makes it possible to update the zero-dip NMO velocity Vnmo and the anellipiticity parameter η. To constrain the anisotropy coefficient δ and improve the accuracy in Vnmo and η, we employ borehole information by introducing an additional objective-function term designed to fit VSP data. Image-guided smoothing is applied to both data- and image-domain gradients to steer the inversion towards geologically plausible solutions. Testing on the VTI Marmousi model shows that the joint inversion of surface and VSP data helps estimate all three relevant medium parameters.

  8. Acoustic VTI wavefield tomography of P-wave surface and VSP data

    KAUST Repository

    Li, Vladimir; Tsvankin, Ilya; Guitton, Antoine; Alkhalifah, Tariq Ali

    2017-01-01

    Transversely isotropic (TI) models have become standard in depth imaging and are often used in waveform inversion. Here, we develop a robust wave-equation-based tomographic algorithm for building acoustic VTI (transversely isotropic with a vertical symmetry axis) velocity models from P-wave surface reflection and vertical seismic profiling (VSP) data. Wavefield extrapolation is performed with an integral operator to avoid generating shear-wave artifacts. Focusing energy in extended images produced by reverse-time migration (RTM) makes it possible to update the zero-dip NMO velocity Vnmo and the anellipiticity parameter η. To constrain the anisotropy coefficient δ and improve the accuracy in Vnmo and η, we employ borehole information by introducing an additional objective-function term designed to fit VSP data. Image-guided smoothing is applied to both data- and image-domain gradients to steer the inversion towards geologically plausible solutions. Testing on the VTI Marmousi model shows that the joint inversion of surface and VSP data helps estimate all three relevant medium parameters.

  9. Analysis of the multi-component pseudo-pure-mode qP-wave inversion in vertical transverse isotropic (VTI) media

    KAUST Repository

    Djebbi, Ramzi

    2014-08-05

    Multi-parameter inversion in anisotropic media suffers from the inherent trade-off between the anisotropic parameters, even under the acoustic assumption. Multi-component data, often acquired nowadays in ocean bottom acquisition and land data, provide additional information capable of resolving anisotropic parameters under the acoustic approximation assumption. Based on Born scattering approximation, we develop formulas capable of characterizing the radiation patterns for the acoustic pseudo-pure mode P-waves. Though commonly reserved for the elastic fields, we use displacement fields to constrain the acoustic vertical transverse isotropic (VTI) representation of the medium. Using the asymptotic Green\\'s functions and a horizontal reflector we derive the radiation patterns for perturbations in the anisotropic media. The radiation pattern for the anellipticity parameter η is identically zero for the horizontal displacement. This allows us to dedicate this component to invert for velocity and δ. Computing the traveltime sensitivity kernels based on the unwrapped phase confirms the radiation patterns observations, and provide the model wavenumber behavior of the update.

  10. Superconducting fault current-limiter with variable shunt impedance

    Science.gov (United States)

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  11. Evaluation of the sensitivity of electro-acoustic measurements for process monitoring and control of an atmospheric pressure plasma jet system

    Energy Technology Data Exchange (ETDEWEB)

    Law, V J [Dublin City University, National Centre of Plasma Science and Technology, Collins Avenue, Glasnevin, Dublin 9, Dublin (Ireland); O' Neill, F T; Dowling, D P, E-mail: vic.law@dcu.ie [School Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4 (Ireland)

    2011-06-15

    The development of non-invasive process diagnostic techniques for the control of atmospheric plasmas is a critical issue for the wider adoption of this technology. This paper evaluates the use of a frequency-domain deconvolution of an electro-acoustic emission as a means to monitor and control the plasma formed using an atmospheric pressure plasma jet (APPJ) system. The air plasma system investigated was formed using a PlasmaTreat(TM) OpenAir applicator. Change was observed in the electro-acoustic signal with changes in substrate type (ceramic, steel, polymer). APPJ nozzle to substrate distance and substrate feature size were monitored. The decoding of the electro-acoustic emission yields three subdatasets that are described by three separate emission mechanisms. The three emissions are associated with the power supply fundamental drive frequency and its harmonics, the APPJ nozzle longitudinal mode acoustic emission and its odd overtones, and the acoustic surface reflection that is produced by the impedance mismatch between the discharge and the surface. Incorporating this knowledge into a LabVIEW program facilitated the continuous deconvolution of the electro-acoustic data. This enabled the use of specific frequency band test limits to control the APPJ treatment process which is sensitive to both plasma processing conditions and substrate type and features.

  12. Acoustical, morphological and optical properties of oral rehydration salts (ORS)

    International Nuclear Information System (INIS)

    George, Preetha Mary; Divya, P.; Jayakumar, S.; Subhashree, N. S.; Ahmed, M. Anees

    2015-01-01

    Ultrasonic velocity, density and viscosity were measured in different concentrations of oral rehydration salts (ORS) at room temperature 303 k. From the experimental data other related thermodynamic parameters, viz adiabatic compressibility, intermolecular free length, acoustic impedence, relaxation time are calculated. The experimental data were discussed in the light of molecular interaction existing in the liquid mixtures. The results have been discussed in terms of solute-solvent interaction between the components. Structural characterization is important for development of new material. The morphology, structure and grain size of the samples are investigated by SEM. The optical properties of the sample have been studied using UV Visible spectroscopy

  13. Acoustical, morphological and optical properties of oral rehydration salts (ORS)

    Science.gov (United States)

    George, Preetha Mary; Jayakumar, S.; Divya, P.; Subhashree, N. S.; Ahmed, M. Anees

    2015-06-01

    Ultrasonic velocity, density and viscosity were measured in different concentrations of oral rehydration salts (ORS) at room temperature 303 k. From the experimental data other related thermodynamic parameters, viz adiabatic compressibility, intermolecular free length, acoustic impedence, relaxation time are calculated. The experimental data were discussed in the light of molecular interaction existing in the liquid mixtures. The results have been discussed in terms of solute-solvent interaction between the components. Structural characterization is important for development of new material. The morphology, structure and grain size of the samples are investigated by SEM. The optical properties of the sample have been studied using UV Visible spectroscopy.

  14. Acoustical, morphological and optical properties of oral rehydration salts (ORS)

    Energy Technology Data Exchange (ETDEWEB)

    George, Preetha Mary, E-mail: preethageoti@gmail.com, E-mail: jayakumars030@gmail.com; Divya, P. [Department of Physics, Dr M.G.R Educational and Research Institute University Chennai- (India); Jayakumar, S., E-mail: preethageoti@gmail.com, E-mail: jayakumars030@gmail.com; Subhashree, N. S. [Department of Physics, RKM Vivekananda College, Chennai-600004 (India); Ahmed, M. Anees [Department of Physics, New College, Chennai (India)

    2015-06-24

    Ultrasonic velocity, density and viscosity were measured in different concentrations of oral rehydration salts (ORS) at room temperature 303 k. From the experimental data other related thermodynamic parameters, viz adiabatic compressibility, intermolecular free length, acoustic impedence, relaxation time are calculated. The experimental data were discussed in the light of molecular interaction existing in the liquid mixtures. The results have been discussed in terms of solute-solvent interaction between the components. Structural characterization is important for development of new material. The morphology, structure and grain size of the samples are investigated by SEM. The optical properties of the sample have been studied using UV Visible spectroscopy.

  15. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    Science.gov (United States)

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  16. Rf Discharge Impedance Measurements Using a New Method to Determine the Stray Impedances

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.; Hoog, de F.J.

    1999-01-01

    The impedance of a capacitively coupled radio frequency discharge in a tubular fluorescent lamp filled with neon and mercury is measured. The stray impedances in the electrical network are determined using a new method that requires no extra instruments. The reflection of power is used to determine

  17. Efficient Underwater RSS Value to Distance Inversion Using the Lambert Function

    Directory of Open Access Journals (Sweden)

    Majid Hosseini

    2014-01-01

    Full Text Available There are many applications for using wireless sensor networks (WSN in ocean science; however, identifying the exact location of a sensor by itself (localization is still a challenging problem, where global positioning system (GPS devices are not applicable underwater. Precise distance measurement between two sensors is a tool of localization and received signal strength (RSS, reflecting transmission loss (TL phenomena, is widely used in terrestrial WSNs for that matter. Underwater acoustic sensor networks have not been used (UASN, due to the complexity of the TL function. In this paper, we addressed these problems by expressing underwater TL via the Lambert W function, for accurate distance inversion by the Halley method, and compared this to Newton-Raphson inversion. Mathematical proof, MATLAB simulation, and real device implementation demonstrate the accuracy and efficiency of the proposed equation in distance calculation, with fewer iterations, computation stability for short and long distances, and remarkably short processing time. Then, the sensitivities of Lambert W function and Newton-Raphson inversion to alteration in TL were examined. The simulation results showed that Lambert W function is more stable to errors than Newton-Raphson inversion. Finally, with a likelihood method, it was shown that RSS is a practical tool for distance measurement in UASN.

  18. Use seismic colored inversion and power law committee machine based on imperial competitive algorithm for improving porosity prediction in a heterogeneous reservoir

    Science.gov (United States)

    Ansari, Hamid Reza

    2014-09-01

    In this paper we propose a new method for predicting rock porosity based on a combination of several artificial intelligence systems. The method focuses on one of the Iranian carbonate fields in the Persian Gulf. Because there is strong heterogeneity in carbonate formations, estimation of rock properties experiences more challenge than sandstone. For this purpose, seismic colored inversion (SCI) and a new approach of committee machine are used in order to improve porosity estimation. The study comprises three major steps. First, a series of sample-based attributes is calculated from 3D seismic volume. Acoustic impedance is an important attribute that is obtained by the SCI method in this study. Second, porosity log is predicted from seismic attributes using common intelligent computation systems including: probabilistic neural network (PNN), radial basis function network (RBFN), multi-layer feed forward network (MLFN), ε-support vector regression (ε-SVR) and adaptive neuro-fuzzy inference system (ANFIS). Finally, a power law committee machine (PLCM) is constructed based on imperial competitive algorithm (ICA) to combine the results of all previous predictions in a single solution. This technique is called PLCM-ICA in this paper. The results show that PLCM-ICA model improved the results of neural networks, support vector machine and neuro-fuzzy system.

  19. Impedance of a nanoantenna

    International Nuclear Information System (INIS)

    Greffet, Jean-Jacques; Laroche, Marine; Marquier, Francois

    2009-01-01

    We introduce a generalized definition of the impedance of a nanoantenna that can be applied to any system. We also introduce a definition of the impedance of a two level system. Using this framework, we establish a link between the electrical engineering and the quantum optics picture of light emission.

  20. Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method.

    Science.gov (United States)

    Wang, Qi; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi

    2012-11-01

    Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Impedance Changes and Fibrous Tissue Growth after Cochlear Implantation Are Correlated and Can Be Reduced Using a Dexamethasone Eluting Electrode.

    Directory of Open Access Journals (Sweden)

    Maciej Wilk

    Full Text Available The efficiency of cochlear implants (CIs is affected by postoperative connective tissue growth around the electrode array. This tissue formation is thought to be the cause behind post-operative increases in impedance. Dexamethasone (DEX eluting CIs may reduce fibrous tissue growth around the electrode array subsequently moderating elevations in impedance of the electrode contacts.For this study, DEX was incorporated into the silicone of the CI electrode arrays at 1% and 10% (w/w concentration. Electrodes prepared by the same process but without dexamethasone served as controls. All electrodes were implanted into guinea pig cochleae though the round window membrane approach. Potential additive or synergistic effects of electrical stimulation (60 minutes were investigated by measuring impedances before and after stimulation (days 0, 7, 28, 56 and 91. Acoustically evoked auditory brainstem responses were recorded before and after CI insertion as well as on experimental days 7, 28, 56, and 91. Additionally, histology performed on epoxy embedded samples enabled measurement of the area of scala tympani occupied with fibrous tissue.In all experimental groups, the highest levels of fibrous tissue were detected in the basal region of the cochlea in vicinity to the round window niche. Both DEX concentrations, 10% and 1% (w/w, significantly reduced fibrosis around the electrode array of the CI. Following 3 months of implantation impedance levels in both DEX-eluting groups were significantly lower compared to the control group, the 10% group producing a greater effect. The same effects were observed before and after electrical stimulation.To our knowledge, this is the first study to demonstrate a correlation between the extent of new tissue growth around the electrode and impedance changes after cochlear implantation. We conclude that DEX-eluting CIs are a means to reduce this tissue reaction and improve the functional benefits of the implant by attenuating

  2. Study of Molecular Interactions in Binary Liquid Mixtures by Acoustical Method at 303K

    Directory of Open Access Journals (Sweden)

    P. Paul Divakar

    2012-01-01

    Full Text Available Ultrasonic velocity and density measurements were made in two binary liquid mixtures Isopropyl acetate (IPA and Isobutyl acetate (IBA with cyclohexanone (CY as a common component at 303K, at fixed frequency of 2MHz using single crystal variable path interferometer and specific gravity bottle respectively. The experimental data have been used to calculate the acoustic impedance, adiabatic compressibility, inter molecular free length and molar volume. The excess thermodynamic parameters have been evaluated and discussed in the light of molecular interactions.

  3. Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints

    Science.gov (United States)

    Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing

    2018-03-01

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.

  4. Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints

    KAUST Repository

    Zhang, Zhendong

    2018-03-20

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.

  5. A cost-effective structure of a centralized-light-source WDM-PON utilizing inverse-duobinary-RZ downstream and DPSK upstream

    International Nuclear Information System (INIS)

    Chen Long-Quan; Qiao Yao-Jun; Ji Yue-Feng

    2013-01-01

    In this paper, we propose a new structure of a centralized-light-source wavelength division multiplexed passive optical network (WDM-PON) utilizing inverse-duobinary-return-to-zero (inverse-duobinary-RZ) downstream and DPSK upstream. It reuses downstream light for the upstream modulation, which retrenches lasers assembled at each optical network unit (ONU), and ultimately cuts down the cost of ONUs a great deal. Meanwhile, a 50-km-reach WDM-PON experiment with 10-Gb/s inverse-duobinary-RZ downstream and 6-Gb/s DPSK upstream is demonstrated here. It is revealed to be a novel cost-effective alternative for the next generation access network. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Cascaded impedance networks for NPC inverter

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang

    2010-01-01

    they are subject to the renewable sources. To date, three distinct types of impedance networks can be summarized for implementing a hybrid source impedance network, which can in principle be combined and cascaded before connected to a NPC inverter by proposed two ways. The resulting cascaded impedance network NPC...

  7. Impedance of finite length resistive cylinder

    Directory of Open Access Journals (Sweden)

    S. Krinsky

    2004-11-01

    Full Text Available We determine the impedance of a cylindrical metal tube (resistor of radius a, length g, and conductivity σ attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency (k≫1/a. In the equilibrium regime, ka^{2}≪g, the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity σ. In the transient regime, ka^{2}≫g, where the contribution of transition radiation arising from the discontinuity in conductivity is important, we derive an analytic expression for the impedance and compute the short-range wakefield. The analytic results are shown to agree with numerical evaluation of the impedance.

  8. Theoretical and Numerical Modeling of Acoustic Metamaterials for Aeroacoustic Applications

    Directory of Open Access Journals (Sweden)

    Umberto Iemma

    2016-05-01

    Full Text Available The advent, during the first decade of the 21st century, of the concept of acoustic metamaterial has disclosed an incredible potential of development for breakthrough technologies. Unfortunately, the extension of the same concepts to aeroacoustics has turned out to be not a trivial task, because of the different structure of the governing equations, characterized by the presence of the background aerodynamic convection. Some of the approaches recently introduced to circumvent the problem are biased by a fundamental assumption that makes the actual realization of devices extremely unlikely: the metamaterial should guarantee an adapted background aerodynamic convection in order to modify suitably the acoustic field and obtain the desired effect, thus implying the porosity of the cloaking device. In the present paper, we propose an interpretation of the metamaterial design that removes this unlikely assumption, focusing on the identification of an aerodynamically-impermeable metamaterial capable of reproducing the surface impedance profile required to achieve the desired scattering abatement. The attention is focused on a moving obstacle impinged by an acoustic perturbation induced by a co-moving source. The problem is written in a frame of reference rigidly connected to the moving object to couple the convective wave equation in the hosting medium with the inertially-anisotropic wave operator within the cloak. The problem is recast in an integral form and numerically solved through a boundary-field element method. The matching of the local wave vector is used to derive a convective design of the metamaterial applicable to the specific problem analyzed. Preliminary numerical results obtained under the simplifying assumption of a uniform aerodynamic flow reveal a considerable enhancement of the masking capability of the convected design. The numerical method developed shows a remarkable computational efficiency, completing a simulation of the entire

  9. Acoustic backscatter at a Red Sea whale shark aggregation site

    KAUST Repository

    Hozumi, Aya; Kaartvedt, Stein; Rø stad, Anders; Berumen, Michael L.; Cochran, Jesse E.M.; Jones, Burton

    2018-01-01

    An aggregation of sexually immature whale sharks occurs at a coastal submerged reef near the Saudi Arabian Red Sea coast each spring. We tested the hypothesis that these megaplanktivores become attracted to a prey biomass peak coinciding with their aggregation. Acoustic backscatter of the water column at 120 kHz and 333 kHz –a proxy for potential prey biomass –was continuously measured spanning the period prior to, during, and subsequent to the seasonal whale shark aggregations. No peak in acoustic backscatter was observed at the time of the aggregation. However, we observed a decrease in acoustic backscatter in the last days of deployment, which coincided the trailing end of whale shark season. Organisms forming the main scattering layer performed inverse diel vertical migration, with backscatter peaking at mid-depths during the day and in the deeper half of the water column at night. Target strength analyses suggested the backscatter was likely composed of fish larvae. Subsurface foraging behavior of the whale sharks within this aggregation has not been described, yet this study does not support the hypothesis that seasonal peaks in local whale shark abundance correspond to similar peaks in prey availability.

  10. Acoustic backscatter at a Red Sea whale shark aggregation site

    KAUST Repository

    Hozumi, Aya

    2018-03-28

    An aggregation of sexually immature whale sharks occurs at a coastal submerged reef near the Saudi Arabian Red Sea coast each spring. We tested the hypothesis that these megaplanktivores become attracted to a prey biomass peak coinciding with their aggregation. Acoustic backscatter of the water column at 120 kHz and 333 kHz –a proxy for potential prey biomass –was continuously measured spanning the period prior to, during, and subsequent to the seasonal whale shark aggregations. No peak in acoustic backscatter was observed at the time of the aggregation. However, we observed a decrease in acoustic backscatter in the last days of deployment, which coincided the trailing end of whale shark season. Organisms forming the main scattering layer performed inverse diel vertical migration, with backscatter peaking at mid-depths during the day and in the deeper half of the water column at night. Target strength analyses suggested the backscatter was likely composed of fish larvae. Subsurface foraging behavior of the whale sharks within this aggregation has not been described, yet this study does not support the hypothesis that seasonal peaks in local whale shark abundance correspond to similar peaks in prey availability.

  11. Acoustic reflex measurements and the loudness function in sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Sheila Uliel

    1980-11-01

    Full Text Available The suprathreshold acoustic reflex responses of forty two ears affected by sensorineural hearing loss of cochlear origin and fifty-eight ears demonstrating normal hearing, were recorded by means of an electro-acoustic impedance meter and attached X-Y recorder. The recordings were done in ascending and descending fashion,  at successively increasing and decreasing 5dB intensity levels from 90-120-90 dB HL respectively, for the individual pure-tone frequencies of 500, 1 000, 2 000 and 4 000 Hz. The contralateral mode of measurement was employed. Analysis of  these recordings indicated that the acoustic reflex  responses could be differentiated into five  characteristic patterns of  growth, which could be depicted upon a continuum of peaked, peaked-rounded, rounded, rounded-flat,  and flat  shapes. The peaked and peaked-rounded patterns were found  to predominate at all four pure-tone frequencies  in the normal ears, while the rounded-fiat  and flat  patterns were found  to predominate only at the higher pure-tone frequencies of 2 000 and 4 000 Hz in the ears affected  by sensorineural hearing loss. This latter relationship was also able to be applied to two disorders of  the loudness functio— loudness recruitment and hyperacusis. It was concluded that the flattened  acoustic reflex  patterns at the higher pure-tone frequencies  constituted a potential diagnostic cue related to the differential  diagnosis of sensorineural hearing loss, and to disorders of  the loudness function.

  12. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    Science.gov (United States)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  13. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  14. An asymptotic inversion method of inferring the sound velocity distribution in the sun from the spectrum of p-mode oscillations

    International Nuclear Information System (INIS)

    Sekii, Takashi; Shibahashi, Hiromoto

    1989-01-01

    We present an inversion method of inferring the sound velocity distribution in the Sun from its oscillation data of p-modes. The equation governing the p-mode oscillations is reduced to a form similar to the Schroedinger equation in quantum mechanics. By using a quantization rule based on the KWBJ asymptotic method, we derive an integral equation of which solution provides the 'acoustic potential' of the wave equation. The acoustic potential consists of two parts: One of them is related with the squared sound velocity and is dependent on the degree of the mode l, while the other term is independent of l and dominates in the outer part of the Sun. By examining the l-dependence of the acoustic potential obtained as the solution of the integral equation, we separate these two components of the potential and eventually obtain the sound velocity distribution from a set of eigenfrequencies of p-modes. In order to evaluate prospects of this inversion method, we perform numerical simulations in which eigenfrequencies of a theoretical solar model are used to reproduce the sound velocity distribution of the model. The error of thus inferred sound velocity relative to the true values is estimated to be less than a few percent. (author)

  15. Tracking of electrochemical impedance of batteries

    Science.gov (United States)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  16. RHIC injection kicker impedance

    International Nuclear Information System (INIS)

    Mane, V.; Peggs, S.; Trbojevic, D.; Zhang, W.

    1995-01-01

    The longitudinal impedance of the RHIC injection kicker is measured using the wire method up to a frequency of 3 GHz. The mismatch between the 50 ohm cable and the wire and pipe system is calibrated using the TRL calibration algorithm. Various methods of reducing the impedance, such as coated ceramic pipe and copper strips are investigated

  17. Development and Implementation of an Ultrasonic Method to Characterize Acoustic and Mechanical Fingernail Properties

    Science.gov (United States)

    Vacarescu, Rares Anthony

    The human fingernail is a vital organ used by humans on a daily basis and can provide an immense supply of information based on the biological feedback of the body. By studying the quantitative mechanical and acoustic properties of fingernails, a better understanding of the scarcely-investigated field of ungual research can be explored. Investigating fingernail properties with the use of pulse-echo ultrasound is the aim of this thesis. This thesis involves the application of a developed portable ultrasonic device in a hospital-based data collection and the advancement of ultrasonic methodology to include the calculation of acoustic impedance, density and elasticity. The results of the thesis show that the reflectance method can be utilized to determine fingernail properties with a maximum 17% deviation from literature. Repeatability of measurements fell within a 95% confidence interval. Thus, the ultrasonic reflectance method was validated and may have potential clinical and cosmetic applications.

  18. Rock-physics and seismic-inversion based reservoir characterization of the Haynesville Shale

    International Nuclear Information System (INIS)

    Jiang, Meijuan; Spikes, Kyle T

    2016-01-01

    Seismic reservoir characterization of unconventional gas shales is challenging due to their heterogeneity and anisotropy. Rock properties of unconventional gas shales such as porosity, pore-shape distribution, and composition are important for interpreting seismic data amplitude variations in order to locate optimal drilling locations. The presented seismic reservoir characterization procedure applied a grid-search algorithm to estimate the composition, pore-shape distribution, and porosity at the seismic scale from the seismically inverted impedances and a rock-physics model, using the Haynesville Shale as a case study. All the proposed rock properties affected the seismic velocities, and the combined effects of these rock properties on the seismic amplitude were investigated simultaneously. The P- and S-impedances correlated negatively with porosity, and the V _P/V _S correlated positively with clay fraction and negatively with the pore-shape distribution and quartz fraction. The reliability of these estimated rock properties at the seismic scale was verified through comparisons between two sets of elastic properties: one coming from inverted impedances, which were obtained from simultaneous inversion of prestack seismic data, and one derived from these estimated rock properties. The differences between the two sets of elastic properties were less than a few percent, verifying the feasibility of the presented seismic reservoir characterization. (paper)

  19. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.; Kundhikanjana, W.; Peng, H.; Cui, Y.; Kelly, M. A.; Shen, Z. X.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately

  20. Chirped or time modulated excitation compared to short pulses for photoacoustic imaging in acoustic attenuating media

    Science.gov (United States)

    Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.

    2018-02-01

    In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.

  1. Ultrasonic characterization of three animal mammary tumors from three-dimensional acoustic tissue models

    Science.gov (United States)

    Mamou, Jonathan M.

    This dissertation investigated how three-dimensional (3D) tissue models can be used to improve ultrasonic tissue characterization (UTC) techniques. Anatomic sites in tissue responsible for ultrasonic scattering are unknown, which limits the potential applications of ultrasound for tumor diagnosis. Accurate 3D models of tumor tissues may help identify the scattering sites. Three mammary tumors were investigated: a rat fibroadenoma, a mouse carcinoma, and a mouse sarcoma. A 3D acoustic tissue model, termed 3D impedance map (3DZM), was carefully constructed from consecutive histologic sections for each tumor. Spectral estimates (scatterer size and acoustic concentration) were obtained from the 3DZMs and compared to the same estimates obtained with ultrasound. Scatterer size estimates for three tumors were found to be similar (within 10%). The 3DZMs were also used to extract tissue-specific scattering models. The scattering models were found to allow clear distinction between the three tumors. This distinction demonstrated that UTC techniques may be helpful for noninvasive clinical tumor diagnosis.

  2. Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

    KAUST Repository

    Zhang, Zhendong

    2017-07-11

    Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.

  3. Practical waveform inversion in anisotropic media: The natural combination of the data and image objectives

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-09-06

    Addressing anisotropy in full wavenumber inversion (FWI) is crucial to obtaining credible models, and it is extremely challenging considering the multi parameter nature of the inversion. A successful FWI in anisotropic media takes into account the sensitivity of the data (or the wave) to the long and short wavelength components of the anisotropic parameters. Considering the low sensitivity of FWI to the anellipticity parameter ? when parametrizing the acoustic transversely isotropic model with the horizontal velocity, η and ε, we develop a combined FWI and reflection waveform inversion (RWI) to invert for the anisotropic parameters that influence surface seismic data. This practical waveform inversion (PWI) separates the parameters to their resolvable scales, with information accessed from the data fitting (FWI) and the image focusing (RWI) objectives. With this parametrization, the RWI role is to obtain a smooth ηmodel, as well as velocity, while FWI focusses on the scattering potential of the horizontal velocity. The parameter η is used to produce the Born scattered wavefield for the RWI part and eventually fit the amplitude for the imperfect physics in the FWI part.

  4. SILICON COMPATIBLE ACOUSTIC WAVE RESONATORS: DESIGN, FABRICATION AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Aliza Aini Md Ralib

    2014-12-01

    Full Text Available ABSTRACT: Continuous advancement in wireless technology and silicon microfabrication has fueled exciting growth in wireless products. The bulky size of discrete vibrating mechanical devices such as quartz crystals and surface acoustic wave resonators impedes the ultimate miniaturization of single-chip transceivers. Fabrication of acoustic wave resonators on silicon allows complete integration of a resonator with its accompanying circuitry.  Integration leads to enhanced performance, better functionality with reduced cost at large volume production. This paper compiles the state-of-the-art technology of silicon compatible acoustic resonators, which can be integrated with interface circuitry. Typical acoustic wave resonators are surface acoustic wave (SAW and bulk acoustic wave (BAW resonators.  Performance of the resonator is measured in terms of quality factor, resonance frequency and insertion loss. Selection of appropriate piezoelectric material is significant to ensure sufficient electromechanical coupling coefficient is produced to reduce the insertion loss. The insulating passive SiO2 layer acts as a low loss material and aims to increase the quality factor and temperature stability of the design. The integration technique also is influenced by the fabrication process and packaging.  Packageless structure using AlN as the additional isolation layer is proposed to protect the SAW device from the environment for high reliability. Advancement in miniaturization technology of silicon compatible acoustic wave resonators to realize a single chip transceiver system is still needed. ABSTRAK: Kemajuan yang berterusan dalam teknologi tanpa wayar dan silikon telah menguatkan pertumbuhan yang menarik dalam produk tanpa wayar. Saiz yang besar bagi peralatan mekanikal bergetar seperti kristal kuarza menghalang pengecilan untuk merealisasikan peranti cip. Silikon serasi  gelombang akustik resonator mempunyai potensi yang besar untuk menggantikan unsur

  5. Time-domain full waveform inversion using the gradient preconditioning based on transmitted waves energy

    KAUST Repository

    Zhang, Xiao-bo

    2017-06-01

    The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy is affected by the energy of reflected waves when strong reflectors are present in velocity model. To address this problem, we propose a gradient preconditioning method, which scales the gradient based on the energy of the “approximated transmitted wavefield” simulated by the nonreflecting acoustic wave equation. The method does not require computing or storing the Hessian matrix or its inverse. Furthermore, it can effectively eliminate the effects caused by geometric diffusion and non-uniformity illumination on gradient. The results of model experiments confirm that the time-domain FWI using the gradient preconditioning based on transmitted waves energy can achieve higher inversion precision for high-velocity body and the deep strata below when compared with using the gradient preconditioning based on seismic waves energy.

  6. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  7. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

    KAUST Repository

    Bera, Tushar Kanti

    2016-03-18

    Abstract: Electrical impedance tomography (EIT) phantoms are essential for the calibration, comparison and evaluation of the EIT systems. In EIT, the practical phantoms are typically developed based on inhomogeneities surrounded by a homogeneous background to simulate a suitable conductivity contrast. In multifrequency EIT (Mf-EIT) evaluation, the phantoms must be developed with the materials which have recognizable or distinguishable impedance variations over a wide range of frequencies. In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity are analyzed. A number of practical phantoms with different tissue inhomogeneities and different inhomogeneity configurations are developed and the multifrequency impedance imaging is studied with the Mf-EIT system to evaluate the phantoms. The conductivity of the vegetable inhomogeneities reconstructed from the EIT imaging is compared with the conductivity values obtained from the EIS studies. Experimental results obtained from multifrequency EIT reconstruction demonstrate that the electrical impedance of all the biological tissues inhomogenity decreases with frequency. The potato tissue phantom produces better impedance image in high frequency ranges compared to the cucumber phantom, because the cucumber impedance at high frequency becomes lesser than that of the potato at the same frequency range. Graphical Abstract: [Figure not available: see fulltext.] © 2016 The Visualization Society of Japan

  8. Acoustical source reconstruction from non-synchronous sequential measurements by Fast Iterative Shrinkage Thresholding Algorithm

    Science.gov (United States)

    Yu, Liang; Antoni, Jerome; Leclere, Quentin; Jiang, Weikang

    2017-11-01

    Acoustical source reconstruction is a typical inverse problem, whose minimum frequency of reconstruction hinges on the size of the array and maximum frequency depends on the spacing distance between the microphones. For the sake of enlarging the frequency of reconstruction and reducing the cost of an acquisition system, Cyclic Projection (CP), a method of sequential measurements without reference, was recently investigated (JSV,2016,372:31-49). In this paper, the Propagation based Fast Iterative Shrinkage Thresholding Algorithm (Propagation-FISTA) is introduced, which improves CP in two aspects: (1) the number of acoustic sources is no longer needed and the only making assumption is that of a "weakly sparse" eigenvalue spectrum; (2) the construction of the spatial basis is much easier and adaptive to practical scenarios of acoustical measurements benefiting from the introduction of propagation based spatial basis. The proposed Propagation-FISTA is first investigated with different simulations and experimental setups and is next illustrated with an industrial case.

  9. Interior acoustic cloak

    Directory of Open Access Journals (Sweden)

    Wael Akl

    2014-12-01

    Full Text Available Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which are invariably heavy and bulky. The transformation acoustics relationships that govern the operation of this class of interior acoustic cloaks are presented. Physical insights are given to relate these relationships to the reasons behind the effectiveness of the proposed interior acoustic cloaks. Finite element models are presented to demonstrate the characteristics of interior acoustic cloaks used in treating the interior walls of circular and square cavities both in the time and frequency domains. The obtained results emphasize the effectiveness of the proposed interior cloaks in eliminating the reflections of the acoustic waves from the walls of the treated cavities and thereby rendering these cavities acoustically quiet. It is important to note here that the proposed interior acoustic cloaks can find applications in acoustic cavities such as aircraft cabins and auditoriums as well as many other critical applications.

  10. Acoustical Studies of Some Schiff Bases in 1,4-Dioxane and Dimethylformamide at 318.15 K

    Institute of Scientific and Technical Information of China (English)

    BALUJA Shipra

    2006-01-01

    From experimental data of density, viscosity and ultrasonic velocity, the various acoustical properties, such as specific impedance (Z), isentropic compressibility (κs), Rao's molar sound function (Rm), the van der Waals constant (b), molar compressibility (W), intermolecular free length (Lf), relaxation strength (r), internal pressure (π),free volume (Vf), solvation number (Sn) etc., were calculated for three Schiff bases in 1,4-dioxane and dimethylformamide (DMF) at 318.15 K. The results are interpreted in terms of molecular interactions occurring in the solutions.

  11. Electrical impedance tomography imaging using a priori ultrasound data

    Directory of Open Access Journals (Sweden)

    Soleimani Manuchehr

    2006-02-01

    Full Text Available Abstract Background Different imaging systems (e.g. electrical, magnetic, and ultrasound rely on a wide variety of physical properties, and the datasets obtained from such systems provide only partial information about the unknown true state. One approach is to choose complementary imaging systems, and to combine the information to achieve a better representation. Methods This paper discusses the combination of ultrasound and electrical impedance tomography (EIT information. Ultrasound reflection signals are good at locating sharp acoustic density changes associated with the boundaries of objects. Some boundaries, however, may be indeterminable due to masking from intermediate boundaries or because they are outside the ultrasound beam. Conversely, the EIT data contains relatively low-quality information, but it includes the whole region enclosed by the electrodes. Results Results are shown from a narrowband level-set method applied to 2D and 3D EIT incorporating limited angle ultrasound time of flight data. Conclusion The EIT reconstruction is shown to be faster and more accurate using the additional edge information from both one and four transducer ultrasound systems.

  12. A domain derivative-based method for solving elastodynamic inverse obstacle scattering problems

    International Nuclear Information System (INIS)

    Le Louër, Frédérique

    2015-01-01

    The present work is concerned with the shape reconstruction problem of isotropic elastic inclusions from far-field data obtained by the scattering of a finite number of time-harmonic incident plane waves. This paper aims at completing the theoretical framework which is necessary for the application of geometric optimization tools to the inverse transmission problem in elastodynamics. The forward problem is reduced to systems of boundary integral equations following the direct and indirect methods initially developed for solving acoustic transmission problems. We establish the Fréchet differentiability of the boundary to far-field operator and give a characterization of the first Fréchet derivative and its adjoint operator. Using these results we propose an inverse scattering algorithm based on the iteratively regularized Gauß–Newton method and show numerical experiments in the special case of star-shaped obstacles. (paper)

  13. Fractional Order Element Based Impedance Matching

    KAUST Repository

    Radwan, Ahmed Gomaa

    2014-06-24

    Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha.|.noteq.1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.

  14. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

    KAUST Repository

    Bera, Tushar Kanti; Nagaraju, J.; Lubineau, Gilles

    2016-01-01

    . In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity

  15. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  16. Intraesophageal impedance monitoring: clinical studies

    NARCIS (Netherlands)

    Conchillo Armendáriz, J.M.

    2007-01-01

    Electrical impedance (Z) between two electrodes is the ratio between applied voltage (U) and resulting current (I). In electrical impedance monitoring the resistance to electrical flow in an alternating current circuit is measured. Multichannel esophageal monitoring can be measured by using an

  17. An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems

    Science.gov (United States)

    Carneal, James P.; Fuller, Chris R.

    2004-05-01

    An analytical and experimental investigation of active control of sound transmission through double panel systems has been performed. The technique used was active structural acoustic control (ASAC) where the control inputs, in the form of piezoelectric actuators, were applied to the structure while the radiating pressure field was minimized. Results verify earlier experimental investigations and indicate the application of control inputs to the radiating panel of the double panel system resulted in greater transmission loss (TL) due to its direct effect on the nature of the structural-acoustic (or radiation) coupling between the radiating panel and the receiving acoustic space. Increased control performance was seen in a double panel system consisting of a stiffer radiating panel due to its lower modal density and also as a result of better impedance matching between the piezoelectric actuator and the radiating plate. In general the results validate the ASAC approach for double panel systems, demonstrating that it is possible to take advantage of double panel system passive behavior to enhance control performance, and provide design guidelines.

  18. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  19. The electrical properties of a planar coil electromagnetic acoustic transducer and their implications for noise performance

    International Nuclear Information System (INIS)

    Seher, Matthias; Challis, Richard

    2016-01-01

    This paper is concerned with the electrical properties of an electromagnetic acoustic transducer (EMAT) formed of a flat spiral coil coupled to steel sheet components and operating over a narrow band of frequencies around 50 kHz, well below significant resonances. The electromagnetic skin effect is a significant contributor to the terminal impedance of the EMAT and hence to signal sensitivity, Johnson noise generation and the achievable signal-to-noise ratios (SNR). A transformer model is developed to simulate these effects and to assist in the optimization of the SNR. In this analysis Johnson noise in the system is compared to the unknown emf generated in the eddy current path by an incident acoustic wave to yield a fundamental SNR. The attainable SNR of the whole system is normalized to this in the form of a noise figure. (paper)

  20. Estimating the short-circuit impedance

    DEFF Research Database (Denmark)

    Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Poulsen, Niels Kjølstad

    1997-01-01

    A method for establishing a complex value of the short-circuit impedance from naturally occurring variations in voltage and current is discussed. It is the symmetrical three phase impedance at the fundamental grid frequency there is looked for. The positive sequence components in voltage...... and current are derived each period, and the short-circuit impedance is estimated from variations in these components created by load changes in the grid. Due to the noisy and dynamic grid with high harmonic distortion it is necessary to threat the calculated values statistical. This is done recursively...... through a RLS-algorithm. The algorithms have been tested and implemented on a PC at a 132 kV substation supplying a rolling mill. Knowing the short-circuit impedance gives the rolling mill an opportunity to adjust the arc furnace operation to keep flicker below a certain level. Therefore, the PC performs...