Sample records for acoustic emission signal

  1. The Energy Spectrum of the Acoustic Emission Signals of Nanoscale Objects


    V.V. Marasanov; A.A. Sharko


    A one-dimensional discrete-continuum model of the energy spectrum of the acoustic emission signal, allowing filter oscillating components of the acoustic emission signals. The mathematical formalism describing the environment, initiating the signals of acoustic emission, in which the problem of spectral analysis and synthesis of acoustic emission signals is solved by the Fourier transform. The dependence of the spectrum of acoustic vibrations on the size of the parameters, microstructure. The...

  2. Effects Of Cutting Parameters On Acoustic Emission Signal ...

    African Journals Online (AJOL)

    Factorial design has been used to study the effect of cutting parameters on acoustic emission signal response during the drilling of composite laminates. Experimental design is a strategy of planning, conducting, analyzing and interpreting experiments so that sound and valid conclusion can be drawn efficiently, and ...

  3. Modeling of Acoustic Emission Signal Propagation in Waveguides

    Directory of Open Access Journals (Sweden)

    Andreea-Manuela Zelenyak


    Full Text Available Acoustic emission (AE testing is a widely used nondestructive testing (NDT method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing.

  4. Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. (United States)

    Kurz, Jochen H; Grosse, Christian U; Reinhardt, Hans-Wolf


    Determining the onset of transient signals like seismograms, acoustic emissions or ultrasound signals is very time consuming if the onset is picked manually. Therefore, different approaches exist, especially in seismology. The concepts of the most popular approaches are summarized. An own approach adapted to ultrasound signals and acoustic emissions, based on the Akaike Information Criterion (AIC), is presented. The AIC-picker is compared to an automatic onset detection algorithm based on the Hinkley criterion and also adapted to acoustic emissions. Manual picks performed by an analyst are used as reference values. Both automatic onset detection algorithms are applied to ultrasound signals which are used to monitor the setting and hardening of concrete. They are also applied to acoustic emissions recorded during a pull-out test. The AIC-picker produces sufficient reliable results for ultrasound signals where the deviation from the manual picks varies between 2% and 4%. Concerning acoustic emissions, only 10% of the events result in a mislocation vector greater than 5mm. It can be shown that our AIC-picker is a reliable tool for automatic onset detection for ultrasound signals and acoustic emissions of varying signal to noise ratio.

  5. A Method to Decompose the Streamed Acoustic Emission Signals for Detecting Embedded Fatigue Crack Signals

    Directory of Open Access Journals (Sweden)

    Lu Zhang


    Full Text Available The data collection of Acoustic Emission (AE method is typically based on threshold-dependent approach, where the AE system acquires data when the output of AE sensor is above the pre-defined threshold. However, this approach fails to detect flaws in noisy environment, as the signal level of noise may overcome the signal level of AE from flaws, and saturate the AE system. Time-dependent approach is based on streaming waveforms and extracting features at every pre-defined time interval. It is hypothesized that the relevant AE signals representing active flaws are embedded into the streamed signals. In this study, a decomposition method of the streamed AE signals to separate noise signal and crack signal is demonstrated. The AE signals representing fatigue crack growth in steel are obtained from the laboratory scale testing. The streamed AE signals in a noisy operational condition are obtained from the gearbox testing at the Naval Air Systems Command (NAVAIR facility. The signal addition and decomposition is achieved to determine the minimum detectable signal to noise ratio that is embedded into the streamed AE signals. The developed decomposition approach is demonstrated on detecting burst signals embedded into the streamed signals recorded in the spline testing of the helicopter gearbox test rig located at the NAVAIR facility.

  6. Robust Clustering of Acoustic Emission Signals Using Neural Networks and Signal Subspace Projections

    Directory of Open Access Journals (Sweden)

    Vahid Emamian


    Full Text Available Acoustic emission-based techniques are being used for the nondestructive inspection of mechanical systems. For reliable automatic fault monitoring related to the generation and propagation of cracks, it is important to identify the transient crack-related signals in the presence of strong time-varying noise and other interference. A prominent difficulty is the inability to differentiate events due to crack growth from noise of various origins. This work presents a novel algorithm for automatic clustering and separation of acoustic emission (AE events based on multiple features extracted from the experimental data. The algorithm consists of two steps. In the first step, the noise is separated from the events of interest and subsequently removed using a combination of covariance analysis, principal component analysis (PCA, and differential time delay estimates. The second step processes the remaining data using a self-organizing map (SOM neural network, which outputs the noise and AE signals into separate neurons. To improve the efficiency of classification, the short-time Fourier transform (STFT is applied to retain the time-frequency features of the remaining events, reducing the dimension of the data. The algorithm is verified with two sets of data, and a correct classification ratio over 95% is achieved.

  7. An information processing method for acoustic emission signal inspired from musical staff (United States)

    Zheng, Wei; Wu, Chunxian


    This study proposes a musical-staff-inspired signal processing method for standard description expressions for discrete signals and describing the integrated characteristics of acoustic emission (AE) signals. The method maps various AE signals with complex environments into the normalized musical space. Four new indexes are proposed to comprehensively describe the signal. Several key features, such as contour, amplitude, and signal changing rate, are quantitatively expressed in a normalized musical space. The processed information requires only a small storage space to maintain high fidelity. The method is illustrated by using experiments on sandstones and computed tomography (CT) scanning to determine its validity for AE signal processing.

  8. Classification Identification of Acoustic Emission Signals from Underground Metal Mine Rock by ICIMF Classifier

    Directory of Open Access Journals (Sweden)

    Hongyan Zuo


    Full Text Available To overcome the drawback that fuzzy classifier was sensitive to noises and outliers, Mamdani fuzzy classifier based on improved chaos immune algorithm was developed, in which bilateral Gaussian membership function parameters were set as constraint conditions and the indexes of fuzzy classification effectiveness and number of correct samples of fuzzy classification as the subgoal of fitness function. Moreover, Iris database was used for simulation experiment, classification, and recognition of acoustic emission signals and interference signals from stope wall rock of underground metal mines. The results showed that Mamdani fuzzy classifier based on improved chaos immune algorithm could effectively improve the prediction accuracy of classification of data sets with noises and outliers and the classification accuracy of acoustic emission signal and interference signal from stope wall rock of underground metal mines was 90.00%. It was obvious that the improved chaos immune Mamdani fuzzy (ICIMF classifier was useful for accurate diagnosis of acoustic emission signal and interference signal from stope wall rock of underground metal mines.

  9. Signal denoising using stochastic resonance and bistable circuit for acoustic emission-based structural health monitoring (United States)

    Kim, Jinki; Harne, Ryan L.; Wang, K. W.


    Noise is unavoidable and ever-present in measurements. As a result, signal denoising is a necessity for many scientific and engineering disciplines. In particular, structural health monitoring applications aim to detect often weak anomaly responses generated by incipient damage (such as acoustic emission signals) from background noise that contaminates the signals. Among various approaches, stochastic resonance has been widely studied and adopted for denoising and weak signal detection to enhance the reliability of structural heath monitoring. On the other hand, many of the advancements have been focused on detecting useful information from the frequency domain generally in a postprocessing environment, such as identifying damage-induced frequency changes that become more prominent by utilizing stochastic resonance in bistable systems, rather than recovering the original time domain responses. In this study, a new adaptive signal conditioning strategy is presented for on-line signal denoising and recovery, via utilizing the stochastic resonance in a bistable circuit sensor. The input amplitude to the bistable system is adaptively adjusted to favorably activate the stochastic resonance based on the noise level of the given signal, which is one of the few quantities that can be readily assessed from noise contaminated signals in practical situations. Numerical investigations conducted by employing a theoretical model of a double-well Duffing analog circuit demonstrate the operational principle and confirm the denoising performance of the new method. This study exemplifies the promising potential of implementing the new denoising strategy for enhancing on-line acoustic emission-based structural health monitoring.

  10. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen (United States)

    Hinton, Yolanda L.


    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  11. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution (United States)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.


    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  12. Practical acoustic emission testing

    CERN Document Server


    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  13. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks (United States)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata


    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  14. Signal Characteristic of acoustic emission from plant by the water stress

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Woo [Pukyong National University, Pusan (Korea, Republic of)


    To improve environmental control in plant, a signal characteristics of plant has been studied by a nondestructive technique. Hereupon, the acoustic emission (AE) for plant was discussed for water stress detection. AE signals were taken from angiosperms and gymnosperm. It has found that the AE sensor could detect the AE signals on the plant stem right below the sensor. The AE hit counts in daytime was higher than that in night tim, and it was realised that the daily hit counts pattern corresponded with the water stress in the plant. The frequency band of the angiosperms was different from the gymnosperm. The frequency band from outdoor was in accord with that of indoor obtained from the same conditions.

  15. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels. (United States)

    Asamene, Kassahun; Hudson, Larry; Sundaresan, Mannur


    Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced Polymer (CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation coefficients of the fundamental antisymmetric (A0) and symmetric (S0) wave modes were determined experimentally along different directions for the two types of CFRP panels. In the frequency range from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes due to material related attenuation compared to the S0 mode. Moderate to strong changes in the attenuation levels were noted with propagation directions. Such mode and frequency dependent attenuation introduces major changes in the characteristics of AE signals depending on the position of the AE sensor relative to the source. Results from finite element simulations of a microscopic damage event in the composite laminates are used to illustrate attenuation related changes in modal and frequency components of AE signals. Published by Elsevier B.V.

  16. Damage Detection Method of Wind Turbine Blade Using Acoustic Emission Signal Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byeong Hee; Yoon, Dong JIn [Korea Research Institute of Standards and Seience, Daejeon (Korea, Republic of)


    Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. Therefore, it is required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. In this study, a new damage location method has been proposed by using signal napping algorithm, and an experimental verification is conducted by using small wind turbine blade specimen: a part of 750 kW real blade. The results show that this new signal mapping method has high advantages such as a flexibility for sensor location, improved accuracy, high detectability. The newly proposed method was compared with traditional AE source location method based on arrival time difference

  17. Classification of acoustic emission signals for drive systems coupling crack detection in semi-real time

    Energy Technology Data Exchange (ETDEWEB)

    Godinez, V.; Shu, F.; Finlayson, R. [Physical Acoustics Corp., Lawrenceville, New Jersey (United States)]. E-mail:; O' Donnell, B. [Naval Air Warfare Center, Patuxtent River, Maryland (United States)]. E-mail:; Anastasopoulos, A.; Tsimogiannis, A. [Envirocoustics S.A., Athens (Greece)]. E-mail:


    Early detection of mechanical failure in helicopter drive train components is a key safety and economical issue with both military and civil sectors of aviation. Of these components, couplings are particularly critical. The objective of this work is to demonstrate the feasibility of designing and developing a reliable, real time monitoring methodology based on Supervised Pattern Recognition (SPR) for early detection of cracks in couplings used in helicopter and engine drive systems. Within this framework, a portable Acoustic Emission (AE) system was used, equipped with a semi-real time SPR software package. Results from AE tests performed in a gearbox-testing bench at different speeds and different torque values are presented. These results indicate that the energy content of different frequency bands in the AE signals power spectra is strongly correlated with the introduction of EDM notches in the main gear. Further tests indicate that a strong shift in the frequency of the AE signals is observed after spalling occurred in the pinion gear. The variation of displacement and velocity between signal classes are discussed as a potential feature in characterizing crack severity. Finally, a scope of the work for optimizing the methodology in detecting and evaluating coupling cracking in real time will be presented. (author)

  18. Analysis of acoustic emission signals at austempering of steels using neural networks (United States)

    Łazarska, Malgorzata; Wozniak, Tadeusz Z.; Ranachowski, Zbigniew; Trafarski, Andrzej; Domek, Grzegorz


    Bearing steel 100CrMnSi6-4 and tool steel C105U were used to carry out this research with the steels being austempered to obtain a martensitic-bainitic structure. During the process quite a large number of acoustic emissions (AE) were observed. These signals were then analysed using neural networks resulting in the identification of three groups of events of: high, medium and low energy and in addition their spectral characteristics were plotted. The results were presented in the form of diagrams of AE incidence as a function of time. It was demonstrated that complex transformations of austenite into martensite and bainite occurred when austempering bearing steel at 160 °C and tool steel at 130 °C respectively. The selected temperatures of isothermal quenching of the tested steels were within the area near to MS temperature, which affected the complex course of phase transition. The high activity of AE is a typical occurrence for martensitic transformation and this is the transformation mechanism that induces the generation of AE signals of higher energy in the first stage of transition. In the second stage of transformation, the initially nucleated martensite accelerates the occurrence of the next bainitic transformation.

  19. Analysis and Classification of Acoustic Emission Signals During Wood Drying Using the Principal Component Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ho Yang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Ki Bok [Chungnam National University, Daejeon (Korea, Republic of)


    In this study, acoustic emission (AE) signals due to surface cracking and moisture movement in the flat-sawn boards of oak (Quercus Variablilis) during drying under the ambient conditions were analyzed and classified using the principal component analysis. The AE signals corresponding to surface cracking showed higher in peak amplitude and peak frequency, and shorter in rise time than those corresponding to moisture movement. To reduce the multicollinearity among AE features and to extract the significant AE parameters, correlation analysis was performed. Over 99% of the variance of AE parameters could be accounted for by the first to the fourth principal components. The classification feasibility and success rate were investigated in terms of two statistical classifiers having six independent variables (AE parameters) and six principal components. As a result, the statistical classifier having AE parameters showed the success rate of 70.0%. The statistical classifier having principal components showed the success rate of 87.5% which was considerably than that of the statistical classifier having AE parameters

  20. Evaluation of acoustic emission signals during monitoring of thick-wall vessels operating at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Anastasopoulos, A.; Tsimogiannis, A. [Envirocoustics S.A., El. Venizelou 7 and Delfon, Athens (Greece)


    Acoustic Emission testing of thick wall vessels, operating at elevated temperatures is discussed and pattern recognition methodologies for AE data evaluation are presented. Two different types of testing procedures are addressed: Cool Down monitoring and semi-continuous periodic monitoring. In both types of tests, temperature variation is the driving force of AE as opposed to traditional AE testing where controlled pressure variation is used as AE stimulus. Representative examples of reactors cool down testing as well as in-process vessel monitoring are given. AE activity as a function of temperature and pressure variation is discussed. In addition to the real-time limited criteria application, unsupervised pattern recognition is applied as a post-processing tool for multidimensional sorting, noise discrimination, characterizing defects and/or damage. On the other hand, Supervised Pattern Recognition is used for data classification in repetitive critical tests, leading to an objective quantitative comparison between repeated tests. Results show that damage sustained by the equipment can be described by the plotting the cumulative energy of AE, from critical signal classes, versus temperature. Overall, the proposed methodology can reduce the complexity of AE tests in many cases leading to higher efficiency. The possibility for real time signals classification, during permanent AE installations and continuous monitoring is discussed. (orig.)

  1. Acoustic Emission and Echo Signal Compensation Techniques Applied to an Ultrasonic Logging-While-Drilling Caliper

    Directory of Open Access Journals (Sweden)

    Yongchao Yao


    Full Text Available A logging-while-drilling (LWD caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM. The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD and metal-oxide-semiconductor field effect transistor (MOSFET is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved.

  2. Acoustic Emission and Echo Signal Compensation Techniques Applied to an Ultrasonic Logging-While-Drilling Caliper. (United States)

    Yao, Yongchao; Ju, Xiaodong; Lu, Junqiang; Men, Baiyong


    A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved.

  3. Impact of the Test Device on the Behavior of the Acoustic Emission Signals: Contribution of the Numerical Modeling to Signal Processing (United States)

    Issiaka Traore, Oumar; Cristini, Paul; Favretto-Cristini, Nathalie; Pantera, Laurent; Viguier-Pla, Sylvie


    In a context of nuclear safety experiment monitoring with the non destructive testing method of acoustic emission, we study the impact of the test device on the interpretation of the recorded physical signals by using spectral finite element modeling. The numerical results are validated by comparison with real acoustic emission data obtained from previous experiments. The results show that several parameters can have significant impacts on acoustic wave propagation and then on the interpretation of the physical signals. The potential position of the source mechanism, the positions of the receivers and the nature of the coolant fluid have to be taken into account in the definition a pre-processing strategy of the real acoustic emission signals. In order to show the relevance of such an approach, we use the results to propose an optimization of the positions of the acoustic emission sensors in order to reduce the estimation bias of the time-delay and then improve the localization of the source mechanisms.

  4. Acoustic signal emission monitoring as a novel method to predict steam pops during radiofrequency ablation: preliminary observations. (United States)

    Chik, William W B; Kosobrodov, Roman; Bhaskaran, Abhishek; Barry, Michael Anthony Tony; Nguyen, Doan Trang; Pouliopoulos, Jim; Byth, Karen; Sivagangabalan, Gopal; Thomas, Stuart P; Ross, David L; McEwan, Alistair; Kovoor, Pramesh; Thiagalingam, Aravinda


    Steam pop is an explosive rupture of cardiac tissue caused by tissue overheating above 100 °C, resulting in steam formation, predisposing to serious complications associated with radiofrequency (RF) ablations. However, there are currently no reliable techniques to predict the occurrence of steam pops. We propose the utility of acoustic signals emitted during RF ablation as a novel method to predict steam pop formation and potentially prevent serious complications. Radiofrequency generator parameters (power, impedance, and temperature) were temporally recorded during ablations performed in an in vitro bovine myocardial model. The acoustic system consisted of HTI-96-min hydrophone, microphone preamplifier, and sound card connected to a laptop computer. The hydrophone has the frequency range of 2 Hz to 30 kHz and nominal sensitivity in the range -240 to -165 dB. The sound was sampled at 96 kHz with 24-bit resolution. Output signal from the hydrophone was fed into the camera audio input to synchronize the video stream. An automated system was developed for the detection and analysis of acoustic events. Nine steam pops were observed. Three distinct sounds were identified as warning signals, each indicating rapid steam formation and its release from tissue. These sounds had a broad frequency range up to 6 kHz with several spectral peaks around 2-3 kHz. Subjectively, these warning signals were perceived as separate loud clicks, a quick succession of clicks, or continuous squeaking noise. Characteristic acoustic signals were identified preceding 80% of pops occurrence. Six cardiologists were able to identify 65% of acoustic signals accurately preceding the pop. An automated system identified the characteristic warning signals in 85% of cases. The mean time from the first acoustic signal to pop occurrence was 46 ± 20 seconds. The automated system had 72.7% sensitivity and 88.9% specificity for predicting pops. Easily identifiable characteristic acoustic emissions

  5. Cluster analysis of acoustic emission signals for 2D and 3D woven carbon fiber/epoxy composites


    Li, Li; Swolfs, Yentl; Straumit, Ilya; Yan, Xiong; Lomov, Stepan Vladimirovitch


    Understanding the failure mechanisms in textile composites based on acoustic emission (AE) signals is a challenging task. In the present work, unsupervised cluster analysis is performed on the AE data registered during tensile tests on 2D and 3D woven carbon fiber/epoxy composites. The analysis is based on the k-means++ algorithm and principal component analysis. Peak amplitude and frequency features – peak frequency for 2D woven composites and frequency centroid for 3D woven composites – wer...

  6. Acoustic Signals and Systems

    DEFF Research Database (Denmark)


    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  7. Sonification of acoustic emission data (United States)

    Raith, Manuel; Große, Christian


    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  8. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Karl A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Candy, Jim V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guss, Gabe [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  9. Acoustic MIMO signal processing

    CERN Document Server

    Huang, Yiteng; Chen, Jingdong


    A timely and important book addressing a variety of acoustic signal processing problems under multiple-input multiple-output (MIMO) scenarios. It uniquely investigates these problems within a unified framework offering a novel and penetrating analysis.

  10. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J


    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  11. Impact source location on composite CNG storage tank using acoustic emission energy based signal mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byeong Hee; Yoon, Dong Jin; Park, Chun Soo [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Lee, Young Shin [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of)


    Acoustic emission (AE) is one of the most powerful techniques for detecting damages and identify damage location during operations. However, in case of the source location technique, there is some limitation in conventional AE technology, because it strongly depends on wave speed in the corresponding structures having heterogeneous composite materials. A compressed natural gas(CNG) pressure vessel is usually made of carbon fiber composite outside of vessel for the purpose of strengthening. In this type of composite material, locating impact damage sources exactly using conventional time arrival method is difficult. To overcome this limitation, this study applied the previously developed Contour D/B map technique to four types of CNG storage tanks to identify the source location of damages caused by external shock. The results of the identification of the source location for different types were compared.

  12. Information Theory Filters for Wavelet Packet Coefficient Selection with Application to Corrosion Type Identification from Acoustic Emission Signals

    Directory of Open Access Journals (Sweden)

    Marc M. Van Hulle


    Full Text Available The damage caused by corrosion in chemical process installations can lead to unexpected plant shutdowns and the leakage of potentially toxic chemicals into the environment. When subjected to corrosion, structural changes in the material occur, leading to energy releases as acoustic waves. This acoustic activity can in turn be used for corrosion monitoring, and even for predicting the type of corrosion. Here we apply wavelet packet decomposition to extract features from acoustic emission signals. We then use the extracted wavelet packet coefficients for distinguishing between the most important types of corrosion processes in the chemical process industry: uniform corrosion, pitting and stress corrosion cracking. The local discriminant basis selection algorithm can be considered as a standard for the selection of the most discriminative wavelet coefficients. However, it does not take the statistical dependencies between wavelet coefficients into account. We show that, when these dependencies are ignored, a lower accuracy is obtained in predicting the corrosion type. We compare several mutual information filters to take these dependencies into account in order to arrive at a more accurate prediction.

  13. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.


    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  14. Detection of multiple AE signal by triaxial hodogram analysis; Sanjiku hodogram ho ni yoru taju acoustic emission no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, K.; Yamashita, T. [Muroran Institute of Technology, Hokkaido (Japan)


    In order to evaluate dynamic behavior of underground cracks, analysis and detection were attempted on multiple acoustic emission (AE) events. The multiple AE is a phenomenon in which multiple AE signals generated by underground cracks developed in an extremely short time interval are superimposed, and observed as one AE event. The multiple AE signal consists of two AE signals, whereas the second P-wave is supposed to have been inputted before the first S-wave is inputted. The first P-wave is inputted first, where linear three-dimensional particle movements are observed, but the movements are made random due to scattering and sensor characteristics. When the second P-wave is inputted, the linear particle movements are observed again, but are superimposed with the existing input signals and become multiple AE, which creates poor S/N ratio. The multiple AE detection determines it a multiple AE event when three conditions are met, i. e. a condition of equivalent time interval of a maximum value in a scalogram analysis, a condition of P-wave vibrating direction, and a condition of the linear particle movement. Seventy AE signals observed in the Kakkonda geothermal field were analyzed and AE signals that satisfy the multiple AE were detected. However, further development is required on an analysis method with high resolution for the time. 4 refs., 4 figs.

  15. Signal Simulation and Experimental Research on Acoustic Emission using LS-DYNA

    Directory of Open Access Journals (Sweden)

    Zhang Jianchao


    Full Text Available To calculate sound wave velocity, we performed the Hsu-Nielsen lead break experiment using the ANSYS/LS-DYNA finite element software. First, we identified the key problems in the finite element analysis, such as selecting the exciting force, dividing the grid density, and setting the calculation steps. Second, we established the finite element model of the sound wave transmission in a plate under the lead break simulation. Results revealed not only the transmission characteristics of the sound wave but also the simulation and calculation of the transmission velocity of the longitudinal and transverse waves through the time travel curve of the vibration velocity of the sound wave at various nodes. Finally, the Hsu-Nielsen lead break experiment was implemented. The results of the theoretical calculation and simulation analysis were consistent with the experimental results, thus demonstrating that the research method using the ANSYS/LS-DYNA software to simulate sound wave transmissions in acoustic emission experiments is feasible and effective.

  16. World Conference on Acoustic Emission 2013

    CERN Document Server

    Wu, Zhanwen; Zhang, Junjiao


    This volume collects the papers from the 2013 World Conference on Acoustic Emission in Shanghai. The latest research and applications of Acoustic Emission (AE) are explored, with particular emphasis on detecting and processing of AE signals, development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques as well as experimental case studies.

  17. World Conference on Acoustic Emission 2015

    CERN Document Server

    Wu, Zhanwen; Zhang, Junjiao


    This volume collects the papers from the World Conference on Acoustic Emission 2015 (WCAE-2015) in Hawaii. The latest research and applications of Acoustic Emission (AE) are explored, with particular emphasis on detecting and processing of AE signals, development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques as well as experimental case studies.

  18. One sensor acoustic emission localization in plates. (United States)

    Ernst, R; Zwimpfer, F; Dual, J


    Acoustic emissions are elastic waves accompanying damage processes and are therefore used for monitoring the health state of structures. Most of the traditional acoustic emission techniques use a trilateration approach requiring at least three sensors on a 2D domain in order to localize sources of acoustic emission events. In this paper, we present a new approach which requires only a single sensor to identify and localize the source of acoustic emissions in a finite plate. The method proposed makes use of the time reversal principle and the dispersive nature of the flexural wave mode in a suitable frequency band. The signal shape of the transverse velocity response contains information about the propagated paths of the incoming elastic waves. This information is made accessible by a numerical time reversal simulation. The effect of dispersion is reversed and the original shape of the flexural wave is restored at the origin of the acoustic emission. The time reversal process is analyzed first for an infinite Mindlin plate, then by a 3D FEM simulation which in combination results in a novel acoustic emission localization process. The process is experimentally verified for different aluminum plates for artificially generated acoustic emissions (Hsu-Nielsen source). Good and reliable localization was achieved for a homogeneous quadratic aluminum plate with only one measurement. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Acoustic emission methodology and application

    CERN Document Server

    Nazarchuk, Zinoviy; Serhiyenko, Oleh


    This monograph analyses in detail the physical aspects of the elastic waves radiation during deformation or fracture of materials. I presents the  methodological bases for the practical use of acoustic emission device, and describes the results of theoretical and experimental researches of evaluation of the crack growth resistance of materials, selection of the useful AE signals. The efficiency of this methodology is shown through the diagnostics of various-purpose industrial objects. The authors obtain results of experimental researches with the help of the new methods and facilities.

  20. Acoustic Emission Signal Processing Technique to Characterize Reactor In-Pile Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Vivek Agarwal; Magdy Samy Tawfik; James A Smith


    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In this paper, empirical mode decomposition technique is proposed to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal corresponds to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  1. Molecular dynamics study of acoustic emission from individual lattice defects (United States)

    Nikonov, A. Yu.


    The paper reports on a molecular dynamics study of acoustic emission in an indented iron crystal for analyzing the effect of dislocations on its signal. The acoustic response of the system to loading is evaluated as forces acting on sensors which represent separate atomic areas located on the specimen surface. The analysis of acoustic emission and internal specimen structure shows a significant change in the emission signal due to the emergence of dislocations on the specimen surface.

  2. Novel Fiber-Optic Ring Acoustic Emission Sensor

    Directory of Open Access Journals (Sweden)

    Peng Wei


    Full Text Available Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  3. Analysis of acoustic emission cumulative signal strength of steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP) (United States)

    Abdul Hakeem, Z.; Noorsuhada, M. N.; Azmi, I.; Noor Syafeekha, M. S.; Soffian Noor, M. S.


    In this study, steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP) were investigated using acoustic emission (AE) technique. Three beams with dimension of 150 mm width, 200 mm depth and 1500 mm length were fabricated. The results generated from AE parameters were analysed as well as signal strength and cumulative signal strength. Three relationships were produced namely load versus deflection, signal strength versus time and cumulative signal strength with respect to time. Each relationship indicates significant physical behaviour as the crack propagated in the beams. It is found that an addition of steel fibre in the concrete mix and strengthening of CFRP increase the ultimate load of the beam and the activity of signal strength. Moreover, the highest signal strength generated can be identified. From the study, the occurrence of crack in the beam can be predicted using AE signal strength.

  4. Acoustic emission health monitoring of steel bridges

    NARCIS (Netherlands)

    Pahlavan, P.L.; Paulissen, J.H.; Pijpers, R.J.M.; Hakkesteegt, H.C.; Jansen, T.H.


    Despite extensive developments in the field of Acoustic Emission (AE) for monitoring fatigue cracks in steel structures, the implementation of AE systems for large-scale bridges is hindered by limitations associated with instrumentation costs and signal processing complexities. This paper sheds

  5. Time-frequency analysis of acoustic emission signals generated by the Glass Fibre Reinforced Polymer Composites during the tensile test (United States)

    Świt, G.; Adamczak, A.; Krampikowska, A.


    Fibre reinforced polymer composites are currently dominating in the composite materials market. The lack of detailed knowledge about their properties and behaviour in various conditions of exposure under load significantly limits the broad possibilities of application of these materials. Occurring and accumulation of defects in material during the exploitation of the construction lead to the changes of its technical condition. The necessity to control the condition of the composite is therefore justified. For this purpose, non-destructive method of acoustic emission can be applied. This article presents an example of application of acoustic emission method based on time analysis and time-frequency analysis for the evaluation of the progress of the destructive processes and the level of degradation of glass fibre reinforced composite tapes that were subject to tensile testing.

  6. Bearing fault detection in the acoustic emission frequency range (United States)

    Tavakoli, Massoud S.

    The effectiveness of using bearing fault detection in the acoustic-emission frequency range is demonstrated using a vertical milling machine as the testbed. The experimental testbed is monitored by an accelerometer and an acoustic emission sensor, and the signals are demodulated by rms enveloping and then fast-Fourier-transformed. The analytical computation of the defect characteristic frequency is explained, and the time histories are given of the enveloped signal and its spectrum. The method is shown to be useful for extracting the repetition rate of the repetitive component of the general signal, and the signal generated by the bearing defect is identified in the frequency ranges of mechanical vibration and acoustic emission. The signal in the acoustic-emission frequency range is shown to be helpful for detecting bearing defects because it not affected by repetitive mechanical noise.

  7. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology

    Directory of Open Access Journals (Sweden)

    Erqing Zhang


    Full Text Available Since the measurement of mechanical sealing film thickness and just-lift-off time is very difficult, the sealing film condition monitoring method based on acoustic emission signal is proposed. The mechanical seal acoustic emission signal present obvious characteristics of time-varying nonlinear and pulsating. In this paper, the acoustic emission signal is used to monitor the seal end faces just-lift-off time and friction condition. The acoustic emission signal is decomposed by empirical mode decomposition into a series of intrinsic mode function with independent characteristics of different time scales and different frequency band. The acoustic emission signal only generated by end faces friction is obtained by eliminating the false intrinsic mode function components. The correlation coefficient of acoustic emission signal and Multi-scale Laplace Wavelet is calculated. It is proved that the maximum frequency (8000 Hz of the correlation coefficient is appeared at the spindle speed of 300 rpm. And at this time (300 rpm the end faces have just lifted off. By a set of mechanical oil seal running test, it is demonstrated that this method could accurately identify mechanical seal end faces just-lift-off time and friction condition.

  8. Detection of cracking and damage mechanisms in brittle granites by moment tensor analysis of acoustic emission signals (United States)

    Xu, Shi-da; Li, Yuan-hui; Liu, Jian-po


    An acoustic emission (AE) testing of rock cracking was performed under uniaxial loading conditions by precut varisized circular holes in selected brittle granites. Based on AE-source location technique and AE-theory for moment tensor analysis, rules of the temporal-spatial evolution of micro-cracks in different failure mechanisms were explored and types of micro-cracks were analyzed as well. The results revealed that the micro-cracks are uniquely easy to generate in the positions where stress are concentrated. Tensile fractures are easy to form on the roof and floor of a circular hole, while shear fractures are easy to be found on both sides. The locations of initial cracks generated around the holes in the loading process are the direction or vertical direction of maximum principle stress. Macroscopic crack orientation agrees with the direction of maximum principle stress approximately. As the size of circular opening increases and the relative size of pillar decreases, shear cracks are dominant with the percentage more than 45%, tension cracks are fewer, accounted for less than 40% of the total events, and mixed-mode cracks represent a minimum proportion, despite the decrease of percentage of shear cracks. The findings of this work can serve for supporting design of tunnel or roadway to avoid collapse.

  9. Acoustic-Emission Weld-Penetration Monitor (United States)

    Maram, J.; Collins, J.


    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  10. Condition Monitoring and Management from Acoustic Emissions

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik Bohl


    In the following, I will use technical terms without explanation as it gives the freedom to describe the project in a shorter form for those who already know. The thesis is about condition monitoring of large diesel engines from acoustic emission signals. The experiments have been focused...... is the analysis of the angular position changes of the engine related events such as fuel injection and valve openings, caused by operational load changes. With inspiration from speech recognition and voice effects the angular timing changes have been inverted with the event alignment framework. With the event...

  11. Measuring acoustic emissions in an avalanche slope (United States)

    Reiweger, Ingrid; Schweizer, Jürg


    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  12. Propagation characteristics of acoustic emission wave in reinforced concrete

    Directory of Open Access Journals (Sweden)

    Haoxiong Feng

    Full Text Available Due to the complexity of components and damage mechanism of reinforced concrete, the wave propagation characteristics in reinforced concrete are always complicated and difficult to determine. The objective of this article is to study the failure process of reinforced concrete structure under the damage caused by pencil-broken. A new method on the basis of the acoustic emission technique and the Hilbert-Huang transform theory is proposed in this work. By using acoustic emission technique, the acoustic emission wave signal is generating while the real-time damage information and the strain field of the reinforced concrete structure is receiving simultaneously. Based on the Hilbert-Huang transform (HHT theory, the peak frequency characteristics of the acoustic emission signals were extracted to identify the damage modes of the reinforced concrete structure. The results demonstrate that this method can quantitatively investigate the acoustic emission wave propagation characteristic in reinforced concrete structures and might also be promising in other civil constructions. Keywords: Acoustic emission, Reinforced concrete structure, Hilbert-Huang transform (HHT, Propagation characteristics

  13. Handbook of Signal Processing in Acoustics

    CERN Document Server

    Havelock, David; Vorländer, Michael


    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.


    Directory of Open Access Journals (Sweden)

    Sergii Filonenko


    Full Text Available Purpose: The aim of this article is the experimental research of acoustic emission at composite material machining with the analysis of influencing treating tool wear from composite material on registered signals parameters. Methods: In the basis of researches lies the processing and analysis of interconnection experimental acoustic emission signals parameter, which one appear at composite material machining, with treating tool wear. The acoustic emission at initial and final stage of composite material machining are esteemed. The statistical processing of acoustic emission amplitude parameters on these stages was conducted. The statistical data processing with the analysis regularity change of acoustic emission signals amplitudes distribution kurtosis is conducted. Results: Is determined, that the increase of composite material machining time does not result in change of acoustic radiation nature. The registered acoustic emission signals are continuous signals. Is established, that at composite material machining final stage is watched decreasing of acoustic emission signal amplitude average level and value of its deviation. Is determined, that the gradual or instantaneous increase of treating tool wear results in its destruction and sharp decreasing of acoustic emission signal amplitude. The regularity change of acoustic emission signals amplitudes distribution kurtosis at all stages of composite material machining is established. Discussion: The analysis of acoustic emission statistical amplitude parameters change at initial and final stage composite material machining is conducted. Decreasing of acoustic emission statistical amplitude parameters at final stage of machining is shown, that is conditioned by treating tool wear. It is shown, that originating and development of treating tool wearing up to an instant of its damage results in minor decreasing of acoustic emission signal amplitude average level. At the same, at early stage, which

  15. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing; Analyse der Schallemissionssignale aus Ermuedungsrisswachstum und Korrosionsprozessen. Untersuchung der Moeglichkeiten fuer die kontinuierliche Zustandsueberwachung von Transportbehaeltern mittels Schallemissionspruefung

    Energy Technology Data Exchange (ETDEWEB)

    Wachsmuth, Janne


    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were


    Directory of Open Access Journals (Sweden)

    Sergiy Filonenko


    Full Text Available  The simulation of amplitude and energy of acoustic emission resulting signals at friction of composite materials surfaces layers was conducted. The regularities of changes in the amplitude and energy parameters of acoustic emission resulting signals which are depending from hardness of composite materials surfaces layers were determined. The description of regularities of changes with their statistical estimates was conducted.

  17. Signal frequency distribution and natural-time analyses from acoustic emission monitoring of an arched structure in the Castle of Racconigi

    Directory of Open Access Journals (Sweden)

    G. Niccolini


    Full Text Available The stability of an arch as a structural element in the thermal bath of King Charles Albert (Carlo Alberto in the Royal Castle of Racconigi (on the UNESCO World Heritage List since 1997 was assessed by the acoustic emission (AE monitoring technique with application of classical inversion methods to recorded AE data. First, damage source location by means of triangulation techniques and signal frequency analysis were carried out. Then, the recently introduced method of natural-time analysis was preliminarily applied to the AE time series in order to reveal a possible entrance point to a critical state of the monitored structural element. Finally, possible influence of the local seismic and microseismic activity on the stability of the monitored structure was investigated. The criterion for selecting relevant earthquakes was based on the estimation of the size of earthquake preparation zones. The presented results suggest the use of the AE technique as a tool for detecting both ongoing structural damage processes and microseismic activity during preparation stages of seismic events.

  18. Acoustic Emission (AE) of fiberglass insulation material (United States)

    Shu, Fong; Godinez, Valery; Finlayson, Richard


    In order to develop an effective and accurate way to monitor and control the quality of fiberglass products, Acoustic Emission (AE) signals, generated during compression of fiberglass samples, were studied and analyzed using neural network based pattern recognition software. Distinguishable patterns were found in samples manufactured under different conditions and compositions, which resulted in different product quality. AE waveform features, such as absolute energy, average frequency, duration, and rise time were analyzed and the features showed strong dependence on the sample tested. This made sample classification possible and definitive and therefore a classifier was developed and applied to data collected from additional test samples. Finally, an AE system for the evaluation of fiberglass insulation was designed and built. It is expected that the developed system will be used as a quality control tool in industrial production of fiberglass insulating material. In this paper we will discuss the AE data collection and analysis, classifier development, and give an overview of the inspection system developed.

  19. Acoustic signals generated in inclined granular flows (United States)

    Tan, Danielle S.; Jenkins, James T.; Keast, Stephen C.; Sachse, Wolfgang H.


    Spontaneous avalanching in specific deserts produces a low-frequency sound known as "booming." This creates a puzzle, because avalanches down the face of a dune result in collisions between sand grains that occur at much higher frequencies. Reproducing this phenomenon in the laboratory permits a better understanding of the underlying mechanisms for the generation of such lower frequency acoustic emissions, which may also be relevant to other dry granular flows. Here we report measurements of low-frequency acoustical signals, produced by dried "sounding" sand (sand capable of booming in the desert) flowing down an inclined chute. The amplitude of the signal diminishes over time but reappears upon drying of the sand. We show that the presence of this sound in the experiments may provide supporting evidence for a previously published "waveguide" explanation for booming. Also, we propose a model based on kinetic theory for a sheared inclined flow in which the flowing layer exhibits "breathing" modes superimposed on steady shearing. The predicted oscillation frequency is of a similar order of magnitude as the measurements, indicating that small perturbations can sustain oscillations of a low frequency. However, the frequency is underestimated, which indicates that the stiffness has been underestimated. Also, the model predicts a discrete spectrum of frequencies, instead of the broadband spectrum measured experimentally.

  20. Lathe stability charts via acoustic emission monitoring | Keraita ...

    African Journals Online (AJOL)

    Signal parameters characterizing acoustic emission (AE) detected during metal cutting have been theoretically correlated in a simple manner, to the work material properties, cutting conditions, and tool geometry. During chatter, the cutting conditions and the tool geometry change considerably. Self-exited chatter, an ...

  1. Acoustic emission structural health management systems (AE-SHMS) (United States)

    Finlayson, Richard D.; Friesel, Mark A.; Carlos, Mark F.; Miller, Ronnie K.; Godinez, Valery


    Many of today's methods of inspecting structures are very time consuming, labor intensive and in many cases (due to limited access), impractical. In addition, long shutdown times are required to perform the inspections, thus creating tremendous expenses associated with manpower, materials and lost production. With continuing advances in signal processing and communications a significant interest has been shown in developing new diagnostic technologies for monitoring the integrity of structures with known defects, or for detecting new defects, in real time with minimum human involvement. The continued use of aging structures, especially in regard to the airworthiness of aging aircraft, is a major area of concern. Recent developments in both active and passive Acoustic Emission monitoring as an advanced tool for 'Structural Health Management Systems (SHMS),' are illustrated by using two recently developed acoustic emission systems; the Acoustic Emission-Health and Usage Monitoring System (AE-HUMS) helicopter drivetrain health monitoring system, and the Acoustic Emission Flight Instrument System (AEFIS) composite health monitoring system. The data collected with these types of systems is processed with advanced data screening and classification techniques, which are employed to take full advantage of parametric and waveform-based acoustic emission.

  2. Remote Acoustic Emission Monitoring of Metal Ware and Welded Joints (United States)

    Kapranov, Boris I.; Sutorikhin, Vladimir A.


    An unusual phenomenon was revealed in the metal-ultrasound interaction. Microwave sensor generates surface electric conductivity oscillations from exposure to elastic ultrasonic vibrations on regions of defects embracing micro-defects termed as “crack mouth.” They are known as the region of “acoustic activity,” method of Acoustic Emission (AE) method. It was established that the high phase-modulation coefficient of reflected field generates intentional Doppler radar signal with the following parameters: amplitude-1–5 nm, 6–30 dB adjusted to 70- 180 mm. This phenomenon is termed as “Gorbunov effect,” which is applied as a remote non-destructive testing method replacing ultrasonic flaw detection and acoustic emission methods.

  3. Acoustic Emission Test for Aircraft Halon 1301 Fire Extinguisher Bottles (United States)


    An acoustic emission test for aircraft Halon 1301 bottles has been developed, a prototype acoustic emission test system constructed, and over 200 used bottles tested at the repair facilities of the two manufacturers of these bottles. The system monit...

  4. Acoustic Emission Sensing for Maritime Diesel Engine Performance and Health (United States)


    UNCLASSIFIED UNCLASSIFIED Acoustic Emission Sensing for Maritime Diesel Engine Performance and Health Brian Dykas and James Harris...UNCLASSIFIED UNCLASSIFIED Acoustic Emission Sensing for Maritime Diesel Engine Performance and Health Executive Summary This work was...DOCUMENT CONTROL DATA 1. DLM/CAVEAT (OF DOCUMENT) 2. TITLE Acoustic Emission Sensing for Maritime Diesel Engine Performance and


    National Research Council Canada - National Science Library

    Sergii Filonenko; Oleg Zaritskyi


    Purpose: The aim of this article is the experimental research of acoustic emission at composite material machining with the analysis of influencing treating tool wear from composite material on registered signals parameters. Methods...

  6. Mechanism of low-frequency discrete acoustic emission during intermittent creep of aluminum alloy (United States)

    Shibkov, A. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.


    A correlation between the dynamics of deformation bands and the discrete acoustic emission during the intermittent creep of the AlMg6 alloy using a high-speed video recording with a time resolution to 50 μs has been studied. A trigger of a macroscopic deformation step in the creep curve is the nucleation and the broadening of the primary deformation band that generates a characteristic acoustic emission signal with duration of several milliseconds. The results confirm the mechanism of generating an acoustic emission signal related to the cooperative dislocations outcrop on the specimen external surface.

  7. Study on acoustic emission source localization of 16Mn structural steel of high temperature deformation (United States)

    Zhang, Yubo; Deng, Muhan; Yang, Rui; Jin, Feixiang


    The location technique of acoustic emission (AE) source for deformation damage of 16Mn steel in high temperature environment is studied by using linear time-difference-of-arrival (TDOA) location method. The distribution characteristics of strain induced acoustic emission source signals at 20°C and 400°C of tensile specimens were investigated. It is found that the near fault has the location signal of the cluster, which can judge the stress concentration and cause the fracture.

  8. Analyzing the rules of fracture and damage, and the characteristics of the acoustic emission signal of a gypsum specimen under uniaxial loading (United States)

    Chen, Dong; Wang, En-yuan; Li, Nan


    In order to study the mechanism of rock bursts in a mined-out area of a gypsum mine, in this paper acoustic emission testing of the uniaxial compression of gypsum and sandstone samples is carried out. The case of rupture of the specimen is observed, and the load axial deformation curve and acoustic emission parameters are obtained for the whole process of specimen rupture. The similarities and differences between the gypsum and sandstone samples are determined in terms of their mechanical properties, their damage evolution laws and frequency band energy distributions, and the instantaneous energy characteristics of their acoustic emission. The results show that the main fracture morphology of gypsum is ‘eight’-type, and the macroscopic fracture morphology of sandstone is mainly of partial ‘Y’-type and inverted Y-type. The intensity and uniformity of the gypsum and sandstone of the medium are different; because the gypsum is more uniform, it does not show as much variation as sandstone, instead suddenly increasing and decreasing. The maximum value of the damage variable D of gypsum reached 1, but the maximum value of D of the sandstone only reached 0.9. The frequency band of the maximum energy of gypsum and sandstone gradually decreased across the the four stages of rupture, while the maximum energy percentage increased gradually. From the stage where damage gradually increases to the stage of integral fracture of the specimen, the instantaneous energy showed a certain degree of increase. With an increase in the strength of the sample, the maximum energy percentage of the two materials corresponding to each phase gradually increases, and from the stage where damage gradually increases to the stage of integral fracture of the specimen, the value of instantaneous energy obviously increases. The results indicate that gypsum mines will also experience rock bursts, as coal mines do, but the intensity will be different. Therefore, using the three indicators, the

  9. Acoustic Emission in Brittle Solids

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Wilshaw, T. R.


    A signal/source correlation study of the stress waves emitted during unstable microscopic Hertzian fracture in glass is described. A theoretical analysis of the variation in excess strain energy with applied load is made and the results compared with experimental data covering a wide range of cra...

  10. Uncertainty quantification of acoustic emission filtering techniques (United States)

    Zárate, Boris A.; Caicedo, Juan M.; Ziehl, Paul


    This paper compares six different filtering protocols used in Acoustic Emission (AE) monitoring of fatigue crack growth. The filtering protocols are combination of three different filtering techniques which are based on Swansong-like filters and load filters. The filters are compared deterministically and probabilistically. The deterministic comparison is based on the coefficient of determination of the resulting AE data, while the probabilistic comparison is based on the quantification of the uncertainty of the different filtering protocols. The uncertainty of the filtering protocols is quantified by calculating the entropy of the probability distribution of some AE and fracture mechanics parameters for the given filtering protocol. The methodology is useful in cases where several filtering protocols are available and there is no reason to choose one over the others. Acoustic Emission data from a compact tension specimen tested under cyclic load is used for the comparison.

  11. Acoustic emission signatures of damage modes in concrete (United States)

    Aggelis, D. G.; Mpalaskas, A. C.; Matikas, T. E.; Van Hemelrijck, D.


    The characterization of the dominant fracture mode may assist in the prediction of the remaining life of a concrete structure due to the sequence between successive tensile and shear mechanisms. Acoustic emission sensors record the elastic responses after any fracture event converting them into electric waveforms. The characteristics of the waveforms vary according to the movement of the crack tips, enabling characterization of the original mode. In this study fracture experiments on concrete beams are conducted. The aim is to examine the typical acoustic signals emitted by different fracture modes (namely tension due to bending and shear) in a concrete matrix. This is an advancement of a recent study focusing on smaller scale mortar and marble specimens. The dominant stress field and ultimate fracture mode is controlled by modification of the four-point bending setup while acoustic emission is monitored by six sensors at fixed locations. Conclusions about how to distinguish the sources based on waveform parameters of time domain (duration, rise time) and frequency are drawn. Specifically, emissions during the shear loading exhibit lower frequencies and longer duration than tensile. Results show that, combination of AE features may help to characterize the shift between dominant fracture modes and contribute to the structural health monitoring of concrete. This offers the basis for in-situ application provided that the distortion of the signal due to heterogeneous wave path is accounted for.

  12. A Preliminary Study Application Clustering System in Acoustic Emission Monitoring

    Directory of Open Access Journals (Sweden)

    Saiful Bahari Nur Amira Afiza


    Full Text Available Acoustic Emission (AE is a non-destructive testing known as assessment on damage detection in structural engineering. It also can be used to discriminate the different types of damage occurring in a composite materials. The main problem associated with the data analysis is the discrimination between the different AE sources and analysis of the AE signal in order to identify the most critical damage mechanism. Clustering analysis is a technique in which the set of object are assigned to a group called cluster. The objective of the cluster analysis is to separate a set of data into several classes that reflect the internal structure of data. In this paper was used k-means algorithm for partitioned clustering method, numerous effort have been made to improve the performance of application k-means clustering algorithm. This paper presents a current review on application clustering system in Acoustic Emission.

  13. Analysis of acoustic emission data for bearings subject to unbalance

    Directory of Open Access Journals (Sweden)

    Rapinder Sawhney


    Full Text Available Acoustic Emission (AE is an effective nondestructive method for investigating the behavior of materials under stress. In recent decades, AE applications in structural health monitoring have been extended to other areas such as rotating machineries and cutting tools. This research investigates the application of acoustic emission data for unbalance analysis and detection in rotary systems. The AE parameter of interest in this study is a discrete variable that covers the significance of count, duration and amplitude of AE signals. A statistical model based on Zero-Inflated Poisson (ZIP regression is proposed to handle over-dispersion and excess zeros of the counting data. The ZIP model indicates that faulty bearings can generate more transient wave in the AE waveform. Control charts can easily detect the faulty bearing using the parameters of the ZIP model. Categorical data analysis based on generalized linear models (GLM is also presented. The results demonstrate the significance of the couple unbalance.

  14. Acoustic emission source mechanisms for steel bridge material (United States)

    Hossain, M.; Yu, J.; Ziehl, P.; Caicedo, J.; Matta, F.; Guo, S.; Sutton, M.


    Over the past twenty years acoustic emission (AE) has been studied for applications to the structural health monitoring (SHM) of metallic structures. The success of AE for prognosis of in-service steel bridges depends on the reliability of the received AE signals. The emphasis of this paper is on the characterization of acoustic emission source mechanisms for ASTM A572 grade 50 steel. The source characterization was aided by Digital Imaging Correlation (DIC) and Scanning Electronic Microscopy (SEM). The results indicate that both ductile and brittle mechanisms can produce AE during fatigue crack growth in the steel. However, the fracture mechanisms are predominately ductile. A key preliminary finding is that fatigue crack extension does not generally produce AE events in the early stage of fatigue crack growth for the steel bridge material investigated.

  15. Employing Acoustic Emission for Monitoring Oil Film Regimes

    Directory of Open Access Journals (Sweden)

    David Mba


    Full Text Available The major purpose of a gear lubricant is to provide adequate oil film thickness to reduce and prevent gear tooth surface failures. Real time monitoring for gear failures is important in order to predict and prevent unexpected failures which would have a negative impact on the efficiency, performance and safety of the gearbox. This paper presents experimental results on the influence of specific oil film thickness on Acoustic Emission (AE activity for operational helical gears. Variation in film thickness during operations was achieved by spraying liquid nitrogen onto the rotating gear wheel. The experimental results demonstrated a clear relationship between the root mean square (r.m.s value of the AE signal and the specific film thickness. The findings demonstrate the potential of Acoustic Emission technology to quantify lubrication regimes on operational gears.

  16. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra (United States)

    Kumar, Jagadish; Ananthakrishna, G.


    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum

  17. Online sizing of pneumatically conveyed particles by acoustic emission method (United States)

    Hu, Yonghui; Qian, Xiangchen; Huang, Xiaobin; Gao, Lingjun; Yan, Yong


    Accurate determination of particle size distribution is critical to achieving optimal combustion efficiency and minimum pollutant emissions in both biomass and biomass/coal fired power plants. This paper presents an instrumentation system for online continuous measurement of particle size distribution based on acoustic emission (AE) method. Impulsive AE signals arising from impacts of particles with a metallic waveguide protruding into the flow carry information about the particle size. With detailed information about the generation, propagation and detection of impact AE signals, the particle size can be quantitatively characterized. Experimental results obtained with glass beads demonstrate the capability of the system to discriminate particles of different sizes from the recorded AE signals. The system has several appealing features such as online measurement, high sensitivity, simple structure, minimum invasiveness and low cost, which make it well suited for industrial applications.

  18. Acoustic emission evolution during sliding friction of Hadfield steel single crystal (United States)

    Lychagin, D. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.


    Friction is a complex dynamic process. Direct observation of processes occurring in the friction zone is impossible due to a small size of a real contact area and, as a consequence, requires various additional methods applicable to monitor a tribological contact state. One of such methods consists in the analysis of acoustic emission data of a tribological contact. The use of acoustic emission entails the problem of interpreting physical sources of signals. In this paper, we analyze the evolution of acoustic emission signal frames in friction of Hadfield steel single crystals. The chosen crystallographic orientation of single crystals enables to identify four stages related to friction development as well as acoustic emission signals inherent in these stages. Acoustic emission signal parameters are studied in more detail by the short-time Fourier transform used to determine the time variation of the median frequency and its power spectrum. The results obtained will facilitate the development of a more precise method to monitor the tribological contact based on the acoustic emission method.

  19. Time series analysis of tool wear in sheet metal stamping using acoustic emission (United States)

    Vignesh Shanbhag, V.; Pereira, P. Michael; Rolfe, F. Bernard; Arunachalam, N.


    Galling is an adhesive wear mode that often affects the lifespan of stamping tools. Since stamping tools represent significant economic cost, even a slight improvement in maintenance cost is of high importance for the stamping industry. In other manufacturing industries, online tool condition monitoring has been used to prevent tool wear-related failure. However, monitoring the acoustic emission signal from a stamping process is a non-trivial task since the acoustic emission signal is non-stationary and non-transient. There have been numerous studies examining acoustic emissions in sheet metal stamping. However, very few have focused in detail on how the signals change as wear on the tool surface progresses prior to failure. In this study, time domain analysis was applied to the acoustic emission signals to extract features related to tool wear. To understand the wear progression, accelerated stamping tests were performed using a semi-industrial stamping setup which can perform clamping, piercing, stamping in a single cycle. The time domain features related to stamping were computed for the acoustic emissions signal of each part. The sidewalls of the stamped parts were scanned using an optical profilometer to obtain profiles of the worn part, and they were qualitatively correlated to that of the acoustic emissions signal. Based on the wear behaviour, the wear data can be divided into three stages: - In the first stage, no wear is observed, in the second stage, adhesive wear is likely to occur, and in the third stage severe abrasive plus adhesive wear is likely to occur. Scanning electron microscopy showed the formation of lumps on the stamping tool, which represents galling behavior. Correlation between the time domain features of the acoustic emissions signal and the wear progression identified in this study lays the basis for tool diagnostics in stamping industry.

  20. Evaluation of Ferroelectric Domain Behaviors Using Acoustic Emission Method (United States)

    Aburatani, Hideaki


    Two kinds of acoustic emission (AE) signals are used to evaluate the ferroelectric domain behaviors in tetragonal lead zirconate titanate (PZT) ceramics: AE related to the ferroelectric domain and vibro acoustic emission (vibro-AE) caused by sample vibration. The signal level of vibro-AE caused by the sample vibration is suppressed using an external resistor, and the vibro-AE and AE related to the ferroelectric domain are observed simultaneously. It is shown that the vibro-AE measured as an AE signal Vrms reflects the piezoelectricity of the sample. The Kaiser effect in terms of electrical loading is found to be valid for ferroelectric PZT ceramics. From the vibro-AE measurement, it is shown that domain clamping occurs at critical fields at which the vibro-AE signal vanishes. It is also shown that domain-related AE takes place above the coercive field Ec and after domain clamping occurs. From these obtained AE activities, conflicts among ferroelectric domains in the sequence of domain reorientation from the clamped state to the aligned domain state and the resulting stress relaxations are considered to be the origin of AE.

  1. Ice breakup: Observations of the acoustic signal (United States)

    Waddell, S. R.; Farmer, D. M.


    We describe observations of ambient sound beneath landfast ice in the Canadian Arctic Archipelago and interpret its evolution over the period June-August in terms of ice cracking and disintegration. The data were recorded on six bands between 50 and 14,500 Hz for the period April 2 to August 7, 1986, in Dolphin and Union Strait. The frequency dependence of the attenuation of sound in water allows separation of distant and local noise sources. In conjunction with satellite imagery and meteorological data, it is shown that strong signals in the acoustic time series are associated with major breakup events. The acoustic signal can provide predictive information about ice conditions and the approach of breakup.

  2. Acoustic emission: The first half century

    Energy Technology Data Exchange (ETDEWEB)

    Drouillard, T.F.


    The technology of acoustic emission (AE) is approaching the half century mark, having had its beginning in 1950 with the work of Joseph Kaiser. During the 1950s and 1960s researchers delved into the fundamentals of acoustic emission, developed instrumentation specifically for AE, and characterized the AE behavior of many materials. AE was starting to be recognized for its unique capabilities as an NDT method for monitoring dynamic processes. In the decade of the 1970s research activities became more coordinated and directed with the formation of the working groups, and its use as an NDT method continued to increase for industrial applications. In the 1980s the computer became a basic component for both instrumentation and data analysis, and today it has sparked a resurgence of opportunities for research and development. Today we are seeing a transition to waveform-based AE analysis and a shift in AE activities with more emphasis on applications than on research. From the beginning, we have been fortunate to have had so many dedicated savants with different fields of expertise contribute in a collective way to bring AE to a mature, fully developed technology and leave a legacy of knowledge recorded in its literature. AE literature has been a key indicator of the amount of activity, the proportion of research to application, the emphasis on what was of current interest, and the direction AE has taken. The following is a brief survey of the history of acoustic emission with emphasis on development of the infrastructure over the past half century.

  3. An acoustic emission study of plastic deformation in polycrystalline aluminium (United States)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.


    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  4. Acoustic Emissions (AE) Electrical Systems' Health Monitoring Project (United States)

    National Aeronautics and Space Administration — Acoustic Emissions (AE) are associated with physical events, such as thermal activity, dielectric breakdown, discharge inception, as well as crack nucleation and...

  5. Acoustic signal propagation characterization of conduit networks (United States)

    Khan, Muhammad Safeer

    Analysis of acoustic signal propagation in conduit networks has been an important area of research in acoustics. One major aspect of analyzing conduit networks as acoustic channels is that a propagating signal suffers frequency dependent attenuation due to thermo-viscous boundary layer effects and the presence of impedance mismatches such as side branches. The signal attenuation due to side branches is strongly influenced by their numbers and dimensions such as diameter and length. Newly developed applications for condition based monitoring of underground conduit networks involve measurement of acoustic signal attenuation through tests in the field. In many cases the exact installation layout of the field measurement location may not be accessible or actual installation may differ from the documented layout. The lack of exact knowledge of numbers and lengths of side branches, therefore, introduces uncertainty in the measurements of attenuation and contributes to the random variable error between measured results and those predicted from theoretical models. There are other random processes in and around conduit networks in the field that also affect the propagation of an acoustic signal. These random processes include but are not limited to the presence of strong temperature and humidity gradients within the conduits, blockages of variable sizes and types, effects of aging such as cracks, bends, sags and holes, ambient noise variations and presence of variable layer of water. It is reasonable to consider that the random processes contributing to the error in the measured attenuation are independent and arbitrarily distributed. The error, contributed by a large number of independent sources of arbitrary probability distributions, is best described by an approximately normal probability distribution in accordance with the central limit theorem. Using an analytical approach to model the attenuating effect of each of the random variable sources can be very complex and

  6. Proportional monitoring of the acoustic emission in crypto-conditions

    Directory of Open Access Journals (Sweden)

    Petr Dostál


    Full Text Available The work is aimed at studying corrosion and fatigue properties of aluminum alloys by means of acoustic emission (AE. During material degradation are acoustic events scanned and evaluated. The main objective of the article is a description of behavior of aluminum alloys degraded in specific conditions and critical degradation stages determination. The first part of the article describes controlled degradation of the material in the crypto–conditions. The acoustic emission method is used for process analyzing. This part contains the AE signals assessment and comparing aluminium alloy to steel. Then the specimens are loaded on high-cyclic loading apparatus for fatigue life monitoring. Also, the synergy of fatigue and corrosion processes is taken into account.The aim is the description of fatigue properties for aluminum alloys that have already been corrosion-degraded. Attention is also focused on the structure of fatigue cracks. The main part of the article is aimed at corrosion degradation of aluminium alloys researched in real time by means of AE. The most important benefit of AE detection/recording is that it provides information about the process in real time. Using this measurement system is possible to observe the current status of the machines/devices and to prevent serious accidents.

  7. Acoustic emission monitoring of the bending under tension test

    DEFF Research Database (Denmark)

    Moghadam, Marcel; Sulaiman, Mohd Hafis Bin; Christiansen, Peter


    Preliminary investigations have shown that acoustic emission has promising aspects as an online monitoring technique for assessment of tribological conditions during metal forming as regards to determination of the onset of galling. In the present study the acoustic emission measuring technique h...

  8. The Acoustic Emission in the Nest of the Honey Bee Depending on the Extreme Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jaromír Tlačbaba


    Full Text Available The vibroacoustic signals are an important part of communication in the honey bees (Apis mellifera L.. The aim of this study was to observe the acoustic emission that varies in a bee colony during different weather phenomena (strong winds and hailstorms and to estimate the nature and the extent of the reactions of the colony by the analysis of the obtained data. Experiments were carried out in the volume-reduced hives. The specific weather phenomena were followed by significant (P < 0.0001 increasing of the intensity of the acoustic emission in the colony in comparison with acoustic emission before or after the phenomena. Close linear positive relationship was confirmed between the intensity of wind gusts and intensity of acoustic emission (r = 0.72; P < 0.001. With the increase in the maximum gust of 1 km·h−1, the intensity of acoustic emission increased by 0.1466 mV. The character and degree of reaction of the colony can be estimated with analysis of the measured data. Permeability of vibration signals directly induced weather phenomena through the construction of the experimental hive and the stress in the colony are discussed. Observation of the acoustic emission distributed within the colony is one of the methodical alternatives for research of the vibroacoustic communication in the colony.

  9. Informational approach to the analysis of acoustic signals (United States)

    Senkevich, Yuriy; Dyuk, Vyacheslav; Mishchenko, Mikhail; Solodchuk, Alexandra


    The example of linguistic processing of acoustic signals of a seismic event would be an information approach to the processing of non-stationary signals. The method for converting an acoustic signal into an information message is described by identifying repetitive self-similar patterns. The definitions of the event selection indicators in the symbolic recording of the acoustic signal are given. The results of processing an acoustic signal by a computer program realizing the processing of linguistic data are shown. Advantages and disadvantages of using software algorithms are indicated.

  10. Acoustic emissions correlated with hydration of Saguaro Cactus (United States)

    Wardell, L. J.; Rowe, C. A.


    For some years it has been demonstrated that hardwood trees produce acoustic emissions during periods of drought, which arise from cavitation in the xylem as water is withdrawn. These emissions not only provide insights into the fluid transport behavior within these trees, but also the degree to which cavitation can proceed before inevitable tree mortality. Such studies can have significant impact on our understanding of forest die-off in the face of climate change. Plant mortality is not limited to woody trees, however, and it is not only the coniferous and deciduous forests whose response to climate and rainfall changes are important. In the desert Southwest we observe changes to survival rates of numerous species of flora. One of the most conspicuous of these plants is the iconic Saguaro Cactus (Carnegiea gigantean). These behemoths of the Sonoran Desert are very sensitive to small perturbations in their environment. Specifically, during the summer monsoon season when the cacti become well-hydrated, they can absorb hundreds of gallons of water within a very short time frame. We have obtained a juvenile saguaro on which we are conducting experiments to monitor acoustic emissions during hydration and dessication cycles. We will report on our observations obtained using piezoelectric ceramic accelerometers whose signals are digitized up to 44 Khz and recorded during hydration.

  11. Bird population density estimated from acoustic signals (United States)

    Dawson, D.K.; Efford, M.G.


    Many animal species are detected primarily by sound. Although songs, calls and other sounds are often used for population assessment, as in bird point counts and hydrophone surveys of cetaceans, there are few rigorous methods for estimating population density from acoustic data. 2. The problem has several parts - distinguishing individuals, adjusting for individuals that are missed, and adjusting for the area sampled. Spatially explicit capture-recapture (SECR) is a statistical methodology that addresses jointly the second and third parts of the problem. We have extended SECR to use uncalibrated information from acoustic signals on the distance to each source. 3. We applied this extension of SECR to data from an acoustic survey of ovenbird Seiurus aurocapilla density in an eastern US deciduous forest with multiple four-microphone arrays. We modelled average power from spectrograms of ovenbird songs measured within a window of 0??7 s duration and frequencies between 4200 and 5200 Hz. 4. The resulting estimates of the density of singing males (0??19 ha -1 SE 0??03 ha-1) were consistent with estimates of the adult male population density from mist-netting (0??36 ha-1 SE 0??12 ha-1). The fitted model predicts sound attenuation of 0??11 dB m-1 (SE 0??01 dB m-1) in excess of losses from spherical spreading. 5.Synthesis and applications. Our method for estimating animal population density from acoustic signals fills a gap in the census methods available for visually cryptic but vocal taxa, including many species of bird and cetacean. The necessary equipment is simple and readily available; as few as two microphones may provide adequate estimates, given spatial replication. The method requires that individuals detected at the same place are acoustically distinguishable and all individuals vocalize during the recording interval, or that the per capita rate of vocalization is known. We believe these requirements can be met, with suitable field methods, for a significant

  12. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Directory of Open Access Journals (Sweden)

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini


    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  13. Bridge cable fracture detection with acoustic emission test (Conference Presentation) (United States)

    Qu, Hongya; Li, Tiantian; Chen, Genda


    In this study, acoustic emission (AE) tests were conducted to detect and locate wire fracture in strands that are widely used in cable-stayed and suspension bridges. To effectively separate fracture signals from unwanted noises, distinct features of fracture, fracture-induced echo, and artificial tapping signals as well as their dependence on loading levels are characterized with short-time Fourier transform. To associate fracture scenarios with their acoustic features, two 20-foot-long ( 6.1 m) 270 ksi ( 1,862 MPa) steel strands of seven wires were tested with one wire notched off at center and support, respectively, up to 90% of its cross section area by 10% increment. Up to 80% reduction in cross section area of the notched wire, each strand was loaded to 20 kips ( 89 kN) corresponding to 35% of the minimum breaking strength and the acquired AE parameters such as hits, energy, and counts were found to change little. With a reduction of 90% of the section area of one wire, both strands were found to be fractured under approximately 16.5 kips ( 73.4 kN). The hits, energy, and counts of AE signals were all demonstrated to suddenly change with the fracture of the notched wire. However, only the counts of AE signals distributed over the length of the strands allow the localization of fracture point. The frequency band of fracture signals is significantly broader than that of either fracture-induced echo or artificial tapping noise. The time duration of artificial tapping noises is substantially longer than that of either fracture or fracture-induced echo. These distinct characteristics can be used to effectively separate fracture signals from noises for wire fracture detection and localization in practice.

  14. Fault structure, damage and acoustic emission characteristics (United States)

    Dresen, G. H.; Göbel, T.; Stanchits, S.; Kwiatek, G.; Charalampidou, E. M.


    We investigate the evolution of faulting-related damage and acoustic emission activity in experiments performed on granite, quartzite and sandstone samples with 40-50 mm diameter and 100-125 mm length. Experiments were performed in a servo-controlled MTS loading frame in triaxial compression at confining pressures ranging from 20-140 MPa. We performed a series of fracture and stick-slip sliding experiments on prefractured samples. Acoustic emissions (AE) and ultrasonic velocities were monitored using up to 14 P-wave sensors glued to the cylindrical surface of the rock. Full waveforms were stored in a 16 channel transient recording system (Daxbox, PRÖKEL, Germany). Full moment tensor analysis and polarity of AE first motions were used to discriminate source types associated with tensile, shear and pore-collapse cracking. To monitor strain, two pairs of orthogonally oriented strain-gages were glued onto the specimen surface. Fracture nucleation and growth occurred from a nucleation patch mostly located at the specimen surface or at the tip of prefabricated notches inside the specimens. Irrespective of the rock type, fracture propagation is associated with formation of a damage zone surrounding the fracture surface as revealed by distribution of cracks and AE hypocenters displaying a logarithmic decay in microcrack damage with distance normal to the fault trace. The width of the damage zone varies along the fault. After fracturing, faults were locked by increasing confining pressure. Subsequent sliding was mostly induced by driving the piston at a constant displacement rate producing large single events or multiple stick-slips. With increasing sliding distance a corrugated and rough fault surface formed displaying displacement-parallel lineations. Microstructural analysis of fault surfaces and cross-sections revealed formation of multiple secondary shears progressively merging into an anastomosing 3D-network controlling damage evolution and AE activity in the fault

  15. Nonlinear ultrasonic spectroscopy and acoustic emission in SHM of aircrafts

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Chlada, Milan; Krofta, Josef


    Roč. 2012, SI (2012), s. 36-40 ISSN 1213-3825 R&D Projects: GA MPO(CZ) FR-TI1/274 Institutional support: RVO:61388998 Keywords : NDT * structural health monitoring * acoustic emission * nonlinear elastic wave spectroscopy * time reversal mirrors Subject RIV: BI - Acoustics

  16. Intermediate Frequency Hydro-acoustic Signal Simulation

    Directory of Open Access Journals (Sweden)

    I. A. Rozanov


    Full Text Available HIL-modeling is an efficient tool to improve mathematical and algorithmic support and software of sonar complexes at the stages of laboratory and pre-factory tests. In real time simulation a balance has to be struck between the approximation of the physical process and the computer performance of the system that is used for modeling. The authors have offered a modeling method of hydro-acoustic signals at the point of receiver of a sonar complex system at heterodyne frequency and developed a mathematical model of the most typical signals in the field of active sonar. The model differs from the known ones by the lower requirements for computer performance, which is necessary to improve the accuracy and to ensure the adequacy of the model and signal samples in real time. The offered model is generic and can be extended. Thus, it can be adapted for solving the specific tasks taking into consideration a set of the article's assumptions and restrictions formulated regarding the proposed modeling method. A real-world application of the model expects not only software development and enhance- ment, but also operation supervision of on-board control systems of the sonar complexes during acceptance tests at the factory. An agile mechanism to control the parameters of a location and water medium object enables providing complete test coverage of all the states of the system to be controlled. The experiments in processing of received signals based on the on-board control system of the sonar complex have been implemented within the framework of a number of the research and development activities conducted by the Research Institute of Informatics and Control Systems at Bauman Moscow State University. Authors' further research is to be aimed at model development via enhancing the set of ele- mentary sonar signals generated, as well as at optimizing their computation time and increasing the model accuracy.

  17. Acoustic Emission Analysis of Prestressed Concrete Structures (United States)

    Elfergani, H. A.; Pullin, R.; Holford, K. M.


    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  18. General framework for acoustic emission during plastic deformation


    Kumar, Jagadish; Sarmah, Ritupan; Ananthakrishna, G


    Despite the long history, so far there is no general theoretical framework for calculating the acoustic emission spectrum accompanying any plastic deformation. We set up a discrete wave equation with plastic strain rate as a source term and include the Rayleigh-dissipation function to represent dissipation accompanying acoustic emission. We devise a method of bridging the widely separated time scales of plastic deformation and elastic degrees of freedom. The efficacy of the framework is illus...

  19. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron. (United States)

    Jones, Kevin C; Vander Stappen, François; Bawiec, Christopher R; Janssens, Guillaume; Lewin, Peter A; Prieels, Damien; Solberg, Timothy D; Sehgal, Chandra M; Avery, Stephen


    To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  20. Application of acoustic emission to flaw detection in engineering materials (United States)

    Moslehy, F. A.


    Monitoring of structures under operating loads to provide an early warning of possible failure to locate flaws in test specimens subjected to uniaxial tensile loading is presented. Test specimens used are mild steel prismatic bars with small holes at different locations. When the test specimen is loaded, acoustic emission data are automatically collected by two acoustic transducers located at opposite sides of the hole and processed by an acoustic emission analyzer. The processed information yields the difference in arrival times at the transducers, which uniquely determines the flaw location. By using this technique, flaws were located to within 8 percent of their true location. The use of acoustic emission in linear location to locate a flaw in a material is demonstrated. It is concluded that this one-dimensional application could be extended to the general flaw location problem through triangulation.

  1. Acoustic emission characteristics of a single cylinder diesel generator at various loads and with a failing injector (United States)

    Dykas, Brian; Harris, James


    Acoustic emission sensing techniques have been applied in recent years to dynamic machinery with varying degrees of success in diagnosing various component faults and distinguishing between operating conditions. This work explores basic properties of acoustic emission signals measured on a small single cylinder diesel engine in a laboratory setting. As reported in other works in the open literature, the measured acoustic emission on the engine is mostly continuous mode and individual burst events are generally not readily identifiable. Therefore, the AE are processed into the local (instantaneous) root mean square (rms) value of the signal which is averaged over many cycles to obtain a mean rms AE in the crank angle domain. Crank-resolved spectral representation of the AE is also given but rigorous investigation of the AE spectral qualities is left to future study. Cycle-to-cycle statistical dispersion of the AE signal is considered to highlight highly variable engine processes. Engine speed was held constant but load conditions are varied to investigate AE signal sensitivity to operating condition. Furthermore, during the course of testing the fuel injector developed a fault and acoustic emission signals were captured and several signal attributes were successful in distinguishing this altered condition. The sampling and use of instantaneous rms acoustic emission signal demonstrated promise for non-intrusive and economical change detection of engine injection, combustion and valve events.

  2. Acoustic emission based damage localization in composites structures using Bayesian identification (United States)

    Kundu, A.; Eaton, M. J.; Al-Jumali, S.; Sikdar, S.; Pullin, R.


    Acoustic emission based damage detection in composite structures is based on detection of ultra high frequency packets of acoustic waves emitted from damage sources (such as fibre breakage, fatigue fracture, amongst others) with a network of distributed sensors. This non-destructive monitoring scheme requires solving an inverse problem where the measured signals are linked back to the location of the source. This in turn enables rapid deployment of mitigative measures. The presence of significant amount of uncertainty associated with the operating conditions and measurements makes the problem of damage identification quite challenging. The uncertainties stem from the fact that the measured signals are affected by the irregular geometries, manufacturing imprecision, imperfect boundary conditions, existing damages/structural degradation, amongst others. This work aims to tackle these uncertainties within a framework of automated probabilistic damage detection. The method trains a probabilistic model of the parametrized input and output model of the acoustic emission system with experimental data to give probabilistic descriptors of damage locations. A response surface modelling the acoustic emission as a function of parametrized damage signals collected from sensors would be calibrated with a training dataset using Bayesian inference. This is used to deduce damage locations in the online monitoring phase. During online monitoring, the spatially correlated time data is utilized in conjunction with the calibrated acoustic emissions model to infer the probabilistic description of the acoustic emission source within a hierarchical Bayesian inference framework. The methodology is tested on a composite structure consisting of carbon fibre panel with stiffeners and damage source behaviour has been experimentally simulated using standard H-N sources. The methodology presented in this study would be applicable in the current form to structural damage detection under varying


    Energy Technology Data Exchange (ETDEWEB)

    Shull, D.


    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  4. Use of Macro Fibre Composite Transducers as Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Mark Eaton


    Full Text Available The need for ever lighter and more efficient aerospace structures and components has led to continuous optimization pushing the limits of structural performance. In order to ensure continued safe operation during long term service it is desirable to develop a structural health monitoring (SHM system. Acoustic emission (AE offers great potential for real time global monitoring of aerospace structures, however currently available commercial sensors have limitations in size, weight and adaptability to complex structures. This work investigates the potential use of macro-fibre composite (MFC film transducers as AE sensors. Due to the inhomogeneous make-up of MFC transducers their directional dependency was examined and found to have limited effect on signal feature data. However, signal cross-correlations revealed a strong directional dependency. The sensitivity and signal attenuation with distance of MFC sensors were compared with those of commercially available sensors. Although noticeably less sensitive than the commercial sensors, the MFC sensors still had an acceptable operating range. Furthermore, a series of compressive carbon fiber coupon tests were monitored in parallel using both an MFC sensor and a commercially available sensor for comparison. The results showed good agreement of AE trends recorded by both sensors.

  5. Acoustic Signals in Domestic Chicken ( Gallus gallus ): A Tool for ...

    African Journals Online (AJOL)

    Acoustic Signals in Domestic Chicken ( Gallus gallus ): A Tool for Teaching Veterinary Ethology and Implication for language learning. ... While the adults of the commercial breed, did not respond to the acoustic stimulus, showed less motor reactions, postural and vocal displays. Also they produced less syllables.

  6. Materials for Damping Ambient Acoustic and Vibration Signals Project (United States)

    National Aeronautics and Space Administration — Long-term exposure to even relatively low levels of acoustic and vibration signals has been shown to be potentially harmful to humans. A new class of piezoelectric...

  7. The Acoustic Emission signal acquired by the microphones placed in the CABRI test device along the fourteen last R.I.A. experiments: an example of reproducible research in nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Laurent Pantera, Oumar Traore [CEA, DEN, DER/SRES, Cadarache, F-13108 Saint Paul lez Durance (France)


    , analyses and graphics representations were not straightforward to reproduce from the ancient studies since that, on one hand, people who were in charge of the original work left the laboratory and on the other hand because it is not easy when the time passes, even with our own work, to be able to remember the steps of data manipulations and the exact setup: - During the ancient experiments the use of analog data acquisition systems required to digitize tapes to be able to realize computer treatments. That had had for consequence to lose the initial dating. This one must be correctly edited to do temporal comparisons. - Analyses require functions for calculations whose parameters has to be well-known to reach the same results. We thus wished to manage our workflow in the idea that it can be easily reproducible on all the experiments. The object of the work presented in this article was to put in practice this strong bind between the data, treatments and generation of the document in order not to hesitate to do the iteration principle in action. We do not have to be afraid by the data driven analyses. According to the philosophy of the literate programming, the text of the technical document is woven with the computer code that produces all the printed output as tables, graphs for the study eliminating hence the unrealistic cut and paste. This difficulty is not specific to the nuclear domain. For many years, researchers have been worked out solutions to this mundane issue. And, presently, new technologies and high-level programming languages offer us actual answers. We will firstly present the tools applied in our laboratory to implement this workflow, then we will describe the global perception carried out to continue the study of the Acoustic Emission signals recorded by the two microphones during the fourteen last CABRI R.I.A. test.

  8. Acoustic emission monitoring of degradation of cross ply laminates. (United States)

    Aggelis, D G; Barkoula, N M; Matikas, T E; Paipetis, A S


    The scope of this study is to relate the acoustic activity of damage in composites to the failure mechanisms associated with these materials. Cross ply fiber reinforced composites were subjected to tensile loading with recording of their acoustic activity. Acoustic emission (AE) parameters were employed to monitor the transition of the damage mechanism from transverse cracking (mode I) to delamination (mode II). Wave propagation measurements in between loading steps revealed an increase in the relative amplitude of the propagated wave, which was attributed to the development of delamination that confined the wave to the top longitudinal plies of the composite.

  9. Intermittent flow under constant forcing: Acoustic emission from creep avalanches (United States)

    Salje, Ekhard K. H.; Liu, Hanlong; Jin, Linsen; Jiang, Deyi; Xiao, Yang; Jiang, Xiang


    While avalanches in field driven ferroic systems (e.g., Barkhausen noise), domain switching of martensitic nanostructures, and the collapse of porous materials are well documented, creep avalanches (avalanches under constant forcing) were never observed. Collapse avalanches generate particularly large acoustic emission (AE) signals and were hence chosen to investigate crackling noise under creep conditions. Piezoelectric SiO2 has a strong piezoelectric response even at the nanoscale so that we chose weakly bound SiO2 spheres in natural sandstone as a representative for the study of avalanches under time-independent, constant force. We found highly non-stationary crackling noise with four activity periods, each with power law distributed AE emission. Only the period before the final collapse shows the mean field behavior (ɛ near 1.39), in agreement with previous dynamic measurements at a constant stress rate. All earlier event periods show collapse with larger exponents (ɛ = 1.65). The waiting time exponents are classic with τ near 2.2 and 1.32. Creep data generate power law mixing with "effective" exponents for the full dataset with combinations of mean field and non-mean field regimes. We find close agreement with the predicted time-dependent fiber bound simulations, including events and waiting time distributions. Båth's law holds under creep conditions.

  10. Signal classification and event reconstruction for acoustic neutrino detection in sea water with KM3NeT (United States)

    Kießling, Dominik


    The research infrastructure KM3NeT will comprise a multi cubic kilometer neutrino telescope that is currently being constructed in the Mediterranean Sea. Modules with optical and acoustic sensors are used in the detector. While the main purpose of the acoustic sensors is the position calibration of the detection units, they can be used as instruments for studies on acoustic neutrino detection, too. In this article, methods for signal classification and event reconstruction for acoustic neutrino detectors will be presented, which were developed using Monte Carlo simulations. For the signal classification the disk-like emission pattern of the acoustic neutrino signal is used. This approach improves the suppression of transient background by several orders of magnitude. Additionally, an event reconstruction is developed based on the signal classification. An overview of these algorithms will be presented and the efficiency of the classification will be discussed. The quality of the event reconstruction will also be presented.

  11. Signal classification and event reconstruction for acoustic neutrino detection in sea water with KM3NeT

    Directory of Open Access Journals (Sweden)

    Kießling Dominik


    Full Text Available The research infrastructure KM3NeT will comprise a multi cubic kilometer neutrino telescope that is currently being constructed in the Mediterranean Sea. Modules with optical and acoustic sensors are used in the detector. While the main purpose of the acoustic sensors is the position calibration of the detection units, they can be used as instruments for studies on acoustic neutrino detection, too. In this article, methods for signal classification and event reconstruction for acoustic neutrino detectors will be presented, which were developed using Monte Carlo simulations. For the signal classification the disk–like emission pattern of the acoustic neutrino signal is used. This approach improves the suppression of transient background by several orders of magnitude. Additionally, an event reconstruction is developed based on the signal classification. An overview of these algorithms will be presented and the efficiency of the classification will be discussed. The quality of the event reconstruction will also be presented.

  12. Fine characterization rock thermal damage by acoustic emission technique (United States)

    Kong, Biao; Li, Zenghua; Wang, Enyuan


    This paper examines the differences in the thermal mechanical properties and acoustic emission (AE) characteristics during the deformation and fracture of rock under the action of continuous heating and after high-temperature treatment. Using AE 3D positioning technology, the development and evolution of the internal thermal cracks and the time domain of AE signals in rock were analyzed. High-temperature treatment causes thermal damage to rock. Under the action of continuous heating, the phase characteristics of AE time series correspond to the five stages of rock thermal deformation and fracture, respectively: the micro-defect development stage, the threshold interval of rock micro-cracks, the crack initiation stage, the crack propagation stage, and the crack multistage propagation evolution. When the initial crack propagates, the crack initiation of the rock causes the AE signal to produce a sudden mutation change. Mechanical fraction characteristics during rock uniaxial compression after temperature treatment indicated that the decrease rate of the rock compressive strength, wave velocity, and elastic modulus are relatively large during uniaxial compression tests after high-temperature treatment. During the deformation and fracture of rock under loading, there is faster growth of AE counts and AE events, indicating an increase in the speed of rock deformation and fracture under loading. AE counts show obvious changes during the latter loading stages, whereas AE events show obvious changes during the loading process. The results obtained are valuable for rock thermal stability detection and evaluation in actual underground engineering.

  13. Acoustic emission intensity analysis of corrosion in prestressed concrete piles (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul


    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  14. Acoustic emissions applications on the NASA Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Friesel, M.A.; Dawson, J.F.; Kurtz, R.J.; Barga, R.S.; Hutton, P.H.; Lemon, D.K.


    Acoustic emission is being investigated as a way to continuously monitor the space station Freedom for damage caused by space debris impact and seal failure. Experiments run to date focused on detecting and locating simulated and real impacts and leakage. These were performed both in the laboratory on a section of material similar to a space station shell panel and also on the full-scale common module prototype at Boeing's Huntsville facility. A neural network approach supplemented standard acoustic emission detection and analysis techniques. 4 refs., 5 figs., 1 tab.

  15. Reciprocity calibration of impulse responses of acoustic emission transducers. (United States)

    Hatano, H; Chaya, T; Watanabe, S; Jinbo, K


    By means of reciprocity calibration in Rayleigh-wave and longitudinal-wave sound fields, frequency characteristics of amplitude and phase of absolute sensitivity of acoustic emission transducers were measured on the basis of the newly derived complex reciprocity parameters, and the impulse responses were obtained through inverse Fourier transform. Calibration results were confirmed with supplemental experiments in which the fracturing of a pencil lead was utilized for the source of elastic waves. Impulse responses of acoustic emission transducers to both the Rayleigh-wave and longitudinal-wave displacement velocities were determined by means of purely electrical measurements without the use of mechanical sound sources or reference transducers.

  16. Design of the Acoustic Signal Receiving Unit of Acoustic Telemetry While Drilling

    Directory of Open Access Journals (Sweden)

    Li Zhigang


    Full Text Available Signal receiving unit is one of the core units of the acoustic telemetry system. A new type of acoustic signal receiving unit is designed to solve problems of the existing devices. The unit is a short joint in whole. It not only can receive all the acoustic signals transmitted along the drill string, without losing any signal, but will not bring additional vibration and interference. In addition, the structure of the amplitude transformer is designed, which can amplify the signal amplitude and improve the receiving efficiency. The design of the wireless communication module makes the whole device can be used in normal drilling process when the drill string is rotating. So, it does not interfere with the normal drilling operation.

  17. Acoustic emission method to detect cracks and leaks of the nuclear steam supply system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hoh; Jang, Woo Hyun; Han, Sang Joon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    The work on using Acoustic Emission (AE) method for continuous surveillance of reactor pressure boundaries of nuclear power plants to detect crack or leak of coolant and to evaluate the severity of the flaws is in progress, and has been studied in this report. Several tests and analyses have been accomplished, and the technique to identify the acoustic signal produced by flaw growth, to locate the acoustic source, to relate the signal level to the crack growth rate and leak rate, and to identify the type of flaws is proved to be feasible. There have been efforts to describe the flaw theoretically using fracture mechanics that are helpful in the flaw evaluation. Instrumentations systems to implement the AE technique are surveyed, and the result shows that the current AE detection systems in domestic nuclear power plants can be improved by adopting the up-to-date accomplishments in AE methods. 47 figs., 17 refs. (Author).

  18. Wearable knee health rehabilitation assessment using acoustical emissions (United States)

    Teague, Caitlin N.; Hersek, Sinan; Conant, Jordan L.; Gilliland, Scott M.; Inan, Omer T.


    We have developed a novel, wearable sensing system based on miniature piezoelectric contact microphones for measuring the acoustical emissions from the knee during movement. The system consists of two contact microphones, positioned on the medial and lateral sides of the patella, connected to custom, analog pre-amplifier circuits and a microcontroller for digitization and data storage on a secure digital card. Tn addition to the acoustical sensing, the system includes two integrated inertial measurement sensors including accelerometer and gyroscope modalities to enable joint angle calculations; these sensors, with digital outputs, are connected directly to the same microcontroller. The system provides low noise, accurate joint acoustical emission and angle measurements in a wearable form factor and has several hours of battery life.

  19. Acoustic emission induced by seepage through granular soils (United States)

    Hung, Meng-Hsi

    The relations among acoustic emission (AE) activities, flow parameters, and soil properties were studied to develop a database and/or methodology of using AE technique for detection of excessive seepage. Laboratory experiments and data analyses were performed using specially designed data acquisition instruments and computer based data analysis devices. The overall experimental system was composed of a seepage permeameter, a pressurized water supply reservoir, a hydrophone, signal conditioner components, a data acquisition system, and a computer based data analysis system. In addition, an isolation chamber with steel-wired shielding screen was used during the tests to reduce the background noise and electromagnetic effect. Three limestone gravel samples with very uniform gradations were investigated. For each soil sample, four specimens with different densities were prepared; and six levels of hydraulic gradients were applied to each test specimen. Thus, a total of 72 tests were performed. For each test, the FFT analysis was performed for a frequency span of 800 to 13,600 Hz. A total of 264 records were obtained in every measurement. The analysis results showed that the seepage induced AE in the test soils were broadband Gaussian signals which were zero-mean, normally distributed, and leptokurtic. A minimum seepage velocity ranging from 0.020 to 0.023 m/s was required to trigger meaningful AE in these granular soils. All of the measured autospectral density functions showed that the most prominent AE activities occurred within a frequency range of about 0.8 to 10 kHz. All results of variance, standard deviation, absolute peak, 95th percentile peak, mean square value, ring-down count analyses showed that the AE activities increased with increasing seepage velocity. Most trend lines obtained from these analyses for each test specimen resembled more exponential than parabolic curves. However, these trend lines did not yield a well-defined relationship between acoustic

  20. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    Dislocation unpinning model of acoustic emission from alkali halide crystals. B P CHANDRA1, ANUBHA S GOUR1, VIVEK K CHANDRA2 and YUVRAJ PATIL3. 1School of Studies in Physics, Pt. Ravi Shankar Shukia University, Raipur 492 010, India. 2Department of Electronics and Telecommunication, Raipur Institute of ...

  1. Wear monitoring of single point cutting tool using acoustic emission ...

    Indian Academy of Sciences (India)

    was carried out to study the wear monitoring in single point cutting tool using acoustic emission techniques. 2. Propagation of stress wave due to crater wear and flank wear. Figure 1 show the crater wear occurred on the rake face of the tool. This crater wear emits stress wave, which propagates as spherical wave front and ...

  2. Acoustic emission monitoring of crack formation during alkali silica\

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Přikryl, R.; Šachlová, Š.; Kuchařová, A.


    Roč. 220, MAR 30 (2017), s. 175-182 ISSN 0013-7952 R&D Projects: GA ČR(CZ) GAP104/12/0915 Keywords : Alkali-silica reaction * accelerated expansion test * ultrasonic sounding * acoustic emission * backscattered electron imaging Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.569, year: 2016

  3. Acoustic signal characteristics during IR laser ablation and their consequences for acoustic tissue discrimination (United States)

    Nahen, Kester; Vogel, Alfred


    IR laser ablation of skin is accompanied by acoustic signals the characteristics of which are closely linked to the ablation dynamics. A discrimination between different tissue layers, for example necrotic and vital tissue during laser burn debridement, is therefore possible by an analysis of the acoustic signal. We were able to discriminate tissue layers by evaluating the acoustic energy. To get a better understanding of the tissue specificity of the ablation noise, we investigated the correlation between sample water content, ablation dynamics, and characteristics of the acoustic signal. A free running Er:YAG laser with a maximum pulse energy of 2 J and a spot diameter of 5 mm was used to ablate gelatin samples with different water content. The ablation noise in air was detected using a piezoelectric transducer with a bandwidth of 1 MHz, and the acoustic signal generated inside the ablated sample was measured simultaneously ba a piezoelectric transducer in contact with the sample. Laser flash Schlieren photography was used to investigate the expansion velocity of the vapor plume and the velocity of the ejected material. We observed large differences between the ablation dynamics and material ejection velocity for gelatin samples with 70% and 90% water content. These differences cannot be explained by the small change of the gelatin absorption coefficient, but are largely related to differences of the mechanical properties of the sample. The different ablation dynamics are responsible for an increase of the acoustic energy by a factor of 10 for the sample with the higher water content.

  4. Identifying Technical Condition of Vehicle Gearbox Using Acoustic Emission (United States)

    Furch, Jan; Glos, Josef


    The article examines the technical condition of rotating parts using acoustic diagnostics. The measured object was a mechanical transmission of a field vehicle. Recently this method has been developing very quickly and is expected to be used not only for the signal analysis itself, but also for the failure occurrence prediction which is our aim in the future. In our article we observe the technical condition of a four-speed transmission and analyse the acoustic signal expressed by the root mean square of a noise level in decibels.

  5. Frequency-Based Precursory Acoustic Emission Failure Sequences In Sedimentary And Igneous Rocks Under Uniaxial Compression (United States)

    Colin, C.; Anderson, R. C.; Chasek, M. D.; Peters, G. H.; Carey, E. M.


    Identifiable precursors to rock failure have been a long pursued and infrequently encountered phenomena in rock mechanics and acoustic emission studies. Since acoustic emissions in compressed rocks were found to follow the Gutenberg-Richter law, failure-prediction strategies based on temporal changes in b-value have been recurrent. In this study, we extend on the results of Ohnaka and Mogi [Journal of Geophysical Research, Vol. 87, No. B5, p. 3873-3884, (1982)], where the bulk frequency characteristics of rocks under incremental uniaxial compression were observed in relation to changes in b-value before and after failure. Based on the proposition that the number of low-frequency acoustic emissions is proportional to the number of high-amplitude acoustic emissions in compressed rocks, Ohnaka and Mogi (1982) demonstrated that b-value changes in granite and andesite cores under incremental uniaxial compression could be expressed in terms of the percent abundance of low-frequency events. In this study, we attempt to demonstrate that the results of Ohnaka and Mogi (1982) hold true for different rock types (basalt, sandstone, and limestone) and different sample geometries (rectangular prisms). In order to do so, the design of the compression tests was kept similar to that of Ohnaka and Mogi (1982). Two high frequency piezoelectric transducers of 1 MHz and a 500 kHz coupled to the sides of the samples detected higher and lower frequency acoustic emission signals. However, rather than gathering parametric data from an analog signal using a counter as per Ohnaka and Mogi (1982), we used an oscilloscope as an analog to digital converter interfacing with LabVIEW 2015 to record the complete waveforms. The digitally stored waveforms were then processed, detecting acoustic emission events using a statistical method, and filtered using a 2nd order Butterworth filter. In addition to calculating the percent abundance of low-frequency events over time, the peak frequency of the

  6. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems. (United States)

    Kral, Zachary; Horn, Walter; Steck, James


    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.

  7. A wireless data acquisition system for acoustic emission testing (United States)

    Zimmerman, A. T.; Lynch, J. P.


    As structural health monitoring (SHM) systems have seen increased demand due to lower costs and greater capabilities, wireless technologies have emerged that enable the dense distribution of transducers and the distributed processing of sensor data. In parallel, ultrasonic techniques such as acoustic emission (AE) testing have become increasingly popular in the non-destructive evaluation of materials and structures. These techniques, which involve the analysis of frequency content between 1 kHz and 1 MHz, have proven effective in detecting the onset of cracking and other early-stage failure in active structures such as airplanes in flight. However, these techniques typically involve the use of expensive and bulky monitoring equipment capable of accurately sensing AE signals at sampling rates greater than 1 million samples per second. In this paper, a wireless data acquisition system is presented that is capable of collecting, storing, and processing AE data at rates of up to 20 MHz. Processed results can then be wirelessly transmitted in real-time, creating a system that enables the use of ultrasonic techniques in large-scale SHM systems.

  8. A Machine Learning Approach for Locating Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Kao Chu-Shu


    Full Text Available This paper reports on the feasibility of locating microcracks using multiple-sensor measurements of the acoustic emissions (AEs generated by crack inception and propagation. Microcrack localization has obvious application in non-destructive structural health monitoring. Experimental data was obtained by inducing the cracks in rock specimens during a surface instability test, which simulates failure near a free surface such as a tunnel wall. Results are presented on the pair-wise event correlation of the AE waveforms, and these characteristics are used for hierarchical clustering of AEs. By averaging the AE events within each cluster, "super" AEs with higher signal to noise ratio (SNR are obtained and used in the second step of the analysis for calculating the time of arrival information for localization. Several feature extraction methods, including wavelet packets, autoregressive (AR parameters, and discrete Fourier transform coefficients, were employed and compared to identify crucial patterns related to P-waves in time and frequency domains. By using the extracted features, an SVM classifier fused with probabilistic output is used to recognize the P-wave arrivals in the presence of noise. Results show that the approach has the capability of identifying the location of AE in noisy environments.

  9. Acoustic emission during quench training of superconducting accelerator magnets (United States)

    Marchevsky, M.; Sabbi, G.; Bajas, H.; Gourlay, S.


    Acoustic emission (AE) sensing is a viable tool for superconducting magnet diagnostics. Using in-house developed cryogenic amplified piezoelectric sensors, we conducted AE studies during quench training of the US LARP's high-field quadrupole HQ02 and the LBNL's high-field dipole HD3. For both magnets, AE bursts were observed, with spike amplitude and frequency increasing toward the quench current during current up-ramps. In the HQ02, the AE onset upon current ramping is distinct and exhibits a clear memory of the previously-reached quench current (Kaiser effect). On the other hand, in the HD3 magnet the AE amplitude begins to increase well before the previously-reached quench current (felicity effect), suggesting an ongoing progressive mechanical motion in the coils. A clear difference in the AE signature exists between the untrained and trained mechanical states in HD3. Time intervals between the AE signals detected at the opposite ends of HD3 coils were processed using a combination of narrow-band pass filtering; threshold crossing and correlation algorithms, and the spatial distributions of AE sources and the mechanical energy release were calculated. Both distributions appear to be consistent with the quench location distribution. Energy statistics of the AE spikes exhibits a power-law scaling typical for the self-organized critical state.

  10. A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Carlos Quiterio Gómez Muñoz


    Full Text Available The renewable energy industry is undergoing continuous improvement and development worldwide, wind energy being one of the most relevant renewable energies. This industry requires high levels of reliability, availability, maintainability and safety (RAMS for wind turbines. The blades are critical components in wind turbines. The objective of this research work is focused on the fault detection and diagnosis (FDD of the wind turbine blades. The FDD approach is composed of a robust condition monitoring system (CMS and a novel signal processing method. CMS collects and analyses the data from different non-destructive tests based on acoustic emission. The acoustic emission signals are collected applying macro-fiber composite (MFC sensors to detect and locate cracks on the surface of the blades. Three MFC sensors are set in a section of a wind turbine blade. The acoustic emission signals are generated by breaking a pencil lead in the blade surface. This method is used to simulate the acoustic emission due to a breakdown of the composite fibers. The breakdown generates a set of mechanical waves that are collected by the MFC sensors. A graphical method is employed to obtain a system of non-linear equations that will be used for locating the emission source. This work demonstrates that a fiber breakage in the wind turbine blade can be detected and located by using only three low cost sensors. It allows the detection of potential failures at an early stages, and it can also reduce corrective maintenance tasks and downtimes and increase the RAMS of the wind turbine.

  11. Acoustical positioning method using transponders with adaptive signal level normalizer (United States)

    Iwaya, Hirokazu; Mizutani, Koichi; Ebihara, Tadashi; Wakatsuki, Naoto


    Acoustical indoor positioning — a technology to locate objects or people inside a building using acoustical signals — is a key technology for contextual awareness and ubiquitous computing. To achieve simple localization, in this paper, we propose a transponder-based indoor positioning method. The proposed method does not require clock synchronization for accurate positioning. Furthermore, by using an adaptive signal level normalizer, the terminal can receive acoustic signals with appropriate levels resulting in accurate positioning. We designed a transponder-based indoor positioning method using audible sound and evaluated its performance in experiments. In experiments, three anchors (transponders) of known position are installed on a ceiling of an anechoic chamber, and positioning is performed by setting a terminal in various points. Positioning experiment results showed that the proposed method can achieve on the order of 0.08 ± 0.02 m positioning.

  12. Stimulated acoustic emission detected by transcranial color doppler ultrasound : a contrast-specific phenomenon useful for the detection of cerebral tissue perfusion

    National Research Council Canada - National Science Library

    Pohl, C; Tiemann, K; Schlosser, T; Becher, H


    ... stimulated acoustic emission (SAE). The purpose of this study was to investigate whether SAE might be detected by transcranial color Doppler imaging and whether these signals might be used for cerebral tissue perfusion measurements...

  13. Acoustic Emissions From Hydro-mechanical Perturbation of Natural and Artificial Slopes (United States)

    Michlmayr, G. K.; Or, D.; Cohen, D.; Schwarz, M.; Lehmann, P.


    Acoustic emissions (AE) in soils are attributed to various mechanical failure phenomena occurring under hydro-mechanical loading of slopes that may induce inter-granular sliding, failure of cementing agents (grain de-bonding), micro-crack development and propagation, and breakage of plant roots. Accumulation of such microscopic failure events can lead to global slope failure and result in landslides or debris flow. We thus consider the monitoring and interpretation of acoustic emissions as a potential tool for studying events leading to triggering of such natural hazards. The relatively low magnitude and high attenuation of ultrasonic waves (AE) in wet soils necessitate use of sophisticated equipment and a large number of sensors, hence, limiting their widespread application. We measured AEs in two large field experiments where water was applied to steep hillslope to destabilize the soil layer towards landslides. Acoustic emission signals were measured using metallic waveguides inserted into the soil (0.7~m stainless steel rods), and by installation of sensors into tree trunks using their root systems as natural acoustic waveguides. Additionally, small scale experiments were performed to investigate particular AE signatures associated with soil sliding, breakage of tree roots and alike. We present preliminary results from AE measurements of these experiments including statistical analyses linking the results with conceptual fibre-bundle-model.

  14. Fault diagnosis of helical gearbox using acoustic signal and wavelets (United States)

    Pranesh, SK; Abraham, Siju; Sugumaran, V.; Amarnath, M.


    The efficient transmission of power in machines is needed and gears are an appropriate choice. Faults in gears result in loss of energy and money. The monitoring and fault diagnosis are done by analysis of the acoustic and vibrational signals which are generally considered to be unwanted by products. This study proposes the usage of machine learning algorithm for condition monitoring of a helical gearbox by using the sound signals produced by the gearbox. Artificial faults were created and subsequently signals were captured by a microphone. An extensive study using different wavelet transformations for feature extraction from the acoustic signals was done, followed by waveletselection and feature selection using J48 decision tree and feature classification was performed using K star algorithm. Classification accuracy of 100% was obtained in the study

  15. Acoustic Signals in Domestic Chicken (Gallus gallus): A Tool for ...

    African Journals Online (AJOL)

    Communication between chicks takes place via visual and auditory signals. Several territorial songbirds have been shown to be very good at identifying vocalizations that serve as a species-specific acoustic signature that readily announces their presence (Burgeois, et al. 2007; Catchpole and. Slater, 1995). However, most ...

  16. Digital Signal Processing in Acoustics--Part 2. (United States)

    Davies, H.; McNeill, D. J.


    Reviews the potential of a data acquisition system for illustrating the nature and significance of ideas in digital signal processing. Focuses on the fast Fourier transform and the utility of its two-channel format, emphasizing cross-correlation and its two-microphone technique of acoustic intensity measurement. Includes programing format. (ML)

  17. Standard guide for acoustic emission system performance verification

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 System performance verification methods launch stress waves into the examination article on which the sensor is mounted. The resulting stress wave travels in the examination article and is detected by the sensor(s) in a manner similar to acoustic emission. 1.2 This guide describes methods which can be used to verify the response of an Acoustic Emission system including sensors, couplant, sensor mounting devices, cables and system electronic components. 1.3 Acoustic emission system performance characteristics, which may be evaluated using this document, include some waveform parameters, and source location accuracy. 1.4 Performance verification is usually conducted prior to beginning the examination. 1.5 Performance verification can be conducted during the examination if there is any suspicion that the system performance may have changed. 1.6 Performance verification may be conducted after the examination has been completed. 1.7 The values stated in SI units are to be regarded as standard. No other u...

  18. Control of inhomogeneous materials strength by method of acoustic emission

    Directory of Open Access Journals (Sweden)

    В. В. Носов


    Full Text Available The ambiguous connection between the results of acoustic emission control and the strength of materials makes acoustic-emission diagnosis ineffective and actualizes the problem of strength and metrological heterogeneity. Inhomogeneity is some deviation from a certain norm. The real object is always heterogeneous, homogeneity is an assumption that simplifies the image of the object and the solution of the tasks associated with it. The need to consider heterogeneity is due to the need to clarify a particular task and is a transition to a more complex level of research. Accounting for heterogeneity requires the definition of its type, criterion and method of evaluation. The type of heterogeneity depends on the problem being solved and should be related to the property that determines the function of the real object, the criterion should be informative, and the way of its evaluation is non-destructive. The complexity of predicting the behavior of heterogeneous materials necessitates the modeling of the destructive process that determines the operability, the formulation of the inhomogeneity criterion, the interpretation of the Kaiser effect, as showing inhomogeneity of the phenomenon of non-reproduction of acoustic emission (AE activity upon repeated loading of the examined object.The article gives an example of modeling strength and metrological heterogeneity, analyzes and estimates the informative effect of the Kaiser effect on the danger degree of state of diagnosed object from the positions of the micromechanical model of time dependencies of AE parameters recorded during loading of structural materials and technical objects.

  19. Analysis of acoustic emission waveforms from fatigue cracks (United States)

    Bhuiyan, Md. Yeasin; Bao, Jingjing; Poddar, Banibrata; Giurgiutiu, Victor


    Acoustic emission (AE) monitoring technique is a well-known approach in the field of NDE/SHM. AE monitoring from the defect formation and failure in the materials were well studied by the researchers. However, conventional AE monitoring techniques are predominantly based on statistical analysis. In this study we focus on understanding the AE waveforms from the fatigue crack growth using physics based approach. The growth of the fatigue crack causes the acoustic emission in the material that propagates in the structure. One of the main challenges of this approach is to develop the physics based understanding of the AE source itself. The acoustic emission happens not only from the crack growth but also from the interaction of the crack lips during fatigue loading of the materials. As the waveforms are generated from the AE event, they propagate and create local vibration modes along the crack faces. Fatigue experiments were performed to generate the fatigue cracks. Several test specimens were used in the fatigue experiments and corresponding AE waveforms were captured. The AE waveforms were analyzed and distinguished into different groups based on the similar nature on both time domain and frequency domain. The experimental results are explained based on the physical observation of the specimen.

  20. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method (United States)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.


    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  1. Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms (United States)

    Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.


    A comparison was made between two approaches to predict acoustic emission waveforms in thin plates. A normal mode solution method for Mindlin plate theory was used to predict the response of the flexural plate mode to a point source, step-function load, applied on the plate surface. The second approach used a dynamic finite element method to model the problem using equations of motion based on exact linear elasticity. Calculations were made using properties for both isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy composite) materials. For simulations of anisotropic plates, propagation along multiple directions was evaluated. In general, agreement between the two theoretical approaches was good. Discrepancies in the waveforms at longer times were caused by differences in reflections from the lateral plate boundaries. These differences resulted from the fact that the two methods used different boundary conditions. At shorter times in the signals, before reflections, the slight discrepancies in the waveforms were attributed to limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of the finite element method are that it used the exact linear elasticity solutions, and that it can be used to model real source conditions and complicated, finite specimen geometries as well as thick plates. These advantages come at a cost of increased computational difficulty, requiring lengthy calculations on workstations or supercomputers. The Mindlin plate theory solutions, meanwhile, can be quickly generated on personal computers. Specimens with finite geometry can also be modeled. However, only limited simple geometries such as circular or rectangular plates can easily be accommodated with the normal mode solution technique. Likewise, very limited source configurations can be modeled and plate theory is applicable only to thin plates.

  2. Analysis of failure mechanisms in fatigue test of reinforced concrete beam utilizing acoustic emission

    Directory of Open Access Journals (Sweden)

    N Bunnori


    Full Text Available The acoustic emission technique is used for monitoring the fatigue failure mechanisms in reinforced concrete beam under three point bending. The analysis was conducted by using the bathtub curve method plotted from acoustic emission data. In this study, the fatigue behavior was divided into three stages. The first stage is involved with the decreasing failure rate, known as early life failure or burn-in phase, the second stage is characterized by constant failure rate and the third stage is called the burn-out phase which is an increase of failure rate. The three parameters used in analyzing is the fatigue behavior for each stage of failure which are severity, signal strength and the cumulative signal strength. From severity analysis, the range of each stage of failure had been determined while from signal strength analysis, the initiation of distribution of crack had been detected through the fluctuation of signal strength. Cumulative signal strength parameter provides a clearer view of the initiation and distribution of crack.

  3. Acoustic emission associated with the bursting of a gas bubble at the free surface of a non-Newtonian fluid (United States)

    Divoux, T.; Vidal, V.; Melo, F.; Géminard, J.-C.


    We report experimental measurements of the acoustic emission associated with the bursting of a gas bubble at the free surface of a non-Newtonian fluid. On account of the viscoelastic properties of the fluid, the bubble is generally elongated. The associated frequency and duration of the acoustic signal are discussed with regard to the shape of the bubble and successfully accounted for by a simple linear model. The acoustic energy exhibits a high sensitivity to the dynamics of the thin film bursting, which demonstrates that, in practice, it is barely possible to deduce from the acoustic measurements the total amount of energy released by the event. Our experimental findings provide clues for the understanding of the signals from either volcanoes or foams, where one observes respectively, the bursting of giant bubbles at the free surface of lava and bubble bursting avalanches.

  4. Monitoring of drilling process with the application of acoustic signal

    Directory of Open Access Journals (Sweden)

    Labaš Milan


    Full Text Available Monitoring of rock disintegration process at drilling, scanning of input quantities: thrust F, revolution n and the course of some output quantities: the drilling rate v and the power input P are needed for the control of this process. We can calculate the specific volume work of rock disintegration w and ϕ - quotient of drilling rate v and the specific volume work of disintegration w from the presented quantities.Works on an expertimental stand showed that the correlation relationships between the input and output quantities can be found by scanning the accompanying sound of the drilling proces.Research of the rock disintegration with small-diameter diamond drill tools and different rock types is done at the Institute of Geotechnics. The aim of this research is the possibility of monitoring and controlling the rock disintegration process with the application of acoustic signal. The acoustic vibrations accompanying the drilling process are recorded by a microphone placed in a defined position in the acoustic space. The drilling device (drilling stand, the drilling tool and the rock are the source of sound. Two basic sound states exist in the drilling stand research : the noise at no-load running and the noise at the rotary drilling of rock. Suitable quantities for optimizing the rock disintegration process are searched by the study of the acoustic signal. The dominant frequencies that characterize the disintegration process for the given rock and tool are searched by the analysis of the acoustic signal. The analysis of dominant frequencies indicates the possibility of determining an optimal regime for the maximal drilling rate. Extreme of the specific disintegration energy is determinated by the dispersion of the dominant frequency.The scanned acoustic signal is processed by the Fourier transformation. The Fourier transformation facilitates the distribution of the general non-harmonic periodic process into harmonic components. The harmonic

  5. Oscillating bubble concentration and its size distribution using acoustic emission spectra. (United States)

    Avvaru, Balasubrahmanyam; Pandit, Aniruddha B


    New method has been proposed for the estimation of size and number density distribution of oscillating bubbles in a sonochemical reactor using acoustic emission spectra measurements. Bubble size distribution has been determined using Minnaert's equation [M. Minnaert, On musical air bubbles and sound of running water, Philanthr. Mag. 16 (1933) 235], i.e., size of oscillating bubble is inversely related to the frequency of its volume oscillations. Decomposition of the pressure signal measured by the hydrophone in frequency domain of FFT spectrum and then inverse FFT reconstruction of the signal at each frequency level has been carried out to get the information about each of the bubble/cavity oscillation event. The number mean radius of the bubble size is calculated to be in the range of 50-80 microm and it was not found to vary much with the spatial distribution of acoustic field strength of the ultrasound processor used in the work. However, the number density of the oscillating bubbles and the nature of the distribution were found to vary in different horizontal planes away from the driving transducer surface in the ultrasonic bath. A separate set of experiments on erosion assessment studies were carried out using a thin aluminium foil, revealing a phenomena of active region of oscillating bubbles at antinodal points of the stationary waves, identical to the information provided by the acoustic emission spectra at the same location in the ultrasonic bath.

  6. An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks (United States)

    Zheng, Jing; Lu, Jiren; Peng, Suping; Jiang, Tianqi


    The conventional arrival pick-up algorithms cannot avoid the manual modification of the parameters for the simultaneous identification of multiple events under different signal-to-noise ratios (SNRs). Therefore, in order to automatically obtain the arrivals of multiple events with high precision under different SNRs, in this study an algorithm was proposed which had the ability to pick up the arrival of microseismic or acoustic emission events based on deep recurrent neural networks. The arrival identification was performed using two important steps, which included a training phase and a testing phase. The training process was mathematically modelled by deep recurrent neural networks using Long Short-Term Memory architecture. During the testing phase, the learned weights were utilized to identify the arrivals through the microseismic/acoustic emission data sets. The data sets were obtained by rock physics experiments of the acoustic emission. In order to obtain the data sets under different SNRs, this study added random noise to the raw experiments' data sets. The results showed that the outcome of the proposed method was able to attain an above 80 per cent hit-rate at SNR 0 dB, and an approximately 70 per cent hit-rate at SNR -5 dB, with an absolute error in 10 sampling points. These results indicated that the proposed method had high selection precision and robustness.

  7. Signal processing methodologies for an acoustic fetal heart rate monitor (United States)

    Pretlow, Robert A., III; Stoughton, John W.


    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  8. Fluctuations of Broadband Acoustic Signals in Shallow Water (United States)


    C. Development of time-reversal acoustic modem Digital-signal- processor ( DSP ) implementations of a low-complexity high-frequency underwater...shallow water We use model analysis to predict the performance of the time reversal processor . Equivalent to the matched-filtering operation, the...Song, M. Badiey, " DSP Implementation of Time-Reversal Receivers", (In Preparation), Marine Technology Society Journal, 2014. 16

  9. Failure Progress of 3D Reinforced GFRP Laminate during Static Bending, Evaluated by Means of Acoustic Emission and Vibrations Analysis

    Directory of Open Access Journals (Sweden)

    Mateusz Koziol


    Full Text Available The work aimed to assess the failure progress in a glass fiber-reinforced polymer laminate with a 3D-woven and (as a comparison plain-woven reinforcement, during static bending, using acoustic emission signals. The innovative method of the separation of the signal coming from the fiber fracture and the one coming from the matrix fracture with the use of the acoustic event’s energy as a criterion was applied. The failure progress during static bending was alternatively analyzed by evaluation of the vibration signal. It gave a possibility to validate the results of the acoustic emission. Acoustic emission, as well as vibration signal analysis proved to be good and effective tools for the registration of failure effects in composite laminates. Vibration analysis is more complicated methodologically, yet it is more precise. The failure progress of the 3D laminate is “safer” and more beneficial than that of the plain-woven laminate. It exhibits less rapid load capacity drops and a higher fiber effort contribution at the moment of the main laminate failure.

  10. Acoustic/seismic signal propagation and sensor performance modeling (United States)

    Wilson, D. Keith; Marlin, David H.; Mackay, Sean


    Performance, optimal employment, and interpretation of data from acoustic and seismic sensors depend strongly and in complex ways on the environment in which they operate. Software tools for guiding non-expert users of acoustic and seismic sensors are therefore much needed. However, such tools require that many individual components be constructed and correctly connected together. These components include the source signature and directionality, representation of the atmospheric and terrain environment, calculation of the signal propagation, characterization of the sensor response, and mimicking of the data processing at the sensor. Selection of an appropriate signal propagation model is particularly important, as there are significant trade-offs between output fidelity and computation speed. Attenuation of signal energy, random fading, and (for array systems) variations in wavefront angle-of-arrival should all be considered. Characterization of the complex operational environment is often the weak link in sensor modeling: important issues for acoustic and seismic modeling activities include the temporal/spatial resolution of the atmospheric data, knowledge of the surface and subsurface terrain properties, and representation of ambient background noise and vibrations. Design of software tools that address these challenges is illustrated with two examples: a detailed target-to-sensor calculation application called the Sensor Performance Evaluator for Battlefield Environments (SPEBE) and a GIS-embedded approach called Battlefield Terrain Reasoning and Awareness (BTRA).

  11. Cavitation and acoustic emission around laser-heated microparticles (United States)

    Lin, Charles P.; Kelly, Michael W.


    We studied transient cavitation bubble formation and acoustic emission around individual laser-heated microparticles using subnanosecond time-resolved microscopy. Microcavitation bubbles were observed as early as 0.5 ns after the particles were heated by a 30 ps laser pulse. The bubbles expanded to a few micrometers in size and collapsed on the time scale of 0.1-1 μsec. We discuss microcavitation as the origin of anomalously large photoacoustic effects and nonlinear optical responses observed in laser-heated colloidal suspensions, as well as a mechanism for cellular damage in biologic tissue containing pigment particles.

  12. Localization by Acoustic Emission in Transversely Isotropic Slate

    Directory of Open Access Journals (Sweden)

    Bjorn Debecker


    Full Text Available A method for localization by acoustic emission in transversely isotropic media is developed and validated. Velocities are experimentally measured and then used to calculate a database of theoretical arrival times for a large number of positions. During an actual test, positions are assigned by comparing measured arrival times with the database's arrival times. The method is applied during load tests on slate samples and compared with visual observations of fractures. The localization method allowed for a good identification of the regions of fracturing at different stages during the test.

  13. Monitoring of Acoustic Emission During the Disintegration of Rock

    Czech Academy of Sciences Publication Activity Database

    Tripathi, R.; Srivastava, M.; Hloch, Sergej; Adamčík, P.; Chattopadhyaya, S.; Das, A. K.


    Roč. 149, č. 149 (2016), s. 481-488 E-ISSN 1877-7058. [International Conference on Manufacturing Engineering and Materials, ICMEM 2016. Nový Smokovec, 06.06.2016-10.06.2016] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : acoustic emission * rock disintegration * waterjet Subject RIV: JQ - Machines ; Tools

  14. Acoustic and optical emission during laser-induced plasma formation

    Energy Technology Data Exchange (ETDEWEB)

    Conesa, S.; Palanco, S.; Laserna, J.J. E-mail:


    Laser ablation is widely used in laser processing and analysis of materials. The laser beam evaporates and ionizes material, creating a plasma plume that expands to variable extent and morphology depending on both the sample and its surrounding gas properties. At ambient pressure a shock wave front appears, traveling at variable velocities which are related to the own plasma formation mechanism. Plasma images as well as the acoustic spectral content of the emission within the aural perception range are related to the plasma formation and evolution dynamics. These results are discussed on the basis of different plasma expansion mechanisms.


    Energy Technology Data Exchange (ETDEWEB)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra


    In the U.S. natural gas is distributed through more than one million miles of high-pressure transmission pipelines. If all leaks and infringements could be detected quickly, it would enhance safety and U.S. energy security. Only low frequency acoustic waves appear to be detectable over distances up to 60 km where pipeline shut-off valves provide access to the inside of the pipeline. This paper describes a Portable Acoustic Monitoring Package (PAMP) developed to record and identify acoustic signals characteristic of: leaks, pump noise, valve and flow metering noise, third party infringement, manual pipeline water and gas blow-off, etc. This PAMP consists of a stainless steel 1/2 inch NPT plumbing tree rated for use on 1000 psi pipelines. Its instrumentation is designed to measure acoustic waves over the entire frequency range from zero to 16,000 Hz by means of four instruments: (1) microphone, (2) 3-inch water full range differential pressure transducer with 0.1% of range sensitivity, (3) a novel 3 inch to 100 inch water range amplifier, using an accumulator with needle valve and (4) a line-pressure transducer. The weight of the PAMP complete with all accessories is 36 pounds. This includes a remote control battery/switch box assembly on a 25-foot extension chord, a laptop data acquisition computer on a field table and a sun shield.

  16. Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, K. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Chmelik, F. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)]. E-mail:; Janecek, M. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Hadzima, B. [Department of Materials Engineering, University of Zilina, Vel' ky diel, 010 26 Zilina (Slovakia); Trojanova, Z. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Lukac, P. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)


    Microstructure changes in an AM60 magnesium alloy were monitored using the acoustic emission (AE) technique during tensile tests in the temperature range from 20 to 300 deg. C. The correlation of the AE signal and the deformation processes is discussed. It is shown, using transmission electron and light microscopy, that the character of the AE response is associated with various modes of mechanical twinning at lower temperatures, whereas at higher temperatures also the influence of non-basal dislocations on the AE response must be taken into account.

  17. Transient subharmonic and ultraharmonic acoustic emission during dissolution of free gas bubbles. (United States)

    Biagi, Elena; Breschi, Luca; Masotti, Leonardo


    This work concerns the study of free gas bubble behavior, a basic step in contrast agent study. In order to improve the understanding of microbubble-ultrasound interaction, we propose an acoustic dynamic observation of microbubble behavior performed by a high frame-rate acquiring and processing system. Results from ultrasonic observations of free gas microbubbles are discussed and compared with theoretical simulation. Peculiar radio frequency (RF) echo signals back-propagated from bubbles during dissolution up to their destruction are shown and their behavior is discussed. In particular, the different orders of subharmonic emissions related to changes in bubble sizes during dissolution were observed.

  18. Structure Integrity Testing of Mineral Feed by Means of Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Jaroslav Začal


    Full Text Available This work deals with specific method of non-destructive testing – Acoustic emission (AE. Theoretical part of article is focused on underlying principle of this method and its applicability. The experimental part is focused on research of pressure resistance in mineral feed using the AE. Mineral feed is condensed cube of rock salt (sodium chloride with supplementary minerals, which is fed to livestock and game to supply the mineral elements necessary for their health and condition. Using the AE sensor is possible to provide monitoring of internal changes in the material. AE gives the overview of internal changes in material structure. With use of specific software we can interpret the acoustic signal and identify the current state of material integrity in real time.

  19. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    KAUST Repository

    Zhou, Wei


    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  20. Particle filtering based structural assessment with acoustic emission sensing (United States)

    Yan, Wuzhao; Abdelrahman, Marwa; Zhang, Bin; Ziehl, Paul


    Nuclear structures are designed to withstand severe loading events under various stresses. Over time, aging of structural systems constructed with concrete and steel will occur. This deterioration may reduce service life of nuclear facilities and/or lead to unnecessary or untimely repairs. Therefore, online monitoring of structures in nuclear power plants and waste storage has drawn significant attention in recent years. Of many existing non-destructive evaluation and structural monitoring approaches, acoustic emission is promising for assessment of structural damage because it is non-intrusive and is sensitive to corrosion and crack growth in reinforced concrete elements. To provide a rapid, actionable, and graphical means for interpretation Intensity Analysis plots have been developed. This approach provides a means for classification of damage. Since the acoustic emission measurement is only an indirect indicator of structural damage, potentially corrupted by non-genuine data, it is more suitable to estimate the states of corrosion and cracking in a Bayesian estimation framework. In this paper, we will utilize the accelerated corrosion data from a specimen at the University of South Carolina to develop a particle filtering-based diagnosis and prognosis algorithm. Promising features of the proposed algorithm are described in terms of corrosion state estimation and prediction of degradation over time to a predefined threshold.

  1. Applications of acoustic emission evaluation for civil infrastructure (United States)

    Ziehl, Paul H.


    Due to the state of aging civil infrastructure systems structural health monitoring and nondestructive evaluation have received increased attention recently. Events related to bridge collapses in Pennsylvania (partial) and Minnesota (catastrophic) combined with the levee failures in Louisiana have justifiably drawn the attention of the policy makers and the public at large. Therefore it appears likely that both monitoring efforts of existing systems and the development of more resilient systems will be increased. In the case of civil structures (bridges, dams, levees, and buildings) the most common type of sensors used are strain gages and accelerometers. While these sensors can be useful if used correctly they are limited in the types of data that can be gathered and are not well-suited for many applications. In contrast acoustic emission sensors are very rarely used for civil applications but can in fact provide useful information either as a stand-alone data type or to supplement the data gathered from other sensors. This paper describes several case studies where acoustic emission has been successfully used in civil infrastructure applications and summarizes both the advantages and challenges that are inherent in the method for such applications.

  2. Experimental Investigations into the Effects of Lithology on Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Baozhu Tian


    Full Text Available In order to study how lithology affects acoustic emissions (AE, a series of tunnel rock burst simulation experiments, monitored by acoustic emission instruments, were conducted on granite, marble and basalt. By analyzing the characteristic parameters, this study found that AE events occur more frequently during the rock burst process on granite and basalt. Marble remains dormant until 75% of the loading time before the peak, at which point, cracks develop rapidly and AE events dramatically increase. During the rock burst process, the AE energy release demonstrates that low energy is released in the incubation phase and robust energy is released during the later phase. Before the rock burst occurs, increased in the heterogeneity index Cv values of the AE event are subject to lithology. The Cv values of granite and basalt have an increase of about 0.2-0.4, while marble shows an increase of 1.0-1.2. The heterogeneity index Cv value of an AE event is in line with the rock burst process.

  3. Acoustical Emission Analysis by Unsupervised Graph Mining: A Novel Biomarker of Knee Health Status. (United States)

    Hersek, Sinan; Pouyan, Maziyar Baran; Teague, Caitlin N; Sawka, Michael N; Millard-Stafford, Mindy L; Kogler, Geza F; Wolkoff, Paul; Inan, Omer T


    To study knee acoustical emission patterns in subjects with acute knee injury immediately following injury and several months after surgery and rehabilitation. We employed an unsupervised graph mining algorithm to visualize heterogeneity of the high-dimensional acoustical emission data, and to then derive a quantitative metric capturing this heterogeneity - the graph community factor (GCF). A total of 42 subjects participated in the studies. Measurements were taken once each from 33 healthy subjects with no known previous knee injury, and twice each from 9 subjects with unilateral knee injury: first, within seven days of the injury, and second, 4-6 months after surgery when the subjects were determined ready to start functional activities. Acoustical signals were processed to extract time and frequency domain features from multiple time windows of the recordings from both knees, and k-Nearest Neighbor graphs were then constructed based on these features. The GCF calculated from these graphs was found to be 18.5 ± 3.5 for healthy subjects, 24.8 ± 4.4 (p=0.01) for recently injured and 16.5 ± 4.7 (p=0.01) at 4-6 months recovery from surgery. The objective GCF scores changes were consistent with a medical professional's subjective evaluations and subjective functional scores of knee recovery. Unsupervised graph mining to extract GCF from knee acoustical emissions provides a novel objective and quantitative biomarker of knee injury and recovery that can be incorporated with a wearable joint health system for use outside of clinical settings, and austere / under resourced conditions, to aid treatment / therapy.

  4. Acoustic signalling in a small, socially monogamous canid

    DEFF Research Database (Denmark)

    Darden, Safi-Kirstine; Dabelsteen, Torben


    territoriality and the function of long-ranging barking sequences in a wild population of swift foxes, Vulpes velox. We monitored space use and barking behaviour and combined this with experimental acoustic playback during the mating season. Mated male foxes used barking sequences mainly inside or close...... to be partly overlapped by neighbouring home ranges and therefore we cannot arbitrarily define 50% home range cores as territories. Still, pair home ranges had areas that were exclusive to the mated pair and their primary and secondary daytime sleeping dens were usually located inside these areas....... These results suggest that the barking sequence is used in territorial defence and we conclude that at least male swift foxes are territorial in the mating season and they use a long-ranging acoustic signal in territory defence....

  5. High-temperature acoustic emission sensing tests using a yttrium calcium oxyborate sensor. (United States)

    Johnson, Joseph A; Kim, Kyungrim; Zhang, Shujun; Wu, Di; Jiang, Xiaoning


    Piezoelectric materials have been broadly utilized in acoustic emission sensors, but are often hindered by the loss of piezoelectric properties at temperatures in the 500°C to 700°C range or higher. In this paper, a piezoelectric acoustic emission sensor was designed and fabricated using yttrium calcium oxyborate (YCOB) single crystals, followed by Hsu-Nielsen tests for high-temperature (>700°C) applications. The sensitivity of the YCOB sensor was found to have minimal degradation with increasing temperature up to 1000°C. During Hsu-Nielsen tests with a steel bar, this YCOB acoustic sensor showed the ability to detect zero-order symmetric and antisymmetric modes at 30 and 120 kHz, respectively, as well as distinguish a first-order antisymmetric mode at 240 kHz at elevated temperatures up to 1000°C. The frequency characteristics of the signal were verified using a finite-element model and wavelet transformation analysis.

  6. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems (United States)


    JPAnalytics LLC CC: DCMA Boston DTIC Director, NRL Progress Report #8 Coupled Research in Ocean Acoustics and Signal Processing for the Next...Generation of Underwater Acoustic Communication Systems Principal Investigator’s Name: Dr. James Preisig Period Covered By Report: 1/20/2016 to 4/19/2016...Technical work this period has spanned two areas. The first of these is VHF Acoustics . During this time period, the Principle Investigator worked with Dr

  7. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions (United States)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.


    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  8. A noncontact method for detecting acoustic emission using a microwave Doppler radar motion detector. (United States)

    Smith, Gregory C


    A noncontact method for detecting acoustic emission was developed, using a microwave Doppler radar detector and an active band-pass filter. A theoretical model was developed and a prototype sensor was built and tested. The prototype responds to acoustic emissions (AE), from pencil lead break tests, at ranges up to 1.5 feet.

  9. Auto-identification of engine fault acoustic signal through inverse trigonometric instantaneous frequency analysis

    Directory of Open Access Journals (Sweden)

    Dayong Ning


    Full Text Available The acoustic signals of internal combustion engines contain valuable information about the condition of engines. These signals can be used to detect incipient faults in engines. However, these signals are complex and composed of a faulty component and other noise signals of background. As such, engine conditions’ characteristics are difficult to extract through wavelet transformation and acoustic emission techniques. In this study, an instantaneous frequency analysis method was proposed. A new time–frequency model was constructed using a fixed amplitude and a variable cycle sine function to fit adjacent points gradually from a time domain signal. The instantaneous frequency corresponds to single value at any time. This study also introduced instantaneous frequency calculation on the basis of an inverse trigonometric fitting method at any time. The mean value of all local maximum values was then considered to identify the engine condition automatically. Results revealed that the mean of local maximum values under faulty conditions differs from the normal mean. An experiment case was also conducted to illustrate the availability of the proposed method. Using the proposed time–frequency model, we can identify engine condition and determine abnormal sound produced by faulty engines.

  10. Acoustic emission detection of early stages of cracks in rotating gearbox components (United States)

    Xiang, Dan


    Many critical, highly loaded rotating gearbox components have fast crack propagation rates. Early detection of cracks in gearbox is critical to mitigating the risk of catastrophic failure. Acoustic Emission (AE) techniques have proven to be capable of continuously monitoring the crack initiation and propagation. Due to the long distance of AE signal propagation from the AE sources to the sensors installed in the housing, the AE signal suffers from severe attenuation and noises. Accurate AE signal classification technology that is capable of extracting the true AE signal out of background noises generated by the surrounding environment of a gearbox is desired. In this paper, an innovative feature extraction and analysis based AE signal classification technology is developed to address this issue. Potential AE signals are first pulled out of the noisy background in real-time through a set of automated AE detection algorithms. Then features including count, energy, duration, amplitude, rise time, amplitude rise time ratio, etc. are extracted and analyzed. Through the comparison and correlation of features extracted from signals recorded by multiple AE sensors, respective feature thresholds are determined to distinguish noises from real AE signal. The classification results are experimentally validated through fatigue tests.

  11. Distortion Product Otoacoustic Emissions in acute acoustic trauma. (United States)

    Oeken, Jens


    Acute acoustic traumas are caused by exposure to extremely high noise levels ranging from milliseconds to several hours' duration. In pure tone audiometry they range from the C5 dip to basomediocochlear sensorineural hearing loss. Their pathogenesis is assumed to consist of micromechanical-traumatic and biochemical-metabolic damage to the outer hair cells. In order to establish the changes to the DPOAE (distortion products of otoacoustic emissions), 17 patients were examined after sustaining acute acoustic trauma. The causes included firework explosions, anti-tank rocket launchers, vehicle tyre bursting, rock concerts, hand-gun shots, sub-machine gun fire, hand grenade explosion, exploding car battery. The pure tone audiogram, tympanogram, tinnitus maskability and DPOAE (both DP-gram and growth rate in various frequencies) were determined in all patients. If the event had occurred some time ago, measurements were taken only once; in acute cases measurements were repeated at different times. In nine patients with persistent hearing impairment, clear DPs were found in the unaffected frequencies but were completely absent in the affected frequency range. Four of these patients were unilaterally and two patients were bilaterally affected; three patients had a different (not noise-induced) hearing loss on the opposite side. In eight patients with regressive hearing loss, DPs were by contrast detectable throughout the entire frequency range, their amplitudes only rising slightly as hearing recovered. Of these eight patients, three were unilaterally and five bilaterally affected. DPOAE seem to indicate the likelihood of recovery of hearing threshold after an acute acoustic trauma. In cases with DPs completely absent in the affected frequency range, the prognosis seems to be much worse than in cases with present DPs in the frequency range of hearing.

  12. Acoustic emission analysis for the detection of appropriate cutting operations in honing processes (United States)

    Buj-Corral, Irene; Álvarez-Flórez, Jesús; Domínguez-Fernández, Alejandro


    In the present paper, acoustic emission was studied in honing experiments obtained with different abrasive densities, 15, 30, 45 and 60. In addition, 2D and 3D roughness, material removal rate and tool wear were determined. In order to treat the sound signal emitted during the machining process, two methods of analysis were compared: Fast Fourier Transform (FFT) and Hilbert Huang Transform (HHT). When density 15 is used, the number of cutting grains is insufficient to provide correct cutting, while clogging appears with densities 45 and 60. The results were confirmed by means of treatment of the sound signal. In addition, a new parameter S was defined as the relationship between energy in low and high frequencies contained within the emitted sound. The selected density of 30 corresponds to S values between 0.1 and 1. Correct cutting operations in honing processes are dependent on the density of the abrasive employed. The density value to be used can be selected by means of measurement and analysis of acoustic emissions during the honing operation. Thus, honing processes can be monitored without needing to stop the process.


    Directory of Open Access Journals (Sweden)

    Miroslav Neslušan


    Full Text Available The paper deals with analysis of chip formation and related aspects of the chip formation during turning hardened steel 100Cr6. The paper draws a comparison of some aspects of the chip formation between turning annealed and hardened roll bearing steel. The results of the analysis show that there is the formation of a segmented chip in the case of hard turning. Frequency of segmentation is very high. A conventional piezoelectric dynamometer limits the frequency response to about 3.5 kHz. On the other hand, the frequency of process fluctuation may by obtained by using accelerometers or acoustic emission. This paper reports about the dynamic character of cutting process when hard turning and correlation among the calculated segmentation frequencies and the experimental analysis.

  14. Modern acoustic emission technique and its application in aviation industry. (United States)

    Geng, Rongsheng


    This paper proposes the concept of modern acoustic emission (MAE) technique and describes its application in aviation industry. Modern AE is characterized by the combination of AE parameter and waveform analysis based on the understanding of AE source mechanism, the property of sound wave propagation and the interaction between sound wave and the medium in which the sound wave is propagating. Another feature of MAE is characterized by the application of so-called fully digital AE apparatus with low noise, high speed of data transmission and accurate AE source locating capability. MAE is merely an imagination without the realization of the advanced fully digital AE instrument. The application of MAE in monitoring the conditions of aircraft structures during a fatigue test was taken as an example for showing the important role played by AE. Roles of AE in the evaluation of (environment-related) corrosion damage of aircraft were also presented.

  15. Modern Techniques in Acoustical Signal and Image Processing

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J V


    Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve this goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.

  16. Acoustic Emission and Modal Frequency Variation in Concrete Specimens under Four-Point Bending

    Directory of Open Access Journals (Sweden)

    Giuseppe Lacidogna


    Full Text Available The Acoustic Emission (AE and Dynamic Identification (DI techniques were applied simultaneously, in an original way, to examine the stress dependent damage progress in pre-notched concrete beams tested in four-point bending. The damage mechanisms were characterized by analyzing the AE signals registered during the tests, conducted by increasing the specimen’s vertical deflection. In particular, the dominant fracture mode was identified, and correlations between dissipated and emitted energies were investigated. Moreover, variations in the natural bending frequencies, produced by the crack advancement under loading, were detected and put in relation with the cumulated AE energy. Two different types of piezoelectric (PZT sensors, operating in well distinct frequency ranges, were used to measure AE and modal signals. This study may be of interest with an outlook on possible correlations between a multi-parameter structural monitoring and the solution of inverse problems by numerical models.

  17. Classification of acoustic emission waveforms for nondestructive evaluation using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Barga, R.S.; Melton, R.B.; Friesel, M.A.


    Neural networks were applied to the classification of two types of acoustic emission (AE) events, crack growth and fretting, from a simulated airframe joint specimen. Signals were obtained from four sensors at different locations on the test specimen. Multilayered neural networks were trained to classify the signals using the error backpropagation learning algorithm, enabling AE events arising from crack growth to be distinguished from those caused by fretting. In this paper we evaluate the neural network classification performance for sensor location dependent and sensor location independent training and testing sets. Further, we present a new training strategy which significantly reduces the time required to learn large training sets using the error backpropagation learning algorithm, and improves the generalization performance of the network. 10 refs., 6 figs., 3 tabs.

  18. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    Directory of Open Access Journals (Sweden)

    Zhijie Wen


    Full Text Available Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE, which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the influence of different height to diameter ratio on the acoustic emission characteristics of coal-rock damage evolution was discussed by microparticle flow PFC2D software platform. The results show that coal-rock size influences the uniaxial compressive strength, peak strain, and elastic modulus of itself; the size effect has little effect on the acoustic emission law of coal-rock damage and the effects of the size of coal-rock samples on acoustic emission characteristics are mainly reflected in three aspects: the triggering time of acoustic emission, the strain range of strong acoustic emission, and the intensity of acoustic emission; the damage evolution of coal-rock specimen can be divided into 4 stages: initial damage, stable development, accelerated development, and damage.

  19. Correlation analysis between ceramic insulator pollution and acoustic emissions

    Directory of Open Access Journals (Sweden)

    Benjamín Álvarez-Nasrallah


    Full Text Available Most of the studies related to insulator pollution are normally performed based on individual analysis among leakage current, relative humidity and equivalent salt deposit density (ESDD. This paper presents a correlation analysis between the leakage current and the acoustic emissions measured in a 230 kV electrical substations in the city of Barranquilla, Colombia. Furthermore, atmospheric variables were considered to develop a characterization model of the insulator contamination process. This model was used to demonstrate that noise emission levels are a reliable indicator to detect and characterize pollution on high voltage insulators. The correlation found amount the atmospheric, electrical and sound variables allowed to determine the relations for the maintenance of ceramic insulators in high-polluted areas. In this article, the results on the behavior of the leakage current in ceramic insulators and the sound produced with different atmospheric conditions are shown, which allow evaluating the best time to clean the insulator at the substation. Furthermore, by experimentation on site and using statistical models, the correlation between ambient variables and the leakage current of insulators in an electrical substation was obtained. Some of the problems that bring the external noise were overcome using multiple microphones and specialized software that enabled properly filter the sound and better measure the variables.

  20. Adaptive plasticity in wild field cricket's acoustic signaling.

    Directory of Open Access Journals (Sweden)

    Susan M Bertram

    Full Text Available Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets, rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus. Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual context they experience.

  1. Acoustic gravity microseismic pressure signal at shallow stations (United States)

    Peureux, Charles; Ardhuin, Fabrice; Royer, Jean-Yves


    It has been known for decades that the background permanent seismic noise, the so-called microseimic signal, is generated by the nonlinear interaction of oppositely travelling ocean surface waves [Longuet-Higgins 1951]. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean. The pressure field at depths less than an acoustic wave length to the surface is made of evanescent acoustic-gravity modes [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, at the ocean bottom and 100 m below sea-surface and in the upper part of the water column respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modelling framework help assessing its performances and can be used to help future model improvements. References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, The Royal Society, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.

  2. Acoustic emission detection of macro-cracks on engraving tool steel inserts during the injection molding cycle using PZT sensors. (United States)

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez


    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  3. Changes in oto-acoustic emissions after exposure to live music

    DEFF Research Database (Denmark)

    Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte; Voetmann, Jan


    Distortion Product Oto-acoustic Emissions (DPOAE) and Transient Evoked Oto-acoustic Emissions (TEOAE) were measured in subjects before and after attendance to live music. The changes measured were compared to the exposure levels measured at the position of the subject. The main objectives...... of this experiment were two fold: 1) to assess the validity of the proposed measurement protocol to measure changes in DPOAE and TEOAE after a concert; 2) to test the reliability of the oto-acoustic emission measurement system under field conditions; Initial results shows that it is possible to measure changes...... in hearing after exposures of relative short duration (results will be presented....

  4. Acoustic emission monitoring of the Syracuse Athena temple: scale invariance in the timing of ruptures. (United States)

    Niccolini, G; Carpinteri, A; Lacidogna, G; Manuello, A


    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activity.

  5. Determination of bearing steel heat treatment with the use of the acoustic emission method

    Directory of Open Access Journals (Sweden)

    T. Z. Wozniak


    Full Text Available A study on the control of an extremely important stage of the martensitic-bainitic austempering and obtaining the M-B structure in the 100CrMnSi6-4 steel with the use of the acoustic emission (AE has been undertaken. In order to enrich retained austenite with carbon, steels are austempered at appropriately low temperatures. A martensitic transformation, resulting from diffusionless and displacive transformation is associated with significant AE signs. The strain energy produced during growth due to the shape change is reduced by plastic deformation. Predominant source of (AE is the movement of dislocations in order to relieve internal stresses.The heat treatment was performed in a modern, purpose-constructed device which simultaneously records acoustic emission effects. The signals were recorded with the use of an AE analyzer 20–800 kHz, and they were received by means of a broadband piezoelectric transducer with the use of a specialist card with a sampling frequency of 1200 kHz. The results regarding a correlation of austempering temperature and the maximum number of AE events and dilatometric results have been presented. This parameter can be used for precise Ms temperature estimation. Basing on microstructural investigations, it has been found that previously formed martensite with midrib morphology also accelerates the bainitic transformation.

  6. Nondestructive Online Detection of Welding Defects in Track Crane Boom Using Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Yong Tao


    Full Text Available Nondestructive detection of structural component of track crane is a difficult and costly problem. In the present study, acoustic emission (AE was used to detect two kinds of typical welding defects, that is, welding porosity and incomplete penetration, in the truck crane boom. Firstly, a subsidiary test specimen with special preset welding defect was designed and added on the boom surface with the aid of steel plates to get the synchronous deformation of the main boom. Then, the AE feature information of the welding defect could be got without influencing normal operation of equipment. As a result, the rudimentary location analysis can be attained using the linear location method and the two kinds of welding defects can be distinguished clearly using AE characteristic parameters such as amplitude and centroid frequency. Also, through the comparison of two loading processes, we concluded that the signal produced during the first loading process was mainly caused by plastic deformation damage and during the second loading process the stress release and structure friction between sections in welding area are the main acoustic emission sources. Thus, the AE is an available tool for nondestructive online detection of latent welding defects of structural component of track crane.

  7. Defect Location Analysis of Tank Bottom Based on Acoustic Emission with Different Location Algorithms

    Directory of Open Access Journals (Sweden)

    Wang He


    Full Text Available Acoustic emission technology used in the state testing of the tank bottom has become a new hot spot for researchers and designers. Two location algorithms, such as three-point locating method and multi-point locating method are applied in this paper using multi-channel acoustic emission system for detection of tank bottom. The location result of the broken lead calibration shows that a larger error will be produced for different algorithm. The effects of the arrangement form of sensors on locating corrosion defect have been analyzed through experiments with two algorithms. The typical arrangement form of sensors has been discussed to study the effects on corrosion-pitting location. The test results show that two algorithms both have the capacity of locating defects and multipoint positioning algorithm is more accurate. It is not clear that the sensors distribution forms affect corrosion-pitting location. But the circumferential distribution of sensors along the bottom is better to test the state of tank with the consideration of feasibility, accuracy and rationality of signal source region. It is of practical engineering significance.

  8. Statistical Analysis of Acoustic Signal Propagating Through the South China Sea Basin (United States)



  9. Acoustic emission measurements in petroleum-related rock mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Unander, Tor Erling


    Acoustic emission activity in rock has usually been studied in crystalline rock, which reflects that rock mechanics has also mostly been occupied with such rocks in relations to seismology, mining and tunneling. On the other hand, petroleum-related rock mechanics focuses on the behaviour of sedimentary rock. Thus, this thesis presents a general study of acoustic emission activity in sedimentary rock, primarily in sandstone. Chalk, limestone and shale have also been tested, but to much less degree because the AE activity in these materials is low. To simplify the study, pore fluids have not been used. The advent of the personal computer and computerized measuring equipment have made possible new methods both for measuring and analysing acoustic emissions. Consequently, a majority of this work is devoted to the development and implementation of new analysis techniques. A broad range of topics are treated: (1) Quantification of the AE activity level, assuming that the event rate best represents the activity. An algorithm for estimating the event rate and a methodology for objectively describing special changes in the activity e.g., onset determination, are presented. (2) Analysis of AE waveform data. A new method for determining the source energy of an AE event is presented, and it is shown how seismic source theory can be used to analyze even intermediate quality data. Based on these techniques, it is shown that a major part of the measured AE activity originates from a region close to the sensor, not necessarily representing the entire sample. (3) An improved procedure for estimating source locations is presented. The main benefit is a procedure that better handles arrival time data with large errors. Statistical simulations are used to quantify the uncertainties in the locations. The analysis techniques are developed with the application to sedimentary rock in mind, and in two articles, the techniques are used in the study of such materials. The work in the first

  10. Modeling skull's acoustic attenuation and dispersion on photoacoustic signal (United States)

    Mohammadi, L.; Behnam, H.; Nasiriavanaki, M. R.


    Despite the great promising results of a recent new transcranial photoacoustic brain imaging technology, it has been shown that the presence of the skull severely affects the performance of this imaging modality. In this paper, we investigate the effect of skull on generated photoacoustic signals with a mathematical model. The developed model takes into account the frequency dependence attenuation and acoustic dispersion effects occur with the wave reflection and refraction at the skull surface. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. From the simulation results, it was found that the skull-induced distortion becomes very important and the reconstructed image would be strongly distorted without correcting these effects. In this regard, it is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in transcranial photoacoustic brain imaging.

  11. Continuous and recurrent testing of acoustic emission sensors; Kontinuierliche und wiederkehrende Pruefung von Schallemissionssensoren

    Energy Technology Data Exchange (ETDEWEB)

    Sause, Markus G.R.; Schmitt, Stefan; Potstada, Philipp [Augsburg Univ. (Germany). Inst. fuer Materials Resource Management, Mechanical Engineering


    In many fields of application of acoustic emission, the testing can lead to a lasting change in the sensor characteristics. This can be caused by mechanical damage, thermal stress or use under aggressive environmental conditions. Irrespective of visually testable damages of the sensors, a shift in the spectral sensitivity, a reduction in the absolute sensitivity or a reduction in the signal-to-noise ratio can occur. During the test, this requires a possibility to periodically check the sensors, including the coupling aids used. For recurring testing, recommendations are given in Directive SE 02 ''Verification of acoustic emission sensors and their coupling in the laboratory''. This paper discusses possibilities for continuous monitoring of the sensors during the test and presents an application example for the partly automated recurring testing of acoustic emission sensors using Directive SE 02. For this purpose, a test stand for the supply of the sensors to be tested was constructed and the signal recording and data reduction implemented in freely available software programs. The operating principle is demonstrated using selected case studies. [German] In vielen Anwendungsbereichen der Schallemission kann es bei der Pruefung zu einer nachhaltigen Veraenderung der Sensorcharakteristik kommen. Dies kann durch mechanische Beschaedigung, thermische Belastung oder Verwendung unter aggressiven Umweltbedingungen geschehen. Unabhaengig von visuell pruefbaren Beschaedigungen der Sensoren kann es dabei zu einer Verschiebung der spektralen Empfindlichkeit, einer Verringerung der absoluten Empfindlichkeit oder einer Erniedrigung des Signal-Rausch Verhaeltnis kommen. Bei der Pruefung erfordert dies eine Moeglichkeit zur periodischen Ueberpruefung der Sensoren inklusive der verwendeten Koppelhilfsmittel. Fuer die wiederkehrende Pruefung finden sich entsprechende Handlungsempfehlungen in der Richtlinie SE 02 ''Verifizierung von

  12. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Benno


    In this work the avalanche dynamics of five shape memory samples has been analyzed by acoustic emission spectroscopy. The acoustic emission spectroscopy is particularly suitable for this analysis as it couples with high sensitivity to small structural changes caused by nucleation processes, interface movements, or variant rearrangements [91]. Owing to its high time resolution it provides a statistical approach to describe the jerky and intermittent character of the avalanche dynamics [20]. Rate-dependent cooling and heating runs have been conducted in order to study time-dependent aspects of the transition dynamics of the single crystals Ni{sub 63}Al{sub 37}, Au{sub 50.5}Cd{sub 49.5}, and Fe{sub 68.8}Pd{sup single}{sub 31.2}, and the polycrystalline sample Fe{sub 68.8}Pd{sup poly}{sub 31.2}. Moreover, a ferromagnetic Ni{sub 52}Mn{sub 23}Ga{sub 25} single crystal has been studied by temperature cycles under an applied magnetic field and additionally by magnetic-field cycles at a constant temperature in the martensitic phase. All samples analyzed in this work show power law behavior in the acoustic emission features amplitude, energy, and duration, which indicates scale-free behavior. The access to these power law spectra allows an investigation of energy barriers separating the metastable states, which give rise to avalanche transition dynamics. By performing rate-dependent experiments the importance of thermal fluctuations and the impact of martensite respectively twin stabilization processes have been examined. In the case of the Ni{sub 52}Mn{sub 23}Ga{sub 25} sample, the magnetic-field-induced variant rearrangement at slow field cycles leads to stronger signals than the rearrangement at quick cycles. This behavior can be explained by twin stabilization processes, which are accompanied by a reduction of the twin boundary mobility. For Ni{sub 63}Al{sub 37}, the combination of relevant thermal fluctuations, different involved time scales, and a high degree of

  13. The signatures of acoustic emission waveforms from fatigue crack advancing in thin metallic plates (United States)

    Yeasin Bhuiyan, Md; Giurgiutiu, Victor


    The acoustic emission (AE) waveforms from a fatigue crack advancing in a thin metallic plate possess diverse and complex spectral signatures. In this article, we analyze these waveform signatures in coordination with the load level during cyclic fatigue. The advancing fatigue crack may generate numerous AE hits while it grows under fatigue loading. We found that these AE hits can be sorted into various groups based on their AE waveform signatures. Each waveform group has a particular time-domain signal pattern and a specific frequency spectrum. This indicates that each group represents a certain AE event related to the fatigue crack growth behavior. In situ AE-fatigue experiments were conducted to monitor the fatigue crack growth with simultaneous measurement of AE signals, fatigue loading, and optical crack growth measurement. An in situ microscope was installed in the load-frame of the mechanical testing system (MTS) to optically monitor the fatigue crack growth and relate the AE signals with the crack growth measurement. We found the AE signal groups at higher load levels (75%–85% of maximum load) were different from the AE signal groups that happened at lower load levels (below 60% of load level). These AE waveform groups are highly related to the fatigue crack-related AE events. These AE signals mostly contain the higher frequency peaks (100 kHz, 230 kHz, 450 kHz, 550 kHz). Some AE signal groups happened as a clustered form that relates a sequence of small AE events within the fatigue crack. They happened at relatively lower load level (50%–60% of the maximum load). These AE signal groups may be related to crack friction and micro-fracture during the friction process. These AE signals mostly contain the lower frequency peaks (60 kHz, 100 kHz, 200 kHz). The AE waveform based analysis may give us comprehensive information of the metal fatigue.

  14. Quantitative acoustic emission monitoring of fatigue cracks in fracture critical steel bridges. (United States)


    The objective of this research is to evaluate the feasibility to employ quantitative acoustic : emission (AE) techniques for monitoring of fatigue crack initiation and propagation in steel : bridge members. Three A36 compact tension steel specimens w...

  15. Acoustic emission partial discharge detection technique applied to fault diagnosis: Case studies of generator transformers

    National Research Council Canada - National Science Library

    Shanker, Tangella; Nagamani Narasimhaiah, Hebbale; Punekar, Gururaj


    .... Of the two cases discussed, the first deals with Acoustic Emission Partial Discharge (AEPD) tests on two identical transformers, and the second deals with the AEPD measurement of a transformer carried out on different occasions...

  16. Changes in oto-acoustic emissions after exposure to live music

    DEFF Research Database (Denmark)

    Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte; Voetmann, Jan


    Distortion Product Oto-acoustic Emissions (DPOAE) and Transient Evoked Oto-acoustic Emissions (TEOAE) were measured in subjects before and after attendance to live music. The changes measured were compared to the exposure levels measured at the position of the subject. The main objectives...... of this experiment were two fold: 1) to assess the validity of the proposed measurement protocol to measure changes in DPOAE and TEOAE after a concert; 2) to test the reliability of the oto-acoustic emission measurement system under field conditions; Initial results shows that it is possible to measure changes...... in hearing after exposures of relative short duration (1.5 hours). There are large individual differences both in sound exposure levels as well as in the changes on oto-acoustic emissions produced by similar exposures. Current results will be presented....

  17. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring (United States)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa


    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  18. ?Smart COPVs? - Continued Successful Development of JSC IR&D Acoustic Emissions (AE) SHM Project (United States)

    National Aeronautics and Space Administration — Develop and apply promising quantitative pass/fail criteria to CPV using acoustic emission (AE) and lay the foundation for continued development of an automated...

  19. Development of acoustic emission evaluation method for repaired prestressed concrete bridge girders. (United States)


    Acoustic emission (AE) monitoring has proven to be a useful nondestructive testing tool in ordinary reinforced concrete beams. Over the past decade, however, the technique has also been used to test other concrete structures. It has been seen that ac...

  20. Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor. (United States)

    Son, Younggyu; Lim, Myunghee; Khim, Jeehyeong; Ashokkumar, Muthupandian


    During ultrasound-induced cavitation in liquids, acoustic emissions at fundamental and harmonic frequencies can be detected. The effect of acoustic emissions at harmonic frequencies on the sonochemical and sonophysical activities has not been explored, especially in large-scale sonoreactors. In this study, the acoustic emissions in the range, 0-250 kHz in a 36 kHz sonoreactor with varying liquid heights were studied and compared with the sonochemical activities. The acoustic pressures at both fundamental and harmonics decreased drastically as the liquid height was increased due to the attenuation of sound energy. It was observed that the increase in input power resulted in only an increase in the acoustic emissions at derivative frequencies such as, harmonics and subharmonics. The sonochemical activity, evaluated in terms of sonochemiluminescence and H2O2 yield, was not significantly enhanced at higher input power levels. This suggests that at higher power levels, the "extra" acoustic energy is not effectively used to generate primary cavitation activity; rather it is converted to generate acoustic emissions at harmonic and subharmonic frequencies. This is an important observation for the design of energy efficiency large-scale sonochemical reactors. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Fatigue, hysteresis, and acoustic emission, parts 1 and 2 (United States)

    Guralnick, S. A.; Erber, T.


    The basic objective of this research program is to characterize the development of material fatigue by means of stress-strain hysteresis and acoustic emission measurements. We have conjectured that the accumulation and organization of damage in material fatigue is similar to the progressive failure of structures under cyclic loading. And, specifically, that the endurance limit of a material in fatigue is the analogue of the incremental collapse load of a structure. Since the principal features of the service life and failure of structures can be completely described by hysteresis methods, it is plausible that similar means can be used to characterize the inception and organization of microplastic processes in materials. Experiments were conducted upon nearly 100 specimens made of Rimmed AISI 1018 Unannealed Steel. This material was selected because extensive data on its performance exists in the engineering literature and because its stress-strain curve is of the gradual yielding type, mirroring at least the monotonic stress-strain behavior of many of the kinds of metals used in the aircraft industry.

  2. Damage Detection in Railway Prestressed Concrete Sleepers using Acoustic Emission (United States)

    Clark, A.; Kaewunruen, S.; Janeliukstis, R.; Papaelias, M.


    Prestressed concrete sleepers (or railroad ties) are safety-critical elements in railway tracks that distribute the wheel loads from the rails to the track support system. Over a period of time, the concrete sleepers age and deteriorate in addition to experiencing various types of static and dynamic loading conditions, which are attributable to train operations. In many cases, structural cracks can develop within the sleepers due to high intensity impact loads or due to poor track maintenance. Often, cracks of sleepers develop and present at the midspan due to excessive negative bending. These cracks can cause broken sleepers and sometimes called ‘center bound’ problem in railway lines. This paper is the world first to present an application of non-destructive acoustic emission technology for damage detection in railway concrete sleepers. It presents experimental investigations in order to detect center-bound cracks in railway prestressed concrete sleepers. Experimental laboratory testing involves three-point bending tests of four concrete sleepers. Three-point bending tests correspond to a real failure mode, when the loads are not transferred uniformly to the ballast support. It is observed that AE sensing provides an accurate means for detecting the location and magnitude of cracks in sleepers. Sensor location criticality is also highlighted in the paper to demonstrate the reliability-based damage detection of the sleepers.

  3. Acoustic Emission Technique Applied in Textiles Mechanical Characterization

    Directory of Open Access Journals (Sweden)

    Rios-Soberanis Carlos Rolando


    Full Text Available The common textile architecture/geometry are woven, braided, knitted, stitch boded, and Z-pinned. Fibres in textile form exhibit good out-of-plane properties and good fatigue and impact resistance, additionally, they have better dimensional stability and conformability. Besides the nature of the textile, the architecture has a great role in the mechanical behaviour and mechanisms of damage in textiles, therefore damage mechanisms and mechanical performance in structural applications textiles have been a major concern. Mechanical damage occurs to a large extent during the service lifetime consequently it is vital to understand the material mechanical behaviour by identifying its mechanisms of failure such as onset of damage, crack generation and propagation. In this work, textiles of different architecture were used to manufacture epoxy based composites in order to study failure events under tensile load by using acoustic emission technique which is a powerful characterization tool due to its link between AE data and fracture mechanics, which makes this relation a very useful from the engineering point of view.

  4. Failure Mechanism of Rock Bridge Based on Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Guoqing Chen


    Full Text Available Acoustic emission (AE technique is widely used in various fields as a reliable nondestructive examination technology. Two experimental tests were carried out in a rock mechanics laboratory, which include (1 small scale direct shear tests of rock bridge with different lengths and (2 large scale landslide model with locked section. The relationship of AE event count and record time was analyzed during the tests. The AE source location technology and comparative analysis with its actual failure model were done. It can be found that whether it is small scale test or large scale landslide model test, AE technique accurately located the AE source point, which reflected the failure generation and expansion of internal cracks in rock samples. Large scale landslide model with locked section test showed that rock bridge in rocky slope has typical brittle failure behavior. The two tests based on AE technique well revealed the rock failure mechanism in rocky slope and clarified the cause of high speed and long distance sliding of rocky slope.

  5. Modelling of acoustic emission generated in involute spur gear pair (United States)

    Sharma, Ram Bihari; Parey, Anand; Tandon, Naresh


    Acoustic emission (AE) is an important technique for the condition monitoring and diagnostics of various mechanical system components like gear, bearing, macahine tool etc. Several researchers have found experimentally that gear operating parameters such as speed, load, specific film thickness, temperature etc. influence the energy of AE generated during meshing of the gears. But there is lack of mathematical model to comprehend the actual physical mechanism in the gear for the same. In this study, a theoretical model has been developed to establish a rapport between gear operating parameters and energy of AE on the bases of asperity contact and friction between involute surfaces of gear using Hertzian contact approach, statistical concepts, and varying sliding velocity of gear tooth mechanism. The effects of load sharing, lubrication, and dynamic load condition during the gear mesh cycle are also considered in the developed model. An experimental study has been performed for validation of developed theoretical model. A satisfactory validation has been perceived between the AE rms (root mean square) predicted by the developed theoretical model and obtained experimental results.

  6. Early corrosion monitoring of prestressed concrete piles using acoustic emission (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul H.


    The depassivation and corrosion of bonded prestressing steel strands in concrete bridge members may lead to major damage or collapse before visual inspections uncover evident signs of damage, and well before the end of the design life. Recognizing corrosion in its early stage is desirable to plan and prioritize remediation strategies. The Acoustic Emission (AE) technique is a rational means to develop structural health monitoring and prognosis systems for the early detection and location of corrosion in concrete. Compelling features are the sensitivity to events related to micro- and macrodamage, non-intrusiveness, and suitability for remote and wireless applications. There is little understanding of the correlation between AE and the morphology and extent of early damage on the steel surface. In this paper, the evidence collected from prestressed concrete (PC) specimens that are exposed to salt water is discussed vis-à-vis AE data from continuous monitoring. The specimens consist of PC strips that are subjected to wet/dry salt water cycles, representing portions of bridge piles that are exposed to tidal action. Evidence collected from the specimens includes: (a) values of half-cell potential and linear polarization resistance to recognize active corrosion in its early stage; and (b) scanning electron microscopy micrographs of steel areas from two specimens that were decommissioned once the electrochemical measurements indicated a high probability of active corrosion. These results are used to evaluate the AE activity resulting from early corrosion.

  7. A Method of Abnormal States Detection Based on Adaptive Extraction of Transformer Vibro-Acoustic Signals

    Directory of Open Access Journals (Sweden)

    Liang Zou


    Full Text Available State monitoring is very important for the safe operation of high-voltage transformers. A non-contact vibro-acoustic detection method based on the Blind Source Separation (BSS was proposed in this paper to promote the development of transformer on-line monitoring technology. Firstly, the algorithm of Sparse Component Analysis (SCA was applied for the adaptive extraction of vibro-acoustic signals, which utilizes the sorted local maximum values of the potential function. Then, the operating states of the transformer were detected by analyzing the vibro-acoustic signal eigenvectors. Different conditions including running normally, increasing of transformer vibro-acoustic amplitude and changing of frequency component of transformer vibro-acoustic were simulated. Moreover, experiments were carried out in a 220 kV substation. The research results show that the number of mixed noise sources can be estimated and the transformer vibro-acoustic signal was always ranked first in the separation signals. The source signals were effectively separated from the mixed signals while all of the correlation coefficients are more than 0.98 and the quadratic residuals are less than −32 dB. As for the experiments, the vibro-acoustic signal was separated out successfully from two voice signals and two interference signals. The acoustic signal reflection is considered as the main cause of the signal interference, and the transformer volume source model is considered as the main reason of unstable vibro-acoustic signal amplitude. Finally, the simulated abnormal states of the transformer were well recognized and the state of the tested transformer was judged to be normal.

  8. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels (United States)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.


    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  9. Detecting and identifying damage in sandwich polymer composite by using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    McGugan, M.; Soerensen, Bent F.; Oestergaard, R.; Bech, T.


    Acoustic emission is a useful monitoring tool for extracting extra information during mechanical testing of polymer composite sandwich materials. The study of fracture mechanics within test specimens extracted from wind turbine blade material is presented. The contribution of the acoustic emission monitoring technique in defining different failure modes identified during the testing is discussed. The development of in-situ structural monitoring and control systems is considered. (au)


    Directory of Open Access Journals (Sweden)



    Full Text Available Acoustic Emission (AE signatures of various weld defects of stainless steel 316L nuclear grade weld material are investigated. The samples are fabricated by Tungsten Inert Gas (TIG Welding Method have final dimension of 140 mm x 15 mm x 10 mm. AE signals from weld defects such as Pinhole, Porosity, Lack of Penetration, Lack of Side Fusion and Slag are recorded under dynamic load conditions by specially designed mechanical jig. AE features of the weld defects were attained using Linear Location Technique (LLT. The results from this study concluded that, stress release and structure deformation between the sections in welding area are load conditions major part of Acoustic Emission activity during loading.

  11. New early warning system for gravity-driven ruptures based on codetection of acoustic signal (United States)

    Faillettaz, J.


    Gravity-driven rupture phenomena in natural media - e.g. landslide, rockfalls, snow or ice avalanches - represent an important class of natural hazards in mountainous regions. To protect the population against such events, a timely evacuation often constitutes the only effective way to secure the potentially endangered area. However, reliable prediction of imminence of such failure events remains challenging due to the nonlinear and complex nature of geological material failure hampered by inherent heterogeneity, unknown initial mechanical state, and complex load application (rainfall, temperature, etc.). Here, a simple method for real-time early warning that considers both the heterogeneity of natural media and characteristics of acoustic emissions attenuation is proposed. This new method capitalizes on codetection of elastic waves emanating from microcracks by multiple and spatially separated sensors. Event-codetection is considered as surrogate for large event size with more frequent codetected events (i.e., detected concurrently on more than one sensor) marking imminence of catastrophic failure. Simple numerical model based on a Fiber Bundle Model considering signal attenuation and hypothetical arrays of sensors confirms the early warning potential of codetection principles. Results suggest that although statistical properties of attenuated signal amplitude could lead to misleading results, monitoring the emergence of large events announcing impeding failure is possible even with attenuated signals depending on sensor network geometry and detection threshold. Preliminary application of the proposed method to acoustic emissions during failure of snow samples has confirmed the potential use of codetection as indicator for imminent failure at lab scale. The applicability of such simple and cheap early warning system is now investigated at a larger scale (hillslope). First results of such a pilot field experiment are presented and analysed.

  12. A Fibre Bragg Grating Sensor as a Receiver for Acoustic Communications Signals

    Directory of Open Access Journals (Sweden)

    Steven Hinckley


    Full Text Available A Fibre Bragg Grating (FBG acoustic sensor is used as a receiver for acoustic communications signals. Acoustic transmissions were generated in aluminium and Carbon Fibre Composite (CFC panels. The FBG receiver was coupled to the bottom surface opposite a piezoelectric transmitter. For the CFC, a second FBG was embedded within the layup for comparison. We show the transfer function, frequency response, and transient response of the acoustic communications channels. In addition, the FBG receiver was used to detect Phase Shift Keying (PSK communications signals, which was shown to be the most robust method in a highly resonant communications channel.

  13. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach. (United States)

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y


    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Development of high temperature acoustic emission sensing system using fiber Bragg grating (United States)

    Pang, Dandan; Sui, Qingmei; Wang, Ming; Guo, Dongmei; Sai, Yaozhang


    In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed with a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25 °C to 200 °C. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.

  15. The development of acoustic emission for structural integrity monitoring of aircraft (United States)

    Scala, C. M.; Bowles, S. J.; Scott, L. G.


    This paper reviews procedures for distinguishing between acoustic emission (AE) from fatigue crack propagation and from spurious sources in aircraft applications. Particular emphasis is placed on the development of procedures applicable during AE monitoring of complex-shaped components. First, procedures to eliminate extraneous sources are evaluated, including the use of guard sensors and source location systems. The capabilities of additional signal-processing (which in principle can range from adaptive to non-adaptive) for identifying and locating AE from fatigue crack propagation are then evaluated. The problems in applying adaptive processing are illustrated by AE results from a Macchi aircraft in-flight and Mirage aircraft during full-scale fatigue testing. The ARL development of semi-adaptive processing based on background research on AE sources, sensors, calibration and other techniques is described. Successful application of this processing to the Mirage test above is then detailed, and the value of using reduced adaptation in processing is demonstrated.

  16. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades. (United States)

    Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean


    The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency-frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency-MARSE, and average frequency-peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes.

  17. Television interference and acoustic emissions associated with the operation of the Darrieus VAWT (United States)

    Kelley, N. D.; Hemphill, R. R.; Sengupta, D. L.

    Field surveys were conducted to assess the community annoyance potential from electromagnetic interference to television reception (TVI) and acoustic emissions associated with the operation of a Darrieus-type, vertical axis wind turbine (VAWT). The type and extent of interference to nearby television reception was evaluated using a 17 meter VAWT. A series of measurements of observed interference levels were made at a number of sites in the turbine vicinity employing the locally available VHF and UHF television signals as sources. A simple theoretical model was developed for analyzing the TVI produced by the Darrieus turbine. Using this model in conjunction with the field measurements, it was found the Darrieus/VAWT produces the same amount of interference on the lower VHF channels as a horizontal axis turbine with a comparably sized blade scattering area, but less on all other channels.

  18. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems (United States)


    JPAnalytics LLC CC: DCMA Boston DTIC Director, NRL Progress Report #7 Coupled Research in Ocean Acoustics and Signal Processing for the Next...implemen- tation. Work in this time period shifted from extending asymptotic Random Matrix Theory to explicitly handle time-varying environments to using...for the direct path signal. The solid blue line shows the di↵erence between the Doppler spread of the direct and surface bounce path signals and

  19. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    Directory of Open Access Journals (Sweden)

    Aleš Hančič


    Full Text Available This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals’ peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  20. Detection of Delamination in Composite Beams Using Broadband Acoustic Emission Signatures (United States)

    Okafor, A. C.; Chandrashekhara, K.; Jiang, Y. P.


    Delamination in composite structure may be caused by imperfections introduced during the manufacturing process or by impact loads by foreign objects during the operational life. There are some nondestructive evaluation methods to detect delamination in composite structures such as x-radiography, ultrasonic testing, and thermal/infrared inspection. These methods are expensive and hard to use for on line detection. Acoustic emission testing can monitor the material under test even under the presence of noise generated under load. It has been used extensively in proof-testing of fiberglass pressure vessels and beams. In the present work, experimental studies are conducted to investigate the use of broadband acoustic emission signatures to detect delaminations in composite beams. Glass/epoxy beam specimens with full width, prescribed delamination sizes of 2 inches and 4 inches are investigated. The prescribed delamination is produced by inserting Teflon film between laminae during the fabrication of composite laminate. The objectives of this research is to develop a method for predicting delamination size and location in laminated composite beams by combining smart materials concept and broadband AE analysis techniques. More specifically, a piezoceramic (PZT) patch is bonded on the surface of composite beams and used as a pulser. The piezoceramic patch simulates the AE wave source as a 3 cycles, 50KHz, burst sine wave. One broadband AE sensor is fixed near the PZT patch to measure the AE wave near the AE source. A second broadband AE sensor, which is used as a receiver, is scanned along the composite beams at 0.25 inch step to measure propagation of AE wave along the composite beams. The acquired AE waveform is digitized and processed. Signal strength, signal energy, cross-correlation of AE waveforms, and tracking of specific cycle of AE waveforms are used to detect delamination size and location.

  1. Acoustic emission analysis of fiber-reinforced composite in flexural testing. (United States)

    Alander, Pasi; Lassila, Lippo V J; Tezvergil, Arzu; Vallittu, Pekka K


    The aim of this study was to examine the emission of acoustic signals from six commercially available fiber-reinforced composites (FRC) used in the frameworks of fixed partial dentures in material bending. FRC test specimens were made of six commercially available fiber products of polyethylene or glass and five light-curing resins. FRC test specimens were polymerized with a hand light-curing unit or with a light-curing oven. The flexural test for determination of ultimate flexural strength of test specimens (n = 6) was based on the ISO 10477 standard after the specimens were stored in air or in water for two weeks. The acoustic emission (AE) signals were monitored during three-point loading test of the test specimens using a test with increasing loading levels until the specimens fractured. Generally, stress level required for the AE activity initiation ranged from 107 MPa (Ribbond) to 579 MPa (everStick). The ultimate flexural strength of FRC specimens were higher, ranging from 132 to 764 MPa, being highest with everStick and Vectris FRC, and lowest with Ribbond FRC. ANOVA showed a statistically significant difference between the initiation of AE activity and the ultimate flexural strength according to the brand (p < 0.001) storing conditions (p < 0.001) and polymerization procedure (p < 0.001). AE activity and ultimate flexural strength correlated significantly (p < 0.010, r = 0.887). The result of this study suggested that AE activity in FRC specimens started at a 19-32% lower stress level than occurred at final fracture.

  2. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part A Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)


    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. This paper presents a statistical analysis of high frequency stress wave signals captured from a newly developed noninvasive, non-destructive tube inspection technique known as the vibration impact acoustic emission (VIAE) technique. Acoustic emission (AE) signals have been introduced into the ASTM A179 seamless steel tubes using an impact hammer, and the AE wave propagation was captured using an AE sensor. Specifically, a healthy steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AE features extracted from the captured signals are rise time, peak amplitude, duration and count. The VIAE technique also analysed the AE signals using statistical features such as root mean square (r.m.s.), energy, and crest factor. It was evident that duration, count, r.m.s., energy and crest factor could be used to automatically identify the presence of defect in carbon steel tubes using AE signals captured using the non-invasive VIAE technique.

  3. Crack detection in riveted lap joints using fiber laser acoustic emission sensors. (United States)

    Cranch, G A; Johnson, L; Algren, M; Heerschap, S; Miller, G A; Marunda, T S; Holtz, R L


    Fiber laser ultrasonic sensors are demonstrated to be capable of measuring acoustic emission generated by cracks in aluminum panels. A single laser sensor is integrated into a riveted lap joint, which is subject to accelerated fatigue. Acoustic emission generated by crack formation in the panel in addition to other acoustic events due to fretting within the joint are clearly resolved by the laser sensor. Localization of an acoustic emission event is demonstrated with a multiplexed array of three laser sensors. This manuscript also calculates the fundamental limit to displacement resolution of the fiber laser sensor and presents measurements of the directional response to Lamb waves. The high measurement resolution and multiplexing capability of the fiber laser ultrasonic sensor makes it an ideal candidate for structural health monitoring applications.

  4. Acoustic emission in orthopaedics: A state of the art review. (United States)

    Kapur, Richard A


    Acoustic emission (AE) is the phenomenon of sonic and ultrasonic wave generation by materials as they undergo deformation and fracture processes. AE monitoring is widely used throughout civil and mechanical engineering as a highly sensitive and non-destructive technique for structural health monitoring. Advances in computational power and digital data storage have generated much further interest in the possible applications of AE technology. Of particular interest has been its application within the field of Orthopaedic surgery. This paper examines the current literature surrounding the use of AE technology within Orthopaedics and provides a comprehensive overview of its current applications within Orthopaedic surgery. The use of AE technology in Orthopaedics is wide ranging and is discussed under the themes of: the study of the biomechanical properties of bone and fracture mechanics, research into failure mechanisms associated with cemented implants, prosthetic design, diagnostic value of AE and clinical application. AE technology is of great benefit as an Orthopaedic research tool where AE counts can be used to provide a surrogate marker for damage accumulation and flaws can be monitored as they develop. More recently there has been increased interest in the possible clinical applications of AE technology and an appreciation of the potential benefits for the diagnosis and treatment of Orthopaedic pathology. Despite the challenges involved when adopting AE techniques in vivo the potential of AE technology within Orthopaedics is significant. Already widely used in the research setting, clinical application has shown enormous potential and is a rapidly expanding area of contemporary research. This analysis will review and summarise the current literature relating to the use of AE technology within Orthopaedic surgery. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes (United States)

    Ghaffari, H.; Xia, K.; Young, R.


    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder

  6. Radial shrinkage and ultrasound acoustic emissions of fresh versus pre-dried Norway spruce sapwood. (United States)

    Rosner, Sabine; Konnerth, Johannes; Plank, Bernhard; Salaberger, Dietmar; Hansmann, Christian


    Acoustic emission (AE) and radial shrinkage were compared between fully saturated fresh and pre-dried Norway spruce sapwood during dehydration at ambient temperature. Hydraulic conductivity measurements, anatomical investigations on bordered pits and X-ray computed tomography (CT) scans were done to search for possible AE sources other than the breakage of the water columns inside the tracheids. Both fresh and pre-dried specimens showed radial shrinkage due to drying surface layers right from the beginning of dehydration, which induced almost no AE. Whereas no dimensional changes occurred in pre-dried wood thereafter, fresh wood showed a rapid shrinkage increase starting at 25% relative water loss. This dimensional change ceased when further moisture got lost and was even partially reversed. AE of fresh wood showed much higher activity and energy, which is a waveform feature that describes the strength of the acoustic signal. Extremely high single AE energy events were detected at this critical stage of dehydration. After partial recovery from shrinkage, neither dimensional changes nor AE activity showed differences between fresh and pre-dried wood after more than 80% relative moisture loss. Our results suggested that fresh sapwood is more prone to dehydration stresses than pre-dried sapwood. Differences in AE and shrinkage behavior might be due to the weakening or distortion of the pit membranes (cavitation fatigue), pit aspiration, structural changes of the cell walls and micro-checks, which occurred during the first dehydration cycle.

  7. Preliminary studies for monitoring erosion in pipelines by the acoustic emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiboni, G.B. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Mecanica e de Materiais; Marquardt, T.A.S; SantaMaria, V.A.R.; Silva, C.H. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)


    The aim of this work is to present some applications of Acoustic Emission (AE), which is a powerful technique for nondestructive testing in Tribology, treated here as tests of friction, wear by contact fatigue, wear by slip and wear by erosion. In this work a special attention is given to solid particle erosion and hydro-abrasive erosion, problems found in almost every pipeline that lead to local loss of material and eventually rupture of the line. The technique of AE can be used as an efficient online tool when, primarily, to monitor tribological aspects such as the rate of wear of materials, as well as detect the spread of flaws in them. In wear by erosion, specifically, the parameters of RMS and acoustic energy are capable of correlation with the type of mechanism for removal of material. As a preliminary goal, erosive tests were performed with gas (air) without erosive particles, monitored by AE, varying the surface of the samples and the internal diameter the nozzle, taking the differences in signs of AE. Correlation between parameters of RMS and amplitude were noticed with the variables of the tests, such as roughness and fluid velocity. The RMS parameter showed a exponential correction with the fluid velocity, however the amplitude signals had a linear behavior. The knowledge of these parameters is essential for the development of a system that is able to quantify the wear rate of a pipeline without taking it out of operation. (author)

  8. Monitoring of pipeline hydrostatic testing with artificial flaws applying acoustic emission and ultra-sonic techniques; Monitoracao de teste hidrostatico de tubos com descontinuidades artificiais empregando as tecnicas de emissao acustica e ultra-som

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sergio Damasceno [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)


    Charts and parameters used to perform and analyzing the acoustic emission data collected during the hydrostatic test in pipe samples build in API XL 60 with 20 inches of diameter and 14 millimeters of thickness are shown. These pipes had internal and external artificial flaws done by electro-erosion process with aspect ratio 1 x 20. A relationship between acoustic emission results, ultrasound and J-Integral were established using the applied pressurization sequence. Characteristics values of acoustic emission signals were shown as a criteria of field tests. (author)

  9. Monitoring of Global Acoustic Transmissions: Signal Processing and Preliminary Data Analysis (United States)


    signal level and 6.39x10- I volts2/Hz for the noise value. These values can be converted to acoustic power levels of 19 dB rel ipPa for the signal and...46.4 dB rel ipPa for the noise, as discussed below. Transmission loss over the mean acoustic path would then be about 213 dB - 19 dB = 194 dB. b. Signal...sensitivity of the hydrophones (-170 Db rel IpPa or 3.162 x 108 pPa/V). Acoustic power is the pressure force times the velocity of the pressure wave

  10. Method for Detecting the Inside of Coke Drum Using Acoustic Signals

    Directory of Open Access Journals (Sweden)

    Qian Guo


    Full Text Available A distance and acoustic intensity reverberation (DAIR physical model is developed that can be successfully applied to the signal processing of the hydraulic decoking process online monitoring. In this model, the transmission characteristics of acoustic signals generated by a moving sound source in a dynamic confined space are first analyzed using data recursion and correction according to the coordinate continuity in adjacent area and adjacent time. The results show that the nondetection zone of acoustic signals generated directly by the impact of water is eliminated, and the surface distribution of coke in the drum can be mapped in real time.

  11. Investigation of correlation of LF power modulation of light in natural and artificial illumination situations and acoustic emission (United States)

    Kleeberg, Florian P.; Gutzmann, Holger L.; Weyer, Cornelia; Weiß, Jürgen; Dörfler, Joachim; Hahlweg, Cornelius F.


    The present paper is a follow up of a paper presented in 2013 at the Novel Optical Systems conference in the session on Optics and Music. It is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects to be observed which are interesting in the context of occupational medicine. It seems, that acoustic stimuli in the frequency range of the flicker fusion and below might lead to unexpected perceptible effects beyond those of the single stimuli. The effect of infrasound stimuli as a whole body perception seems to be boosted. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we question if such coherence is perceivable at all. Further, the problem of modulation of optical signals by acoustical signal is concerned. A catalogue of scenarios and 'effects to look for' including measurement concepts is presented and discussed.

  12. Acoustic signal typing for evaluation of voice quality in tracheoesophageal speech

    NARCIS (Netherlands)

    van As-Brooks, Corina J.; Koopmans-van Beinum, Florien J.; Pols, Louis C. W.; Hilgers, Frans J. M.


    Because of the aperiodicity of many tracheoesophageal voices, acoustic analysis of the tracheoesophageal voice is less straightforward than that of the normal voice. This study presents the development and testing of an acoustic signal typing system based on visual inspection of a narrow-band

  13. An improved method and data analysis for ultrasound acoustic emissions and xylem vulnerability in conifer wood. (United States)

    Wolkerstorfer, Silviya V; Rosner, Sabine; Hietz, Peter


    The vulnerability of the xylem to cavitation is an important trait in plant drought resistance and has been quantified by several methods. We present a modified method for the simultaneous measurement of cavitations, recorded as ultrasound acoustic emissions (UAEs), and the water potential, measured with a thermocouple psychrometer, in small samples of conifer wood. Analyzing the amplitude of the individual signals showed that a first phase, during which the mean amplitude increased, was followed by a second phase with distinctly lower signal amplitudes. We provide a method to separate the two groups of signals and show that for many samples plausible vulnerability curves require rejecting late low-energy UAEs. These very likely do not result from cavitations. This method was used to analyze the differences between juvenile wood, and early and late mature wood in Picea abies (L.) Karst. Juvenile earlywood was more resistant to cavitation than mature earlywood or latewood, which we relate to the tracheid anatomy of the samples. Copyright © Physiologia Plantarum 2012.

  14. Signal analysis of acoustic and flow-induced vibrations of BWR main steam line

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, G., E-mail: [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Prieto-Guerrero, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Núñez-Carrera, A. [Comisión Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragán 779, Col. Narvarte, México, D.F. 03020 (Mexico); Vázquez-Rodríguez, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Centeno-Pérez, J. [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas Unidad Profesional “Adolfo López Mateos”, Av. IPN, s/n, México, D.F. 07738 (Mexico); Espinosa-Martínez, E.-G. [Departamento de Sistemas Energéticos, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); and others


    Highlights: • Acoustic and flow-induced vibrations of BWR are analyzed. • BWR performance after extended power uprate is considered. • Effect of acoustic side branches (ASB) is analyzed. • The ASB represents a reduction in the acoustic loads to the steam dryer. • Methodology developed for simultaneous analyzing the signals in the MSL. - Abstract: The aim of this work is the signal analysis of acoustic waves due to phenomenon known as singing in Safety Relief Valves (SRV) of the main steam lines (MSL) in a typical BWR5. The acoustic resonance in SRV standpipes and fluctuating pressure is propagated from SRV to the dryer through the MSL. The signals are analyzed with a novel method based on the Multivariate Empirical Mode Decomposition (M-EMD). The M-EMD algorithm has the potential to find common oscillatory modes (IMF) within multivariate data. Based on this fact, we implement the M-EMD technique to find the oscillatory mode in BWR considering the measurements obtained collected by the strain gauges located around the MSL. These IMF, analyzed simultaneously in time, allow obtaining an estimation of the effects of the multiple-SRV in the MSL. Two scenarios are analyzed: the first is the signal obtained before the installation of the acoustic dampers (ASB), and the second, the signal obtained after installation. The results show the effectiveness of the ASB to damp the strong resonances when the steam flow increases, which represents an important reduction in the acoustic loads to the steam dryer.

  15. Ecology of acoustic signalling and the problem of masking interference in insects. (United States)

    Schmidt, Arne K D; Balakrishnan, Rohini


    The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.

  16. Quantitative Analysis Of Acoustic Emission From Rock Fracture Experiments (United States)

    Goodfellow, Sebastian David

    This thesis aims to advance the methods of quantitative acoustic emission (AE) analysis by calibrating sensors, characterizing sources, and applying the results to solve engi- neering problems. In the first part of this thesis, we built a calibration apparatus and successfully calibrated two commercial AE sensors. The ErgoTech sensor was found to have broadband velocity sensitivity and the Panametrics V103 was sensitive to surface normal displacement. These calibration results were applied to two AE data sets from rock fracture experiments in order to characterize the sources of AE events. The first data set was from an in situ rock fracture experiment conducted at the Underground Research Laboratory (URL). The Mine-By experiment was a large scale excavation response test where both AE (10 kHz - 1 MHz) and microseismicity (MS) (1 Hz - 10 kHz) were monitored. Using the calibration information, magnitude, stress drop, dimension and energy were successfully estimated for 21 AE events recorded in the tensile region of the tunnel wall. Magnitudes were in the range -7.5 seismicity in the field (0.1 - 10 MPa). The second data set was AE collected during a true-triaxial deformation experiment, where the objectives were to characterize laboratory AE sources and identify issues related to moving the analysis from ideal in situ conditions to more complex laboratory conditions in terms of the ability to conduct quantitative AE analysis. We found AE magnitudes in the range -7.8 seismic energy radiated is between 1e-7 % and 1e-3 % of the injection energy. We tested these findings by calculating the AE energy as a percentage of the injection energy and found that for eight laboratory hydraulic fracture experiments, the seismic energy ranged from 7.02e-08 % to 1.24e-04 % of the injection energy. These results support those made in the field, which concludes that seismic energy projection is a very small component of the hydraulic fracture energy budget and that the dominant energy

  17. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements. (United States)

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing


    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.

  18. Acoustic enhancement of electrically evoked otoacoustic emissions reflects basilar membrane tuning: a model. (United States)

    Xue, S; Mountain, D C; Hubbard, A E


    A simple model for the acoustic enhancement of electrically evoked otoacoustic emissions (EEOEs) is presented in this paper. The model is based on the assumption that the enhancement is a result of the local interaction between the electrical current spreading in the scala media and the basilar membrane (BM) response to acoustic input. The analytical, steady-state response of the 1-dimensional linear cable to sinusoidal current injection is derived and is used to predict the current spreading in the cochlea. Acoustic enhancement at an emission generator is modeled as a magnitude change that is a sigmoid function of the local BM motion. The model results are in good agreement with the experimental findings and support our interpretation that the acoustic enhancement of EEOEs reflects BM tuning.

  19. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure (United States)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.


    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  20. Graph-based sensor fusion for classification of transient acoustic signals. (United States)

    Srinivas, Umamahesh; Nasrabadi, Nasser M; Monga, Vishal


    Advances in acoustic sensing have enabled the simultaneous acquisition of multiple measurements of the same physical event via co-located acoustic sensors. We exploit the inherent correlation among such multiple measurements for acoustic signal classification, to identify the launch/impact of munition (i.e., rockets, mortars). Specifically, we propose a probabilistic graphical model framework that can explicitly learn the class conditional correlations between the cepstral features extracted from these different measurements. Additionally, we employ symbolic dynamic filtering-based features, which offer improvements over the traditional cepstral features in terms of robustness to signal distortions. Experiments on real acoustic data sets show that our proposed algorithm outperforms conventional classifiers as well as the recently proposed joint sparsity models for multisensor acoustic classification. Additionally our proposed algorithm is less sensitive to insufficiency in training samples compared to competing approaches.

  1. Courtship initiation is stimulated by acoustic signals in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Aki Ejima


    Full Text Available Finding a mating partner is a critical task for many organisms. It is in the interest of males to employ multiple sensory modalities to search for females. In Drosophila melanogaster, vision is thought to be the most important courtship stimulating cue at long distance, while chemosensory cues are used at relatively short distance. In this report, we show that when visual cues are not available, sounds produced by the female allow the male to detect her presence in a large arena. When the target female was artificially immobilized, the male spent a prolonged time searching before starting courtship. This delay in courtship initiation was completely rescued by playing either white noise or recorded fly movement sounds to the male, indicating that the acoustic and/or seismic stimulus produced by movement stimulates courtship initiation, most likely by increasing the general arousal state of the male. Mutant males expressing tetanus toxin (TNT under the control of Gr68a-GAL4 had a defect in finding active females and a delay in courtship initiation in a large arena, but not in a small arena. Gr68a-GAL4 was found to be expressed pleiotropically not only in putative gustatory pheromone receptor neurons but also in mechanosensory neurons, suggesting that Gr68a-positive mechanosensory neurons, not gustatory neurons, provide motion detection necessary for courtship initiation. TNT/Gr68a males were capable of discriminating the copulation status and age of target females in courtship conditioning, indicating that female discrimination and formation of olfactory courtship memory are independent of the Gr68a-expressing neurons that subserve gustation and mechanosensation. This study suggests for the first time that mechanical signals generated by a female fly have a prominent effect on males' courtship in the dark and leads the way to studying how multimodal sensory information and arousal are integrated in behavioral decision making.

  2. Synergy of seismic, acoustic, and video signals in blast analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.P. [Southern Methodist Univ., Dallas, TX (United States); Stump, B.W. [Los Alamos National Lab., NM (United States); Weigand, J. [Vibronics Inc. (United States)


    The range of mining applications from hard rock quarrying to coal exposure to mineral recovery leads to a great variety of blasting practices. A common characteristic of many of the sources is that they are detonated at or near the earth`s surface and thus can be recorded by camera or video. Although the primary interest is in the seismic waveforms that these blasts generate, the visual observations of the blasts provide important constraints that can be applied to the physical interpretation of the seismic source function. In particular, high speed images can provide information on detonation times of individuals charges, the timing and amount of mass movement during the blasting process and, in some instances, evidence of wave propagation away from the source. All of these characteristics can be valuable in interpreting the equivalent seismic source function for a set of mine explosions and quantifying the relative importance of the different processes. This paper documents work done at the Los Alamos National Laboratory and Southern Methodist University to take standard Hi-8 video of mine blasts, recover digital images from them, and combine them with ground motion records for interpretation. The steps in the data acquisition, processing, display, and interpretation are outlined. The authors conclude that the combination of video with seismic and acoustic signals can be a powerful diagnostic tool for the study of blasting techniques and seismology. A low cost system for generating similar diagnostics using consumer-grade video camera and direct-to-disk video hardware is proposed. Application is to verification of the Comprehensive Test Ban Treaty.

  3. Laboratory Experimental System for Examination of Acoustic Emission Generated by Partial Discharges

    Directory of Open Access Journals (Sweden)

    I. M. Salom


    Full Text Available One of the major causes of transformer failures is dielectric breakdown. Partial discharges cause gradual insulation degradation thus partial discharge activity monitoring provides transformer state insight. This paper gives an overview of common methods for partial discharges detection and source location in transformers, with a special reference to the acoustic method as an noninvasive and interference resistant method suitable for application. For laboratory testing a laboratory experimental system for partial discharge diagnostics using acoustic emission measurement was developed.

  4. Aespoe Pillar Stability Experiment. Acoustic emission and ultrasonic monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Pettitt, Will; Young, R. Paul [Applied Seismology Consultants Ltd., Shrewsbury (United Kingdom)


    This report describes the results from acoustic emission (AE) and ultrasonic monitoring of the Aespoe Pillar Stability Experiment (APSE) at SKB's Hard Rock Laboratory (HRL), Sweden. The APSE is being undertaken to demonstrate the current capability to predict spalling in a fractured rock mass using numerical modelling techniques, and to demonstrate the effect of backfill and confining pressure on the propagation of micro-cracks in rock adjacent to deposition holes within a repository. An ultrasonic acquisition system has provided acoustic emission and ultrasonic survey monitoring throughout the various phases of the experiment. Results from the entire data set are provided with this document so that they can be effectively compared to several numerical modelling studies, and to mechanical and thermal measurements conducted around the pillar volume, in an 'integrated analysis' performed by SKB staff. This document provides an in-depth summary of the AE and ultrasonic survey results for future reference. The pillar has been produced by excavating two 1.8 m diameter deposition holes 1 m apart. These were bored in 0.8 m steps using a Tunnel Boring Machine specially adapted for vertical drilling. The first deposition hole was drilled in December 2003. Preceding this a period of background monitoring was performed so as to obtain a datum for the results. The hole was then confined to 0.7 MPa internal over pressure using a specially designed water-filled bladder. The second deposition hole was excavated in March 2004. Heating of the pillar was performed over a two month period between ending in July 2004, when the confined deposition hole was slowly depressurised. Immediately after depressurisation the pillar was allowed to cool with cessation of monitoring occurring a month later. A total of 36,676 AE triggers were recorded over the reporting period between 13th October 2003 and 14th July 2004. Of these 15,198 have produced AE locations. The AE data set

  5. Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields (United States)


    129 B.2 Zero Span Frequency Measurement Analog Cancellation Code . . . . . . . . 130 Appendix C MATLAB Simulation Code...vibration of an object under the illumination of the acoustic, or seismic , wave. In this process, the incident acoustic wave induces vibrations on...through me- chanical vibration. Scott et al. [3,4] developed an acousto-EM approach to detect buried objects by exciting the object with a seismic

  6. Variabilities detected by acoustic emission from filament-wound Aramid fiber/epoxy composite pressure vessels (United States)

    Hamstad, M. A.


    Two hundred and fifty Aramid fiber/epoxy pressure vessels were filament-wound over spherical aluminum mandrels under controlled conditions typical for advanced filament-winding. A random set of 30 vessels was proof-tested to 74% of the expected burst pressure; acoustic emission data were obtained during the proof test. A specially designed fixture was used to permit in situ calibration of the acoustic emission system for each vessel by the fracture of a 4-mm length of pencil lead (0.3 mm in diameter) which was in contact with the vessel. Acoustic emission signatures obtained during testing showed larger than expected variabilities in the mechanical damage done during the proof tests. To date, identification of the cause of these variabilities has not been determined.

  7. An FBG acoustic emission source locating system based on PHAT and GA (United States)

    Shen, Jing-shi; Zeng, Xiao-dong; Li, Wei; Jiang, Ming-shun


    Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipment. In this paper, four fiber Bragg grating (FBG) sensors are used to establish the sensor array to locate the acoustic emission source. Firstly, the nonlinear locating equations are established based on the principle of acoustic emission, and the solution of these equations is transformed into an optimization problem. Secondly, time difference extraction algorithm based on the phase transform (PHAT) weighted generalized cross correlation provides the necessary conditions for the accurate localization. Finally, the genetic algorithm (GA) is used to solve the optimization model. In this paper, twenty points are tested in the marble plate surface, and the results show that the absolute locating error is within the range of 10 mm, which proves the accuracy of this locating method.

  8. Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice‐covered Northeast Greenland fjord

    National Research Council Canada - National Science Library

    Petrusevich, Vladislav; Dmitrenko, Igor A; Kirillov, Sergey A; Rysgaard, Søren; Falk‐Petersen, Stig; Barber, David G; Boone, Wieter; Ehn, Jens K


    Six and a half month records from three ice‐tethered Acoustic Doppler Current Profilers deployed in October 2013 in Young Sound fjord in Northeast Greenland are used to analyze the acoustic backscatter signal...

  9. Real Time Monitoring of Surface Roughness by Acoustic Emissions in CNC Turning

    Directory of Open Access Journals (Sweden)

    C. E. Reddy


    Full Text Available Machining is the most important part of the manufacturing processes. Machining deals with the process of removing materialfrom a work piece in the form of chips. Machining is necessary where tight tolerances on dimensions and finishes arerequired. The common feature is the use of a cutting tool to form a chip that is removed from the work part, called Swarf.Every tool is subjected to wear in machining. The wear of the tool is gradual and reaches certain limit of life which is identifiedwhen the tool no longer produce the parts to required quality. There are various types of wear a single point cuttingtool may be subjected to in turning. Of these, flank wear on the tool significantly affects surface roughness. The other typesof tool wears are generally avoided by proper selection of tool material and cutting conditions. On-line surface roughnessmeasurements gained significant importance in manufacturing systems to provide accurate machining. The Acoustic Emission(AE analysis is one of the most promising techniques for on-line surface roughness monitoring. The AE signals arevery sensitive to changes in cutting process conditions. The gradual flank wear of the tool in turning causes changes in AEsignal parameters. In the present work investigations are carried for turning operation on mild steel material using HSS tool.The AE signals are measured by highly sensitive piezoelectric element; the on-line signals are suitably amplified using ahigh gain pre-amplifier. The amplified signals then recorded on to a computer and then analyzed using MAT LAB. A programis developed to measure AE signal parameters like Ring down count (RDC, Signal Rise Time and RMS voltage. Thesurface roughness is measured by roller ended linear variable probe, fitted and moved along with tool post on a CNC lathemachine. The linear movements of probe are converted in the form of continuous signals and are displayed on-line in thecomputer. The results thus plotted show a

  10. Acoustic Emission Characteristics of Sedimentary Rocks Under High-Velocity Waterjet Impingement (United States)

    Tian, Shouceng; Sheng, Mao; Li, Zhaokun; Ge, Hongkui; Li, Gensheng


    The success of waterjet drilling technology requires further insight into the rock failure mechanisms under waterjet impingement. By combining acoustic emission (AE) sensing and underwater sound recording techniques, an online system for monitoring submerged waterjet drilling has been developed. For four types of sedimentary rocks, their AE characteristics and correlations to the drilling performance have been obtained through time-frequency spectrum analysis. The area under the power spectrum density curve has been used as the indicator of AE energy. The results show that AE signals from the fluid dynamics and the rock failure are in different ranges of signal frequency. The main frequencies of the rock failure are within the higher range of 100-200 kHz, while the frequencies of the fluid dynamics are below 50 kHz. Further, there is a linear relationship between the AE energy and the drilling depth irrespective of rock type. The slope of the linear relationship is proportional to the rock strength and debris size. Furthermore, the AE-specific energy is a good indicator of the critical depth drilled by the waterjet. In conclusion, the AE characteristics on the power density and dominant frequency are capable of identifying the waterjet drilling performance on the rock materials and are correlated with the rock properties, i.e., rock strength and cutting size.

  11. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yongzhi Qu


    Full Text Available In recent years, acoustic emission (AE sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  12. Acoustic Emission Source Location Using a Distributed Feedback Fiber Laser Rosette

    Directory of Open Access Journals (Sweden)

    Fang Li


    Full Text Available This paper proposes an approach for acoustic emission (AE source localization in a large marble stone using distributed feedback (DFB fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location.

  13. Acoustic emission source location using a distributed feedback fiber laser rosette. (United States)

    Huang, Wenzhu; Zhang, Wentao; Li, Fang


    This paper proposes an approach for acoustic emission (AE) source localization in a large marble stone using distributed feedback (DFB) fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ) DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG) include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location.

  14. Investigation of Material Performance Degradation for High-Strength Aluminum Alloy Using Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Yibo Ai


    Full Text Available Structural materials damages are always in the form of micro-defects or cracks. Traditional or conventional methods such as micro and macro examination, tensile, bend, impact and hardness tests can be used to detect the micro damage or defects. However, these tests are destructive in nature and not in real-time, thus a non-destructive and real-time monitoring and characterization of the material damage is needed. This study is focused on the application of a non-destructive and real-time acoustic emission (AE method to study material performance degradation of a high-strength aluminum alloy of high-speed train gearbox shell. By applying data relative analysis and interpretation of AE signals, the characteristic parameters of materials performance were achieved and the failure criteria of the characteristic parameters for the material tensile damage process were established. The results show that the AE method and signal analysis can be used to accomplish the non-destructive and real-time detection of the material performance degradation process of the high-strength aluminum alloy. This technique can be extended to other engineering materials.

  15. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda


    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  16. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study. (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda


    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  17. Diagnostics of DC and Induction Motors Based on the Analysis of Acoustic Signals

    Directory of Open Access Journals (Sweden)

    Glowacz A.


    Full Text Available In this paper, a non-invasive method of early fault diagnostics of electric motors was proposed. This method uses acoustic signals generated by electric motors. Essential features were extracted from acoustic signals of motors. A plan of study of acoustic signals of electric motors was proposed. Researches were carried out for faultless induction motor, induction motor with one faulty rotor bar, induction motor with two faulty rotor bars and flawless Direct Current, and Direct Current motor with shorted rotor coils. Researches were carried out for methods of signal processing: log area ratio coefficients, Multiple signal classification, Nearest Neighbor classifier and the Bayes classifier. A pattern creation process was carried out using 40 samples of sound. In the identification process 130 five-second test samples were used. The proposed approach will also reduce the costs of maintenance and the number of faulty motors in the industry.

  18. Call Transmission Efficiency in Native and Invasive Anurans: Competing Hypotheses of Divergence in Acoustic Signals (United States)

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael


    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2–5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a

  19. Complex atmospheric-lithospheric observations of acoustic emission at «Karymshina» site in Kamchatka

    Directory of Open Access Journals (Sweden)

    Larionov Igor


    Full Text Available The results of complex observations of acoustic emission in the near surface rocks and in the atmosphere by the ground surface are described. The instrumentations for the observations are a laser strainmeter-interferometer and a microbarometer installed close to each other. It was shown that during the increase of deformation rate in the near surface rocks, increase of acoustic emission intensity in the atmosphere by the ground surface is registered. The effect of meteorological factors on the observation results is evaluated.

  20. Using acoustic emissions to enhance fracture toughness calculations for CCNBD marble specimens

    Directory of Open Access Journals (Sweden)

    K. Kaklis


    Full Text Available Rock fracture mechanics has been widely applied to blasting, hydraulic fracturing, mechanical fragmentation, rock slope analysis, geophysics, earthquake mechanics and many other science and technology fields. Development of failure in brittle materials is associated with microcracks, which release energy in the form of elastic waves called acoustic emissions. In the present study, acoustic emission (AE measurements were carried out during cracked chevron notched Brazilian disc (CCNBD tests on Nestos marble specimens. The fracture toughness of different modes of loading (mode-I and –II is calculated and the results are discussed in conjunction with the AE parameters.

  1. Acoustic emission localization on ship hull structures using a deep learning approach

    DEFF Research Database (Denmark)

    Georgoulas, George; Kappatos, Vassilios; Nikolakopoulos, George


    In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high dimension......In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high...

  2. Thick-film acoustic emission sensors for use in structurally integrated condition-monitoring applications. (United States)

    Pickwell, Andrew J; Dorey, Robert A; Mba, David


    Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.

  3. Wear monitoring of single point cutting tool using acoustic emission ...

    Indian Academy of Sciences (India)

    However, the extent of improvement brought about by the coatings depends strongly on the cutting conditions, with the greatest benefits being seen at higher cutting speeds and feed rates. Among these methods, tool condition monitoring using Acoustic Techniques (AET) is an emerging one. Hence, the present work was ...

  4. Application of a novel optical fiber sensor to detection of acoustic emissions by various damages in CFRP laminates (United States)

    Wu, Qi; Yu, Fengming; Okabe, Yoji; Kobayashi, Satoshi


    In this research, we applied a novel optical fiber sensor, phase-shifted fiber Bragg grating balanced sensor with high sensitivity and broad bandwidth, to acoustic emission (AE) detection in carbon fiber reinforced plastics (CFRPs). AE signals generated in the tensile testing of angle-ply and cross-ply CFRP laminates were both detected by the novel optical fiber sensor and traditional PZT sensors. The cumulative hits detected by both sensors coincided after applying simple data processing to eliminate the noise, and clearly exhibited Kaiser effect and Felicity effect. Typical AE signals detected by both sensors were discussed and were tried to relate to micro CFRP damages observed via microscope. These results demonstrate that this novel optical fiber sensor can reliably detect AE signals from various damages. It has the potential to be used in practical AE detection, as an alternative to the piezoelectric PZT sensor.

  5. Early-age acoustic emission measurements in hydrating cement paste: Evidence for cavitation during solidification due to self-desiccation

    DEFF Research Database (Denmark)

    Lura, Pietro; Couch, J.; Jensen, Ole Mejlhede


    . According to these experimental results, the acoustic emission measured around setting time was attributed to cavitation events occurring in the pores of the cement paste due to self-desiccation. This paper shows how acoustic emission might be used to indicate the time when the fluid–solid transition occurs...

  6. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals (United States)

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S


    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  7. The Relationship Between Acoustic Signal Typing and Perceptual Evaluation of Tracheoesophageal Voice Quality for Sustained Vowels. (United States)

    Clapham, Renee P; van As-Brooks, Corina J; van Son, Rob J J H; Hilgers, Frans J M; van den Brekel, Michiel W M


    To investigate the relationship between acoustic signal typing and perceptual evaluation of sustained vowels produced by tracheoesophageal (TE) speakers and the use of signal typing in the clinical setting. Two evaluators independently categorized 1.75-second segments of narrow-band spectrograms according to acoustic signal typing and independently evaluated the recording of the same segments on a visual analog scale according to overall perceptual acoustic voice quality. The relationship between acoustic signal typing and overall voice quality (as a continuous scale and as a four-point ordinal scale) was investigated and the proportion of inter-rater agreement as well as the reliability between the two measures is reported. The agreement between signal type (I-IV) and ordinal voice quality (four-point scale) was low but significant, and there was a significant linear relationship between the variables. Signal type correctly predicted less than half of the voice quality data. There was a significant main effect of signal type on continuous voice quality scores with significant differences in median quality scores between signal types I-IV, I-III, and I-II. Signal typing can be used as an adjunct to perceptual and acoustic evaluation of the same stimuli for TE speech as part of a multidimensional evaluation protocol. Signal typing in its current form provides limited predictive information on voice quality, and there is significant overlap between signal types II and III and perceptual categories. Future work should consider whether the current four signal types could be refined. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Possibilities of the evaluation of acoustic signal from the rock disintegration in a frequency domain

    Directory of Open Access Journals (Sweden)

    Lucia Ivaničová


    Full Text Available The contribution focuses on the experimental basis of acoustic signal evaluation in a frequency domain using experimental data acquired by a sound-level meter Mediator 2238 from scanning of the acoustic signal arisen during the rock disintegration process by means of rotary drilling. The paper also focuses on the model of mathematical processing of parallel-scanned acoustic signal. The research field is complex due to properties of the process and the subsequent proper physical application of measured values and the design of a proper mathematical model of the process. The research is based on a conception that a signal of mechanical vibrations, i.e. also an accessory acoustic signal, carries an information on a stage of disintegration process, which might be used for its identification, control and optimization of rock disintegration process. As the problem is very extensive, many patterns of several science areas have to be considered and coordinated, such as rock disintegration, acoustics, scanning and processing of monitored signals, not only during the experiments but also at their evaluation and finding new relations and models.

  9. Acoustic emission non-destructive testing of structures using source location techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, Alan G.


    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  10. A study on the fracture behavior of CFRP in tensile and fracture toughness tests by acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Oh, Sae Kyoo; Nam, Ki Woo; Kim, Og Gyun [National Fishery University of Pusan, Pusan (Korea, Republic of)


    The Study was carried out to analyze the fracture behavior and the acoustic emission(AE) characteristics and to find the relationship among tensile strength, fracture toughness and cure pressure in cure process of the carbon fiber reinforced composites of two types, [0 deg/90 deg]{sub 2s} and [0 deg{sub 2}/90 deg{sub 2}]{sub s}. AE signals were detected during the curing process, tensile tests and fracture toughness tests by acoustic emission(AE) measurements, respectively. Tensile strengths showed that the less cure pressurizing steps and the side of [0 deg/90 deg]{sub 2s} specimens had the higher strengths than those of the others. Fracture toughness by the change of test temperature showed nearly same values in the same temperature region, but the higher test temperature had the lower fracture toughness values. In order to examine the relationship between fracture behavior of CFRP in tensile and fracture toughness tests and AE signals, the post processing for AE parameters of AE data and the observations of microscope and SEM have been carried out respectively. (author)

  11. A Study on the Fracture Behavior of CFRP in Tensile and Fracture Toughness Tests by Acoustic Emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Oh, Sae Kyoo; Nam, Ki Woo; Kim, Og Gyun [Fisheries University of Pusan , Busan (Korea, Republic of)


    The study was carried out to analyze the fracture behavior and the acoustic emission(AE) characteristics and to find the relationship among tensile strength, fracture toughness and cure pressure in owe process of the carbon fiber reinforced composites of two types, [0 .deg. /90 .deg. ]{sub 2s} and [0 .deg. {sub 2}/90 .deg. {sub 2}]. AE signals were detected during the curing process, tensile tests and fracture toughness tests by acoustic emission(AE) measurements, respectively. Tensile strengths showed that the less cure pressurizing steps and the side of [0 .deg. /90 .deg. ]{sub 2s} specimens had the higher strengths than those of the others. Fracture toughness by the change of test temperature showed nearly same values in the same temperature region, but the higher test temperature had the lower fracture toughness values. In order to examine the relationship between fracture behavior of CFRP in tensile and fracture toughness tests and AE signals, the post processing for AE parameters of AE data and the observations of microscope and SEM have been carried out respectively

  12. Indoor Self-Localization and Orientation Estimation of Smartphones Using Acoustic Signals

    Directory of Open Access Journals (Sweden)

    Héctor A. Sánchez-Hevia


    Full Text Available We propose a new acoustic self-localization and orientation estimation algorithm for smartphones networks composed of commercial off-the-shelf devices equipped with two microphones and a speaker. Each smartphone acts as an acoustic transceiver, which emits and receives acoustic signals. Node locations are found by combining estimates of the range and direction of arrival (DoA between node pairs using a maximum likelihood (ML estimator. A tailored optimization algorithm is proposed to simultaneously solve the DoA uncertainty problem that arises from the use of only 2 microphones per node and obtain the azimuthal orientation of each node without requiring an electronic compass.

  13. Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines (United States)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore


    A sparse reconstruction localization method is proposed, which is capable of localizing multiple acoustic emission events occurring closely in time. The events may be due to a number of sources, such as the growth of corrosion patches or cracks. Such acoustic emissions may yield localization failure if a triangulation method is used. The proposed method is implemented both theoretically and experimentally on large diameter thin-walled pipes. Experimental examples are presented, which demonstrate the failure of a triangulation method when multiple sources are present in this structure, while highlighting the capabilities of the proposed method. The examples are generated from experimental data of simulated acoustic emission events. The data corresponds to helical guided ultrasonic waves generated in a 3 m long large diameter pipe by pencil lead breaks on its outer surface. Acoustic emission waveforms are recorded by six sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface of the pipe. The same array of transducers is used for both the proposed and the triangulation method. It is demonstrated that the proposed method is able to localize multiple events occurring closely in time. Furthermore, the matching pursuit algorithm and the basis pursuit densoising approach are each evaluated as potential numerical tools in the proposed sparse reconstruction method.

  14. Effect of face fracturing on shear wave coda quality factor estimated from acoustic emission events

    CSIR Research Space (South Africa)

    Kgarume, T


    Full Text Available The dependency of the quality factor derived from S wave coda (Q(subc)) on frequency is analysed in order to understand the effect of fracturing ahead of a mining stope. Micro seismic events recorded using acoustic emission sensors in a mining...

  15. Acoustic emission measurement in the proof loading of an existing bridge affected by ASR

    NARCIS (Netherlands)

    Yang, Y.; Hordijk, D.A.; de Boer, A.; Bakker, J.; Frangopol, D.M.; van Breugel, K.


    Proof loading has been considered as an effective approach in the assessment of existing concrete bridges. This paper presents a study of acoustic emission measurement in a proof loading of an ASR affected concrete slab bridge (Zijlweg bridge). Because of the uncertainty on the mechanical properties

  16. The Potential of Using Acoustical Emission to Detect Termites Within Wood (United States)

    Vernard R. Lewis; Richard L. Lemaster


    Acoustical emission (AE) equipment was used to detect drywood termites Incisitermes minor in ponderosa pine Pinus ponderosa blocks under laboratory conditions. Using a 60 kHz transducer, AE levels were recorded for 0, 5, 10, 15, and 20 termites per block. The association of AE and varying numbers of drywood termites best fit an...

  17. Pressurised objects technical condition evaluation with limited access to surface using acoustic emission method

    Directory of Open Access Journals (Sweden)

    A. I. Gnevko


    Full Text Available The article deals with the use of a known method of acoustic emission to assess the technical condition of working under pressure, with limited access to the surface of the object under control. This reduces the cost of time and money and increases reliability of the test results. The advantage of this method is confirmed by gasifiers technical condition evaluation example.

  18. Mechanical Properties and Acoustic Emission Properties of Rocks with Different Transverse Scales

    Directory of Open Access Journals (Sweden)

    Xi Yan


    Full Text Available Since the stability of engineering rock masses has important practical significance to projects like mining, tunneling, and petroleum engineering, it is necessary to study mechanical properties and stability prediction methods for rocks, cementing materials that are composed of minerals in all shapes and sizes. Rocks will generate acoustic emission during damage failure processes, which is deemed as an effective means of monitoring the stability of coal rocks. In the meantime, actual mining and roadway surrounding rocks tend to have transverse effects; namely, the transverse scale is larger than the length scale. Therefore, it is important to explore mechanical properties and acoustic emission properties of rocks under transverse size effects. Considering the transverse scale effects of rocks, this paper employs the microparticle flow software PFC2D to explore the influence of different aspect ratios on damage mechanics and acoustic emission properties of rocks. The results show that (1 the transverse scale affects uniaxial compression strength of rocks. As the aspect ratio increases, uniaxial compression strength of rocks decreases initially and later increases, showing a V-shape structure and (2 although it affects the maximum hit rate and the strain range of acoustic emission, it has little influence on the period of occurrence. As the transverse scale increases, both damage degree and damage rate of rocks decrease initially and later increase.

  19. Temperature effects on an acoustic emission based SHM system - Applied to composite materials

    NARCIS (Netherlands)

    Vargalui, A.; Martinez, M.J.; Zarouchas, D.; Pant, S.


    This study focuses on understanding the effect of temperature variations and the position of the piezoelectric sensors with respect to fiber orientation angle, as it relates to acoustic emission wave velocity in composite structures. A hybrid panel consisting of Unidirectional Carbon Fiber (UDCF)

  20. Application of acoustic emission measurements in the evaluation of prestressed cast in-between decks

    NARCIS (Netherlands)

    Van Hemert, P.H.A.; Fennis-Huijben, S.A.A.M.; Hordijk, D.A.


    A large number of concrete structures, that is built in the sixties and seventies of the twentieth century, need to be re-evaluated. It should be judged whether their capacity is still sufficient for the increased traffic loads. Acoustic emission (AE) is a non-destructive technique that can possibly

  1. Acoustic emission and acousto-ultrasonic techniques for wood and wood-based composites: a review (United States)

    Sumire Kawamoto; R. Sam Williams


    This review focuses on the feasibility of acoustic emission (AE) and acousto-ultrasonic (AU) techniques for monitoring defects in wood, particularly during drying. The advantages and disadvantages of AE and AU techniques are described. Particular emphasis is placed on the propagation and attenuation of ultrasonic waves in wood and the associated measurement problems....

  2. Electric signal emissions during repeated abrupt uniaxial compressional stress steps in amphibolite from KTB drilling

    Directory of Open Access Journals (Sweden)

    D. Triantis


    Full Text Available Laboratory experiments have confirmed that the application of uniaxial stress on rock samples is accompanied by the production of weak electric currents, to which the term Pressure Stimulated Currents – PSC has been attributed. In this work the PSC emissions in amphibolite samples from KTB drilling are presented and commented upon. After having applied sequential loading and unloading cycles on the amphibolite samples, it was ascertained that in every new loading cycle after unloading, the emitted PSC exhibits lower peaks. This attitude of the current peaks is consistent with the acoustic emissions phenomena, and in this work is verified for PSC emissions during loading – unloading procedures. Consequently, the evaluation of such signals can help to correlate the state and the remaining strength of the sample with respect to the history of its mechanical stress.

  3. Bridging aero-fracture evolution with the characteristics of the acoustic emissions in a porous medium

    Directory of Open Access Journals (Sweden)

    Semih eTurkaya


    Full Text Available The characterization and understanding of rock deformation processes due to fluid flow is a challenging problem with numerous applications. The signature of this problem can be found in Earth Science and Physics, notably with applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control, volcanic eruptions, or in industrial applications such as hydraulic-fracturing, steam-assisted gravity drainage, CO₂ sequestration operations or soil remediation. Here we investigate the link between the visual deformation and the mechanical wave signals generated due to fluid injection into porous media. In a rectangular Hele-Shaw Cell, side air injection causes burst movement and compaction of grains along with channeling (creation of high permeability channels empty of grains. During the initial compaction and emergence of the main channel, the hydraulic fracturing in the medium generates a large non-impulsive low frequency signal in the frequency range 100 Hz - 10 kHz. When the channel network is established, the relaxation of the surrounding medium causes impulsive aftershock-like events, with high frequency (above 10 kHz acoustic emissions, the rate of which follows an Omori Law. These signals and observations are comparable to seismicity induced by fluid injection. Compared to the data obtained during hydraulic fracturing operations, low frequency seismicity with evolving spectral characteristics have also been observed. An Omori-like decay of microearthquake rates is also often observed after injection shut-in, with a similar exponent p≃0.5 as observed here, where the decay rate of aftershock follows a scaling law dN/dt ∝(t-t₀-p . The physical basis for this modified Omori law is explained by pore pressure diffusion affecting the stress relaxation.

  4. Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires. (United States)

    Weiss, Matthias; Kinzel, Jörg B; Schülein, Florian J R; Heigl, Michael; Rudolph, Daniel; Morkötter, Stefanie; Döblinger, Markus; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J


    We probe and control the optical properties of emission centers forming in radial heterostructure GaAs-Al0.3Ga0.7As nanowires and show that these emitters, located in Al0.3Ga0.7As layers, can exhibit quantum-dot like characteristics. We employ a radio frequency surface acoustic wave to dynamically control their emission energy, and occupancy state on a nanosecond time scale. In the spectral oscillations, we identify unambiguous signatures arising from both the mechanical and electrical component of the surface acoustic wave. In addition, different emission lines of a single emission center exhibit pronounced anticorrelated intensity oscillations during the acoustic cycle. These arise from a dynamically triggered carrier extraction out of the emission center to a continuum in the radial heterostructure. Using finite element modeling and Wentzel-Kramers-Brillouin theory we identify quantum tunneling as the underlying mechanism. These simulation results quantitatively reproduce the observed switching and show that in our systems these emission centers are spatially separated from the continuum by >10.5 nm.

  5. Potencials of sap flow evaluation by means of acoustic emission measurements

    Directory of Open Access Journals (Sweden)

    Michal Černý


    measurements became possible due to application of psychrometric method (Dixon and Tyree, 1985. There exist also other physical variables carrying important information, which can be measured using different principles. This includes e.g., acoustic methods, which can detect quantitative variation of pulses occurring during cavitation events, associated with interruptions of water columns in vessels. This must not necessarily be a single source of acoustic emissions. In this study we are focused on a general description of acoustic events measurable in a wide range of their spectrum. The first aim was to detect such signals and the second to learn them and gradually analyze in order to better understand the associated processes causing their occurrence and their relations to plant life.

  6. Interlaminar Fracture Toughness Evaluation in Glass/Epoxy Composites Using Acoustic Emission and Finite Element Methods (United States)

    Saeedifar, Milad; Fotouhi, Mohamad; Najafabadi, Mehdi Ahmadi; Toudeshky, Hossein Hosseini


    Delamination is one of the most common modes of failure in laminated composites and it leads to the loss of structural strength and stiffness. In this paper, mode I, mode II, and mixed of these pure modes were investigated using mechanical data, Finite Element Method (FEM) and Acoustic Emission (AE) signals. Experimental data were obtained from in situ monitoring of glass/epoxy laminated composites with different lay-ups when subjected to different modes of failure. The main objective was to investigate the behavior of delamination propagation and to evaluate the critical value of the strain energy which is required for onset of the delamination ( G C). For the identification of interlaminar fracture toughness of the specimens, four methods were used: (a) ASTM standard methods, (b) FEM analysis, (c) AE method, and (d) sentry function method which is a function of mechanical and AE behaviors of the specimens. The results showed that the G C values obtained by the sentry function method and FEM analysis were in a close agreement with the results of nonlinearity methods which is recommended in the ASTM standards. It was also found that the specimens under different loading conditions and various lay-up have different G C values. These differences are related to different stress components distribution in the specimens which induce various damage mechanisms. Accordingly, stress components distribution obtained from FEM analyses were in agreement with SEM observations of the damaged surfaces of the specimens.

  7. Effect of Thermal Treatment on Fractals in Acoustic Emission of Rock Material

    Directory of Open Access Journals (Sweden)

    Z. Z. Zhang


    Full Text Available Acoustic emission (AE series on time and location distributions on space are all fractal during the failure process of rock material. In this paper, AE signals of heated rock samples at different temperature under uniaxial compression were captured, and the correlation fractal dimensions (CFDs of AE counts series at different stress level were calculated using Grassberger-Procaccia algorithm. The temperature effect on AE fractal behavior was revealed. The results show that as the heat temperature increases, the total AE counts are more, while the peak value is less. With the increase of external loading, the AE CFD increases fast to a peak at first and then decreases to a bottom and, after that, increases again but within a narrow range. 200°C and 800°C are two thresholds. As the heat temperature rises, the maximum CFD value and the corresponding stress level both increase from 25°C to 200°C and decrease from 200°C to 800°C and then increase again from 800°C to 1200°C. The CFD value at the failure point shows polynomial decline with rising heat temperature.

  8. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jialin Tang


    Full Text Available The identification of particular types of damage in wind turbine blades using acoustic emission (AE techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency−frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency−MARSE, and average frequency−peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope. The results show that these parameters are representative for the classification of the failure modes.

  9. Transverse Crack Detection in 3D Angle Interlock Glass Fibre Composites Using Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Matthieu Gresil


    Full Text Available In addition to manufacturing cost and production rates, damage resistance has become a major issue for the composites industry. Three-dimensional (3D woven composites have superior through-thickness properties compared to two-dimensional (2D laminates, for example, improved impact damage resistance, high interlaminar fracture toughness and reduced notch sensitivity. The performance of 3D woven preforms is dependent on the fabric architecture, which is determined by the binding pattern. For this study, angle interlock (AI structures with through-thickness binding were manufactured. The AI cracking simulation shows that the transverse component is the one that leads to transverse matrix cracking in the weft yarn under tensile loading. Monitoring of acoustic emission (AE during mechanical loading is an effective tool in the study of damage processes in glass fiber-reinforced composites. Tests were performed with piezoelectric sensors bonded on a tensile specimen acting as passive receivers of AE signals. An experimental data has been generated which was useful to validate the multi-physics finite element method (MP-FEM, providing insight into the damage behaviour of novel 3D AI glass fibre composites. MP-FEM and experimental data showed that transverse crack generated a predominant flexural mode A0 and also a less energetic extensional mode S0.

  10. Comprehensive bearing condition monitoring algorithm for incipient fault detection using acoustic emission

    Directory of Open Access Journals (Sweden)

    Amit R. Bhende


    Full Text Available The bearing reliability plays major role in obtaining the desired performance of any machine. A continuous condition monitoring of machine is required in certain applications where failure of machine leads to loss of production, human safety and precision. Machine faults are often linked to the bearing faults. Condition monitoring of machine involves continuous watch on the performance of bearings and predicting the faults of bearing before it cause any adversity. This paper investigates an experimental study to diagnose the fault while bearing is in operation. An acoustic emission technique is used in the experimentation. An algorithm is developed to process various types of signals generated from different bearing defects. The algorithm uses time domain analysis along with combination low frequency analysis technique such as fast Fourier transform and high frequency envelope detection. Two methods have adopted for envelope detection which are Hilbert transform and order analysis. Experimental study is carried out for deep groove ball bearing cage defect. Results show the potential effectiveness of the proposed algorithm to determine presence of fault, exact location and severity of fault.

  11. Correlation Between Acoustic Emission and Induced Hydrogen of Shield Metal Arc Welding (United States)

    Homsawat, P.; Jirarungsatian, C.; Phung-On, I.

    This chapter presents a study on detecting acoustic emission (AE) of hydrogen diffusion after shield metal arc welding (SMAW) process. Technique to detect hydrogen which diffused from steel, gas, or other elements is performed. A correlation between occurred AE and induced hydrogen in weldment after welding is determined. In the experiment, a broadband AE sensor and welded specimens were mounted on a wave guide plate which has 250 mm of separate distance for monitoring and recording AE activity of hydrogen diffusion. The specimens are prepared according to the welding standard (JIS Z 3113). The specimen sizes were 25 mm width, 130 mm length, and 12 mm thickness. Four types of electrodes were used for welding to vary hydrogen amount. The welding current was lower than the manufacturer's specification of 15 amperes. The specimens were quenched in 5 s after welding process. The results showed that the AE technique can be used to detect hydrogen diffusion after weld. The emitted AE signals were analyzed to determine the relation with the amount of hydrogen. The method for measurement of hydrogen referred to the welding standard (JIS Z 3113). The correlation plot between AE and diffused hydrogen amount can be shown as 0.8 of R 2 linearity. The benefit of this study will be applied to monitor the weldment before cold crack occurs.

  12. Acoustic emission monitoring of medieval towers considered as sensitive earthquake receptors (United States)

    Carpinteri, A.; Lacidogna, G.; Niccolini, G.


    Many ancient masonry towers are present in Italian territory. In some cases these structures are at risk on account of the intensity of the stresses they are subjected to due to the high level of regional seismicity. In order to preserve this inestimable cultural heritage, a sound safety assessment should take into account the evolution of damage phenomena. In this connection, acoustic emission (AE) monitoring can be highly effective. This study concerns the structural stability of three medieval towers rising in the centre of Alba, a characteristic town in Piedmont (Italy). During the monitoring period a correlation between peaks of AE activity in the masonry of these towers and regional seismicity was found. Earthquakes always affect structural stability. Besides that, the towers behaved as sensitive earthquake receptors. Here a method to correlate bursts of AE activity in a masonry building and regional seismicity is proposed. In particular, this method permits to identify the premonitory signals that precede a catastrophic event on a structure, since, in most cases, these warning signs can be captured well in advance.

  13. Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil

    Directory of Open Access Journals (Sweden)

    Bin Chen


    Full Text Available Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method.

  14. Acoustic emission monitoring of medieval towers considered as sensitive earthquake receptors

    Directory of Open Access Journals (Sweden)

    A. Carpinteri


    Full Text Available Many ancient masonry towers are present in Italian territory. In some cases these structures are at risk on account of the intensity of the stresses they are subjected to due to the high level of regional seismicity. In order to preserve this inestimable cultural heritage, a sound safety assessment should take into account the evolution of damage phenomena. In this connection, acoustic emission (AE monitoring can be highly effective. This study concerns the structural stability of three medieval towers rising in the centre of Alba, a characteristic town in Piedmont (Italy. During the monitoring period a correlation between peaks of AE activity in the masonry of these towers and regional seismicity was found. Earthquakes always affect structural stability. Besides that, the towers behaved as sensitive earthquake receptors. Here a method to correlate bursts of AE activity in a masonry building and regional seismicity is proposed. In particular, this method permits to identify the premonitory signals that precede a catastrophic event on a structure, since, in most cases, these warning signs can be captured well in advance.

  15. An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission (United States)

    Aye, S. A.; Heyns, P. S.


    This paper proposes an optimal Gaussian process regression (GPR) for the prediction of remaining useful life (RUL) of slow speed bearings based on a novel degradation assessment index obtained from acoustic emission signal. The optimal GPR is obtained from an integration or combination of existing simple mean and covariance functions in order to capture the observed trend of the bearing degradation as well the irregularities in the data. The resulting integrated GPR model provides an excellent fit to the data and improves over the simple GPR models that are based on simple mean and covariance functions. In addition, it achieves a low percentage error prediction of the remaining useful life of slow speed bearings. These findings are robust under varying operating conditions such as loading and speed and can be applied to nonlinear and nonstationary machine response signals useful for effective preventive machine maintenance purposes.

  16. Damage analysis of CFRP-confined circular concrete-filled steel tubular columns by acoustic emission techniques (United States)

    Li, Dongsheng; Chen, Zhi; Feng, Quanming; Wang, Yanlei


    Damage properties of carbon fiber-reinforced polymer (CFRP) confined circular concrete-filled steel tubular (CCFT) columns were analyzed through acoustic emission (AE) signals. AE characteristic parameters were obtained through axial compression tests. The severity of damage to CFRP-CCFT columns was estimated using the growing trend of AE accumulated energy as basis. The bearing capacity of CFRP-CCFT columns and AE accumulated energy improved as CFRP layers increased. The damage process was studied using a number of crucial AE parameters. The cracks’ mode can be differentiated through the ratio of the rise time to the waveform amplitude and through average frequency analysis. With the use of intensity signal analysis, the damage process of the CFRP-CCFT columns can be classified into three levels that represent different degrees. Based on b-value analysis, the development of the obtained cracks can be defined. Thus, identifying an initial yielding and providing early warning is possible.

  17. System and method for investigating sub-surface features of a rock formation with acoustic sources generating conical broadcast signals (United States)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.


    A method of interrogating a formation includes generating a conical acoustic signal, at a first frequency--a second conical acoustic signal at a second frequency each in the between approximately 500 Hz and 500 kHz such that the signals intersect in a desired intersection volume outside the borehole. The method further includes receiving, a difference signal returning to the borehole resulting from a non-linear mixing of the signals in a mixing zone within the intersection volume.

  18. The effect of habitat acoustics on common marmoset vocal signal transmission. (United States)

    Morrill, Ryan J; Thomas, A Wren; Schiel, Nicola; Souto, Antonio; Miller, Cory T


    Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets. © 2013

  19. Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals (United States)

    Kubakaddi, S. S.


    Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd3As2 in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity vd is greater than the sound velocity vs. This occurs at small E (˜few V/cm) due to large mobility. Frequency (ωq) and angular (θ) distribution of phonon emission spectrum P(ωq, θ) are studied for different electron drift velocities vd (i.e., different E) and electron concentrations ne. The frequency dependence of P(ωq, θ) shows a maximum Pm(ωq, θ) at about ωm ≈ 1 THz and is found to increase with the increasing vd and ne. The value of ωm shifts to higher region for larger ne. It is found that ωm/ne1/3 and Pm(ωq, θ)/ne2/3 are nearly constants. The latter is in contrast with the Pm(ωq, θ)ne1/2 = constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly "2kf cutoff," where kf is the Fermi wave vector. Angular dependence of P(ωq, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing vd. P(θ) is found to increase linearly with ne giving the ratio P(θ)/(nevd) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and ne. 3DDS with large ne and mobility can be a good source of acoustic phonon generation in ˜THz regime.

  20. Acoustic Emission Signatures of Fatigue Damage in Idealized Bevel Gear Spline for Localized Sensing

    Directory of Open Access Journals (Sweden)

    Lu Zhang


    Full Text Available In many rotating machinery applications, such as helicopters, the splines of an externally-splined steel shaft that emerges from the gearbox engage with the reverse geometry of an internally splined driven shaft for the delivery of power. The splined section of the shaft is a critical and non-redundant element which is prone to cracking due to complex loading conditions. Thus, early detection of flaws is required to prevent catastrophic failures. The acoustic emission (AE method is a direct way of detecting such active flaws, but its application to detect flaws in a splined shaft in a gearbox is difficult due to the interference of background noise and uncertainty about the effects of the wave propagation path on the received AE signature. Here, to model how AE may detect fault propagation in a hollow cylindrical splined shaft, the splined section is essentially unrolled into a metal plate of the same thickness as the cylinder wall. Spline ridges are cut into this plate, a through-notch is cut perpendicular to the spline to model fatigue crack initiation, and tensile cyclic loading is applied parallel to the spline to propagate the crack. In this paper, the new piezoelectric sensor array is introduced with the purpose of placing them within the gearbox to minimize the wave propagation path. The fatigue crack growth of a notched and flattened gearbox spline component is monitored using a new piezoelectric sensor array and conventional sensors in a laboratory environment with the purpose of developing source models and testing the new sensor performance. The AE data is continuously collected together with strain gauges strategically positioned on the structure. A significant amount of continuous emission due to the plastic deformation accompanied with the crack growth is observed. The frequency spectra of continuous emissions and burst emissions are compared to understand the differences of plastic deformation and sudden crack jump. The

  1. Experimental assessment of fluorescence microscopy signal enhancement by stimulated emission (United States)

    Dake, Fumihiro; Yazawa, Hiroki


    The quantity of photons generated during fluorescence microscopy is principally determined by the quantum yield of the fluorescence dyes and the optical power of the excitation beam. However, even though low quantum yields can produce poor images, it is challenging to tune this parameter, while increasing the power of the excitation beam often results in photodamage. Here, we propose the use of stimulated emission (SE) as a means of enhancing both the signal intensity and signal-to-noise ratio during confocal fluorescence microscopy. This work experimentally confirmed that both these factors can be enhanced by SE radiation, through generating a greater number of photons than are associated with the standard fluorescence signal. We also propose the concept of stimulated emission enhancing fluorescence (SEEF) microscopy, which employs both the SE and fluorescence signals, and demonstrate that the intensity of an SEEF signal is greater than those of the individual SE and fluorescence signals.

  2. A probabilistic framework for single-sensor acoustic emission source localization in thin metallic plates (United States)

    Ebrahimkhanlou, Arvin; Salamone, Salvatore


    Tracking edge-reflected acoustic emission (AE) waves can allow the localization of their sources. Specifically, in bounded isotropic plate structures, only one sensor may be used to perform these source localizations. The primary goal of this paper is to develop a three-step probabilistic framework to quantify the uncertainties associated with such single-sensor localizations. According to this framework, a probabilistic approach is first used to estimate the direct distances between AE sources and the sensor. Then, an analytical model is used to reconstruct the envelope of edge-reflected AE signals based on the source-to-sensor distance estimations and their first arrivals. Finally, the correlation between the probabilistically reconstructed envelopes and recorded AE signals are used to estimate confidence contours for the location of AE sources. To validate the proposed framework, Hsu-Nielsen pencil lead break (PLB) tests were performed on the surface as well as the edges of an aluminum plate. The localization results show that the estimated confidence contours surround the actual source locations. In addition, the performance of the framework was tested in a noisy environment simulated by two dummy transducers and an arbitrary wave generator. The results show that in low-noise environments, the shape and size of the confidence contours depend on the sources and their locations. However, at highly noisy environments, the size of the confidence contours monotonically increases with the noise floor. Such probabilistic results suggest that the proposed probabilistic framework could thus provide more comprehensive information regarding the location of AE sources.

  3. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite (United States)

    Thompson, B.D.; Young, R.P.; Lockner, David A.


    A stick-slip event was induced in a cylindrical sample of Westerly granite containing a preexisting natural fault by loading at constant confining pressure of 150 MPa. Continuously recorded acoustic emission (AE) data and computer tomography (CT)-generated images of the fault plane were combined to provide a detailed examination of microscale processes operating on the fault. The dynamic stick-slip event, considered to be a laboratory analog of an earthquake, generated an ultrasonic signal that was recorded as a large-amplitude AE event. First arrivals of this event were inverted to determine the nucleation site of slip, which is associated with a geometric asperity on the fault surface. CT images and AE locations suggest that a variety of asperities existed in the sample because of the intersection of branch or splay faults with the main fault. This experiment is compared with a stick-slip experiment on a sample prepared with a smooth, artificial saw-cut fault surface. Nearly a thousand times more AE were observed for the natural fault, which has a higher friction coefficient (0.78 compared to 0.53) and larger shear stress drop (140 compared to 68 MPa). However at the measured resolution, the ultrasonic signal emitted during slip initiation does not vary significantly between the two experiments, suggesting a similar dynamic rupture process. We propose that the natural faulted sample under triaxial compression provides a good laboratory analogue for a field-scale fault system in terms of the presence of asperities, fault surface heterogeneity, and interaction of branching faults. ?? 2009.

  4. Model updating and prognosis of acoustic emission data in compact test specimens under cyclic loading (United States)

    Zárate, Boris A.; Caicedo, Juan M.; Yu, Jianguo; Ziehl, Paul


    Acoustic emission (AE) is generated when cracks develop and it is used as an indicator of the current state of damage in structural elements. Algorithms that use AE data to predict the state of a structural element are still in their research stages because the relationship between crack length and AE activity is not well understood. The process of trying to predict the future stage of a crack based on AE data is usually performed by an expert, and requires significant experience. This paper proposes a new strategy for the use of AE data for structural prognosis. A probabilistic model is used to predict AE data. An expert can analyze this data to draw conclusions about the health of the structural member. The goal is to aid the analyst by providing an estimation of the AE activity in the future. The methodology provides the cumulative signal strength at a future number of cycles, assuming the loading and boundary conditions hold. The methodology uses a relationship between the rate of change of the cumulative absolute energy of the AE with respect to the number of cycles and the stress intensity range. A third order polynomial equation that describes the stress intensity range as function of the AE data is proposed. The variables to be updated are treated as random and their joint probability distribution is computed using Bayesian inference. Markov Chain Monte Carlo (MCMC) is used to forecast the cumulative signal strength at some number of cycles in the future. The methodology is tested using a compact test specimen tested in structures lab at the University of South Carolina.

  5. Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves (United States)

    Li, Dan; Kuang, Kevin Sze Chiang; Ghee Koh, Chan


    The acoustic emission (AE) technique is a promising approach for detecting and locating fatigue cracks in metallic structures such as rail tracks. However, it is still a challenge to quantify the crack size accurately using this technique. AE waves can be generated by either crack propagation (CP) or crack closure (CC) processes and classification of these two types of AE waves is necessary to obtain more reliable crack sizing results. As the pre-processing step, an index based on wavelet power (WP) of AE signal is initially established in this paper in order to distinguish between the CC-induced AE waves and their CP-induced counterparts. Here, information embedded within the AE signal was used to perform the AE wave classification, which is preferred to the use of real-time load information, typically adopted in other studies. With the proposed approach, it renders the AE technique more amenable to practical implementation. Following the AE wave classification, a novel method to quantify the fatigue crack length was developed by taking advantage of the CC-induced AE waves, the count rate of which was observed to be positively correlated with the crack length. The crack length was subsequently determined using an empirical model derived from the AE data acquired during the fatigue tests of the rail steel specimens. The performance of the proposed method was validated by experimental data and compared with that of the traditional crack sizing method, which is based on CP-induced AE waves. As a significant advantage over other AE crack sizing methods, the proposed novel method is able to estimate the crack length without prior knowledge of the initial crack length, integration of AE data or real-time load amplitude. It is thus applicable to the health monitoring of both new and existing structures.

  6. Real-time adaptive concepts in acoustics blind signal separation and multichannel echo cancellation

    CERN Document Server

    Schobben, Daniel W E


    Blind Signal Separation (BSS) deals with recovering (filtered versions of) source signals from an observed mixture thereof. The term `blind' relates to the fact that there are no reference signals for the source signals and also that the mixing system is unknown. This book presents a new method for blind signal separation, which is developed to work on microphone signals. Acoustic Echo Cancellation (AEC) is a well-known technique to suppress the echo that a microphone picks up from a loudspeaker in the same room. Such acoustic feedback occurs for example in hands-free telephony and can lead to a perceived loud tone. For an application such as a voice-controlled television, a stereo AEC is required to suppress the contribution of the stereo loudspeaker setup. A generalized AEC is presented that is suited for multi-channel operation. New algorithms for Blind Signal Separation and multi-channel Acoustic Echo Cancellation are presented. A background is given in array signal processing methods, adaptive filter the...

  7. Wing, tail, and vocal contributions to the complex acoustic signals of courting Calliope hummingbirds

    Directory of Open Access Journals (Sweden)

    Christopher James CLARK


    Full Text Available Multi-component signals contain multiple signal parts expressed in the same physical modality. One way to identify individual components is if they are produced by different physical mechanisms. Here, I studied the mechanisms generating acoustic signals in the courtship displays of the Calliope hummingbird Stellula calliope. Display dives consisted of three synchronized sound elements, a high-frequency tone (hft, a low frequency tone (lft, and atonal sound pulses (asp, which were then followed by a frequency-modulated fall. Manipulating any of the rectrices (tail-feathers of wild males impaired production of the lft and asp but not the hft or fall, which are apparently vocal. I tested the sound production capabilities of the rectrices in a wind tunnel. Single rectrices could generate the lft but not the asp, whereas multiple rectrices tested together produced sounds similar to the asp when they fluttered and collided with their neighbors percussively, representing a previously unknown mechanism of sound production. During the shuttle display, a trill is generated by the wings during pulses in which the wingbeat frequency is elevated to 95 Hz, 40% higher than the typical hovering wingbeat frequency. The Calliope hummingbird courtship displays include sounds produced by three independent mechanisms, and thus include a minimum of three acoustic signal components. These acoustic mechanisms have different constraints and thus potentially contain different messages. Producing multiple acoustic signals via multiple mechanisms may be a way to escape the constraints present in any single mechanism [Current Zoology 57 (2: 187–196, 2011].

  8. Standard practice for acoustic emission examination of cast iron yankee and steam heated paper dryers

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice provides guidelines for carrying out acoustic emission (AE) examinations of Yankee and Steam Heated Paper Dryers (SHPD) of the type to make tissue, paper, and paperboard products. 1.2 This practice requires pressurization to levels used during normal operation. The pressurization medium may be high temperature steam, air, or gas. The dryer is also subjected to significant stresses during the heating up and cooling down periods of operation. Acoustic Emission data maybe collected during these time periods but this testing is beyond the scope of this document. 1.3 The AE measurements are used to detect, as well as, localize emission sources. Other methods of nondestructive testing (NDT) may be used to further evaluate the significance of acoustic emission sources. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine th...

  9. A study on the fracture behavior in tensile and fracture toughness tests of CFRP by acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Oh, Sae Kyoo; Nam, Ki Woo; Kim, Og Gyun [Bukyung National University, Pusan (Korea, Republic of)


    This study was carried out to analyze the fracture behavior and the acoustic emission(AE) characteristics, and to find relationship between tensile strength, fracture toughness and cure pressure in cure process of the carbon fiber reinforced composites of two types, [0 degree/90 degree]{sub 2s} and [0 degree{sub 2}/90 degree{sub 2}]{sub s}. AE signals were detected during the curing process, tensile tests and fracture toughness tests by acoustic emission(AE) measurements, respectively. Tensile strengths showed that the less cure pressurizing steps and the side of [0 degree/90 degree]{sub 2s} specimens had the higher strengths than those of the others. Fracture toughness showed nearly same values in the same temperature region, but the higher test temperature had the lower fracture toughness values. In order to examine between fracture behavior of tensile and fracture toughness test and post processing for AE parameters of AE data and observations of microscopy, SEM are carried out respectively.

  10. Acoustic, electromagnetic, neutron emissions from fracture and earthquakes

    CERN Document Server

    Lacidogna, Giuseppe; Manuello, Amedeo


    This book presents the relevant consequences of recently discovered and interdisciplinary phenomena, triggered by local mechanical instabilities. In particular, it looks at emissions from nano-scale mechanical instabilities such as fracture, turbulence, buckling and cavitation, focussing on vibrations at the TeraHertz frequency and Piezonuclear reactions. Future applications for this work could include earthquake precursors, climate change, energy production, and cellular biology. A series of fracture experiments on natural rocks demonstrates that the TeraHertz vibrations are able to induce fission reactions on medium weight elements accompanied by neutron emissions. The same phenomenon appears to have occurred in several different situations, particularly in the chemical evolution of the Earth and Solar System, through seismicity (rocky planets) and storms (gaseous planets). As the authors explore, these phenomena can also explain puzzles related to the history of our planet, like the ocean formation or th...

  11. Acoustic signal characteristics of laser induced cavitation in DDFP droplet: Spectrum and time-frequency analysis. (United States)

    Feng, Yi; Qin, Dui; Zhang, Jun; Ma, Chenxiang; Wan, Mingxi


    Cavitation has great application potential in microvessel damage and targeted drug delivery. Concerning cavitation, droplet vaporization has been widely investigated in vitro and in vivo with plasmonic nanoparticles. Droplets with a liquid dodecafluoropentane (DDFP) core enclosed in an albumin shell have a stable and simple structure with good characteristics of laser absorbing; thus, DDFP droplets could be an effective aim for laser-induced cavitation. The DDPF droplet was prepared and perfused in a mimic microvessel in the optical microscopic system with a passive acoustic detection module. Three patterns of laser-induced cavitation in the droplets were observed. The emitted acoustic signals showed specific spectrum components at specific time points. It was suggested that a nanosecond laser pulse could induce cavitation in DDPF droplets, and specific acoustic signals would be emitted. Analyzing its characteristics could aid in monitoring the laser-induced cavitation process in droplets, which is meaningful to theranostic application.

  12. Mode tomography using signals from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX) (United States)

    Chandrayadula, Tarun K.

    Ocean acoustic tomography uses acoustic signals to infer the environmental properties of the ocean. The procedure for tomography consists of low frequency acoustic transmissions at mid-water depths to receivers located at hundreds of kilometer ranges. The arrival times of the signal at the receiver are then inverted for the sound speed of the background environment. Using this principle, experiments such as the 2004 Long Range Ocean Acoustic Propagation EXperiment have used acoustic signals recorded across Vertical Line Arrays (VLAs) to infer the Sound Speed Profile (SSP) across depth. The acoustic signals across the VLAs can be represented in terms of orthonormal basis functions called modes. The lower modes of the basis set concentrated around mid-water propagate longer distances and can be inverted for mesoscale effects such as currents and eddies. In spite of these advantages, mode tomography has received less attention. One of the important reasons for this is that internal waves in the ocean cause significant amplitude and travel time fluctuations in the modes. The amplitude and travel time fluctuations cause errors in travel time estimates. The absence of a statistical model and the lack of signal processing techniques for internal wave effects have precluded the modes from being used in tomographic inversions. This thesis estimates a statistical model for modes affected by internal waves and then uses the estimated model to design appropriate signal processing methods to obtain tomographic observables for the low modes. In order to estimate a statistical model, this thesis uses both the LOAPEX signals and also numerical simulations. The statistical model describes the amplitude and phase coherence across different frequencies for modes at different ranges. The model suggests that Matched Subspace Detectors (MSDs) based on the amplitude statistics of the modes are the optimum detectors to make travel time estimates for modes up to 250 km. The mean of the

  13. Acoustic Signals Processing at the Realization of Contact-Difference Method for Person Identification

    Directory of Open Access Journals (Sweden)

    A. N. Golubinskiy


    Full Text Available The questions of speech and acoustic (registered on a human body at pronouncing by him of sounds signals processing are examined. The measure of a distinguish ability for identification at parameterization of a biometric image by an amplitude-frequency response of a human body is developed.

  14. Acoustic Signal Processing for Pipe Condition Assessment (WaterRF Report 4360) (United States)

    Unique to prestressed concrete cylinder pipe (PCCP), individual wire breaks create an excitation in the pipe wall that may vary in response to the remaining compression of the pipe core. This project was designed to improve acoustic signal processing for pipe condition assessment...

  15. Doppler-Resilient Orthogonal Signal-Division Multiplexing for Underwater Acoustic Communication

    NARCIS (Netherlands)

    Ebihara, T.; Leus, G.J.T.


    Underwater acoustic (UWA) channels are characterized by a severe spread in time and frequency, and are usually labeled as “doubly spread channels.” In this paper, we propose Doppler-resilient orthogonal signal-division multiplexing (D-OSDM), to provide a highly reliable communication environment in

  16. Acoustic communication experiments in the Westerschelde shipping lane using direct-sequence spread spectrum signals

    NARCIS (Netherlands)

    Walree, P.A. van; Gijzen, M.B. van; Pattipeilohy, M.


    Spread-spectrum underwater acoustic communication signals were broadcast in the vicinity of a busy shipping lane. Four spreading code lengths were applied, leading to bit rates between 65 and 667 bit/s in the passband between 10 and 14 kHz. Excellent results are obtained for a track over a

  17. The spatial context of free-ranging Hawaiian spinner dolphins (Stenella longirostris) producing acoustic signals

    NARCIS (Netherlands)

    Lammers, MO; Schotten, M; Au, WWL

    To improve our understanding of how dolphins use acoustic signals in the wild, a three-hydrophone towed array was used to investigate the spatial occurrence of Hawaiian spinner dolphins (Stenella longirostris) relative to each other as they produced whistles, burst pulses, and echolocation clicks.

  18. The Effect of Acoustic Reflex on Contralateral Suppression of Transient-Evoked Otoacoustic Emissions

    Directory of Open Access Journals (Sweden)

    Jalal Sameni


    Full Text Available Background and Aim: Contralateral suppression of transient evoked otoacoustic emissions (TEOAEs test evaluates the efferent auditory system. In this test, acoustic reflex is an important confounding variable. In recent years, application of this test is growing especially in children suspect to central auditory processing disorder. Therefore, the magnitude of influence of this confounding variable on the suppression of TEOAEs should be made clear. The aim of this study was to investigate the impact of acoustic reflex on contralateral suppression of TEOAEs.Methods: This research was performed on 39 normal-hearing adults of both sexes and of 18-26 years of age. Tests were used for the determination of interaural attenuation (IA, acoustic reflex, TEOAEs and contralateral suppression of TEOAEs.Results: TEOAEs amplitudes and their contralateral suppression were significantly higher in females and males respectively (p=0.01. The amount of TEOAEs suppression before reflex activity ranged between 2000 to 3000 Hz. Activation of acoustic reflex significantly increased the magnitude of suppression in all frequency bands (p≤0.01 and maximum suppression occurred in 500 to 1000 Hz.Conclusion: For achieving accuracy of clinical findings, clinicians should always use suppressant levels lower than the acoustic reflex threshold. It is recommended that different norms for males and females be used in contralateral suppression of TEOAEs.

  19. Infrasonic and seismic signals from earthquakes and explosions observed with Plostina seismo-acoustic array (United States)

    Ghica, D.; Ionescu, C.


    Plostina seismo-acoustic array has been recently deployed by the National Institute for Earth Physics in the central part of Romania, near the Vrancea epicentral area. The array has a 2.5 km aperture and consists of 7 seismic sites (PLOR) and 7 collocated infrasound instruments (IPLOR). The array is being used to assess the importance of collocated seismic and acoustic sensors for the purposes of (1) seismic monitoring of the local and regional events, and (2) acoustic measurement, consisting of detection of the infrasound events (explosions, mine and quarry blasts, earthquakes, aircraft etc.). This paper focuses on characterization of infrasonic and seismic signals from the earthquakes and explosions (accidental and mining type). Two Vrancea earthquakes with magnitude above 5.0 were selected to this study: one occurred on 1st of May 2011 (MD = 5.3, h = 146 km), and the other one, on 4th October 2011 (MD = 5.2, h = 142 km). The infrasonic signals from the earthquakes have the appearance of the vertical component of seismic signals. Because the mechanism of the infrasonic wave formation is the coupling of seismic waves with the atmosphere, trace velocity values for such signals are compatible with the characteristics of the various seismic phases observed with PLOR array. The study evaluates and characterizes, as well, infrasound and seismic data recorded from the explosion caused by the military accident produced at Evangelos Florakis Naval Base, in Cyprus, on 11th July 2011. Additionally, seismo-acoustic signals presumed to be related to strong mine and quarry blasts were investigated. Ground truth of mine observations provides validation of this interpretation. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one is the automatic detector DFX-PMCC, applied for infrasound detection and characterization, while the other one, which is used for seismic data, is based on array processing techniques (beamforming and frequency

  20. Probabilistic location estimation of acoustic emission sources in isotropic plates with one sensor (United States)

    Ebrahimkhanlou, Arvin; Salamone, Salvatore


    This paper presents a probabilistic acoustic emission (AE) source localization algorithm for isotropic plate structures. The proposed algorithm requires only one sensor and uniformly monitors the entire area of such plates without any blind zones. In addition, it takes a probabilistic approach and quantifies localization uncertainties. The algorithm combines a modal acoustic emission (MAE) and a reflection-based technique to obtain information pertaining to the location of AE sources. To estimate confidence contours for the location of sources, uncertainties are quantified and propagated through the two techniques. The approach was validated using standard pencil lead break (PLB) tests on an Aluminum plate. The results demonstrate that the proposed source localization algorithm successfully estimates confidence contours for the location of AE sources.

  1. Application of Neural Network to Determine the Source Location in Acoustic Emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Eun [Sambo Engineering Co, Seoul (Korea, Republic of)


    The iterative calculation by least square method was used to determine the source location of acoustic emission in rock, as so called 'traditional method'. The results were compared with source coordinates inferred from the application of neural network system for new input data, as so called 'new method'. Input data of the neural network were based on the time differences of longitudinal waves arrived from acoustic emission events at each transducer, the variation of longitudinal velocities at each stress level, and the coordinates of transducer as in the traditional method. The momentum back propagation neural network system adopted to determine source location, which consists of three layers, and has twenty-seven input processing elements. Applicability of the new method were identified, since the results of source location by the application of two methods were similarly concordant

  2. Natural and laser-induced cavitation in corn stems: On the mechanisms of acoustic emissions

    CERN Document Server

    Fernández, E; Bilmes, G M; 10.4279/PIP.040003


    Water in plant xylem is often superheated, and therefore in a meta-stable state. Under certain conditions, it may suddenly turn from the liquid to the vapor state. This cavitation process produces acoustic emissions. We report the measurement of ultrasonic acoustic emissions (UAE) produced by natural and induced cavitation in corn stems. We induced cavitation and UAE in vivo, in well controlled and reproducible experiments, by irradiating the bare stem of the plants with a continuous-wave laser beam. By tracing the source of UAE, we were able to detect absorption and frequency filtering of the UAE propagating through the stem. This technique allows the unique possibility of studying localized embolism of plant conduits, and thus to test hypotheses on the hydraulic architecture of plants. Based on our results, we postulate that the source of UAE is a transient "cavity oscillation" triggered by the disruptive effect of cavitation inception.

  3. The role of acoustic emission in the study of rock fracture (United States)

    Lockner, D.


    The development of faults and shear fracture systems over a broad range of temperature and pressure and for a variety of rock types involves the growth and interaction of microcracks. Acoustic emission (AE), which is produced by rapid microcrack growth, is a ubiquitous phenomenon associated with brittle fracture and has provided a wealth of information regarding the failure process in rock. This paper reviews the successes and limitations of AE studies as applied to the fracture process in rock with emphasis on our ability to predict rock failure. Application of laboratory AE studies to larger scale problems related to the understanding of earthquake processes is also discussed. In this context, laboratory studies can be divided into the following categories. 1) Simple counting of the number of AE events prior to sample failure shows a correlation between AE rate and inelastic strain rate. Additional sorting of events by amplitude has shown that AE events obey the power law frequency-magnitude relation observed for earthquakes. These cumulative event count techniques are being used in conjunction with damage mechanics models to determine how damage accumulates during loading and to predict failure. 2) A second area of research involves the location of hypocenters of AE source events. This technique requires precise arrival time data of AE signals recorded over an array of sensors that are essentially a miniature seismic net. Analysis of the spatial and temporal variation of event hypocenters has improved our understanding of the progression of microcrack growth and clustering leading to rock failure. Recently, fracture nucleation and growth have been studied under conditions of quasi-static fault propagation by controlling stress to maintain constant AE rate. 3) A third area of study involves the analysis of full waveform data as recorded at receiver sites. One aspect of this research has been to determine fault plane solutions of AE source events from first motion

  4. Use of acoustic emission for continuous monitoring of steam generators. Die Nutzung der Schallemission zur kontinuierlichen Betriebsueberwachung des Dampferzeugers

    Energy Technology Data Exchange (ETDEWEB)

    Crha, J.; Silny, A.; Mezanec, K. (Eisenforschungsinstitut, Ostrava-Vitkovice (Czechoslovakia))


    Acoustic emission measurements at nuclear power plant components are presented and discussed. The knowledge gained by registering acoustic emission during the studied periods of time has shown the main direction for further application in nuclear energy. In the first place it will be necessary to perform detailed investigations into the influence of the operating technology in the frequency ranges used. Calculations are made on the basis of the reciprocal correlations of vibroacoustic and acoustic emission measurements performed by multichannel measuring systems. The shifting of diagnostic measurements to the range of over 100 kHz is proof of new applications of acoustic emission analysis (indication of outflow). Furthermore, the necessity of continuously monitoring the construction was confirmed by experiences gained from laboratory measurements. Damages occur according to a step mechanism. For this reason, no pressure test can replace continuous measuring. (orig.).

  5. Acoustic emission testing of in-service conventionally reinforced concrete deck girder superstructures on highway bridges : final report. (United States)


    Three reports were produced from research sponsored by the Oregon Department of Transportation on acoustic emission (AE). The first describes the evaluation of AE techniques applied to two reinforced concrete (RC) bridge girders, which were loaded to...

  6. The Electrical Resistivity and Acoustic Emission Response Law and Damage Evolution of Limestone in Brazilian Split Test

    National Research Council Canada - National Science Library

    Xu, Xinji; Liu, Bin; Li, Shucai; Song, Jie; Li, Ming; Mei, Jie


      The Brazilian split test was performed on two groups of limestone samples with loading directions vertical and parallel to the bedding plane, and the response laws of the electrical resistivity and acoustic emission (AE...

  7. Fatigue Damage Monitoring in 304L Steel Specimens by an Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Ould-Amer Ammar


    Full Text Available The aim of this work was to clarify fatigue crack initiation and propagation mechanisms in 304L austenitic stainless steel under different total-strain-amplitudes. A complete process from crack initiation and propagation was recorded by using the acoustic emission method in one hand, and replica method in another hand. The effect of strain amplitude on fatigue crack growth was investigated and a new representation of various fatigue curves associated to various levels of fatigue damage is proposed.

  8. Acoustic Emission Monitoring of the DC-XA Composite Liquid Hydrogen Tank During Structural Testing (United States)

    Wilkerson, C.


    The results of acoustic emission (AE) monitoring of the DC-XA composite liquid hydrogen tank are presented in this report. The tank was subjected to pressurization, tensile, and compressive loads at ambient temperatures and also while full of liquid nitrogen. The tank was also pressurized with liquid hydrogen. AE was used to monitor the tank for signs of structural defects developing during the test.

  9. Mechanical Properties and Acoustic Emission Properties of Rocks with Different Transverse Scales


    Yan, Xi; Jun, Li; Gonghui, Liu; Xueli, Guo


    Since the stability of engineering rock masses has important practical significance to projects like mining, tunneling, and petroleum engineering, it is necessary to study mechanical properties and stability prediction methods for rocks, cementing materials that are composed of minerals in all shapes and sizes. Rocks will generate acoustic emission during damage failure processes, which is deemed as an effective means of monitoring the stability of coal rocks. In the meantime, actual mining a...

  10. Acoustic emission monitoring of medieval towers considered as sensitive earthquake receptors


    Carpinteri, A.; Lacidogna, G.; Niccolini, G.


    International audience; Many ancient masonry towers are present in Italian territory. In some cases these structures are at risk on account of the intensity of the stresses they are subjected to due to the high level of regional seismicity. In order to preserve this inestimable cultural heritage, a sound safety assessment should take into account the evolution of damage phenomena. In this connection, acoustic emission (AE) monitoring can be highly effective. This study concerns the structura...

  11. Fatigue Crack Detection at Gearbox Spline Component using Acoustic Emission Method (United States)


    Fatigue Crack Detection at Gearbox Spline Component using Acoustic Emission Method Didem Ozevin1, Justin Cox2, William Hardman2, Seth Kessler3 and...spline section of helicopter gearbox structure is susceptible to fatigue crack, and non-redundant characteristic leads to the need for early flaw...influenced by sensor type, sensor location and gearbox operational conditions. In this study, the AE data was collected from a helicopter gearbox

  12. Acoustic Emission Technique, an Overview as a Characterization Tool in Materials Science

    Directory of Open Access Journals (Sweden)

    C. R. Ríos-Soberanis


    Full Text Available In order to predict the mechanical behavior of a composite during its service life, it is important to evaluate its mechanical response under different types of external stresses by studying the initiation and development of cracks and the effects induced by damage and degradation. The onset of damage is related to the structural integrity of the component and its fatigue life. For this, among other reasons, non-destructive techniques such as acoustic emission(AE have been widely used nowadays for composite materials haracterization. This method has demonstrated excellent results on detecting and identifying initiations sites, cracking propagation and fracture mechanisms of polymer matrix composite and ceramic materials. This paper focuses on commenting the importance of the acoustic emission technique as a unique tool for characterizing mechanical parameters in response to external stresses and degradation processes by reviewing previous investigations carried out by the author as participant. Acoustic emission was employed to monitor the micro-failure mechanisms in composites in relation to the stress level in real-time during the tests carried out. Some results obtained from different analysis are discussed to support the significance of using AE, technique that will be increasingly employed in the composite materials field due to its several lternatives for understanding the mechanical behavior; therefore, the objective of this manuscript is to involve the benefits andadvantages of AE in the characterization of materials.

  13. Health monitoring of Ceramic Matrix Composites from waveform-based analysis of Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Maillet Emmanuel


    Full Text Available Ceramic Matrix Composites (CMCs are anticipated for use in the hot section of aircraft engines. Their implementation requires the understanding of the various damage modes that are involved and their relation to life expectancy. Acoustic Emission (AE has been shown to be an efficient technique for monitoring damage evolution in CMCs. However, only a waveform-based analysis of AE can offer the possibility to validate and precisely examine the recorded AE data with a view to damage localization and identification. The present work fully integrates wave initiation, propagation and acquisition in the analysis of Acoustic Emission waveforms recorded at various sensors, therefore providing more reliable information to assess the relation between Acoustic Emission and damage modes. The procedure allows selecting AE events originating from damage, accurate determination of their location as well as the characterization of effects of propagation on the recorded waveforms. This approach was developed using AE data recorded during tensile tests on carbon/carbon composites. It was then applied to melt-infiltrated SiC/SiC composites.

  14. Research on acoustic emission in-service inspection for large above-ground storage tank floors

    Energy Technology Data Exchange (ETDEWEB)

    Mingchun Lin; Yewei Kang; Min Xiong; Juan Zheng; Dongjie Tan [Petrochina Pipeline R and Center, Langfang (China)


    Much manpower is needed and a lot of materials are wasted when the floor of large above-ground storage tank (AST) is inspected with conventional methods which need to shut down the tank, then to empty and clean it before inspection. Due to the disadvantages of that, an in-service inspection method using acoustic emission (AE) technology is presented. By this mean the rational inspection plan and integrity evaluation of tank floors can be constructed. First, specific inspection steps are established based on the acoustic emission principle for large AST's floors and the practical condition of AST in order to acquire the AE corrosion data. Second, analysis method of acoustic emission dataset is studied. Finally, maintenance proposes are provided based on results of analysis for the corrosion status of the tank floors. In order to evaluate the performance of our method, an in-service field inspection is practiced on product oil tank with a volume of 5000 cubic meters. Then a traditional inspection procedure using magnetic flux leakage (MFL) technology is followed up. Comparative analysis of the results of the two inspection methods shows that there is consistency in localizing the position of corrosion between them. The feasibility of in-service inspection of AST's floors with AE is demonstrated. (author)

  15. Acoustic emission analyses and wavelet analyses for early detection of damage in rotating components under high stress; Schallemissions- und Waveletanalysen zur fruehzeitigen Schadenserkennung an hochbelasteten rotierenden Bauteilen

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, C.; Reimche, W.; Bach, F.W. [Institut fuer Werkstoffkunde, Leibniz Universitaet Hannover (Germany)


    Machines and systems of the industrial production process must meet maximum demands in terms of operational safety, high availability, and also economic efficiency. Condition monitoring, with subsequent maintenance as required, can improve material economy and operational efficieny, provided that accurate information is obtained on the technical condition of machine components and of the overall system. Analysis of structure-borne noise and vibrations using statistical time and frequency characteristics and combined with spectral and correlational analyses are a useful tool for detecting and localising defects and abnormal operating conditions. For example, early detection of crack initiation in shafts and toothed gears is possible by means of acoustic emission signals. Acoustic emission analysis is an established technique for detecting cracks in storage tanks, pressure vessels, pipelines and static structures. I contrast to vibration analysis, it uses sensors that vibrate in their resonance frequency from about 50 kHz to up to 2 MHz. (orig.)

  16. Basics of seismo-acoustic signal recording, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Kornowski, J.; Sokolowski, H.; Wasko, A. (Glowny Instytut Gornictwa, Katowice (Poland))


    Draws attention to the dependence of the amplitude response of the DF-7V geophone on its axis deviation from a vertical position. The geophone axis should be not more than 70 degrees off a vertical position pointing downwards. Responses not only of individual geophones but also of whole measuring chains must be carefully checked. Geophones must be fitted in the best possible contact to coal body and the contact quality must be checked. A device that serves for checking geophone mounting quality was patented by the Marcel mine. The effect of distance between a working face and a geophone is discussed; calculation methods and calculation formulae are given. As to recording signals from roofs for rock burst forecasting, it is maintained that the problem lies in discrimination of roof signals. Systems for separation of roof signals have been developed at the Central Mining Institute, however the problem is difficult and further investigations are required. 5 refs.

  17. Acoustic Emission Characteristics of Gas-Containing Coal during Loading Dilation Process

    Directory of Open Access Journals (Sweden)

    Z. Q. Yin


    Full Text Available Raw coal was used as the study object in this paper to identify the evolution characteristics of acoustic emission (AE during the dilation process of gas-containing coal. The coal specimens were stored in gas seal devices filled with gas at different pressures (0, 0.5, 1.0, and 1.5 MPa for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the deformation and crack fracture patterns were recorded by using strain gauges and an AE system. The axial and volumetric strains–stress curves were analyzed in relation to the AE and the failure mode. Results show that as gas pressure increases, the uniaxial compression strength and elasticity modulus of gas-containing coal decreases, whereas the Poisson’s ratio increases. In all the coal specimens, the dilation initiation stress decreases, and the dilation degree increases. During the dilation process, before the loaded coal specimens reach peak stress, and as the load increases, the changes in the specimens and in the AE energy parameter of specimens can be divided into four phases: crack closure deformation, elastic deformation, stable crack propagation, and unstable crack propagation (dilation process. Across the four phases, the AE energy increases evidently during crack closure and elastic deformation but decreases during stable crack propagation. As the gas pressure increases, the AE signal frequency increases from 4.5 KHz to 8.1 KHz during the dilation process. Thus, the gas presence in coal specimens exerts a significant influence on the closure of sample cracks and dilation damage.

  18. Characteristics of ultrasonic acoustic emissions from walnut branches during freeze-thaw-induced embolism formation. (United States)

    Kasuga, Jun; Charrier, Guillaume; Uemura, Matsuo; Améglio, Thierry


    Ultrasonic acoustic emission (UAE) methods have been applied for the detection of freeze-thaw-induced embolism formation in water conduits of tree species. Until now, however, the exact source(s) of UAE has not been identified especially in angiosperm species, in which xylem tissues are composed of diverse types of cells. In this study, UAE was recorded from excised branches of walnut (Juglans regia cv. Franquette) during freeze-thaw cycles, and attempts were made to characterize UAEs generated by cavitation events leading to embolism formation according to their properties. During freeze-thaw cycles, a large number of UAEs were generated from the sample segments. However, the cumulative numbers of total UAE during freeze-thawing were not correlated with the percentage loss of hydraulic conductivity after thawing, suggesting that the sources of UAE were not only cavitation leading to embolism formation in vessels. Among the UAEs, cumulative numbers of UAEs with absolute energy >10.0 fJ strongly correlated with the increase in percentage loss of hydraulic conductivity. The high absolute energy of the UAEs might reflect the formation of large bubbles in the large lumen of vessels. Therefore, UAEs generated by cavitation events in vessels during freeze-thawing might be distinguished from other signals according to their magnitudes of absolute energy. On the other hand, the freezing of xylem parenchyma cells was followed by a certain number of UAEs. These results indicate the possibility that UAE methods can be applied to the detection of both freeze-thaw-induced embolism and supercooling breakdown in parenchyma cells in xylem. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email:

  19. Characteristics of ultrasonic acoustic emissions from walnut branches during freeze–thaw-induced embolism formation (United States)

    Kasuga, Jun; Charrier, Guillaume; Uemura, Matsuo; Améglio, Thierry


    Ultrasonic acoustic emission (UAE) methods have been applied for the detection of freeze–thaw-induced embolism formation in water conduits of tree species. Until now, however, the exact source(s) of UAE has not been identified especially in angiosperm species, in which xylem tissues are composed of diverse types of cells. In this study, UAE was recorded from excised branches of walnut (Juglans regia cv. Franquette) during freeze–thaw cycles, and attempts were made to characterize UAEs generated by cavitation events leading to embolism formation according to their properties. During freeze–thaw cycles, a large number of UAEs were generated from the sample segments. However, the cumulative numbers of total UAE during freeze–thawing were not correlated with the percentage loss of hydraulic conductivity after thawing, suggesting that the sources of UAE were not only cavitation leading to embolism formation in vessels. Among the UAEs, cumulative numbers of UAEs with absolute energy >10.0 fJ strongly correlated with the increase in percentage loss of hydraulic conductivity. The high absolute energy of the UAEs might reflect the formation of large bubbles in the large lumen of vessels. Therefore, UAEs generated by cavitation events in vessels during freeze–thawing might be distinguished from other signals according to their magnitudes of absolute energy. On the other hand, the freezing of xylem parenchyma cells was followed by a certain number of UAEs. These results indicate the possibility that UAE methods can be applied to the detection of both freeze–thaw-induced embolism and supercooling breakdown in parenchyma cells in xylem. PMID:25662846

  20. Leak detection in gas pipeline by acoustic and signal processing - A review (United States)

    Adnan, N. F.; Ghazali, M. F.; Amin, M. M.; Hamat, A. M. A.


    The pipeline system is the most important part in media transport in order to deliver fluid to another station. The weak maintenance and poor safety will contribute to financial losses in term of fluid waste and environmental impacts. There are many classifications of techniques to make it easier to show their specific method and application. This paper's discussion about gas leak detection in pipeline system using acoustic method will be presented in this paper. The wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs and the pressure balance of the pipe will generated by the friction between wall in the pipe. The signal processing is used to decompose the raw signal and show in time- frequency. Findings based on the acoustic method can be used for comparative study in the future. Acoustic signal and HHT is the best method to detect leak in gas pipelines. More experiments and simulation need to be carried out to get the fast result of leaking and estimation of their location.

  1. Multi scale analysis by acoustic emission of damage mechanisms in natural fibre woven fabrics/epoxy composites.

    Directory of Open Access Journals (Sweden)

    Touchard F.


    Full Text Available This paper proposes to develop an experimental program to characterize the type and the development of damage in composite with complex microstructure. A multi-scale analysis by acoustic emission has been developed and applied to hemp fibre woven fabrics/epoxy composite. The experimental program consists of tensile tests performed on single yarn, neat epoxy resin and composite materials to identify their AE amplitude signatures. A statistical analysis of AE amplitude signals has been realised and correlated with microscopic observations. Results have enabled to identify three types of damage in composites and their associated AE amplitudes: matrix cracking, interfacial debonding and reinforcement damage and fracture. Tracking of these damage mechanisms in hemp/epoxy composites has been performed to show the process of damage development in natural fibre reinforced composites.

  2. Status reports on the development and application of acoustic emission analysis. Proceedings; Statusberichte zur Entwicklung und Anwendung der Schallemissionsanalyse. Beitraege

    Energy Technology Data Exchange (ETDEWEB)



    The colloquium lectures represent the wide range of applications in acoustic emission analysis and testing in the areas of damage development and damage mechanisms, testing of components, condition monitoring, development of new measuring systems and sensors as well as software development regarding locating methods and signal analysis. One focus of the colloquium is on current hardware and software developments for status monitoring by means of AE monitoring. One of the papers was separately analyzed for this database. [German] Die Vortraege des Kolloquiums repraesentieren das breite Spektrum der Anwendungen der Schallemissionsanalyse und -pruefung in den Bereichen der Schadensentwicklung und Schadensmechanismen, Pruefung von Bauteilen, Zustandsueberwachung, Entwicklung neuer Messsysteme und Sensoren sowie Softwareentwicklung bezueglich Ortungsverfahren und Signalanalyse. Ein Schwerpunkt des Kolloquiums betrifft aktuelle Hard- und Softwareentwicklungen zur Zustandsueberwachung durch AE-Monitoring.

  3. Damage evaluation of laminated composite material using a new acoustic emission Lamb-based and finite element techniques (United States)

    Yousefi, Jalal; Najfabadi, Mehdi Ahmadi; Toudeshky, Hossein Hosseini; Akhlaghi, Mehdi


    In this paper, a very promising procedure is proposed to evaluate delamination using Acoustic Emission (AE) technique in composite laminates. First, a new procedure was developed to decompose the fundamental Lamb wave modes in small size specimens. The damage mechanisms in End Notched Flexure (ENF) in woven and unidirectional specimens were then discriminated using Fuzzy Clustering Method (FCM). Afterwards, the crack-arrest phenomenon was examined in each specimen. After that, experimental and Cohesive Zone Modeling (CZM) techniques were conducted to characterize the delamination using ENF specimens. The results showed how, it is possible to successfully decrease the effect of propagating media such as attenuation of AE signals using the new proposed methodology. As a final point, the results of this study could lead to efficiently distinguishing different damages in laminated composite using AE Lamb-based technique.

  4. (A new time of flight) Acoustic flow meter using wide band signals and adaptive beamforming techniques (United States)

    Murgan, I.; Ioana, C.; Candel, I.; Anghel, A.; Ballester, J. L.; Reeb, B.; Combes, G.


    In this paper we present the result of our research concerning the improvement of acoustic time of flight flow metering for water pipes. Current flow meters are based on the estimation of direct time of flight by matched filtering of the received and emitted signals by acoustic transducers. Currently, narrow band signals are used, as well as a single emitter/receptor transducer configuration. Although simple, this configuration presents a series of limitations such as energy losses due to pipe wall/water interface, pressure/flow transients, sensitivity to flow induced vibrations, acoustic beam deformations and shift due to changes in flow velocity and embedded turbulence in the flow. The errors associated with these limitations reduce the overall robustness of existing flow meters, as well as the measured flow rate range and lower accuracy. In order to overcome these limitations, two major innovations were implemented at the signal processing level. The first one concerns the use of wide band signals that optimise the power transfer throughout the acoustic path and also increase the number of velocity/flow readings per second. Using wide band signals having a high duration-bandwidth product increases the precision in terms of time of flight measurements and, in the same time, improves the system robustness. The second contribution consists in the use of a multiple emitter - multiple receivers configuration (for one path) in order to compensate the emitted acoustic beam shift, compensate the time of flight estimation errors and thus increase the flow meter's robustness in case of undesired effects such as the “flow blow” and transient/rapid flow rate/velocity changes. Using a new signal processing algorithm that take advantage of the controlled wide band content coming from multiple receivers, the new flow meters achieves a higher accuracy in terms of flow velocity over a wider velocity range than existing systems. Tests carried out on real scale experimental

  5. Application of convex optimization to acoustical array signal processing (United States)

    Bai, Mingsian R.; Chen, Ching-Cheng


    This paper demonstrates that optimum weighting coefficients and inverse filters for microphone arrays can be accomplished, with the aid of a systematic methodology of mathematical programming. Both far-field and near-field array problems are formulated in terms of convex optimization formalism. Three application examples, including data-independent far-field array design, nearfield array design, and pressure field interpolation, are presented. In far-field array design, array coefficients are optimized to tradeoff Directivity Index for White Noise Gain or the coefficient norm, while in nearfield array convex optimization is applied to design Equivalent Source Method-based Nearfield Acoustical Holography. Numerical examples are given for designing a far-field two-dimensional random array comprised of thirty microphones. For far-field arrays, five design approaches, including a Delay-And-Sum beamformer, a Super Directivity Array, three optimal arrays designed using ℓ1,ℓ2, and ℓ∞-norms, are compared. Numerical and experimental results have shown that sufficiently high White Noise Gain was crucial to robust performance of array against sensor mismatch and noise. For nearfield arrays, inverse filters were designed in light of Equivalent Source Method and convex optimization to reconstruct the velocity field on a baffled spherical piston source. The proposed nearfield design is benchmarked by those designed using Truncated Singular Value Decomposition and Tikhonov Regularization. Compressive Sampling and convex optimization is applied to pressure field reconstruction, source separation and modal analysis with satisfactory performance in both near-field and far-field microphone arrays.

  6. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, Alexey V., E-mail: [Far Eastern Federal University, Vladivostok, Russia 690950 (Russian Federation); V.I. Il’ichev Pacific Oceanological Institute, Vladivostok, Russia 690041 (Russian Federation); Nagorny, Ivan G., E-mail: [Far Eastern Federal University, Vladivostok, Russia 690950 (Russian Federation); Institute for automation and control processes, Vladivostok, Russia 690041 (Russian Federation)


    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.

  7. Amplitude calibration of an acoustic backscattered signal from a bottom-moored ADCP based on long-term measurement series (United States)

    Piotukh, V. B.; Zatsepin, A. G.; Kuklev, S. B.


    A possible approach to, and preliminary results of, amplitude calibration of acoustic signals backscattered from an ADCP moored at the bottom of the near-shelf zone of the Black Sea is considered. The aim of this work is to obtain vertical profiles of acoustic scattering signal levels, showing the real characteristics of the volume content of suspended sediments in sea water in units of conventional acoustic turbidity for a given signal frequency. In this case, the assumption about the intervals of maximum acoustic transparency and vertical homogeneity of the marine environment in long-term series of ADCP measurements is used. According to this hypothesis, the intervals of the least values of acoustic backscattered signals are detected, an empirical transfer function of the ADCP reception path is constructed, and it is calibrated. Normalized sets of acoustic backscattered signals relative to a signal from a level of conventionally clear water are obtained. New features in the behavior of vertical profiles of an acoustic echo-signal are revealed due to the calibration. The results of this work will be used in subsequent analysis of the vertical and time variations in suspended sediment content in the near-shelf zone of the Black Sea.

  8. Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals

    Energy Technology Data Exchange (ETDEWEB)

    Kubakaddi, S. S., E-mail: [Department of Physics, Karnatak University, Dharwad 580 003, Karnataka (India)


    Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd{sub 3}As{sub 2} in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity v{sub d} is greater than the sound velocity v{sub s}. This occurs at small E (∼few V/cm) due to large mobility. Frequency (ω{sub q}) and angular (θ) distribution of phonon emission spectrum P(ω{sub q}, θ) are studied for different electron drift velocities v{sub d} (i.e., different E) and electron concentrations n{sub e}. The frequency dependence of P(ω{sub q}, θ) shows a maximum P{sub m}(ω{sub q}, θ) at about ω{sub m} ≈ 1 THz and is found to increase with the increasing v{sub d} and n{sub e}. The value of ω{sub m} shifts to higher region for larger n{sub e}. It is found that ω{sub m}/n{sub e}{sup 1/3} and P{sub m}(ω{sub q}, θ)/n{sub e}{sup 2/3} are nearly constants. The latter is in contrast with the P{sub m}(ω{sub q}, θ)n{sub e}{sup 1/2 }= constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly “2k{sub f} cutoff,” where k{sub f} is the Fermi wave vector. Angular dependence of P(ω{sub q}, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing v{sub d}. P(θ) is found to increase linearly with n{sub e} giving the ratio P(θ)/(n{sub e}v{sub d}) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and n{sub e}. 3DDS with large n{sub e} and mobility can be a good source of acoustic phonon generation in ∼THz regime.

  9. Tempo and beat analysis of acoustic musical signals. (United States)

    Scheirer, E D


    A method is presented for using a small number of bandpass filters and banks of parallel comb filters to analyze the tempo of, and extract the beat from, musical signals of arbitrary polyphonic complexity and containing arbitrary timbres. This analysis is performed causally, and can be used predictively to guess when beats will occur in the future. Results in a short validation experiment demonstrate that the performance of the algorithm is similar to the performance of human listeners in a variety of musical situations. Aspects of the algorithm are discussed in relation to previous high-level cognitive models of beat tracking.

  10. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. (United States)

    Both, Camila; Grant, Taran


    Invasive species are known to affect native species in a variety of ways, but the effect of acoustic invaders has not been examined previously. We simulated an invasion of the acoustic niche by exposing calling native male white-banded tree frogs (Hypsiboas albomarginatus) to recorded invasive American bullfrog (Lithobates catesbeianus) calls. In response, tree frogs immediately shifted calls to significantly higher frequencies. In the post-stimulus period, they continued to use higher frequencies while also decreasing signal duration. Acoustic signals are the primary basis of mate selection in many anurans, suggesting that such changes could negatively affect the reproductive success of native species. The effects of bullfrog vocalizations on acoustic communities are expected to be especially severe due to their broad frequency band, which masks the calls of multiple species simultaneously.

  11. An online emission spectral tomography system with digital signal processor. (United States)

    Wan, Xiong; Xiong, Wenlin; Zhang, Zhimin; Chang, Fangfei


    Emission spectral tomography (EST) has been adopted to test the three-dimensional distribution parameters of fluid fields, such as burning gas, flame and plasma etc. In most cases, emission spectral data received by the video cameras are enormous so that the emission spectral tomography calculation is often time-consuming. Hence, accelerating calculation becomes the chief factor that one must consider for the practical application of EST. To solve the problem, a hardware implementation method was proposed in this paper, which adopted a digital signal processor (DSP) DM642 in an emission spectral tomography test system. The EST algorithm was fulfilled in the DSP, then calculation results were transmitted to the main computer via the user datagram protocol. Compared with purely VC++ software implementations, this new approach can decrease the calculation time significantly.

  12. Acoustic signal localization through the use of Head Related Transfer Functions

    Directory of Open Access Journals (Sweden)

    Jaka Sodnik


    Full Text Available An acoustic image of space is an acoustically described visual image intended to help blind people orient themselves in space. Description is made with the aid of spatial sounds created using HRTF filters. HRTF filters are empirically acquired FIR filter sets that describe changes to the sound as it travels from its source towards the human eardrum. They include changes related to body shape, ears, ear canal, etc. Our research focused on finding the maximum resolution of the human auditory system when determining the location of a sound source in space. This is also the maximum resolution for creating an acoustic image. We were interested in minimum azimuth and elevation change resolution – we tried to establish the minimum angle between two sources that could still be detected. Resolution dependence on signal bandwidth was also measured. The results were encouraging, especially in the horizontal plane, where most of subjects were able to tell the difference between two sources only 5° apart. Edge resolution, with 80° – 90° azimuth, was still satisfactory if a wide bandwidth signal was used. If elevation is increased, the resolution deteriorates quickly and is no longer satisfactory. To address this problem, different coding should be used to create an acoustic image of elevation.

  13. Empirical Mode Decomposition Analysis of Continuous Acoustic Emission (AE) Data from Laboratory Rock Deformation Experiments (United States)

    Flynn, J. W.; Goodfellow, S. D.; Nasseri, M. H. B.; Reyes-Montes, J. M.; Young, R. P.


    Continuous acoustic emission (AE) data recorded during rock deformation tests facilitates the monitoring of fracture initiation and propagation due to applied stress changes. Changes in the frequency and energy content of AE waveforms have been previously observed associated with microcrack coalescence and the induction or mobilisation of large fractures which are naturally associated with larger amplitude AE events and lower frequency components. The shift from high to low dominant frequency components during the late stages of the deformation experiment, as the rate of AE events increases and the sample approaches failure, indicates a transition from the micro-cracking to macro-cracking regime, where large cracks generated result in material failure. To analyse and characterise these changes, a detailed time-frequency analysis of the continuous waveform data is required. Fourier-based techniques (e.g. STFT) and the Wavelet Transform have several drawbacks such as fixed window size (STFT), poor time-frequency resolution and some general assumption of linearity and/or stationarity. These techniques are not suitable for the detailed analysis of AE data which are generally nonstationary and nonlinear. The Empirical Mode Decomposition (EMD) method is suitable for non-stationary and non-linear time-series analysis, with the ability to identify intrinsic features in the data. EMD adaptively decomposes a time-varying signal into a finite set of functions called intrinsic mode functions (IMFs), where each IMF represents an oscillatory term in the original signal in a different frequency band. The instantaneous frequency and amplitude of each IMF is derived by applying the Hilbert Transform (HT) to the IMFs which provides a high resolution time-frequency distribution of the data. This paper proposes the use of the combined EMD and HT method to analyse the continuous AE data recorded during a laboratory triaxial deformation experiment on a cylindrical sample of Westerly

  14. Springer handbook of acoustics

    CERN Document Server


    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  15. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    Directory of Open Access Journals (Sweden)

    L. Girard


    Full Text Available We present a custom acoustic emission (AE monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node integrated into a wireless sensor network (WSN customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  16. Near- Source, Seismo-Acoustic Signals Accompanying a NASCAR Race at the Texas Motor Speedway (United States)

    Stump, B. W.; Hayward, C.; Underwood, R.; Howard, J. E.; MacPhail, M. D.; Golden, P.; Endress, A.


    Near-source, seismo-acoustic observations provide a unique opportunity to characterize urban sources, remotely sense human activities including vehicular traffic and monitor large engineering structures. Energy separately coupled into the solid earth and atmosphere provides constraints on not only the location of these sources but also the physics of the generating process. Conditions and distances at which these observations can be made are dependent upon not only local geological conditions but also atmospheric conditions at the time of the observations. In order to address this range of topics, an empirical, seismo-acoustic study was undertaken in and around the Texas Motor Speedway in the Dallas-Ft. Worth area during the first week of April 2014 at which time a range of activities associated with a series of NASCAR races occurred. Nine, seismic sensors were deployed around the 1.5-mile track for purposes of documenting the direct-coupled seismic energy from the passage of the cars and other vehicles on the track. Six infrasound sensors were deployed on a rooftop in a rectangular array configuration designed to provide high frequency beam forming for acoustic signals. Finally, a five-element infrasound array was deployed outside the track in order to characterize how the signals propagate away from the sources in the near-source region. Signals recovered from within the track were able to track and characterize the motion of a variety of vehicles during the race weekend including individual racecars. Seismic data sampled at 1000 sps documented strong Doppler effects as the cars approached and moved away from individual sensors. There were faint seismic signals that arrived at seismic velocity but local acoustic to seismic coupling as supported by the acoustic observations generated the majority of seismic signals. Actual seismic ground motions were small as demonstrated by the dominance of regional seismic signals from a magnitude 4.0 earthquake that arrived at

  17. Online monitoring of Accessories for Underground Electrical Installations through Acoustics Emissions

    Directory of Open Access Journals (Sweden)

    Casals-Torrens P.


    Full Text Available The acoustic waves caused by Partial Discharges inside the dielectric materials, can be detected by acoustic emission (AE sensors and analyzed in the time domain. The experimental results presented, show the online detection capability of these sensors in the environment near a cable accessory, such as a splice or terminal. The AE sensors are immune to electromagnetic interference and constitute a detection method non-intrusive and non-destructive, which ensures a galvanic decoupling with respect to electric networks, this technique of partial discharge detection can be applied as a test method for preventive or predictive maintenance (condition-based maintenance to equipments or facilities of medium and high voltage in service and represents an alternative method to electrical detection systems, conventional or not, that continue to rely on the detection of current pulses. This paper presents characterization tests of the sensors AE through comparative tests of partial discharge on accessories for underground power cables.

  18. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    CERN Document Server

    Weiß, Matthias; Reichert, Thorsten; Finley, Jonathan J; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J


    A coupled quantum dot--nanocavity system in the weak coupling regime of cavity quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a $f_{\\rm SAW}\\simeq800\\,\\mathrm{MHz}$ surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function $g^{(2)}$. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of $g^{(2)}$, demonstrating high fidelity regulation of the stream of single photons emitted by the system. The implemented scheme can be directly extended to strongly coupled systems and acoustically drives non-adiabatic entangling quantum gates based on Landau-Zener transitions.

  19. Seismo-acoustic signals associated with degassing explosions recorded at Shishaldin Volcano, Alaska, 2003-2004 (United States)

    Petersen, T.


    In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.

  20. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string (United States)

    Drumheller, D.S.; Scott, D.D.


    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  1. Efficient Processing of Acoustic Signals for High Rate Information Transmission over Sparse Underwater Channels (United States)


    Institute of Technology Cmabridge, MA 02139 Abstract For underwater acoustic channels where multipath spread is measured in tens of symbol...estimation-aided decision-feedback equalization was used in con - junction with multichannel spatial diversity pre-combining. By reducing the number of channels...that are equalized, and by selecting only the significant components of the channel estimates, not only is the efficiency of signal pro - cessing

  2. Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals (United States)

    Huynh, Nam T.; Ruan, Haowen; He, Diwei; Hayes-Gill, Barrie R.; Morgan, Stephen P.


    Detection of ultrasound (US)-modulated fluorescence in turbid media is a challenge because of the low level of fluorescent light and the weak modulation of incoherent light. A very limited number of theoretical and experimental investigations have been performed, and this is, to our knowledge, the first demonstration of pulsed US-modulated fluorescence tomography. Experimental results show that the detected signal depends on the acoustic frequency and the fluorescent target's size along the ultrasonic propagation axis. The modulation depth of the detected signal is greatest when the length of the object along the acoustic axis is an odd number of half wavelengths and is weakest when the object is an integer multiple of an acoustic wavelength. Images of a fluorescent tube embedded within a 22- by 13- by 30 mm scattering gel phantom (μs~15 cm-1, g=0.93) with 1-, 1.5-, and 2 MHz frequency US are presented. The modulation depth of the detected signal changes by a factor of 5 depending on the relative size of the object and the frequency. The approach is also verified by some simple experiments in a nonscattering gel and using a theoretical model.

  3. The Acoustic Structure and Information Content of Female Koala Vocal Signals. (United States)

    Charlton, Benjamin D


    Determining the information content of animal vocalisations can give valuable insights into the potential functions of vocal signals. The source-filter theory of vocal production allows researchers to examine the information content of mammal vocalisations by linking variation in acoustic features with variation in relevant physical characteristics of the caller. Here I used a source-filter theory approach to classify female koala vocalisations into different call-types, and determine which acoustic features have the potential to convey important information about the caller to other conspecifics. A two-step cluster analysis classified female calls into bellows, snarls and tonal rejection calls. Additional results revealed that female koala vocalisations differed in their potential to provide information about a given caller's phenotype that may be of importance to receivers. Female snarls did not contain reliable acoustic cues to the caller's identity and age. In contrast, female bellows and tonal rejection calls were individually distinctive, and the tonal rejection calls of older female koalas had consistently lower mean, minimum and maximum fundamental frequency. In addition, female bellows were significantly shorter in duration and had higher fundamental frequency, formant frequencies, and formant frequency spacing than male bellows. These results indicate that female koala vocalisations have the potential to signal the caller's identity, age and sex. I go on to discuss the anatomical basis for these findings, and consider the possible functional relevance of signalling this type of information in the koala's natural habitat.

  4. The Acoustic Structure and Information Content of Female Koala Vocal Signals.

    Directory of Open Access Journals (Sweden)

    Benjamin D Charlton

    Full Text Available Determining the information content of animal vocalisations can give valuable insights into the potential functions of vocal signals. The source-filter theory of vocal production allows researchers to examine the information content of mammal vocalisations by linking variation in acoustic features with variation in relevant physical characteristics of the caller. Here I used a source-filter theory approach to classify female koala vocalisations into different call-types, and determine which acoustic features have the potential to convey important information about the caller to other conspecifics. A two-step cluster analysis classified female calls into bellows, snarls and tonal rejection calls. Additional results revealed that female koala vocalisations differed in their potential to provide information about a given caller's phenotype that may be of importance to receivers. Female snarls did not contain reliable acoustic cues to the caller's identity and age. In contrast, female bellows and tonal rejection calls were individually distinctive, and the tonal rejection calls of older female koalas had consistently lower mean, minimum and maximum fundamental frequency. In addition, female bellows were significantly shorter in duration and had higher fundamental frequency, formant frequencies, and formant frequency spacing than male bellows. These results indicate that female koala vocalisations have the potential to signal the caller's identity, age and sex. I go on to discuss the anatomical basis for these findings, and consider the possible functional relevance of signalling this type of information in the koala's natural habitat.

  5. Honest signaling and oxidative stress: the special case of avian acoustic communication

    Directory of Open Access Journals (Sweden)

    Stefania eCasagrande


    Full Text Available Much research on animal communication has addressed how costs or constraints determined by the oxidative status of an individual can assure the honesty of visual signals, such as sexually selected color ornaments. However, acoustic communication has been largely overlooked in this respect. Here, we describe the few available studies that have considered the role of oxidative status in mediating vocal behavior in adult and nestling birds. Further, we discuss the theoretical principles of how the honesty of avian acoustic signals may be maintained by an organism’s oxidative status. We here distinguish between studies that considered songs and begging calls as indicators of oxidative status and studies where vocalizations were assumed to be the source of oxidative costs. We outline experimental and methodological issues related to the study of bird vocalizations and oxidative stress and describe opportunities for future work in this field of research. Investigating the interactions between acoustic signals and redox state may help address some unresolved questions in avian vocalization, thereby increasing our understanding of the evolutionary pressures shaping animal communication. Finally, we argue that it will be important to extend this line of research beyond birds and include other taxa as well.

  6. Oscillation of solar radio emission at coronal acoustic cut-off frequency (United States)

    Pylaev, O. S.; Zaqarashvili, T. V.; Brazhenko, A. I.; Melnik, V. N.; Hanslmeier, A.; Panchenko, M.


    Recent SECCHI COR2 observations on board STEREO-A spacecraft have detected density structures at a distance of 2.5-15 R0 propagating with periodicity of about 90 min. The observations show that the density structures probably formed in the lower corona. We used the large Ukrainian radio telescope URAN-2 to observe type IV radio bursts in the frequency range of 8-32 MHz during the time interval of 08:15-11:00 UT on August 1, 2011. Radio emission in this frequency range originated at the distance of 1.5-2.5 R0 according to the Baumbach-Allen density model of the solar corona. Morlet wavelet analysis showed the periodicity of 80 min in radio emission intensity at all frequencies, which demonstrates that there are quasi-periodic variations of coronal density at all heights. The observed periodicity corresponds to the acoustic cut-off frequency of stratified corona at a temperature of 1 MK. We suggest that continuous perturbations of the coronal base in the form of jets/explosive events generate acoustic pulses, which propagate upwards and leave the wake behind oscillating at the coronal cut-off frequency. This wake may transform into recurrent shocks due to the density decrease with height, which leads to the observed periodicity in the radio emission. The recurrent shocks may trigger quasi-periodic magnetic reconnection in helmet streamers, where the opposite field lines merge and consequently may generate periodic density structures observed in the solar wind.

  7. Standard practice for examination of fiberglass reinforced plastic fan blades using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice provides guidelines for acoustic emission (AE) examinations of fiberglass reinforced plastic (FRP) fan blades of the type used in industrial cooling towers and heat exchangers. 1.2 This practice uses simulated service loading to determine structural integrity. 1.3 This practice will detect sources of acoustic emission in areas of sensor coverage that are stressed during the course of the examination. 1.4 This practice applies to examinations of new and in-service fan blades. 1.5 This practice is limited to fan blades of FRP construction, with length (hub centerline to tip) of less than 3 m [10 ft], and with fiberglass content greater than 15 % by weight. 1.6 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to evaluate the significance of AE sources. Procedures for other NDE methods are beyond the scope of this practice. 1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as sta...

  8. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales

    Energy Technology Data Exchange (ETDEWEB)

    Au, W.W.; Nachtigall, P.E.; Pawloski, J.L. [Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1106, Kailua, Hawaii 96734 (United States)


    The Acoustic Thermometry of Ocean Climate (ATOC) program of Scripps Institution of Oceanography and the Applied Physics Laboratory, University of Washington, will broadcast a low-frequency 75-Hz phase modulated acoustic signal over ocean basins in order to study ocean temperatures on a global scale and examine the effects of global warming. One of the major concerns is the possible effect of the ATOC signal on marine life, especially on dolphins and whales. In order to address this issue, the hearing sensitivity of a false killer whale ({ital Pseudorca crassidens}) and a Risso{close_quote}s dolphin ({ital Grampus griseus}) to the ATOC sound was measured behaviorally. A staircase procedure with the signal levels being changed in 1-dB steps was used to measure the animals{close_quote} threshold to the actual ATOC coded signal. The results indicate that small odontocetes such as the {ital Pseudorca} and {ital Grampus} swimming directly above the ATOC source will not hear the signal unless they dive to a depth of approximately 400 m. A sound propagation analysis suggests that the sound-pressure level at ranges greater than 0.5 km will be less than 130 dB for depths down to about 500 m. Several species of baleen whales produce sounds much greater than 170{endash}180 dB. With the ATOC source on the axis of the deep sound channel (greater than 800 m), the ATOC signal will probably have minimal physical and physiological effects on cetaceans. {copyright} {ital 1997 Acoustical Society of America.}

  9. Phenomenological Description of Acoustic Emission Processes Occurring During High-Pressure Sand Compaction (United States)

    Delgado-Martín, Jordi; Muñoz-Ibáñez, Andrea; Grande-García, Elisa; Rodríguez-Cedrún, Borja


    Compaction, pore collapse and grain crushing have a significant impact over the hydrodynamic properties of sand formations. The assessment of the crushing stress threshold constitutes valuable information in order to assess the behavior of these formations provided that it can be conveniently identified. Because of the inherent complexities of the direct observation of sand crushing, different authors have developed several indirect methods, being acoustic emission a promising one. However, previous researches have evidenced that there are different processes triggering acoustic emissions which need to be carefully accounted. Worth mentioning among them are grain bearing, grain to container friction, intergranular friction and crushing. The work presented here addresses this purpose. A broadband acoustic emission sensor (PA MicroHF200) connected to a high-speed data acquisition system and control software (AeWIN for PCI1 2.10) has been attached to a steel ram and used to monitor the different processes occurring during the oedometric compaction of uniform quartz sand up to an axial load of about 110 MPa and constant temperature. Load was stepwise applied using a servocontrolled hydraulic press acting at a constant load rate. Axial strain was simultaneously measured with the aid of a LDT device. Counts, energy, event duration, rise time and amplitude were recorded along each experiment and after completion selected waveforms were transformed from the time to the frequency domain via FFT transform. Additional simplified tests were performed in order to isolate the frequency characteristics of the dominant processes occurring during sand compaction. Our results show that, from simple tests, it is possible to determine process-dependent frequency components. When considering more complex experiments, many of the studied processes overlap but it is still possible to identify when a particular one dominates as well as the likely onset of crushing.

  10. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo


    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  11. Study on Three Point Bending Features of Sandstone Based on Acoustic Emission (United States)

    Li, Kexuan; Li, Tie


    The three-point bending experiment of sandstone from a coal mine roof under different loading rates based on acoustic emission was carried out. Through analyzing the AE phenomenon, found that the sandstone fracture is brittle fracture. The number of AE counts under low loading speed is more than it under high loading speed, indicated that internal crack is more fully occurred and expanded at low loading speed. The AE energy presents as solitary earthquake type. The flexural strength of sandstone is not high, the failure load and flexural strength increase with the increasing of loading speed, and then decline gradually after reaching the extreme value.

  12. The Acoustic Emission for Monitoring the Hardness of the Cold Metal Transfer Weld

    Directory of Open Access Journals (Sweden)

    Michal Šustr


    Full Text Available The article deals with the quality monitoring of the weld joint Aluzinc surface at the overlap point. The corrosion resistance layer research in the anaerobic fermenter (bioreactor used to be the article’s subject. Moreover, the main purpose is focused on the qualitative modification of the degraded samples properties in the specified bio-environment in the experimental measurements. We used the material hardness decrease in two predetermined areas through the use of acoustic emission method as a key factor.

  13. Acoustic emission analysis of the stages of deformation of TRIP steel (United States)

    Penkin, A. G.; Terent'ev, V. F.; Roshchupkin, V. V.; Slizov, A. K.; Sirotinkin, V. P.


    The kinetics of damage accumulation and deformation martensite formation in cold-rolled austenitic-martensitic VNS9-Sh TRIP steel during static tension at room temperature is studied at various stages of plastic deformation and fracture by acoustic emission and X-ray diffraction. The threshold stresses that correspond to the beginning of dislocation motion and intense dislocation generation predominantly in surface layers are determined. Deformation martensite is shown to form after a yield plateau and its formation is most intensely at the stage of strain hardening.

  14. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo


    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate...... removal of the part from the machine tool. In this study, stabilisation of surface roughness during polishing rotational symmetric surfaces by the RAP process was monitored by AE measurements. An AE sensor was placed on a polishing arm in direct contact with a bonded abrasive polishing tool...

  15. Evoked acoustic emissions from the human ear. III. Findings in neonates

    DEFF Research Database (Denmark)

    Johnsen, N J; Bagi, P; Elberling, C


    Stimulated acoustic emissions were recorded in a consecutive series of 20 full-term and otherwise normal neonates with the equipment and method previously used in adults. One ear randomly chosen was tested in each baby, and otoscopy and tympanometry were normal in all ears. A 2 kHz click stimulus...... input-output curves exhibited a clear non-linearity. The relationship between latency and frequency was just as ambiguous as in the adults. Also, in the neonates, the cross correlation analysis proved to be an efficient method to indicate whether or not a true response was present. The results from...

  16. Real-time implementations of acoustic signal enhancement techniques for aerial based surveillance and rescue applications (United States)

    Ramos, Antonio L. L.; Shao, Zhili; Holthe, Aleksander; Sandli, Mathias F.


    The introduction of the System-on-Chip (SoC) technology has brought exciting new opportunities for the development of smart low cost embedded systems spanning a wide range of applications. Currently available SoC devices are capable of performing high speed digital signal processing tasks in software while featuring relatively low development costs and reduced time-to-market. Unmanned aerial vehicles (UAV) are an application example that has shown tremendous potential in an increasing number of scenarios, ranging from leisure to surveillance as well as in search and rescue missions. Video capturing from UAV platforms is a relatively straightforward task that requires almost no preprocessing. However, that does not apply to audio signals, especially in cases where the data is to be used to support real-time decision making. In fact, the enormous amount of acoustic interference from the surroundings, including the noise from the UAVs propellers, becomes a huge problem. This paper discusses a real-time implementation of the NLMS adaptive filtering algorithm applied to enhancing acoustic signals captured from UAV platforms. The model relies on a combination of acoustic sensors and a computational inexpensive algorithm running on a digital signal processor. Given its simplicity, this solution can be incorporated into the main processing system of an UAV using the SoC technology, and run concurrently with other required tasks, such as flight control and communications. Simulations and real-time DSP-based implementations have shown significant signal enhancement results by efficiently mitigating the interference from the noise generated by the UAVs propellers as well as from other external noise sources.

  17. Correlation-Based Detection and Classification of Rail Wheel Defects using Air-coupled Ultrasonic Acoustic Emissions


    Nouri, Arash


    Defected wheel are one the major reasons endangered state of railroad vehicles safety statue, due to vehicle derailment and worsen the quality of freight and passenger transportation. Therefore, timely defect detection for monitoring and detecting the state of defects is highly critical. This thesis presents a passive non-contact acoustic structural health monitoring approach using ultrasonic acoustic emissions (UAE) to detect certain defects on different structures, as well as, classifyin...

  18. Early shell crack detection technique using acoustic emission energy parameter blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Lee, Sang Bum [RECTUSON Co.,Ltd., Changwon (Korea, Republic of); Bae, Dong Myung; Yang, Bo Suk [Pukyong National University, Busan (Korea, Republic of)


    Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.

  19. New methods for leaks detection and localisation using acoustic emission; Nouvelles methodes de detection et de localisation de fuites par emission acoustique

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, P.


    Real time monitoring of Pressurized Water nuclear Reactor secondary coolant system tends to integrate digital processing machines. In this context, the method of acoustic emission seems to exhibit good performances. Its principle is based on passive listening of noises emitted by local micro-displacements inside a material under stress which propagate as elastic waves. The lack of a priori knowledge on leak signals leads us to go deeper into understanding flow induced noise generation. Our studies are conducted using a simple leak model depending on the geometry and the king of flow inside the slit. Detection and localization problems are formulated according to the maximum likelihood principle. For detection, the methods using a indicator of similarity (correlation, higher order correlation) seems to give better results than classical ones (rms value, envelope, filter banks). For leaks location, a large panel of classical (generalized inter-correlation) and innovative (convolution, adaptative, higher order statistics) methods of time delay estimation are presented. The last part deals with the applications of higher order statistics. The analysis of higher order estimators of a non linear non Gaussian stochastic process family, the improvement of non linear prediction performances and the optimal-order choice problem are addressed in simple analytic cases. At last, possible applications to leak signals analysis are pointed out. (authors).264 refs., 7 annexes.

  20. An in vitro study of the correlation between bubble distribution, acoustic emission, and cell damage by contrast ultrasound. (United States)

    Samuel, Stanley; Fowlkes, J Brian; Miller, Douglas L


    The objective of this study was to investigate the influences of total exposure duration and pulse-to-pulse bubble distribution on contrast-mediated cell damage. Murine macrophage cells were grown as monolayers on thin polyester sheets. Contrast agent microbubbles were attached to these cells by incubation. Focused ultrasound exposures (P(r) = 2 MPa) were implemented at a frequency of 2.25 MHz with 46 cycle pulses and pulse repetition frequencies (PRF) of 1 kHz, 500 Hz, 100 Hz, and 10 Hz in a degassed water bath at 10 or 100 pulses. A 1 MHz receive transducer measured the scattered signal. The frequency spectrum was normalized to a control spectrum from linear scatterers. Photomicrographs were captured before, during, and after exposure at a frame rate of 2000 fps and a pixel resolution of 960 x 720. Results clearly show that cell death is increased, up to 60%, by increasing total exposure duration from 0 ms to 100 ms. There was an increasing difference in cell damage between a 10-pulse exposure and a 100-pulse exposure with increasing PRF. The greatest change in damage occurred at 1000 Hz PRF with a 53% increase between 10-pulse and 100-pulse exposures. For each pulse from 0 to 10, an overlay of the 2 mum bubble count with corresponding emission shows consistent behavior in its pulse-to-pulse changes, indicating a correlation between acoustic emission, bubble distribution, and cell damage.

  1. Virtual Acoustics (United States)

    Lokki, Tapio; Savioja, Lauri

    The term virtual acoustics is often applied when sound signal is processed to contain features of a simulated acoustical space and sound is spatially reproduced either with binaural or with multichannel techniques. Therefore, virtual acoustics consists of spatial sound reproduction and room acoustics modeling.

  2. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    Directory of Open Access Journals (Sweden)

    Takashi eTateno


    Full Text Available To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number.

  3. Demodulation of acoustic telemetry binary phase shift keying signal based on high-order Duffing system (United States)

    Yan, Bing-Nan; Liu, Chong-Xin; Ni, Jun-Kang; Zhao, Liang


    In order to grasp the downhole situation immediately, logging while drilling (LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying (BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench (EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible. Project supported by the National Natural Science Foundation of China (Grant No. 51177117) and the National Key Science & Technology Special Projects, China (Grant No. 2011ZX05021-005).

  4. Enhancing acoustic signal response and absorption of an underwater coated plate by embedding periodical inhomogeneities. (United States)

    Zhang, Yanni; Pan, Jie


    An underwater structure is proposed for simultaneous detection and stealth purposes by embedding periodic signal conditioning plates (SCPs) at the interface of two elastic coatings attached to an elastic plate. Results show that the embedded SCPs can enhance sound absorption at frequencies below the coincidence frequency of the plate (f c ). Significantly enhanced absorption occurs at five peaks, of which the peak due to excited localized bending resonance in the outer coating between SCPs is the most significant. When the dilatational velocity of the outer coating equals that of the inner coating, nearly total absorption occurs in a wideband, owing to strong coupling between the localized waveguide resonance in the outer coating and that in the inner coating, and the diffraction waves by the SCPs. Meanwhile, an amplified acoustic signal of over 14 dB is observed at most frequencies within 0 ∼ f c at the coatings' interface close to the SCPs' edges, owing to focused stress formed there. Peaks in the signal response at maximal 30 dB are also observed. These peak frequencies are coincident with or close to the peak frequencies of absorption, demonstrating that significantly enhanced acoustic signal and absorption can be achieved simultaneously through the use of embedded periodic SCPs.

  5. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Hui Li


    Full Text Available Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  6. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors (United States)

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui


    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  7. Experimental analysis of crack evolution in concrete by the acoustic emission technique

    Directory of Open Access Journals (Sweden)

    J. Saliba


    Full Text Available The fracture process zone (FPZ was investigated on unnotched and notched beams with different notch depths. Three point bending tests were realized on plain concrete under crack mouth opening displacement (CMOD control. Crack growth was monitored by applying the acoustic emission (AE technique. In order to improve our understanding of the FPZ, the width and length of the FPZ were followed based on the AE source locations maps and several AE parameters were studied during the entire loading process. The bvalue analysis, defined as the log-linear slope of the frequency-magnitude distribution of acoustic emissions, was also carried out to describe quantitatively the influence of the relative notch depth on the fracture process. The results show that the number of AE hits increased with the decrease of the relative notch depth and an important AE energy dissipation was observed at the crack initiation in unnotched beams. In addition, the relative notch depth influenced the AE characteristics, the process of crack propagation, and the brittleness of concrete.

  8. Visualization of stress wave propagation via air-coupled acoustic emission sensors (United States)

    Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan


    We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.

  9. Simulation of non-destructive inspections and acoustic emission measurements involving guided waves (United States)

    Baronian, V.; Lhémery, A.; Bonnet-Ben Dhia, A.-S.


    In a structure that guides elastic waves, a discontinuity (defect, shape variation) causes scattering (reflection, partial extinction or mode conversion). Two modal formulations have been developed to link separate models dealing with the calculation of the modal decomposition, with the generation and reception of guided waves (GW), with their scattering. The first concerns pulse-echo configurations (involving a single transducer), the other concerns pitch-catch configurations (two transducers involved). A new finite element (FE) method has been developed to compute the scattering by an arbitrary discontinuity, based on the modal decomposition of the field. Perfectly transparent boundary conditions (Dirichlet-to-Neuman boundaries) are developed, allowing the FE computation zone to be reduced to a minimum. A specific variational problem including these boundary conditions was obtained and solved using FE tools. By combining the modal formulations, the new FE scheme and tools for GW radiation, propagation and reception based on the Semi-Analytical Finite Element (SAFE) method, a new simulation tool has been developed. It can address almost arbitrary configurations of GW nondestructive testing. Moreover, a source inside the FE computation zone can be defined so that configurations of testing by acoustic emission can also be simulated. Examples of use of this tool are shown, some dealing with junctions of complex geometry between two guides, other with surface or bulk sources of acoustic emission.

  10. Acoustic emission characteristics of instability process of a rock plate under concentrated loading

    Directory of Open Access Journals (Sweden)

    S.R. Wang


    Full Text Available It can facilitate the understanding of the mechanical properties and failure laws of rocks to research on the rock failure mechanism and evolution characteristics of Acoustic Emission (AE. Under the concentrated loading condition, the fracture and instability test of a rock plate was conducted by using the rock Mechanics Testing System (MTS, meanwhile, these AE events were recorded through the AE recording system. Based on the laboratory test, the numerical simulation was completed by using FLAC3D technique under the criterion that the rupture of a cell or several adjacent cells was regarded as an AE event. The results show that the process of the fracture and instability of the rock plate can be divided into four stages, such as the stress adjusting stage, the brittle fracture stage, the rock-arch bearing load stage and the rock-arch instability stage. And the acoustic emissions display the different characteristics in each one of the four stages. The temporal and spatial distribution characteristics of the AE events with large magnitudes are very similar to those of the natural earthquakes.

  11. Wavelet Transform Of Acoustic Signal From A Ranque- Hilsch Vortex Tube (United States)

    Istihat, Y.; Wisnoe, W.


    This paper presents the frequency analysis of flow in a Ranque-Hilsch Vortex Tube (RHVT) obtained from acoustic signal using microphones in an isolated formation setup. Data Acquisition System (DAS) that incorporates Analog to Digital Converter (ADC) with laptop computer has been used to acquire the wave data. Different inlet pressures (20, 30, 40, 50 and 60 psi) are supplied and temperature differences are recorded. Frequencies produced from a RHVT are experimentally measured and analyzed by means of Wavelet Transform (WT). Morlet Wavelet is used and relation between Pressure variation, Temperature and Frequency are studied. Acoustic data has been analyzed using Matlab® and time-frequency analysis (Scalogram) is presented. Results show that the Pressure is proportional with the Frequency inside the RHVT whereby two distinct working frequencies is pronounced in between 4-8 kHz.

  12. Acoustics of fish shelters: background noise and signal-to-noise ratio. (United States)

    Lugli, Marco


    Fish shelters (flat stones, shells, artificial covers, etc., with a hollow beneath) increase the sound pressure levels of low frequency sounds (signal-to-noise ratio (SNR) in the nest. Background noise amplification by the shelter was examined under both laboratory (stones and shells) and field (stones) conditions, and the SNR of tones inside the nest cavity was measured by performing acoustic tests on stones in the stream. Stone and shell shelters amplify the background noise pressure levels inside the cavity with comparable gains and at similar frequencies of an active sound source. Inside the cavity of stream stones, the mean SNR of tones increased significantly below 125 Hz and peaked at 65 Hz (+10 dB). Implications for fish acoustic communication inside nest enclosures are discussed.

  13. The effect of artificial rain on backscattered acoustic signal: first measurements (United States)

    Titchenko, Yuriy; Karaev, Vladimir; Meshkov, Evgeny; Goldblat, Vladimir

    The problem of rain influencing on a characteristics of backscattered ultrasonic and microwave signal by water surface is considered. The rain influence on backscattering process of electromagnetic waves was investigated in laboratory and field experiments, for example [1-3]. Raindrops have a significant impact on backscattering of microwave and influence on wave spectrum measurement accuracy by string wave gauge. This occurs due to presence of raindrops in atmosphere and modification of the water surface. For measurements of water surface characteristics during precipitation we propose to use an acoustic system. This allows us obtaining of the water surface parameters independently on precipitation in atmosphere. The measurements of significant wave height of water surface using underwater acoustical systems are well known [4, 5]. Moreover, the variance of orbital velocity can be measure using these systems. However, these methods cannot be used for measurements of slope variance and the other second statistical moments of water surface that required for analyzing the radar backscatter signal. An original design Doppler underwater acoustic wave gauge allows directly measuring the surface roughness characteristics that affect on electromagnetic waves backscattering of the same wavelength [6]. Acoustic wave gauge is Doppler ultrasonic sonar which is fixed near the bottom on the floating disk. Measurements are carried out at vertically orientation of sonar antennas towards water surface. The first experiments were conducted with the first model of an acoustic wave gauge. The acoustic wave gauge (8 mm wavelength) is equipped with a transceiving antenna with a wide symmetrical antenna pattern. The gauge allows us to measure Doppler spectrum and cross section of backscattered signal. Variance of orbital velocity vertical component can be retrieved from Doppler spectrum with high accuracy. The result of laboratory and field experiments during artificial rain is presented

  14. A study of aluminum-lithium alloy solidification using acoustic emission techniques. Ph.D. Thesis, 1991 (United States)

    Henkel, Daniel P.


    Physical phenomena associated with the solidification of an aluminum lithium alloy was characterized using acoustic emission (AE) techniques. It is shown that repeatable patterns of AE activity may be correlated to microstructural changes that occur during solidification. The influence of the experimental system on generated signals was examined in the time and frequency domains. The analysis was used to show how an AE signal from solidifying aluminum is changed by each component in the detection system to produce a complex waveform. Conventional AE analysis has shown that a period of high AE activity occurs in pure aluminum, an Al-Cu alloy, and the Al-Li alloy, as the last fraction of solid forms. A model attributes this to the internal stresses of grain boundary formation. An additional period of activity occurs as the last fraction of solid forms, but only in the two alloys. A model attributes this to the formation of interdendritic porosity which was not present in the pure aluminum. The AE waveforms were dominated by resonant effects of the waveguide and the transducer.

  15. Integration of acoustic emission systems within Integri-TechTM analysis system for structural health monitoring of pressurised engineering plant (United States)

    Ghouri, A. A.; Rafferty, Steven; Pickwell, Andy; Galbraith, Walter; Pierce, S. Gareth; Gachagan, Anthony


    The aim of this Acoustic Emission (AE) based Structural Health Monitoring project is to enable accurate location of AE sources in pressurised engineering plant and to use AE source location data to establish defect locations for use within Integri-TechTM; a finite element based analysis, monitoring and fitness for service assessment system. Integri-TechTM is a windows based system which carries out combined analysis and assessment providing fatigue life and remnant life calculations and inspection priorities presenting the results in an accessible web portal format. The software uses finite element stress models created in the companion software Model Wizard. The AE monitoring system that has been developed can be used with an array of up to four AE broad band sensor channels with associated signal processing. Using a flexible approach in MATLAB, the authors have developed algorithms which were used for analysing the received AE signals to extract information about the nature and location of the source. The ability to carry out source location and possibly perform real time monitoring (detecting cracking as it occurs) is attractive feature of the AE system developed for this project. The time of arrival (TOA) data was used by Integri-TechTM software to calculate source location using its own built-in algorithm, and this was verified independently using a MATLAB approach.

  16. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization. (United States)

    Li, Dongsheng; Yang, Wei; Zhang, Wenyao


    Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic parameter figure. A particle swarm optimization cluster method was developed to determine the relationship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types of clustering data, the mean value of each damage pattern's AE characteristic parameters was determined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE particle swarm optimization cluster analysis based on principal component analysis was also proposed. This method can completely distinguish the four types of damage sources and simplifies the determination of the evolution process of corrosion damage and broken wire signals. Copyright © 2017. Published by Elsevier B.V.

  17. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    DEFF Research Database (Denmark)

    Torres-Arredondo, M.A.; Tibaduiza, D.-A.; McGugan, Malcolm


    of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively...... measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures....

  18. Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans. (United States)

    Gingras, Bruno; Mohandesan, Elmira; Boko, Drasko; Fitch, W Tecumseh


    Anuran vocalizations, especially their advertisement calls, are largely species-specific and can be used to identify taxonomic affiliations. Because anurans are not vocal learners, their vocalizations are generally assumed to have a strong genetic component. This suggests that the degree of similarity between advertisement calls may be related to large-scale phylogenetic relationships. To test this hypothesis, advertisement calls from 90 species belonging to four large clades (Bufo, Hylinae, Leptodactylus, and Rana) were analyzed. Phylogenetic distances were estimated based on the DNA sequences of the 12S mitochondrial ribosomal RNA gene, and, for a subset of 49 species, on the rhodopsin gene. Mean values for five acoustic parameters (coefficient of variation of root-mean-square amplitude, dominant frequency, spectral flux, spectral irregularity, and spectral flatness) were computed for each species. We then tested for phylogenetic signal on the body-size-corrected residuals of these five parameters, using three statistical tests (Moran's I, Mantel, and Blomberg's K) and three models of genetic distance (pairwise distances, Abouheif's proximities, and the variance-covariance matrix derived from the phylogenetic tree). A significant phylogenetic signal was detected for most acoustic parameters on the 12S dataset, across statistical tests and genetic distance models, both for the entire sample of 90 species and within clades in several cases. A further analysis on a subset of 49 species using genetic distances derived from rhodopsin and from 12S broadly confirmed the results obtained on the larger sample, indicating that the phylogenetic signals observed in these acoustic parameters can be detected using a variety of genetic distance models derived either from a variable mitochondrial sequence or from a conserved nuclear gene. We found a robust relationship, in a large number of species, between anuran phylogenetic relatedness and acoustic similarity in the

  19. Acoustic lung signals analysis based on Mel frequency cepstral coefficients and self-organizing maps

    Directory of Open Access Journals (Sweden)

    Álvaro David Orjuela-Cañón


    Full Text Available This study analyzes acoustic lung signals with different abnormalities, using Mel Frequency Cepstral Coefficients (MFCC, Self-Organizing Maps (SOM, and K-means clustering algorithm. SOM models are known as artificial neural networks than can be trained in an unsupervised or supervised manner. Both approaches were used in this work to compare the utility of this tool in lung signals studies. Results showed that with a supervised training, the classification reached rates of 85 % in accuracy. Unsupervised training was used for clustering tasks, and three clusters was the most adequate number for both supervised and unsupervised training. In general, SOM models can be used in lung signals as a strategy to diagnose systems, finding number of clusters in data, and making classifications for computer-aided decision making systems.

  20. Acoustic evolution in crickets: need for phylogenetic study and a reappraisal of signal effectiveness

    Directory of Open Access Journals (Sweden)

    Laure Desutter-Grandcolas


    Full Text Available Cricket stridulums and calls are highly stereotyped, except those with greatly modified tegmina and/or vena-tion, or ''unusual'' frequency, duration and/or intensity. This acoustic diversity remained unsuspected until recently, and current models of acoustic evolution in crickets erroneously consider this clade homogeneous for acoustic features. The few phylogenetic studies analyzing acoustic evolution in crickets demonstrated that acoustic behavior could be particularly labile in some clades. The ensuing pattern for cricket evolution is consequently extremely complex. We argue that: (1 phylogeny should always be considered when analyzing acoustic evolution, whatever characters are considered (signals, stridulums or behaviors. Consequently, future studies should be devoted to entire clades, and not consider isolated taxa; character and character state definitions should allow significant reconstructions of character evolutionary transformations; and homologies should be carefully defined for all characters, including behavior. (2 The factors responsible for song effectiveness should be reconsidered and hypotheses on their potential influence on signal evolution tested jointly by phylogenies (for example, to assess correlated transformations of acoustic and ecological features, and population studies (for example, to correlate call range and population structure, or test the predation risk associated with a signal structure. Better understanding these points should help clarifying acoustic evolution in crickets.Os aparelhos estridulatórios e os chamados dos grilos são altamente estereotipados, exceto aqueles com áreas e/ou venação tegminais fortemente modificadas ou com freqüência, duração e/ou intensidade fora do ''normal''. Esta diversidade acústica ficou insuspeita até recentemente, e os modelos correntes de evolução acústica em grilos consideram erroneamente este clado como homogêneo para as características acústicas. Os

  1. Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals. (United States)

    Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny


    Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.

  2. Noise affects the shape of female preference functions for acoustic signals. (United States)

    Reichert, Michael S; Ronacher, Bernhard


    The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  3. Acoustic signals in the sand fly Lutzomyia (Nyssomyia intermedia (Diptera: Psychodidae

    Directory of Open Access Journals (Sweden)

    Peixoto Alexandre A


    Full Text Available Abstract Background Acoustic signals are part of the courtship of many insects and they often act as species-specific signals that are important in the reproductive isolation of closely related species. Here we report the courtship songs of the sand fly Lutzomyia (Nyssomyia intermedia, one of the main vectors of cutaneous leishmaniasis in Brazil. Findings Recordings were performed using insects from three localities from Eastern Brazil: Posse and Jacarepaguá in Rio de Janeiro State and Corte de Pedra in Bahia State. The three areas have remnants of the Brazilian Atlantic forest, they are endemic for cutaneous leishmaniasis and L. intermedia is the predominant sand fly species. We observed that during courtship L. intermedia males from all populations produced pulse songs consisting of short trains. No significant differences in song parameters were observed between the males of the three localities. Conclusions L. intermedia males produce acoustic signals as reported for some other sand flies such as the sibling species of the Lutzomyia longipalpis complex. The lack of differences between the males from the three localities is consistent with previous molecular studies of the period gene carried out in the same populations, reinforcing the idea that L. intermedia is not a species complex in the studied areas and that the three populations are likely to have similar vectorial capacities.

  4. Long recording sequences: how to track the intra-individual variability of acoustic signals.

    Directory of Open Access Journals (Sweden)

    Thierry Lengagne

    Full Text Available Recently developed acoustic technologies - like automatic recording units - allow the recording of long sequences in natural environments. These devices are used for biodiversity survey but they could also help researchers to estimate global signal variability at various (individual, population, species scales. While sexually-selected signals are expected to show a low intra-individual variability at relatively short time scale, this variability has never been estimated so far. Yet, measuring signal variability in controlled conditions should prove useful to understand sexual selection processes and should help design acoustic sampling schedules and to analyse long call recordings. We here use the overall call production of 36 male treefrogs (Hyla arborea during one night to evaluate within-individual variability in call dominant frequency and to test the efficiency of different sampling methods at capturing such variability. Our results confirm that using low number of calls underestimates call dominant frequency variation of about 35% in the tree frog and suggest that the assessment of this variability is better by using 2 or 3 short and well-distributed records than by using samples made of consecutive calls. Hence, 3 well-distributed 2-minutes records (beginning, middle and end of the calling period are sufficient to capture on average all the nightly variability, whereas a sample of 10 000 consecutive calls captures only 86% of it. From a biological point of view, the call dominant frequency variability observed in H. arborea (116Hz on average but up to 470 Hz of variability during the course of the night for one male challenge about its reliability in mate quality assessment. Automatic acoustic recording units will provide long call sequences in the near future and it will be then possible to confirm such results on large samples recorded in more complex field conditions.

  5. An experimental analysis of fracture mechanisms by acoustic ...

    African Journals Online (AJOL)

    Burst pressure prediction in graphite/epoxy pressure vessels using neural networks and acoustic emission amplitude data, Materials Evaluation, Vol.54(6), pp.744 ... of emission acoustic signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers, NDT & E.

  6. Acoustic emission noise from sodium vapour bubble collapsing: detection, interpretation, modelling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dentico, G.; Pacilio, V.; Papalia, B.; Taglienti, S.; Tosi, V.


    Sodium vapour bubble collapsing is detected by means of piezoelectric accelorometers coupled to the test section via short waveguides. The output analog signal is processed by transforming it into a time series of pulses through the setting of an amplitude threshold and the shaping of a standard pulse (denominated 'event') every time the signal crosses that border. The number of events is counted in adjacent and equal time duration samples and the waiting time distribution between contiguous events is measured. Up to the moment, six kinetic properties have been found for the mentioned time series. They help in setting a stochastic model in which the subministration of energy into a liquid sodium medium induces the formation of vapour bubbles and their consequent collapsing delivers acoustic pulses. Finally, a simulation procedure is carried out: a Polya's urn model is adopted for simulating event sequences with a priori established requisites.

  7. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect. (United States)

    Kostarakos, Konstantinos; Römer, Heiner


    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of -21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and "novelty detection" to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. Significance statement: Animal and human acoustic communication may suffer from the same "cocktail party problem," when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one species

  8. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array

    Directory of Open Access Journals (Sweden)

    Xiwang Cui


    Full Text Available Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%.

  9. Critical features revealed in acoustic and electromagnetic emissions during fracture experiments on LiF (United States)

    Potirakis, S. M.; Mastrogiannis, D.


    Acoustic emissions (AE) and electromagnetic emissions (EME) are produced during the fracture of solids permitting the monitoring of fracture processes and the study of fracture dynamics. In the literature there have been reported many attempts to connect the AE originating from the fracture of materials with the notion of criticality. Although there is an extended study of the AE during the fracture of a material and its relevance with the notion of criticality, this is not the case for the EME. In order to further investigate the possible critical behavior of fracture processes through AE and EME, we proceed here to the analysis of AE and EME time series using the recently proposed method of natural time (NT). We focus on the analysis of simultaneously acquired AE and EME time series, recorded during fracture experiments on LiF (non-irradiated and irradiated) specimens. The natural time analysis indicates that criticality is reached by both fracture-induced emissions, reflecting the critical behavior of the associated fracture processes. Moreover, it is found that both non-irradiated and irradiated LiF specimens exhibit similar behavior: the AE reach criticality earlier than EME, while EME reach criticality just before the global fracture.

  10. Effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Amulya Bihari Pattnaik


    Full Text Available In the present investigation, the effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al 5052 aluminium alloy have been studied. Microstructural analysis showed the presence of primary α solid solution. No Al–Mg phase was found to be formed due to the presence of magnesium in the solid solution. The results indicated that the addition of Al–5Ti–1B grain refiner into the alloy caused a significant improvement in ultimate tensile strength (UTS and elongation values from 114 MPa and 7.8% to 185 MPa and 18% respectively. The main mechanisms behind this improvement were found to be due to the grain refinement during solidification and segregation of Ti at primary α grain boundaries. Acoustic emission (AE results indicated that intensity of AE signals increased with increase in Al–5Ti–1B master alloy content, which had been attributed to the combined effect of dislocation motion and grain refinement. The field emission scanning electron microscopy (FESEM and energy dispersive X-ray (EDX analysis were used to study the microstructure and fracture surfaces of the samples.

  11. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Directory of Open Access Journals (Sweden)

    Tongzhi Zhang


    Full Text Available We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  12. Fatigue and fracture assessment of cracks in steel elements using acoustic emission (United States)

    Nemati, Navid; Metrovich, Brian; Nanni, Antonio


    Single edge notches provide a very well defined load and fatigue crack size and shape environment for estimation of the stress intensity factor K, which is not found in welded elements. ASTM SE(T) specimens do not appear to provide ideal boundary conditions for proper recording of acoustic wave propagation and crack growth behavior observed in steel bridges, but do provide standard fatigue crack growth rate data. A modified versions of the SE(T) specimen has been examined to provide small scale specimens with improved acoustic emission(AE) characteristics while still maintaining accuracy of fatigue crack growth rate (da/dN) versus stress intensity factor (ΔK). The specimens intend to represent a steel beam flange subjected to pure tension, with a surface crack growing transverse to a uniform stress field. Fatigue test is conducted at low R ratio. Analytical and numerical studies of stress intensity factor are developed for single edge notch test specimens consistent with the experimental program. ABAQUS finite element software is utilized for stress analysis of crack tips. Analytical, experimental and numerical analysis were compared to assess the abilities of AE to capture a growing crack.

  13. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System (United States)

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun


    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  14. Development of Generic Methodology for Designing a Structural Health Monitoring Installation Based on the Acoustic Emission Technique

    NARCIS (Netherlands)

    Gagar, D.; Martinez, M.J.; Foote, P.


    The Acoustic Emission (AE) technique can be used to perform damage detection and localisation for structural health monitoring purposes. Implementation in aircraft structures however poses a significant challenge as its performance in terms of damage detection and localisation is not well understood

  15. Acoustic emission for interlaminar toughness testing of CFRP: Evaluation of the crack growth due to burst analysis

    Czech Academy of Sciences Publication Activity Database

    Lissek, F.; Haegerb, A.; Knoblauch, V.; Hloch, Sergej; Pude, F.; Kaufeld, M.


    Roč. 136, č. 1 (2018), s. 55-62 ISSN 1359-8368 Institutional support: RVO:68145535 Keywords : DCB * interlaminar toughness testing * acoustic emission * CFRP * burst analysis Subject RIV: JQ - Machines ; Tools Impact factor: 4.727, year: 2016

  16. Optimum Position of Acoustic Emission Sensors for Ship Hull Structural Health Monitoring Based on Deep Machine Learning

    DEFF Research Database (Denmark)

    Kappatos, Vassilios; Karvelis, Petros; Georgoulas, George


    In this paper a method for the estimation of the optimum sensor positions for acoustic emission localization on ship hull structures is presented. The optimum sensor positions are treated as a classification (localization) problem based on a deep learning paradigm. In order to avoid complex...

  17. Acoustic Emission Based In-process Monitoring in Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    The applicability of acoustic emission (AE) measurements for in-process monitoring in the Robot Assisted Polishing (RAP) process was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate removal...... improving the efficiency of the process. It also allows for intelligent process control and generally enhances the robustness and reliability of the automated RAP system in industrial applications....... of the part from the machine tool. In this study, development of surface roughness during polishing rotational symmetric surfaces by the RAP process was inferred from AE measurements. An AE sensor was placed on a polishing tool, and a cylindrical rod of Vanadis 4E steel having an initial turned surface...

  18. Fractal analysis of acoustic emission parameter series of coal with different properties under uniaxial loading (United States)

    Yang, Huiming


    In order to study acoustic emission (AE) evolution characteristics of coal with different mechanical properties in failure process, uniaxial compression experiments of coals from 4 mines were carried out to analyse fractal feature of AE time series by G-P algorithm. The results indicate that AE parameter series of all 4 different coals have fractal feature, and the fractal dimension value of coal with different properties go through a process of “first rise, then fall”. The change of AE fractal dimension value can reflect the cracking evolution in coal failure process, which is closely related with the failure phase. The continuous decline of AE fractal dimension can be viewed as a precursor of impending failure of coal, which could provide theoretical basis for the AE pre-warning model establishment of coal dynamic disaster.

  19. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy (United States)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios


    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  20. Surface acoustic wave regulated single photon emission from a coupled quantum dot–nanocavity system

    Energy Technology Data Exchange (ETDEWEB)

    Weiß, M.; Kapfinger, S.; Wixforth, A.; Krenner, H. J., E-mail: [Lehrstuhl für Experimentalphysik 1 and Augsburg Centre for Innovative Technologies (ACIT), Universität Augsburg, Universitätsstr. 1, 86159 Augsburg (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München (Germany); Reichert, T.; Finley, J. J. [Walter Schottky Institut and Physik Department E24, TU München, Am Coulombwall 4, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München (Germany); Kaniber, M. [Walter Schottky Institut and Physik Department E24, TU München, Am Coulombwall 4, 85748 Garching (Germany)


    A coupled quantum dot–nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a f{sub SAW} ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g{sup (2)}. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g{sup (2)}, demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  1. Evaluation of PTCa/PEKK composite sensors for acoustic emission detection

    CERN Document Server

    Marin-Franch, P


    This thesis reports for the first time the fabrication and characterisation of novel electroactive ceramic/polymer composite films of calcium modified lead titanate (PTCa) and poly (ether ketone ketone). Composite sensors with different concentrations of ceramic were fabricated using a hot pressing technique. The PTCa ceramic was treated using titanate coupling agent in order to improve sample quality. Dielectric measurements have been performed to study sample characteristics. Piezoelectric and pyroelectric properties of the composites have been measured and the mixed connectivity cube model used to determine the relative amounts of 0-3 and 1-3 connectivity. The advantages and limitations of the model have been discussed. Additionally, some mechanical properties of the composites have been assessed to study their potential ability to detect acoustic emission (AE) in carbon fibre reinforced composites (CFRC). The composite sensors were placed on and inserted into different panels in order to compare their abi...

  2. Deformation, acoustic emission and ultrasound velocity during fatigue tests on paper

    Directory of Open Access Journals (Sweden)

    Hæggström E.


    Full Text Available We study the evolution of mechanical properties of paper samples during cyclic experiments. The issue is to look at the sample-to-sample variation, and we try to predict the number of loading cycles to failure. We used two concurrent methods to obtain the deformation: the strain was calculated from vertical displacement measured by laser interferometer sensor, as well as, computed by digital image correlation technique from pictures taken each 2s by a camera. Acoustic emission of fracture was also recorded, and an active ultrasonic wave method using piezoelectric transducers is used to follow the viscoelastic behaviour of each sample. We found that a sharp final increase of different variables like deformation, strain rate and fluctuations, are signs of an imminent rupture of the paper. Moreover looking at the evolution of these quantities during the first cycle only is already an indicator about the lifetime of the sample.

  3. Feasibility of using acoustic emission to determine in-process tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, L.J.


    Acoustic emission (AE) was evaluated for its ability to predict and recognize failure of cutting tools during machining processes when the cutting tool rotates and the workpiece is stationary. AE output was evaluated with a simple algorithm. AE was able to detect drill failure when the transducer was mounted on the workpiece holding fixture. Drill failure was recognized as size was reduced to 0.0003 in. diameter. The ability to predict failure was reduced with drill size, drill material elasticity, and tool coating. AE output for the turning process on a lathe was compared to turning tool insert wear. The turning tool must have sufficient wear to produce a detectable change in AE output to predict insert failure.

  4. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in KEVLAR® 49 Composites (United States)

    Waller, J. M.; Andrade, E.; Saulsberry, R. L.


    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar® 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio <1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  5. Role of Acoustic Emission for Solving Rock Engineering Problems in Indonesian Underground Mining (United States)

    Kramadibrata, Suseno; Simangunsong, Ganda Marihot; Matsui, Kikuo; Shimada, Hideki


    In situ stress measurement is not well accepted yet in Indonesia due to the unavailability of technology, high costs and because it is impractical in remote regions. Alternatively, the Kaiser effect of acoustic emission (AE) can be used as a method for determining the stress-state at depth, without creating induced stress and is practical in remote areas. This paper is focused on the development of the AE test. The research has started to study the phenomenon of stress memory in a rock sample, the factors influencing the phenomenon, and finally, to determine the in situ stresses around underground excavations by applying the AE method. It is expected that knowledge in gaining the most important input parameters for maintaining the stability of underground excavations can be well understood and be reliably conducted at a reasonable cost.

  6. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method (United States)

    Watanabe, Takeshi; Hashimoto, Chikanori


    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  7. Visual and acoustic signaling in three species of Brazilian nocturnal tree frogs (Anura, Hylidae

    Directory of Open Access Journals (Sweden)

    Luís Felipe Toledo


    Full Text Available Visual communication seems to be widespread among nocturnal anurans, however, reports of these behaviors in many Neotropical species are lacking. Therefore, we gathered information collected during several sporadic field expeditions in central and southern Brazil with three nocturnal tree frogs: Aplastodiscus perviridis, Hypsiboas albopunctatus and H. bischoffi. These species displayed various aggressive behaviors, both visual and acoustic, towards other males. For A. perviridis we described arm lifting and leg kicking; for H. albopunctatus we described the advertisement and territorial calls, visual signalizations, including a previously unreported behavior (short leg kicking, and male-male combat; and for H. bischoffiwe described the advertisement and fighting calls, toes and fingers trembling, leg lifting, and leg kicking. We speculate about the evolution of some behaviors and concluded that the use of visual signals among Neotropical anurans may be much more common than suggested by the current knowledge.

  8. The Prediction of Metal Slopping in LD Converter on Base an Acoustic Signal

    Directory of Open Access Journals (Sweden)

    Kostúr, K.


    Full Text Available The negative influences of slopping in a BOF are pollution to the environment. They give lower yield and cause equipment damage. The prediction of these phenomena is based on information processing from the measuring microphone. The change of frequency in certain range is done by a signal for the prediction of slopping. In this paper two methods for prediction of slopping are described. The first method is based on measuring and processing of sound emitted from the vessel during the blow. The second method utilizes Fourier’s transformation for processing of acoustic signal from sonic meter. The success rate of prediction has been evaluated by help of five criterions. It is possible to forecast the slopping on selected frequency (band. It is the essence of the second method, because this method has high success (criterion K1. Note, that criterion K5 defines acknowledgment of duration slopping. This criterion has the highest value.

  9. Signalling in international environmental agreements. Using pre-agreement emission level as a signalling device

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, U.


    This paper addresses the question about strategic incentives in international environmental agreements and tries to give a positive description of how the design of the agreement influences the strategic behaviour of potential participants before they enter the treaty. A common feature of the design of agreements is that the reduction obligations (RO) are made contingent on a pre-agreement or baseline emission. As it is assumed that countries posses better information about their reduction costs than does the international body in charge of deciding the RO, countries might have incentives to signal higher costs by increasing their baseline emission, and thereby reducing the costs of entering the agreement. The appropriate analytical framework is to use a signalling game approach, where the pre-agreement emission level conveys information about the privately informed country`s reduction cost. In this paper two types of agreement design are considered, one with uniform obligations, and one with differentiated obligations. This enables us to make a comparison between two different reduction regimes. The result is that the predicted outcomes vary with regard to both the environmental effectiveness and the associated expected costs for the participating countries. This means that when private information is considered, the anticipation of a given institutional framework has significant impact on the resulting distortion of the total emission level, highlighting the necessity of taking this into consideration when future designs are proposed. (au)

  10. A Time-Series Phrase Correlation Computing System With Acoustic Signal Processing For Music Media Creation

    Directory of Open Access Journals (Sweden)

    Keiichi Tsuneyama


    Full Text Available This paper presents a system that analyzes the time-series impression change in the acoustic signal by a unit of music phrase. The aim is to support the music creation using a computer (computer music by bringing out composers' potentially existing knowledge and skills. Our goal is to realize the cross-genre/cross-cultural music creation. Our system realizes the automatic extraction of musical features from acoustic signals by dividing and decomposing them into “phrases” and “three musical elements” (rhythm, melody, and harmony, which are meaningful for human recognition. By calculating the correlation between the target “target music piece” and the “typical phrase” in each musical genre, composers are able to grasp the time-series impression change of music media by the unit of music phrase. The system leads to a new creative and efficient environment for cross-genre/cross-cultural music creation based on the potentially existing knowledge on the music phrase and structure.

  11. Acoustic signal classification of breathing movements to virtually aid breath regulation. (United States)

    Abushakra, Ahmad; Faezipour, Miad


    Monitoring breath and identifying breathing movements have settled importance in many biomedical research areas, especially in the treatment of those with breathing disorders, e.g., lung cancer patients. Moreover, virtual reality (VR) revolution and their implementations on ubiquitous hand-held devices have a lot of implications, which could be used as a simulation technology for healing purposes. In this paper, a novel method is proposed to detect and classify breathing movements. The overall VR framework is intended to encourage the subjects regulate their breath by classifying the breathing movements in real time. This paper focuses on a portion of the overall VR framework that deals with classifying the acoustic signal of respiration movements. We employ Mel-frequency cepstral coefficients (MFCCs) along with speech segmentation techniques using voice activity detection and linear thresholding to the acoustic signal of breath captured using a microphone to depict the differences between inhale and exhale in frequency domain. For every subject, 13 MFCCs of all voiced segments are computed and plotted. The inhale and exhale phases are differentiated using the sixth MFCC order, which carries important classification information. Experimental results on a number of individuals verify our proposed classification methodology.


    Directory of Open Access Journals (Sweden)

    B. S. Anami


    Full Text Available Vehicles produce sound signals with varying temporal and spectral properties under different working conditions. These sounds are indicative of the condition of the engine. Fault diagnosis is a significantly difficult task in geographically remote places where expertise is scarce. Automated fault diagnosis can assist riders to assess the health condition of their vehicles. This paper presents a method for fault detection and location in motorcycles based on the chain code of the pseudospectra and Mel-frequency cepstral coefficient (MFCC features of acoustic signals. The work comprises two stages: fault detection and fault location. The fault detection stage uses the chain code of the pseudospectrum as a feature vector. If the motorcycle is identified as faulty, the MFCCs of the same sample are computed and used as features for fault location. Both stages employ dynamic time warping for the classification of faults. Five types of faults in motorcycles are considered in this work. Observed classification rates are over 90% for the fault detection stage and over 94% for the fault location stage. The work identifies other interesting applications in the development of acoustic fingerprints for fault diagnosis of machinery, tuning of musical instruments, medical diagnosis, etc.

  13. The application of the acoustic emission technique to stone decay by sodium sulphate in laboratory tests

    Directory of Open Access Journals (Sweden)

    Grossi, C. M.


    Full Text Available Acoustic emission was monitored during salt crystallisation cycles in order to study the mechanisms of rock deterioration by sodium sulphate in laboratory tests. Some porous carbonate stones used in Spanish monuments (Cathedral of Oviedo, Murcia and Seo Vella of Lérida were selected for this study. The acoustic emission detected during the different stages of the cycles (immersion, drying and cooling was interpreted to be the result of the salt behaviour inside the stone. The use of this technique has confirmed that this behaviour depends on salt characteristics (solubility, hydration state and polymorphism of anhydrous sodium sulphate and stone porosity and pore network.

    Para determinar los mecanismos de deterioro de las rocas debidos a la acción del sulfato de sodio, se ha registrado la emisión acústica durante ensayos de cristalización de sales en el laboratorio. Para ello, se han seleccionado tres piedras porosas carbonatadas utilizadas como materiales de construcción en monumentos españoles (Catedrales de Oviedo, Murcia y Seo Vella de Lérida. La emisión acústica detectada durante las diferentes etapas de los ciclos (inmersión, secado y enfriamiento se ha interpretado como debida al comportamiento de la sal en el interior de la piedra. Mediante esta técnica se ha confirmado que este comportamiento depende de las características de la sal (solubilidad, diferentes estados de hidratación y el polimorfismo del sulfato de sodio anhidro y de la porosidad y configuración del sistema poroso de las rocas.

  14. Silent katydid females are at higher risk of bat predation than acoustically signalling katydid males. (United States)

    Raghuram, Hanumanthan; Deb, Rittik; Nandi, Diptarup; Balakrishnan, Rohini


    Males that produce conspicuous mate attraction signals are often at high risk of predation from eavesdropping predators. Females of such species typically search for signalling males and their higher motility may also place them at risk. The relative predation risk faced by males and females in the context of mate-finding using long-distance signals has rarely been investigated. In this study, we show, using a combination of diet analysis and behavioural experiments, that katydid females, who do not produce acoustic signals, are at higher risk of predation from a major bat predator, Megaderma spasma, than calling males. Female katydids were represented in much higher numbers than males in the culled remains beneath roosts of M. spasma. Playback experiments using katydid calls revealed that male calls were approached in only about one-third of the trials overall, whereas tethered, flying katydids were always approached and attacked. Our results question the idea that necessary costs of mate-finding, including risk of predation, are higher in signalling males than in searching females. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Processing of simple and complex acoustic signals in a tonotopically organized ear. (United States)

    Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela


    Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Characterisation of Damaged Tubular Composites by Acoustic Emission, Thermal Diffusivity Mapping and TSR-RGB Projection Technique (United States)

    Chandarana, Neha; Lansiaux, Henri; Gresil, Matthieu


    An increase in the use of composite materials, owing to improved design and fabrication processes, has led to cost reductions in many industries. Resistance to corrosion, high specific strength, and stiffness are just a few of their many attractive properties. However, damage tolerance remains a major concern in the implementation of composites and uncertainty regarding component lifetimes can lead to over-design and under-use of such materials. A combination of non-destructive evaluation (NDE) and structural health monitoring (SHM) have shown promise in improving confidence by enabling data collection in-situ and in real time. In this work, infrared thermography (IRT) is employed for NDE of tubular composite specimens before and after impact. Four samples are impacted with energies of 5 J, 7.5 J, and 10 J by an un-instrumented falling weight set-up. Acoustic emissions (AE) are monitored using bonded piezoelectric sensors during one of the four impact tests. IRT data is used to generate diffusivity and thermal depth mappings of each sample using the thermographic signal reconstruction (TSR) red green blue (RGB) projection technique. Analysis of AE data alone for a 10 J impact suggest significant damage to the fibres and matrix; this is in good agreement with the generated thermal depth mappings for each sample, which indicate damage through multiple fibre layers. IRT and AE data are correlated and validated by optical micrographs taken along the cross section of damage.

  17. A Comparative Study of the Monitoring of a Self Aligning Spherical Journal using Surface Vibration, Airborne Sound and Acoustic Emission (United States)

    Raharjo, P.; Tesfa, B.; Gu, F.; Ball, A. D.


    A Self aligning spherical journal bearing is a plain bearing which has spherical surface contact that can be applied in high power industrial machinery. This type of bearing can accommodate a misalignment problem. The journal bearing faults degrade machine performance, decrease life time service and cause unexpected failure which are dangerous for safety issues. Non-intrusive measurements such as surface vibration (SV), airborne sound (AS) and acoustic emission (AE) measurement are appropriate monitoring methods for early stage journal bearing fault in low, medium and high frequency. This paper focuses on the performance comparison using SV, AS and AE measurements in monitoring a self aligning spherical journal bearing for normal and faulty (scratch) conditions. It examines the signals in the time domain and frequency domain and identifies the frequency ranges for each measurement in which significant changes are observed. The results of SV, AS and AE experiments indicate that the spectrum can be used to detect the differences between normal and faulty bearing. The statistic parameter shows that RMS value and peak value for faulty bearing is higher than normal bearing.

  18. Effect of Grain Size on the Tensile Deformation Mechanisms of Commercial Pure Titanium as Revealed by Acoustic Emission (United States)

    Li, Lifei; Zhang, Zheng; Shen, Gongtian


    The effect of grain size on the deformation mechanisms during different tensile stages in commercial pure titanium was investigated by acoustic emission (AE) at room temperature. The deformation mechanisms, dislocation slip, and mechanical twinning were found to be the two AE sources for all grain sizes throughout the experiments. Based on the AE features of frequency and energy, the AE signals stemming from the two deformation mechanisms were classified. As grain size increased, the AE activity and intensity attributed to twinning increased. The twinning activity was confirmed by optical microscope and scanning electron microscopy. The results showed that for the specimen with small-sized grains, the entire tensile deformation was mainly achieved by slip, and only slightly assisted by twinning. Deformation of the specimen with medium-sized grains was accomplished by combined slip and twinning. For the specimen with large grains, twinning was the more active mechanism during the early stages of the tensile tests, while slip played a larger role in the later stages of the tensile tests. This larger role of slip in the later stages occurred despite the notable increase in the amount of twinning.

  19. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures (United States)

    Li, Weijie; Kong, Qingzhao; Ho, Siu Chun Michael; Lim, Ing; Mo, Y. L.; Song, Gangbing


    Acoustic emission (AE) is a nondestructive evaluation technique that is capable of monitoring the damage evolution of concrete structures in real time. Conventionally, AE sensors are surface mounted on the host structures, however, the AE signals attenuate quickly due to the high attenuation properties of concrete structures. This study conducts a feasibility study of using smart aggregates (SAs), which are a type of embedded piezoceramic transducers, as embedded AE sensors for the health monitoring of concrete structures. A plain concrete beam with two surface mounted AE sensors and two embedded SAs was fabricated in laboratory and loaded under a designed three-point-bending test. The performance of embedded SAs were compared with the traditional surface mounted AE sensors in their ability to detect and evaluate the damage to the concrete structure. The results verified the feasibility of using smart aggregates as embedded AE sensors for monitoring structural damage in concrete. Potentially, the low cost smart aggregates could function as embedded AE sensors, providing great sensitivity and high reliability in applications for the structural health monitoring of concrete structures.

  20. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book chapt......: acoustics, cognitive science, speech science, and communication technology.......Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as...

  1. AECM-4; Proceedings of the 4th International Symposium on Acoustic Emission from Composite Materials, Seattle, WA, July 27-31, 1992 (United States)

    Various papers on AE from composite materials are presented. Among the individual topics addressed are: acoustic analysis of tranverse lamina cracking in CFRP laminates under tensile loading, characterization of fiber failure in graphite-epoxy (G/E) composites, application of AE in the study of microfissure damage to composite used in the aeronautic and space industries, interfacial shear properties and AE behavior of model aluminum and titanium matrix composites, amplitude distribution modelling and ultimate strength prediction of ASTM D-3039 G/E tensile specimens, AE prefailure warning system for composite structural tests, characterization of failure mechanisms in G/E tensile tests specimens using AE data, development of a standard testing procedure to yield an AE vs. strain curve, benchmark exercise on AE measurements from carbon fiber-epoxy composites. Also discussed are: interpretation of optically detected AE signals, acoustic emission monitoring of fracture process of SiC/Al composites under cyclic loading, application of pattern recognition techniques to acousto-ultrasonic testing of Kevlar composite panels, AE for high temperature monitoring of processing of carbon/carbon composite, monitoring the resistance welding of thermoplastic composites through AE, plate wave AE composite materials, determination of the elastic properties of composite materials using simulated AE signals, AE source location in thin plates using cross-correlation, propagation of flexural mode AE signals in Gr/Ep composite plates.

  2. The effect of acoustic system variables on sound signals of Melon varieties

    Directory of Open Access Journals (Sweden)

    F Khoshnam


    Full Text Available Introduction Cucumis melo includes a wide range of varieties. The acoustic is production, transmission and energy received form medium vibrations. Acoustic or sonic tests applies for grading productions, ripening determination of fruit firmness and sorting of broken eggs and so on in agriculture. Currently these methods are generalized for measuring non-spherical fruits properties. The primary objective of the present research was to investigate the effect of acoustic system variables such as impact places, impactor material type, pendulum angle and sound level meter position on acoustics response of two different melon varieties, including Zard-Eyvanekey and Sousky-Sabz. These results can be useful for designing acoustic implements related to agricultural products. Materials and Methods This research was conducted on 65 samples of Zard-Eyvanekey and Sousky-Sabz varieties (export varieties. A laboratory recording system used to acquire the acoustic impulse information that was comprised a mechanical excitement mechanism (an impactor such as pendulum, sound level meter, a lap-top computer and software to control the experimental setup and to analyze its results (Cool Edit Pro 2.0 Software, and melon-bed. The impactor consists of diameter and long copper rod 3 mm and 256 mm, respectively. The ball mass was 72.13 gram. The acoustic signal was sensed by a sound level meter (SLM type 2270 B&K company Denmark. The samples locate on soft cushion for keeping because this bed prevents vibration distortion and causes free vibration. We consider three measurements on equator or mid-section of each fruit (approximately 120 degree for diminishing inherent diversity of sample shapes. The sound level meter was placed at a distance of 2-5 mm from the fruit surface. The effects of sound level meter, impactor ball and pendulum angle on sound signals were investigated. The effects of other parameters were analyzed by factorial test in randomized complete plot by

  3. Compressing Sensing Based Source Localization for Controlled Acoustic Signals Using Distributed Microphone Arrays

    Directory of Open Access Journals (Sweden)

    Wei Ke


    Full Text Available In order to enhance the accuracy of sound source localization in noisy and reverberant environments, this paper proposes an adaptive sound source localization method based on distributed microphone arrays. Since sound sources lie at a few points in the discrete spatial domain, our method can exploit this inherent sparsity to convert the localization problem into a sparse recovery problem based on the compressive sensing (CS theory. In this method, a two-step discrete cosine transform- (DCT- based feature extraction approach is utilized to cover both short-time and long-time properties of acoustic signals and reduce the dimensions of the sparse model. In addition, an online dictionary learning (DL method is used to adjust the dictionary for matching the changes of audio signals, and then the sparse solution could better represent location estimations. Moreover, we propose an improved block-sparse reconstruction algorithm using approximate l0 norm minimization to enhance reconstruction performance for sparse signals in low signal-noise ratio (SNR conditions. The effectiveness of the proposed scheme is demonstrated by simulation results and experimental results where substantial improvement for localization performance can be obtained in the noisy and reverberant conditions.

  4. Pole-zero modeling of transient waveforms: A comparison of methods with application to acoustic signals (United States)

    May, Gary L.


    The modeling of damped signals as the impulse response of a pole-zero system is considered for a broad range of pole zero modeling algorithms. The goal is to obtain the best possible fit between the model impulse response and the modeled signal. Prony's method, the least squares modified Yule-Walker equations (LSMYWE), iterative prefiltering, and the Akakie maximum likelihood estimator are compared on known test sequences for a variety of model degrading situation (e.g., additive noise) to develop an understanding of which methods are most suitable for modeling real world signals. A correlation domain version of interative prefiltering is also introduced. The most robust algorithms are determined to be LSMYWE using singular value decomposition and iterative prefiltering (including the correlation domain version). Modeling several laboratory generated short duration acoustic signals confirmed the robustness of LSMYWE and iterative prefiltering. It is shown that correlation domain iterative prefiltering outperforms standard iterative prefiltering when large model orders are required for accurate modeling. Shank's method was determined to be the most effective method of determining the zeros of a pole-zero model when a time domain match is required.

  5. Standard practice for examination of seamless, Gas-Filled, pressure vessels using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This practice provides guidelines for acoustic emission (AE) examinations of seamless pressure vessels (tubes) of the type used for distribution or storage of industrial gases. 1.2 This practice requires pressurization to a level greater than normal use. Pressurization medium may be gas or liquid. 1.3 This practice does not apply to vessels in cryogenic service. 1.4 The AE measurements are used to detect and locate emission sources. Other nondestructive test (NDT) methods must be used to evaluate the significance of AE sources. Procedures for other NDT techniques are beyond the scope of this practice. See Note 1. Note 1—Shear wave, angle beam ultrasonic examination is commonly used to establish circumferential position and dimensions of flaws that produce AE. Time of Flight Diffraction (TOFD), ultrasonic examination is also commonly used for flaw sizing. 1.5 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 This standa...

  6. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Olofsson, Tomas; Wennerstroem, Erik [Uppsala Univ., Dept. of Technical Sciences (Sweden). Signals and Systems


    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the {omega}-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization.

  7. On acoustic emission for damage detection and failure prediction in fiber reinforced polymer rods using pattern recognition analysis (United States)

    Shateri, Mohammadhadi; Ghaib, Maha; Svecova, Dagmar; Thomson, Douglas


    Fiber reinforced polymer (FRP) rods are used for pre-stressing and reinforcing in civil engineering applications. Damage in FRP rods can lead to sudden brittle failure, therefore, a reliable method that provides indicators of damage progression and potential failure in FRP rods is highly desirable. Acoustic emission (AE) signal analysis has been used for damage detection and monitoring of FRP materials. In this study, a new AE event detection algorithm, utilizing the root mean square envelope of AE signal, is applied to AE data to isolate each AE event separately, even when AE events are nearly coincident. A fuzzy c-means (FCM) clustering algorithm is used to classify these isolated AE events into 3 clusters. Scanning electron microscopy images of FRP rod cross-sections also show 3 types of damage. The hypothesis in this study is that each cluster represents a damage mechanism. The number of events in each cluster is monitored versus the percent of the ultimate load. The ratio of the number of AE events in one of the FCM clusters to the number of AE events in another FCM cluster was useful for providing an indication of when the stress levels have reached the point where the loads may cause the FRP rod to fail. The results of applying this parameter to four FRP rods show a significant slope change (factor of 10) in this ratio at around 40% and 60% of the ultimate load for glass FRP rods and carbon FRP rods, respectively. This method may prove useful in damage progression and failure prediction of the FRP rods in prefabricated structures where pre-stressed FRP is used and in field monitoring of FRP materials.


    Directory of Open Access Journals (Sweden)

    V. K. Bitiukov


    Full Text Available Summary. In article features of definition of acoustic properties of polymers with application of ultrasonic fluctuations are considered. The opportunity of definition with single method of such parameters of quality as a relaxation spectra of polymer and function of molecular-mass distribution in a solution that results in increase in time of carrying out of measurements is shown. For reduction of time, may use narrowing of a range of frequencies of the ultrasonic fluctuations rendered on the measured sample, or increase the step of quantization of a registered signal with the oscillograph. Thus both variants result in reduction in reliability of the received information because of a possible extends for limits of an effective frequency range or loss of a high-frequency component of a registered signal at increase in a step of quantization. For the decision of the listed problems it is offered to use the complex harmonious signal being superposition of several signals. Frequency is necessary for choosing proceeding from sensitivity of each determined polymer parameter of quality. On concrete examples it is shown, that sensitivity of such parameters of quality as strength and viscosity on Mooney essentially depends on frequency. For initial research, in a case when properties of a material beforehand are not known and it is necessary to reveal effective ranges of frequencies, for each determined property of a material, it is offered to use a signal such as «white noise» which will allow to reveal ranges of frequencies with the greatest sensitivity each measured parameter of quality. That, it is in turn connected to uniform distribution of spectral making frequencies on all possible frequency range. Necessity for definition of an effective range of time of registration and a step of quantization for a kind of limitation of technical opportunities of means of registration of electric signals (oscillographs is shown.

  9. Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks

    Directory of Open Access Journals (Sweden)

    Manuel Perez Malumbres


    Full Text Available In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation, we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc., an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc..

  10. Biomedical signals and sensors II linking acoustic and optic biosignals and biomedical sensors

    CERN Document Server

    Kaniusas, Eugenijus


    The book set develops a bridge between physiologic mechanisms and diagnostic human engineering. While the first volume is focused on the interface between physiologic mechanisms and the resultant biosignals, this second volume is devoted to the interface between biosignals and biomedical sensors. That is, in the first volume, the physiologic mechanisms determining biosignals are described from the basic cellular level up to their advanced mutual coordination level. This second volume, considers the genesis of acoustic and optic biosignals and the associated sensing technology from a strategic point of view. As a novelty, this book discusses heterogeneous biosignals within a common frame. This frame comprises both the biosignal formation path from the biosignal source at the physiological level to biosignal propagation in the body, and the biosignal sensing path from the biosignal transmission in the sensor applied on the body up to its conversion to a, usually electric, signal. Some biosignals arise in the co...

  11. The study of acoustic signals and the supposed spoken language of the dolphins

    Directory of Open Access Journals (Sweden)

    Vyacheslav A. Ryabov


    Full Text Available This paper continues studies in the problem of animal language by registering acoustic signals from two quasi-stationary Black Sea bottlenose dolphins (Tursiops truncatus using a two-channel system in the frequency band up to 220kHz with a dynamic range of 81dB. The packs of mutually noncoherent pulses (NP generated by the dolphins were matched to the animals. The waveforms and the spectra of these pulses changed from one pulse to another in each pack. In this connection, a suggestion was made that the set of spectral components of each pulse is a ‘word’ of the dolphin's spoken language and a pack of NPs is a sentence. The paper studied the NP peculiarities in the context of the characteristics of the human spoken language.

  12. Efficient blind dereverberation and echo cancellation based on independent component analysis for actual acoustic signals. (United States)

    Takeda, Ryu; Nakadai, Kazuhiro; Takahashi, Toru; Komatani, Kazunori; Ogata, Tetsuya; Okuno, Hiroshi G


    This letter presents a new algorithm for blind dereverberation and echo cancellation based on independent component analysis (ICA) for actual acoustic signals. We focus on frequency domain ICA (FD-ICA) because its computational cost and speed of learning convergence are sufficiently reasonable for practical applications such as hands-free speech recognition. In applying conventional FD-ICA as a preprocessing of automatic speech recognition in noisy environments, one of the most critical problems is how to cope with reverberations. To extract a clean signal from the reverberant observation, we model the separation process in the short-time Fourier transform domain and apply the multiple input/output inverse-filtering theorem (MINT) to the FD-ICA separation model. A naive implementation of this method is computationally expensive, because its time complexity is the second order of reverberation time. Therefore, the main issue in dereverberation is to reduce the high computational cost of ICA. In this letter, we reduce the computational complexity to the linear order of the reverberation time by using two techniques: (1) a separation model based on the independence of delayed observed signals with MINT and (2) spatial sphering for preprocessing. Experiments show that the computational cost grows in proportion to the linear order of the reverberation time and that our method improves the word correctness of automatic speech recognition by 10 to 20 points in a RT₂₀= 670 ms reverberant environment.

  13. The broadband social acoustic signaling behavior of spinner and spotted dolphins (United States)

    Lammers, Marc O.; Au, Whitlow W. L.; Herzing, Denise L.


    Efforts to study the social acoustic signaling behavior of delphinids have traditionally been restricted to audio-range (dolphin (Stenella longirostris) and the Atlantic spotted dolphin (Stenella frontalis). Signals were quantitatively analyzed to establish their full bandwidth, to identify distinguishing characteristics between each species, and to determine how often they occur beyond the range of human hearing. Fundamental whistle contours were found to extend beyond 20 kHz only rarely among spotted dolphins, but with some regularity in spinner dolphins. Harmonics were present in the majority of whistles and varied considerably in their number, occurrence, and amplitude. Many whistles had harmonics that extended past 50 kHz and some reached as high as 100 kHz. The relative amplitude of harmonics and the high hearing sensitivity of dolphins to equivalent frequencies suggest that harmonics are biologically relevant spectral features. The burst pulses of both species were found to be predominantly ultrasonic, often with little or no energy below 20 kHz. The findings presented reveal that the social signals produced by spinner and spotted dolphins span the full range of their hearing sensitivity, are spectrally quite varied, and in the case of burst pulses are probably produced more frequently than reported by audio-range analyses.

  14. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  15. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book......: acoustics, cognitive science, speech science, and communication technology....

  16. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book......: acoustics, cognitive science, speech science, and communication technology....... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as...

  17. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado (United States)

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  18. Estimation of glottal source features from the spectral envelope of the acoustic speech signal (United States)

    Torres, Juan Felix

    Speech communication encompasses diverse types of information, including phonetics, affective state, voice quality, and speaker identity. From a speech production standpoint, the acoustic speech signal can be mainly divided into glottal source and vocal tract components, which play distinct roles in rendering the various types of information it contains. Most deployed speech analysis systems, however, do not explicitly represent these two components as distinct entities, as their joint estimation from the acoustic speech signal becomes an ill-defined blind deconvolution problem. Nevertheless, because of the desire to understand glottal behavior and how it relates to perceived voice quality, there has been continued interest in explicitly estimating the glottal component of the speech signal. To this end, several inverse filtering (IF) algorithms have been proposed, but they are unreliable in practice because of the blind formulation of the separation problem. In an effort to develop a method that can bypass the challenging IF process, this thesis proposes a new glottal source information extraction method that relies on supervised machine learning to transform smoothed spectral representations of speech, which are already used in some of the most widely deployed and successful speech analysis applications, into a set of glottal source features. A transformation method based on Gaussian mixture regression (GMR) is presented and compared to current IF methods in terms of feature similarity, reliability, and speaker discrimination capability on a large speech corpus, and potential representations of the spectral envelope of speech are investigated for their ability represent glottal source variation in a predictable manner. The proposed system was found to produce glottal source features that reasonably matched their IF counterparts in many cases, while being less susceptible to spurious errors. The development of the proposed method entailed a study into the aspects

  19. Auditory object salience: Human cortical processing of non-biological action sounds and their acoustic signal attributes

    Directory of Open Access Journals (Sweden)

    James W Lewis


    Full Text Available Whether viewed or heard, an object in action can be segmented from a background scene based on a number of different sensory cues. In the visual system, salient low-level attributes of an image are processed along parallel hierarchies, and involve intermediate stages, such as the lateral occipital cortices, wherein gross-level object form features are extracted prior to stages that show object specificity (e.g. for faces, buildings, or tools. In the auditory system, though relying on a rather different set of low-level signal attributes, a distinct acoustic event or auditory object can also be readily extracted from a background acoustic scene. However, it remains unclear whether cortical processing strategies used by the auditory system similarly extract gross-level aspects of acoustic object form that may be inherent to many real-world sounds. Examining mechanical and environmental action sounds, representing two distinct categories of non-biological and non-vocalization sounds, we had participants assess the degree to which each sound was perceived as a distinct object versus an acoustic scene. Using two functional magnetic resonance imaging (fMRI task paradigms, we revealed bilateral foci along the superior temporal gyri (STG showing sensitivity to the object-ness ratings of action sounds, independent of the category of sound and independent of task demands. Moreover, for both categories of sounds these regions also showed parametric sensitivity to spectral structure variations—a measure of change in entropy in the acoustic signals over time (acoustic form—while only the environmental sounds showed parametric sensitivity to mean entropy measures. Thus, similar to the visual system, the auditory system appears to include intermediate feature extraction stages that are sensitive to the acoustic form of action sounds, and may serve as a stage that begins to dissociate different categories of real-world auditory objects.

  20. A stochastic model for soft tissue failure using acoustic emission data. (United States)

    Sánchez-Molina, D; Martínez-González, E; Velázquez-Ameijide, J; Llumà, J; Rebollo Soria, M C; Arregui-Dalmases, C


    The strength of soft tissues is due mainly to collagen fibers. In most collagenous tissues, the arrangement of the fibers is random, but has preferred directions. The random arrangement makes it difficult to make deterministic predictions about the starting process of fiber breaking under tension. When subjected to tensile stress the fibers are progressively straighten out and then start to be stretched. At the beginning of fiber breaking, some of the fibers reach their maximum tensile strength and break down while some others remain unstressed (this latter fibers will assume then bigger stress until they eventually arrive to their failure point). In this study, a sample of human esophagi was subjected to a tensile breaking of fibers, up to the complete failure of the specimen. An experimental setup using Acoustic Emission to detect the elastic energy released is used during the test to detect the location of the emissions and the number of micro-failures per time unit. The data were statistically analyzed in order to be compared to a stochastic model which relates the level of stress in the tissue and the probability of breaking given the number of previously broken fibers (i.e. the deterioration in the tissue). The probability of a fiber breaking as the stretch increases in the tissue can be represented by a non-homogeneous Markov process which is the basis of the stochastic model proposed. This paper shows that a two-parameter model can account for the fiber breaking and the expected distribution for ultimate stress is a Fréchet distribution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Study on Spectrum Estimation in Biophoton Emission Signal Analysis of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Yitao Liang


    Full Text Available The photon emission signal in visible range (380 nm–630 nm was measured from various wheat kernels by means of a low noise photomultiplier system. To study the features of the photon emission signal, the spectrum estimation method of the photon emission signal is described for the first time. The biophoton emission signal, belonging to four varieties of wheat, is analyzed in time domain and frequency domain. It shows that the intensity of the biophoton emission signal for four varieties of wheat kernels is relatively weak and has dramatic changes over time. Mean and mean square value are obviously different in four varieties; the range was, respectively, 3.7837 and 74.8819. The difference of variance is not significant. The range is 1.1764. The results of power spectrum estimation deduced that the biophoton emission signal is a low frequency signal, and its power spectrum is mostly distributed in the frequency less than 0.1 Hz. Then three parameters, which are spectral edge frequency, spectral gravity frequency, and power spectral entropy, are adopted to explain the features of the kernels’ spontaneous biophoton emission signal. It shows that the parameters of the spontaneous biophoton emission signal for different varieties of wheat are similar.

  2. Tuning avalanche criticality: acoustic emission during the martensitic transformation of a compressed Ni-Mn-Ga single crystal

    Czech Academy of Sciences Publication Activity Database

    Niemann, R.; Baró, J.; Heczko, Oleg; Schultz, L.; Fähler, S.; Vives, E.; Mañosa, L.; Planes, A.


    Roč. 86, č. 21 (2012), "214101-1"-"214101-6" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional research plan: CEZ:AV0Z10100520 Keywords : stress-induced martensitic transformation * Ni-Mn-Ga * magnetic shape memory alloy * ferromagnetic martensite * acoustic emission during transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  3. Micron-Scale Deformation: A Coupled In Situ Study of Strain Bursts and Acoustic Emission. (United States)

    Hegyi, Ádám István; Ispánovity, Péter Dusán; Knapek, Michal; Tüzes, Dániel; Máthis, Kristián; Chmelík, František; Dankházi, Zoltán; Varga, Gábor; Groma, István


    Plastic deformation of micron-scale crystalline materials differs considerably from bulk samples as it is characterized by stochastic strain bursts. To obtain a detailed picture of the intermittent deformation phenomena, numerous micron-sized specimens must be fabricated and tested. An improved focused ion beam fabrication method is proposed to prepare non-tapered micropillars with excellent control over their shape. Moreover, the fabrication time is less compared with other methods. The in situ compression device developed in our laboratory allows high-accuracy sample positioning and force/displacement measurements with high data sampling rates. The collective avalanche-like motion of the dislocations is observed as stress decreases on the stress-strain curves. An acoustic emission (AE) technique was employed for the first time to study the deformation behavior of micropillars. The AE technique provides important additional in situ information about the underlying processes during plastic deformation and is especially sensitive to the collective avalanche-like motion of the dislocations observed as the stress decreases on the deformation curves.

  4. A new mode of acoustic NDT via resonant air-coupled emission (United States)

    Solodov, Igor; Dillenz, Alexander; Kreutzbruck, Marc


    Resonant modes of non-destructive testing (NDT) which make use of local damage resonance (LDR) have been developed recently and demonstrated a significant increase in efficiency and sensitivity of hybrid inspection techniques by laser vibrometry, ultrasonic thermography, and shearography. In this paper, a new fully acoustic version of resonant NDT is demonstrated for defects in composite materials relevant to automotive and aviation applications. This technique is based on an efficient activation of defect vibrations by using a sonic/ultrasonic wave matched to a fundamental LDR frequency of the defect. On this condition, all points of the faulty area get involved in synchronous out-of-plane vibrations which produce a similar in-phase wave motion in ambient air. This effect of resonant air-coupled emission results in airborne waves emanating from the defect area, which can be received by a commercial microphone (low LDR frequency) or an air-coupled ultrasonic transducer (high frequency LDR). A series of experiments confirm the feasibility of both contact and non-contact versions of the technique for NDT and imaging of simulated and realistic defects (impacts, delaminations, and disbonds) in composites.

  5. Acoustic Emission of Large PRSEUS Structures (Pultruded Rod Stitched Efficient Unitized Structure) (United States)

    Horne, Michael R.; Juarez, Peter D.


    In the role of structural health monitoring (SHM), Acoustic Emission (AE) analysis is being investigated as an effective method for tracking damage development in large composite structures under load. Structures made using Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) for damage tolerant, light, and economical airframe construction are being pursued by The Boeing Company and NASA under the Environmentally Responsible Aircraft initiative (ERA). The failure tests of two PRSEUS substructures based on the Boeing Hybrid Wing Body fuselage concept were conducted during third quarter 2011 and second quarter 2015. One fundamental concern of these tests was determining the effectiveness of the stitched integral stiffeners to inhibit damage progression. By design, severe degradation of load carrying capability should not occur prior to Design Ultimate Load (DUL). While minor damage prior to DUL was anticipated, the integral stitching should not fail since this would allow a stiffener-skin delamination to progress rapidly and alter the transfer of load into the stiffeners. In addition, the stiffeners should not fracture because they are fundamental to structural integrity. Getting the best information from each AE sensor is a primary consideration because a sparse network of sensors is implemented. Sensitivity to stiffener-contiguous degradation is supported by sensors near the stiffeners, which increases the coverage per sensor via AE waveguide actions. Some sensors are located near potentially critical areas or "critical zones" as identified by numerical analyses. The approach is compared with the damage progression monitored by other techniques (e.g. ultrasonic C-scan).

  6. Detection and characterization of stainless steel SCC by the analysis of crack related acoustic emission. (United States)

    Kovač, Jaka; Legat, Andraž; Zajec, Bojan; Kosec, Tadeja; Govekar, Edvard


    In the paper the results of the acoustic emission (AE) based detection and characterization of stress-corrosion cracking (SCC) in stainless steel are presented. As supportive methods for AE interpretation, electrochemical noise, specimen elongation measurements, and digital imaging of the specimen surface were used. Based on the defined qualitative and quantitative time and power spectra characteristics of the AE bursts, a manual and an automatic procedure for the detection of crack related AE bursts were introduced. The results of the analysis of the crack related AE bursts indicate that the AE method is capable of detecting large scale cracks, where, apart from intergranular crack propagation, also some small ductile fractures occur. The sizes of the corresponding ductile fracture areas can be estimated based on a relative comparison of the energies of the detected AE bursts. It has also been shown that AE burst time and power spectra features can be successfully used for the automatic detection of SCC. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparison of Visual and Acoustic Emission Observations in a Four Point Bending Experiment on Barre Granite (United States)

    Li, Bing Qiuyi; Einstein, Herbert H.


    We present an experimental study in which a pre-notched specimen of Barre Granite was subjected to four point bending under crack mouth opening displacement control. The experimental observations consisted of load-displacement measurements, acoustic emissions, and photography on a macroscopic ( cm) as well as microscopic ( μm) scale. These observations were compared and analysed to better understand process zone development and crack propagation. Load-displacement data showed that the load reaches its maximum at crack initiation, and the machine input work is constant while the crack propagates. AE moment magnitudes between Mw = -6 to -10 were observed, and focal mechanisms consisted of both shear and tensile components. During process zone development, AE formed a large cloud of events located near the notch tip and then tended to occur away from the notch tip as the crack propagated. Image analysis at the microscopic scale showed that microcracks formed and coalesced during process zone development; specifically, the microcracks initiated in tension and then propagated as a series of en-echelon cracks. In general, the synthesis of the three observations showed that a wider bulb of activity at lower energy tended to occur during process zone development, while crack propagation tended to be more spatially concentrated and contained higher energy.

  8. Acoustic emission monitoring of low velocity impact damage in graphite/epoxy laminates during tensile loading (United States)

    Parker, Bradford H.


    An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.

  9. Nonlinear Kalman Filtering for acoustic emission source localization in anisotropic panels. (United States)

    Dehghan Niri, E; Farhidzadeh, A; Salamone, S


    Nonlinear Kalman Filtering is an established field in applied probability and control systems, which plays an important role in many practical applications from target tracking to weather and climate prediction. However, its application for acoustic emission (AE) source localization has been very limited. In this paper, two well-known nonlinear Kalman Filtering algorithms are presented to estimate the location of AE sources in anisotropic panels: the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). These algorithms are applied to two cases: velocity profile known (CASE I) and velocity profile unknown (CASE II). The algorithms are compared with a more traditional nonlinear least squares method. Experimental tests are carried out on a carbon-fiber reinforced polymer (CFRP) composite panel instrumented with a sparse array of piezoelectric transducers to validate the proposed approaches. AE sources are simulated using an instrumented miniature impulse hammer. In order to evaluate the performance of the algorithms, two metrics are used: (1) accuracy of the AE source localization and (2) computational cost. Furthermore, it is shown that both EKF and UKF can provide a confidence interval of the estimated AE source location and can account for uncertainty in time of flight measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Evaluation of marginal failures of dental composite restorations by acoustic emission analysis. (United States)

    Gu, Ja-Uk; Choi, Nak-Sam


    In this study, a nondestructive method based on acoustic emission (AE) analysis was developed to evaluate the marginal failure states of dental composite restorations. Three types of ring-shaped substrates, which were modeled after a Class I cavity, were prepared from polymethyl methacrylate, stainless steel, and human molar teeth. A bonding agent and a composite resin were applied to the ring-shaped substrates and cured by light exposure. At each time-interval measurement, the tooth substrate presented a higher number of AE hits than polymethyl methacrylate and steel substrates. Marginal disintegration estimations derived from cumulative AE hits and cumulative AE energy parameters showed that a signification portion of marginal gap formation was already realized within 1 min at the initial light-curing stage. Estimation based on cumulative AE energy gave a higher level of marginal failure than that based on AE hits. It was concluded that the AE analysis method developed in this study was a viable approach in predicting the clinical survival of dental composite restorations efficiently within a short test period.

  11. Detecting crack profile in concrete using digital image correlation and acoustic emission

    Directory of Open Access Journals (Sweden)

    Loukili A.


    Full Text Available Failure process in concrete structures is usually accompanied by cracking of concrete. Understanding the cracking pattern is very important while studying the failure governing criteria of concrete. The cracking phenomenon in concrete structures is usually complex and involves many microscopic mechanisms caused by material heterogeneity. Since last many years, fracture or damage analysis by experimental examinations of the cement based composites has shown importance to evaluate the cracking and damage behavior of those heterogeneous materials with damage accumulation due to microcracks development ahead of the propagating crack tip; and energy dissipation resulted during the evolution of damage in the structure. The techniques used in those experiments may be the holographic interferometry, the dye penetration, the scanning electron microscopy, the acoustic emission etc. Those methods offer either the images of the material surface to observe micro-features of the concrete with qualitative analysis, or the black-white fringe patterns of the deformation on the specimen surface, from which it is difficult to observe profiles of the damaged materials.

  12. Wavelet Analysis of Acoustic Emissions during Tensile Test of Carbon Fibre Reinforced Polymer Composites (United States)

    Świt, Grzegorz; Adamczak, Anna; Krampikowska, Aleksandra


    The increase of the interest in polymer composites in technology and in people’s everyday lives has been noticed in the recent years. Producing new materials with polymer matrix of particular properties that cannot be achieved by traditional construction materials contributed to high interest in fibre composite materials. However, a wider use of these materials is limited because of the lack of detailed knowledge about their properties and behaviour in various conditions of exposure under load. Mechanical degradation of polymer composites, which is caused by prolonged permanent loads, is connected with the changes of the material structure that are local or that include the whole volume of the element’s body. These changes are in the form of various types of discontinuity, including: deboning, matrix and fibers cracks and delamination. The article presents the example of the application of acoustic emission method based on the analysis of the waves through the use of wavelet analysis for the evaluation of the progress of the destructive processes and the level of the degradation of composite tapes that were subject to tensile testing.

  13. Crack classification and evolution in anisotropic shale during cyclic loading tests by acoustic emission (United States)

    Wang, Miaomiao; Tan, Chengxuan; Meng, Jing; Yang, Baicun; Li, Yuan


    Characterization and evolution of the cracking mode in shale formation is significant, as fracture networks are an important element in shale gas exploitation. In this study we determine the crack modes and evolution in anisotropic shale under cyclic loading using the acoustic emission (AE) parameter-analysis method based on the average frequency and RA (rise-time/amplitude) value. Shale specimens with bedding-plane orientations parallel and perpendicular to the axial loading direction were subjected to loading cycles with increasing peak values until failure occurred. When the loading was parallel to the bedding plane, most of the cracks at failure were shear cracks, while tensile cracks were dominant in the specimens that were loaded normal to the bedding direction. The evolution of the crack mode in the shale specimens observed in the loading-unloading sequence except for the first cycle can be divided into three stages: (I) no or several cracks (AE events) form as a result of the Kaiser effect, (II) tensile and shear cracks increase steadily at nearly equal proportions, (III) tensile cracks and shear cracks increase abruptly, with more cracks forming in one mode than in the other. As the dominant crack motion is influenced by the bedding, the failure mechanism is discussed based on the evolution of the different crack modes. Our conclusions can increase our understanding of the formation mechanism of fracture networks in the field.

  14. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy and Implications for Composite Structures (United States)

    Waller, J. M.; Nichols, C. T.; Wentzel, D. J.; Saulsberry R. L.


    Broad-band modal acoustic emission (AE) data was used to characterize micromechanical damage progression in uniaxial IM7 and T1000 carbon fiber-epoxy tows and an IM7 composite overwrapped pressure vessel (COPV) subjected to an intermittent load hold tensile stress profile known to activate the Felicity ratio (FR). Damage progression was followed by inspecting the Fast Fourier Transforms (FFTs) associated with acoustic emission events. FFT analysis revealed the occurrence of cooperative micromechanical damage events in a frequency range between 100 kHz and 1 MHz. Evidence was found for the existence of a universal damage parameter, referred to here as the critical Felicity ratio, or Felicity ratio at rupture (FR*), which had a value close to 0.96 for the tows and the COPV tested. The implications of using FR* to predict failure in carbon/epoxy composite materials and related composite components such as COPVs are discussed. Trends in the FFT data are also discussed; namely, the difference between the low and high energy events, the difference between early and late-life events, comparison of IM7 and T1000 damage progression, and lastly, the similarity of events occurring at the onset of significant acoustic emission used to calculate the FR.

  15. The deformation and acoustic emission of aluminum-magnesium alloy under non-isothermal thermo-mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, S. V.; Plotnikov, V. A., E-mail:; Lysikov, M. V. [Altai State University, Barnaul, 656049 (Russian Federation); Kolubaev, E. A., E-mail: [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)


    The following study investigates the deformation behavior and acoustic emission in aluminum-magnesium alloy under conditions of non-isothermal thermo-mechanical loading. The accumulation of deformation in the alloy, in conditions of change from room temperature to 500°C, occurs in two temperature intervals (I, II), characterized by different rates of deformation. The rate of deformation accumulation is correlated with acoustic emission. With load increasing in cycles from 40 to 200 MPa, the value of the boundary temperature (T{sub b}) between intervals I and II changes non-monotonically. In cycles with load up to 90 MPa, the T{sub b} value increases, while an increase up to 200 MPa makes T{sub b} shift toward lower temperatures. This suggests that the shift of boundaries in the region of low temperatures and the appearance of high-amplitude pulses of acoustic emission characterize the decrease of the magnitude of thermal fluctuations with increasing mechanical load, leading to the rupture of interatomic bonds in an elementary deformation act.

  16. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    Directory of Open Access Journals (Sweden)

    S. Lazić


    Full Text Available The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW. The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ∼330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  17. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints. (United States)

    Hinton, Samuel R; Kazin, Eyal; Davis, Tamara M; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J; Drinkwater, Michael J; Glazebrook, Karl; Jurek, Russell J; Parkinson, David; Pimbblet, Kevin A; Poole, Gregory B; Pracy, Michael; Woods, David


    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ω c  h(2), H(z), and DA (z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  18. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints (United States)

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David


    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  19. Processing an acoustic microscope's spatiotemporal signal to determine the parameters of an isotropic layer (United States)

    Titov, S. A.; Levin, V. M.; Petronyuk, Yu. S.


    This paper presents a method for measuring the thickness and velocities of body waves and the density of an isotropic layer by a pulse scanning acoustic microscope. The method is based on recording the microscope signal as a function of the displacement magnitude of the focused ultrasonic transducer along its axis perpendicular to the sample surface and on the decomposition of the recorded 2D spatiotemporal signal into the spectrum of plane pulse waves. The velocities of the longitudinal and transverse waves and the layer's thickness are calculated from the relative delays of the components of the spectrum of plane waves reflected from the surfaces of the layer and the density is computed by the amplitudes of these components. An experimental investigation of a test sample in the form of a glass plate carried out in the 50-MHz range shows that the error in measuring the thickness and velocities of body waves does not exceed 1% and the density measurement error does not exceed 10%.

  20. Phenotypic covariance structure and its divergence for acoustic mate attraction signals among four cricket species (United States)

    Bertram, Susan M; Fitzsimmons, Lauren P; McAuley, Emily M; Rundle, Howard D; Gorelick, Root


    The phenotypic variance–covariance matrix (P) describes the multivariate distribution of a population in phenotypic space, providing direct insight into the appropriateness of measured traits within the context of multicollinearity (i.e., do they describe any significant variance that is independent of other traits), and whether trait covariances restrict the combinations of phenotypes available to selection. Given the importance of P, it is therefore surprising that phenotypic covariances are seldom jointly analyzed and that the dimensionality of P has rarely been investigated in a rigorous statistical framework. Here, we used a repeated measures approach to quantify P separately for populations of four cricket species using seven acoustic signaling traits thought to enhance mate attraction. P was of full or almost full dimensionality in all four species, indicating that all traits conveyed some information that was independent of the other traits, and that phenotypic trait covariances do not constrain the combinations of signaling traits available to selection. P also differed significantly among species, although the dominant axis of phenotypic variation (pmax) was largely shared among three of the species (Acheta domesticus, Gryllus assimilis, G. texensis), but different in the fourth (G. veletis). In G. veletis and A. domesticus, but not G. assimilis and G. texensis, pmax was correlated with body size, while pmax was not correlated with residual mass (a condition measure) in any of the species. This study reveals the importance of jointly analyzing phenotypic traits. PMID:22408735

  1. Decision making and preferences for acoustic signals in choice situations by female crickets. (United States)

    Gabel, Eileen; Kuntze, Janine; Hennig, R Matthias


    Multiple attributes usually have to be assessed when choosing a mate. Efficient choice of the best mate is complicated if the available cues are not positively correlated, as is often the case during acoustic communication. Because of varying distances of signalers, a female may be confronted with signals of diverse quality at different intensities. Here, we examined how available cues are weighted for a decision by female crickets. Two songs with different temporal patterns and/or sound intensities were presented in a choice paradigm and compared with female responses from a no-choice test. When both patterns were presented at equal intensity, preference functions became wider in choice situations compared with a no-choice paradigm. When the stimuli in two-choice tests were presented at different intensities, this effect was counteracted as preference functions became narrower compared with choice tests using stimuli of equal intensity. The weighting of intensity differences depended on pattern quality and was therefore non-linear. A simple computational model based on pattern and intensity cues reliably predicted female decisions. A comparison of processing schemes suggested that the computations for pattern recognition and directionality are performed in a network with parallel topology. However, the computational flow of information corresponded to serial processing. © 2015. Published by The Company of Biologists Ltd.

  2. Dynamic behavioral strategies during sonar signal emission in roundleaf bats. (United States)

    Feng, Lin; Li, Yitan; Lu, Hongwang


    For echolocating bats which emit biosonar pulses nasally, their nostrils are surrounded by fleshy appendages that diffract the outgoing ultrasonic waves. The posterior leaf, as a prominent part of the noseleaf, was mentioned in previous preliminary observations to move during flight in some species of bats, yet the detailed motion patterns and thus the possible functional role of the posterior leaf movement in biosonar systems remain unclear. In the current work, the motion of the posterior leaf of living pratt's roundleaf bats has been investigated quantitatively. Temporal characterizations of the noseleaf movement and the ultrasonic pulse emission were performed by virtue of synchronized laser vibrometry and sound recording. The results showed that the posterior leaf tilted forwards and restored to original position within tens of milliseconds. Noseleaf motions were temporally correlated with the emitted ultrasonic pulses. The surfaces of the posterior leaf were moving in the anterior direction in most of the pulse duration. The bats were able to switch the motions on or off. From the comparison with the previously reported noseleaf dynamics in horseshoe bat, we find similar ratio sizes and displacements of the noseleaves compared to the used wavelengths, implying that similar behavioral strategies are utilized by species of bats and it may be applied to different components of the signal emitting apparatus. It suggests that the dynamic sensing principles may widely play a role in the biosonar systems and the investigation on time-variant mechanisms is of capital importance to understand the biosonar sensing strategies used by echolocating bats. © 2013.

  3. In-situ Monitoring of Sub-cooled Nucleate Boiling on Fuel Cladding Surface in Water at 1 bar and 130 bars using Acoustic Emission Method

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Heon; Wu, Kaige; Shim, Hee-Sang; Lee, Deok Hyun; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Crud deposition increases through a sufficient corrosion product supply around the steam-liquid interface of a boiling bubble. Therefore, the understanding of this SNB phenomenon is important for effective and safe operation of nuclear plants. The experimental SNB studies have been performed in visible conditions at a low pressure using a high speed video camera. Meanwhile, an acoustic emission (AE) method is an on-line non-destructive evaluation method to sense transient elastic wave resulting from a rapid release of energy within a dynamic process. Some researchers have investigated boiling phenomena using the AE method. However, their works were performed at atmospheric pressure conditions. Therefore, the objective of this work is for the first time to detect and monitor SNB on fuel cladding surface in simulated PWR primary water at 325 .deg. C and 130 bars using an AE technique. We successfully observed the boiling AE signals in primary water at 1 bar and 130 bars using AE technique. Visualization test was performed effectively to identify a correlation between water boiling phenomenon and AE signals in a transparent glass cell at 1 bar, and the boiling AE signals were in good agreement with the boiling behavior. Based on the obtained correlations at 1 bar, the AE signals obtained at 130 bars were analyzed. The boiling density and size of the AE signals at 130 bars were decreased by the flow parameters. However, overall AE signals showed characteristics and a trend similar to the AE signals at 1 bar. This indicates that boiling AE signals are detected successfully at 130 bars, and the AE technique can be effectively implemented in non-visualized condition at high pressures.

  4. Selecting Informative Features of the Helicopter and Aircraft Acoustic Signals in the Adaptive Autonomous Information Systems for Recognition

    Directory of Open Access Journals (Sweden)

    V. K. Hohlov


    Full Text Available The article forms the rationale for selecting the informative features of the helicopter and aircraft acoustic signals to solve a problem of their recognition and shows that the most informative ones are the counts of extrema in the energy spectra of the input signals, which represent non-centered random variables. An apparatus of the multiple initial regression coefficients was selected as a mathematical tool of research. The application of digital re-circulators with positive and negative feedbacks, which have the comb-like frequency characteristics, solves the problem of selecting informative features. A distinguishing feature of such an approach is easy agility of the comb frequency characteristics just through the agility of a delay value of digital signal in the feedback circuit. Adding an adaptation block to the selection block of the informative features enables us to ensure the invariance of used informative feature and counts of local extrema of the spectral power density to the airspeed of a helicopter. The paper gives reasons for the principle of adaptation and the structure of the adaptation block. To form the discriminator characteristics are used the cross-correlation statistical characteristics of the quadrature components of acoustic signal realizations, obtained by Hilbert transform. The paper proposes to provide signal recognition using a regression algorithm that allows handling the non-centered informative features and using a priori information about coefficients of initial regression of signal and noise.The simulation in Matlab Simulink has shown that selected informative features of signals in regressive processing of signal realizations of 0.5 s duration have good separability, and based on a set of 100 acoustic signal realizations in each class in full-scale conditions, has proved ensuring a correct recognition probability of 0.975, at least. The considered principles of informative features selection and adaptation can

  5. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    Directory of Open Access Journals (Sweden)

    Eber Huanca Cayo


    Full Text Available The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  6. Comparative Study between Acoustic Emission Analysis and Immersion Bubble-Metric Technique, TGA and TD-GC/MS in View of the Characterization of Granular Activated Carbons Used in Rum Production

    Directory of Open Access Journals (Sweden)

    Harold Crespo Sariol


    Full Text Available Microscopic and acoustic emission analysis and sound patterns recognition techniques were applied for the characterization of granular activated carbon (GAC. A new and improved methodology has been developed to characterize the exhaustion degree of GAC used in rum production: (1 based on the acoustic emission analysis of the sound produced by water flooded on GAC; and (2 based on the microscopic analysis of bubbles formed by immersion into glycerol. Acoustic measurements are made in a specific set-up, bubble detection and analysis is performed using dedicated software developed in MATLAB® for circular shape pattern detection based on the Hough transform. Both have been correlated with data of GAC characteristics based on thermogravimetric analysis (TGA and Thermal Desorption-Gas Chromatography Mass Spectrometry (TD-GC/MS. Eight samples of GAC used in the rum production, obtained at different depths within the fixed-bed filter, have been evaluated. Good correlations are found between the immersion “bubble-metric” technique and the acoustic measurement data from the original signal processed by Band-Pass (BP filtering at 1.3 kHz and weight loss amounts of adsorbed compounds on the GAC. The found relationship gives the possibility to determine the exhaustion degree of GAC applying these methods and to evaluate high-porosity materials.

  7. Comparison of two acoustic analogies applied to experimental PIV data for cavity sound emission estimation

    NARCIS (Netherlands)

    Koschatzky, V.; Westerweel, J.; Boersma, B.J.


    The aim of the present study is to compare two different acoustic analogies applied to time-resolved particle image velocimetry (PIV) data for the prediction of the acoustic far-field generated by the flow over a rectangular cavity. Recent developments in laser and camera technology allow the

  8. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods. (United States)

    Strantza, Maria; Aggelis, Dimitrios G; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny


    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

  9. Evolutions of friction properties and acoustic emission source parameters associated with large sliding (United States)

    Yabe, Y.; Tsuda, H.; Iida, T.


    It was demonstrated by Yabe (2002) that friction properties and AE (acoustic emission) activities evolve with accumulation of sliding. However, large sliding distances of ~65 mm in his experiments were achieved by recurring ~10 mm sliding on the same fault. The evolution of friction coefficient was discontinuous, when rock samples were reset. Further, normal stress was not kept constant. To overcome these problems and to reexamine the evolutions of friction properties and AE activities with continuous large sliding under a constant normal stress, we developed a rotary shear apparatus. The evolutions of friction and AE up to ~80 mm sliding under a normal stress of 5 MPa were investigated. Rate dependence of friction was the velocity strengthening (a-b>0 in rate and state friction law) at the beginning. The value of a-b gradually decreased with sliding to negative (velocity weakening). Then, it took a constant negative value, when the sliding reached a critical distance. The m-value of Ishimoto-Iida's relation of AE activity increased with sliding at the beginning and converged to a constant value at the critical sliding distance. The m-value showed a negative rate dependence at the beginning, but became neutral after sliding of the critical distance. The sliding distances required to converge the a-b value, the m-value and the rate dependence of the m-value are almost identical to one another. These results are the same as those by Yabe (2002), suggesting the intermission of sliding little affected the evolutions. We, then, examined evolutions of AE source parameters such as source radii and stress drops. The average source radius was constant over the whole sliding distance, while the average stress drop decreased at the beginning of sliding, and converged to a constant value. The sliding distance required to the conversion was the same as that for the above mentioned evolutions of friction property or AE activity.

  10. Crustal stress, seismicity, acoustic emission (AE), and tectonics: the Kefallinì;a (Greece) case study (United States)

    Gregori, G. P.; Poscolieri, M.; Paparo, G.; Ventrice, G.; de Simone, S.; Rafanelli, C.


    New inferences - confirming previous results (see references)- are presented dealing with a few years Acoustic Emission (AE) records collected at Kefallinìa (Ionian Islands, Greece). A physical distinction between HF (high frequency) vs. LF (low frequency) AE is required. Step-wise changes of the AE underground conductivity are evidenced, and can be suitably handled. "Smooth" results concern (i) the annual variation, (ii) some long-lasting stress "solitons" crossing through the area, and (iii) tidal effects. In particular, every AE station can be operated like a monitoring station both for Earth's tides and for the free oscillations of the Earth. In addition, Kefallinìa exhibits a much peculiar groundwater circulation, in which conduit flow is dominant, that originates a specific (and unique) AE effect. By means of AE time-series analysis, "extreme" or "catastrophic" events can be also monitored and possibly related to relevant tectonic occurrences (either earthquakes, or maybe other occasional phenomena). They can be investigated, and have a regional - rather than local - character. Therefore, every interpretation based on a single station record - being biased by some arbitrariness - can only result indicative. A standardized procedure and software is proposed for routine AE data handling and analysis. References.: Lagios et al., 2004. In Proc. SCI 2004 (The 8th World Multi-Conference on Systemics, Cybernetics and Informatic), Orlando, Florida, July 1004, 6 pp. Poscolieri et al., 2006. In. G. Cello and B. D. Malamud, (eds), 2006. Geol. Soc. London, Special Publ., 261, 63-78. Poscolieri et al., 2006a. Nat. Hazards Earth Syst. Sci., 6, 961-971.

  11. Statistical distribution models for monitoring acoustic emission (AE) energy of abrasive particle impacts on carbon steel (United States)

    Droubi, M. G.; Reuben, R. L.; White, G.


    The estimation of energy dissipated during multiple particle impact is a key aspect in evaluating the abrasive potential of particle-laden streams. This paper reports the results of systematic acoustic emission measurements in which a particle laden airflow was directed at a target plate. The impingement conditions were chosen to limit the amount of overlap of particle arrival events in order to develop a model of the stream as the cumulation of individual particle arrival events. To this end, some limited experiments were done with individual particles. The probability distribution of particle impact energy was obtained for a range of particle sizes and impact velocities. Two methods of time series processing were investigated to isolate the individual particle arrivals from the background noise and from particle noise associated with contact of the particles with the target after their first arrival. For the conditions where it was possible to resolve individual impacts, the probability distribution of particle arrival AE energy was determined by the best-fit lognormal probability distribution function. The mean and variance of this function was then correlated with the known nominal mass and impact speed to give a semi-quantitative assessment of particle impact energy. A pulse shape function was devised for the target plate by inspection of the records, backed up by pencil lead tests and this, coupled with the energy distribution functions allowed the records to be simulated knowing the arrival rate and the nominal mass and velocity of the particles. A comparison of the AE energy between the recorded and simulated records showed that the principle of accumulating individual particle impact signatures could be applied to records even when the individual impacts could not be resolved.

  12. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.T. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA (USA))


    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  13. Anatomic and acoustic sexual dimorphism in the sound emission system of Phoenicoprocta capistrata (Lepidoptera: Arctiidae) (United States)

    Rodríguez-Loeches, Laura; Barro, Alejandro; Pérez, Martha; Coro, Frank


    Both sexes of Phoenicoprocta capistrata have functional tymbals. The scanning electron microscopy revealed differences in the morphology of these organs in males and females. Male tymbals have a well-developed striated band, constituted by 21 ± 2 regularly arranged striae whereas female tymbals lack a striated band. This type of sexual dimorphism is rare in Arctiidae. The recording of the sound produced by moths held by the wings revealed that while males produced trains of pulses organized in modulation cycles, females produced clicks at low repetition rate following very irregular patterns. Statistically, there are differences between sexes in terms of the duration of pulses, which were 355 ± 24 μs in the case of males and 289 ± 29 μs for females. The spectral characteristics of the pulses also show sexual dimorphism. Male pulses are more tuned ( Q 10 = 5.2 ± 0.5) than female pulses ( Q 10 = 2.7 ± 0.5) and have a higher best frequency (42 ± 1 kHz vs. 29 ± 2 kHz). To our knowledge, this is the first report on an arctiid moth showing sexual dimorphism in tymbal’s anatomy that leads to a best frequency dimorphism. Males produce sound at mating attempts. The sounds recorded during mating are modulation cycles with the same spectral characteristics as those recorded when males are held by the wings. The morphological and acoustic features of female tymbals could indicate a process of degeneration and adaptation to conditions under which the emission of complex patterns is not necessary.

  14. Influences of Shear History and Infilling on the Mechanical Characteristics and Acoustic Emissions of Joints (United States)

    Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Liming; Kong, Liang; Li, Shaojun; Zhang, Chuanqing


    Filled joints, which are characterized by high deformability and low shear strength, are among the most critical discontinuities in rock mass and may be sheared repeatedly when subject to cyclic loading. Shear tests were carried out on tension splitting joints, with soil and granular cement mortar particles used as infillings, and the effects of the shear history on the mechanical behavior and acoustic emission (AE) of clean and filled joints were studied. The maximum strength in the subsequent shears was approximately 60% of the peak strength of the first shear for a clean joint, and the friction angle degraded from 63° to 45° after the first shear. The maximum shear strength of the filled joints was lower than 35% of the peak strength of the clean joint under the same normal stress. The change in the shear strength of filled joints with the number of shearing cycles was closely related to the transformation of the shear medium. Rolling friction occurred and the shear strength was low for the granular particle-filled joint, but the strength was elevated when the particles were crushed and sliding friction occurred. The AEs were significantly reduced during the second shear for the clean joint, and the peak AEs were mainly obtained at or near the turning point of the shear stress curve for the filled joint. The AEs were the highest for the cement particle-filled joint and lowest for the dry soil-filled joint; when subjected to repeated shears, the AEs were more complex because of the continuous changes to the shear medium. The evolution of the AEs with the shear displacement can accurately reflect the shear failure mechanism during a single shear process.

  15. Evaluation of SHM System Produced by Additive Manufacturing via Acoustic Emission and Other NDT Methods

    Directory of Open Access Journals (Sweden)

    Maria Strantza


    Full Text Available During the last decades, structural health monitoring (SHM systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called “effective structural health monitoring” (eSHM system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT techniques. During this study, detailed acoustic emission (AE analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

  16. Airborne DoA estimation of gunshot acoustic signals using drones with application to sniper localization systems (United States)

    Fernandes, Rigel P.; Ramos, António L. L.; Apolinário, José A.


    Shooter localization systems have been subject of a growing attention lately owing to its wide span of possible applications, e.g., civil protection, law enforcement, and support to soldiers in missions where snipers might pose a serious threat. These devices are based on the processing of electromagnetic or acoustic signatures associated with the firing of a gun. This work is concerned with the latter, where the shooter's position can be obtained based on the estimation of the direction-of-arrival (DoA) of the acoustic components of a gunshot signal (muzzle blast and shock wave). A major limitation of current commercially available acoustic sniper localization systems is the impossibility of finding the shooter's position when one of these acoustic signatures is not detected. This is very likely to occur in real-life situations, especially when the microphones are not in the field of view of the shockwave or when the presence of obstacles like buildings can prevent a direct-path to sensors. This work addresses the problem of DoA estimation of the muzzle blast using a planar array of sensors deployed in a drone. Results supported by actual gunshot data from a realistic setup are very promising and pave the way for the development of enhanced sniper localization systems featuring two main advantages over stationary ones: (1) wider surveillance area; and (2) increased likelihood of a direct-path detection of at least one of the gunshot signals, thereby adding robustness and reliability to the system.

  17. Acoustic emission analysis for structural health monitoring of hot metal components; Schallemissionsanalyse zur Zustandsueberwachung von heissen Metallkomponenten

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Eberhard [Fraunhofer-Institut fuer Keramische Technologien und Systeme, Dresden (Germany). Institutsteil Materialdiagnostik


    For the application of acoustic emission analysis on hot components such as pipes special application techniques are necessary to protect the sensor from the heat. The Fraunhofer IKTS-MD has developed a waveguide solution that meets these requirements. Major challenges in the application of acoustic emission analysis in an industrial environment is the strong ambient noise. This requirement meets the developed acoustic measurement system at the Fraunhofer Institute by a high measurement dynamics, storage and assessment of the complete waveforms and by special algorithms. The attractiveness of the method lies in the relatively low number of sensors with which the integrity of large plant areas (e.g. several meters under high alternating load standing superheated steam pipe) can be permanently monitored. [German] Fuer die Anwendung der Schallemissionsanalyse an heissen Komponenten wie Rohrleitungen sind besondere Applikationstechniken notwendig, um den Sensor vor der Hitze zu schuetzen. Das Fraunhofer IKTS-MD hat dafuer eine Wellenleiterloesung entwickelt, die diese Anforderungen erfuellt. Wesentliche Herausforderung bei der Anwendung der Schallemissionsanalyse in industrieller Umgebung ist das starke Umgebungsrauschen. Dieser Anforderung begegnet das am Fraunhofer-Institut entwickelte akustische Messsystem durch eine hohe Messwertdynamik, Speicherung und Bewertung der vollstaendigen Wellenformen sowie durch spezielle Auswertealgorithmen. Die Attraktivitaet des Verfahrens liegt in der vergleichsweise geringen Anzahl von Sensoren, mit denen die Integritaet grosser Anlagenbereiche (z.B. mehrere Meter unter hoher Wechsellast stehender Heissdampfleitung) dauerhaft ueberwacht werden kann.

  18. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    DEFF Research Database (Denmark)

    van Capel, P. J. S.; Turchinovich, Dmitry; Porte, Henrik


    signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlatedwith electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured...

  19. Digital seismo-acoustic signal processing aboard a wireless sensor platform (United States)

    Marcillo, O.; Johnson, J. B.; Lorincz, K.; Werner-Allen, G.; Welsh, M.


    We are developing a low power, low-cost wireless sensor array to conduct real-time signal processing of earthquakes at active volcanoes. The sensor array, which integrates data from both seismic and acoustic sensors, is based on Moteiv TMote Sky wireless sensor nodes ( The nodes feature a Texas Instruments MSP430 microcontroller, 48 Kbytes of program memory, 10 Kbytes of static RAM, 1 Mbyte of external flash memory, and a 2.4-GHz Chipcon CC2420 IEEE 802.15.4 radio. The TMote Sky is programmed in TinyOS. Basic signal processing occurs on an array of three peripheral sensor nodes. These nodes are tied into a dedicated GPS receiver node, which is focused on time synchronization, and a central communications node, which handles data integration and additional processing. The sensor nodes incorporate dual 12-bit digitizers sampling a seismic sensor and a pressure transducer at 100 samples per second. The wireless capabilities of the system allow flexible array geometry, with a maximum aperture of 200m. We have already developed the digital signal processing routines on board the Moteiv Tmote sensor nodes. The developed routines accomplish Real-time Seismic-Amplitude Measurement (RSAM), Seismic Spectral- Amplitude Measurement (SSAM), and a user-configured Short Term Averaging / Long Term Averaging (STA LTA ratio), which is used to calculate first arrivals. The processed data from individual nodes are transmitted back to a central node, where additional processing may be performed. Such processing will include back azimuth determination and other wave field analyses. Future on-board signal processing will focus on event characterization utilizing pattern recognition and spectral characterization. The processed data is intended as low bandwidth information which can be transmitted periodically and at low cost through satellite telemetry to a web server. The processing is limited by the computational capabilities (RAM, ROM) of the nodes. Nevertheless, we

  20. A potential neural substrate for processing functional classes of complex acoustic signals.

    Directory of Open Access Journals (Sweden)

    Isabelle George

    Full Text Available Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial nidopallium, or NCM has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear and distinct classes of songs with different functions and social values, and for a possible correspondence between these responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech.