WorldWideScience

Sample records for acoustic emission detection

  1. Acoustic Emission Beamforming for Detection and Localization of Damage

    Science.gov (United States)

    Rivey, Joshua Callen

    The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over

  2. Application of acoustic emission to flaw detection in engineering materials

    Science.gov (United States)

    Moslehy, F. A.

    1990-01-01

    Monitoring of structures under operating loads to provide an early warning of possible failure to locate flaws in test specimens subjected to uniaxial tensile loading is presented. Test specimens used are mild steel prismatic bars with small holes at different locations. When the test specimen is loaded, acoustic emission data are automatically collected by two acoustic transducers located at opposite sides of the hole and processed by an acoustic emission analyzer. The processed information yields the difference in arrival times at the transducers, which uniquely determines the flaw location. By using this technique, flaws were located to within 8 percent of their true location. The use of acoustic emission in linear location to locate a flaw in a material is demonstrated. It is concluded that this one-dimensional application could be extended to the general flaw location problem through triangulation.

  3. DETECTION OF DRUGSTORE BEETLES IN 9975 PACKAGES USING ACOUSTIC EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Shull, D.

    2013-03-04

    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  4. A New Acoustic Emission Sensor Based Gear Fault Detection Approach

    Directory of Open Access Journals (Sweden)

    Junda Zhu

    2013-01-01

    Full Text Available In order to reduce wind energy costs, prognostics and health management (PHM of wind turbine is needed to ensure the reliability and availability of wind turbines. A gearbox is an important component of a wind turbine. Therefore, developing effective gearbox fault detection tools is important to the PHM of wind turbine. In this paper, a new acoustic emission (AE sensor based gear fault detection approach is presented. This approach combines a heterodyne based frequency reduction technique with time synchronous average (TSA and spectrum kurtosis (SK to process AE sensor signals and extract features as condition indictors for gear fault detection. Heterodyne technique commonly used in communication is first employed to preprocess the AE signals before sampling. By heterodyning, the AE signal frequency is down shifted from several hundred kHz to below 50 kHz. This reduced AE signal sampling rate is comparable to that of vibration signals. The presented approach is validated using seeded gear tooth crack fault tests on a notational split torque gearbox. The approach presented in this paper is physics based and the validation results have showed that it could effectively detect the gear faults.

  5. Detection of the deterministic component in acoustic emission signals from mechanically loaded rock samples

    Science.gov (United States)

    Hilarov, V. L.

    2015-11-01

    Using the Takens theorem, the attractor was reconstructed for amplitudes of acoustic emission signals measured during fracture of granite samples. Systematic features of the temporal behavior of system dynamic characteristics, such as the embedding dimension, fractal dimensions, recurrence plots, and their numerical parameters, were determined. For a preliminarily water-saturated sample, an order-disorder phase transition was detected in the structure of acoustic emission signals.

  6. Acoustic emission partial discharge detection technique applied to fault diagnosis: Case studies of generator transformers

    Directory of Open Access Journals (Sweden)

    Shanker Tangella Bhavani

    2016-01-01

    Full Text Available In power transformers, locating the partial discharge (PD source is as important as identifying it. Acoustic Emission (AE sensing offers a good solution for both PD detection and PD source location identification. In this paper the principle of the AE technique, along with in-situ findings of the online acoustic emission signals captured from partial discharges on a number of Generator Transformers (GT, is discussed. Of the two cases discussed, the first deals with Acoustic Emission Partial Discharge (AEPD tests on two identical transformers, and the second deals with the AEPD measurement of a transformer carried out on different occasions (years. These transformers are from a hydropower station and a thermal power station in India. Tests conducted in identical transformers give the provision for comparing AE signal amplitudes from the two transformers. These case studies also help in comprehending the efficacy of integrating Dissolved Gas is (DGA data with AEPD test results in detecting and locating the PD source.

  7. Based on optical fiber Michelson interferometer for acoustic emission detection experimental research

    Science.gov (United States)

    Liang, Yijun; Qu, Dandan; Deng, Hu

    2013-08-01

    A type of Michelson interferometer with two optical fiber loop reflectors acoustic emission sensor is proposed in the article to detect the vibrations produced by ultrasonic waves propagating in a solid body. Two optical fiber loop reflectors are equivalent to the sensing arm and the reference arm instead of traditional Michelson interferometer end reflecter Theoretical analyses indicate that the sensitivity of the system has been remarkably increased because of the decrease of the losses of light energy. The best operating point of optical fiber sensor is fixed by theoretical derivation and simulation of computer, and the signal frequency which is detected by the sensor is the frequency of input signal. PZT (Piezoelectric Ceramic) is powered by signal generator as known ultrasonic source, The Polarization controller is used to make the reflected light interference,The fiber length is changed by adjusting the DC voltage on the PZT with the fiber loop to make the sensor system response that ΔΦ is closed to π/2. the signal basis frequency detected by the sensor is the frequency of the input signal. Then impacts the surface of the marble slab with home-made mechanical acoustic emission source. And detect it. and then the frequency characteristic of acoustic emission signal is obtained by Fourier technique. The experimental results indicate that the system can identify the frequency characteristic of acoustic emission signal, and it can be also used to detect the surface feeble vibration which is generated by ultrasonic waves propagating in material structure.

  8. Detecting and identifying damage in sandwich polymer composite by using acoustic emission

    DEFF Research Database (Denmark)

    McGugan, M.; Sørensen, Bent F.; Østergaard, R.;

    2006-01-01

    Acoustic emission is a useful monitoring tool for extracting extra information during mechanical testing of polymer composite sandwich materials. The study of fracture mechanics within test specimens extracted from wind turbine blade material ispresented. The contribution of the acoustic emission...

  9. Waveform Based Acoustic Emission Detection and Location of Matrix Cracking in Composites

    Science.gov (United States)

    Prosser, W. H.

    1995-01-01

    The operation of damage mechanisms in a material or structure under load produces transient acoustic waves. These acoustic waves are known as acoustic emission (AE). In composites they can be caused by a variety of sources including matrix cracking, fiber breakage, and delamination. AE signals can be detected and analyzed to determine the location of the acoustic source by triangulation. Attempts are also made to analyze the signals to determine the type and severity of the damage mechanism. AE monitoring has been widely used for both laboratory studies of materials, and for testing the integrity of structures in the field. In this work, an advanced, waveform based AE system was used in a study of transverse matrix cracking in cross-ply graphite/epoxy laminates. This AE system featured broad band, high fidelity sensors, and high capture rate digital acquisition and storage of acoustic signals. In addition, analysis techniques based on plate wave propagation models were employed. These features provided superior source location and noise rejection capabilities.

  10. Early shell crack detection technique using acoustic emission energy parameter blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Lee, Sang Bum [RECTUSON Co.,Ltd., Changwon (Korea, Republic of); Bae, Dong Myung; Yang, Bo Suk [Pukyong National University, Busan (Korea, Republic of)

    2016-02-15

    Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.

  11. Combined optical fiber interferometric sensors for the detection of acoustic emission

    Institute of Scientific and Technical Information of China (English)

    LIANG Yi-jun; MU Lin-lin; LIU Jun-feng; YU Xiao-tao

    2008-01-01

    A type of combined optical fiber interferometric acoustic emission sensor is proposed.The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure.Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy.PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid.The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of intefferometer and using Fourier transform technique.The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.

  12. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System.

    Science.gov (United States)

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-11-30

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa ) . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  13. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Directory of Open Access Journals (Sweden)

    Tongzhi Zhang

    2016-11-01

    Full Text Available We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  14. Detecting and identifying damage in sandwich polymer composite by using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    McGugan, M.; Soerensen, Bent F.; Oestergaard, R.; Bech, T.

    2006-12-15

    Acoustic emission is a useful monitoring tool for extracting extra information during mechanical testing of polymer composite sandwich materials. The study of fracture mechanics within test specimens extracted from wind turbine blade material is presented. The contribution of the acoustic emission monitoring technique in defining different failure modes identified during the testing is discussed. The development of in-situ structural monitoring and control systems is considered. (au)

  15. Damage detection on polymeric matrix composite materials by using acoustic emission technique

    Directory of Open Access Journals (Sweden)

    J. Cauich–Cupul

    2008-04-01

    Full Text Available In order to predict the mechanical behaviour of a composite during its service life, it is important to study the initiation and development of cracks and its effects induced by degradation. The onset of damage is related to the structural integrity of the component and its fatigue life. For this, among other reasons, non–destructive techniques have been widely used nowadays in composite materials characterization such as acoustic emission (AE. This method has demonstrated excellent results on detecting and identifying initiations sites, cracking propagation and fracture mechanisms of polymer matrix composite materials. At the same time, mechanical behaviour has been related intimately to the reinforcement architecture. The goal of this paper is to remark the importance of acoustic emission technique as a unique tool for characterising mechanical parameters in response to external stresses and degradation processes. Some results obtained from different analysis are discussed to support the significance of using AE, technique that will be increased continuously in the composite materials field due to its several alternatives for understanding the mechanical behaviour, therefore the objective of this manuscript is to involve the benefits and advantages of AE in the materials characterization.

  16. Detection of Delamination in Composite Beams Using Broadband Acoustic Emission Signatures

    Science.gov (United States)

    Okafor, A. C.; Chandrashekhara, K.; Jiang, Y. P.

    1996-01-01

    Delamination in composite structure may be caused by imperfections introduced during the manufacturing process or by impact loads by foreign objects during the operational life. There are some nondestructive evaluation methods to detect delamination in composite structures such as x-radiography, ultrasonic testing, and thermal/infrared inspection. These methods are expensive and hard to use for on line detection. Acoustic emission testing can monitor the material under test even under the presence of noise generated under load. It has been used extensively in proof-testing of fiberglass pressure vessels and beams. In the present work, experimental studies are conducted to investigate the use of broadband acoustic emission signatures to detect delaminations in composite beams. Glass/epoxy beam specimens with full width, prescribed delamination sizes of 2 inches and 4 inches are investigated. The prescribed delamination is produced by inserting Teflon film between laminae during the fabrication of composite laminate. The objectives of this research is to develop a method for predicting delamination size and location in laminated composite beams by combining smart materials concept and broadband AE analysis techniques. More specifically, a piezoceramic (PZT) patch is bonded on the surface of composite beams and used as a pulser. The piezoceramic patch simulates the AE wave source as a 3 cycles, 50KHz, burst sine wave. One broadband AE sensor is fixed near the PZT patch to measure the AE wave near the AE source. A second broadband AE sensor, which is used as a receiver, is scanned along the composite beams at 0.25 inch step to measure propagation of AE wave along the composite beams. The acquired AE waveform is digitized and processed. Signal strength, signal energy, cross-correlation of AE waveforms, and tracking of specific cycle of AE waveforms are used to detect delamination size and location.

  17. FBG-based ultrasonic wave detection and acoustic emission linear location system

    Science.gov (United States)

    Jiang, Ming-shun; Sui, Qing-mei; Jia, Lei; Peng, Peng; Cao, Yuqiang

    2012-05-01

    The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed, which employ fiber Bragg gratings (FBGs) as US wave sensors. In the theoretical analysis, the FBG sensor response to longitudinal US wave is investigated. The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength. The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal. Further research using two FBGs for realizing linear location is also achieved. The maximum linear location error is obtained as less than 5 mm. FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.

  18. FBG-based ultrasonic wave detection and acoustic emission linear location system

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-shun; SUI Qing-mei; JIA Lei; PENG Peng; CAO Yu-qiang

    2012-01-01

    The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed,which employ fiber Bragg gratings (FBGs) as US wave sensors.In the theoretical analysis,the FBG sensor response to longitudinal US wave is investigated.The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength.The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal.Further research using two FBGs for realizing linear location is also achieved.The maximumlinear location error is obtained as less than 5 mm.FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.

  19. Acoustic emission detection of 316L stainless steel welded joints during intergranular corrosion

    Institute of Scientific and Technical Information of China (English)

    Meng-yu Chai; Quan Duan; Wen-jie Bai; Zao-xiao Zhang; Xu-meng Xie

    2015-01-01

    This study analyzes acoustic emission (AE) signals during the intergranular corrosion (IGC) process of 316L stainless steel welded joints under different welding currents in boiling nitric acid. IGC generates several AE signals with high AE activity. The AE tech-nique could hardly distinguish IGC in stainless steel welded joints with different welding heat inputs. However, AE signals can effectively distinguish IGC characteristics in different corrosion stages. The IGC resistance of a heat-affected zone is lower than that of a weld zone. The initiation and rapid corrosion stages can be distinguished using AE results and microstructural analysis. Moreover, energy count rate and am-plitude are considered to be ideal parameters for characterizing different IGC processes. Two types of signals are detected in the rapid corro-sion stage. It can be concluded that grain boundary corrosion and grain separation are the AE sources of type 1 and type 2, respectively.

  20. Evaluation of PTCa/PEKK composite sensors for acoustic emission detection

    CERN Document Server

    Marin-Franch, P

    2002-01-01

    This thesis reports for the first time the fabrication and characterisation of novel electroactive ceramic/polymer composite films of calcium modified lead titanate (PTCa) and poly (ether ketone ketone). Composite sensors with different concentrations of ceramic were fabricated using a hot pressing technique. The PTCa ceramic was treated using titanate coupling agent in order to improve sample quality. Dielectric measurements have been performed to study sample characteristics. Piezoelectric and pyroelectric properties of the composites have been measured and the mixed connectivity cube model used to determine the relative amounts of 0-3 and 1-3 connectivity. The advantages and limitations of the model have been discussed. Additionally, some mechanical properties of the composites have been assessed to study their potential ability to detect acoustic emission (AE) in carbon fibre reinforced composites (CFRC). The composite sensors were placed on and inserted into different panels in order to compare their abi...

  1. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  2. The Contact State Monitoring for Seal End Faces Based on Acoustic Emission Detection

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2016-01-01

    Full Text Available Monitoring the contact state of seal end faces would help the early warning of the seal failure. In the acoustic emission (AE detection for mechanical seal, the main difficulty is to reduce the background noise and to classify the dispersed features. To solve these problems and achieve higher detection rates, a new approach based on genetic particle filter with autoregression (AR-GPF and hypersphere support vector machine (HSSVM is presented. First, AR model is used to build the dynamic state space (DSS of the AE signal, and GPF is used for signal filtering. Then, multiple features are extracted, and a classification model based on HSSVM is constructed for state recognition. In this approach, AR-GPF is an excellent time-domain method for noise reduction, and HSSVM has advantage on those dispersed features. Finally experimental data shows that the proposed method can effectively detect the contact state of the seal end faces and has higher accuracy rates than some other existing methods.

  3. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...

  4. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  5. The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyun; Kim, Jae Seong; Lee, Bo Young [Korea Aerospace University, Goyang (Korea, Republic of); Lee, Jung; Kwag, No Gwon [SAEAN, Seoul (Korea, Republic of)

    2009-10-15

    The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection

  6. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

    Science.gov (United States)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

    2016-03-01

    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  7. Acoustic emission detection of early stages of cracks in rotating gearbox components

    Science.gov (United States)

    Xiang, Dan

    2017-02-01

    Many critical, highly loaded rotating gearbox components have fast crack propagation rates. Early detection of cracks in gearbox is critical to mitigating the risk of catastrophic failure. Acoustic Emission (AE) techniques have proven to be capable of continuously monitoring the crack initiation and propagation. Due to the long distance of AE signal propagation from the AE sources to the sensors installed in the housing, the AE signal suffers from severe attenuation and noises. Accurate AE signal classification technology that is capable of extracting the true AE signal out of background noises generated by the surrounding environment of a gearbox is desired. In this paper, an innovative feature extraction and analysis based AE signal classification technology is developed to address this issue. Potential AE signals are first pulled out of the noisy background in real-time through a set of automated AE detection algorithms. Then features including count, energy, duration, amplitude, rise time, amplitude rise time ratio, etc. are extracted and analyzed. Through the comparison and correlation of features extracted from signals recorded by multiple AE sensors, respective feature thresholds are determined to distinguish noises from real AE signal. The classification results are experimentally validated through fatigue tests.

  8. Comprehensive bearing condition monitoring algorithm for incipient fault detection using acoustic emission

    Directory of Open Access Journals (Sweden)

    Amit R. Bhende

    2014-09-01

    Full Text Available The bearing reliability plays major role in obtaining the desired performance of any machine. A continuous condition monitoring of machine is required in certain applications where failure of machine leads to loss of production, human safety and precision. Machine faults are often linked to the bearing faults. Condition monitoring of machine involves continuous watch on the performance of bearings and predicting the faults of bearing before it cause any adversity. This paper investigates an experimental study to diagnose the fault while bearing is in operation. An acoustic emission technique is used in the experimentation. An algorithm is developed to process various types of signals generated from different bearing defects. The algorithm uses time domain analysis along with combination low frequency analysis technique such as fast Fourier transform and high frequency envelope detection. Two methods have adopted for envelope detection which are Hilbert transform and order analysis. Experimental study is carried out for deep groove ball bearing cage defect. Results show the potential effectiveness of the proposed algorithm to determine presence of fault, exact location and severity of fault.

  9. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals

    Science.gov (United States)

    Bai, F.; Gagar, D.; Foote, P.; Zhao, Y.

    2017-02-01

    Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors in an array is essential in performing localisation. Currently, this is determined using a fixed threshold which is particularly prone to errors when not set to optimal values. This paper presents three new methods for determining the onset of AE signals without the need for a predetermined threshold. The performance of the techniques is evaluated using AE signals generated during fatigue crack growth and compared to the established Akaike Information Criterion (AIC) and fixed threshold methods. It was found that the 1D location accuracy of the new methods was within the range of < 1 - 7.1 % of the monitored region compared to 2.7% for the AIC method and a range of 1.8-9.4% for the conventional Fixed Threshold method at different threshold levels.

  10. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    Science.gov (United States)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  11. ACOUSTIC EMISSION ANALYZER

    Directory of Open Access Journals (Sweden)

    J. J. Almeida-Pérez

    2004-12-01

    Full Text Available In this paper appears a solution for acoustic emission analysis commonly known as noise. For the accomplishmentof this work a personal computer is used, besides sensors (microphones and boards designed and built for signalconditioning. These components are part of a virtual instrument used for monitoring the acoustical emission. Themain goal of this work is to develop a virtual instrument that supplies many important data as the result of ananalysis allowing to have information in an easy and friendly way. Moreover this information is very useful forstudying and resolving several situations in planning, production and testing areas.The main characteristics of the virtual instrument are: signal analysis in time, effective power measurement inDecibels (dB, average intensity taken from the principle of paired microphones, as well as the data analysis infrequency. These characteristics are included to handle two information channels.

  12. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.

    2010-07-01

    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  13. Detecting Acoustic Emissions With/Without Dehydration of Serpentine Outside P-T Field of Conventional Brittle Failure

    Science.gov (United States)

    Jung, H.; Fei, Y.; Silver, P. G.; Green, H. W.

    2005-12-01

    It is currently thought that earthquakes cannot be triggered at depths greater than ~60 km by unassisted brittle failure or frictional sliding, but could be triggered by dehydration embrittlement of hydrous minerals (Raleigh and Paterson, 1965; Green and Houston, 1995; Kirby, 1995; Jung et al., 2004). Using a new multianvil-based system for detecting acoustic emissions with four channels at high pressure and high temperature that was recently developed (Jung et al., 2005), we tested this hypothesis by deforming samples of serpentine. We found that acoustic emissions were detected not only during/after the dehydration of serpentine, but even in the absence of dehydration. These emissions occurred at high pressure and high temperature, and thus outside pressure-temperature field of conventional brittle failure. Backscattered-electron images of microstructures of the post-run specimen revealed fault slip at elevated pressure, with offsets of up to ~500 μm, even without dehydration. Analysis of P-wave travel times from the four sensors confirmed that the acoustic emissions originated from within the specimen during fault slip. These observations suggest that earthquakes can be triggered by slip along a fault containing serpentine at significantly higher pressure and temperature conditions than that previously thought, even without dehydration. They are thus consistent with faulting mechanisms that appeal to dehydration embrittlement, as well as those that rely solely on the rheology of non-dehydrated serpentine.

  14. Detection of bond failure in the anchorage zone of reinforced concrete beams via acoustic emission monitoring

    Science.gov (United States)

    Abouhussien, Ahmed A.; Hassan, Assem A. A.

    2016-07-01

    In this study, acoustic emission (AE) monitoring was utilised to identify the onset of bond failure in reinforced concrete beams. Beam anchorage specimens were designed and tested to fail in bond in the anchorage zone. The specimens included four 250 × 250 × 1500 mm beams with four variable bonded lengths (100, 200, 300, and 400 mm). Meanwhile, an additional 250 × 250 × 2440 mm beam, with 200 mm bonded length, was tested to investigate the influence of sensor location on the identification of bond damage. All beams were tested under four-point loading setup and continuously monitored using three distributed AE sensors. These attached sensors were exploited to record AE signals resulting from both cracking and bond deterioration until failure. The variations in the number of AE hits and cumulative signal strength (CSS) versus test time were evaluated to achieve early detection of crack growth and bar slippage. In addition, AE intensity analysis was performed on signal strength of collected AE signals to develop two additional parameters: historic index (H (t)) and severity (S r). The analysis of these AE parameters enabled an early detection of both first cracks (at almost the mid-span of the beam) and bar slip in either of the anchorage zones at the beams’ end before their visual observation, regardless of sensor location. The results also demonstrated a clear correlation between the damage level in terms of crack development/measured free end bar slip and AE parameters (number of hits, CSS, H(t), and S r).

  15. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    Directory of Open Access Journals (Sweden)

    Aleš Hančič

    2013-05-01

    Full Text Available This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals’ peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  16. World Conference on Acoustic Emission 2013

    CERN Document Server

    Wu, Zhanwen; Zhang, Junjiao

    2015-01-01

    This volume collects the papers from the 2013 World Conference on Acoustic Emission in Shanghai. The latest research and applications of Acoustic Emission (AE) are explored, with particular emphasis on detecting and processing of AE signals, development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques as well as experimental case studies.

  17. Co-detection of acoustic emissions during failure of heterogeneous media: new perspectives for natural hazard early warning

    CERN Document Server

    Faillettaz, J; Reiweger, I

    2015-01-01

    A promising method for real time early warning of gravity driven rupture that considers both the heterogeneity of natural media and characteristics of acoustic emissions attenuation is proposed. The method capitalizes on co-detection of elastic waves emanating from micro-cracks by multiple and spatially separated sensors. Event co-detection is considered as surrogate for large event size with more frequent co-detected events marking imminence of catastrophic failure. Using a spatially explicit fiber bundle numerical model with spatially correlated mechanical strength and two load redistribution rules, we constructed a range of mechanical failure scenarios and associated failure events (mapped into AE) in space and time. Analysis considering hypothetical arrays of sensors and consideration of signal attenuation demonstrate the potential of the co-detection principles even for insensitive sensors to provide early warning for imminent global failure.

  18. New methods for leaks detection and localisation using acoustic emission; Nouvelles methodes de detection et de localisation de fuites par emission acoustique

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, P.

    1993-12-08

    Real time monitoring of Pressurized Water nuclear Reactor secondary coolant system tends to integrate digital processing machines. In this context, the method of acoustic emission seems to exhibit good performances. Its principle is based on passive listening of noises emitted by local micro-displacements inside a material under stress which propagate as elastic waves. The lack of a priori knowledge on leak signals leads us to go deeper into understanding flow induced noise generation. Our studies are conducted using a simple leak model depending on the geometry and the king of flow inside the slit. Detection and localization problems are formulated according to the maximum likelihood principle. For detection, the methods using a indicator of similarity (correlation, higher order correlation) seems to give better results than classical ones (rms value, envelope, filter banks). For leaks location, a large panel of classical (generalized inter-correlation) and innovative (convolution, adaptative, higher order statistics) methods of time delay estimation are presented. The last part deals with the applications of higher order statistics. The analysis of higher order estimators of a non linear non Gaussian stochastic process family, the improvement of non linear prediction performances and the optimal-order choice problem are addressed in simple analytic cases. At last, possible applications to leak signals analysis are pointed out. (authors).264 refs., 7 annexes.

  19. Acoustic emission noise from sodium vapour bubble collapsing: detection, interpretation, modelling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dentico, G.; Pacilio, V.; Papalia, B.; Taglienti, S.; Tosi, V.

    1982-01-01

    Sodium vapour bubble collapsing is detected by means of piezoelectric accelorometers coupled to the test section via short waveguides. The output analog signal is processed by transforming it into a time series of pulses through the setting of an amplitude threshold and the shaping of a standard pulse (denominated 'event') every time the signal crosses that border. The number of events is counted in adjacent and equal time duration samples and the waiting time distribution between contiguous events is measured. Up to the moment, six kinetic properties have been found for the mentioned time series. They help in setting a stochastic model in which the subministration of energy into a liquid sodium medium induces the formation of vapour bubbles and their consequent collapsing delivers acoustic pulses. Finally, a simulation procedure is carried out: a Polya's urn model is adopted for simulating event sequences with a priori established requisites.

  20. AE (Acoustic Emission) for Flip-Chip CGA/FCBGA Defect Detection

    Science.gov (United States)

    Ghaffarian, Reza

    2014-01-01

    C-mode scanning acoustic microscopy (C-SAM) is a nondestructive inspection technique that uses ultrasound to show the internal feature of a specimen. A very high or ultra-high-frequency ultrasound passes through a specimen to produce a visible acoustic microimage (AMI) of its inner features. As ultrasound travels into a specimen, the wave is absorbed, scattered or reflected. The response is highly sensitive to the elastic properties of the materials and is especially sensitive to air gaps. This specific characteristic makes AMI the preferred method for finding "air gaps" such as delamination, cracks, voids, and porosity. C-SAM analysis, which is a type of AMI, was widely used in the past for evaluation of plastic microelectronic circuits, especially for detecting delamination of direct die bonding. With the introduction of the flip-chip die attachment in a package; its use has been expanded to nondestructive characterization of the flip-chip solder bumps and underfill. Figure 1.1 compares visual and C-SAM inspection approaches for defect detection, especially for solder joint interconnections and hidden defects. C-SAM is specifically useful for package features like internal cracks and delamination. C-SAM not only allows for the visualization of the interior features, it has the ability to produce images on layer-by-layer basis. Visual inspection; however, is only superior to C-SAM for the exposed features including solder dewetting, microcracks, and contamination. Ideally, a combination of various inspection techniques - visual, optical and SEM microscopy, C-SAM, and X-ray - need to be performed in order to assure quality at part, package, and system levels. This reports presents evaluations performed on various advanced packages/assemblies, especially the flip-chip die version of ball grid array/column grid array (BGA/CGA) using C-SAM equipment. Both external and internal equipment was used for evaluation. The outside facility provided images of the key features

  1. Detecting crack profile in concrete using digital image correlation and acoustic emission

    Directory of Open Access Journals (Sweden)

    Loukili A.

    2010-06-01

    Full Text Available Failure process in concrete structures is usually accompanied by cracking of concrete. Understanding the cracking pattern is very important while studying the failure governing criteria of concrete. The cracking phenomenon in concrete structures is usually complex and involves many microscopic mechanisms caused by material heterogeneity. Since last many years, fracture or damage analysis by experimental examinations of the cement based composites has shown importance to evaluate the cracking and damage behavior of those heterogeneous materials with damage accumulation due to microcracks development ahead of the propagating crack tip; and energy dissipation resulted during the evolution of damage in the structure. The techniques used in those experiments may be the holographic interferometry, the dye penetration, the scanning electron microscopy, the acoustic emission etc. Those methods offer either the images of the material surface to observe micro-features of the concrete with qualitative analysis, or the black-white fringe patterns of the deformation on the specimen surface, from which it is difficult to observe profiles of the damaged materials.

  2. Study Acoustic Emissions from Composites

    Science.gov (United States)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  3. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Bum [RECTUSON, Co., LTD, Masan (Korea, Republic of); Roh, Seon Man [Samcheonpo Division, Korea South-East Power Co., Samcheonpo (Korea, Republic of)

    2016-06-15

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB.

  4. An acoustic emission study of plastic deformation in polycrystalline aluminium

    Science.gov (United States)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  5. An introduction to acoustic emission

    Science.gov (United States)

    Scruby, C. B.

    1987-08-01

    The technique of acoustic emission (AE) uses one or more sensors to 'listen' to a wide range of events that may take place inside a solid material. Depending on the source of this high frequency sound, there are broadly three application areas: structural testing and surveillance, process monitoring and control, and materials characterization. In the first case the source is probably a defect which radiates elastic waves as it grows. Provided these waves are detectable, AE can be used in conjunction with other NDT techniques to assess structural integrity. Advances in deterministic and statistical analysis methods now enable data to be interpreted in greater detail and with more confidence than before. In the second area the acoustic signature of processes is monitored, ranging from for instance the machining of metallic components to the mixing of foodstuffs, and changes correlated with variations in the process, with the potential for feedback and process control. In the third area, AE is used as an additional diagnostic technique for the study of, for instance, fracture, because it gives unique dynamic information on defect growth.

  6. Sonification of acoustic emission data

    Science.gov (United States)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  7. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  8. Detection of multiple AE signal by triaxial hodogram analysis; Sanjiku hodogram ho ni yoru taju acoustic emission no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, K.; Yamashita, T. [Muroran Institute of Technology, Hokkaido (Japan)

    1997-05-27

    In order to evaluate dynamic behavior of underground cracks, analysis and detection were attempted on multiple acoustic emission (AE) events. The multiple AE is a phenomenon in which multiple AE signals generated by underground cracks developed in an extremely short time interval are superimposed, and observed as one AE event. The multiple AE signal consists of two AE signals, whereas the second P-wave is supposed to have been inputted before the first S-wave is inputted. The first P-wave is inputted first, where linear three-dimensional particle movements are observed, but the movements are made random due to scattering and sensor characteristics. When the second P-wave is inputted, the linear particle movements are observed again, but are superimposed with the existing input signals and become multiple AE, which creates poor S/N ratio. The multiple AE detection determines it a multiple AE event when three conditions are met, i. e. a condition of equivalent time interval of a maximum value in a scalogram analysis, a condition of P-wave vibrating direction, and a condition of the linear particle movement. Seventy AE signals observed in the Kakkonda geothermal field were analyzed and AE signals that satisfy the multiple AE were detected. However, further development is required on an analysis method with high resolution for the time. 4 refs., 4 figs.

  9. Acoustic emission monitoring of wind turbine blades

    Science.gov (United States)

    Van Dam, Jeremy; Bond, Leonard J.

    2015-03-01

    Damage to wind turbine blades can, if left uncorrected, evolve into catastrophic failures resulting in high costs and significant losses for the operator. Detection of damage, especially in real time, has the potential to mitigate the losses associated with such catastrophic failure. To address this need various forms of online monitoring are being investigated, including acoustic emission detection. In this paper, pencil lead breaks are used as a standard reference source and tests are performed on unidirectional glass-fiber-reinforced-polymer plates. The mechanical pencil break is used to simulate an acoustic emission (AE) that generates elastic waves in the plate. Piezoelectric sensors and a data acquisition system are used to detect and record the signals. The expected dispersion curves generated for Lamb waves in plates are calculated, and the Gabor wavelet transform is used to provide dispersion curves based on experimental data. AE sources using an aluminum plate are used as a reference case for the experimental system and data processing validation. The analysis of the composite material provides information concerning the wave speed, modes, and attenuation of the waveform, which can be used to estimate maximum AE event - receiver separation, in a particular geometry and materials combination. The foundational data provided in this paper help to guide improvements in online structural health monitoring of wind turbine blades using acoustic emission.

  10. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

    Science.gov (United States)

    Xie, Qing; Cheng, Shuyi; Lü, Fangcheng; Li, Yanqing

    2014-03-01

    The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application.

  11. Acoustic emission methodology and application

    CERN Document Server

    Nazarchuk, Zinoviy; Serhiyenko, Oleh

    2017-01-01

    This monograph analyses in detail the physical aspects of the elastic waves radiation during deformation or fracture of materials. I presents the  methodological bases for the practical use of acoustic emission device, and describes the results of theoretical and experimental researches of evaluation of the crack growth resistance of materials, selection of the useful AE signals. The efficiency of this methodology is shown through the diagnostics of various-purpose industrial objects. The authors obtain results of experimental researches with the help of the new methods and facilities.

  12. Enhanced Acoustic Emission in Relation to the Acoustic Halo Surrounding Active Region 11429

    CERN Document Server

    Hanson, Chris S; Leka, K D

    2015-01-01

    The use of acoustic holography in the high-frequency $p$-mode spectrum can resolve the source distributions of enhanced acoustic emissions within halo structures surrounding active regions. In doing so, statistical methods can then be applied to ascertain relationships with the magnetic field. This is the focus of this study. The mechanism responsible for the detected enhancement of acoustic sources around solar active regions has not yet been explained. Furthermore the relationship between the magnetic field and enhanced acoustic emission has not yet been comprehensively examined. We have used vector magnetograms from the \\Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamics Observatory (SDO) to image the magnetic-field properties in the halo. We have studied the acoustic morphology of an active region, with a complex halo and "glories," and we have linked some acoustic properties to the magnetic-field configuration. In particular, we find that acoustic sources are significantly enhanced in reg...

  13. Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation.

    Science.gov (United States)

    Tsangouri, E; Aggelis, D G; Van Tittelboom, K; De Belie, N; Van Hemelrijck, D

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.

  14. Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    E. Tsangouri

    2013-01-01

    Full Text Available Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.

  15. Study of Acoustic Emissions from Composites

    Science.gov (United States)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  16. Condition Monitoring and Management from Acoustic Emissions

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik Bohl

    2005-01-01

    In the following, I will use technical terms without explanation as it gives the freedom to describe the project in a shorter form for those who already know. The thesis is about condition monitoring of large diesel engines from acoustic emission signals. The experiments have been focused...... alignment framework it is shown that non-stationary condition monitoring can be achieved....... on a specific and severe fault called scuffing. The fault is generally assumed to arise from increased interaction between the piston and liner. For generating experimental data destructive tests with no lubrication, oil has been carried out. Focus has been on modeling the normal condition and detecting...

  17. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-07

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  18. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  19. In-flight fiber optic acoustic emission sensor (FAESense) system for the real time detection, localization, and classification of damage in composite aircraft structures

    Science.gov (United States)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    Acoustic emission sensing is a leading structural health monitoring technique use for the early warning detection of structural damage associated with impacts, cracks, fracture, and delaminations in advanced materials. Current AE systems based on electronic PZT transducers suffer from various limitations that prevent its wide dynamic use in practical avionics and aerospace applications where weight, size and power are critical for operation. This paper describes progress towards the development of a wireless in-flight distributed fiber optic acoustic emission monitoring system (FAESense™) suitable for the onboard-unattended detection, localization, and classification of damage in avionics and aerospace structures. Fiber optic AE sensors offer significant advantages over its counterpart electronic AE sensors by using a high-density array of micron-size AE transducers distributed and multiplex over long lengths of a standard single mode optical fiber. Immediate SHM applications are found in commercial and military aircraft, helicopters, spacecraft, wind mil turbine blades, and in next generation weapon systems, as well as in the petrochemical and aerospace industries, civil structures, power utilities, and a wide spectrum of other applications.

  20. Indigenous Acoustic Detection.

    Science.gov (United States)

    1982-01-26

    considerable distances, and they act as good sensors of human presence. Though singing insects are ubiquitous in warm areas, even in the desert ( Nevo and...methodology. DTIC. CD-58-PL. Lloyd, J. E. 1981. Personnel communication. Nevo , E. and S. A. Blondheim. 1972. Acoustic isolation in the speciation of

  1. Acoustic Emission of Deformation Twinning in Magnesium

    Directory of Open Access Journals (Sweden)

    Chengyang Mo

    2016-08-01

    Full Text Available The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach.

  2. Digital image correlation, acoustic emission and ultrasonic pulse velocity for the detection of cracks in the concrete buffer of the Belgian nuclear supercontainer

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, Sokratis; Tsangouri, Eleni; Aggelis, Dimitrios G.; Pyl, Lincy [Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions; Vantomme, John [Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions; Royal Military Academy, Brussels (Belgium). Civil and Material Engineering Dept.; Marcke, Philippe van [ONDRAF/NIRAS (Belgium); Areias, Lou [EURIDICE GIE/SCK.CEN, Mol (Belgium); Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions

    2014-11-01

    The long term management of high-level and heat emitting radioactive waste is a worldwide concern, as it directly influences the environment and future generations. To address this issue, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the conceptual design of a massive concrete structure called Supercontainer. The feasibility to construct these structures is being evaluated through a number of scaled models that are tested using classical as well as state of the art measurement techniques. In the current paper, the results obtained from the simultaneous application of the Digital Image Correlation (DIC), the Acoustic Emission (AE) and the Ultrasonic Pulse Velocity (UPV) nondestructive testing techniques on the second scaled model for the detection and monitoring of cracks will be presented.

  3. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    Science.gov (United States)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  4. Acoustic emission monitoring using a multimode optical fiber sensor

    Science.gov (United States)

    Vandenplas, Steve; Papy, Jean-Michel; Wevers, Martine; Van Huffel, Sabine

    2004-07-01

    Permanent damage in various materials and constructions often causes high-energy high-frequency acoustic waves. To detect those so called `acoustic emission (AE) events', in most cases ultrasonic transducers are embedded in the structure or attached to its surface. However, for many applications where event localization is less important, an embedded low-cost multimode optical fiber sensor configured for event counting may be a better alternative due to its corrosion resistance, immunity to electromagnetic interference and light-weight. The sensing part of this intensity-modulated sensor consists of a multimode optical fiber. The sensing principle now relies on refractive index variations, microbending and mode-mode interferences by the action of the acoustic pressure wave. A photodiode is used to monitor the intensity of the optical signal and transient signal detection techniques (filtering, frame-to-frame analysis, recursive noise estimation, power detector estimator) on the photodiode output are applied to detect the events. In this work, the acoustic emission monitoring capabilities of the multimode optical fiber sensor are demonstrated with the fiber sensor embedded in the liner of a Power Data Transmission (PDT) coil to detect damage (delamination, matrix cracking and fiber breaking) while bending the coil. With the Hankel Total Least Square (HTLS) technique, it is shown that both the acoustic emission signal and optical signal can be modeled with a sum of exponentially damped complex sinusoids with common poles.

  5. Detection of bit location by acoustic emission technique in horizontal directional drilling. Kojo sakushin koho ni okeru bit ichi no AE ho ni yoru hyotei

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M.; Niitsuma, H. (Tohoku Univ., Sendai (Japan). Faculty of Engineering); Sugimori, S. (Tohoku Univ., Sendai (Japan). Grauduate School); Nakajima, T. (NKK Corp., Tokyo (Japan))

    1991-09-20

    The accuracy of the bit location in the excavation of pilot holes with horizontal drilling technique must be kept less than several tens of centimeters. Such an accuracy is hard to be achieved by the existing controlling technology. The depth of the bit tip can be measured comparatively accurately using a clinometer and the like. The azimuth meter, gyroscope, underground radar, locator, etc. are used for the detection of azimuth of the bit, but every one of them has its own problem. Therefore, new measuring methods to be used in combination with the conventional methods are required which can cover up the shortcomings of the conventional methods. Acoustic emission (AE) technique is employed for the detection of the bit location, and the accompanying problems as well as detecting performance are investigated. It is used for the measurement in the drilling test performed at the reclaimed land on the premises of Keihin ironworks of NKK Corp. In connection with the detection of the bit location in horizontal pilot drilling, a study is made on the zone detection technique for AE signals generated by the bit when striking ground and those generated during drilling. 7 refs., 17 figs., 1 tab.

  6. Detection of segmentation cracks in top coat of thermal barrier coatings during plasma spraying by non-contact acoustic emission method.

    Science.gov (United States)

    Ito, Kaita; Kuriki, Hitoshi; Araki, Hiroshi; Kuroda, Seiji; Enoki, Manabu

    2014-06-01

    Numerous cracks can be observed in the top coat of thermal barrier coatings (TBCs) deposited by the atmospheric plasma spraying (APS) method. These cracks can be classified into vertical and horizontal ones and they have opposite impact on the properties of TBCs. Vertical cracks reduce the residual stress in the top coat and provide strain tolerance. On the contrary, horizontal cracks trigger delamination of the top coat. However, monitoring methods of cracks generation during APS are rare even though they are strongly desired. Therefore, an in situ, non-contact and non-destructive evaluation method for this objective was developed in this study with the laser acoustic emission (AE) technique by using laser interferometers as a sensor. More AE events could be detected by introducing an improved noise reduction filter and AE event detection procedures with multiple thresholds. Generation of vertical cracks was successfully separated from horizontal cracks by a newly introduced scanning pattern of a plasma torch. Thus, generation of vertical cracks was detected with certainty by this monitoring method because AE events were detected only during spraying and a positive correlation was observed between the development degree of vertical cracks and the total AE energy in one experiment.

  7. Golden Gate and Pt. Reyes Acoustic Detections

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...

  8. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    Science.gov (United States)

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (pcomposite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process.

  9. Acoustic Emissions to Measure Drought-Induced Cavitation in Plants

    Directory of Open Access Journals (Sweden)

    Linus De Roo

    2016-03-01

    Full Text Available Acoustic emissions are frequently used in material sciences and engineering applications for structural health monitoring. It is known that plants also emit acoustic emissions, and their application in plant sciences is rapidly increasing, especially to investigate drought-induced plant stress. Vulnerability to drought-induced cavitation is a key trait of plant water relations, and contains valuable information about how plants may cope with drought stress. There is, however, no consensus in literature about how this is best measured. Here, we discuss detection of acoustic emissions as a measure for drought-induced cavitation. Past research and the current state of the art are reviewed. We also discuss how the acoustic emission technique can help solve some of the main issues regarding quantification of the degree of cavitation, and how it can contribute to our knowledge about plant behavior during drought stress. So far, crossbreeding in the field of material sciences proved very successful, and we therefore recommend continuing in this direction in future research.

  10. Pre-failure indicators detected by Acoustic Emission: Alfas stone, cement-mortar and cement-paste specimens under 3-point bending

    Directory of Open Access Journals (Sweden)

    Stavros K. Kourkoulis

    2017-04-01

    Full Text Available Acoustic Emission (AE is the technique most wide¬ly used now¬adays for Structural Health Monitor¬ing (SHM. Application of this technique for continuous SHM of restored elements of stone monuments is a challeng¬ing task. The co-existence of different materials creates interfaces rendering “identi¬fication” of the signals recorded very complicated. To overcome this difficulty one should have a clear overview of the nature of AE signals recorded when each one of the constituent materials is loaded mechanically. In this direction, an attempt is here described to enlighten the signals recorded, in case a series of structural materials (natural and artificial, ex-tensively used for restoration projects of classic monuments in Greece, are subjected to 3-point bending. It is hoped that obtaining a clear understanding of the nature of AE signals re¬corded during these element¬ary tests will provide a valuable tool permitting “identification” and “classification” of signals emitted in case of structural tests. The results appear encouraging. In addition, it is concluded that for all materials tested (in spite their differences in micro¬structure and composition clear pre-failure indicators are detected, in good accordance to similar indicators pro-vided by other techniques like the Pressure Stimulated Currents (PSC one.

  11. Analysis of acoustic emission data for bearings subject to unbalance

    Directory of Open Access Journals (Sweden)

    Rapinder Sawhney

    2013-01-01

    Full Text Available Acoustic Emission (AE is an effective nondestructive method for investigating the behavior of materials under stress. In recent decades, AE applications in structural health monitoring have been extended to other areas such as rotating machineries and cutting tools. This research investigates the application of acoustic emission data for unbalance analysis and detection in rotary systems. The AE parameter of interest in this study is a discrete variable that covers the significance of count, duration and amplitude of AE signals. A statistical model based on Zero-Inflated Poisson (ZIP regression is proposed to handle over-dispersion and excess zeros of the counting data. The ZIP model indicates that faulty bearings can generate more transient wave in the AE waveform. Control charts can easily detect the faulty bearing using the parameters of the ZIP model. Categorical data analysis based on generalized linear models (GLM is also presented. The results demonstrate the significance of the couple unbalance.

  12. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    DEFF Research Database (Denmark)

    Torres-Arredondo, M.A.; Tibaduiza, D.-A.; McGugan, Malcolm

    2013-01-01

    and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction...

  13. ACOUSTIC EMISSION MODEL WITH THERMOACTIVATIVE DESTRUCTION OF COMPOSITE MATERIAL SURFACE

    Directory of Open Access Journals (Sweden)

    Sergii Filonenko

    2016-03-01

    Full Text Available Modeling of acoustic emission energy during the composite material machining for termoactivativemodel of acoustic radiation is simulated. The regularities of resultant signals energy parameters change dependingon composite materials machining speed are determined. Obtained regularities with their statistical characteristicsare described. Sensitivity of acoustic emission energy parameters to the change of composite material machiningspeed is shown.

  14. Based on the acoustic emission technology Boiler "Four Tubes" leakage detection system%基于声发射技术的锅炉“四管”泄漏检测系统

    Institute of Scientific and Technical Information of China (English)

    张里阳

    2014-01-01

    针对电厂中锅炉“四管”泄漏时产生的广义声发射现象,对空间声场分布和声发射信号进行了分析研究。通过采集这种声发射信号并分析处理,建立了检测锅炉“四管”泄漏的检测系统,即锅炉炉管泄漏自动报警系统,给出了检测系统的软、硬件设计。该系统能够实现对锅炉炉管泄漏的早期测报,并判断出泄露的区域位置及泄漏程度,防止事故扩大,减少经济损失。%According to the power plant boiler "four tube" leakage in the generalized acoustic emission phenomenon, On the space sound field distribution and acoustic emission signal is studied. Through collecting and analyze the acoustic emission signal processing, detection is established boiler "four tube" leakage detection system, The boiler furnace tube leakage automatic alarm system, Detection system hardware and software design are also given in this paper. The system can realize early telemetry of boiler tube leakage, can realize early telemetry of boiler tube leakage, to prevent accidents, reduce economic loss.

  15. Acoustic resonance for nonmetallic mine detection

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.

    1998-04-01

    The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

  16. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    Science.gov (United States)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  17. Structural tests using a MEMS acoustic emission sensor

    Science.gov (United States)

    Oppenheim, Irving J.; Greve, David W.; Ozevin, Didem; Hay, D. Robert; Hay, Thomas R.; Pessiki, Stephen P.; Tyson, Nathan L.

    2006-03-01

    In a collaborative project at Lehigh and Carnegie Mellon, a MEMS acoustic emission sensor was designed and fabricated as a suite of six resonant-type capacitive transducers in the frequency range between 100 and 500 kHz. Characterization studies showed good comparisons between predicted and experimental electro-mechanical behavior. Acoustic emission events, simulated experimentally in steel ball impact and in pencil lead break tests, were detected and source localization was demonstrated. In this paper we describe the application of the MEMS device in structural testing, both in laboratory and in field applications. We discuss our findings regarding housing and mounting (acoustic coupling) of the MEMS device with its supporting electronics, and we then report the results of structural testing. In all tests, the MEMS transducers were used in parallel with commercial acoustic emission sensors, which thereby serve as a benchmark and permit a direct observation of MEMS device functionality. All tests involved steel structures, with particular interest in propagation of existing cracks or flaws. A series of four laboratory tests were performed on beam specimens fabricated from two segments (Grade 50 steel) with a full penetration weld (E70T-4 electrode material) at midspan. That weld region was notched, an initial fatigue crack was induced, and the specimens were then instrumented with one commercial transducer and with one MEMS device; data was recorded from five individual transducers on the MEMS device. Under a four-point bending test, the beam displayed both inelastic behavior and crack propagation, including load drops associated with crack instability. The MEMS transducers detected all instability events as well as many or most of the acoustic emissions occurring during plasticity and stable crack growth. The MEMS transducers were less sensitive than the commercial transducer, and did not detect as many events, but the normalized cumulative burst count obtained

  18. Measuring acoustic emissions in an avalanche slope

    Science.gov (United States)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  19. Integration of Acoustic Detection Equipment into ANTARES

    CERN Document Server

    Lahmann, R; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Naumann, C; Salomon, K

    2005-01-01

    The ANTARES group at the University of Erlangen is working towards the integration of a set of acoustic sensors into the ANTARES Neutrino Telescope. With this setup, tests of acoustic particle detection methods and background studies shall be performed. The ANTARES Neutrino Telescope, which is currently being constructed in the Mediterranean Sea, will be equipped with the infrastructure to accommodate a 3-dimensional array of photomultipliers for the detection of Cherenkov light. Within this infrastructure, the required resources for acoustic sensors are available: Bandwidth for the transmission of the acoustic data to the shore, electrical power for the off-shore electronics and physical space to install the acoustic sensors and to route the connecting cables (transmitting signals and power) into the electronics containers. It will be explained how the integration will be performed with minimal modifications of the existing ANTARES design and which setup is foreseen for the acquisition of the acoustic data.

  20. Acoustic Emissions (AE) Electrical Systems' Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Acoustic Emissions (AE) are associated with physical events, such as thermal activity, dielectric breakdown, discharge inception, as well as crack nucleation and...

  1. Acoustic emission analysis as a non-destructive test procedure for fiber compound structures

    Science.gov (United States)

    Block, J.

    1983-01-01

    The concept of acoustic emission analysis is explained in scientific terms. The detection of acoustic events, their localization, damage discrimination, and event summation curves are discussed. A block diagram of the concept of damage-free testing of fiber-reinforced synthetic materials is depicted. Prospects for application of the concept are assessed.

  2. Modeling of Acoustic Emission Signal Propagation in Waveguides

    Directory of Open Access Journals (Sweden)

    Andreea-Manuela Zelenyak

    2015-05-01

    Full Text Available Acoustic emission (AE testing is a widely used nondestructive testing (NDT method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing.

  3. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    Science.gov (United States)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  4. Localization of a continuous CO2 leak from an isotropic flat-surface structure using acoustic emission detection and near-field beamforming techniques

    Science.gov (United States)

    Yan, Yong; Cui, Xiwang; Guo, Miao; Han, Xiaojuan

    2016-11-01

    Seal capacity is of great importance for the safety operation of pressurized vessels. It is crucial to locate the leak hole timely and accurately for reasons of safety and maintenance. This paper presents the principle and application of a linear acoustic emission sensor array and a near-field beamforming technique to identify the location of a continuous CO2 leak from an isotropic flat-surface structure on a pressurized vessel in the carbon capture and storage system. Acoustic signals generated by the leak hole are collected using a linear high-frequency sensor array. Time-frequency analysis and a narrow-band filtering technique are deployed to extract effective information about the leak. The impacts of various factors on the performance of the localization technique are simulated, compared and discussed, including the number of sensors, distance between the leak hole and sensor array and spacing between adjacent sensors. Experiments were carried out on a laboratory-scale test rig to assess the effectiveness and operability of the proposed method. The results obtained suggest that the proposed method is capable of providing accurate and reliable localization of a continuous CO2 leak.

  5. Acoustic Emission from Breaking a Bamboo Chopstick

    Science.gov (United States)

    Tsai, Sun-Ting; Wang, Li-Min; Huang, Panpan; Yang, Zhengning; Chang, Chin-De; Hong, Tzay-Ming

    2016-01-01

    The acoustic emission from breaking a bamboo chopstick or a bundle of spaghetti is found to exhibit similar behavior as the famous seismic laws of Gutenberg and Richter, Omori, and Båth. By the use of a force-sensing detector, we establish a positive correlation between the statistics of sound intensity and the magnitude of a tremor. We also manage to derive these laws analytically without invoking the concept of a phase transition, self-organized criticality, or fractal. Our model is deterministic and relies on the existence of a structured cross section, either fibrous or layered. This success at explaining the power-law behavior supports the proposal that geometry is sometimes more important than mechanics.

  6. Acoustic emission and released seismic energy

    Directory of Open Access Journals (Sweden)

    G. P. Gregori

    2005-01-01

    Full Text Available Intense crises of crustal stress appear to cross large regions, and to precede by several months the eventual occurrence of some strong earthquake within them. The phenomenon is not linear, and the stress control reflects some wide scale-size rather than local effects. The stress propagation through the crust can be effectively monitored by means of acoustic emission (AE techniques (ultrasounds. The correlation is here investigated between crustal stress crises and the total release of seismic energy within some space domain around the AE recording site. Some clear inferences can be envisaged, although a significant diagnosis of the state of the crust within a given region ought to request arrays of simultaneously operated AE recorders. Some case histories are described dealing with the Italian peninsula and with the Cephallonia Island.

  7. Fiber optic hydrophones for acoustic neutrino detection

    NARCIS (Netherlands)

    Buis, E.J.; Doppenberg, E.J.J.; Lahmann, R.; Toet, P.M.; Vreugd, J. de

    2016-01-01

    Cosmic neutrinos with ultra high energies can be detected acoustically using hydrophones. The detection of these neutrinos may provide crucial information about then GZK mechanism. The flux of these neutrinos, however, is expected to be low, so that a detection volume is required more than a order o

  8. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    NARCIS (Netherlands)

    van Capel, P.J.S.; Turchinovich, D.; Porte, H.P.; Lahmann, S.; Rossow, U.; Dijkhuis, J.I.

    2011-01-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals

  9. Correlating Inertial Acoustic Cavitation Emissions with Material Erosion Resistance

    Science.gov (United States)

    Ibanez, I.; Hodnett, M.; Zeqiri, B.; Frota, M. N.

    The standard ASTM G32-10 concerns the hydrodynamic cavitation erosion resistance of materials by subjecting them to acoustic cavitation generated by a sonotrode. The work reported extends this technique by detecting and monitoring the ultrasonic cavitation, considered responsible for the erosion process, specifically for coupons of aluminium-bronze alloy. The study uses a 65 mm diameter variant of NPL's cavitation sensor, which detects broadband acoustic emissions, and logs acoustic signals generated in the MHz frequency range, using NPL's Cavimeter. Cavitation readings were made throughout the exposure duration, which was carried out at discrete intervals (900 to 3600 s), allowing periodic mass measurements to be made to assess erosion loss under a strict protocol. Cavitation measurements and erosion were compared for different separations of the sonotrode tip from the material under test. The maximum variation associated with measurement of cavitation level was between 2.2% and 3.3% when the separation (λ) between the transducer horn and the specimen increased from 0.5 to 1.0 mm, for a transducer (sonotrode) displacement amplitude of 43.5 μm. Experiments conducted at the same transducer displacement amplitude show that the mass loss of the specimen -a measure of erosion- was 67.0 mg (λ = 0.5 mm) and 66.0 mg (λ = 1.0 mm).

  10. Software for neutrino acoustic detection and localization

    Energy Technology Data Exchange (ETDEWEB)

    Bouhadef, B. [INFN Sezione Pisa, Polo Fibonacci, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, ' E. Fermi' University of Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)], E-mail: bouhadef@df.unipi.it

    2009-06-01

    The evidence of the existing of UHE (E>10{sup 19}eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  11. Characterization of corrosion damage in prestressed concrete using acoustic emission

    Science.gov (United States)

    Mangual, Jesé; ElBatanouny, Mohamed K.; Vélez, William; Ziehl, Paul; Matta, Fabio; González, Miguel

    2012-04-01

    The corrosion of reinforced concrete structures is a major issue from both a structural safety and maintenance management point of view. Early detection of the internal degradation process provides the owner with sufficient options to develop a plan of action. An accelerated corrosion test was conducted in a small scale concrete specimen reinforced with a 0.5 inch (13 mm) diameter prestressing strand to investigate the correlation between corrosion rate and acoustic emission (AE). Corrosion was accelerated in the laboratory by supplying anodic current via a rectifier while continuously monitoring acoustic emission activity. Results were correlated with traditional electrochemical techniques such as half-cell potential and linear polarization. The location of the active corrosion activity was found through a location algorithm based on time of flight of the stress waves. Intensity analysis was used to plot the relative significance of the damage states present in the specimen and a preliminary grading chart is presented. Results indicate that AE may be a useful non-intrusive technique for the detection and quantification of corrosion damage.

  12. Humanitarian mine detection by acoustic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.

    1998-03-01

    The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL additional insight into the problems of developing practical

  13. Acoustic enhancement for photo detecting devices

    Science.gov (United States)

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  14. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel [Ecole Nationale Superieure des Mines de Saint-Etienne (France); Kittel, Jean; Grosjean, Francois; Ropital, Francois [IFP Energies nouvelles, BP3 rond-point de l' echangeur de Solaize (France)

    2014-11-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C{sub 4}H{sub 10} + H{sub 2} + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  15. Mobile platform for acoustic mine detection applications

    Science.gov (United States)

    Libbey, Brad; Fenneman, Douglas; Burns, Brian

    2005-06-01

    Researchers in academia have successfully demonstrated acoustic landmine detection techniques. These typically employ acoustic or seismic sources to induce vibration in the mine/soil system, and use vibration sensors such as laser vibrometers or geophones to measure the resultant surface motion. These techniques exploit the unique mechanical properties of landmines to discriminate the vibration response of a buried mine from an off-target measurement. The Army requires the ability to rapidly and reliably scan an area for landmines and is developing a mobile platform at NVESD to meet this requirement. The platform represents an initial step toward the implementation of acoustic mine detection technology on a representative field vehicle. The effort relies heavily on the acoustic mine detection cart system developed by researchers at the University of Mississippi and Planning Systems, Inc. The NVESD platform consists of a John Deere E-gator configured with a robotic control system to accurately position the vehicle. In its present design, the E-gator has been outfitted with an array of laser vibrometers and a bank of loudspeakers. Care has been taken to ensure that the vehicle"s mounting hardware and data acquisition algorithms are sufficiently robust to accommodate the implementation of other sensor modalities. A thorough discussion of the mobile platform from its inception to its present configuration will be provided. Specific topics to be addressed include the vehicle"s control and data acquisition systems. Preliminary results from acoustic mine detection experiments will also be presented.

  16. Detección de cavitación en una bomba centrífuga usando emisiones acústicas Cavitation detection in a centrifugal pump using acoustic emissions

    Directory of Open Access Journals (Sweden)

    Jabid Quiroga M.

    2012-12-01

    Full Text Available En el presente artículo se propone el uso de las emisiones acústicas para el monitoreo de la cavitación en una bomba centrífuga. Este monitoreo se ejecuta a través del seguimiento a unos indicadores de falla obtenidos a partir del valor RMS de la señal de emisiones acústicas en dominio tiempo y el valor RMS de los coeficientes de la Transformada Discreta Wavelet (TDW usando la onda madre db6 de la misma señal acústica. La experimentación se realiza en un banco dedicado que permite cavitar a una bomba de ½ hp en distintos niveles de severidad y bajo diferentes condiciones de bombeo. Resultados experimentales mostraron que los indicadores propuestos permiten detectar y evaluar cualitativamente los niveles de severidad de la cavitación en una bomba centrífuga.In this paper an acoustic emission based cavitation fault detection system is proposed for a centrifugal pump. The monitoring is performed tracking a fault indicator obtained using the RMS value of the acoustic emission signal in time domain and the RMS value of the coefficients obtained by applying discrete wavelet transform on the acoustic signal using db6 mother wavelet. Experiments in different cavitation levels and under different operation conditions are carried out in a ½ hp centrifugal pump dedicated test bed. Results showed that the proposed fault indicators are suitable for detecting and evaluating cavitation severities in a centrifugal pump.

  17. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    OpenAIRE

    Van Capel, P.J.S.; Turchinovich, D.; Porte, H.P.; Lahmann, S.; Rossow, U.; Dijkhuis, J.I.

    2011-01-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlated with electromagnetic THz generation, and both types of emission find their o...

  18. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    OpenAIRE

    Van Capel, P.J.S.; Turchinovich, Dmitry; Porte, Henrik; Lahmann, S.; Rossow, U.; Hangleiter, A.; Dijkhuis, J.I.

    2011-01-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlatedwith electromagnetic THz generation, and both types of emission find their or...

  19. Surface roughness evaluation based on acoustic emission signals in robot assisted polishing.

    Science.gov (United States)

    de Agustina, Beatriz; Marín, Marta María; Teti, Roberto; Rubio, Eva María

    2014-11-14

    The polishing process is the most common technology used in applications where a high level of surface quality is demanded. The automation of polishing processes is especially difficult due to the high level of skill and dexterity that is required. Much of this difficulty arises because of the lack of reliable data on the effect of the polishing parameters on the resulting surface roughness. An experimental study was developed to evaluate the surface roughness obtained during Robot Assisted Polishing processes by the analysis of acoustic emission signals in the frequency domain. The aim is to find out a trend of a feature or features calculated from the acoustic emission signals detected along the process. Such an evaluation was made with the objective of collecting valuable information for the establishment of the end point detection of polishing process. As a main conclusion, it can be affirmed that acoustic emission (AE) signals can be considered useful to monitor the polishing process state.

  20. Surface Roughness Evaluation Based on Acoustic Emission Signals in Robot Assisted Polishing

    Directory of Open Access Journals (Sweden)

    Beatriz de Agustina

    2014-11-01

    Full Text Available The polishing process is the most common technology used in applications where a high level of surface quality is demanded. The automation of polishing processes is especially difficult due to the high level of skill and dexterity that is required. Much of this difficulty arises because of the lack of reliable data on the effect of the polishing parameters on the resulting surface roughness. An experimental study was developed to evaluate the surface roughness obtained during Robot Assisted Polishing processes by the analysis of acoustic emission signals in the frequency domain. The aim is to find out a trend of a feature or features calculated from the acoustic emission signals detected along the process. Such an evaluation was made with the objective of collecting valuable information for the establishment of the end point detection of polishing process. As a main conclusion, it can be affirmed that acoustic emission (AE signals can be considered useful to monitor the polishing process state.

  1. Acoustic detection of coronary artery disease.

    Science.gov (United States)

    Semmlow, John; Rahalkar, Ketaki

    2007-01-01

    Coronary artery disease (CAD) occurs when the arteries to the heart (the coronary arteries) become blocked by deposition of plaque, depriving the heart of oxygen-bearing blood. This disease is arguably the most important fatal disease in industrialized countries, causing one-third to one-half of all deaths in persons between the ages of 35 and 64 in the United States. Despite the fact that early detection of CAD allows for successful and cost-effective treatment of the disease, only 20% of CAD cases are diagnosed prior to a heart attack. The development of a definitive, noninvasive test for detection of coronary blockages is one of the holy grails of diagnostic cardiology. One promising approach to detecting coronary blockages noninvasively is based on identifying acoustic signatures generated by turbulent blood flow through partially occluded coronary arteries. In fact, no other approach to the detection of CAD promises to be as inexpensive, simple to perform, and risk free as the acoustic-based approach. Although sounds associated with partially blocked arteries are easy to identify in more superficial vessels such as the carotids, sounds from coronary arteries are very faint and surrounded by noise such as the very loud valve sounds. To detect these very weak signals requires sophisticated signal processing techniques. This review describes the work that has been done in this area since the 1980s and discusses future directions that may fulfill the promise of the acoustic approach to detecting coronary artery disease.

  2. Quality Testing of Gaseous Helium Pressure Vessels by Acoustic Emission

    CERN Document Server

    Barranco-Luque, M; Hervé, C; Margaroli, C; Sergo, V

    1998-01-01

    The resistance of pressure equipment is currently tested, before commissioning or at periodic maintenance, by means of normal pressure tests. Defects occurring inside materials during the execution of these tests or not seen by usual non-destructive techniques can remain as undetected potential sources of failure . The acoustic emission (AE) technique can detect and monitor the evolution of such failures. Industrial-size helium cryogenic systems employ cryogens often stored in gaseous form under pressure at ambient temperature. Standard initial and periodic pressure testing imposes operational constraints which other complementary testing methods, such as AE, could significantly alleviate. Recent reception testing of 250 m3 GHe storage vessels with a design pressure of 2.2 MPa for the LEP and LHC cryogenic systems has implemented AE with the above-mentioned aims.

  3. Optical and acoustical UAV detection

    Science.gov (United States)

    Christnacher, Frank; Hengy, Sébastien; Laurenzis, Martin; Matwyschuk, Alexis; Naz, Pierre; Schertzer, Stéphane; Schmitt, Gwenael

    2016-10-01

    Recent world events have highlighted that the proliferation of UAVs is bringing with it a new and rapidly increasing threat for national defense and security agencies. Whilst many of the reported UAV incidents seem to indicate that there was no terrorist intent behind them, it is not unreasonable to assume that it may not be long before UAV platforms are regularly employed by terrorists or other criminal organizations. The flight characteristics of many of these mini- and micro-platforms present challenges for current systems which have been optimized over time to defend against the traditional air-breathing airborne platforms. A lot of programs to identify cost-effective measures for the detection, classification, tracking and neutralization have begun in the recent past. In this paper, lSL shows how the performance of a UAV detection and tracking concept based on acousto-optical technology can be powerfully increased through active imaging.

  4. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Directory of Open Access Journals (Sweden)

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini

    2011-01-01

    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  5. Acoustic Emission Determination of Deformation Mechanisms Leading to Failure of Naval Alloys. Phase I.

    Science.gov (United States)

    1981-07-01

    boundaries; formation and growth of twins, crazes , microcracks, I t i4 2 Fig. 1. Typical acoustic emission waveforms as detected with piezoelectric transducers...captured on the Nicolet. Materials presently available for testing are 6Ak 4V and 6AZ 2Cb lTa lMo titanium alloys; HY80 , HY100 and HY 130 steel; 2024...Djordjevic, J. C. Murphy, and R. E. Green, Jr., "Acoustic Emission During Craze Formation in Polymers (submitted for publication in J. AppI. Phys.). 32. W

  6. Signal Classification for Acoustic Neutrino Detection

    CERN Document Server

    Neff, M; Enzenhöfer, A; Graf, K; Hößl, J; Katz, U; Lahmann, R; Richardt, C

    2011-01-01

    This article focuses on signal classification for deep-sea acoustic neutrino detection. In the deep sea, the background of transient signals is very diverse. Approaches like matched filtering are not sufficient to distinguish between neutrino-like signals and other transient signals with similar signature, which are forming the acoustic background for neutrino detection in the deep-sea environment. A classification system based on machine learning algorithms is analysed with the goal to find a robust and effective way to perform this task. For a well-trained model, a testing error on the level of one percent is achieved for strong classifiers like Random Forest and Boosting Trees using the extracted features of the signal as input and utilising dense clusters of sensors instead of single sensors.

  7. Signal classification for acoustic neutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Neff, M., E-mail: max.neff@physik.uni-erlangen.de [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anton, G.; Enzenhoefer, A.; Graf, K.; Hoessl, J.; Katz, U.; Lahmann, R.; Richardt, C. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2012-01-11

    This article focuses on signal classification for deep-sea acoustic neutrino detection. In the deep sea, the background of transient signals is very diverse. Approaches like matched filtering are not sufficient to distinguish between neutrino-like signals and other transient signals with similar signature, which are forming the acoustic background for neutrino detection in the deep-sea environment. A classification system based on machine learning algorithms is analysed with the goal to find a robust and effective way to perform this task. For a well-trained model, a testing error on the level of 1% is achieved for strong classifiers like Random Forest and Boosting Trees using the extracted features of the signal as input and utilising dense clusters of sensors instead of single sensors.

  8. Potential of acoustic emissions from three point bending tests as rock failure precursors

    Institute of Scientific and Technical Information of China (English)

    Agioutantis Z.; Kaklis K.; Mavrigiannakis S.; Verigakis M.; Vallianatos F.; Saltas V.

    2016-01-01

    Development of failure in brittle materials is associated with microcracks, which release energy in the form of elastic waves called acoustic emissions. This paper presents results from acoustic emission mea-surements obtained during three point bending tests on Nestos marble under laboratory conditions. Acoustic emission activity was monitored using piezoelectric acoustic emission sensors, and the potential for accurate prediction of rock damage based on acoustic emission data was investigated. Damage local-ization was determined based on acoustic emissions generated from the critically stressed region as scat-tered events at stresses below and close to the strength of the material.

  9. Wavelet analysis of acoustic emission signals from thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    YANG Li; ZHOU Yi-chun

    2006-01-01

    The wavelet transform is applied to the analysis of acoustic emission signals collected during tensile test of the ZrO2-8% Y2O3 (YSZ) thermal barrier coatings (TBCs). The acoustic emission signals are de-noised using the Daubechies discrete wavelets,and then decomposed into different wavelet levels using the programs developed by the authors. Each level is examined for its specific frequency range. The ratio of energy in different levels to the total energy gives information on the failure modes (coating micro-failures and substrate micro-failures) associated with TBCs system.

  10. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter.

  11. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D.; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with “pancake” directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  12. Evaluation of acoustic shock induced early hearing loss with audiometer and distortion product otoacoustic emissions

    Directory of Open Access Journals (Sweden)

    R S Vinodh

    2010-01-01

    Full Text Available Background: Acoustic shock injury has been described as a permanent injury to the auditory system either due to daily noise dose of in excess of 85 decibels or very loud impulse sound reputed to be in excess of 120 decibels and acoustic incidents. This study was performed to compare the results of audiogram and the newer diagnostic method distortion product otoacoustic emissions (DPOAEs parameters due to acoustic shock injury in call center professionals working in a noisy environment and prone to acoustic injury. Materials and Methods: Hearing functions of 340 subjects were first assessed with pure tone audiometry and then DPOAEs results were compared among acoustic shock exposed subjects with normal audiogram and those with abnormal audiogram. Results: Out of 340 acoustic shock exposed subjects 304 were normal on audiometric testing and 34 had abnormal audiograms. Subsequently on DPOAE testing out of 304 acoustic shock exposed subjects with normal audiogram 125 failed and 181 passed. Conclusions: This study showed that DPOAEs are more sensitive than audiometry to detect pre-symptomatic inner ear damage. It may play a role as screening and monitoring test for acoustic shock-exposed workers.

  13. Structural health condition monitoring of rails using acoustic emission techniques

    Science.gov (United States)

    Yilmazer, Pinar

    In-service rails can develop several types of structural defects due to fatigue and wear caused by rolling stock passing over them. Most rail defects will develop gradually over time thus permitting inspection engineers to detect them in time before final failure occurs. In the UK, certain types of severe rail defects such as tache ovales, require the fitting of emergency clamps and the imposing of an Emergency Speed Restriction (ESR) until the defects are removed. Acoustic emission (AE) techniques can be applied for the detection and continuous monitoring of defect growth therefore removing the need of imposing strict ESRs. The work reported herewith aims to develop a sound methodology for the application of AE in order to detect and subsequently monitor damage evolution in rails. To validate the potential of the AE technique, tests have been carried out under laboratory conditions on three and four-point bending samples manufactured from 260 grade rail steel. Further tests, simulating the background noise conditions caused by passing rolling stock have been carried out using special experimental setups. The crack growth events have been simulated using a pencil tip break..

  14. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Al Haj [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France); Véronique, Peres, E-mail: peres@emse.fr [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France); Eric, Serris [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France); François, Grosjean; Jean, Kittel; François, Ropital [IFP Energies nouvelles, Rond-point de l’échangeur de Solaize BP3, 69360 Solaize (France); Michel, Cournil [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France)

    2015-06-15

    Highlights: • Thermogravimetry associated to acoustic emission (AE) improves knowledge on the corrosion of metals at high temperature. • Kinetic transition is detected under air oxidation tests at 900 °C of Zircaloy-4 by a change in the rate of mass gain and by the AE activity. • AE analysis is complementary to characterizations of post mortem oxidized samples. • AE allows us to distinguish the cracks which occur during the Zircaloy-4 oxidation from the cracks which arise during the cooling of the samples. - Abstract: Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO{sub 2} layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and

  15. Detection and Classification of Whale Acoustic Signals

    Science.gov (United States)

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  16. Wearable knee health rehabilitation assessment using acoustical emissions

    Science.gov (United States)

    Teague, Caitlin N.; Hersek, Sinan; Conant, Jordan L.; Gilliland, Scott M.; Inan, Omer T.

    2017-02-01

    We have developed a novel, wearable sensing system based on miniature piezoelectric contact microphones for measuring the acoustical emissions from the knee during movement. The system consists of two contact microphones, positioned on the medial and lateral sides of the patella, connected to custom, analog pre-amplifier circuits and a microcontroller for digitization and data storage on a secure digital card. Tn addition to the acoustical sensing, the system includes two integrated inertial measurement sensors including accelerometer and gyroscope modalities to enable joint angle calculations; these sensors, with digital outputs, are connected directly to the same microcontroller. The system provides low noise, accurate joint acoustical emission and angle measurements in a wearable form factor and has several hours of battery life.

  17. Remote structural health monitoring with serially multiplexed fiber optic acoustic emission sensors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Development and testing of a serially multiplexed fiber optic sensor system is described. The sensor differs from conventional fiber optic acoustic systems, as it is capable of sensing AE emissions at several points along the length of a single fiber. Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of crack locations. Laboratory experiments on plain concrete beams and post-tensioned FRP tendons were performed to evaluate the crack detection capability of the sensor system. The acoustic emission sensor was able to detect initiation, growth and location of the cracks in concrete as well as in the FRP tendons. The AE system is potentially suitable for applications involving health monitoring of structures following an earthquake.

  18. Characterization of Acoustic Emission Source to Identify Fracture in Concrete

    Science.gov (United States)

    1993-04-01

    Hardy, "An Approach to Acoustic Emission Signal Analysis," Materials Evaluation, 35, 1977 , pp. 100-106. [5] Hsu, N.N. and F.R. Breckenridge...Measurements," Journal of Applied Mechanics, 53, 1986, pp. 61-68. [17] Mindess , S., "The Fracture Process Zone in Concrete," Toughening Mechanisms in

  19. Theory, simulation and experimental results of the acoustic detection of magnetization changes in superparamagnetic iron oxide

    Directory of Open Access Journals (Sweden)

    Borgert Jörn

    2011-06-01

    Full Text Available Abstract Background Magnetic Particle Imaging is a novel method for medical imaging. It can be used to measure the local concentration of a tracer material based on iron oxide nanoparticles. While the resulting images show the distribution of the tracer material in phantoms or anatomic structures of subjects under examination, no information about the tissue is being acquired. To expand Magnetic Particle Imaging into the detection of soft tissue properties, a new method is proposed, which detects acoustic emissions caused by magnetization changes in superparamagnetic iron oxide. Methods Starting from an introduction to the theory of acoustically detected Magnetic Particle Imaging, a comparison to magnetically detected Magnetic Particle Imaging is presented. Furthermore, an experimental setup for the detection of acoustic emissions is described, which consists of the necessary field generating components, i.e. coils and permanent magnets, as well as a calibrated microphone to perform the detection. Results The estimated detection limit of acoustic Magnetic Particle Imaging is comparable to the detection limit of magnetic resonance imaging for iron oxide nanoparticles, whereas both are inferior to the theoretical detection limit for magnetically detected Magnetic Particle Imaging. Sufficient data was acquired to perform a comparison to the simulated data. The experimental results are in agreement with the simulations. The remaining differences can be well explained. Conclusions It was possible to demonstrate the detection of acoustic emissions of magnetic tracer materials in Magnetic Particle Imaging. The processing of acoustic emission in addition to the tracer distribution acquired by magnetic detection might allow for the extraction of mechanical tissue parameters. Such parameters, like for example the velocity of sound and the attenuation caused by the tissue, might also be used to support and improve ultrasound imaging. However, the method

  20. Monitoring corrosion in prestressed concrete beams using acoustic emission technique

    Science.gov (United States)

    ElBatanouny, Mohamed K.; Mangual, Jesé; Vélez, William; Ziehl, Paul H.; Matta, Fabio; González, Miguel

    2012-04-01

    Early detection of corrosion can help reduce the cost of maintenance and extend the service life of structures. Acoustic emission (AE) sensing has proven to be a promising method for early detection of corrosion in reinforced concrete members. A test program is presented composed of four medium-scale prestressed concrete T-beams. Three of the beams have a length of 16 ft. 4 in. (4.98 m), and one is 9 ft. 8 in. (2.95 m). In order to corrode the specimens a 3% NaCl solution was prepared, which is representative of sea salt concentration. The beams were subjected to wet-dry cycles to accelerate the corrosion process. Two of the specimens were pre-cracked prior to conditioning in order to examine the effect of crack presence. AE data was recorded continuously while half-cell potential measurements and corrosion rate by Linear Polarization Resistance (LPR) were measured daily. Corrosion current was also being acquired constantly to monitor any change in the concrete resistivity. Results indicate that the onset of corrosion may be identified using AE features, and were corroborated with measurements obtained from electrochemical techniques. Corroded areas were located using source triangulation. The results indicate that cracked specimens showed corrosion activity prior to un-cracked specimens and experienced higher corrosion rates. The level of corrosion was determined using corrosion rate results. Intensity analysis was used to link the corrosion rate and level to AE data.

  1. Acoustic emission analysis of tooth-composite interfacial debonding.

    Science.gov (United States)

    Cho, N Y; Ferracane, J L; Lee, I B

    2013-01-01

    This study detected tooth-composite interfacial debonding during composite restoration by means of acoustic emission (AE) analysis and investigated the effects of composite properties and adhesives on AE characteristics. The polymerization shrinkage, peak shrinkage rate, flexural modulus, and shrinkage stress of a methacrylate-based universal hybrid, a flowable, and a silorane-based composite were measured. Class I cavities on 49 extracted premolars were restored with 1 of the 3 composites and 1 of the following adhesives: 2 etch-and-rinse adhesives, 2 self-etch adhesives, and an adhesive for the silorane-based composite. AE analysis was done for 2,000 sec during light-curing. The silorane-based composite exhibited the lowest shrinkage (rate), the longest time to peak shrinkage rate, the lowest shrinkage stress, and the fewest AE events. AE events were detected immediately after the beginning of light-curing in most composite-adhesive combinations, but not until 40 sec after light-curing began for the silorane-based composite. AE events were concentrated at the initial stage of curing in self-etch adhesives compared with etch-and-rinse adhesives. Reducing the shrinkage (rate) of composites resulted in reduced shrinkage stress and less debonding, as evidenced by fewer AE events. AE is an effective technique for monitoring, in real time, the debonding kinetics at the tooth-composite interface.

  2. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    DEFF Research Database (Denmark)

    van Capel, P. J. S.; Turchinovich, Dmitry; Porte, Henrik

    2011-01-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic...... signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlatedwith electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured...... spectral intensity of the detected Brillouin signal corresponds to a maximum strain amplitude of generated acoustic pulses of 2%. This value coincides with the static lattice-mismatch-induced strain in In0.2Ga0.8N/GaN, demonstrating the total release of static strain in MQWs via impulsive THz acoustic...

  3. Online monitoring of Accessories for Underground Electrical Installations through Acoustics Emissions

    Directory of Open Access Journals (Sweden)

    Casals-Torrens P.

    2012-04-01

    Full Text Available The acoustic waves caused by Partial Discharges inside the dielectric materials, can be detected by acoustic emission (AE sensors and analyzed in the time domain. The experimental results presented, show the online detection capability of these sensors in the environment near a cable accessory, such as a splice or terminal. The AE sensors are immune to electromagnetic interference and constitute a detection method non-intrusive and non-destructive, which ensures a galvanic decoupling with respect to electric networks, this technique of partial discharge detection can be applied as a test method for preventive or predictive maintenance (condition-based maintenance to equipments or facilities of medium and high voltage in service and represents an alternative method to electrical detection systems, conventional or not, that continue to rely on the detection of current pulses. This paper presents characterization tests of the sensors AE through comparative tests of partial discharge on accessories for underground power cables.

  4. Nonlinear acoustic techniques for landmine detection.

    Science.gov (United States)

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.

  5. Soldier/robot team acoustic detection

    Science.gov (United States)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated, autonomous, and semi-autonomous ground, air, and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  6. A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Carlos Quiterio Gómez Muñoz

    2016-01-01

    Full Text Available The renewable energy industry is undergoing continuous improvement and development worldwide, wind energy being one of the most relevant renewable energies. This industry requires high levels of reliability, availability, maintainability and safety (RAMS for wind turbines. The blades are critical components in wind turbines. The objective of this research work is focused on the fault detection and diagnosis (FDD of the wind turbine blades. The FDD approach is composed of a robust condition monitoring system (CMS and a novel signal processing method. CMS collects and analyses the data from different non-destructive tests based on acoustic emission. The acoustic emission signals are collected applying macro-fiber composite (MFC sensors to detect and locate cracks on the surface of the blades. Three MFC sensors are set in a section of a wind turbine blade. The acoustic emission signals are generated by breaking a pencil lead in the blade surface. This method is used to simulate the acoustic emission due to a breakdown of the composite fibers. The breakdown generates a set of mechanical waves that are collected by the MFC sensors. A graphical method is employed to obtain a system of non-linear equations that will be used for locating the emission source. This work demonstrates that a fiber breakage in the wind turbine blade can be detected and located by using only three low cost sensors. It allows the detection of potential failures at an early stages, and it can also reduce corrective maintenance tasks and downtimes and increase the RAMS of the wind turbine.

  7. Acoustic Emission Parameters of Three Gorges Sandstone during Shear Failure

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-12-01

    Full Text Available In this paper, an experimental investigation of sandstone samples from the Three Gorges during shear failure was conducted using acoustic emission (AE and direct shear tests. The AE count rate, cumulative AE count, AE energy, and amplitude of the sandstone samples were determined. Then, the relationships among the AE signals and shearing behaviors of the samples were analyzed in order to detect micro-crack initiation and propagation and reflect shear failure. The results indicated that both the shear strength and displacement exhibited a logarithmic relationship with the displacement rate at peak levels of stress. In addition, the various characteristics of the AE signals were apparent in various situations. The AE signals corresponded with the shear stress under different displacement rates. As the displacement rate increased, the amount of accumulative damage to each specimen decreased, while the AE energy peaked earlier and more significantly. The cumulative AE count primarily increased during the post-peak period. Furthermore, the AE count rate and amplitude exhibited two peaks during the peak shear stress period due to crack coalescence and rock bridge breakage. These isolated cracks later formed larger fractures and eventually caused ruptures.

  8. Modal acoustic emission source determination in silicon carbide matrix composites

    Science.gov (United States)

    Morscher, G. N.

    2000-05-01

    Modal acoustic emission has been used to monitor damage accumulation in woven silicon carbide (SiC) fiber reinforced SiC matrix composites during tensile testing. There are several potential sources of damage in these systems including transverse matrix cracking, fiber/matrix interphase debonding and sliding, longitudinal cracks in between plies, and fiber breakage. In the past, it has been shown that modal AE is excellent at detecting when damage occurs and subsides, where the damage occurs along the length of the sample, and the loss in material stiffness as a consequence of damage accumulation. The next step is to determine the extent that modal AE can be used to identify specific physical sources. This study will discuss the status of this aim for this composite system. Individual events were analyzed and correlated to specific sources based on the characteristics of the received waveforms, e.g., frequency spectrum and energy, and when the event occurred during the stress-history of the tensile test. Post-test microstructural examination of the test specimens enabled some correlation between specific types of AE events and damage sources.

  9. Early corrosion monitoring of prestressed concrete piles using acoustic emission

    Science.gov (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul H.

    2013-04-01

    The depassivation and corrosion of bonded prestressing steel strands in concrete bridge members may lead to major damage or collapse before visual inspections uncover evident signs of damage, and well before the end of the design life. Recognizing corrosion in its early stage is desirable to plan and prioritize remediation strategies. The Acoustic Emission (AE) technique is a rational means to develop structural health monitoring and prognosis systems for the early detection and location of corrosion in concrete. Compelling features are the sensitivity to events related to micro- and macrodamage, non-intrusiveness, and suitability for remote and wireless applications. There is little understanding of the correlation between AE and the morphology and extent of early damage on the steel surface. In this paper, the evidence collected from prestressed concrete (PC) specimens that are exposed to salt water is discussed vis-à-vis AE data from continuous monitoring. The specimens consist of PC strips that are subjected to wet/dry salt water cycles, representing portions of bridge piles that are exposed to tidal action. Evidence collected from the specimens includes: (a) values of half-cell potential and linear polarization resistance to recognize active corrosion in its early stage; and (b) scanning electron microscopy micrographs of steel areas from two specimens that were decommissioned once the electrochemical measurements indicated a high probability of active corrosion. These results are used to evaluate the AE activity resulting from early corrosion.

  10. Assessment of corrosion rate in prestressed concrete with acoustic emission

    Science.gov (United States)

    Mangual, Jesé; ElBatanouny, Mohamed K.; Vélez, William; Ziehl, Paul; Matta, Fabio; González, Miguel

    2011-04-01

    Acoustic Emission (AE) sensing was employed to assess the rate of corrosion of steel strands in small scale concrete block specimens. The corrosion process was accelerated in a laboratory environment using a potentiostat to supply a constant potential difference with a 3% NaCl solution as the electrolyte. The embedded prestressing steel strand served as the anode, and a copper plate served as the cathode. Corrosion rate, half-cell potential measurements, and AE activity were recorded continuously throughout each test and examined to assess the development of corrosion and its rate. At the end of each test the steel strands were cleaned and re-weighed to determine the mass loss and evaluate it vis-á-vis the AE data. The initiation and propagation phases of corrosion were correlated with the percentage mass loss of steel and the acquired AE signals. Results indicate that AE monitoring may be a useful aid in the detection and differentiation of the steel deterioration phases, and estimation of the locations of corroded areas.

  11. Beaked whale (Mesoplodon densirostris) passive acoustic detection in increasing ambient noise.

    Science.gov (United States)

    Ward, Jessica; Jarvis, Susan; Moretti, David; Morrissey, Ronald; Dimarzio, Nancy; Johnson, Mark; Tyack, Peter; Thomas, Len; Marques, Tiago

    2011-02-01

    Passive acoustic detection is being increasingly used to monitor visually cryptic cetaceans such as Blainville's beaked whales (Mesoplodon densirostris) that may be especially sensitive to underwater sound. The efficacy of passive acoustic detection is traditionally characterized by the probability of detecting the animal's sound emissions as a function of signal-to-noise ratio. The probability of detection can be predicted using accepted, but not necessarily accurate, models of the underwater acoustic environment. Recent field studies combining far-field hydrophone arrays with on-animal acoustic recording tags have yielded the location and time of each sound emission from tagged animals, enabling in-situ measurements of the probability of detection. However, tagging studies can only take place in calm seas and so do not reflect the full range of ambient noise conditions under which passive acoustic detection may be used. Increased surface-generated noise from wind and wave interaction degrades the signal-to-noise ratio of animal sound receptions at a given distance leading to a reduction in probability of detection. This paper presents a case study simulating the effect of increasing ambient noise on detection of M. densirostris foraging clicks recorded from a tagged whale swimming in the vicinity of a deep-water, bottom-mounted hydrophone array.

  12. Employing Acoustic Emission for Monitoring Oil Film Regimes

    Directory of Open Access Journals (Sweden)

    David Mba

    2013-07-01

    Full Text Available The major purpose of a gear lubricant is to provide adequate oil film thickness to reduce and prevent gear tooth surface failures. Real time monitoring for gear failures is important in order to predict and prevent unexpected failures which would have a negative impact on the efficiency, performance and safety of the gearbox. This paper presents experimental results on the influence of specific oil film thickness on Acoustic Emission (AE activity for operational helical gears. Variation in film thickness during operations was achieved by spraying liquid nitrogen onto the rotating gear wheel. The experimental results demonstrated a clear relationship between the root mean square (r.m.s value of the AE signal and the specific film thickness. The findings demonstrate the potential of Acoustic Emission technology to quantify lubrication regimes on operational gears.

  13. Acoustic emission and shape memory effect in the martensitic transformation.

    Science.gov (United States)

    Sreekala, S; Ananthakrishna, G

    2003-04-01

    Acoustic emission signals are known to exhibit a high degree of reproducibility in time and show correlations with the growth and shrinkage of martensite domains when athermal martensites are subjected to repeated thermal cycling in a restricted temperature range. We show that a recently introduced two dimensional model for the martensitic transformation mimics these features. We also show that these features are related to the shape memory effect where near full reversal of morphological features are seen under these thermal cycling conditions.

  14. Acoustic Emission Sensing for Maritime Diesel Engine Performance and Health

    Science.gov (United States)

    2016-05-01

    considered: 1. Select an overall diagnostic framework (e.g. permanent or temporary, nature of the system being measured, diagnostic method and sensor ...application. Acoustic emission signals from engine-mounted sensors were able to distinguish load conditions and a failing injector, but large...work that the following is considered: 1. Select an overall diagnostic framework (e.g. permanent or temporary, nature of the system being measured

  15. Fault growth and acoustic emissions in confined granite

    Science.gov (United States)

    Lockner, David A.; Byerlee, James D.

    1992-01-01

    The failure process in a brittle granite was studied by using acoustic emission techniques to obtain three dimensional locations of the microfracturing events. During a creep experiment the nucleation of faulting coincided with the onset of tertiary creep, but the development of the fault could not be followed because the failure occurred catastrophically. A technique has been developed that enables the failure process to be stabilized by controlling the axial stress to maintain a constant acoustic emission rate. As a result the post-failure stress-strain curve has been followed quasi-statically, extending to hours the fault growth process that normally would occur violently in a fraction of a second. The results from the rate-controlled experiments show that the fault plane nucleated at a point on the sample surface after the stress-strain curve reached its peak. Before nucleation, the microcrack growth was distributed throughout the sample. The fault plane then grew outward from the nucleation site and was accompanied by a gradual drop in stress. Acoustic emission locations showed that the fault propagated as a fracture front (process zone) with dimensions of 1 to 3 cm. As the fracture front passed by a given fixed point on the fault plane, the subsequent acoustic emission would drop. When growth was allowed to progress until the fault bisected the sample, the stress dropped to the frictional strength. These observations are in accord with the behavior predicted by Rudnicki and Rice's bifurcation analysis but conflict with experiments used to infer that shear localization would occur in brittle rock while the material is still hardening.

  16. The use of acoustic emission for bearing condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lees, A W; Quiney, Z [Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom); Ganji, A; Murray, B, E-mail: a.w.lees@swansea.ac.uk, E-mail: z.quiney.294103@swansea.ac.uk, E-mail: ali.ganji@skf.com [SKF Engineering and Research Centre, Kelvinbaan 16, 3439 MT Nieuwegein (Netherlands)

    2011-07-19

    This paper reports research currently in progress at Swansea University in collaboration with SKF Engineering and Research Centre as part of a continuing investigation into high frequency Acoustic Emission. The primary concerns are experimentally producing subsurface cracks, the type of which would occur in a service failure of a ball bearing, within a steel ball and to closely monitor the properties of this AE from crack initiation to the formation of a ball on the ball surface. It is worth noting that there is evidence that the frequency content of the AE changes during this period, although this has yet to be proved consistent or even fully explained. Conclusive evidence could lead to a system which detects such cracks in a bearing operating in real life conditions, advantageous for many reasons including safety, downtime and maintenance and associated costs. The results from two experimental procedures are presented, one of which loads a single ball held stationary in a test rig to induce subsurface cracks, which are in turn detected by a pair of broadband AE sensors and recorded via a Labview based software system. This approach not only allows detailed analysis of the AE waveforms but also approximate AE source location from the time difference between two sensors. The second experimental procedure details an adaptation of a four-ball lubricant tester in an attempt to produce naturally occurring subsurface cracks from rolling contact whilst minimising the AE arising from surface wear. This thought behind this experiment is reinforced with 3D computational modelling of the rotating system.

  17. Acoustic analysis assessment in speech pathology detection

    Directory of Open Access Journals (Sweden)

    Panek Daria

    2015-09-01

    Full Text Available Automatic detection of voice pathologies enables non-invasive, low cost and objective assessments of the presence of disorders, as well as accelerating and improving the process of diagnosis and clinical treatment given to patients. In this work, a vector made up of 28 acoustic parameters is evaluated using principal component analysis (PCA, kernel principal component analysis (kPCA and an auto-associative neural network (NLPCA in four kinds of pathology detection (hyperfunctional dysphonia, functional dysphonia, laryngitis, vocal cord paralysis using the a, i and u vowels, spoken at a high, low and normal pitch. The results indicate that the kPCA and NLPCA methods can be considered a step towards pathology detection of the vocal folds. The results show that such an approach provides acceptable results for this purpose, with the best efficiency levels of around 100%. The study brings the most commonly used approaches to speech signal processing together and leads to a comparison of the machine learning methods determining the health status of the patient

  18. Simple discrimination method between False Acoustic Emission and Acoustic Emission revealed by piezoelectric sensors, in Gran Sasso mountain measurements (L)

    Science.gov (United States)

    Diodati, Paolo; Piazza, Stefano

    2004-07-01

    Recently it was shown, studying data acquired with in-situ measurements on the Gran Sasso mountain (Italy), for about ten years, by means of a high sensitivity transducer coupled to the free-end section of a stainless steel rod fixed by cement in a rock-drill hole 10 m high, about 2500 m above sea level, that Acoustic Emission (AE) can be affected by more than 90% False Acoustic Emission (FAE) of an electromagnetic origin. A very simple method to solve the problem of the discrimination between AE events due to elastic waves, from FAE signals, due to electromagnetic noise, both coming from the same ``reception-point,'' is presented. The reliability of the obtained separation is confirmed also by the reported amplitude and time distribution of AE events, typical of fracture dynamics and those of FAE events, similar to those of noise.

  19. A Novel Acoustic Emission Fiber Optic Sensor Based on a Single Mode Optical Fiber Coupler

    Institute of Scientific and Technical Information of China (English)

    CHEN Rongsheng; LIAO Yanbiao; ZHENG Gangtie; LIU Tongyu; Gerard Franklyn Fernando

    2001-01-01

    This paper reports, for the first time, on the use of a fused-taper single mode optical fiber coupler as a sensing element for the detection of acoustic emission (AE) and ultrasound. When an acoustic wave impinges on the mode-coupling region of a coupler, the coupling coefficient is modulated via the photo-elastic effect. Therefore, the transfer function of the coupler is modulated by an acoustic wave. The sensitivity of the sensor at 140 kHz was approximately 5.2 mV/Pa and the noise floor was 1 Pa. The bandwidth of the sensor was up to several hundred kHz. This AE sensor exhibits significant advantage compared with interferometer-based AE sensors.

  20. Acoustic change detection algorithm using an FM radio

    Science.gov (United States)

    Goldman, Geoffrey H.; Wolfe, Owen

    2012-06-01

    The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.

  1. Detecting the Nonlinearity of Fish Acoustic Signals

    Institute of Scientific and Technical Information of China (English)

    REN Xinmin; YIN Li

    2006-01-01

    This paper discusses the nonlinearity of fish acoustic signals by using the surrogate data method.We compare the difference of three test statistics - time-irreversibility Trey, correlation dimension D2 and auto mutual information function Ⅰbetween the original data and the surrogate data.We come to the conclusion that there exists nonlinearity in the fish acoustic signals and there exist deterministic nonlinear components; therefore nonlinear dynamic theory can be used to analyze fish acoustic signals.

  2. 基于电磁声发射的金属板裂纹检测实验研究%Experiment of crack detection of metal plate based on electromagnetically induced acoustic emission

    Institute of Scientific and Technical Information of China (English)

    张闯; 刘素贞; 杨庆新; 金亮; 李娜

    2011-01-01

    通过对金属部件进行电磁加载会在金属裂纹处激发出声发射信号,利用这一现象可以实现对金属结构件的无损检测.本文对电磁声发射技术的原理与实现进行了深入分析,设计了相应的电磁加载实验装置,并针对铝质薄板试件进行了电磁声发射试验,通过对实验采集信号进行时频分析,研究了电磁声发射信号随加载条件和试件类型的变化规律,验证了带裂纹金属上能够产生电磁声发射现象,为该技术的工程应用打下了良好的基础.%Nondestructive detection can be realized with the effect that the dynamic electromagnetic loading on the sheet metal can generate a stress field stimulating stress waves from the defects. The principle and implementation procedure of the electromagnetically induced acoustic emission (EMAE) is thoroughly analyzed in this paper. The high-current pulse generator which is used in the EMAE experiment is designed. The simple time-frequency analysis to the experimental signal is achieved by using fast Fourier transform (FFT). It researches the change patterns of EMAE signal with the different specimens and electromagnetic loading conditions. It verifies that it could excite the phenomenon of EMAE in the metal plate with the crack. The experimental results lay a good foundation for the engineering application of EMAE.

  3. Standard practice for acoustic emission examination of cast iron yankee and steam heated paper dryers

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice provides guidelines for carrying out acoustic emission (AE) examinations of Yankee and Steam Heated Paper Dryers (SHPD) of the type to make tissue, paper, and paperboard products. 1.2 This practice requires pressurization to levels used during normal operation. The pressurization medium may be high temperature steam, air, or gas. The dryer is also subjected to significant stresses during the heating up and cooling down periods of operation. Acoustic Emission data maybe collected during these time periods but this testing is beyond the scope of this document. 1.3 The AE measurements are used to detect, as well as, localize emission sources. Other methods of nondestructive testing (NDT) may be used to further evaluate the significance of acoustic emission sources. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine th...

  4. Natural and laser-induced cavitation in corn stems: On the mechanisms of acoustic emissions

    Directory of Open Access Journals (Sweden)

    Gabriel Mario Bilmes

    2012-05-01

    Full Text Available Water in plant xylem is often superheated, and therefore in a meta-stable state. Under certain conditions, it may suddenly turn from the liquid to the vapor state. This cavitation process produces acoustic emissions. We report the measurement of ultrasonic acoustic emissions (UAE produced by natural and induced cavitation in corn stems. We induced cavitation and UAE in vivo, in well controlled and reproducible experiments, by irradiating the bare stem of the plants with a continuous-wave laser beam. By tracing the source of UAE, we were able to detect absorption and frequency filtering of the UAE propagating through the stem. This technique allows the unique possibility of studying localized embolism of plant conduits, and thus to test hypotheses on the hydraulic architecture of plants. Based on our results, we postulate that the source of UAE is a transient "cavity oscillation"' triggered by the disruptive effect of cavitation inception.

  5. Natural and laser-induced cavitation in corn stems: On the mechanisms of acoustic emissions

    CERN Document Server

    Fernández, E; Bilmes, G M; 10.4279/PIP.040003

    2012-01-01

    Water in plant xylem is often superheated, and therefore in a meta-stable state. Under certain conditions, it may suddenly turn from the liquid to the vapor state. This cavitation process produces acoustic emissions. We report the measurement of ultrasonic acoustic emissions (UAE) produced by natural and induced cavitation in corn stems. We induced cavitation and UAE in vivo, in well controlled and reproducible experiments, by irradiating the bare stem of the plants with a continuous-wave laser beam. By tracing the source of UAE, we were able to detect absorption and frequency filtering of the UAE propagating through the stem. This technique allows the unique possibility of studying localized embolism of plant conduits, and thus to test hypotheses on the hydraulic architecture of plants. Based on our results, we postulate that the source of UAE is a transient "cavity oscillation" triggered by the disruptive effect of cavitation inception.

  6. Variation of solar acoustic emission and its relation to phase of the solar cycle

    Science.gov (United States)

    Chen, Ruizhu; Zhao, Junwei

    2016-05-01

    Solar acoustic emission is closely related to solar convection and photospheric magnetic field. Variation of acoustic emission and its relation to the phase of solar cycles are important to understand dynamics of solar cycles and excitation of acoustic waves. In this work we use 6 years of SDO/HMI Dopplergram data to study acoustic emissions of the whole sun and of the quiet-sun regions, respectively, in multiple acoustic frequency bands. We show the variation of acoustic emission from May 2010 to April 2016, covering half of the solar cycle 24, and analyze its correlation with the solar activity level indexed by daily sunspot number and total magnetic flux. Results show that the correlation between the whole-Sun acoustic emission and the solar activity level is strongly negative for low frequencies between 2.5 and 4.5 mHz, but strongly positive for high frequencies between 4.5 and 6.0 mHz. For high frequencies, the acoustic emission excess in sunspot halos overwhelms the emission deficiency in sunspot umbrae and penumbrae. The correlation between the acoustic emission in quiet regions and the solar activity level is negative for 2.5-4.0 mHz and positive for 4.0-5.5 mHz. This shows that the solar background acoustic power, with active regions excluded, also varies during a solar cycle, implying the excitation frequencies or depths are highly related to the solar magnetic field.

  7. Acoustic emissions correlated with hydration of Saguaro Cactus

    Science.gov (United States)

    Wardell, L. J.; Rowe, C. A.

    2013-12-01

    For some years it has been demonstrated that hardwood trees produce acoustic emissions during periods of drought, which arise from cavitation in the xylem as water is withdrawn. These emissions not only provide insights into the fluid transport behavior within these trees, but also the degree to which cavitation can proceed before inevitable tree mortality. Such studies can have significant impact on our understanding of forest die-off in the face of climate change. Plant mortality is not limited to woody trees, however, and it is not only the coniferous and deciduous forests whose response to climate and rainfall changes are important. In the desert Southwest we observe changes to survival rates of numerous species of flora. One of the most conspicuous of these plants is the iconic Saguaro Cactus (Carnegiea gigantean). These behemoths of the Sonoran Desert are very sensitive to small perturbations in their environment. Specifically, during the summer monsoon season when the cacti become well-hydrated, they can absorb hundreds of gallons of water within a very short time frame. We have obtained a juvenile saguaro on which we are conducting experiments to monitor acoustic emissions during hydration and dessication cycles. We will report on our observations obtained using piezoelectric ceramic accelerometers whose signals are digitized up to 44 Khz and recorded during hydration.

  8. Development of a MEMS acoustic emission sensor system

    Science.gov (United States)

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first

  9. Localization by Acoustic Emission in Transversely Isotropic Slate

    Directory of Open Access Journals (Sweden)

    Bjorn Debecker

    2011-01-01

    Full Text Available A method for localization by acoustic emission in transversely isotropic media is developed and validated. Velocities are experimentally measured and then used to calculate a database of theoretical arrival times for a large number of positions. During an actual test, positions are assigned by comparing measured arrival times with the database's arrival times. The method is applied during load tests on slate samples and compared with visual observations of fractures. The localization method allowed for a good identification of the regions of fracturing at different stages during the test.

  10. Monitoring of Robot Assisted Polishing through parameters of acoustic emission

    DEFF Research Database (Denmark)

    Lazarev, Ruslan; Top, Søren; Bilberg, Arne

    , the duration of each process stage and predict the end of process in a precise and unmanned way. This paper presents and analyses the utilization of acoustic emission for generation of control signals in the stone polishing process for achieving these control objectives in an industrial set-up prototype........ The determination of the point in time to change a polishing media or stop the process is needed for computer controlled functional surface generation. During the last years, several research works have been done in order to build grinding/polishing monitoring systems to determine process characteristics...

  11. Integration of Acoustic Neutrino Detection Methods into ANTARES

    CERN Document Server

    Graf, K; Hoessl, J; Kappes, A; Katz, U F; Lahmann, R; Naumann, C; Salomon, K

    2007-01-01

    The ANTARES Neutrino Telescope is a water Cherenkov detector currently under construction in the Mediterranean Sea. It is also designed to serve as a platform for investigations of the deep-sea environment. In this context, the ANTARES group at the University of Erlangen will integrate acoustic sensors within the infrastructure of the experiment. With this dedicated setup, tests of acoustic particle detection methods and deep-sea acoustic background studies shall be performed. The aim of this project is to evaluate the feasibility of a future acoustic neutrino telescope in the deep sea operating in the ultra-high energy regime. In these proceedings, the implementation of the project is described in the context of the premises and challenges set by the physics of acoustic particle detection and the integration into an existing infrastructure.

  12. Passive Acoustic Radar for Detecting Supersonic Cruise Missile

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; XIAO Hui

    2005-01-01

    A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.

  13. Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors

    Science.gov (United States)

    Zhou, Changjiang

    Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack

  14. Acoustic emissions in granular structures under gravitational destabilization

    Science.gov (United States)

    Thirot, J.-L.; Le Gonidec, Y.; Kergosien, B.

    2012-05-01

    In this work, we perform experiments in an acoustic tank to record acoustic emissions (AEs) occurring when a granular medium is submitted to a gravitational destabilization. The granular medium is composed of monodisperse glass beads filling a box which can be inclined from α=0° up to the avalanche threshold angle α0=28°. To respect quasi-static conditions, the angle increases by steps less than 3°/mn. An omnidirectional hydrophone records the continuous acoustic field in the bead structure until the avalanche occurs. We compare the results for different experimental configurations, in particular for dry and water saturated granular media, but also for different bead diameters (d=8, 3 and 0.3 mm) in order to span the viscosity range of the granular structure. We show that the AE signatures strongly depend on the viscosity parameter, which can be related to the Stokes number and the fluid/solid density ratio. The transition from a viscous to an inertial dynamic of the granular structure is discussed, based on these experimental results.

  15. Acoustic Emission Technique, an Overview as a Characterization Tool in Materials Science

    Directory of Open Access Journals (Sweden)

    C. R. Ríos-Soberanis

    2011-12-01

    Full Text Available In order to predict the mechanical behavior of a composite during its service life, it is important to evaluate its mechanical response under different types of external stresses by studying the initiation and development of cracks and the effects induced by damage and degradation. The onset of damage is related to the structural integrity of the component and its fatigue life. For this, among other reasons, non-destructive techniques such as acoustic emission(AE have been widely used nowadays for composite materials haracterization. This method has demonstrated excellent results on detecting and identifying initiations sites, cracking propagation and fracture mechanisms of polymer matrix composite and ceramic materials. This paper focuses on commenting the importance of the acoustic emission technique as a unique tool for characterizing mechanical parameters in response to external stresses and degradation processes by reviewing previous investigations carried out by the author as participant. Acoustic emission was employed to monitor the micro-failure mechanisms in composites in relation to the stress level in real-time during the tests carried out. Some results obtained from different analysis are discussed to support the significance of using AE, technique that will be increasingly employed in the composite materials field due to its several lternatives for understanding the mechanical behavior; therefore, the objective of this manuscript is to involve the benefits andadvantages of AE in the characterization of materials.

  16. An Approach to Acoustic Emission Technique Applications to Evaluate Damage Mechanisms in Composite Materials

    Directory of Open Access Journals (Sweden)

    Rios-Soberanis C.R.

    2015-01-01

    Full Text Available Acoustic Emission technique is a versatile method for characterization in materials science. It is considered to be a “passive” non-destructive method since damage can be only evaluated when de defects are being developed during the test which, at the end of the day, it is considered an advantage because failure mechanisms and damage process can be monitored and identified during the load history. When a failure mechanism is activated due to a discontinuity in the material such as crack propagation, part of the total strain energy is dissipated as an elastic waves that propagate from the damage source through the medium. Therefore, this released energy can be detected by piezoelectric sensors that perceive the emitted signal from the damage notation site by the surface dynamic movement and convert it in an electrical response. Acoustic emission signals can be correlated with the onset of damage process occurring in the tested materials and also to de diverse failure mechanisms such as matrix cracking, interface damage, fiber fracture, etc. This paper proposes to discuss our information and results on acoustic emission materials characterization undertaken on different types of materials.

  17. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor

    Directory of Open Access Journals (Sweden)

    Lidewei L Vergeynst

    2015-07-01

    Full Text Available When drought occurs in plants, acoustic emission signals can be detected, but the actual causes of these signals are still unknown. By analyzing the waveforms of the measured signals, it should however be possible to trace the characteristics of the acoustic emission source and get information about the underlying physiological processes. A problem encountered during this analysis is that the waveform changes significantly from source to sensor and lack of knowledge on wave propagation impedes research progress made in this field. We used finite element modeling and the well-known pencil lead break source to investigate wave propagation in a branch. A cylindrical rod of polyvinyl chloride was first used to identify the theoretical propagation modes. Two wave propagation modes could be distinguished and we used the finite element model to interpret their behavior in terms of source position for both the PVC rod and a wooden rod. Both wave propagation modes were also identified in drying-induced signals from woody branches, and we used the obtained insights to provide recommendations for further acoustic emission research in plant science.

  18. Oscillating load-induced acoustic emission in laboratory experiment

    Science.gov (United States)

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, V.

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  19. Acoustic emission of retrofitted fiber-wrapped columns

    Science.gov (United States)

    El Echary, Hazem; Mirmiran, Amir

    1998-03-01

    In recent years, fiber-wrapping technique has become increasingly popular for retrofitting of existing bridge pier columns in seismic zones. By the way of confinement, the external jacket enhances strength, ductility and shear performance of the column. However, since state of the concrete core is not visible from outside of the jacket, it is of great necessity to develop proper non-destructive methods to evaluate structural integrity of the column. Extensive research on FRP-confined concrete at the University of Central Florida has shown that failure of such hybrid columns is often accompanied by considerable audible and sub-audible noise, making acoustic emission (AE) a viable NDE technique for retrofitted columns. Acoustic emission from fiber-wrapped concrete specimens were monitored. A total of 24 concrete specimens with two types of construction (bonded and unbonded) and four different number of layers (1, 3, 5 and 7) were tested under uniaxial compression. All specimens were made of S-glass fabric and polyester resin with a core diameter of 6' and a length of 12'. Some of the specimens were subjected to cycles of loading and unloading to examine the presence of the Kaiser and the Felicity effects. A 4-channel AEDSP-32/16 (Mistras-2001) machine from Physical Acoustics Corp. was used for the experiments. Results indicate that AE energy and the number of AE counts can both be good representatives for the response of confined concrete. Further, plots of AE energy versus load follows the same bilinear trend that has been observed in the stress-strain response of such specimens. Finally, Felicity effect was observed in all composite specimens.

  20. FRP/steel composite damage acoustic emission monitoring and analysis

    Science.gov (United States)

    Li, Dongsheng; Chen, Zhi

    2015-04-01

    FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.

  1. Experimental Investigations into the Effects of Lithology on Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Baozhu Tian

    2015-11-01

    Full Text Available In order to study how lithology affects acoustic emissions (AE, a series of tunnel rock burst simulation experiments, monitored by acoustic emission instruments, were conducted on granite, marble and basalt. By analyzing the characteristic parameters, this study found that AE events occur more frequently during the rock burst process on granite and basalt. Marble remains dormant until 75% of the loading time before the peak, at which point, cracks develop rapidly and AE events dramatically increase. During the rock burst process, the AE energy release demonstrates that low energy is released in the incubation phase and robust energy is released during the later phase. Before the rock burst occurs, increased in the heterogeneity index Cv values of the AE event are subject to lithology. The Cv values of granite and basalt have an increase of about 0.2-0.4, while marble shows an increase of 1.0-1.2. The heterogeneity index Cv value of an AE event is in line with the rock burst process.

  2. Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue

    Science.gov (United States)

    Trujillo, Blaine; Zagrai, Andrei

    2016-04-01

    Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.

  3. Diagnostic System of Wireless Acoustic Emission Signal Transfer for Monitoring Oil-and-Gas Facilities

    Directory of Open Access Journals (Sweden)

    Skalsky, V.R.

    2016-01-01

    Full Text Available The structure of diagnostic 8-channel system for wireless transfer of acoustic emission information during monitoring the objects of long operation is revealed. The results of the development of algorithmic software for hardware system and personal computer, which performs system control and post-processing of acoustic emission information. are presented. The basic specifications of the system are described.

  4. Improvement of acoustic fall detection using Kinect depth sensing.

    Science.gov (United States)

    Li, Yun; Banerjee, Tanvi; Popescu, Mihail; Skubic, Marjorie

    2013-01-01

    The latest acoustic fall detection system (acoustic FADE) has achieved encouraging results on real-world dataset. However, the acoustic FADE device is difficult to be deployed in real environment due to its large size. In addition, the estimation accuracy of sound source localization (SSL) and direction of arrival (DOA) becomes much lower in multi-interference environment, which will potentially result in the distortion of the source signal using beamforming (BF). Microsoft Kinect is used in this paper to address these issues by measuring source position using the depth sensor. We employ robust minimum variance distortionless response (MVDR) adaptive BF (ABF) to take advantage of well-estimated source position for acoustic FADE. A significant reduction of false alarms and improvement of detection rate are both achieved using the proposed fusion strategy on real-world data.

  5. Standard practice for examination of fiberglass reinforced plastic fan blades using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examinations of fiberglass reinforced plastic (FRP) fan blades of the type used in industrial cooling towers and heat exchangers. 1.2 This practice uses simulated service loading to determine structural integrity. 1.3 This practice will detect sources of acoustic emission in areas of sensor coverage that are stressed during the course of the examination. 1.4 This practice applies to examinations of new and in-service fan blades. 1.5 This practice is limited to fan blades of FRP construction, with length (hub centerline to tip) of less than 3 m [10 ft], and with fiberglass content greater than 15 % by weight. 1.6 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to evaluate the significance of AE sources. Procedures for other NDE methods are beyond the scope of this practice. 1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as sta...

  6. Time-distance domain transformation for Acoustic Emission source localization in thin metallic plates.

    Science.gov (United States)

    Grabowski, Krzysztof; Gawronski, Mateusz; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw J; Uhl, Tadeusz; Kundu, Tribikram; Packo, Pawel

    2016-05-01

    Acoustic Emission used in Non-Destructive Testing is focused on analysis of elastic waves propagating in mechanical structures. Then any information carried by generated acoustic waves, further recorded by a set of transducers, allow to determine integrity of these structures. It is clear that material properties and geometry strongly impacts the result. In this paper a method for Acoustic Emission source localization in thin plates is presented. The approach is based on the Time-Distance Domain Transform, that is a wavenumber-frequency mapping technique for precise event localization. The major advantage of the technique is dispersion compensation through a phase-shifting of investigated waveforms in order to acquire the most accurate output, allowing for source-sensor distance estimation using a single transducer. The accuracy and robustness of the above process are also investigated. This includes the study of Young's modulus value and numerical parameters influence on damage detection. By merging the Time-Distance Domain Transform with an optimal distance selection technique, an identification-localization algorithm is achieved. The method is investigated analytically, numerically and experimentally. The latter involves both laboratory and large scale industrial tests.

  7. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Dimitrios. G. Aggelis

    2015-03-01

    Full Text Available The study describes the acoustic emission (AE activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis. The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure.

  8. Acoustic emission assessment of interface cracking in thermal barrier coatings

    Science.gov (United States)

    Yang, Li; Zhong, Zhi-Chun; Zhou, Yi-Chun; Zhu, Wang; Zhang, Zhi-Biao; Cai, Can-Ying; Lu, Chun-Sheng

    2016-04-01

    In this paper, acoustic emission (AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression. The interface failure process can be identified via its AE features, including buckling, delamination incubation and spallation. According to the Fourier transformation of AE signals, there are four different failure modes: surface vertical cracks, opening and sliding interface cracks, and substrate deformation. The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz, whilst that of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. The energy released of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. Based on the energy released from cracking and the AE signals, a relationship is established between the interface crack length and AE parameters, which is in good agreement with experimental results.

  9. ANALYSIS OF CHIP FORMATION DURING HARD TURNING THROUGH ACOUSTIC EMISSION

    Directory of Open Access Journals (Sweden)

    Miroslav Neslušan

    2012-01-01

    Full Text Available The paper deals with analysis of chip formation and related aspects of the chip formation during turning hardened steel 100Cr6. The paper draws a comparison of some aspects of the chip formation between turning annealed and hardened roll bearing steel. The results of the analysis show that there is the formation of a segmented chip in the case of hard turning. Frequency of segmentation is very high. A conventional piezoelectric dynamometer limits the frequency response to about 3.5 kHz. On the other hand, the frequency of process fluctuation may by obtained by using accelerometers or acoustic emission. This paper reports about the dynamic character of cutting process when hard turning and correlation among the calculated segmentation frequencies and the experimental analysis.

  10. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    Science.gov (United States)

    van Capel, P. J. S.; Turchinovich, D.; Porte, H. P.; Lahmann, S.; Rossow, U.; Hangleiter, A.; Dijkhuis, J. I.

    2011-08-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlated with electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured spectral intensity of the detected Brillouin signal corresponds to a maximum strain amplitude of generated acoustic pulses of 2%. This value coincides with the static lattice-mismatch-induced strain in In0.2Ga0.8N/GaN, demonstrating the total release of static strain in MQWs via impulsive THz acoustic emission. This confirms the ultrafast dynamical screening mechanism in MQWs as a highly efficient method for impulsive strain generation.

  11. Acoustic Helicopter and FW Aircraft Detection and Classification

    NARCIS (Netherlands)

    Koersel, A.C. van

    2001-01-01

    The possibility to detect the passage of aircraft (either propeller or jet) with one or more mechanical wave sensors (acoustic or seismic) is investigated. An existing algorithm-sensor demonstator can detect and classify helicopter targets. In its current form it is developed to reject other targets

  12. Acoustic emission-based condition monitoring methods: Review and application for low speed slew bearing

    Science.gov (United States)

    Caesarendra, Wahyu; Kosasih, Buyung; Tieu, Anh Kiet; Zhu, Hongtao; Moodie, Craig A. S.; Zhu, Qiang

    2016-05-01

    This paper presents an acoustic emission-based method for the condition monitoring of low speed reversible slew bearings. Several acoustic emission (AE) hit parameters as the monitoring parameters for the detection of impending failure of slew bearings are reviewed first. The review focuses on: (1) the application of AE in typical rolling element bearings running at different speed classifications, i.e. high speed (>600 rpm), low speed (10-600 rpm) and very low speed (<10 rpm); (2) the commonly used AE hit parameters in rolling element bearings and (3) AE signal processing, feature extraction and pattern recognition methods. In the experiment, impending failure of the slew bearing was detected by the AE hit parameters after the new bearing had run continuously for approximately 15 months. The slew bearing was then dismantled and the evidence of the early defect was analysed. Based on the result, we propose a feature extraction method of the AE waveform signal using the largest Lyapunov exponent (LLE) algorithm and demonstrate that the LLE feature can detect the sign of failure earlier than the AE hit parameters with improved prediction of the progressive trend of the defect.

  13. All-Optical Detection of Acoustic Pressure Waves with applications in Photo-Acoustic Spectroscopy

    CERN Document Server

    Westergaard, Philip G

    2016-01-01

    An all-optical detection method for the detection of acoustic pressure waves is demonstrated. The detection system is based on a stripped (bare) single-mode fiber. The fiber vibrates as a standard cantilever and the optical output from the fiber is imaged to a displacement-sensitive optical detector. The absence of a conventional microphone makes the demonstrated system less susceptible to the effects that a hazardous environment might have on the sensor. The sensor is also useful for measurements in high temperature (above $200^{\\circ}$C) environments where conventional microphones will not operate. The proof-of-concept of the all-optical detection method is demonstrated by detecting sound waves generated by the photo-acoustic effect of NO$_2$ excited by a 455 nm LED, where a detection sensitivity of approximately 50 ppm was achieved.

  14. Sensor development and calibration for acoustic neutrino detection in ice

    CERN Document Server

    Karg, Timo; Laihem, Karim; Semburg, Benjamin; Tosi, Delia

    2009-01-01

    A promising approach to measure the expected low flux of cosmic neutrinos at the highest energies (E > 1 EeV) is acoustic detection. There are different in-situ test installations worldwide in water and ice to measure the acoustic properties of the medium with regard to the feasibility of acoustic neutrino detection. The parameters of interest include attenuation length, sound speed profile, background noise level and transient backgrounds. The South Pole Acoustic Test Setup (SPATS) has been deployed in the upper 500 m of drill holes for the IceCube neutrino observatory at the geographic South Pole. In-situ calibration of sensors under the combined influence of low temperature, high ambient pressure, and ice-sensor acoustic coupling is difficult. We discuss laboratory calibrations in water and ice. Two new laboratory facilities, the Aachen Acoustic Laboratory (AAL) and the Wuppertal Water Tank Test Facility, have been set up. They offer large volumes of bubble free ice (3 m^3) and water (11 m^3) for the devel...

  15. Use of Acoustic Emission During Scratch Testing for Understanding Adhesion Behavior of Aluminum Nitride Coatings

    Science.gov (United States)

    Choudhary, R. K.; Mishra, P.

    2016-06-01

    In this work, acoustic emission during scratch testing of the aluminum nitride coatings formed on stainless steel substrate by reactive magnetron sputtering was analyzed to assess the coating failure. The AlN coatings were formed under the variation of substrate temperature, substrate bias potential, and discharge power. The coatings deposited in the temperature range of 100 to 400 °C showed peak acoustic emission less than 1.5%, indicating ductile nature of the coating. However, for coatings formed with substrate negative bias potential of 20 to 50 V, numerous sharp acoustic bursts with maximum emission approaching 80% were observed, indicating brittle nature of the coatings with large number of defects present. The shift in the intensity of the first major acoustic peak toward higher load, with the increasing bias potential, confirmed improved adhesion of the coating. Also, the higher discharge power resulted in increased acoustic emission.

  16. Damage characterization of thermal barrier coatings by acoustic emission and thermography

    Energy Technology Data Exchange (ETDEWEB)

    Nies, Daniel; Rehmer, Birgit; Skrotzki, Birgit [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); Vassen, Robert [Forschungszentrum Juelich, Juelich (Germany)

    2012-09-15

    Thermal barrier coatings allow increasing the operating temperature and efficiency of land-, sea-, or air-based turbines. As failure of the coating may result in serious damage of the turbine, reliable estimation of its lifetime is essential. To assess the lifetime, cyclic tests are conceived to combine thermal loading by heating the surface of the coating with laser irradiation and nondestructive methods for damage determination. Using laser irradiation allows a high reproducibility of the thermal load. The temperature of the sample surface during thermal loading is determined by an infrared-camera which also enables the possibility to detect damage in the coating via thermography. Additionally, four acoustic sensors, attached to the experimental setup, are used to detect damage in the sample and determine the source of acoustic events. Results of acoustic emission correlate well with thermographic images that visualize the formation and evolution of damage through delaminations in the samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Sparse Reconstruction for Micro Defect Detection in Acoustic Micro Imaging

    Directory of Open Access Journals (Sweden)

    Yichun Zhang

    2016-10-01

    Full Text Available Acoustic micro imaging has been proven to be sufficiently sensitive for micro defect detection. In this study, we propose a sparse reconstruction method for acoustic micro imaging. A finite element model with a micro defect is developed to emulate the physical scanning. Then we obtain the point spread function, a blur kernel for sparse reconstruction. We reconstruct deblurred images from the oversampled C-scan images based on l1-norm regularization, which can enhance the signal-to-noise ratio and improve the accuracy of micro defect detection. The method is further verified by experimental data. The results demonstrate that the sparse reconstruction is effective for micro defect detection in acoustic micro imaging.

  18. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    Science.gov (United States)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time

  19. Acoustic emission evaluation of reinforced concrete bridge beam with graphite composite laminate

    Science.gov (United States)

    Johnson, Dan E.; Shen, H. Warren; Finlayson, Richard D.

    2001-07-01

    A test was recently conducted on August 1, 2000 at the FHwA Non-Destructive Evaluation Validation Center, sponsored by The New York State DOT, to evaluate a graphite composite laminate as an effective form of retrofit for reinforced concrete bridge beam. One portion of this testing utilized Acoustic Emission Monitoring for Evaluation of the beam under test. Loading was applied to this beam using a two-point loading scheme at FHwA's facility. This load was applied in several incremental loadings until the failure of the graphite composite laminate took place. Each loading culminated by either visual crack location or large audible emissions from the beam. Between tests external cracks were located visually and highlighted and the graphite epoxy was checked for delamination. Acoustic Emission data was collected to locate cracking areas of the structure during the loading cycles. To collect this Acoustic Emission data, FHwA and NYSDOT utilized a Local Area Monitor, an Acoustic Emission instrument developed in a cooperative effort between FHwA and Physical Acoustics Corporation. Eight Acoustic Emission sensors were attached to the structure, with four on each side, in a symmetrical fashion. As testing progressed and culminated with beam failure, Acoustic Emission data was gathered and correlated against time and test load. This paper will discuss the analysis of this test data.

  20. Soldier detection using unattended acoustic and seismic sensors

    Science.gov (United States)

    Naz, P.; Hengy, S.; Hamery, P.

    2012-06-01

    During recent military conflicts, as well as for security interventions, the urban zone has taken a preponderant place. Studies have been initiated in national and in international programs to stimulate the technical innovations for these specific scenarios. For example joint field experiments have been organized by the NATO group SET-142 to evaluate the capability for the detection and localization of snipers, mortars or artillery guns using acoustic devices. Another important operational need corresponds to the protection of military sites or buildings. In this context, unattended acoustic and seismic sensors are envisaged to contribute to the survey of specific points by the detection of approaching enemy soldiers. This paper describes some measurements done in an anechoic chamber and in free field to characterize typical sounds generated by the soldier activities (walking, crawling, weapon handling, radio communication, clothing noises...). Footstep, speech and some specific impulsive sounds are detectable at various distances from the source. Such detection algorithms may be easily merged with the existing weapon firing detection algorithms to provide a more generic "battlefield acoustic" early warning system. Results obtained in various conditions (grassy terrain, gravel path, road, forest) will be presented. A method to extrapolate the distances of detection has been developed, based on an acoustic propagation model and applied to the laboratory measurements.

  1. Acoustic solitons: A robust tool to investigate the generation and detection of ultrafast acoustic waves

    Science.gov (United States)

    Péronne, Emmanuel; Chuecos, Nicolas; Thevenard, Laura; Perrin, Bernard

    2017-02-01

    Solitons are self-preserving traveling waves of great interest in nonlinear physics but hard to observe experimentally. In this report an experimental setup is designed to observe and characterize acoustic solitons in a GaAs(001) substrate. It is based on careful temperature control of the sample and an interferometric detection scheme. Ultrashort acoustic solitons, such as the one predicted by the Korteweg-de Vries equation, are observed and fully characterized. Their particlelike nature is clearly evidenced and their unique properties are thoroughly checked. The spatial averaging of the soliton wave front is shown to account for the differences between the theoretical and experimental soliton profile. It appears that ultrafast acoustic experiments provide a precise measurement of the soliton velocity. It allows for absolute calibration of the setup as well as the response function analysis of the detection layer. Moreover, the temporal distribution of the solitons is also analyzed with the help of the inverse scattering method. It shows how the initial acoustic pulse profile which gives birth to solitons after nonlinear propagation can be retrieved. Such investigations provide a new tool to probe transient properties of highly excited matter through the study of the emitted acoustic pulse after laser excitation.

  2. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    KAUST Repository

    Zhou, Wei

    2015-07-12

    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  3. Background studies for acoustic neutrino detection at the South Pole

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdrmann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Denger, T; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schönwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stössl, A; Stoyanov, S; Strahler, E A; Straszheim, T; Stür, M; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-01-01

    The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the tiny flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in-situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10 to 50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic pulse-like events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to localize acoustic e...

  4. Numerical simulation of a laser-acoustic landmine detection system

    Science.gov (United States)

    Lancranjan, Ion I.; Miclos, Sorin; Savastru, Dan; Savastru, Roxana; Opran, Constantin

    2012-06-01

    The preliminary numerical simulation results obtained in the analysis of a landmine detection system based on laser excitation of acoustic - seismic waves in the soil and observing its surface vibration above the embedded landmine are presented. The presented numerical simulations comprise three main parts: 1) Laser oscillator and laser beam propagation and absorption in soil; a laser oscillator operated in Q-switched regime is considered; different laser wavelengths are investigated. 2) Acoustic - seismic wave generation by absorption in soil of laser pulse energy; 3) Evaluation of acoustic - seismic wave generation by the buried in soil landmine; 4) Comparison of Distributed Feed- Back Fiber Laser (DFB-FL) and Laser Doppler Vibrometer (LDV) detector used for soil vibrations evaluation. The above mentioned numerical simulation is dedicated for evaluation of an integrated portable detection system.

  5. Acoustic emission measurements in petroleum-related rock mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Unander, Tor Erling

    2002-07-01

    Acoustic emission activity in rock has usually been studied in crystalline rock, which reflects that rock mechanics has also mostly been occupied with such rocks in relations to seismology, mining and tunneling. On the other hand, petroleum-related rock mechanics focuses on the behaviour of sedimentary rock. Thus, this thesis presents a general study of acoustic emission activity in sedimentary rock, primarily in sandstone. Chalk, limestone and shale have also been tested, but to much less degree because the AE activity in these materials is low. To simplify the study, pore fluids have not been used. The advent of the personal computer and computerized measuring equipment have made possible new methods both for measuring and analysing acoustic emissions. Consequently, a majority of this work is devoted to the development and implementation of new analysis techniques. A broad range of topics are treated: (1) Quantification of the AE activity level, assuming that the event rate best represents the activity. An algorithm for estimating the event rate and a methodology for objectively describing special changes in the activity e.g., onset determination, are presented. (2) Analysis of AE waveform data. A new method for determining the source energy of an AE event is presented, and it is shown how seismic source theory can be used to analyze even intermediate quality data. Based on these techniques, it is shown that a major part of the measured AE activity originates from a region close to the sensor, not necessarily representing the entire sample. (3) An improved procedure for estimating source locations is presented. The main benefit is a procedure that better handles arrival time data with large errors. Statistical simulations are used to quantify the uncertainties in the locations. The analysis techniques are developed with the application to sedimentary rock in mind, and in two articles, the techniques are used in the study of such materials. The work in the first

  6. Evaluation of acoustic shock induced early hearing loss with audiometer and distortion product otoacoustic emissions

    OpenAIRE

    2010-01-01

    Background: Acoustic shock injury has been described as a permanent injury to the auditory system either due to daily noise dose of in excess of 85 decibels or very loud impulse sound reputed to be in excess of 120 decibels and acoustic incidents. This study was performed to compare the results of audiogram and the newer diagnostic method distortion product otoacoustic emissions (DPOAEs) parameters due to acoustic shock injury in call center professionals working in a noisy environment and pr...

  7. Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    CERN Document Server

    Salomon, K; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Naumann, C

    2005-01-01

    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.

  8. THE ACOUSTIC DETECTION OF INTRACRANIAL ANEURYSMS - A CLINICAL-STUDY

    NARCIS (Netherlands)

    VANBRUGGEN, AC; MOOIJ, JJA; JOURNEE, HL

    1991-01-01

    A new recording method for the acoustical detection of intracranial aneurysms is presented. A study examining the capability of the method to discriminate between patients with an aneurysm and control patients by a simple, objective parameter is reported. Sound signals were recorded over the eyes, a

  9. Acoustic detection of intracranial aneurysms : A decision analysis

    NARCIS (Netherlands)

    vanBruggen, AC; Dippel, DWJ; Habbema, JDF; Mooij, JJA

    1996-01-01

    We present a further evaluation of an improved recording method for the acoustic detection of intracranial aneurysms (ADA). A sensor was applied to the patient's eyes. Two measures were derived to summarize the power spectral density functions of the sound frequencies that were obtained from each pa

  10. Acoustic vibration test detects intermittent electrical discontinuities

    Science.gov (United States)

    Grieve, S. M.; Roberts, D. E.

    1970-01-01

    Nondestructive test method detects faulty electrical connections in inaccessible or hidden portions of electronic harness assemblies and connectors. Method employs readily available commercial equipment.

  11. Passive acoustic detection of deep-diving beaked whales

    DEFF Research Database (Denmark)

    Zimmer, W.M.X.; Harwood, J.; Tyack, P.L.

    2008-01-01

    Beaked whales can remain submerged for an hour or more and are difficult to sight when they come to the surface to breathe. Passive acoustic detection (PAD) not only complements traditional visual-based methods for detecting these species but also can be more effective because beaked whales produce...... clicks regularly to echolocate on prey during deep foraging dives. The effectiveness of PAD for beaked whales depends not only on the acoustic behavior and output of the animals but also on environmental conditions and the quality of the passive sonar implemented. A primary constraint on the range...... at which beaked whale clicks can be detected involves their high frequencies, which attenuate rapidly, resulting in limited ranges of detection, especially in adverse environmental conditions. Given current knowledge of source parameters and in good conditions, for example, with a wind speed of 2  m...

  12. Damage depth estimation on a fatigue loaded composite structure using thermography and acoustic emission

    Science.gov (United States)

    Zalameda, Joseph N.; Winfree, William P.; Horne, Michael R.

    2017-02-01

    Passive thermography and acoustic emission data were obtained on a three stringer panel during periodic fatigue loading. The acoustic emission data were mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. Furthermore, sudden changes in thermally measured damage growth related to a previously measured higher energy acoustic emission event are studied to determine damage depth. A thermal model with a periodic flux heat source is presented to determine the relationship between the damage depth and thermal response. The model results are compared to the measured data. Lastly, the practical application and limitations of this technique are discussed.

  13. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate ...

  14. Acoustic Emission Based In-process Monitoring in Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    The applicability of acoustic emission (AE) measurements for in-process monitoring in the Robot Assisted Polishing (RAP) process was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate removal of the...

  15. Scanning thermoelectric and acoustic emission dignostic of structural inhomogeneities of thermocouple materials

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.J.

    2010-01-01

    Full Text Available New method for diagnostic of constructional and functional materials by means of thermoelectric and acoustic- emission measurements is proposed. The method allows not only to establish the defect location, but its partial temperature relaxation achieve.

  16. ?Smart COPVs? - Continued Successful Development of JSC IR&D Acoustic Emissions (AE) SHM Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and apply promising quantitative pass/fail criteria to CPV using acoustic emission (AE) and lay the foundation for continued development of an automated...

  17. Acoustic Emission, b-values and Foliation Plane Anisotropy

    Science.gov (United States)

    Sehizadeh, Mahdi; Nasseri, Mohammad H.; Ye, Sheng; Young, R. Paul

    2016-04-01

    The b-value and D-value are two parameters related to size and distance distribution of earthquakes. There are many different factors affecting b-value such as stress state, thermal gradients, focal mechanism and heterogeneity. For example, the literature shows that the b-value changes systematically with respect to the focal mechanism. In laboratory experiments, foliation planes introduce a weakness in samples and can be considered as a potential for rupture or pre-existing faults, so they may exhibit similar relationships. The D-value defines the degree of clustering of earthquakes and would be expected to have a defined relationship with respect to the anisotropy. Using a unique facility in the Rock Fracture Dynamics laboratory at the University of Toronto, three sets of polyaxial experiments have been performed on cubic samples with foliation planes systematically oriented at different angles to the principal stress direction. During these tests, samples were loaded under controlled true-triaxial stress conditions until they failed or had severe damage and acoustic emission events were recorded using 18 sensors around the samples. The paper describes how the combination of stress state and foliation planes affects the b-value and D-value under laboratory conditions.

  18. Acoustic Emission Technique Applied in Textiles Mechanical Characterization

    Directory of Open Access Journals (Sweden)

    Rios-Soberanis Carlos Rolando

    2017-01-01

    Full Text Available The common textile architecture/geometry are woven, braided, knitted, stitch boded, and Z-pinned. Fibres in textile form exhibit good out-of-plane properties and good fatigue and impact resistance, additionally, they have better dimensional stability and conformability. Besides the nature of the textile, the architecture has a great role in the mechanical behaviour and mechanisms of damage in textiles, therefore damage mechanisms and mechanical performance in structural applications textiles have been a major concern. Mechanical damage occurs to a large extent during the service lifetime consequently it is vital to understand the material mechanical behaviour by identifying its mechanisms of failure such as onset of damage, crack generation and propagation. In this work, textiles of different architecture were used to manufacture epoxy based composites in order to study failure events under tensile load by using acoustic emission technique which is a powerful characterization tool due to its link between AE data and fracture mechanics, which makes this relation a very useful from the engineering point of view.

  19. Analysis of Acoustic Emission Signals using WaveletTransformation Technique

    Directory of Open Access Journals (Sweden)

    S.V. Subba Rao

    2008-07-01

    Full Text Available Acoustic emission (AE monitoring is carried out during proof pressure testing of pressurevessels to find the occurrence of any crack growth-related phenomenon. While carrying out AEmonitoring, it is often found that the background noise is very high. Along with the noise, thesignal includes various phenomena related to crack growth, rubbing of fasteners, leaks, etc. Dueto the presence of noise, it becomes difficult to identify signature of the original signals related to the above phenomenon. Through various filtering/ thresholding techniques, it was found that the original signals were getting filtered out along with noise. Wavelet transformation technique is found to be more appropriate to analyse the AE signals under such situations. Wavelet transformation technique is used to de-noise the AE data. The de-noised signal is classified to identify a signature based on the type of phenomena.Defence Science Journal, 2008, 58(4, pp.559-564, DOI:http://dx.doi.org/10.14429/dsj.58.1677

  20. Use of Macro Fibre Composite Transducers as Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Mark Eaton

    2009-04-01

    Full Text Available The need for ever lighter and more efficient aerospace structures and components has led to continuous optimization pushing the limits of structural performance. In order to ensure continued safe operation during long term service it is desirable to develop a structural health monitoring (SHM system. Acoustic emission (AE offers great potential for real time global monitoring of aerospace structures, however currently available commercial sensors have limitations in size, weight and adaptability to complex structures. This work investigates the potential use of macro-fibre composite (MFC film transducers as AE sensors. Due to the inhomogeneous make-up of MFC transducers their directional dependency was examined and found to have limited effect on signal feature data. However, signal cross-correlations revealed a strong directional dependency. The sensitivity and signal attenuation with distance of MFC sensors were compared with those of commercially available sensors. Although noticeably less sensitive than the commercial sensors, the MFC sensors still had an acceptable operating range. Furthermore, a series of compressive carbon fiber coupon tests were monitored in parallel using both an MFC sensor and a commercially available sensor for comparison. The results showed good agreement of AE trends recorded by both sensors.

  1. MEMS acoustic emission transducers designed with high aspect ratio geometry

    Science.gov (United States)

    Saboonchi, H.; Ozevin, D.

    2013-09-01

    In this paper, micro-electro-mechanic systems (MEMS) acoustic emission (AE) transducers are manufactured using an electroplating technique. The transducers use a capacitance change as their transduction principle, and are tuned to the range 50-200 kHz. Through the electroplating technique, a thick metal layer (20 μm nickel + 0.5 μm gold) is used to form a freely moving microstructure layer. The presence of the gold layer reduces the potential corrosion of the nickel layer. A dielectric layer is deposited between the two electrodes, thus preventing the stiction phenomenon. The transducers have a measured quality factor in the range 15-30 at atmospheric pressure and are functional without vacuum packaging. The transducers are characterized using electrical and mechanical tests to identify the capacitance, resonance frequency and damping. Ultrasonic wave generation using a Q-switched laser shows the directivity of the transducer sensitivity. The comparison of the MEMS transducers with similar frequency piezoelectric transducers shows that the MEMS AE transducers have better response characteristics and sensitivity at the resonance frequency and well-defined waveform signatures (rise time and decay time) due to pure resonance behavior in the out-of-plane direction. The transducers are sensitive to a unique wave direction, which can be utilized to increase the accuracy of source localization by selecting the correct wave velocity at the structures.

  2. Dislocation unpinning model of acoustic emission from alkali halide crystals

    Indian Academy of Sciences (India)

    B P Chandra; Anubha S Gour; Vivek K Chandra; Yuvraj Patil

    2004-06-01

    The present paper reports the dislocation unpinning model of acoustic emission (AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a particular strain of the crystals. The peak value of the AE pulse rate should depend on the volume and strain rate of the crystals, and also on the pinning time of dislocations. Since the pinning time of dislocations decreases with increasing strain rate, the AE pulse rate should be weakly dependent on the strain rate of the crystals. The total number of AE should increase linearly with deformation and then it should attain a saturation value for the large deformation. By measuring the strain dependence of the AE pulse rate at a fixed strain rate, the time constant $_{\\text{s}}$ for surface annihilation of dislocations and the pinning time $_{\\text{p}}$ of the dislocations can be determined. A good agreement is found between the theoretical and experimental results related to the AE from alkali halide crystals.

  3. Acoustic firearm discharge detection and classification in an enclosed environment

    Energy Technology Data Exchange (ETDEWEB)

    Luzi, Lorenzo; Gonzalez, Eric; Bruillard, Paul; Prowant, Matthew; Skorpik, James; Hughes, Michael; Child, Scott; Kist, Duane; McCarthy, John E.

    2016-05-01

    Two different signal processing algorithms are described for detection and classification of acoustic signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm of the signal energy. The second is a joint entropy. The current study indicates that a system using both signal energy and joint entropy would be able to both detect weapon discharges and classify weapon type, in small spaces, with high statistical certainty.

  4. Valve Fault Diagnosis in Internal Combustion Engines Using Acoustic Emission and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    S. M. Jafari

    2014-01-01

    Full Text Available This paper presents the potential of acoustic emission (AE technique to detect valve damage in internal combustion engines. The cylinder head of a spark-ignited engine was used as the experimental setup. The effect of three types of valve damage (clearance, semicrack, and notch on valve leakage was investigated. The experimental results showed that AE is an effective method to detect damage and the type of damage in valves in both of the time and frequency domains. An artificial neural network was trained based on time domain analysis using AE parametric features (AErms, count, absolute AE energy, maximum signal amplitude, and average signal level. The network consisted of five, six, and five nodes in the input, hidden, and output layers, respectively. The results of the trained system showed that the AE technique could be used to identify the type of damage and its location.

  5. Feasibility of using acoustic emission to determine in-process tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, L.J.

    1996-04-01

    Acoustic emission (AE) was evaluated for its ability to predict and recognize failure of cutting tools during machining processes when the cutting tool rotates and the workpiece is stationary. AE output was evaluated with a simple algorithm. AE was able to detect drill failure when the transducer was mounted on the workpiece holding fixture. Drill failure was recognized as size was reduced to 0.0003 in. diameter. The ability to predict failure was reduced with drill size, drill material elasticity, and tool coating. AE output for the turning process on a lathe was compared to turning tool insert wear. The turning tool must have sufficient wear to produce a detectable change in AE output to predict insert failure.

  6. Studies of Elastic Waves in Ethylene Propylene Rubber Using Acoustic Emission Sensor

    Science.gov (United States)

    Takaoka, Masanori; Sakoda, Tatsuya; Otsubo, Masahisa; Akaiwa, Shigeru; Iki, Masatoshi; Nakano, Shigeharu

    The aim of our study is to investigate the relationship between lowering of the insulation performance of cross-linked polyethylene (CV) cable and partial discharges (PDs) followed by the dielectric breakdown and to establish a diagnostic technique using an acoustic emission (AE) sensor. In this study, we focused on characterization of AE signals detected from ethylene propylene rubbers (EPRs) used as insulating materials of CV cables. Elastic waves with various frequencies were added to the surface of the EPR, and then characteristics of the detected AE signals due to the elastic waves propagated in the EPR were evaluated. We showed characteristics of Lamb waves whose low frequency components around 100 kHz were large and their small attenuation characteristics.

  7. Evaluation of corrosion damage of aluminum alloy using acoustic emission testing

    Institute of Scientific and Technical Information of China (English)

    GENG Rongsheng; FU Gangqiang

    2004-01-01

    Current studies are aiming at monitoring corrosion damage of aircraft main structures by using acoustic emission (AE) technique and at supplying useful data for determining calendar life of the aircraft. The characteristics of AE signals produced during accelerating corrosion process are described, and methods for evaluating corrosion damages and determining remaining life of main structures of aircraft using AE testing are outlined. Experimental results have shown that AE technique can detect corrosion damage of aluminum alloy much earlier than conventional non-destructive testing means, such as ultrasonic testing and eddy current testing. Relationship between corrosion damage and AE parameters was obtained through investigating corrosion damage extent and changes of AE signals during accelerating corrosion test, and showing that AE technique can be used to detect early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.

  8. Factors Affecting Detection Probability of Acoustic Tags in Coral Reefs

    KAUST Repository

    Bermudez, Edgar F.

    2012-05-01

    Acoustic telemetry is an important tool for studying the movement patterns, behaviour, and site fidelity of marine organisms; however, its application is challenged in coral reef environments where complex topography and intense environmental noise interferes with acoustic signals, and there has been less study. Therefore, it is particularly critical in coral reef telemetry studies to first conduct a long-term range test, a tool that provides informa- tion on the variability and periodicity of the transmitter detection range and the detection probability. A one-month range test of a coded telemetric system was conducted prior to a large-scale tagging project investigating the movement of approximately 400 fishes from 30 species on offshore coral reefs in the central Red Sea. During this range test we determined the effect of the following factors on transmitter detection efficiency: distance from receiver, time of day, depth, wind, current, moon-phase and temperature. The experiment showed that biological noise is likely to be responsible for a diel pattern of -on average- twice as many detections during the day as during the night. Biological noise appears to be the most important noise source in coral reefs overwhelming the effect of wind-driven noise, which is important in other studies. Detection probability is also heavily influenced by the location of the acoustic sensor within the reef structure. Understanding the effect of environmental factors on transmitter detection probability allowed us to design a more effective receiver array for the large-scale tagging study.

  9. Visualization of stress wave propagation via air-coupled acoustic emission sensors

    Science.gov (United States)

    Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan

    2017-02-01

    We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.

  10. Monitoring of martensite formation during welding by means of acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Bohemen, S.M.C. van; Hermans, M.J.M.; Ouden, G. den [Netherlands Institute for Metals Research, Delft University of Technology, Delft (Netherlands)

    2001-11-21

    The martensitic transformation during gas tungsten arc (GTA) welding of steel 42CrMo4 has been studied using the acoustic emission (AE) monitoring technique. Welds were produced under static conditions (spot welding) and under stationary conditions (travelling arc welding). After spot welding, the root mean square (RMS) value of the continuous acoustic emission was measured, revealing a peak that reflects the evolution of martensite formation during cooling of the spot weld. The RMS value was also measured during travelling arc welding at different heat inputs and corrected for the noise of the welding process to obtain the RMS value due to martensite formation. After welding, optical metallography was carried out to quantify the amount of martensite formed during cooling of the weld. An analysis of the results shows that the squared RMS value is proportional to the volume rate of martensite formation during welding, which is consistent with theory and in good agreement with the results obtained in the case of spot welding. The obtained results suggest that AE can be applied as a real time monitoring technique for the detection of martensite formation during steel welding. (author)

  11. The Sound Emission Board of the KM3NeT Acoustic Positioning System

    CERN Document Server

    Llorens, C D; Sogorb, T; Bou--Cabo, M; Martínez-Mora, J A; Larosa, G; Adrián-Martínez, S

    2012-01-01

    We describe the sound emission board proposed for installation in the acoustic positioning system of the future KM3NeT underwater neutrino telescope. The KM3NeT European consortium aims to build a multi-cubic kilometre underwater neutrino telescope in the deep Mediterranean Sea. In this kind of telescope the mechanical structures holding the optical sensors, which detect the Cherenkov radiation produced by muons emanating from neutrino interactions, are not completely rigid and can move up to dozens of meters in undersea currents. Knowledge of the position of the optical sensors to an accuracy of about 10 cm is needed for adequate muon track reconstruction. A positioning system based on the acoustic triangulation of sound transit time differences between fixed seabed emitters and receiving hydrophones attached to the kilometre-scale vertical flexible structures carrying the optical sensors is being developed. In this paper, we describe the sound emission board developed in the framework of KM3NeT project, whi...

  12. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.

    Science.gov (United States)

    Johnston, Keith; Tapia-Siles, Cecilia; Gerold, Bjoern; Postema, Michiel; Cochran, Sandy; Cuschieri, Alfred; Prentice, Paul

    2014-12-01

    Single clouds of cavitation bubbles, driven by 254kHz focused ultrasound at pressure amplitudes in the range of 0.48-1.22MPa, have been observed via high-speed shadowgraphic imaging at 1×10(6) frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48MPa generated shock-waves with an average period of 7.9±0.5μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8±0.3, 15.8±0.3, 19.8±0.2μs, at pressure amplitudes of 0.64, 0.92 and 1.22MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales.

  13. Experimental facility for the study of acoustic emission registered in the primary circuit components of WWER power units

    Science.gov (United States)

    Petrosyan, V. G.; Hovakimyan, T. H.; Yeghoyan, E. A.; Hovhannisyan, H. T.; Mayilyan, D. G.; Petrosyan, A. P.

    2017-01-01

    This paper is dedicated to the creation of a facility for the experimental study of a phenomenon of background acoustic emission (AE), which is detected in the main circulation loop (MCL) of WWER power units. The analysis of the operating principle and the design of a primary feed-and-blow down system (FB) deaerator of NPP as the most likely source of continuous acoustic emission is carried out. The experimental facility for the systematic study of a phenomenon of continuous AE is developed. A physical model of a thermal deaerator is designed and constructed. A thermal monitoring system is introduced. An automatic system providing acoustic signal registration in a low frequency (0.03-30 kHz) and high frequency (30-300 kHz) bands and study of its spectral characteristics is designed. Special software for recording and processing of digitized electrical sensor signals is developed. A separate and independent principle of study of the most probable processes responsible for the generation of acoustic emission signals in the deaerator is applied. Trial series of experiments and prechecks of acoustic signals in different modes of the deaerator model are conducted. Compliance of basic technological parameters with operating range of the real deaerator was provided. It is shown that the acoustic signal time-intensity curve has several typical regions. The pilot research showed an impact of various processes that come about during the operation of the deaerator physical model on the intensity of the AE signal. The experimental results suggest that the main sources of generation of the AE signals are the processes of steam condensation, turbulent flow of gas-vapor medium, and water boiling.

  14. Fatigue crack growth monitoring of idealized gearbox spline component using acoustic emission

    Science.gov (United States)

    Zhang, Lu; Ozevin, Didem; Hardman, William; Kessler, Seth; Timmons, Alan

    2016-04-01

    The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. The acoustic emission (AE) method is a direct way of detecting active flaws; however, the method suffers from the influence of background noise and location/sensor based pattern recognition method. It is important to identify the source mechanism and adapt it to different test conditions and sensors. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method in a laboratory environment. The test sample has the major details of the spline component on a flattened geometry. The AE data is continuously collected together with strain gauges strategically positions on the structure. The fatigue test characteristics are 4 Hz frequency and 0.1 as the ratio of minimum to maximum loading in tensile regime. It is observed that there are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The frequency spectra of continuous emissions and burst emissions are compared to understand the difference of sudden crack growth and gradual crack growth. The predicted crack growth rate is compared with the AE data using the cumulative AE events at the notch tip. The source mechanism of sudden crack growth is obtained solving the inverse mathematical problem from output signal to input signal. The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method The AE data is continuously collected together with strain gauges. There are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The source mechanism of

  15. Acoustic emission technique for monitoring the pyrolysis of composites for process control.

    Science.gov (United States)

    Tittmann, B R; Yen, C E

    2008-11-01

    Carbonization is the first step in the heat and pressure treatment (pyrolysis) of composites in preparing carbon-carbon parts. These find many uses, including aircraft brakes, rocket nozzles and medical implants. This paper describes the acoustic emissions (AE) from various stages of the manufacturing process of carbon-carbon composites. This process involves carbonization at a high temperature and this results in both thermal expansion and volume change (due to pyrolysis in which a sacrificial polymer matrix is converted to carbon). Importantly the resultant matrix is porous and has a network of small intra-lamina cracks. The formation of these microcracks produces AE and this paper describes how this observation can be used to monitor (and eventually control) the manufacturing process. The aim is to speed up manufacture, which is currently time-consuming. The first section of the paper describes the design of unimodal waveguides to enable the AE to propagate to a cool environment where a transducer can be located. The second part of the paper describes various experimental observations of AE under a range of process conditions. In particular, this paper presents a technique based on detecting acoustic emissions and (1) uses wire waveguides to monitor parts within the autoclave to 800 degrees C, (2) monitors microcracking during pyrolysis, (3) uses a four-level threshold to distinguish between low- and high-amplitude cracking events, (4) recognizes the occurrence of harmful delaminations, and (5) guides the control of the heating rate for optimum efficiency of the pyrolysis process. In addition, supporting data are presented of in situ measurements of porosity, weight loss, cross-ply shrinkage, and mass spectroscopy of gases emitted. The process evolution is illustrated by the use of interrupted manufacturing cycle micrographs obtained by optical, scanning acoustic (SAM) and scanning electron (SEM) microscopy. The technique promotes in-process monitoring and

  16. A signal processing approach for enhanced Acoustic Emission data analysis in high activity systems: Application to organic matrix composites

    Science.gov (United States)

    Kharrat, M.; Ramasso, E.; Placet, V.; Boubakar, M. L.

    2016-03-01

    Structural elements made of Organic Matrix Composites (OMC) under complex loading may suffer from high Acoustic Emission (AE) activity caused by the emergence of different emission sources at high rates with high noise level, which finally engender continuous emissions. The detection of hits in this situation becomes a challenge particularly during fatigue tests. This work suggests an approach based on the Discrete Wavelet Transform (DWT) denoising applied on signal segments. A particular attention is paid to the adjustment of the denoising parameters based on pencil lead breaks and their influence on the quality of the denoised AE signals. The validation of the proposed approach is performed on a ring-shaped Carbon Fiber Reinforced Plastics (CFRP) under in-service-like conditions involving continuous emissions with superimposed damage-related transients. It is demonstrated that errors in hit detection are greatly reduced leading to a better identification of the natural damage scenario based on AE signals.

  17. Real-time structural integrity monitoring using a passive quadrature demodulated, localised Michelson optical fibre interferometer capable of simultaneous strain and acoustic emission sensing

    Science.gov (United States)

    Tapanes, Edward

    1991-12-01

    A Michelson Fiber optic sensor (MFOS) is described for in-situ strain and vibration monitoring as well as acoustic emission detection in composite material structures. The phase sensitive fiber optic sensor is localized, all-fiber, and intrinsic. The MFOS was successfully embedded in Kevlar/epoxy and graphite/epoxy thermosets as well as graphite/PEEK thermoplastic in order to perform local strain and vibration measurements at the lamina level. A technique allowing acoustic emission detection in parallel with strain and vibration monitoring is illustrated.

  18. On Marine Mammal Acoustic Detection Performance Bounds

    CERN Document Server

    Xian, Yin; Tantum, Stacy; Liao, Xuejun; Zhang, Yuan

    2015-01-01

    Since the spectrogram does not preserve phase information contained in the original data, any algorithm based on the spectrogram is not likely to be optimum for detection. In this paper, we present the Short Time Fourier Transform detector to detect marine mammals in the time-frequency plane. The detector uses phase information for detection. We evaluate this detector by comparing it to the existing spectrogram based detectors for different SNRs and various environments including a known ocean, uncertain ocean, and mean ocean. The results show that this detector outperforms the spectrogram based detector. Simulations are presented using the polynomial phase signal model of the North Atlantic Right Whale (NARW), along with the bellhop ray tracing model.

  19. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  20. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  1. Topography and biological noise determine acoustic detectability on coral reefs

    KAUST Repository

    Cagua, Edgar F.

    2013-08-19

    Acoustic telemetry is an increasingly common tool for studying the movement patterns, behavior and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic tags and receivers must be understood. The relative and interactive effects of topography with biological and environmental noise have not been quantified on coral reefs. We conduct two long-term range tests (1- and 4-month duration) on two different reef types in the central Red Sea to determine the relative effect of distance, depth, topography, time of day, wind, lunar phase, sea surface temperature and thermocline on detection probability. Detectability, as expected, declines with increasing distance between tags and receivers, and we find average detection ranges of 530 and 120 m, using V16 and V13 tags, respectively, but the topography of the reef can significantly modify this relationship, reducing the range by ~70 %, even when tags and receivers are in line-of-sight. Analyses that assume a relationship between distance and detections must therefore be used with care. Nighttime detection range was consistently reduced in both locations, and detections varied by lunar phase in the 4-month test, suggesting a strong influence of biological noise (reducing detection probability up to 30 %), notably more influential than other environmental noises, including wind-driven noise, which is normally considered important in open-water environments. Analysis of detections should be corrected in consideration of the diel patterns we find, and range tests or sentinel tags should be used for more than 1 month to quantify potential changes due to lunar phase. Some studies assume that the most usual factor limiting detection range is weather-related noise; this cannot be extrapolated to coral reefs. © 2013 Springer-Verlag Berlin Heidelberg.

  2. Topography and biological noise determine acoustic detectability on coral reefs

    Science.gov (United States)

    Cagua, E. F.; Berumen, M. L.; Tyler, E. H. M.

    2013-12-01

    Acoustic telemetry is an increasingly common tool for studying the movement patterns, behavior and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic tags and receivers must be understood. The relative and interactive effects of topography with biological and environmental noise have not been quantified on coral reefs. We conduct two long-term range tests (1- and 4-month duration) on two different reef types in the central Red Sea to determine the relative effect of distance, depth, topography, time of day, wind, lunar phase, sea surface temperature and thermocline on detection probability. Detectability, as expected, declines with increasing distance between tags and receivers, and we find average detection ranges of 530 and 120 m, using V16 and V13 tags, respectively, but the topography of the reef can significantly modify this relationship, reducing the range by ~70 %, even when tags and receivers are in line-of-sight. Analyses that assume a relationship between distance and detections must therefore be used with care. Nighttime detection range was consistently reduced in both locations, and detections varied by lunar phase in the 4-month test, suggesting a strong influence of biological noise (reducing detection probability up to 30 %), notably more influential than other environmental noises, including wind-driven noise, which is normally considered important in open-water environments. Analysis of detections should be corrected in consideration of the diel patterns we find, and range tests or sentinel tags should be used for more than 1 month to quantify potential changes due to lunar phase. Some studies assume that the most usual factor limiting detection range is weather-related noise; this cannot be extrapolated to coral reefs.

  3. Acoustic detection of ultra-high energy cascades in ice

    Energy Technology Data Exchange (ETDEWEB)

    Boeser, S.

    2006-12-08

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km{sup 3} scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km{sup 3} will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and

  4. Effect of aluminium in propellant composition on acoustic emission parameters (Short Communication

    Directory of Open Access Journals (Sweden)

    Rm. Muthiah

    2001-04-01

    Full Text Available The study reports the variation in acoustic emission signals acquired during combustion of typical propellants with varying aluminium and ammonium perchlorate content. It was observed that when propellant strands having the same composition undergo combustion under similar conditions, they produce consistent acoustic emission signals. To study the effect of variation of aluminium content in the propellant composition on the acoustic emission produced during combustion, the aluminium content was varied from 6 per cent to 18 per cent in a HTPB-based composite propellant with 86 per cent solid loading. Experiments were carried out with propellant strands under the same conditions for a comparative study. Acoustic emission parameters, such as peak amplitude, ring-down counts, average frequency, hits and energy were studied as functions of time. Among these parameters, only energy ring-down counts and frequency varied significantly with aluminium content. The effect of cumulative values of energy, frequency and ring-down counts, the effect of burn rate and theoretical specific impulse against the aluminium percentage variation, and the variation of specific impulse against acoustic energy can all be correlated. The clear trend is indicative of possible prediction of propellant performance parameter like specific impulse from acoustic emission parameters.

  5. A Study on the Evaluation of Valve Leak Rates Using Acoustic Emission Technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Lee, Jun Shin; Lee, Sun Ki; Shon, Seok Man; Lee, Wook Ryun; Kim, Tae Ryong [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lim, Yong Jae; Choo, Kee Young [Hana Evertech Co., Seongnam (Korea, Republic of)

    2005-07-01

    The objective of this study is to estimate the feasibility of acoustic emission method for the internal leak from the valves. In this study, two types of valve(a 3 1/2 inch glove valve for 600 psi steam and a 4 inch ball valve water ) leak tests using three different leak path and numerous leak rates were performed in order to analyze acoustic emission properties when leaks arise in valve seat. As a result of leak test for specimens simulated valve seat, we conformed that leak sound amplitude increased in proportion to the increase of leak rate, and leak rates were plotted versus peak acoustic amplitudes recorded within those two narrow frequency bands on each spectral plot. The resulting plots of leak rate versus peak acoustic amplitude were the primary basis for determining the feasibility of quantifying leak acoustically. The large amount of data collected also allowed a grief investigation of the effects of different leak paths, leakage rates, pressure differentials and transducers on the acoustic amplitude spectra. From the experimental results, it was suggested that the acoustic emission method for monitoring of leak was feasible.

  6. Analysis of short circuit transfer behavior using acoustic signal detection

    Directory of Open Access Journals (Sweden)

    Eakkachai Warinsiriruk

    2013-06-01

    Full Text Available The stability of a short circuiting period is important to obtain the desired weld quality. The objective of this research is to analyze the uniformity of liquid bridge disruption period during short circuit mode affected by various shielding gas compositions. The shielding gas compositions of 100% CO2 and 84%Ar+2%O2+14%CO2 were used in this study. Short circuiting period was detected by using acoustic signals emitting from the arc. Acoustic data were recorded by using multimedia function of XP windows audio card through a high sensitivity microphone. The results of short circuit acoustic data were analyzed by using continuous wavelet transformation for classifying the difference of acoustic emitting mechanism of electrode tip touching with base metal and pinching cut-off. For 84%Ar+2%O2+14%CO2 shielding gas, it clearly showed smoothershort circuit transfer than that of CO2 shielding gas. CO2 shielding gas gave large variation in disruption period comparing with that of 84%Ar+2%O2+14%CO2 gas mixture.

  7. Neurobiology of acoustically mediated predator detection.

    Science.gov (United States)

    Pollack, Gerald S

    2015-01-01

    Ultrasound-driven avoidance responses have evolved repeatedly throughout the insecta as defenses against predation by echolocating bats. Although the auditory mechanics of ears and the properties of auditory receptor neurons have been studied in a number of groups, central neural processing of ultrasound stimuli has been examined in only a few cases. In this review, I summarize the neuronal basis for ultrasound detection and predator avoidance in crickets, tettigoniids, moths, and mantises, where central circuits have been studied most thoroughly. Several neuronal attributes, including steep intensity-response functions, high firing rates, and rapid spike conduction emerge as common themes of avoidance circuits. I discuss the functional consequences of these attributes, as well as the increasing complexity with which ultrasound stimuli are represented at successive levels of processing.

  8. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    NARCIS (Netherlands)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Sen, N. Chon; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J. -P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J. -L.; Gay, P.; Giacomelli, G.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchneri, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefevre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Pavalas, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schoeck, F.; Schuller, J. -P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic se

  9. Acoustic Emission Determination of Deformation Mechanisms Leading to Failure of Naval Alloys. Volume 2

    Science.gov (United States)

    1983-05-01

    Emission Laser Beam Interferometer HY80 , 100, 130 Steels Mechanical Deformation Nondestructive Evaluation 2. ABSTRACT (Conetnue an rovere eli if necoo y...publication, J. Applied Phys.). 43. A. Peterlin, B.B. Djordjvic, J.C. Murphy, R.E. Green, "Acoustic Emission During Craze Forma- tion in Polymers

  10. Acoustic Emission Monitoring and Microscopic Investigation of Cracks in ERCuNi Cladding

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A corrosion resistant CuNi cladding was deposited on SM45C (equivalent to AI5I1045) substrate by DC inverse arcwelding. During the welding process, a three channel acoustic emission (AE) monitoring system was applied to detectthe crack signals generating from both the cladding process and after cladding. Characteristics of the welding cracksignal and noise signal had been analyzed systematically. Based on the record time of the signal, the solidificationcrack and delayed crack were distinguished. By two-dimensional AE source location, the crack position was located,and then investigated by scanning electron microscopy (SEM). Results showed that the AE system could detect thewelding crack with high sensitivity and the two-dimensional source location could accurately determine the crackposition. Microstructures of the cladding and heat affected zone (HAZ) were examined. Dendrites in the claddingand coarse grains in the HAZ were found.

  11. Acoustic emission localization based on FBG sensing network and SVR algorithm

    Science.gov (United States)

    Sai, Yaozhang; Zhao, Xiuxia; Hou, Dianli; Jiang, Mingshun

    2017-03-01

    In practical application, carbon fiber reinforced plastics (CFRP) structures are easy to appear all sorts of invisible damages. So the damages should be timely located and detected for the safety of CFPR structures. In this paper, an acoustic emission (AE) localization system based on fiber Bragg grating (FBG) sensing network and support vector regression (SVR) is proposed for damage localization. AE signals, which are caused by damage, are acquired by high speed FBG interrogation. According to the Shannon wavelet transform, time differences between AE signals are extracted for localization algorithm based on SVR. According to the SVR model, the coordinate of AE source can be accurately predicted without wave velocity. The FBG system and localization algorithm are verified on a 500 mm×500 mm×2 mm CFRP plate. The experimental results show that the average error of localization system is 2.8 mm and the training time is 0.07 s.

  12. Acoustic emission localization based on FBG sensing network and SVR algorithm

    Science.gov (United States)

    Sai, Yaozhang; Zhao, Xiuxia; Hou, Dianli; Jiang, Mingshun

    2016-11-01

    In practical application, carbon fiber reinforced plastics (CFRP) structures are easy to appear all sorts of invisible damages. So the damages should be timely located and detected for the safety of CFPR structures. In this paper, an acoustic emission (AE) localization system based on fiber Bragg grating (FBG) sensing network and support vector regression (SVR) is proposed for damage localization. AE signals, which are caused by damage, are acquired by high speed FBG interrogation. According to the Shannon wavelet transform, time differences between AE signals are extracted for localization algorithm based on SVR. According to the SVR model, the coordinate of AE source can be accurately predicted without wave velocity. The FBG system and localization algorithm are verified on a 500 mm×500 mm×2 mm CFRP plate. The experimental results show that the average error of localization system is 2.8 mm and the training time is 0.07 s.

  13. Acoustic Emission Assessment of Impending Fracture in a Cyclically Loading Structural Steel

    Directory of Open Access Journals (Sweden)

    Igor Rastegaev

    2016-11-01

    Full Text Available Using the advanced acoustic emission (AE technique, we address the problem of early identification of crack initiation and growth in ductile structural steels under cyclic loading. The notched 9MnSi5 steel specimens with weld joints were fatigue tested at room and lower temperatures with concurrent AE measurements. Detection of AE in ductile materials where fatigue crack initiation and propagation is mediated by local dislocation behavior ahead of the notch or crack tip is challenging because of an extremely low amplitude of the AE signal. With account of this issue, two new practically oriented criteria for recognition of different stages of fatigue are proposed on the basis of AE data: (1 a power spectrum-based criterion and (2 a pattern recognition-based criterion utilizing modern clustering algorithms. The applicability of both criteria is verified using obtained AE data. A good correspondence between AE outcomes and experimental observations of the fatigue behavior was obtained and is discussed.

  14. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    Science.gov (United States)

    Omar, Al Haj; Véronique, Peres; Eric, Serris; François, Grosjean; Jean, Kittel; François, Ropital; Michel, Cournil

    2015-06-01

    Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO2 layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and not in the dense zirconia layer after 5 h of oxidation.

  15. Acoustic properties of glacial ice for neutrino detection and the Enceladus Explorer

    CERN Document Server

    Helbing, K; Naumann, U; Eliseev, D; Heinen, D; Scholz, F; Wiebusch, C; Zierke, S

    2016-01-01

    Ultra high energy neutrinos may be observed in ice by the emission of acoustic signals. The SPATS detector has investigated the possibility of observing GZK-neutrinos in the clear ice near the South Pole at the IceCube detector site. To explore other potential detection sites glacial ice in the Alps and in Antarctica has been surveyed for its acoustical properties. The purpose of the Enceladus Explorer (EnEx), on the other hand, is the search for extraterrestrial life on the Saturn moon Enceladus. Here acoustics is used to maneuver a subsurface probe inside the ice by trilateration of signals. A system of acoustic transducers has been developed to study both applications. In the south polar region of the moon Enceladus there are secluded crevasses. These are filled with liquid water, probably heated by tidal forces due to the short distance to Saturn. We intend to take a sample of water from these crevasses by using a combination of a melt down and steering probe called IceMole (IM). Maneuvering IM requires a...

  16. Acoustic emissions in rock deformation experiments under micro-CT

    Science.gov (United States)

    Tisato, Nicola; Goodfellow, Sebastian D.; Moulas, Evangelos; Di Toro, Giulio; Young, Paul; Grasselli, Giovanni

    2016-04-01

    The study of acoustic emissions (AE) generated by rocks undergoing deformation has become, in the last decades, one of the most powerful tools for boosting our understanding of the mechanisms which are responsible for rock failures. AE are elastic waves emitted by the local failure of micro- or milli-metric portions of the tested specimen. At the same time, X-ray micro computed tomography (micro-CT) has become an affordable, reliable and powerful tool for imaging the internal structure of rock samples. In particular, micro-CT coupled with a deformation apparatus offers the unique opportunity for observing, without perturbing, the sample while the deformation and the formation of internal structures, such as shear bands, is ongoing. Here we present some preliminary results gathered with an innovative apparatus formed by the X-ray transparent pressure vessel called ERDμ equipped with AE sensors, an AE acquisition system and a micro-CT apparatus available at the University of Toronto. The experiment was performed on a 12 mm diameter 36 mm long porous glass sample which was cut on a 60 deg inclined plane (i.e. saw-cut sample). Etna basaltic sand with size ~1 mm was placed between the two inclined faces forming an inclined fault zone with ~2 mm thickness. The sample assembly was jacketed with a polyefin shrink tube and two AE sensors were glued onto the glass samples above and below the fault zone. The sample was then enclosed in the pressure vessel and confined with compressed air up to 3 MPa. A third AE sensor was placed outside the vessel. The sample was saturated with water and AE were generated by varying the fluid and confining pressure or the vertical force, causing deformations concentrated in the fault zone. Mechanical data and AE traces were collected throughout the entire experiment which lasted ~24 hours. At the same time multiple micro-CT 3D datasets and 2D movie-radiographies were collected, allowing the 3D reconstruction of the deformed sample at

  17. Preliminary studies for monitoring erosion in pipelines by the acoustic emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiboni, G.B. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Mecanica e de Materiais; Marquardt, T.A.S; SantaMaria, V.A.R.; Silva, C.H. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    The aim of this work is to present some applications of Acoustic Emission (AE), which is a powerful technique for nondestructive testing in Tribology, treated here as tests of friction, wear by contact fatigue, wear by slip and wear by erosion. In this work a special attention is given to solid particle erosion and hydro-abrasive erosion, problems found in almost every pipeline that lead to local loss of material and eventually rupture of the line. The technique of AE can be used as an efficient online tool when, primarily, to monitor tribological aspects such as the rate of wear of materials, as well as detect the spread of flaws in them. In wear by erosion, specifically, the parameters of RMS and acoustic energy are capable of correlation with the type of mechanism for removal of material. As a preliminary goal, erosive tests were performed with gas (air) without erosive particles, monitored by AE, varying the surface of the samples and the internal diameter the nozzle, taking the differences in signs of AE. Correlation between parameters of RMS and amplitude were noticed with the variables of the tests, such as roughness and fluid velocity. The RMS parameter showed a exponential correction with the fluid velocity, however the amplitude signals had a linear behavior. The knowledge of these parameters is essential for the development of a system that is able to quantify the wear rate of a pipeline without taking it out of operation. (author)

  18. Uniaxial compression CT and acoustic emission test on the coal crack propagation destruction process

    Institute of Scientific and Technical Information of China (English)

    Jing-hong LIU; Yao-dong JIANG; Yi-xin ZHAO; Jie ZHU

    2013-01-01

    Acoustic emission test and CT scanning are important techniques in the study of coal crack propagation.A uniaxial compression test was performed on coal samples by integrating CT and acoustic emission.The test comparison analyzes the acoustic emission load and CT images for an effective observation on the entire process,from crack propagation to the samples' destruction.The box dimension of the coal samples' acoustic emission series and the CT images were obtained through calculations by using the authors' own program.The results show that the fractal dimension of both the acoustic emission energy and CT image increase rapidly,indicating coal and rock mass has entered a dangerous condition.Hence,measures should be taken to unload the pressure of the coal and rock mass.The test results provide intuitive observation data for the coal meso-damage model.The test contributes to in-depth studies of coal or rock crack propagation mechanisms and provides a theoretical basis for rock burst mechanism.

  19. Cavitating vortex characterization based on acoustic signal detection

    Science.gov (United States)

    Digulescu, A.; Murgan, I.; Candel, I.; Bunea, F.; Ciocan, G.; Bucur, D. M.; Dunca, G.; Ioana, C.; Vasile, G.; Serbanescu, A.

    2016-11-01

    In hydraulic turbines operating at part loads, a cavitating vortex structure appears at runner outlet. This helical vortex, called vortex rope, can be cavitating in its core if the local pressure is lower that the vaporization pressure. An actual concern is the detection of the cavitation apparition and the characterization of its level. This paper presents a potentially innovative method for the detection of the cavitating vortex presence based on acoustic methods. The method is tested on a reduced scale facility using two acoustic transceivers positioned in ”V” configuration. The received signals were continuously recorded and their frequency content was chosen to fit the flow and the cavitating vortex. Experimental results showed that due to the increasing flow rate, the signal - vortex interaction is observed as modifications on the received signal's high order statistics and bandwidth. Also, the signal processing results were correlated with the data measured with a pressure sensor mounted in the cavitating vortex section. Finally it is shown that this non-intrusive acoustic approach can indicate the apparition, development and the damping of the cavitating vortex. For real scale facilities, applying this method is a work in progress.

  20. Detection and tracking of drones using advanced acoustic cameras

    Science.gov (United States)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  1. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Benno

    2009-09-24

    intrinsic disorder leads to a lower acoustic activity and weaker signals under decreasing cooling rates. In the case of Au{sub 50.5}Cd{sub 49.5}, by contrast, the low rates allow aging to become significant. This leads to higher energy barriers and, as a consequence, to stronger acoustic emission signals. The excellent agreement of this result with a model introduced by Otsuka et al. [127], suggests that aging should be included into the framework of driving rate effects in avalanche-mediated phase transitions [135]. In contrast to what has been stated earlier [20, 172], the author concludes that only the detection of rate-dependent acoustic activity or the detection of incubation times are necessary and sufficient conditions for time-dependent dynamics. Rate-dependent exponents are a sufficient but not necessary condition for time-dependent behavior. The determination of power law exponents has been proven to be a reliable tool for the characterization of the transition dynamics and associated energy barriers, because the exponents are robust and do not depend on experimental details. This observation reveals a close relation to the concept of self organized criticality [9]. In this work it has been shown for the first time by the evaluation of power law exponents how an applied magnetic field alters energy barriers during structural transitions of magnetic shape memory alloys. Depending on the symmetry of the product phase opposing results can be found: The symmetry-breaking process of a martensitic transition under an applied magnetic field leads to an increase of the activity due to a twofold process, including phase and twin boundary motion. Furthermore, the application of a magnetic field breaks the degeneracy, which leads to larger constraints reflected in stronger signals due to the satisfaction of the invariant habit plane condition. By contrast, less acoustic activity and weaker signals appear in association with the symmetry-conserving premartensitic transition

  2. A joint fatigue - creep deterioration model for masonry with acoustic emission based damage assessment

    OpenAIRE

    Tomor, Adrienn K.; Verstrynge, Els

    2013-01-01

    The paper investigates the long-term fatigue and creep deterioration processes in historical brick masonry. Based on two independent laboratory test series, the relationship between stress level and life expectancy was considered for fatigue and creep loading in the form of SN type models. The process of deterioration was investigated with the help of acoustic emission technique to identify stages and characteristics of the damage accumulation process. Based on the test data and acoustic emis...

  3. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    Energy Technology Data Exchange (ETDEWEB)

    Amami, Souhail [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)], E-mail: souhail.amami@utc.fr; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)

    2010-05-15

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  4. Aespoe Pillar Stability Experiment. Acoustic emission and ultrasonic monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Pettitt, Will; Young, R. Paul [Applied Seismology Consultants Ltd., Shrewsbury (United Kingdom)

    2005-12-15

    This report describes the results from acoustic emission (AE) and ultrasonic monitoring of the Aespoe Pillar Stability Experiment (APSE) at SKB's Hard Rock Laboratory (HRL), Sweden. The APSE is being undertaken to demonstrate the current capability to predict spalling in a fractured rock mass using numerical modelling techniques, and to demonstrate the effect of backfill and confining pressure on the propagation of micro-cracks in rock adjacent to deposition holes within a repository. An ultrasonic acquisition system has provided acoustic emission and ultrasonic survey monitoring throughout the various phases of the experiment. Results from the entire data set are provided with this document so that they can be effectively compared to several numerical modelling studies, and to mechanical and thermal measurements conducted around the pillar volume, in an 'integrated analysis' performed by SKB staff. This document provides an in-depth summary of the AE and ultrasonic survey results for future reference. The pillar has been produced by excavating two 1.8 m diameter deposition holes 1 m apart. These were bored in 0.8 m steps using a Tunnel Boring Machine specially adapted for vertical drilling. The first deposition hole was drilled in December 2003. Preceding this a period of background monitoring was performed so as to obtain a datum for the results. The hole was then confined to 0.7 MPa internal over pressure using a specially designed water-filled bladder. The second deposition hole was excavated in March 2004. Heating of the pillar was performed over a two month period between ending in July 2004, when the confined deposition hole was slowly depressurised. Immediately after depressurisation the pillar was allowed to cool with cessation of monitoring occurring a month later. A total of 36,676 AE triggers were recorded over the reporting period between 13th October 2003 and 14th July 2004. Of these 15,198 have produced AE locations. The AE data set

  5. Fiber-optic sensor-based remote acoustic emission measurement of composites

    Science.gov (United States)

    Yu, Fengming; Okabe, Yoji; Wu, Qi; Shigeta, Naoki

    2016-10-01

    Acoustic emission (AE) detection functioning at high temperatures could clarify the damage process in high heat-resistant composites. To achieve the high-temperature AE detection, a remote AE measurement based on a phase-shifted fiber Bragg grating (PS-FBG) sensor with a high sensitivity over a broad bandwidth was proposed. The common optical fibers were made from glass with good heat resistance. Hence, in this method, optical fiber was used as the waveguide to propagate the AE in the composite from a high-temperature environment to the room-temperature environment wherein the PS-FBG was located. Owing to the special AE detection configuration, this method was a new adhesive method for remote measurement (ADRM). The experiment and numerical simulation revealed that the PS-FBG sensor in the ADRM configuration demonstrated accurate remote sensing for the AE signals. This was because of the good waveguide system provided by the thin optical fiber and the sensitivity of the PS-FBG sensor to the axial strain in the core of the fiber. Consequently, the remote measurement utilizing the PS-FBG sensor in the ADRM configuration has a high potential for AE detection in high-temperature conditions.

  6. Does There Exist a Relationship Between Acoustic and White-Light Emission in Hard-X ray Solar Flares?

    Science.gov (United States)

    Buitrago-Casas, J. C.; Martinez Oliveros, J. C.; Glesener, L.; Krucker, S.; Calvo-Mozo, B.

    2014-12-01

    Several mechanisms have been proposed to explain the observed seismicity during some solar flares. One theory associates high-energy electrons and white-light emission with sunquakes. This relationship is based on the back-warming model, where high-energy electrons and their subsequent heating of the photosphere induce acoustic waves in the solar interior. We carried out a correlative study of solar flares with emission in hard-X rays (HXRs) above 50 keV, enhanced white light emission at 6573Å, and acoustic sources. We selected those flares observed by RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) with a considerable flux in the 50-100 and 100-300 keV bands between January 1, 2010 and June 26, 2014. Additionally, we restricted the sample to flares close to disk center where it is observationally easiest to detect a sunquake. We then used data from the Helioseismic and Magnetic Imager onboard the Solar Dynamic Observatory (SDO/HMI) to search for white-light emission and helioseismic signatures. Finally, we calculated a coefficient of correlation for this set of dichotomic observables. We discuss the phenomenological connectivity between these physical quantities and the observational difficulties of detecting seismic signals and white-light radiation with terrestrial and space-borne observations.

  7. Initiation of acoustic emission in fluid-saturated sandstone samples

    Science.gov (United States)

    Lapshin, V. B.; Patonin, A. V.; Ponomarev, A. V.; Potanina, M. G.; Smirnov, V. B.; Stroganova, S. M.

    2016-07-01

    A rock behavior experiment with uniaxial compression revealed the effect of acoustic activity in loaded fluid-saturated Berea sandstone samples in response to an electric current. It is established that it is substantially intensified in periods of the current impact and decreases after its cut-off. The current impact also results in a growth of radial deformation indicating an increase in the sample volume. The effect of acoustic activation increases in response to increased heat emitted by the electric current during its flow through the sample, which allows the discovered effect to be explained by initiation of its destruction due to thermal expansion of the fluid in rock interstices and fissures.

  8. Analysis of Acoustic Emission Signal by Fractal Theory in Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The relation between acoustic emission signal and nugget during aluminum alloy spot welding was investigated in order to evaluate spot welding quality. Due to the nonlinearity of the signals, fractal theory was utilized to quantitatively describe the characteristics of the signals instead of classical Euclidean geometry which cannot describe the acoustic emission signal accurately. Through experiments and computing, the box counting dimension is found distinct from other acoustic emission signals and is a better approach to discriminating weld nugget stages. Results show that fractal dimensions increase from 1.51 to 1.78,and they are related to nugget areas added from non-fusion to over-heated nugget.And the box counting dimension can effectively evaluate the quality of the nugget in the spot welding and can be applied with current, displace, and other spot welding parameters.

  9. Identification of acoustic emission signal in aluminum alloys spot welding based on fractal theory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The acoustic emission signal of aluminum alloys spot welding includes the information of forming nugget and is one of the important parameters in the quality control. Due to the nonlinearity of the signals, classic Euclidean geometry can not be applied to depict exactly. The fractal theory is implemented to quantitatively describe the characteristics of the acoustic emission signals. The experiment and calculation results show that the box counting dimension of acoustic emission signal, between 1 and 2, are distinctive from different nugget areas in AC spot welding. It is proved that box counting dimension is an effective characteristic parameter to evaluate spot welding quality. In addition, fractal theory can also be applied in other spot welding parameters, such as voltage, current, electrode force and so on, for the purpose of recognizing the spot welding quality.

  10. Acoustic emission characterization of fracture toughness for fiber reinforced ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Hui, E-mail: phdhuimei@yahoo.com [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi' an Shaanxi 710072 (China); Sun, Yuyao; Zhang, Lidong; Wang, Hongqin; Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi' an Shaanxi 710072 (China)

    2013-01-10

    The fracture toughness of a carbon fiber reinforced silicon carbide composite was investigated relating to classical critical stress intensity factor K{sub IC}, work of fracture, and acoustic emission energy. The K{sub IC} was obtained by the single edge notch beam method and the work of fracture was calculated using the featured area under the load-displacement curves. The K{sub IC}, work of fracture, and acoustic emission energy were compared for the composites before and after heat treatment and then analyzed associated with toughening microstructures of fiber pullout. It indicates that the work of fracture and acoustic emission energy can be more suitable to reflect the toughness rather than the traditional K{sub IC}, which has certain limitation for the fracture toughness characterization of the crack tolerant fiber ceramic composites.

  11. Acoustic emission technique based rubbing identification for Rotor-bearing systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Rubbing is the frequent and dangerous fault in the rotating machine, and efficient identi-fication of the rubbing is a hot research subject in the field of fault diagnosis. In this paper, a newrubbing identification method is proposed, which is based on the acoustic emission technique. Inthis method, the acoustic emission signal of the rubbing in the multi-support rotor-bearing systemis acquired by the acoustic emission sensor, and then the continuous wavelet transform is utilizedto analyze this signal. Based on the rubbing mechanism, the frequency feature of the multiple fre-quency relation in the instantaneous frequency wave is extracted as the rubbing identification fea-ture. The experimental results prove that the proposed method is efficient and feasible.

  12. Towards identifying the dynamics of sliding by acoustic emission and vibration

    Science.gov (United States)

    Korchuganov, M. A.; Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2016-11-01

    The results of experiments with high load and sliding speed sliding conditions on tribologically mated pairs such as steel 1045/steel 1045 (test 1), steel 1045/basalt (test 2) and Hadfield steel/basalt (test 3) have been carried out in order to identify their response in terms of the acoustic emission and vibration signals. The steel to rock and rock to steel transfer has been revealed by examining the worn surfaces of both steel and rock samples with the use of laser scanning microscopy. The AE signal characteristics have been determined for the tribological pairs studied. The dynamics of sliding has been evaluated by measuring the vibration accelerations. Relationship between wear mode and either acoustic emission signal or vibration signal has been established. The minimal vibration oscillations amplitude and acoustic emission signal energy have been found out in sliding Hadfield steel/basalt pair.

  13. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    Science.gov (United States)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  14. Laser-induced acoustic landmine detection with experimental results on buried landmines

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Putten, F.J.M. van; Koersel, A.C. van; Schleijpen, H.M.A.

    2004-01-01

    Acoustic landmine detection (ALD) is a technique for the detection of buried landmines including non-metal mines. Since it gives complementary results with GPR or metal detection, sensor fusion of these techniques with acoustic detection would give promising results. Two methods are used for the aco

  15. The application of the acoustic emission technique to stone decay by sodium sulphate in laboratory tests

    Directory of Open Access Journals (Sweden)

    Grossi, C. M.

    1997-03-01

    Full Text Available Acoustic emission was monitored during salt crystallisation cycles in order to study the mechanisms of rock deterioration by sodium sulphate in laboratory tests. Some porous carbonate stones used in Spanish monuments (Cathedral of Oviedo, Murcia and Seo Vella of Lérida were selected for this study. The acoustic emission detected during the different stages of the cycles (immersion, drying and cooling was interpreted to be the result of the salt behaviour inside the stone. The use of this technique has confirmed that this behaviour depends on salt characteristics (solubility, hydration state and polymorphism of anhydrous sodium sulphate and stone porosity and pore network.

    Para determinar los mecanismos de deterioro de las rocas debidos a la acción del sulfato de sodio, se ha registrado la emisión acústica durante ensayos de cristalización de sales en el laboratorio. Para ello, se han seleccionado tres piedras porosas carbonatadas utilizadas como materiales de construcción en monumentos españoles (Catedrales de Oviedo, Murcia y Seo Vella de Lérida. La emisión acústica detectada durante las diferentes etapas de los ciclos (inmersión, secado y enfriamiento se ha interpretado como debida al comportamiento de la sal en el interior de la piedra. Mediante esta técnica se ha confirmado que este comportamiento depende de las características de la sal (solubilidad, diferentes estados de hidratación y el polimorfismo del sulfato de sodio anhidro y de la porosidad y configuración del sistema poroso de las rocas.

  16. Clinical Study of Acoustic Densitometry Technique in Detecting Atherosclerotic Plaque

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To investigate the effect of Quyu Xiaoban Capsule (祛瘀消斑, QYXB) on the regressive treatment of atherosclerosis (AS) with acoustic densitometry (AD) technique. Methods: Eighty patients with AS were randomly divided into two groups, trial group was treated with QYXB and conventional medicine, and control group was treated with conventional medicine alone. Normal arterial wall and different types of atherosclerotic plaques were detected with AD technique before treatment and 10 months later. Resuits: The corrected averages in intimal echo intensity (AIIc%) were elevated in both groups but without significant difference, AIIc% of fatty plaques were increased in both groups and the value after treatment was significantly higher than that of pre-treatment in the trial group (68.12±5.54 vs 61.43±5.37, P<0.05).The increment rate of AIIc% in trial group was significantly higher than that in control group (10.9±5.1% vs2.5±5.5%, P<0.05). Conclusion: QYXB can stabilize the atherosclerotic plaque by increasing its acoustic density. Acoustic densitometry technique can differentiate the different histological plaques and monitor the histological changes of plaques during treatment.

  17. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    Science.gov (United States)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  18. Acoustic emission localization on ship hull structures using a deep learning approach

    DEFF Research Database (Denmark)

    Georgoulas, George; Kappatos, Vassilios; Nikolakopoulos, George

    2016-01-01

    In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high dimension......In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high...

  19. Thick-film acoustic emission sensors for use in structurally integrated condition-monitoring applications.

    Science.gov (United States)

    Pickwell, Andrew J; Dorey, Robert A; Mba, David

    2011-09-01

    Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.

  20. Detecting small low emission radiating sources

    CERN Document Server

    Allmaras, Moritz; Hristova, Yulia; Kanschat, Guido; Kuchment, Peter

    2010-01-01

    The article addresses the possibility of robust detection of geometrically small, low emission sources on a significantly stronger background. This problem is important for homeland security. A technique of detecting such sources using Compton type cameras is developed, which is shown on numerical examples to have high sensitivity and specificity and also allows to assign confidence probabilities of the detection. 2D case is considered in detail.

  1. Early-age acoustic emission measurements in hydrating cement paste: Evidence for cavitation during solidification due to self-desiccation

    DEFF Research Database (Denmark)

    Lura, Pietro; Couch, J.; Jensen, Ole Mejlhede;

    2009-01-01

    In this study, the acoustic emission activity of cement pastes was investigated during the first day of hydration. Deaired, fresh cement pastes were cast in sealed sample holders designed to minimize friction and restraint. The majority of acoustic emission events occurred in lower water to cemen...

  2. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Vander Stappen, François; Janssens, Guillaume; Prieels, Damien [Ion Beam Applications SA, Louvain-la-Neuve 1348 (Belgium); Bawiec, Christopher R.; Lewin, Peter A. [School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Sehgal, Chandra M. [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  3. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Benno

    2009-09-24

    intrinsic disorder leads to a lower acoustic activity and weaker signals under decreasing cooling rates. In the case of Au{sub 50.5}Cd{sub 49.5}, by contrast, the low rates allow aging to become significant. This leads to higher energy barriers and, as a consequence, to stronger acoustic emission signals. The excellent agreement of this result with a model introduced by Otsuka et al. [127], suggests that aging should be included into the framework of driving rate effects in avalanche-mediated phase transitions [135]. In contrast to what has been stated earlier [20, 172], the author concludes that only the detection of rate-dependent acoustic activity or the detection of incubation times are necessary and sufficient conditions for time-dependent dynamics. Rate-dependent exponents are a sufficient but not necessary condition for time-dependent behavior. The determination of power law exponents has been proven to be a reliable tool for the characterization of the transition dynamics and associated energy barriers, because the exponents are robust and do not depend on experimental details. This observation reveals a close relation to the concept of self organized criticality [9]. In this work it has been shown for the first time by the evaluation of power law exponents how an applied magnetic field alters energy barriers during structural transitions of magnetic shape memory alloys. Depending on the symmetry of the product phase opposing results can be found: The symmetry-breaking process of a martensitic transition under an applied magnetic field leads to an increase of the activity due to a twofold process, including phase and twin boundary motion. Furthermore, the application of a magnetic field breaks the degeneracy, which leads to larger constraints reflected in stronger signals due to the satisfaction of the invariant habit plane condition. By contrast, less acoustic activity and weaker signals appear in association with the symmetry-conserving premartensitic transition

  4. Real-Time Source Classification with an Waveform Parameter Filtering of Acoustic Emission Signals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Hyun; Park, Jae Ha; Ahn, Bong Young [Chonnam National University, Gwangju (Korea, Republic of)

    2011-04-15

    The acoustic emission(AE) technique is a well established method to carry out structural health monitoring(SHM) of large structures. However, the real-time monitoring of the crack growth in the roller coaster support structures is not easy since the vehicle operation produces very large noise as well as crack growth. In this investigation, we present the waveform parameter filtering method to classify acoustic sources in real-time. This method filtrates only the AE hits by the target acoustic source as passing hits in a specific parameter band. According to various acoustic sources, the waveform parameters were measured and analyzed to verify the present filtering method. Also, the AE system employing the waveform parameter filter was manufactured and applied to the roller coaster support structure in an actual amusement park

  5. Acoustic emission non-destructive testing of structures using source location techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  6. Acoustic emission localization in plates with dispersion and reverberations using sparse PZT sensors in passive mode

    Science.gov (United States)

    Perelli, Alessandro; De Marchi, Luca; Marzani, Alessandro; Speciale, Nicolò

    2012-02-01

    A strategy for the localization of acoustic emissions (AE) in plates with dispersion and reverberation is proposed. The procedure exploits signals received in passive mode by sparse conventional piezoelectric transducers and a three-step processing framework. The first step consists in a signal dispersion compensation procedure, which is achieved by means of the warped frequency transform. The second step concerns the estimation of the differences in arrival time (TDOA) of the acoustic emission at the sensors. Complexities related to reflections and plate resonances are overcome via a wavelet decomposition of cross-correlating signals where the mother function is designed by a synthetic warped cross-signal. The magnitude of the wavelet coefficients in the warped distance-frequency domain, in fact, precisely reveals the TDOA of an acoustic emission at two sensors. Finally, in the last step the TDOA data are exploited to locate the acoustic emission source through hyperbolic positioning. The proposed procedure is tested with a passive network of three/four piezo-sensors located symmetrically and asymmetrically with respect to the plate edges. The experimentally estimated AE locations are close to those theoretically predicted by the Cramèr-Rao lower bound.

  7. Advanced Computing Methods for Knowledge Discovery and Prognosis in Acoustic Emission Monitoring

    Science.gov (United States)

    Mejia, Felipe

    2012-01-01

    Structural health monitoring (SHM) has gained significant popularity in the last decade. This growing interest, coupled with new sensing technologies, has resulted in an overwhelming amount of data in need of management and useful interpretation. Acoustic emission (AE) testing has been particularly fraught by the problem of growing data and is…

  8. A study of the mechanical properties of highly porous ceramics using acoustic emission

    NARCIS (Netherlands)

    Aué, J.; Hosson, J.Th.M. De

    1998-01-01

    In this paper the results of indirect tensile tests on highly porous ceramics are presented. A relation between the mechanical strength of the highly porous ceramic materials and Acoustic Emission (AE) has been established. We have shown that the amplitude distribution of the AE events depends on th

  9. Temperature effects on an acoustic emission based SHM system - Applied to composite materials

    NARCIS (Netherlands)

    Vargalui, A.; Martinez, M.J.; Zarouchas, D.; Pant, S.

    2015-01-01

    This study focuses on understanding the effect of temperature variations and the position of the piezoelectric sensors with respect to fiber orientation angle, as it relates to acoustic emission wave velocity in composite structures. A hybrid panel consisting of Unidirectional Carbon Fiber (UDCF) co

  10. Coupling thermogravimetric and acoustic emission measurements: its application to study the inhibition of catalytic coke deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ropital, Francois; Dascotte, Philippe; Marchand, Pierre [Institut Francais du Petrole, 1 Avenue Bois Preau, 92952 Rueil-Malmaison (France); Faure, Thierry; Lenain, Jean-Claude; Proust, Alain [Euro Physical Acoustics, 27 Rue Magellan, 94373 Sucy-en-Brie Cedex (France)

    2004-07-01

    In order to improve the knowledge on the high temperature behaviour of metallic materials, the coupling of several in situ physical analysis methods is a promising way. For this purpose a thermogravimetric balance has been equipped with a specific acoustic emission device in order to continuously measure the mass variation of the corrosion sample and the acoustic emission transient under experimental conditions of temperature and gas phase compositions that are representative of the industrial environments. The catalytic coke deposition condition that is a major problem for the refinery and petrochemical industries, has been studied with such a device. The carbon deposition on reactor walls can induce localised disruption in the process such as heat-transfer reduction and pressure drops. To prevent these perturbations, proper selections of the metallurgical or internal coating compositions of the equipment, or the injection of accurate amount of inhibitors have to be decided. The feasibility of the coupling at high temperature of thermogravimetric and acoustic emission has been demonstrated. This new technique has been applied to study the inhibition of the catalytic coke deposition on pure iron by sulphur additives in the temperature range of 650 deg. C and under different mixed atmospheres of hydrocarbon and hydrogen contents. Good correlation has been obtained between the coking rates measured by thermogravimetric measurements and the intensities of the acoustic emission parameters. (authors)

  11. Investigation of Material Performance Degradation for High-Strength Aluminum Alloy Using Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Yibo Ai

    2015-02-01

    Full Text Available Structural materials damages are always in the form of micro-defects or cracks. Traditional or conventional methods such as micro and macro examination, tensile, bend, impact and hardness tests can be used to detect the micro damage or defects. However, these tests are destructive in nature and not in real-time, thus a non-destructive and real-time monitoring and characterization of the material damage is needed. This study is focused on the application of a non-destructive and real-time acoustic emission (AE method to study material performance degradation of a high-strength aluminum alloy of high-speed train gearbox shell. By applying data relative analysis and interpretation of AE signals, the characteristic parameters of materials performance were achieved and the failure criteria of the characteristic parameters for the material tensile damage process were established. The results show that the AE method and signal analysis can be used to accomplish the non-destructive and real-time detection of the material performance degradation process of the high-strength aluminum alloy. This technique can be extended to other engineering materials.

  12. The evaluation of moisture damage for CFRC pipes in conjunction with acoustic emission

    Science.gov (United States)

    Chen, Yu; Su, Yu-Min; Liu, Yanjun; Tia, Mang

    2014-03-01

    The objective of this study was to evaluate the in-situ serviceability of cellulose fiber reinforced concrete (CFRC) pipes using Acoustic Emission (AE). Three-edge-bearing test was conducted on CFRC pipes in the laboratory in accordance with ASTM C497-05. Pipes were saturated in water for various periods of time to simulate the practical field situations of CFRC pipes with different service life exposed to moisture effects. AE sensors and LVDT were installed on pipes detect the damage phases during loading. Both monotonic and cyclic loading modes were conducted on the CFRC pipes. Results showed that the CFRC pipes generally exhibited the nonlinear load-displacement behavior before failure, yet the level of ductility was reduced with longer exposure to moisture condition. AE data were evaluated through two feature signals, that is, intensity analysis and calm ratio analysis. Results showed that AE can detect the onset of damage and the ultimate failure of CFRC pipes. Additionally, the analysis on CFRC pipes subjected to various moisture effects showed different features of AE results. It is found that intensity analysis can distinguish different periods of exposure to moisture and levels of ductility, which make it feasible to monitor the health of CFRC pipes under moisture effects.

  13. Failure of compression molded all-polyolefin composites studied by acoustic emission

    Directory of Open Access Journals (Sweden)

    I. Z. Halasz

    2015-03-01

    Full Text Available This paper is aimed at studying the failure behavior of polyolefin-based self-reinforced polymer composites (SRPCs via acoustic emission (AE. Three matrix materials (ethylene octene copolymer (EOC, polypropylene-based thermoplastic elastomer (ePP, random polypropylene copolymer (rPP, and three kinds of reinforcing structures of PP homopolymer (unidirectional (UD, cross-ply (CP and woven fabric (WF were used. SRPCs were produced by compression molding using the film-stacking method. The composites were characterized by mechanical tests combined with in situ assessment of the burst-type AE events. The results showed that rPP matrix and UD reinforcement produced the greatest reinforcement, with a tensile strength more than six times as high as that of the matrix and a Young’s modulus nearly doubled compared to the neat matrix. The number of the detected AE events increased with increasing Young’s modulus of the applied matrices being associated with reduced sound damping. The AE amplitude distributions shows that failure of the SRPC structure produces AE signals in a broad amplitude range, but the highest detected amplitude range can be clearly linked to fiber fractures.

  14. Reproducible Data Processing Research for the CABRI R.I.A. experiments Acoustic Emission signal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pantera, Laurent [CEA, DEN, CAD/DER/SRES/LPRE, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Issiaka Traore, Oumar [Laboratory of Machanics and Acoustics (LMA) CNRS, 13402 Marseille (France)

    2015-07-01

    The CABRI facility is an experimental nuclear reactor of the French Atomic Energy Commission (CEA) designed to study the behaviour of fuel rods at high burnup under Reactivity Initiated Accident (R.I.A.) conditions such as the scenario of a control rod ejection. During the experimental phase, the behaviour of the fuel element generates acoustic waves which can be detected by two microphones placed upstream and downstream from the test device. Studies carried out on the last fourteen tests showed the interest in carrying out temporal and spectral analyses on these signals by showing the existence of signatures which can be correlated with physical phenomena. We want presently to return to this rich data in order to have a new point of view by applying modern signal processing methods. Such an antecedent works resumption leads to some difficulties. Although all the raw data are accessible in the form of text files, analyses and graphics representations were not clear in reproducing from the former studies since the people who were in charge of the original work have left the laboratory and it is not easy when time passes, even with our own work, to be able to remember the steps of data manipulations and the exact setup. Thus we decided to consolidate the availability of the data and its manipulation in order to provide a robust data processing workflow to the experimentalists before doing any further investigations. To tackle this issue of strong links between data, treatments and the generation of documents, we adopted a Reproducible Research paradigm. We shall first present the tools chosen in our laboratory to implement this workflow and, then we shall describe the global perception carried out to continue the study of the Acoustic Emission signals recorded by the two microphones during the last fourteen CABRI R.I.A. tests. (authors)

  15. Towards Acoustic Detection of UHE Neutrinos in the Mediterranean Sea - The AMADEUS Project in ANTARES

    CERN Document Server

    Graf, K; Hoessl, J; Kappes, A; Katz, U F; Lahmann, R; Naumann, C; Salomon, K

    2007-01-01

    The acoustic detection method is a promising option for future neutrino telescopes operating in the ultra-high energy regime. It utilises the effect that a cascade evolving from a neutrino interaction generates a sound wave, and is applicable in different target materials like water, ice and salt. Described here are the developments in and the plans for the research on acoustic particle detection in water performed by the ANTARES group at the University of Erlangen within the framework of the ANTARES experiment in the Mediterranean Sea. A set of acoustic sensors will be integrated into this optical neutrino telescope to test acoustic particle detection methods and perform background studies.

  16. Design of a piezoelectric transducer cylindrical phase modulator for simulating acoustic emission signals

    Institute of Scientific and Technical Information of China (English)

    HE Cunfu; HANG Lijun; WU Bin

    2007-01-01

    To conveniently carry out the pipeline leak experiment in a laboratory,leak acoustic signals are simulated by using the converse piezoelectric effect of a piezoelectric transducer (PZT) cylindrical phase modulator.On the basis of the piezoelectric equations and electromechanical equivalence principle,the transfer function of a PZT cylindrical phase modulator is delivered.A PZT cylindrical phase modulator is designed,and the numerical simulation is conducted.Results prove that the PZT cylindrical phase modulator can effectively simulate leak acoustic emission signals when the frequency is lower than 25 KHz.

  17. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors

    Directory of Open Access Journals (Sweden)

    Lei Qin

    2014-10-01

    Full Text Available Acoustic emission (AE is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1–3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  18. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki

    2015-08-01

    Full Text Available Corrosion of reinforced concrete (RC structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  19. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Science.gov (United States)

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  20. Standard practice for examination of liquid-Filled atmospheric and Low-pressure metal storage tanks using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers guidelines for acoustic emission (AE) examinations of new and in-service aboveground storage tanks of the type used for storage of liquids. 1.2 This practice will detect acoustic emission in areas of sensor coverage that are stressed during the course of the examination. For flat-bottom tanks these areas will generally include the sidewalls (and roof if pressure is applied above the liquid level). The examination may not detect flaws on the bottom of flat-bottom tanks unless sensors are located on the bottom. 1.3 This practice may require that the tank experience a load that is greater than that encountered in normal use. The normal contents of the tank can usually be used for applying this load. 1.4 This practice is not valid for tanks that will be operated at a pressure greater than the examination pressure. 1.5 It is not necessary to drain or clean the tank before performing this examination. 1.6 This practice applies to tanks made of carbon steel, stainless steel, aluminum and oth...

  1. Effect of fiber orientation in uni-directional glass epoxy laminate using acoustic emission monitoring

    Institute of Scientific and Technical Information of China (English)

    V. Arumugam; S. Barath Kumar; C. Santulli; A. Joseph Stanley

    2011-01-01

    Acoustic emission (AE) can be used for in situ structural health monitoring of the composite laminates.One of the main issues of AE is to characterize different damage mechanisms from the detected AE signals.In the present work,pure resin and GFRP composites laminates with different stacking sequences such as 0°,90°,angle ply[±45°],cross-ply [0°/90°] are used to trigger different failure mechanisms when subjected to tensile test with AE monitoring.The study of failure mechanisms is facilitated by the choice of different oriented specimens in which one or two such mechanisms predominate.Range of peak frequencies in each orientation is investigated using FFT analysis.Fast Fourier Transform (FFT) enabled calculating the frequency content of each damage mechanism.Randomly selected hits from each range of peak frequencies for the specimens with different orientations subjected to tensile test with AE monitoring are analyzed using short time FFT (STFFT) analysis.STFFT analysis is used to highlight the possible failure mechanism associated with each signal.The predominance of failure modes in each orientation is useful in the study of discrimination of failure modes in composite laminates from AE data.

  2. Toward a probabilistic acoustic emission source location algorithm: A Bayesian approach

    Science.gov (United States)

    Schumacher, Thomas; Straub, Daniel; Higgins, Christopher

    2012-09-01

    Acoustic emissions (AE) are stress waves initiated by sudden strain releases within a solid body. These can be caused by internal mechanisms such as crack opening or propagation, crushing, or rubbing of crack surfaces. One application for the AE technique in the field of Structural Engineering is Structural Health Monitoring (SHM). With piezo-electric sensors mounted to the surface of the structure, stress waves can be detected, recorded, and stored for later analysis. An important step in quantitative AE analysis is the estimation of the stress wave source locations. Commonly, source location results are presented in a rather deterministic manner as spatial and temporal points, excluding information about uncertainties and errors. Due to variability in the material properties and uncertainty in the mathematical model, measures of uncertainty are needed beyond best-fit point solutions for source locations. This paper introduces a novel holistic framework for the development of a probabilistic source location algorithm. Bayesian analysis methods with Markov Chain Monte Carlo (MCMC) simulation are employed where all source location parameters are described with posterior probability density functions (PDFs). The proposed methodology is applied to an example employing data collected from a realistic section of a reinforced concrete bridge column. The selected approach is general and has the advantage that it can be extended and refined efficiently. Results are discussed and future steps to improve the algorithm are suggested.

  3. Development of Methodology to Assess the Failure Behaviour of Bamboo Single Fibre by Acoustic Emission Technique

    Science.gov (United States)

    Alam, Md. Saiful; Gulshan, Fahmida; Ahsan, Qumrul; Wevers, Martine; Pfeiffer, Helge; van Vuure, Aart-Willem; Osorio, Lina; Verpoest, Ignaas

    2016-06-01

    Acoustic emission (AE) was used as a tool for detecting, evaluating and for better understanding of the damage mechanism and failure behavior in composites during mechanical loading. Methodology was developed for tensile test of natural fibres (bamboo single fibre). A series of experiments were performed and load drops (one or two) were observed in the load versus time graphs. From the observed AE parameters such as amplitude, energy, duration etc. significant information corresponding to the load drops were found. These AE signals from the load drop occurred from such failure as debonding between two elementary fibre or from join of elementary fibre at edge. The various sources of load at first load drop was not consistent for the different samples (for a particular sample the value is 8 N, stress: 517.51 MPa). Final breaking of fibre corresponded to saturated level AE amplitude of preamplifier (99.9 dB) for all samples. Therefore, it was not possible to determine the exact AE energy value for final breaking. Same methodology was used for tensile test of three single fibres, which gave clear indication of load drop before the final breaking of first and second fibre.

  4. Determination of Initial Crack Strength of Silicon Die Using Acoustic Emission Technique

    Science.gov (United States)

    Chen, Pei-Chi; Su, Yen-Fu; Yang, Shin-Yueh; Liang, Steven Y.; Chiang, Kuo-Ning

    2015-07-01

    The current market demand for high-efficiency, high-performance, small-sized electronic products has focused attention on the use of three-dimensional (3D) integrated circuits (IC) in the design of electronic packaging. Silicon wafers can be ground and polished to reduce their thickness and increase the chip stacking density. However, microcracks can result from the thinning and stacking process or during use of an electronic device over time; therefore, estimation of the cracking strength is an important issue in 3D IC packaging. This research combined the ball breaker test (BBT) with an acoustic emission (AE) system to measure the allowable force on a silicon die. To estimate the initial crack strength of a silicon die, the BBT was combined with finite-element (FE) analysis. The AE system can detect the initial crack and the subsequent bulk failure of the silicon die individually, thus avoiding overestimation of the die strength. In addition, the results of the modified ball breaker test showed that edge chipping did not affect the silicon die strength. However, the failure force and silicon die strength were reduced as the surface roughness of the test specimen increased. Thus, surface roughness must be controlled in the BBT to prevent underestimation of the silicon die strength.

  5. Development of Methodology to Assess the Failure Behaviour of Bamboo Single Fibre by Acoustic Emission Technique

    Science.gov (United States)

    Alam, Md. Saiful; Gulshan, Fahmida; Ahsan, Qumrul; Wevers, Martine; Pfeiffer, Helge; van Vuure, Aart-Willem; Osorio, Lina; Verpoest, Ignaas

    2017-04-01

    Acoustic emission (AE) was used as a tool for detecting, evaluating and for better understanding of the damage mechanism and failure behavior in composites during mechanical loading. Methodology was developed for tensile test of natural fibres (bamboo single fibre). A series of experiments were performed and load drops (one or two) were observed in the load versus time graphs. From the observed AE parameters such as amplitude, energy, duration etc. significant information corresponding to the load drops were found. These AE signals from the load drop occurred from such failure as debonding between two elementary fibre or from join of elementary fibre at edge. The various sources of load at first load drop was not consistent for the different samples (for a particular sample the value is 8 N, stress: 517.51 MPa). Final breaking of fibre corresponded to saturated level AE amplitude of preamplifier (99.9 dB) for all samples. Therefore, it was not possible to determine the exact AE energy value for final breaking. Same methodology was used for tensile test of three single fibres, which gave clear indication of load drop before the final breaking of first and second fibre.

  6. Characteristics of acoustic emission temporal sequences during the failure of a concrete structure under loading

    Institute of Scientific and Technical Information of China (English)

    包太; LIU; Xinrong; 等

    2002-01-01

    The characteristics of acoustic emission(AE)signals given off in the course of the failure of a concrete structure is explored based on the laboratory experiments with concrete specimens.It is observed that the failure of a concrete structure experiences three stages divided by two inflexion points on the AE event curve,which are sequentially no damage,damage initiation and propagation,and major failure stages.In the first stage,existing micro cracks and defects are compacted by loading. but no damage propagated,hence few AE signals are detected,and it appears that there exists a nearly linear relationship between the relative stress and relative strain.In the second stage,the AE event frequency increases implying that micro cracks begin to emerge inside the concrete structure,which is consistent with the damage mechanics.When the load is over 80% of that breaks the structure,i.e.the maximum load,there is a vertical jump on the AE event count curve,which suggests that the failure propagation speeds up.After the second inflexion point,the AE event density increases faster than before,and there is another jump just before breaking,which indicates a quick propagation stage.These findings are valuable for evaluating the damage situations,and for studying and monitoring the dynamic process of the failure behaviors of a concrete structure.

  7. Classification of alkali-silica reaction and corrosion distress using acoustic emission

    Science.gov (United States)

    Abdelrahman, Marwa; ElBatanouny, Mohamed; Serrato, Michael; Dixon, Kenneth; Larosche, Carl; Ziehl, Paul

    2016-02-01

    The Nuclear Regulatory Commission regulates approximately 100 commercial nuclear power reactor facilities that contribute about 20% of the total electric energy produced in the United States. Half of these reactor facilities are over 30 years old and are approaching their original design service life. Due to economic and durability considerations, significant portions of many of the facilities were constructed with reinforced concrete, including the containment facilities, cooling towers, and foundations. While most of these concrete facilities have performed exceptionally well throughout their initial expected service life, some are beginning to exhibit different forms of concrete deterioration. In this study, acoustic emission (AE) is used to monitor two main concrete deterioration mechanisms; alkali-silica reaction (ASR) distress and corrosion of reinforcing steel. An accelerated ASR test was conducted where specimens were continuously monitored with AE. The results show that AE can detect and classify damage due to ASR distress in the specimens. AE was also used to remotely monitor active corrosion regions in a reactor facility. AE monitoring of accelerated corrosion testing was also conducted on a concrete block specimen cut from a similar reactor building. Electrochemical measurements were conducted to correlate AE activity to quantifiable corrosion measurements and to enhance capabilities for service life prediction.

  8. Detecting changes in dynamic and complex acoustic environments

    Science.gov (United States)

    Boubenec, Yves; Lawlor, Jennifer; Górska, Urszula; Shamma, Shihab; Englitz, Bernhard

    2017-01-01

    Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments. DOI: http://dx.doi.org/10.7554/eLife.24910.001 PMID:28262095

  9. Detection of radio continuum emission from Procyon

    Science.gov (United States)

    Drake, Stephen A.; Simon, Theodore; Brown, Alexander

    1993-01-01

    We have detected the F5 IV-V star Procyon as a weak and variable 3.6 cm radio continuum source using the VLA. The inferred radio luminosity is similar to, though some-what higher than, the X-band luminosity of the active and flaring sun. The 33 micro-Jy flux density level at which we detected Procyon on four of five occasions is close to the 36 micro-Jy radio flux density expected from a model in which the radio emission consists of two components: optically thick 'stellar disk' emission with a 3.6 cm brightness temperature of 20,000 K that is 50 percent larger than the solar value, and optically thin coronal emission with an emission measure the same as that indicated by Einstein and EXOSAT X-ray flux measurements in 1981 and 1983. The maximum mass-loss rate of a warm stellar wind is less than 2 x 10 exp -11 solar mass/yr. An elevated flux density of 115 micro-Jy observed on a single occasion provides circumstantial evidence for the existence of highly localized magnetic fields on the surface of Procyon.

  10. Acoustic, electromagnetic, neutron emissions from fracture and earthquakes

    CERN Document Server

    Lacidogna, Giuseppe; Manuello, Amedeo

    2015-01-01

    This book presents the relevant consequences of recently discovered and interdisciplinary phenomena, triggered by local mechanical instabilities. In particular, it looks at emissions from nano-scale mechanical instabilities such as fracture, turbulence, buckling and cavitation, focussing on vibrations at the TeraHertz frequency and Piezonuclear reactions. Future applications for this work could include earthquake precursors, climate change, energy production, and cellular biology. A series of fracture experiments on natural rocks demonstrates that the TeraHertz vibrations are able to induce fission reactions on medium weight elements accompanied by neutron emissions. The same phenomenon appears to have occurred in several different situations, particularly in the chemical evolution of the Earth and Solar System, through seismicity (rocky planets) and storms (gaseous planets). As the authors explore, these phenomena can also explain puzzles related to the history of our planet, like the ocean formation or th...

  11. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.

    Science.gov (United States)

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-02-27

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  12. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    Directory of Open Access Journals (Sweden)

    Leonhard Michael Reindl

    2013-02-01

    Full Text Available Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  13. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    Science.gov (United States)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  14. Active acoustic leak detection for LMFBR steam generators. Pt. 7. Potential for small leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Yoshida, Kazuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-05-01

    In order to prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, is being developed. Previous studies have revealed that the active acoustic method can detect bubbles of 10 l/s (equivalence water leak rate about 10 g/s) within 10 seconds in practical steam generators. In order to prevent the expansion of damage to neighboring tubes, however, it is necessary to detect smaller leakage of water from heat transfer tubes. In this study, in order to evaluate the detection sensitivity of the active method, the signal processing methods for emitter and receiver sound and the detection method for leakage within 1 g/s are investigated experimentally, using an SG full-sector model that simulates the actual SGs. A typical result shows that detection of 0.4 l/s air bubbles (equivalent water leak rate about 0.4 g/s) takes about 80 seconds, which is shorter than the propagation time of damage to neighboring tubes. (author)

  15. Explosive hazard detection using synthetic aperture acoustic sensing

    Science.gov (United States)

    Brewster, E.; Keller, J. M.; Stone, K.; Popescu, M.

    2016-05-01

    In this paper, we develop an approach to detect explosive hazards designed to attack vehicles from the side of a road, using a side looking synthetic aperture acoustic (SAA) sensor. This is done by first processing the raw data using a back-projection algorithm to form images. Next, an RX prescreener creates a list of possible targets, each with a designated confidence. Initial experiments are performed on libraries of the highest confidence hits for both target and false alarm classes generated by the prescreener. Image chips are extracted using pixel locations derived from the target's easting and northing. Several feature types are calculated from each image chip, including: histogram of oriented gradients (HOG), and generalized column projection features where the column aggregator takes the form of the minimum, maximum, mean, median, mode, standard deviation, variance, and the one-dimensional fast Fourier transform (FFT). A support vector machine (SVM) classifier is then utilized to evaluate feature type performance during training and testing in order to determine whether the two classes are separable. This will be used to build an online detection system for road-side explosive hazards.

  16. Seismic wave detection system based on fully distributed acoustic sensing

    Science.gov (United States)

    Jiang, Yue; Xu, Tuanwei; Feng, Shengwen; Huang, Jianfen; Yang, Yang; Guo, Gaoran; Li, Fang

    2016-11-01

    This paper presents a seismic wave detection system based on fully distributed acoustic sensing. Combined with Φ- OTDR and PGC demodulation technology, the system can detect and acquire seismic wave in real time. The system has a frequency response of 3.05 dB from 5 Hz to 1 kHz, whose sampling interval of each channel of 1 meter on total sensing distance up to 10 km. By comparing with the geophone in laboratory, the data show that in the time domain and frequency domain, two waveforms coincide consistently, and the correlation coefficient could be larger than 0.98. Through the analysis of the data of the array experiment and the oil well experiment, DAS system shows a consistent time domain and frequency domain response and a clearer trail of seismic wave signal as well as a higher signal-noise rate which indicate that the system we proposed is expected to become the next generation of seismic exploration equipment.

  17. Monitoring of Acoustic Emissions Within Geothermal Areas in Iceland: A new Tool for Geothermal Exploration.

    Science.gov (United States)

    Brandsdóttir, B.; Gudmundsson, O.

    2007-12-01

    With increased emphasis on geothermal development new exploration methods are needed in order to improve general understanding of geothermal reservoirs, characterize their extent and assess the potential for sustainable power production. Monitoring of acoustic emissions within geothermal areas may provide a new tool to evaluate the spatial extent of geothermal fields and model rock-fluid interactions. Three-dimensional seismic data have been used to assess the spatial and temporal distribution of noise within several high-temperature geothermal fields in Iceland. Seismic noise in the 4-6 Hz range within the Svartsengi field can be attributed to steam hydraulics and pressure oscillations within the geothermal reservoirs. Seismic noise surveys compliment electrical resistivity soundings and TEM-surveys by providing information pertinent to the current geothermal activity and extent of steam fields within the uppermost crust of the geothermal reservoir. Information related to acoustic emissions can thus help define targets for future wells.

  18. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    Science.gov (United States)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  19. Study of electromagnetic and acoustic emission in creep experiments of water-containing rock samples

    Institute of Scientific and Technical Information of China (English)

    JING Hong-wen; ZHANG Zhong-yu; XU Guo-an

    2008-01-01

    Based on biaxial shear creep tests conducted on rock samples with different water contents, we present the results of our study on the regularities of electromagnetic and acoustic emission during the process of creep experiments in which we have ana-lyzed the contribution of water to the occurrence of electromagnetic radiation. The result shows that in the creep-fracturing course of rock samples, when the water content increases, the initial frequency and amplitude of electromagnetic and acoustic emission also increases, but at a decreasing growth rate caused by loading stress. This can be used as a criterion for the long-term stability of rock masses under conditions of repeated inundation and discharge of water.

  20. Effects of Specimen Height on the Acoustic Emission Rate Value ‘a’ for Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; HU Hongxiang; LU Guijuan; CHEN Shijie; LIU Shaojun; WANG Yao

    2016-01-01

    In order to study the size effect on the AE rate ‘a’ value, three kinds of mix ratios were set up by different particle sizes and water cement ratios, 45 cement mortar specimens with ifve different heights were tested under axial compression. And the whole damage processes were monitored by full-digital acoustic emission acquisition system, followed by an analysis of mechanical behavior and AE activity. The experimental results show that the height of the cement specimen has signiifcant effects on the compressive strength and the acoustic emission rate ‘a’ value, but a slight effect on the accumulated AE hits number, which is analyzed from aspects of failure process of cement mortar specimens.

  1. Acoustic Emission Monitoring of Multicell Reinforced Concrete Box Girders Subjected to Torsion

    OpenAIRE

    Marya Bagherifaez; Arash Behnia; Abeer Aqeel Majeed; Chai Hwa Kian

    2014-01-01

    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative fo...

  2. Initial Evaluation of Acoustic Emission SHM of PRSEUS Multi-bay Box Tests

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2016-01-01

    A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) HWB Multi-Bay Test Article were conducted during the second quarter of 2015 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This report documents the Acoustic Emission (AE) data collected during those tests along with an initial analysis of the data. A more detailed analysis will be presented in future publications.

  3. Study of Acoustic Emission and Mechanical Characteristics of Coal Samples under Different Loading Rates

    Directory of Open Access Journals (Sweden)

    Huamin Li

    2015-01-01

    Full Text Available To study the effect of loading rate on mechanical properties and acoustic emission characteristics of coal samples, collected from Sanjiaohe Colliery, the uniaxial compression tests are carried out under various levels of loading rates, including 0.001 mm/s, 0.002 mm/s, and 0.005 mm/s, respectively, using AE-win E1.86 acoustic emission instrument and RMT-150C rock mechanics test system. The results indicate that the loading rate has a strong impact on peak stress and peak strain of coal samples, but the effect of loading rate on elasticity modulus of coal samples is relatively small. When the loading rate increases from 0.001 mm/s to 0.002 mm/s, the peak stress increases from 22.67 MPa to 24.99 MPa, the incremental percentage is 10.23%, and under the same condition the peak strain increases from 0.006191 to 0.007411 and the incremental percentage is 19.71%. Similarly, when the loading rate increases from 0.002 mm/s to 0.005 mm/s, the peak stress increases from 24.99 MPa to 28.01 MPa, the incremental percentage is 12.08%, the peak strain increases from 0.007411 to 0.008203, and the incremental percentage is 10.69%. The relationship between acoustic emission and loading rate presents a positive correlation, and the negative correlation relation has been determined between acoustic emission cumulative counts and loading rate during the rupture process of coal samples.

  4. Fatigue Damage Monitoring in 304L Steel Specimens by an Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Ould-Amer Ammar

    2014-06-01

    Full Text Available The aim of this work was to clarify fatigue crack initiation and propagation mechanisms in 304L austenitic stainless steel under different total-strain-amplitudes. A complete process from crack initiation and propagation was recorded by using the acoustic emission method in one hand, and replica method in another hand. The effect of strain amplitude on fatigue crack growth was investigated and a new representation of various fatigue curves associated to various levels of fatigue damage is proposed.

  5. Evaluation of Acoustic Emission NDE of Kevlar Composite Over Wrapped Pressure Vessels

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2008-01-01

    Pressurization and failure tests of small Kevlar/epoxy COPV bottles were conducted during 2006 and 2007 by Texas Research Institute Austin, Inc., at TRI facilities. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. Results of some of the tests indicate a possibility that AE can be used to track the stress-rupture degradation of COPV vessels.

  6. Acoustic emission characteristics on microscopic damage behavior of carbon fiber sheet reinforced concrete

    Science.gov (United States)

    Lee, Jin Kyung; Lee, Joon Hyun

    2002-05-01

    In this study, a three-point bend test has been carried out to understand the damage progress and the micro-failure mechanism of carbon fiber sheet (CFS) reinforced concretes. For these purposes, four kinds of specimens were used; unreinforced concrete, steel bar reinforced concrete, CFS reinforced concrete, and concrete reinforced by both steel bar and CFS. Acoustic Emission (AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of the specimens.

  7. 一种新的声发射时差定位方法%A New Location Method for Acoustic Emission TDOA

    Institute of Scientific and Technical Information of China (English)

    于洋; 王赛

    2015-01-01

    基于声发射信号具有与语音信号相似的非线性和非平稳性的特点,结合语音信号端点检测原理,将谱熵能量积引入声发射信号到达时间的测量中,以此计算出声发射信号的到达时间,进而由时差计算声发射源的位置. 在实验中,构造声发射源面定位实验,并通过数学方法消除速度参量,使定位结果仅与到达时间有直接关系. 以此计算声发射源坐标,该方法有效提高了定位精度,其中相对定位误差最大为2 .49%.%Basing on acoustic emission signals' nonlinearity and non-stationary characteristics similar to the voice signals and combining with the principle of voice signals' endpoint detection, the spectral entropy-energy product was introduced into TDOA measurement of the acoustic emission signals to locate the acoustic emission source.Under laboratory conditions, locating the acoustic emission source ' s line orientation and eliminating the velocity parameters through mathematical methods can make the location result only relating to the arrival time and the acoustic emission source coordinate can be determined.This method can effectively improve the location accuracy along with the maximum relative positioning error of 2.49%.

  8. Classification Identification of Acoustic Emission Signals from Underground Metal Mine Rock by ICIMF Classifier

    Directory of Open Access Journals (Sweden)

    Hongyan Zuo

    2014-01-01

    Full Text Available To overcome the drawback that fuzzy classifier was sensitive to noises and outliers, Mamdani fuzzy classifier based on improved chaos immune algorithm was developed, in which bilateral Gaussian membership function parameters were set as constraint conditions and the indexes of fuzzy classification effectiveness and number of correct samples of fuzzy classification as the subgoal of fitness function. Moreover, Iris database was used for simulation experiment, classification, and recognition of acoustic emission signals and interference signals from stope wall rock of underground metal mines. The results showed that Mamdani fuzzy classifier based on improved chaos immune algorithm could effectively improve the prediction accuracy of classification of data sets with noises and outliers and the classification accuracy of acoustic emission signal and interference signal from stope wall rock of underground metal mines was 90.00%. It was obvious that the improved chaos immune Mamdani fuzzy (ICIMF classifier was useful for accurate diagnosis of acoustic emission signal and interference signal from stope wall rock of underground metal mines.

  9. Acoustic emissions for particle sizing of powders through signal processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bastari, A.; Cristalli, C.; Morlacchi, R.; Pomponi, E. [Loccioni Group (Italy)

    2011-04-15

    The present work introduces an innovative method for measuring particle size distribution of an airborne powder, based on the application of signal processing techniques to the acoustic emission signals produced by the impacts of the powder with specific metallic surfaces. The basic idea of the proposed methodology lies on the identification of the unknown relation between the acquired acoustic emission signals and the powder particle size distribution, by means of a multi-step procedure. In the first step, wavelet packet decomposition is used to extract useful features from the acoustic emission signals: the dimensionality of feature space is further reduced through multivariate data analysis techniques. As a final step, a neural network is properly trained to map the feature vector into the particle size distribution. The proposed solution has several advantages, such as low cost and low invasiveness which allow the system based on this technique to be easily integrated in pre-existing plants. It has been successfully applied to the PSD measurement of coal powder produced by grinding mills in a coal-fired power station, and the experimental results are reported in the paper. The measurement principle can also be applied to different particle sizing applications, whenever a solid powder is carried in air or in other gases.

  10. Health monitoring of Ceramic Matrix Composites from waveform-based analysis of Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Maillet Emmanuel

    2015-01-01

    Full Text Available Ceramic Matrix Composites (CMCs are anticipated for use in the hot section of aircraft engines. Their implementation requires the understanding of the various damage modes that are involved and their relation to life expectancy. Acoustic Emission (AE has been shown to be an efficient technique for monitoring damage evolution in CMCs. However, only a waveform-based analysis of AE can offer the possibility to validate and precisely examine the recorded AE data with a view to damage localization and identification. The present work fully integrates wave initiation, propagation and acquisition in the analysis of Acoustic Emission waveforms recorded at various sensors, therefore providing more reliable information to assess the relation between Acoustic Emission and damage modes. The procedure allows selecting AE events originating from damage, accurate determination of their location as well as the characterization of effects of propagation on the recorded waveforms. This approach was developed using AE data recorded during tensile tests on carbon/carbon composites. It was then applied to melt-infiltrated SiC/SiC composites.

  11. Research on acoustic emission in-service inspection for large above-ground storage tank floors

    Energy Technology Data Exchange (ETDEWEB)

    Mingchun Lin; Yewei Kang; Min Xiong; Juan Zheng; Dongjie Tan [Petrochina Pipeline R and Center, Langfang (China)

    2009-07-01

    Much manpower is needed and a lot of materials are wasted when the floor of large above-ground storage tank (AST) is inspected with conventional methods which need to shut down the tank, then to empty and clean it before inspection. Due to the disadvantages of that, an in-service inspection method using acoustic emission (AE) technology is presented. By this mean the rational inspection plan and integrity evaluation of tank floors can be constructed. First, specific inspection steps are established based on the acoustic emission principle for large AST's floors and the practical condition of AST in order to acquire the AE corrosion data. Second, analysis method of acoustic emission dataset is studied. Finally, maintenance proposes are provided based on results of analysis for the corrosion status of the tank floors. In order to evaluate the performance of our method, an in-service field inspection is practiced on product oil tank with a volume of 5000 cubic meters. Then a traditional inspection procedure using magnetic flux leakage (MFL) technology is followed up. Comparative analysis of the results of the two inspection methods shows that there is consistency in localizing the position of corrosion between them. The feasibility of in-service inspection of AST's floors with AE is demonstrated. (author)

  12. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ziminsky, Willy Steve (Simpsonville, SC); Krull, Anthony Wayne (Anderson, SC); Healy, Timothy Andrew (Simpsonville, SC), Yilmaz, Ertan (Glenville, NY)

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  13. Investigation of acoustic sensors to detect coconut rhinoceros beetle in Guam

    Science.gov (United States)

    The coconut rhinoceros beetle, Oryctes rhinoceros, was accidentally introduced into Guam last year and now threatens the Island’s forests and tourist industry. These large insects can be detected easily with acoustic sensors, and procedures are being developed to incorporate acoustic technology int...

  14. Acoustic detection of high energy neutrinos in sea water: status and prospects

    Science.gov (United States)

    Lahmann, Robert

    2017-03-01

    The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of neutrinos at energies in the EeV-range and above. The technique is based on the thermo-acoustic model, which implies that the energy deposition by a particle cascade - resulting from a neutrino interaction in a medium with suitable thermal and acoustic properties - leads to a local heating and a subsequent characteristic pressure pulse that propagates in the surrounding medium. Current or recent test setups for acoustic neutrino detection have either been add-ons to optical neutrino telescopes or have been using acoustic arrays built for other purposes, typically for military use. While these arrays have been too small to derive competitive limits on neutrino fluxes, they allowed for detailed studies of the experimental technique. With the advent of the research infrastructure KM3NeT in the Mediterranean Sea, new possibilities will arise for acoustic neutrino detection. In this article, results from the "first generation" of acoustic arrays will be summarized and implications for the future of acoustic neutrino detection will be discussed.

  15. [INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids

    Science.gov (United States)

    Pezeril, Thomas

    2016-09-01

    The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.

  16. Active acoustic leak detection for LMFBR steam generators. Pt. 6. Applicability to practical steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Kumagai, Hiromichi; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    It is necessary to develop a reliable water leak detection system for steam generators of liquid metal reactors in order to prevent the expansion of damage and to maintain the structural integrity of the steam generators. The concept of the active acoustic method is to detect the change of the ultrasonic field due to the hydrogen gas bubbles generated by a sodium-water reaction. This method has the potential for improved detection performance compared with conventional passive methods, from the viewpoint of sensitivity, response time and tolerance against the background noise. A feasibility study of the active acoustic leak detection system is being carried out. This report predicts the performance of the active acoustic method in the practical steam generators from the results of the large scale in-water experiments. The results shows that the active acoustic system can detect a 10 g/s leak within a few seconds in large-scale steam generators. (author)

  17. Correlation of acoustic emissions associated with effects from diagnostic and therapeutic ultrasound

    Science.gov (United States)

    Samuel, Stanley

    2007-12-01

    This research has investigated the correlation of acoustic emissions with associated contrast-mediated ultrasound bio-effects. The hypothesis that motivated this study was that during exposure with ultrasound, the cavitation occurring in tissue emits acoustical signals, which if correlated with specific bio-effects, could provide a way to monitor the potential bio-effects of exposure. A good bio-effects indicator would find immediate use in research on drug and gene delivery, and could have clinical application in avoiding bio-effects in diagnosis. Studies conducted to test the hypothesis involved investigation of (i) the influence of pulse repetition frequency (PRF) and number of exposures on cell damage, (ii) the effect of total exposure duration and pulse-to-pulse bubble distribution on acoustic emissions and corresponding cell damage, and (iii) the translation of in vitro effects to an in situ environment. Exposures were primarily conducted at a peak rarefactional pressure of 2 MPa, 2.25 MHz insonating frequency and pulse length of 46 cycles. PRFs of 1-, 10-, 100-, 500-, and 1000 Hz were compared. High speed photography (2000 fps) was employed for the investigation of pulse-to-pulse bubble distribution while intravital microscopy was used for in situ studies. A strong correlation was observed between acoustic emissions and bio-effects with the availability of bubbles of resonant size serving as a key link between the two. It was observed that total exposure duration may play an important role in cell damage. Damage increased with increasing total exposure duration from 0 ms to 100 ms with a plateau at above 100 ms. These results were consistent for all studies. There is, therefore, an implication that manipulating these parameters may allow for measurement and control of the extent of bioeffects. Moreover, the correlation of acoustic emission and extravasation observed in in situ studies reveals that cumulative function of the relative integrated power spectrum

  18. Acoustic neutrino detection investigations within ANTARES and prospects for KM3NeT

    Directory of Open Access Journals (Sweden)

    Lahmann Robert

    2016-01-01

    Full Text Available The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of cosmogenic neutrinos at energies exceeding 1 EeV. It suggests itself to investigate this technique in the context of underwater Cherenkov neutrino telescopes, in particular KM3NeT, because acoustic sensors are present by design to allow for the calibration of the positions of the optical sensors. For the future, the KM3NeT detector in the Mediterranean Sea will provide an ideal infrastructure for a dedicated array of acoustic sensors. In this presentation results from the acoustic array AMADEUS of the ANTARES detector will be discussed with respect to the potential and implications for acoustic neutrino detection with KM3NeT and beyond.

  19. Monitoring of the production quality of fibre-reinforced pressure vessels using acoustic emission testing; Ueberwachung der Fertigungsqualitaet von Faserverbund-Druckbehaeltern mittels Schallemissionspruefung

    Energy Technology Data Exchange (ETDEWEB)

    Duffner, Eric; Gregor, Christian; Bohse, Juergen [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany)

    2011-07-01

    The investigation aimed at the validation of a test method for ensuring the production quality of reinforced-fibre pressure vessels in real fabrication conditions. The method is based on characteristics and permissible limiting values derived from acoustic emission curves during the first pressure test. The method had already been tested successfully on reinforced-fibre pressure vessels with metal liners and had been patented. With the current investigations, the possibility of detection fabrication defects in carbon fibre / glass fibre hybrid pressure vessels with polymer liners was evaluated. For this, fibre-reinforced pressure vessels were monitored by acoustic emission measurement during the first hydraulic pressure test; this test is commonly used for quality assurance of this type of pressure vessel, although without acoustic emission testing. Acoustic emission curves were registered for pressure vessels of a serial production, and the mean characteristics and their scatter were determined as reference values. These were compared with the acoustic emission curves of selectively induced fabrication defects. Fabrication defects are defects that may occur in serial production and are difficult or impossible to detect by conventional quality assurance methods. All investigated pressure vessel were then subject to stress until failure (leakage, bursting). This made it possible to verify the real influence of fabrication defects on the burst pressure and/or the fatigue characteristics of the pressure vessels and to assess the validity of acoustic emission testing. [German] Ziel der Untersuchung ist die Validierung einer Pruefmethodik zur Sicherung der Fertigungsqualitaet von Faserverbund - Druckbehaeltern unter realen Fertigungsbedingungen. Das Verfahren basiert auf Merkmalen und zulaessigen Grenzwerten, die aus Schallemissionsverlaeufen bei der Erstdruckpruefung abgeleitet werden [1]. Die Methodik konnte zuvor bereits erfolgreich an Faserverbund - Druckbehaeltern

  20. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    Science.gov (United States)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  1. An ex vivo study of the correlation between acoustic emission and microvascular damage.

    Science.gov (United States)

    Samuel, Stanley; Cooper, Michol A; Bull, Joseph L; Fowlkes, J Brian; Miller, Douglas L

    2009-09-01

    The objective of this study was to conduct an ex vivo examination of correlation between acoustic emission and tissue damage. Intravital microscopy was employed in conjunction with ultrasound exposure in cremaster muscle of male Wistar rats. Definity microbubbles were administered intravenously through the tail vein (80microL.kg(-1).min(-1)infusion rate) with the aid of a syringe pump. For the pulse repetition frequency (PRF) study, exposures were performed at four locations of the cremaster at a PRF of 1000, 500, 100 and 10Hz (one location per PRF per rat). The 100-pulse exposures were implemented at a peak rarefactional pressure (P(r)) of 2MPa, frequency of 2.25MHz with 46 cycle pulses. For the pressure amplitude threshold study, 100-pulse exposures (46 cycle pulses) were conducted at various peak rarefactional pressures from 0.5MPa to 2MPa at a frequency of 2.25MHz and PRF of 100Hz. Photomicrographs were captured before and 2-min postexposure. On a pulse-to-pulse basis, the 10Hz acoustic emission was considerably higher and more sustained than those at other PRFs (1000, 500, and 100Hz) (pCRIPS; R(2)=0.75). No visible damage was present at P(r) or =1.0MPa and it increased with increasing acoustic pressure.

  2. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  3. Separating medial olivocochlear from acoustic reflex effects on transient evoked otoacoustic emissions in unanesthetized mice

    Science.gov (United States)

    Xu, Yingyue; Cheatham, Mary Ann; Siegel, Jonathan

    2015-12-01

    Descending neural pathways in the mammalian auditory system are believed to modulate the function of the peripheral auditory system [3, 8, 10]. These pathways include the medial olivocochlear (MOC) efferent innervation to the cochlear outer hair cells (OHCs) and the acoustic reflex pathways mediating middle ear muscle (MEM) contractions. The MOC effects can be monitored noninvasively using otoacoustic emissions (OAEs) [5, 6], which are acoustic byproducts of cochlear function [7]. In this study, we applied a sensitive method to determine when and to what degree contralateral MEM suppression contaminated MOC efferent effects on TEOAEs in unanesthetized mice. The lowest contralateral broadband noise evoking MEM contractions varied across animals. Examples of potential MOC-mediated TEOAE suppression with contralateral noise below MEM contraction thresholds were seen, but this behavior did not occur in the majority of cases.

  4. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    CERN Document Server

    Weiß, Matthias; Reichert, Thorsten; Finley, Jonathan J; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J

    2016-01-01

    A coupled quantum dot--nanocavity system in the weak coupling regime of cavity quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a $f_{\\rm SAW}\\simeq800\\,\\mathrm{MHz}$ surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function $g^{(2)}$. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of $g^{(2)}$, demonstrating high fidelity regulation of the stream of single photons emitted by the system. The implemented scheme can be directly extended to strongly coupled systems and acoustically drives non-adiabatic entangling quantum gates based on Landau-Zener transitions.

  5. Artificial Neural Network Model for Monitoring Oil Film Regime in Spur Gear Based on Acoustic Emission Data

    Directory of Open Access Journals (Sweden)

    Yasir Hassan Ali

    2015-01-01

    Full Text Available The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ. The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.

  6. Basic principles of thermo-acoustic energy and temporal profile detection of microwave pulses

    CERN Document Server

    Andreev, V G; Vdovin, V A

    2001-01-01

    Basic principles of a thermo-acoustic method developed for the detection of powerful microwave pulses of nanosecond duration are discussed.A proposed method is based on the registration of acoustic pulse profile originated from the thermal expansion of the volume where microwave energy was absorbed.The amplitude of excited acoustic transient is proportional to absorbed microwave energy and its temporal profile resembles one of a microwave pulse when certain conditions are satisfied.The optimal regimes of microwave pulse energy detection and sensitivity of acoustic transient registration with piezo-transducer are discussed.It was demonstrated that profile of a microwave pulse could be detected with temporal resolution of 1 - 3 nanosecond.

  7. A Four-Quadrant PVDF Transducer for Surface Acoustic Wave Detection

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2012-08-01

    Full Text Available In this paper, a polyvinylidene fluoride (PVDF piezoelectric transducer was developed to detect laser-induced surface acoustic waves in a SiO2-thin film–Si-substrate structure. In order to solve the problems related to, firstly, the position of the probe, and secondly, the fact that signals at different points cannot be detected simultaneously during the detection process, a four-quadrant surface acoustic wave PVDF transducer was designed and constructed for the purpose of detecting surface acoustic waves excited by a pulse laser line source. The experimental results of the four-quadrant piezoelectric detection in comparison with the commercial nanoindentation technology were consistent, the relative error is 0.56%, and the system eliminates the piezoelectric surface wave detection direction deviation errors, improves the accuracy of the testing system by 1.30%, achieving the acquisition at the same time at different testing positions of the sample.

  8. Feasibility of acoustic neutrino detection in ice: Design and performance of the South Pole Acoustic Test Setup (SPATS)

    CERN Document Server

    Boeser, S; Descamps, F; Fischer, J; Hallgren, A; Heller, R; Hundertmark, S; Krieger, K; Nahnhauer, R; Pohl, M; Price, P B; Sulanke, K -H; Tosi, D; Vandenbroucke, J

    2008-01-01

    The South Pole Acoustic Test Setup (SPATS) has been built to evaluate the acoustic characteristics of the South Pole ice in the 10 to 100 kHz frequency range so that the feasibility and specific design of an acoustic neutrino detection array at South Pole can be evaluated. SPATS consists of three vertical strings that were deployed in the upper 400 meters of the South Pole ice cap in January 2007, using the upper part of IceCube holes. The strings form a triangular array with the longest baseline 421 meters. Each of them has 7 stages with one transmitter and one sensor module. Both are equipped with piezoelectric ceramic elements in order to produce or detect sound. Analog signals are brought to the surface on electric cables where they are digitized by a PC-based data acquisition system. The data from all three strings are collected on a master-PC in a central facility, from which they are sent to the northern hemisphere via a satellite link or locally stored on tape. A technical overview of the SPATS detect...

  9. A compact acoustic calibrator for ultra-high energy neutrino detection

    CERN Document Server

    Adrián-Martínez, S; Bou-Cabo, M; Larosa, G; Llorens, C D; Martínez-Mora, J A

    2012-01-01

    With the aim to optimize and test the method of acoustic detection of ultra-high energy neutrinos in underwater telescopes a compact acoustic transmitter array has been developed. The acoustic parametric effect is used to reproduce the acoustic signature of an ultra-high-energy neutrino interaction. Different reseach and development studies are presented in order to show the viability of the parametric sources technique to deal with the difficulties of the acoustic signal generation: a very directive transient bipolar signal with pancake directivity. The design, construction and characterization of the prototype are described, including simulation of the propagation of an experimental signal, measured in a pool, over a distance of 1 km. Following these studies, next steps will be testing the device in situ, in underwater neutrino telescope, or from a vessel in a sea campaign.

  10. Phenomenological Description of Acoustic Emission Processes Occurring During High-Pressure Sand Compaction

    Science.gov (United States)

    Delgado-Martín, Jordi; Muñoz-Ibáñez, Andrea; Grande-García, Elisa; Rodríguez-Cedrún, Borja

    2016-04-01

    Compaction, pore collapse and grain crushing have a significant impact over the hydrodynamic properties of sand formations. The assessment of the crushing stress threshold constitutes valuable information in order to assess the behavior of these formations provided that it can be conveniently identified. Because of the inherent complexities of the direct observation of sand crushing, different authors have developed several indirect methods, being acoustic emission a promising one. However, previous researches have evidenced that there are different processes triggering acoustic emissions which need to be carefully accounted. Worth mentioning among them are grain bearing, grain to container friction, intergranular friction and crushing. The work presented here addresses this purpose. A broadband acoustic emission sensor (PA MicroHF200) connected to a high-speed data acquisition system and control software (AeWIN for PCI1 2.10) has been attached to a steel ram and used to monitor the different processes occurring during the oedometric compaction of uniform quartz sand up to an axial load of about 110 MPa and constant temperature. Load was stepwise applied using a servocontrolled hydraulic press acting at a constant load rate. Axial strain was simultaneously measured with the aid of a LDT device. Counts, energy, event duration, rise time and amplitude were recorded along each experiment and after completion selected waveforms were transformed from the time to the frequency domain via FFT transform. Additional simplified tests were performed in order to isolate the frequency characteristics of the dominant processes occurring during sand compaction. Our results show that, from simple tests, it is possible to determine process-dependent frequency components. When considering more complex experiments, many of the studied processes overlap but it is still possible to identify when a particular one dominates as well as the likely onset of crushing.

  11. Detection of fission fragments by secondary emission; Detection des fragments de fission par emission secondaire

    Energy Technology Data Exchange (ETDEWEB)

    Audias, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la

  12. Mechanical degradation of cross-ply laminates monitored by acoustic emission

    Science.gov (United States)

    Paipetis, A.; Xyrafa, M.; Barkoula, N. M.; Matikas, T. E.; Aggelis, D. G.

    2011-04-01

    This study deals with the investigation of cross ply composites failure by acoustic emission (AE). Broadband AE sensors monitor the different sources of failure in coupons of this material during a tensile loading-unloading test. The cumulative number of AE activity, and other qualitative indices based on the shape of the waves, were well correlated to the sustained load. AE parameters indicate the shift of failure mechanisms within the composite as the load increases. The ultimate goal is a methodology based on NDT techniques for real time characterization of the degradation and identification of the fracture stage of advanced composite materials.

  13. An efficient closed-form solution for acoustic emission source location in three-dimensional structures

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2014-02-01

    Full Text Available This paper presents an efficient closed-form solution (ECS for acoustic emission(AE source location in three-dimensional structures using time difference of arrival (TDOA measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.

  14. Couple analyzing the acoustic emission characters from hard composite rock fracture

    Institute of Scientific and Technical Information of China (English)

    Xingping Lai; Linhai Wang; Meifeng Cai

    2004-01-01

    Rock mass is fractured media. Its fracture is a nonlinear process. The accumulation of acoustic emission (AE) is closely related to the degree of damage. The dynamics problem is simply described based on the non-equilibrium statistical theory of crack evolvement, trying to use the hybrid analysis of the statistical theory and scan electron microscopy (SEM), the characters of AE sig nals from rock damage in a mined-out area is synthetically analyzed and evaluated. These provide an evidence to reverse deduce and accurately infer the position of rock fracture for dynamical hazard control.

  15. Time reverse modeling of acoustic emissions in a reinforced concrete beam.

    Science.gov (United States)

    Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas

    2016-02-01

    The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images.

  16. Damage accumulation in cyclically-loaded glass-ceramic matrix composites monitored by acoustic emission.

    Science.gov (United States)

    Aggelis, D G; Dassios, K G; Kordatos, E Z; Matikas, T E

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism.

  17. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    D. G. Aggelis

    2013-01-01

    Full Text Available Barium osumilite (BMAS ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism.

  18. An Analytical Solution for Acoustic Emission Source Location for Known P Wave Velocity System

    Directory of Open Access Journals (Sweden)

    Longjun Dong

    2014-01-01

    Full Text Available This paper presents a three-dimensional analytical solution for acoustic emission source location using time difference of arrival (TDOA measurements from N receivers, N⩾5. The nonlinear location equations for TDOA are simplified to linear equations, and the direct analytical solution is obtained by solving the linear equations. There are not calculations of square roots in solution equations. The method solved the problems of the existence and multiplicity of solutions induced by the calculations of square roots in existed close-form methods. Simulations are included to study the algorithms' performance and compare with the existing technique.

  19. An efficient closed-form solution for acoustic emission source location in three-dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xibing [School of Resources and Safety Engineering, Central South University, Changsha, 410083 (China); Dong, Longjun, E-mail: csudlj@163.com [School of Resources and Safety Engineering, Central South University, Changsha, 410083 (China); Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009 (Australia)

    2014-02-15

    This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.

  20. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    Science.gov (United States)

    Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.

    2016-07-01

    A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  1. Deconvolution of acoustic emissions for source localization using time reverse modeling

    Science.gov (United States)

    Kocur, Georg Karl

    2017-01-01

    Impact experiments on small-scale slabs made of concrete and aluminum were carried out. Wave motion radiated from the epicenter of the impact was recorded as voltage signals by resonant piezoelectric transducers. Numerical simulations of the elastic wave propagation are performed to simulate the physical experiments. The Hertz theory of contact is applied to estimate the force impulse, which is subsequently used for the numerical simulation. Displacements at the transducer positions are calculated numerically. A deconvolution function is obtained by comparing the physical (voltage signal) and the numerical (calculated displacement) experiments. Acoustic emission signals due to pencil-lead breaks are recorded, deconvolved and applied for localization using time reverse modeling.

  2. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  3. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Karl A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Candy, Jim V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guss, Gabe [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  4. Standard practice for acoustic emission examination of plate-like and flat panel composite structures used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers acoustic emission (AE) examination or monitoring of panel and plate-like composite structures made entirely of fiber/polymer composites. 1.2 The AE examination detects emission sources and locates the region(s) within the composite structure where the emission originated. When properly developed AE-based criteria for the composite item are in place, the AE data can be used for nondestructive examination (NDE), characterization of proof testing, documentation of quality control or for decisions relative to structural-test termination prior to completion of a planned test. Other NDE methods may be used to provide additional information about located damage regions. For additional information see Appendix X1. 1.3 This practice can be applied to aerospace composite panels and plate-like elements as a part of incoming inspection, during manufacturing, after assembly, continuously (during structural health monitoring) and at periodic intervals during the life of a structure. 1.4 This pra...

  5. Standard practice for examination of Gas-Filled filament-wound composite pressure vessels using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examination of filament-wound composite pressure vessels, for example, the type used for fuel tanks in vehicles which use natural gas fuel. 1.2 This practice requires pressurization to a level equal to or greater than what is encountered in normal use. The tanks' pressurization history must be known in order to use this practice. Pressurization medium may be gas or liquid. 1.3 This practice is limited to vessels designed for less than 690 bar [10,000 psi] maximum allowable working pressure and water volume less than 1 m3 or 1000 L [35.4 ft3]. 1.4 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to gain additional insight into the emission source. Procedures for other NDE methods are beyond the scope of this practice. 1.5 This practice applies to examination of new and in-service filament-wound composite pressure vessels. 1.6 This practice applies to examinations conducted at amb...

  6. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    Directory of Open Access Journals (Sweden)

    L. Girard

    2012-06-01

    Full Text Available We present a custom acoustic emission (AE monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node integrated into a Wireless Sensor Network (WSN customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  7. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    Directory of Open Access Journals (Sweden)

    L. Girard

    2012-11-01

    Full Text Available We present a custom acoustic emission (AE monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node integrated into a wireless sensor network (WSN customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  8. Neutrino Detection, Position Calibration and Marine Science with Acoustic Arrays in the Deep Sea

    CERN Document Server

    Lahmann, Robert

    2013-01-01

    Arrays of acoustic receivers are an integral part of present and potential future Cherenkov neutrino telescopes in the deep sea. They measure the positions of individual detector elements which vary with time as an effect of undersea currents. At the same time, the acoustic receivers can be employed for marine science purposes, in particular for monitoring the ambient noise environment and the signals emitted by the fauna of the sea. And last but not least, they can be used for studies towards acoustic detection of ultra-high-energy neutrinos. Measuring acoustic pressure pulses in huge underwater acoustic arrays with an instrumented volume of the order of 100 km^3 is a promising approach for the detection of cosmic neutrinos with energies exceeding 1 EeV. Pressure signals are produced by the particle cascades that evolve when neutrinos interact with nuclei in water, and can be detected over large distances in the kilometre range. In this article, the status of acoustic detection will be reviewed and plans for...

  9. Precursory Acoustic Signals Detection in Rockfall Events by Means of Optical Fiber Sensors

    Science.gov (United States)

    Schenato, L.; Marcato, G.; Gruca, G.; Iannuzzi, D.; Palmieri, L.; Galtarossa, A.; Pasuto, A.

    2012-12-01

    Rockfalls represent a major source of hazard in mountain areas: they occur at the apex of a process of stress accumulation in the unstable slope, during which part of the accumulated energy is released in small internal cracks. These cracks and the related acoustic emissions (AE) can, therefore, be used as precursory signals, through which the unstable rock could be monitored. In particular, according to previous scientific literature AE can be monitored in the range 20÷100 kHz. With respect to traditional AE sensors, such as accelerometers and piezoelectric transducers, fiber optic sensors (FOSs) may provide a reliable solution, potentially offering more robustness to electromagnetic interference, smaller form factor, multiplexing ability and increased distance range and higher sensitivity. To explore this possibility, in this work we have experimentally analyzed two interferometric fiber optical sensors for AE detection in rock masses. In particular, the first sensor is made of 100 m of G.657 optical fiber, tightly wound on an aluminum flanged hollow mandrel (inner diameter 30 mm, height 42 mm) that is isolated from the environment with acoustic absorbing material. A 4-cm-long M10 screw, which acts also as the main mean of acoustic coupling between the rock and the sensor, is used to fasten the sensor to the rock. This fiber coil sensor (FCS) is inserted in the sensing arm of a fiber Mach-Zehnder interferometer. The second sensor consists in a micro cantilever carved on the top of a cylindrical silica ferrule, with a marked mechanical resonance at about 12.5 kHz (Q-factor of about 400). A standard single mode fiber is housed in the same ferrule and the gap between the cantilever and the fiber end face acts as a vibration-sensitive Fabry-Perot cavity, interrogated with a low-coherence laser, tuned at the quadrature point of the cavity. The sensor is housed in a 2-cm-long M10 bored bolt. Performance have been compared with those from a standard piezo

  10. Acoustic emission generated during the gas sorption-desorption process in coal

    Institute of Scientific and Technical Information of China (English)

    Ma Yankun; Wang Enyuan; Xiao Dong; Li Zhonghui; Liu Jie; Gan Lijia

    2012-01-01

    An experimental system for monitoring the acoustic signals generated in coal during gas sorption and/or desorption was designed and the acoustic signals were observed under different gas pressures.The experimental results show that signals generated by the coal during gas adsorption are attenuated over time.Also,the signals are not continuous but are impulsive.The intensity of the signals generated during gas desorption is far smaller than that observed during adsorption.The signal seen during desorption remains essentially stable.Cycles of sorption and desorption cause acoustic emission signals that exhibit a memory effect,which depends upon the maximum gas pressure the sample was exposed to in earlier cycles.Lower pressures in subsequent cycles,compared to the maximum adsorption pressure in previous cycles,cause both the energy and impulse frequency to be lower than previously.On the contrary,a gas adsorption pressure that exceeds the maximum pressure seen by the sample during earlier cycles causes both the energy and impulse frequency to be high.

  11. AMADEUS - The Acoustic Neutrino Detection Test System of the ANTARES Deep-Sea Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Albert, A; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Auer, R; Barbarito, E; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cassano, B; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, Ph; Chiarusi, T; Sen, N Chon; Circella, M; Coniglione, R; Costantini, H; Cottini, N; Coyle, P; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J-P; Escoffier, S; Fehr, F; Fiorello, C; Flaminio, V; Fritsch, U; Fuda, J-L; Gay, P; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Heine, E; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; de Jong, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Keller, P; Kooijman, P; Kopper, C; Kouchner, A; Kretschmer, W; Lahmann, R; Lamare, P; Lambard, G; Larosa, G; Laschinsky, H; Le Provost, H; Lefèvre, D; Lelaizant, G; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Ostasch, R; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Radu, A; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Ruppi, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Shanidze, R; Simeone, F; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J; 10.1016/j.nima.2010.09.053

    2010-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1V/muPa (including preamplifier). Completed in May 2008, AMADEUS consists of six "acoustic clusters", each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on...

  12. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    Science.gov (United States)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

  13. An acoustic emission study of cutting bauxite refractory ceramics by abrasive water jets

    Science.gov (United States)

    Momber, A. W.; Mohan, R. S.; Kovacevic, R.

    1999-08-01

    This article discusses the material removal process in bauxite refractory ceramics cut by abrasive water jets. Several parameters of the process were changed during the experiments. The experiments were monitored online by the acoustic emission (AE) technique. It was found that AE signals are able to sense the material removal process as well as the machining performances very reliably. Unsteady material removal mode consisting of matrix removal and intergranular fracture was very well represented in the AE signals by an unsteady time dependent signal type characterized by burst emissions and a frequency domain signal associated with a twin-peak shape. The particular characteristics of the signal depend on the energy involved in the process.

  14. Rapid Salmonella detection using an acoustic wave device combined with the RCA isothermal DNA amplification method

    Directory of Open Access Journals (Sweden)

    Antonis Kordas

    2016-12-01

    Full Text Available Salmonella enterica serovar Typhimurium is a major foodborne pathogen that causes Salmonellosis, posing a serious threat for public health and economy; thus, the development of fast and sensitive methods is of paramount importance for food quality control and safety management. In the current work, we are presenting a new approach where an isothermal amplification method is combined with an acoustic wave device for the development of a label free assay for bacteria detection. Specifically, our method utilizes a Love wave biosensor based on a Surface Acoustic Wave (SAW device combined with the isothermal Rolling Circle Amplification (RCA method; various protocols were tested regarding the DNA amplification and detection, including off-chip amplification at two different temperatures (30 °C and room temperature followed by acoustic detection and on-chip amplification and detection at room temperature, with the current detection limit being as little as 100 Bacteria Cell Equivalents (BCE/sample. Our acoustic results showed that the acoustic ratio, i.e., the amplitude over phase change observed during DNA binding, provided the only sensitive means for product detection while the measurement of amplitude or phase alone could not discriminate positive from negative samples. The method's fast analysis time together with other inherent advantages i.e., portability, potential for multi-analysis, lower sample volumes and reduced power consumption, hold great promise for employing the developed assay in a Lab on Chip (LoC platform for the integrated analysis of Salmonella in food samples.

  15. Contralateral acoustic suppression of transient evoked otoacoustic emissions: Activation of the medial olivocochlear system

    Directory of Open Access Journals (Sweden)

    Komazec Zoran

    2003-01-01

    Full Text Available Medial olivocochlear pathway represents the final part of efferent acoustic pathway which comes from the superior olivary complex ending at outer hair cells. Activation of medial olivocochlear system (MOCS alters the cochlear output decreasing the travelling wave within cochlea. Stimulation of MOCS provides protection against moderate levels of noise, encoding noise signals as well as selecting hearing attention. Activation of MOCS can be performed using contralateral acoustic stimulation. The principal result of presentation of contralateral acoustic stimulation during screening of transient evoked otoacoustic emission (TEOAE is an attenuation of the TEOAE amplitude. Thirty-eight ears were examined in this study: twenty-eight ears from 14 normal-hearing adults and 10 patients with unilateral deafness. Healthy subjects were exposed to contralateral broad-band noise of various intensities (40, 30, 20 and 10 dB SL, as well as 30 dB SL pure tone stimulation (1 kHz and 4 kHz. A decrease of TEOAE amplitudes during contralateral stimulation with 40 and 30 dB SL broad-band noise and pure tones was established. This effect was a result of MOCS activation. A greater intensity of contralateral stimulation evoked greater decrease of TEOAE amplitude; stimulation with broad-band noise caused greater attenuation than with pure tone stimulation. Contralateral stimulation of deaf ears in the group with unilateral deafness was also performed. Statistically significant difference between TEOAE amplitude before and during contralateral stimulation was not established. This circumstance explains that activation of MOCS and consequent reduction of outer hair cells motility is very possibly caused by contralateral acoustic stimulation. Apart from studying physiological significance of efferent auditory system, results of this and similar studies can be used for production of hearing aids improving speech discrimination in noisy environment.

  16. Fault diagnosis of reciprocating compressor valve with the method integrating acoustic emission signal and simulated valve motion

    Science.gov (United States)

    Wang, Yuefei; Xue, Chuang; Jia, Xiaohan; Peng, Xueyuan

    2015-05-01

    This paper proposes a method of diagnosing faults in reciprocating compressor valves using the acoustic emission signal coupled with the simulated valve motion. The actual working condition of a valve can be obtained by analyzing the acoustic emission signal in the crank angle domain and the valve movement can be predicted by simulating the valve motion. The exact opening and closing locations of a normal valve, provided by the simulated valve motion, can be used as references for the valve fault diagnosis. The typical valve faults are diagnosed to validate the feasibility and accuracy of the proposed method. The experimental results indicate that this method can easily distinguish the normal valve, valve flutter and valve delayed closing conditions. The characteristic locations of the opening and closing of the suction and discharge valves can be clearly identified in the waveform of the acoustic emission signal and the simulated valve motion.

  17. Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique

    Science.gov (United States)

    WenQin, Han; Ying, Luo; AiJun, Gu; Yuan, Fuh-Gwo

    2016-04-01

    Discrimination of acoustic emission (AE) signals related to different damage modes is of great importance in carbon fiber-reinforced plastic (CFRP) composite materials. To gain a deeper understanding of the initiation, growth and evolution of the different types of damage, four types of specimens for different lay-ups and orientations and three types of specimens for interlaminar toughness tests are subjected to tensile test along with acoustic emission monitoring. AE signals have been collected and post-processed, the statistical results show that the peak frequency of AE signal can distinguish various damage modes effectively. After a AE signal were decomposed by Empirical Mode Decomposition (EMD) method, it may separate and extract all damage modes included in this AE signal apart from damage mode corresponding to the peak frequency. Hilbert-Huang Transform (HHT) of AE signals can clearly illustrate the frequency distribution of Intrinsic Mode Functions (IMF) components in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition to help understanding the damage process.

  18. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-03-01

    Full Text Available Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  19. Monitoring and failure analysis of corroded bridge cables under fatigue loading using acoustic emission sensors.

    Science.gov (United States)

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  20. Experimental analysis of crack evolution in concrete by the acoustic emission technique

    Directory of Open Access Journals (Sweden)

    J. Saliba

    2015-10-01

    Full Text Available The fracture process zone (FPZ was investigated on unnotched and notched beams with different notch depths. Three point bending tests were realized on plain concrete under crack mouth opening displacement (CMOD control. Crack growth was monitored by applying the acoustic emission (AE technique. In order to improve our understanding of the FPZ, the width and length of the FPZ were followed based on the AE source locations maps and several AE parameters were studied during the entire loading process. The bvalue analysis, defined as the log-linear slope of the frequency-magnitude distribution of acoustic emissions, was also carried out to describe quantitatively the influence of the relative notch depth on the fracture process. The results show that the number of AE hits increased with the decrease of the relative notch depth and an important AE energy dissipation was observed at the crack initiation in unnotched beams. In addition, the relative notch depth influenced the AE characteristics, the process of crack propagation, and the brittleness of concrete.

  1. Determination of bearing steel heat treatment with the use of the acoustic emission method

    Directory of Open Access Journals (Sweden)

    T.Z. Woźniak

    2010-07-01

    Full Text Available A study on the control of an extremely important stage of the martensitic-bainitic austempering and obtaining the M-B structure in the 100CrMnSi6-4 steel with the use of the acoustic emission (AE has been undertaken. In order to enrich retained austenite with carbon,steels are austempered at appropriately low temperatures. A martensitic transformation, resulting from diffusionless and displacive transformation is associated with significant AE signs. The strain energy produced during growth due to the shape change is reduced by plastic deformation. Predominant source of (AE is the movement of dislocations in order to relieve internal stresses.The heat treatment was performed in a modern, purpose-constructed device which simultaneously records acoustic emission effects. The signals were recorded with the use of an AE analyzer 20–800 kHz, and they were received by means of a broadband piezoelectric transducer with the use of a specialist card with a sampling frequency of 1200 kHz. The results regarding a correlation of austempering temperature and the maximum number of AE events and dilatometric results have been presented. This parameter can be used for precise Ms temperatureestimation. Basing on microstructural investigations, it has been found that previously formed martensite with midrib morphology alsoaccelerates the bainitic transformation.

  2. A combined complex electrical impedance and acoustic emission study in limestone samples under uniaxial loading

    Science.gov (United States)

    Saltas, V.; Fitilis, I.; Vallianatos, F.

    2014-12-01

    In the present work, complex electrical impedance measurements in the frequency range of 10 mHz to 1 MHz were carried out in conjunction with acoustic emission monitoring in limestone samples subjected to linear and stepped-like uniaxial loading, up to ultimate failure. Cole-Cole plots of the complex impedance during the stepped loading of limestone have been used to discriminate the contributions of grains interior, grain boundaries and electrode polarization effects to the overall electrical behavior. The latter is well-described with an equivalent-circuit model which comprises components of constant phase elements and resistances in parallel connection. Electrical conductivity increases upon uniaxial loading giving rise to negative values of effective activation volume. This is a strong experimental evidence for the generation of transient electric signals recorded prior to seismic events and may be attributed to charge transfer (proton conduction) due to cracks generation and propagation as a result of the applied stress. The time-series of ac-conductivity at two distinct frequencies (10 kHz, 200 kHz) during linear loading of limestone samples exhibits a strong correlation with the acoustic emission activity obeying the same general self-similar law for critical phenomena that has been reported for the energy release before materials fracture.

  3. Determination of bearing steel heat treatment with the use of the acoustic emission method

    Directory of Open Access Journals (Sweden)

    T. Z. Wozniak

    2010-10-01

    Full Text Available A study on the control of an extremely important stage of the martensitic-bainitic austempering and obtaining the M-B structure in the 100CrMnSi6-4 steel with the use of the acoustic emission (AE has been undertaken. In order to enrich retained austenite with carbon, steels are austempered at appropriately low temperatures. A martensitic transformation, resulting from diffusionless and displacive transformation is associated with significant AE signs. The strain energy produced during growth due to the shape change is reduced by plastic deformation. Predominant source of (AE is the movement of dislocations in order to relieve internal stresses.The heat treatment was performed in a modern, purpose-constructed device which simultaneously records acoustic emission effects. The signals were recorded with the use of an AE analyzer 20–800 kHz, and they were received by means of a broadband piezoelectric transducer with the use of a specialist card with a sampling frequency of 1200 kHz. The results regarding a correlation of austempering temperature and the maximum number of AE events and dilatometric results have been presented. This parameter can be used for precise Ms temperature estimation. Basing on microstructural investigations, it has been found that previously formed martensite with midrib morphology also accelerates the bainitic transformation.

  4. Robust Clustering of Acoustic Emission Signals Using Neural Networks and Signal Subspace Projections

    Directory of Open Access Journals (Sweden)

    Shi Zhiqiang

    2003-01-01

    Full Text Available Acoustic emission-based techniques are being used for the nondestructive inspection of mechanical systems. For reliable automatic fault monitoring related to the generation and propagation of cracks, it is important to identify the transient crack-related signals in the presence of strong time-varying noise and other interference. A prominent difficulty is the inability to differentiate events due to crack growth from noise of various origins. This work presents a novel algorithm for automatic clustering and separation of acoustic emission (AE events based on multiple features extracted from the experimental data. The algorithm consists of two steps. In the first step, the noise is separated from the events of interest and subsequently removed using a combination of covariance analysis, principal component analysis (PCA, and differential time delay estimates. The second step processes the remaining data using a self-organizing map (SOM neural network, which outputs the noise and AE signals into separate neurons. To improve the efficiency of classification, the short-time Fourier transform (STFT is applied to retain the time-frequency features of the remaining events, reducing the dimension of the data. The algorithm is verified with two sets of data, and a correct classification ratio over 95% is achieved.

  5. Traceability of Acoustic Emission measurements for a proposed calibration method - Classification of characteristics and identification using signal analysis

    Science.gov (United States)

    Griffin, James

    2015-01-01

    When using Acoustic Emission (AE) technologies, tensile, compressive and shear stress/strain tests can provide a detector for material deformation and dislocations. In this paper improvements are made to standardise calibration techniques for AE against known metrics such as force. AE signatures were evaluated from various calibration energy sources based on the energy from the first harmonic (dominant energy band) [1,2]. The effects of AE against its calibration identity are investigated: where signals are correlated to the average energy and distance of the detected phenomena. In addition, extra tests are investigated in terms of the tensile tests and single grit tests characterising different materials. Necessary translations to the time-frequency domain were necessary when segregating salient features between different material properties. Continuing this work the obtained AE is summarised and evaluated by a Neural Network (NN) regression classification technique which identifies how far the malformation has progressed (in terms of energy/force) during material transformation. Both genetic-fuzzy clustering and tree rule based classifier techniques were used as the second and third classification techniques respectively to verify the NN output giving a weighted three classifier system. The work discussed in this paper looks at both distance and force relationships for various prolonged Acoustic Emission stresses. Later such analysis was realised with different classifier models and finally implemented into the Simulink simulations. Further investigations were made into classifier models for different material interactions in terms of force and distance which add further dimension to this work with different materials based simulation realisations. Within the statistical analysis section there are two varying prolonged stress tests which together offer the mechanical calibration system (automated solenoid and pencil break calibration system). Taking such a

  6. A novel fiber optic geophone with high sensitivity for geo-acoustic detection

    Science.gov (United States)

    Zhang, Zhenhui; Yang, Huayong; Xiong, Shuidong; Luo, Hong; Cao, Chunyan; Ma, Shuqing

    2014-12-01

    A novel interferometric fiber optic geophone is introduced in this paper. This geophone is mainly used for geo-acoustic signal detection. The geophone use one of the three orthogonal components of mandrel type push-pull structure in mechanically and single-mode fiber optic Michelson interferometer structure with Faraday Rotation Mirror (FRM) elements in optically. The resonance frequency of the geophone is larger than 1000Hz. The acceleration sensitivity is as high as 56.6 dB (0dB re 1rad/g) with a slight sensitivity fluctuation of +/-0. 2dB within the frequency band from 20Hz to 200Hz. The geo-acoustic signals generated by underwater blasting are detected successfully. All the channels show good uniformity in the detected wave shape and the amplitudes exhibit very slight differences. The geo-acoustic signal excitated by the engine of surface vehicles was also detected successfully.

  7. High frequency surface acoustic wave resonator-based sensor for particulate matter detection

    OpenAIRE

    Thomas, Sanju; Cole, Marina; Villa-López, Farah Helue; Gardner, J. W.

    2016-01-01

    This paper describes the characterization of high frequency Surface Acoustic Wave Resonator-based (SAWR) sensors, for the detection of micron and sub-micron sized particles. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh wave SAWRs where one is used for particle detection and the other as a reference. Electro-acoustic detection of different sized particles shows a strong relationship between mass sensitivity (Δf/Δm) and particle diameter (Dp). This enables frequency-dependent S...

  8. Experiment Observation on Acoustic Forward Scattering for Underwater Moving Object Detection

    Institute of Scientific and Technical Information of China (English)

    LEI Bo; MA Yuan-Liang; YANG Kun-De

    2011-01-01

    The problem of detecting an object in shallow water by observing changes in the acoustic field as the object passes between an acoustic source and receiver is addressed. A signal processing scheme based on forward scattering is proposed to detect the perturbed field in the presence of the moving object. The periodic LFM wideband signal is transmitted and a sudden change of field is acquired using a normalized median filter. The experimental results on the lake show that the proposed scheme is successful for the detection of a slowly moving object in the bistatic blind zone.

  9. An Investigation of the Effects of Metallurgical and/or Testing Variables on the Acoustic Emission from Crystalline Materials.

    Science.gov (United States)

    1982-09-01

    precipitate strengths. For easy cross slip systems, ACOUSTIC EMISSION including 7075 aluminium , 6061 aluminium , 2219 It is unlikely that the motion of a...peak was observed in JBK-75 and Noise was subtracted from the measured rms acoustic 6061 aluminium , but not in KHB or 7075 aluminium . Small emission...and100-150 A thick. The formation of0’ results in softening of the alloy. Above - 275°C 0’ is converted into heights for JBK-75 and 6061 aluminium as

  10. Synthetic Aperture Acoustic Imaging for Roadside Detection of Solid Objects

    Science.gov (United States)

    2014-11-20

    Conference on Mechanical Vibration and Noise (VIB) . 13-AUG-12, . : , TOTAL: 3 Number of Peer-Reviewed Conference Proceeding publications (other than...targets 6 Laboratory SAA System   Figure 2.1: An illustration of acoustic wavefront reconstruction of a 0.2 m square aluminum plate located at...Equivalent: Total Number: Discipline Chelsea Good 0.25 Mechanical Engineering Nicole Bull 0.05 Mechanical Engineering 0.30 2 Sub Contractors (DD882) Names

  11. Sodium boiling detection in LMFBRs by acoustic-neutronic cross correlation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, S.A.

    1977-01-01

    The acoustic and neutronic noise signals caused by boiling are the signals primarily considered likely to detect sodium boiling in an LMFBR. Unfortunately, these signals may have serious signal-to-noise problems due to strong background noise sources. Neutronic-acoustic cross correlation techniques are expected to provide a means of improving the signal-to-noise ratio. This technique can improve the signal-to-noise ratio because the neutronic and acoustic signals due to boiling are highly correlated near the bubble repetition frequency, while the background noise sources are expected to be uncorrelated (or at most weakly correlated). An experiment was designed to show that the neutronic and acoustic noise signals are indeed highly correlated. The experiment consisted of simulating the void and pressure effects of local sodium boiling in the core of a zero-power reactor (ARK). The analysis showed that the neutronic and acoustic noise signals caused by boiling are almost perfectly correlated in a wide frequency band about the bubble repetition frequency. The results of the experiments were generalized to full-scale reactors to compare the inherent effectiveness of the methods which use the neutronic or acoustic signals alone with a hybrid method, which cross correlates the neutronic and acoustic signals. It was concluded that over a zone of the reactor where the void coefficient is sufficiently large (approximately 85 percent the core volume), the cross correlation method can provide a more rapid detection system for a given signal-to-noise ratio. However, where the void coefficient is small, one must probably rely on the acoustic method alone.

  12. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  13. Slew Bearings Damage Detection using Hilbert Huang Transformation and Acoustic Methods

    Directory of Open Access Journals (Sweden)

    P. Nikolakopoulos

    2015-06-01

    Full Text Available Slow speed slew bearings are widely used in many applications such us radar, aviation and aerospace units, bogie bearings for vehicles, harbor and shipyard cranes. Slew bearings are design to carry out high axial and radial loads, they have high titling rigidity and they lubricated with grease. Slew bearings consist of the rollers, the inner and the outer ring and the gear in general. One of the most common problems arising in such equipments is the vibration levels due to wear of either regarding the rollers or the other components. Actually, it is very critical for his safe operation and reliability to know from where the vibrations come from, and how much severe are. In this article, the acoustic emission method is used in order to excite slew bearings either for laboratory tests or real naval application receiving the sound waves in the time domain. The Hilbert Huang Transformation (HHT with the empirical mode decomposition (EMD is used in order to detect the possible defect and to estimate the healthy state from the measured sound signals of the bearing, through to investigation of the statistical index kurtosis.

  14. Online Damage Detection on Metal and Composite Space Structures by Active and Passive Acoustic Methods

    Science.gov (United States)

    Scheerer, M.; Cardone, T.; Rapisarda, A.; Ottaviano, S.; Ftancesconi, D.

    2012-07-01

    In the frame of ESA funded programme Future Launcher Preparatory Programme Period 1 “Preparatory Activities on M&S”, Aerospace & Advanced Composites and Thales Alenia Space-Italia, have conceived and tested a structural health monitoring approach based on integrated Acoustic Emission - Active Ultrasound Damage Identification. The monitoring methods implemented in the study are both passive and active methods and the purpose is to cover large areas with a sufficient damage size detection capability. Two representative space sub-structures have been built and tested: a composite overwrapped pressure vessel (COPV) and a curved, stiffened Al-Li panel. In each structure, typical critical damages have been introduced: delaminations caused by impacts in the COPV and a crack in the stiffener of the Al-Li panel which was grown during a fatigue test campaign. The location and severity of both types of damages have been successfully assessed online using two commercially available systems: one 6 channel AE system from Vallen and one 64 channel AU system from Acellent.

  15. Fatigue and fracture assessment of cracks in steel elements using acoustic emission

    Science.gov (United States)

    Nemati, Navid; Metrovich, Brian; Nanni, Antonio

    2011-04-01

    Single edge notches provide a very well defined load and fatigue crack size and shape environment for estimation of the stress intensity factor K, which is not found in welded elements. ASTM SE(T) specimens do not appear to provide ideal boundary conditions for proper recording of acoustic wave propagation and crack growth behavior observed in steel bridges, but do provide standard fatigue crack growth rate data. A modified versions of the SE(T) specimen has been examined to provide small scale specimens with improved acoustic emission(AE) characteristics while still maintaining accuracy of fatigue crack growth rate (da/dN) versus stress intensity factor (ΔK). The specimens intend to represent a steel beam flange subjected to pure tension, with a surface crack growing transverse to a uniform stress field. Fatigue test is conducted at low R ratio. Analytical and numerical studies of stress intensity factor are developed for single edge notch test specimens consistent with the experimental program. ABAQUS finite element software is utilized for stress analysis of crack tips. Analytical, experimental and numerical analysis were compared to assess the abilities of AE to capture a growing crack.

  16. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    Science.gov (United States)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  17. Extensive characterization of seismic laws in acoustic emissions of crumpled plastic sheets

    Science.gov (United States)

    Costa, Leandro S.; Lenzi, Ervin K.; Mendes, Renio S.; Ribeiro, Haroldo V.

    2016-06-01

    Statistical similarities between earthquakes and other systems that emit cracking noises have been explored in diverse contexts, ranging from materials science to financial and social systems. Such analogies give promise of a unified and universal theory for describing the complex responses of those systems. There are, however, very few attempts to simultaneously characterize the most fundamental seismic laws in such systems. Here we present a complete description of the Gutenberg-Richter law, the recurrence times, Omori's law, the productivity law, and Båth's law for the acoustic emissions that occur in the relaxation process of uncrumpling thin plastic sheets. Our results show that these laws also appear in this phenomenon, but (for most cases) with different parameters from those reported for earthquakes and fracture experiments. This study thus contributes to elucidate the parallel between seismic laws and cracking noises in uncrumpling processes, revealing striking qualitative similarities but also showing that these processes display unique features.

  18. Laser cleaning of steam generator tubing based on acoustic emission technology

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Su-xia; Luo, Ji-jun; Shen, Tao; Li, Ru-song [Xi' an Hi-Tech Institute, Xi' an (China)

    2015-12-15

    As a physical method, laser cleaning technology in equipment maintenance will be a good prospect. The experimental apparatus for laser cleaning of heat tubes in the steam generator was designed according to the results of theoretical analysis. There are two conclusions; one is that laser cleaning technology is attached importance to traditional methods. Which has advantages in saving on much manpower and material resource and it is a good cleaning method for heat tubes. The other is that the acoustic emission signal includes lots of information on the laser cleaning process, which can be used as real-time monitoring in laser cleaning processes. When the laser acts for 350 s, 100 % contaminants of heat tubes is cleaned off, and the sensor only receives weak AE signal at that time.

  19. Classification of acoustic emission signals using wavelets and Random Forests : Application to localized corrosion

    Science.gov (United States)

    Morizet, N.; Godin, N.; Tang, J.; Maillet, E.; Fregonese, M.; Normand, B.

    2016-03-01

    This paper aims to propose a novel approach to classify acoustic emission (AE) signals deriving from corrosion experiments, even if embedded into a noisy environment. To validate this new methodology, synthetic data are first used throughout an in-depth analysis, comparing Random Forests (RF) to the k-Nearest Neighbor (k-NN) algorithm. Moreover, a new evaluation tool called the alter-class matrix (ACM) is introduced to simulate different degrees of uncertainty on labeled data for supervised classification. Then, tests on real cases involving noise and crevice corrosion are conducted, by preprocessing the waveforms including wavelet denoising and extracting a rich set of features as input of the RF algorithm. To this end, a software called RF-CAM has been developed. Results show that this approach is very efficient on ground truth data and is also very promising on real data, especially for its reliability, performance and speed, which are serious criteria for the chemical industry.

  20. Dynamic behaviour of magneto-acoustic emission in a grain-oriented steel

    Science.gov (United States)

    Stupakov, A.; Perevertov, O.; Landa, M.

    2017-03-01

    Magneto-acoustic emission (MAE) in a grain-oriented electrical steel is measured in a wide range of the magnetizing frequencies fmag = 0.5 - 100 Hz at the controllable sinusoidal/triangular waveforms of the magnetic induction B(t). Magnetic field is measured directly by a Hall sensor positioned on the steel surface. Intensity of the MAE signal (rms value) follows a loss separation formula a√{fmag } +bfmag + c and reveals a linear relationship with the hysteresis loss. Number of the MAE individual pulses drops with the magnetizing frequency hyperbolically. Shape of the induction waveform at the fixed magnetizing amplitude and frequency has no visible impact on the above-mentioned behaviour. However, rms profiles of the MAE signal are driven by the field rate of change dH / dt . Integration of the MAE profiles allows to evaluate the hysteresis coercive field.

  1. Accumulated damage process of thermal sprayed coating under rolling contact by acoustic emission technique

    Science.gov (United States)

    Xu, Jia; Zhou, Zhen-yu; Piao, Zhong-yu

    2016-09-01

    The accumulated damage process of rolling contact fatigue (RCF) of plasma-sprayed coatings was investigated. The influences of surface roughness, loading condition, and stress cycle frequency on the accumulated damage status of the coatings were discussed. A ball-ondisc machine was employed to conduct RCF experiments. Acoustic emission (AE) technique was introduced to monitor the RCF process of the coatings. AE signal characteristics were investigated to reveal the accumulated damage process. Result showed that the polished coating would resist the asperity contact and remit accumulated damage. The RCF lifetime would then extend. Heavy load would aggravate the accumulated damage status and induce surface fracture. Wear became the main failure mode that reduced the RCF lifetime. Frequent stress cycle would aggravate the accumulated damage status and induce interface fracture. Fatigue then became the main failure mode that also reduced the RCF lifetime.

  2. Rock burst proneness prediction by acoustic emission test during rock deformation

    Institute of Scientific and Technical Information of China (English)

    张志镇; 高峰; 尚晓吉

    2014-01-01

    Rock burst is a severe disaster in mining and underground engineering, and it is important to predict the rock burst risk for minimizing the loss during the constructing process. The rock burst proneness was connected with the acoustic emission (AE) parameter in this work, which contributes to predicting the rock burst risk using AE technique. Primarily, a rock burst proneness index is proposed, and it just depends on the heterogeneous degree of rock material. Then, the quantificational formula between the value of rock burst proneness index and the accumulative AE counts in rock sample under uniaxial compression with axial strain increases is developed. Finally, three kinds of rock samples, i.e., granite, limestone and sandstone are tested about variation of the accumulative AE counts under uniaxial compression, and the test data are fitted well with the theoretic formula.

  3. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels.

    Science.gov (United States)

    Asamene, Kassahun; Hudson, Larry; Sundaresan, Mannur

    2015-05-01

    Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced Polymer (CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation coefficients of the fundamental antisymmetric (A0) and symmetric (S0) wave modes were determined experimentally along different directions for the two types of CFRP panels. In the frequency range from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes due to material related attenuation compared to the S0 mode. Moderate to strong changes in the attenuation levels were noted with propagation directions. Such mode and frequency dependent attenuation introduces major changes in the characteristics of AE signals depending on the position of the AE sensor relative to the source. Results from finite element simulations of a microscopic damage event in the composite laminates are used to illustrate attenuation related changes in modal and frequency components of AE signals.

  4. Effect of hydrogen attack on acoustic emission behavior of low carbon steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to investigate the effect of hydrogen attack degree on acoustic emission (AE) behavior of low carbon steel during tensiling, specimens made of low carbon steel was exposed to hydrogen gas of 18 MPa at 450 and 500℃ for 240, 480 and 720 h respectively. Experimental results show that with increase of the hydrogen attack degree, the totally AE activity decreases during tensiling. In addition, the count of AE signals with high amplitude for the specimens with hydrogen attack keeps a constant which is less than that without hydrogen attack. It is concluded that AE signals originate in the specimens with hydrogen attack from intergranular fracture induced by methane blisterings or/and microcracks on grain boundaries.

  5. Extensive Characterization of Seismic Laws in Acoustic Emissions of Crumpled Plastic Sheets

    CERN Document Server

    Costa, Leandro S; Mendes, Renio S; Ribeiro, Haroldo V

    2016-01-01

    Statistical similarities between earthquakes and other systems that emit cracking noises have been explored in diverse contexts, ranging from materials science to financial and social systems. Such analogies give promise of a unified and universal theory for describing the complex responses of those systems. There are, however, very few attempts to simultaneously characterize the most fundamental seismic laws in such systems. Here we present a complete description of the Gutenberg-Richter law, the recurrence times, Omori's law, the productivity law, and Bath's law for the acoustic emissions that happen in the relaxation process of uncrumpling thin plastic sheets. Our results show that these laws also appear in this phenomenon, but (for most cases) with different parameters from those reported for earthquakes and fracture experiments. This study thus contributes to elucidate the parallel between seismic laws and cracking noises in uncrumpling processes, revealing striking qualitative similarities but also show...

  6. Deformation, acoustic emission and ultrasound velocity during fatigue tests on paper

    Directory of Open Access Journals (Sweden)

    Hæggström E.

    2010-06-01

    Full Text Available We study the evolution of mechanical properties of paper samples during cyclic experiments. The issue is to look at the sample-to-sample variation, and we try to predict the number of loading cycles to failure. We used two concurrent methods to obtain the deformation: the strain was calculated from vertical displacement measured by laser interferometer sensor, as well as, computed by digital image correlation technique from pictures taken each 2s by a camera. Acoustic emission of fracture was also recorded, and an active ultrasonic wave method using piezoelectric transducers is used to follow the viscoelastic behaviour of each sample. We found that a sharp final increase of different variables like deformation, strain rate and fluctuations, are signs of an imminent rupture of the paper. Moreover looking at the evolution of these quantities during the first cycle only is already an indicator about the lifetime of the sample.

  7. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in Kevlar (R) 49 Composites

    Science.gov (United States)

    Waller, Jess M.; Saulsberry, Regor L.; Andrade, Eduardo

    2009-01-01

    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar(Registeres TradeMark) 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio < 1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  8. A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform

    Science.gov (United States)

    Siracusano, Giulio; Lamonaca, Francesco; Tomasello, Riccardo; Garescì, Francesca; Corte, Aurelio La; Carnì, Domenico Luca; Carpentieri, Mario; Grimaldi, Domenico; Finocchio, Giovanni

    2016-06-01

    The acoustic emission (AE) is a powerful and potential nondestructive testing method for structural monitoring in civil engineering. Here, we show how systematic investigation of crack phenomena based on AE data can be significantly improved by the use of advanced signal processing techniques. Such data are a fundamental source of information that can be used as the basis for evaluating the status of the material, thereby paving the way for a new frontier of innovation made by data-enabled analytics. In this article, we propose a framework based on the Hilbert-Huang Transform for the evaluation of material damages that (i) facilitates the systematic employment of both established and promising analysis criteria, and (ii) provides unsupervised tools to achieve an accurate classification of the fracture type, the discrimination between longitudinal (P-) and traversal (S-) waves related to an AE event. The experimental validation shows promising results for a reliable assessment of the health status through the monitoring of civil infrastructures.

  9. Acoustic Emission Signal Recognition of Different Rocks Using Wavelet Transform and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Xiangxin Liu

    2015-01-01

    Full Text Available Different types of rocks generate acoustic emission (AE signals with various frequencies and amplitudes. How to determine rock types by their AE characteristics in field monitoring is also useful to understand their mechanical behaviors. Different types of rock specimens (granulite, granite, limestone, and siltstone were subjected to uniaxial compression until failure, and their AE signals were recorded during their fracturing process. The wavelet transform was used to decompose the AE signals, and the artificial neural network (ANN was established to recognize the rock types and noise (artificial knock noise and electrical noise. The results show that different rocks had different rupture features and AE characteristics. The wavelet transform provided a powerful method to acquire the basic characteristics of the rock AE and the environmental noises, such as the energy spectrum and the peak frequency, and the ANN was proved to be a good method to recognize AE signals from different types of rocks and the environmental noises.

  10. Analysis of Acoustic Emission Signals During Laser Spot Welding of SS304 Stainless Steel

    Science.gov (United States)

    Lee, Seounghwan; Ahn, Suneung; Park, Changsoon

    2014-03-01

    In this article, an in-process monitoring scheme for a pulsed Nd:YAG laser spot welding (LSW) is presented. Acoustic emission (AE) was selected for the feedback signal, and the AE data during LSW were sampled and analyzed for varying process conditions such as laser power and pulse duration. In the analysis, possible AE generation sources such as melting and solidification mechanism during welding were investigated using both the time- and frequency-domain signal processings. The results, which show close relationships between LSW and AE signals, were adopted in the feature (input) selection of a back-propagation artificial neural network, to predict the weldability of stainless steel sheets. Processed outputs agree well with LSW experimental data, which confirms the usefulness of the proposed scheme.

  11. Size Differentiation Of A Continuous Stream Of Particles Using Acoustic Emissions

    Science.gov (United States)

    Nsugbe, E.; Starr, A.; Foote, P.; Ruiz-Carcel, C.; Jennions, I.

    2016-11-01

    Procter and Gamble (P&G) require an online system that can monitor the particle size distribution of their washing powder mixing process. This would enable the process to take a closed loop form which would enable process optimisation to take place in real time. Acoustic Emission (AE) was selected as the sensing method due to its non-invasive nature and primary sensitivity to frequencies which particle events emanate. This work details the results of the first experiment carried out in this research project. This experiment involved the use of AE to distinguish between the sizes of sieved polyethylene particle (53-250microns) and glass beads (150-600microns) which were dispensed on a target plate using a funnel. By conducting a threshold analysis of the impact peaks in the signal, the sizes of the particles could be distinguished and a signal feature was found which could be directly linked to the sizes of the particles.

  12. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    Science.gov (United States)

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  13. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    Science.gov (United States)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  14. Effect of passive acoustic sampling methodology on detecting bats after declines from white nose syndrome

    Science.gov (United States)

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    Concomitant with the emergence and spread of white-nose syndrome (WNS) and precipitous decline of many bat species in North America, natural resource managers need modified and/or new techniques for bat inventory and monitoring that provide robust occupancy estimates. We used Anabat acoustic detectors to determine the most efficient passive acoustic sampling design for optimizing detection probabilities of multiple bat species in a WNS-impacted environment in New York, USA. Our sampling protocol included: six acoustic stations deployed for the entire duration of monitoring as well as a 4 x 4 grid and five transects of 5-10 acoustic units that were deployed for 6-8 night sample durations surveyed during the summers of 2011-2012. We used Program PRESENCE to determine detection probability and site occupancy estimates. Overall, the grid produced the highest detection probabilities for most species because it contained the most detectors and intercepted the greatest spatial area. However, big brown bats (Eptesicus fuscus) and species not impacted by WNS were detected easily regardless of sampling array. Endangered Indiana (Myotis sodalis) and little brown (Myotis lucifugus) and tri-colored bats (Perimyotis subflavus) showed declines in detection probabilities over our study, potentially indicative of continued WNS-associated declines. Identification of species presence through efficient methodologies is vital for future conservation efforts as bat populations decline further due to WNS and other factors.   

  15. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    Science.gov (United States)

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  16. Robotic vehicle uses acoustic array for detection and localization in urban environments

    Science.gov (United States)

    Young, Stuart H.; Scanlon, Michael V.

    2001-09-01

    Sophisticated robotic platforms with diverse sensor suites are quickly replacing the eyes and ears of soldiers on the complex battlefield. The Army Research Laboratory (ARL) in Adelphi, Maryland has developed a robot-based acoustic detection system that will detect an impulsive noise event, such as a sniper's weapon firing or door slam, and activate a pan-tilt to orient a visible and infrared camera toward the detected sound. Once the cameras are cued to the target, onboard image processing can then track the target and/or transmit the imagery to a remote operator for navigation, situational awareness, and target detection. Such a vehicle can provide reconnaissance, surveillance, and target acquisition for soldiers, law enforcement, and rescue personnel, and remove these people from hazardous environments. ARL's primary robotic platforms contain 16-in. diameter, eight-element acoustic arrays. Additionally, a 9- in. array is being developed in support of DARPA's Tactical Mobile Robot program. The robots have been tested in both urban and open terrain. The current acoustic processing algorithm has been optimized to detect the muzzle blast from a sniper's weapon, and reject many interfering noise sources such as wind gusts, generators, and self-noise. However, other detection algorithms for speech and vehicle detection/tracking are being developed for implementation on this and smaller robotic platforms. The collaboration between two robots, both with known positions and orientations, can provide useful triangulation information for more precise localization of the acoustic events. These robots can be mobile sensor nodes in a larger, more expansive, sensor network that may include stationary ground sensors, UAVs, and other command and control assets. This report will document the performance of the robot's acoustic localization, describe the algorithm, and outline future work.

  17. Detecting unilateral phrenic paralysis by acoustic respiratory analysis.

    Directory of Open Access Journals (Sweden)

    José Antonio Fiz

    Full Text Available The consequences of phrenic nerve paralysis vary from a considerable reduction in respiratory function to an apparently normal state. Acoustic analysis of lung sound intensity (LSI could be an indirect non-invasive measurement of respiratory muscle function, comparing activity on the two sides of the thoracic cage. Lung sounds and airflow were recorded in ten males with unilateral phrenic paralysis and ten healthy subjects (5 men/5 women, during progressive increasing airflow maneuvers. Subjects were in sitting position and two acoustic sensors were placed on their back, on the left and right sides. LSI was determined from 1.2 to 2.4 L/s between 70 and 2000 Hz. LSI was significantly greater on the normal (19.3±4.0 dB than the affected (5.7±3.5 dB side in all patients (p = 0.0002, differences ranging from 9.9 to 21.3 dB (13.5±3.5 dB. In the healthy subjects, the LSI was similar on both left (15.1±6.3 dB and right (17.4±5.7 dB sides (p = 0.2730, differences ranging from 0.4 to 4.6 dB (2.3±1.6 dB. There was a positive linear relationship between the LSI and the airflow, with clear differences between the slope of patients (about 5 dB/L/s and healthy subjects (about 10 dB/L/s. Furthermore, the LSI from the affected side of patients was close to the background noise level, at low airflows. As the airflow increases, the LSI from the affected side did also increase, but never reached the levels seen in healthy subjects. Moreover, the difference in LSI between healthy and paralyzed sides was higher in patients with lower FEV1 (%. The acoustic analysis of LSI is a relevant non-invasive technique to assess respiratory function. This method could reinforce the reliability of the diagnosis of unilateral phrenic paralysis, as well as the monitoring of these patients.

  18. RAP: acoustic detection of particles in ultracryogenic resonant antenna

    Energy Technology Data Exchange (ETDEWEB)

    Bertolucci, S.; Coccia, E.; D' Antonio, S.; Waard, A. de; Delle Monache, G.; Di Gioacchino, D.; Fafone, V.; Fauth, A.; Frossati, G.; Ligi, C. E-mail: carlo.ligi@inf.infn.it; Marini, A.; Mazzitelli, G.; Modestino, G.; Pizzella, G.; Quintieri, L.; Raffone, G.; Ronga, F.; Tripodi, P.; Valente, P

    2004-03-11

    The resonant-mass gravitational wave detector NAUTILUS has recently recorded signals due to cosmic rays crossing. Very large signals have been observed in the superconductive state of the antenna. In order to investigate this anomalous response at low temperatures, the Rivelazione Acustica di Particelle experiment has been approved. Its purpose is the measurement of the mechanical vibrations in a superconducting (T{approx}100 mK) cylindrical aluminium bar when hit by 10{sup 5} electrons at 510 MeV from the DAPHINE Beam Test Facility, corresponding to the energies released by extensive air showers in the NAUTILUS antenna. The results of this measurement are crucial to understand the interaction of ionizing particles with bulk superconductors and to confirm the results on the thermo-acoustic model of the past experiments.

  19. Object Detection and Tracking Method of AUV Based on Acoustic Vision

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tie-dong; WAN Lei; ZENG Wen-jing; XU Yu-ru

    2012-01-01

    This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation,underwater acoustic images segmentation and underwater objects tracking.This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor.First,the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image,and the relevant position information of objects is extracted and determined.An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method.Second,a representation of region information is created in light of the Gaussian particle filter.The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness.Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed.They show that the proposed method can detect and track the moving objects underwater online,and it is effective and robust.

  20. Object detection and tracking method of AUV based on acoustic vision

    Science.gov (United States)

    Zhang, Tie-dong; Wan, Lei; Zeng, Wen-jing; Xu, Yu-ru

    2012-12-01

    This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust.

  1. Effect of secondary electron emission on nonlinear dust acoustic wave propagation in a complex plasma with negative equilibrium dust charge

    Science.gov (United States)

    Bhakta, Subrata; Ghosh, Uttam; Sarkar, Susmita

    2017-02-01

    In this paper, we have investigated the effect of secondary electron emission on nonlinear propagation of dust acoustic waves in a complex plasma where equilibrium dust charge is negative. The primary electrons, secondary electrons, and ions are Boltzmann distributed, and only dust grains are inertial. Electron-neutral and ion-neutral collisions have been neglected with the assumption that electron and ion mean free paths are very large compared to the plasma Debye length. Both adiabatic and nonadiabatic dust charge variations have been separately taken into account. In the case of adiabatic dust charge variation, nonlinear propagation of dust acoustic waves is governed by the KdV (Korteweg-de Vries) equation, whereas for nonadiabatic dust charge variation, it is governed by the KdV-Burger equation. The solution of the KdV equation gives a dust acoustic soliton, whose amplitude and width depend on the secondary electron yield. Similarly, the KdV-Burger equation provides a dust acoustic shock wave. This dust acoustic shock wave may be monotonic or oscillatory in nature depending on the fact that whether it is dissipation dominated or dispersion dominated. Our analysis shows that secondary electron emission increases nonadiabaticity induced dissipation and consequently increases the monotonicity of the dust acoustic shock wave. Such a dust acoustic shock wave may accelerate charge particles and cause bremsstrahlung radiation in space plasmas whose physical process may be affected by secondary electron emission from dust grains. The effect of the secondary electron emission on the stability of the equilibrium points of the KdV-Burger equation has also been investigated. This equation has two equilibrium points. The trivial equilibrium point with zero potential is a saddle and hence unstable in nature. The nontrivial equilibrium point with constant nonzero potential is a stable node up to a critical value of the wave velocity and a stable focus above it. This critical

  2. Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.

    Science.gov (United States)

    Li, Yun; Ho, K C; Popescu, Mihail

    2014-03-01

    Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.

  3. Minimum ionizing particle detection by secondary electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Faivre, J.C.; Fanet, H.; Garin, A.; Robert, J.P.; Rouger, M.; Saudinos, J.

    1977-02-01

    The use of secondary electron emission to detect high energy particles is investigated. Low density KCl layers have been tested to detect MeV electrons, 400-750 MeV protons and high energy deuterons. The efficiency and the secondary electron spectrum are presented. The results justify the use of low-density KCl layer to detect minimum ionizing particles.

  4. Acoustic emissions from the inner ear and brain stem responses in type 2 diabetics

    Directory of Open Access Journals (Sweden)

    Jabbari Moghaddam Y

    2011-12-01

    Full Text Available Yalda Jabbari MoghaddamDepartment of Otolaryngology, Head and Neck Surgery, Tabriz University of Medical Sciences, Tabriz, IranBackground: The purpose of this study was to evaluate the auditory brain stem response (ABR and acoustic emissions of the inner ear (OAE in middle-aged type 2 diabetics.Methods: Fifty type 2 diabetic and nondiabetic patients aged 40–50 years and attending the Tabriz Medical University outpatient clinics were recruited for this study during 2009–2010. All ABR and OAE procedures were implemented by an audiometrist. The relationship between ABR and OAE findings and demographic, laboratory, and clinical characteristics was investigated.Results: Fifty patients (34 female and 16 male of average age 45.7 ± 3.0 years were entered into the study. In the type 2 diabetic group, disordered ABR was found in at least one ear in 8% of cases and disordered OAE was recorded in at least one ear in 16% of cases, with no significant difference between the diabetic and nondiabetic groups. Mean age, duration of diabetes, serum HbA1c levels, and prevalence of female gender were higher in the diabetic group.Conclusion: According to our findings, the prevalence of ABR and OAE is not significantly different between type 2 diabetics and nondiabetics.Keywords: sensorineural hearing loss, diabetes, auditory brain stem response, otoacoustic emission

  5. An effective sensor for tool wear monitoring in face milling: Acoustic emission

    Indian Academy of Sciences (India)

    M T Mathew; P Srinivasa Pai; L A Rocha

    2008-06-01

    Acoustic Emission (AE) has been widely used for monitoring manufacturing processes particularly those involving metal cutting. Monitoring the condition of the cutting tool in the machining process is very important since tool condition will affect the part size, quality and an unexpected tool failure may damage the tool, work-piece and sometimes the machine tool itself. AE can be effectively used for tool condition monitoring applications because the emissions from process changes like tool wear, chip formation i.e. plastic deformation, etc. can be directly related to the mechanics of the process. Also AE can very effectively respond to changes like tool fracture, tool chipping, etc. when compared to cutting force and since the frequency range is much higher than that of machine vibrations and environmental noises, a relatively uncontaminated signal can be obtained. AE signal analysis was applied for sensing tool wear in face milling operations. Cutting tests were carried out on a vertical milling machine. Tests were carried out for a given cutting condition, using single insert, two inserts (adjacent and opposite) and three inserts in the cutter. AE signal parameters like ring down count and rms voltage were measured and were correlated with flank wear values (VB max). The results of this investigation indicate that AE can be effectively used for monitoring tool wear in face milling operations.

  6. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection.

    Directory of Open Access Journals (Sweden)

    George Papadakis

    Full Text Available A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics.

  7. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection.

    Science.gov (United States)

    Papadakis, George; Skandalis, Nicholas; Dimopoulou, Anastasia; Glynos, Paraskevas; Gizeli, Electra

    2015-01-01

    A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics.

  8. Leak detection and localization system through acoustics; Sistema de deteccao e localizacao de vazamentos por acustica

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Julio [Aselco Automacao, Sao Paulo, SP (Brazil)

    2003-07-01

    Acoustic Leak Detection Systems (ALDS) are used on both liquid and gas pipelines as well as multi-phase flow pipelines to detect leaks quickly and provide a means of limiting product loss. The real-time acoustic signal is continuously compared against signature leak profiles for the particular operating and geometric conditions. These profiles were developed from a database established from over 20 years of experimental and field leak tests. This technique not only drastically reduces the false alarm rate, but also significantly improves the sensitivity and leak location accuracy. This system will also detect leaks with shut-in flow (zero flow rate in the pipeline). With the use of GPS (Global Positioning System) it not only improves leak location accuracy, but also allows for continuous leak detection during the loss of communications. (author)

  9. Theoretical detection threshold of the proton-acoustic range verification technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305-5847 (United States); Xiang, Liangzhong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019-1101 (United States)

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic

  10. Passive acoustic monitoring to detect spawning in large-bodied catostomids

    Science.gov (United States)

    Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.

    2014-01-01

    Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.

  11. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L.

    2007-09-17

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called 'equivalent circuit diagram (=ECD) model' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/{mu}Pa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/{radical}(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with

  12. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yizhong [Univ. of Pittsburgh, PA (United States); Chyu, Minking [Univ. of Pittsburgh, PA (United States); Wang, Qing-Ming [Univ. of Pittsburgh, PA (United States)

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  13. Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae

    CERN Document Server

    Maksymov, Ivan S

    2015-01-01

    Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...

  14. Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS

    CERN Document Server

    ,

    2011-01-01

    The AMADEUS system is an integral part of the ANTARES neutrino telescope in the Mediterranean Sea. The project aims at the investigation of techniques for acoustic neutrino detection in the deep sea. Installed at a depth of more than 2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for the broad-band recording of signals with frequencies ranging up to 125kHz. AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each one holding six acoustic sensors that are arranged at distances of roughly 1m from each other. The clusters are installed with inter-spacings ranging from 15m to 340m. Acoustic data are continuously acquired and processed at a computer cluster where online filter algorithms are applied to select a high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in 2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like signals in the deep sea, the characteristics of ambient noise and transient signals have been investigate...

  15. A comparison of acoustic cavitation detection thresholds measured with piezo-electric and fiber-optic hydrophone sensors.

    Science.gov (United States)

    Bull, Victoria; Civale, John; Rivens, Ian; Ter Haar, Gail

    2013-12-01

    A Fabry-Perot interferometer fiber-optic hydrophone (FOH) was investigated for use as an acoustic cavitation detector and compared with a piezo-ceramic passive cavitation detector (PCD). Both detectors were used to measure negative pressure thresholds for broadband emissions in 3% agar and ex vivo bovine liver simultaneously. FOH-detected half- and fourth-harmonic emissions were also studied. Three thresholds were defined and investigated: (i) onset of cavitation; (ii) 100% probability of cavitation; and (iii) a time-integrated threshold where broadband signals integrated over a 3-s exposure duration, averaged over 5-10 repeat exposures, become statistically significantly greater than noise. The statistical sensitiviy of FOH broadband detection was low compared with that of the PCD (0.43/0.31 in agar/liver). FOH-detected fourth-harmonic data agreed best with PCD broadband (sensitivity: 0.95/0.94, specificity: 0.89/0.76 in agar/liver). The FOH has potential as a cavitation detector, particularly in applications where space is limited or during magnetic resonance-guided studies.

  16. Semi-real-time monitoring of cracking on couplings by neural network analysis of acoustic emission signals

    Science.gov (United States)

    Godinez-Azcuaga, Valery F.; Shu, Fong; Finlayson, Richard D.; O'Donnell, Bruce W.

    2004-07-01

    This paper presents the results obtained during the development of a semi-real-time monitoring methodology based on Neural Network Pattern Recognition of Acoustic Emission (AE) signals for early detection of cracks in couplings used in aircraft and engine drive systems. AE signals were collected in order to establish a baseline of a gear-testing fixture background noise and its variations due to rotational speed and torque. Also, simulated cracking signals immersed in background noise were collected. EDM notches were machined in the driving gear and the load on the gearbox was increased until damaged was induced. Using these data, a Neural Network Signal Classifier (NNSC) was implemented and tested. The testing showed that the NNSC was capable of correctly identifying six different classes of AE signals corresponding to different gearbox operation conditions. Also, a semi-real-time classification software was implemented. This software includes functions that allow the user to view and classify AE data from a dynamic process as they are recorded at programmable time intervals. The software is capable of monitoring periodic statistics of AE data, which can be used as an indicator of damage presence and severity in a dynamic system. The semi-real-time classification software was successfully tested in situations where a delay of 10 seconds between data acquisition and classification was achieved with a hit rate of 50 hits/second per channel on eight active AE channels.

  17. A study of aluminum-lithium alloy solidification using acoustic emission techniques. Ph.D. Thesis, 1991

    Science.gov (United States)

    Henkel, Daniel P.

    1992-01-01

    Physical phenomena associated with the solidification of an aluminum lithium alloy was characterized using acoustic emission (AE) techniques. It is shown that repeatable patterns of AE activity may be correlated to microstructural changes that occur during solidification. The influence of the experimental system on generated signals was examined in the time and frequency domains. The analysis was used to show how an AE signal from solidifying aluminum is changed by each component in the detection system to produce a complex waveform. Conventional AE analysis has shown that a period of high AE activity occurs in pure aluminum, an Al-Cu alloy, and the Al-Li alloy, as the last fraction of solid forms. A model attributes this to the internal stresses of grain boundary formation. An additional period of activity occurs as the last fraction of solid forms, but only in the two alloys. A model attributes this to the formation of interdendritic porosity which was not present in the pure aluminum. The AE waveforms were dominated by resonant effects of the waveguide and the transducer.

  18. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures

    Science.gov (United States)

    Li, Weijie; Kong, Qingzhao; Ho, Siu Chun Michael; Lim, Ing; Mo, Y. L.; Song, Gangbing

    2016-11-01

    Acoustic emission (AE) is a nondestructive evaluation technique that is capable of monitoring the damage evolution of concrete structures in real time. Conventionally, AE sensors are surface mounted on the host structures, however, the AE signals attenuate quickly due to the high attenuation properties of concrete structures. This study conducts a feasibility study of using smart aggregates (SAs), which are a type of embedded piezoceramic transducers, as embedded AE sensors for the health monitoring of concrete structures. A plain concrete beam with two surface mounted AE sensors and two embedded SAs was fabricated in laboratory and loaded under a designed three-point-bending test. The performance of embedded SAs were compared with the traditional surface mounted AE sensors in their ability to detect and evaluate the damage to the concrete structure. The results verified the feasibility of using smart aggregates as embedded AE sensors for monitoring structural damage in concrete. Potentially, the low cost smart aggregates could function as embedded AE sensors, providing great sensitivity and high reliability in applications for the structural health monitoring of concrete structures.

  19. Passive acoustic detection of a rebreather using a random array

    NARCIS (Netherlands)

    Fillinger, L.; Hunter, A.J.; Zampolli, M.; Clarijs, M.C.

    2013-01-01

    Divers, including closed circuit (rebreather) divers constitute a potential threat to waterside infrastructures. Active diver detection sonars are available commercially but present some shortcomings, particularly in highly reverberant environments. This has led to research on passive sonar for dive

  20. Testing of containers made of glass-fiber reinforced plastic with the aid of acoustic emission analysis

    Science.gov (United States)

    Wolitz, K.; Brockmann, W.; Fischer, T.

    1979-01-01

    Acoustic emission analysis as a quasi-nondestructive test method makes it possible to differentiate clearly, in judging the total behavior of fiber-reinforced plastic composites, between critical failure modes (in the case of unidirectional composites fiber fractures) and non-critical failure modes (delamination processes or matrix fractures). A particular advantage is that, for varying pressure demands on the composites, the emitted acoustic pulses can be analyzed with regard to their amplitude distribution. In addition, definite indications as to how the damages occurred can be obtained from the time curves of the emitted acoustic pulses as well as from the particular frequency spectrum. Distinct analogies can be drawn between the various analytical methods with respect to whether the failure modes can be classified as critical or non-critical.

  1. Acoustic Emission Testing of Power Plant Boiler%声发射技术在电站锅炉检测中的应用

    Institute of Scientific and Technical Information of China (English)

    林彤; 汪文有; 孔德连

    2013-01-01

    The acoustic emission technique was employed for the monitoring of couplet box tube socket weld injury changes in the boiler hydrostatic test process.By finding damage activity signals in the complex interference noise background and by the analysis of the mechanism of injury-induced acoustic emission characterization,the signals characteristic of weld cracks were obtained.The combination of real-time monitoring methods using acoustic emission and offline ultrasonic detection methods has resulted in a comprehensive evaluation of couplet box header internal damage location and damage development during hydrostatic testing process.The combination of the two methods,as well as the mutual authentication can improve the reliability,which plays an important role in guiding the on-site testing.%采用声发射技术在锅炉水压试验过程中对联箱管座焊缝损伤的变化进行动态监测,在复杂的干扰噪声中找到损伤活动信号,通过分析损伤产生声发射的机理,得到表征焊缝裂纹活动过程的信号特征.采用声发射实时监测方法与超声波离线检测方法的结合,对联箱管座内部损伤所在位置以及损伤在水压试验过程中动态发展的情况进行综合判断分析,两种方法的组合以及相互验证提高了结果判断的可靠性,对现场检测起到重要的指导作用.

  2. Active acoustic leak detection for LMFBR steam generator. Sound attenuation due to bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Sakuma, Toshio [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1995-06-01

    In the steam generators (SG) of LMFBR, it is necessary to detect the leakage of water from tubes of heat exchangers as soon as it occurs. The active acoustic detection method has drawn general interest owing to its short response time and reduction of the influence of background noise. In this paper, the application of the active acoustic detection method for SG is proposed, and sound attenuation by bubbles is investigated experimentally. Furthermore, using the SG sector model, sound field characteristics and sound attenuation characteristics due to injection of bubbles are studied. It is clarified that the sound attenuation depends upon bubble size as well as void fraction, that the distance attenuation of sound in the SG model containing heat transfer tubes is 6dB for each two-fold increase of distance, and that emitted sound attenuates immediately upon injection of bubbles. (author).

  3. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.

    Science.gov (United States)

    Chiu, Chi-Shun; Gwo, Shangjr

    2008-05-01

    The immobilization scheme of monodispersed gold nanoparticles (10-nm diameter) on piezoelectric substrate surfaces using organosilane molecules as cross-linkers has been developed for lithium niobate (LiNbO3) and silicon oxide (SiO2)/gold-covered lithium tantalate (LiTaO3) of Rayleigh and guided shear horizontal- (guided SH) surface acoustic wave (SAW) sensors. In this study, comparative measurements of gold nanoparticle adsorption kinetics using high-resolution field-emission scanning electron microscopy and SAW sensors allow the frequency responses of SAW sensors to be quantitatively correlated with surface densities of adsorbed nanoparticles. Using this approach, gold nanoparticles are used as the "nanosized mass standards" to scale the mass loading in a wide dynamical range. Rayleigh-SAW and guided SH-SAW sensors are employed here to monitor the surface mass changes on the device surfaces in gas and liquid phases, respectively. The mass sensitivity ( approximately 20 Hz.cm2/ng) of Rayleigh-SAW device (fundamental oscillation frequency of 113.3 MHz in air) is more than 2 orders of magnitude higher than that of conventional 9-MHz quartz crystal microbalance sensors. Furthermore, in situ (aqueous solutions), real-time measurements of adsorption kinetics for both citrate-stabilized gold nanoparticles and DNA-gold nanoparticle conjugates are also demonstrated by guided SH-SAW (fundamental oscillation frequency of 121.3 MHz). By comparing frequency shifts between the adsorption cases of gold nanoparticles and DNA-gold nanoparticle conjugates, the average number of bound oligonucleotides per gold nanoparticle can also be determined. The high mass sensitivity ( approximately 6 Hz.cm2/ng) of guided SH-SAW sensors and successful detection of DNA-gold nanoparticle conjugates paves the way for real-time biosensing in liquids using nanoparticle-enhanced SAW devices.

  4. A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals

    Institute of Scientific and Technical Information of China (English)

    Jing-jing WANG; Wei-hui LIU; Da CHEN; Yan XU; Lu-yin ZHANG

    2014-01-01

    Increasing awareness concerning food safety problems has been driving the search for simple and efficient bio-chemical analytical methods. In this paper, we develop a portable electro-acoustic biosensor based on a film bulk acoustic reso-nator for the detection of pesticide residues in agricultural products. A shear mode ZnO film bulk acoustic resonator with a mi-cro-machining structure was fabricated as a mass-sensitive transducer for the real-time detection of antibody-antigen reactions in liquids. In order to obtain an ultra-low detection level, the artificial antigens were immobilized on the sensing surface of the resonator to employ a competitive format for the immunoassays. The competitive immunoreactions can be observed clearly through monitoring the frequency changes. The presence of pesticides was detected through the diminution of the frequency shift compared with the level without pesticides. The limit of detection for carbaryl (a widely used pesticide for vegetables and crops) is 2´10-10 M. The proposed device represents a potential alternative to the complex optical systems and electrochemical methods that are currently being used, and represents a significant opportunity in terms of simplicity of use and portability for on-site food safety testing.

  5. Medidas imitanciométricas em crianças com ausência de emissões otoacústicas Acoustic immittance in children without otoacoustic emissions

    Directory of Open Access Journals (Sweden)

    Ana Emilia Linares

    2008-06-01

    Full Text Available Partindo da hipótese de que alterações da função de orelha média possam prejudicar a captação das EOAs, é possível que a ausência destas, em lactentes, esteja associada a discretas alterações timpanométricas. OBJETIVO: Verificar a associação entre resposta de EOAT e alteração imitanciométrica com a sonda de 226Hz em lactentes. MÉTODOS: Estudo de coorte contemporânea com corte transversal. Foram avaliados 20 lactentes com ausência de EOAT (grupo pesquisa e 101 lactentes com presença de EOAT (grupo comparação, com idades variando entre o nascimento e oito meses. Os lactentes foram submetidos a: timpanometria; pesquisa dos limiares de reflexo acústico contralateral com estímulos de 0,5k, 1k, 2k, 4kHz e ruído de faixa larga; emissões otoacústicas (transiente e por produtos de distorção. O potencial evocado auditivo de tronco encefálico para pesquisa do limiar de resposta foi realizado no grupo pesquisa. RESULTADOS: Observou-se diferença estatisticamente significante entre os grupos (pConsidering the hypothesis that middle ear changes can impair the recording of otoacoustic emissions, it is possible that absent otoacoustic emissions in infants could be associated with a light tympanometric change. AIM: To study the association between transient otoacoustic emissions and changes in acoustic immittance measurements with 226Hz probe tone in neonates. METHODS: Cross-sectional contemporary cohort study. 20 infants with no transient otoacoustic emissions (study group and 101 infants with transient otoacoustic emissions (control group, with ages ranged from birth to eight months, were assessed. Infants were submitted to: admittance tympanometry; contralateral acoustic reflex threshold with stimulus of 0.5, 1, 2, 4 kHz and broad band noise; transient and distortion product otoacoustic emissions. The auditory brain response was used to study the threshold in neonates without transient otoacoustic emissions. RESULTS

  6. Acoustic emission monitoring of unstable damage growth in CFRP composites under tension

    Science.gov (United States)

    Mills-Dadson, B.; Tran, D.; Asamene, K.; Whitlow, T.; Sundaresan, M.

    2017-02-01

    Composite structural members experience extensive and complex damage that accumulate in a relatively steady pace as the structure is quasi-statically loaded. This damage progression which starts as matrix cracks, delaminations, and random fiber breaks, turns unstable when groups of adjacent fibers, ranging from four to ten fibers fail together, after about 85% of ultimate strength, as reported in the literature. Identifying this critical damage that precedes the final fracture has been difficult even in laboratory specimens. There is little consensus on successful use of AE signals to differentiate failure modes. The inability of AE patterns to identify failure modes is likely caused by the limited frequency bandwidth of available AE sensors, and the high attenuation seen in AE signals particularly in the frequency range likely to be associated with fiber fractures. As a part of this study new acoustic emission sensors capable of measuring frequencies to 2 MHz were developed. In addition, composite specimens were instrumented with sufficient number of sensors to capture high frequency signals before they are attenuated. Unidirectional, cross-ply, and quasi-isotropic carbon-epoxy composite tensile specimens were monitored while they were statically loaded to failure. Distinctly different signals corresponding to the three failure modes could be observed. High frequency acoustic emission signals with frequencies well in excess of 1MHz, mostly seen in the last 20% of the loading cycle. Signals with frequencies in the range of 300 kHz to 700 kHz and duration of the order of 50 microseconds, were observed in cross ply and quasi-isotropic specimens, and are believed to be from matrix cracks. Fewer events with frequencies below 300 kHz and duration that exceeded about 200 microseconds are believed to be from delaminations. An important observation in this study is the appearance of groups of near identical waveforms, which are believed to be from clusters of adjacent

  7. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    Directory of Open Access Journals (Sweden)

    Antonio Arnau-Vives

    2009-07-01

    Full Text Available This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW, Surface Transverse Wave (STW, Love Wave (LW, Flexural Plate Wave (FPW, Shear Horizontal Acoustic Plate Mode (SH-APM and Layered Guided Acoustic Plate Mode (LG-APM - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications.

  8. Relationship between geometric welding parameters and optical-acoustic emissions from electric arc in GMAW-S process

    Directory of Open Access Journals (Sweden)

    E. Huanca Cayo

    2011-05-01

    Full Text Available Purpose: Show the relationship between geometric characteristics of the weld bead and the optical-acoustic emissions from electric arc during welding in the GMAW-S process.Design/methodology/approach: Bead on plate welding experiments was carried out setting different process parameters. Every welding parameter group was set aiming to reach a high stability level what guarantee a geometrical uniformity in the weld beads. In each experiment was simultaneously acquired arc voltage, welding current, infrared and acoustic emissions; from them were computed parameters as arc power, acoustic peaks rate and infrared radiation rate. It was used a tri-dimensional LASER scanner for to acquire geometrical information from the weld beads surface as width and height of the bead. Depth penetration was measured from sectional cross cutting of weld beads.Findings: Previous analysis showed that the arc emission parameters reach a stationary state with different characteristic for each experiment group which means that there is some correlation level between them. Posterior analysis showed that from infrared parameter is possible to monitoring external weld bead geometry and principally its penetration depth. From acoustic parameter is possible to monitoring principally the external weld bead geometry. Therefore is concluded that there is a close relation between the arc emissions and the weld bead geometry and that them could be used to measuring the welding geometrical parameters.Research limitations/implications: After analysis it was noticed that the infrared sensing has a better performance than acoustic sensing in the depth penetration monitoring. Infrared sensing also sources some information about external geometric parameters that in conjunction with the acoustic sensing is possible to have reliable information about weld bead geometry. This method of sensing geometric parameters could be applied in other welding processes, but is necessary to have

  9. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing; Analyse der Schallemissionssignale aus Ermuedungsrisswachstum und Korrosionsprozessen. Untersuchung der Moeglichkeiten fuer die kontinuierliche Zustandsueberwachung von Transportbehaeltern mittels Schallemissionspruefung

    Energy Technology Data Exchange (ETDEWEB)

    Wachsmuth, Janne

    2016-05-01

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  10. [Neonatal screening of deafness: evoked otoacoustic emissions or acoustic distortion products?].

    Science.gov (United States)

    Roman, S; Mondain, M; Triglia, J M; Uziel, A

    2001-01-01

    Transiently evoked otoacoustic emissions (TEOAE) allows an auditory screening in neonates above 30 dB and between 2 kHz to 4 kHz. Another type of otoacoustic emissions, the distortion product (DP) allows a similar screening and provides more specific frequency information over a broader frequency range, including frequencies below 2 kHz and above 4 kHz. The goal of this study was to determine 1) the interest of distortion product in comparison with TEOAE in a auditory screening program in neonates; 2) The predictive value of information extracted from otoacoustic emissions recordings, on frequential parameters of distortion product (DP). In this prospective study, TEOAE and DP were successively recorded in 20 neonates (34 ears) with risk of hearing impairment, using the ILO92 software and hardware. When TEOAs were no detectable (9/34), the DPs were no detectable neither (10/34). When TEOAs were detectable, the Dps carried more specific frequency information above 1 kHz in 52 to 80% of the patients. DP amplitudes have been quantitatively correlated with TEOA energy bands. Correlations between DP and TEOA have been objectivized for DP2.5 and DP4 with OE2, and for DP4 and DP6 with OE5. The correlation predictive value was above 85%. In conclusion, this study demonstrated that analysis of TEOA spectrums procures frequential information without requiring DP recordings.

  11. Monotonic tensile behavior analysis of three-dimensional needle-punched woven C/SiC composites by acoustic emission

    Institute of Scientific and Technical Information of China (English)

    Peng Fang; Laifei Cheng; Litong Zhang; Jingjiang Nie

    2008-01-01

    High toughness and reliable three-dimensional needled C/SiC composites were fabricated by chemical vapor infiltration (CVI). An approach to analyze the tensile behaviors at room temperature and the damage accumulation of the composites by means of acoustic emission was researched. Also the fracture morphology was examined by S-4700 SEM after tensile tests to prove the damage mechanism. The results indicate that the cumulative energy of acoustic emission (AE) signals can be used to monitor and evaluate the damage evolution in ceramic-matrix composites. The initiation of room-temperature tensile damage in C/SiC composites occurred with the growth of micro-cracks in the matrix at the stress level about 40% of the ultimate fracture stress. The level 70% of the fracture stress could be defined as the critical damage strength.

  12. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    Science.gov (United States)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  13. STUDIES OF ACOUSTIC EMISSION SIGNATURES FOR QUALITY ASSURANCE OF SS 316L WELDED SAMPLES UNDER DYNAMIC LOAD CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. V. RANGANAYAKULU

    2016-10-01

    Full Text Available Acoustic Emission (AE signatures of various weld defects of stainless steel 316L nuclear grade weld material are investigated. The samples are fabricated by Tungsten Inert Gas (TIG Welding Method have final dimension of 140 mm x 15 mm x 10 mm. AE signals from weld defects such as Pinhole, Porosity, Lack of Penetration, Lack of Side Fusion and Slag are recorded under dynamic load conditions by specially designed mechanical jig. AE features of the weld defects were attained using Linear Location Technique (LLT. The results from this study concluded that, stress release and structure deformation between the sections in welding area are load conditions major part of Acoustic Emission activity during loading.

  14. Trackline and point detection probabilities for acoustic surveys of Cuvier's and Blainville's beaked whales.

    Science.gov (United States)

    Barlow, Jay; Tyack, Peter L; Johnson, Mark P; Baird, Robin W; Schorr, Gregory S; Andrews, Russel D; Aguilar de Soto, Natacha

    2013-09-01

    Acoustic survey methods can be used to estimate density and abundance using sounds produced by cetaceans and detected using hydrophones if the probability of detection can be estimated. For passive acoustic surveys, probability of detection at zero horizontal distance from a sensor, commonly called g(0), depends on the temporal patterns of vocalizations. Methods to estimate g(0) are developed based on the assumption that a beaked whale will be detected if it is producing regular echolocation clicks directly under or above a hydrophone. Data from acoustic recording tags placed on two species of beaked whales (Cuvier's beaked whale-Ziphius cavirostris and Blainville's beaked whale-Mesoplodon densirostris) are used to directly estimate the percentage of time they produce echolocation clicks. A model of vocal behavior for these species as a function of their diving behavior is applied to other types of dive data (from time-depth recorders and time-depth-transmitting satellite tags) to indirectly determine g(0) in other locations for low ambient noise conditions. Estimates of g(0) for a single instant in time are 0.28 [standard deviation (s.d.) = 0.05] for Cuvier's beaked whale and 0.19 (s.d. = 0.01) for Blainville's beaked whale.

  15. Hypernasal Speech Detection by Acoustic Analysis of Unvoiced Plosive Consonants

    Directory of Open Access Journals (Sweden)

    Alexander Sepúlveda-Sepúlveda

    2009-12-01

    Full Text Available People with a defective velopharyngeal mechanism speak with abnormal nasal resonance (hypernasal speech. Voice analysis methods for hypernasality detection commonly use vowels and nasalized vowels. However to obtain a more general assessment of this abnormality it is necessary to analyze stops and fricatives. This study describes a method with high generalization capability for hypernasality detection analyzing unvoiced Spanish stop consonants. The importance of phoneme-by-phoneme analysis is shown, in contrast with whole word parametrization which includes irrelevant segments from the classification point of view. Parameters that correlate the imprints of Velopharyngeal Incompetence (VPI over voiceless stop consonants were used in the feature estimation stage. Classification was carried out using a Support Vector Machine (SVM, including the Rademacher complexity model with the aim of increasing the generalization capability. Performances of 95.2% and 92.7% were obtained in the processing and verification stages for a repeated cross-validation classifier evaluation.

  16. DETECTION OF RADIO EMISSION FROM FIREBALLS

    Energy Technology Data Exchange (ETDEWEB)

    Obenberger, K. S.; Taylor, G. B.; Dowell, J.; Henning, P. A.; Schinzel, F. K.; Stovall, K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Hartman, J. M. [NASA Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Ellingson, S. W. [Bradley Department of Electrical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Helmboldt, J. F.; Wilson, T. L. [US Naval Research Laboratory, Code 7213, Washington, DC 20375 (United States); Kavic, M. [Department of Physics, Long Island University, Brooklyn, NY 11201 (United States); Simonetti, J. H. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2014-06-20

    We present the findings from the Prototype All-Sky Imager, a back end correlator of the first station of the Long Wavelength Array, which has recorded over 11,000 hr of all-sky images at frequencies between 25 and 75 MHz. In a search of this data for radio transients, we have found 49 long-duration (10 s of seconds) transients. Ten of these transients correlate both spatially and temporally with large meteors (fireballs), and their signatures suggest that fireballs emit a previously undiscovered low frequency, non-thermal pulse. This emission provides a new probe into the physics of meteors and identifies a new form of naturally occurring radio transient foreground.

  17. Molecular Detectability in Exoplanetary Emission Spectra

    CERN Document Server

    Marcell, Tessenyi; Giorgio, Savini; Enzo, Pascale

    2013-01-01

    Of the many recently discovered worlds orbiting distant stars, very little is yet known of their chemical composition. With the arrival of new transit spectroscopy and direct imaging facilities, the question of molecular detectability as a function of signal-to-noise (SNR), spectral resolving power and type of planets has become critical. In this paper, we study the detectability of key molecules in the atmospheres of a range of planet types, and report on the minimum detectable abundances at fixed spectral resolving power and SNR. The planet types considered - hot Jupiters, hot super-Earths, warm Neptunes, temperate Jupiters and temperate super-Earths - cover most of the exoplanets characterisable today or in the near future. We focus on key atmospheric molecules, such as CH4, CO, CO2, NH3, H2O, C2H2, C2H6, HCN, H2S and PH3. We use two methods to assess the detectability of these molecules: a simple measurement of the deviation of the signal from the continuum, and an estimate of the level of confidence of a...

  18. Stability monitoring system using acoustic emissions. Sistema de control de la estabilidad basado en la emision acustica

    Energy Technology Data Exchange (ETDEWEB)

    Celada Tamames, B.; Varona Eraso, P.; Velasco Trivino, E. (Geocontrol, S.A., Madrid (Spain))

    1989-11-01

    In 1987, the ECSC decided to offer part funding to a research project being carried out by Geocontrol SA concerning the development of a system for monitoring stability by the use of acoustic emissions. The project focuses on predicting instability in coal pillars. The present article describes the first lines of investigation during 1988 and 1989 and the results so far. 10 refs., 5 figs.

  19. Nonlinear Kalman Filtering for acoustic emission source localization in anisotropic panels.

    Science.gov (United States)

    Dehghan Niri, E; Farhidzadeh, A; Salamone, S

    2014-02-01

    Nonlinear Kalman Filtering is an established field in applied probability and control systems, which plays an important role in many practical applications from target tracking to weather and climate prediction. However, its application for acoustic emission (AE) source localization has been very limited. In this paper, two well-known nonlinear Kalman Filtering algorithms are presented to estimate the location of AE sources in anisotropic panels: the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). These algorithms are applied to two cases: velocity profile known (CASE I) and velocity profile unknown (CASE II). The algorithms are compared with a more traditional nonlinear least squares method. Experimental tests are carried out on a carbon-fiber reinforced polymer (CFRP) composite panel instrumented with a sparse array of piezoelectric transducers to validate the proposed approaches. AE sources are simulated using an instrumented miniature impulse hammer. In order to evaluate the performance of the algorithms, two metrics are used: (1) accuracy of the AE source localization and (2) computational cost. Furthermore, it is shown that both EKF and UKF can provide a confidence interval of the estimated AE source location and can account for uncertainty in time of flight measurements.

  20. Research on the Monitoring System of CNC Grinding Process Based on Acoustic Emission

    Institute of Scientific and Technical Information of China (English)

    HU Zhongxiang; TENG Jiaxu; YANG Junwei; HUO Xiaojing; SHI Xiaojun

    2006-01-01

    Using on-line monitoring during the CNC grinding process, the hazard case such as the crushing of grinding wheel and various safety accidents could be avoided, and the optimum time for dressing and replacing grinding wheel could also be determined, and hence, the service life of the grinding wheel could be prolonged and grinding quality could be improved. To overcome the limitation of some traditional techniques in which some parameters including the grinding power and force, torque and so on were monitored, the acoustic emission (AE) technique, which provides high sensitivity and responding speed, were developed in the present paper. The mechanism of AE during grinding was reviewed. Moreover, a virtual AE monitoring system, which could monitor the grinding state under different working conditions during the grinding, has been developed based on the Virtual Instruments technique. Some experiments were also performed on the internal grinder. The results showed that the AE signals became stronger with increasing the main shaft speed and grinding depth or decreasing the distance between the AE sensor and grinding area.

  1. A Bayesian Approach for Localization of Acoustic Emission Source in Plate-Like Structures

    Directory of Open Access Journals (Sweden)

    Gang Yan

    2015-01-01

    Full Text Available This paper presents a Bayesian approach for localizing acoustic emission (AE source in plate-like structures with consideration of uncertainties from modeling error and measurement noise. A PZT sensor network is deployed to monitor and acquire AE wave signals released by possible damage. By using continuous wavelet transform (CWT, the time-of-flight (TOF information of the AE wave signals is extracted and measured. With a theoretical TOF model, a Bayesian parameter identification procedure is developed to obtain the AE source location and the wave velocity at a specific frequency simultaneously and meanwhile quantify their uncertainties. It is based on Bayes’ theorem that the posterior distributions of the parameters about the AE source location and the wave velocity are obtained by relating their priors and the likelihood of the measured time difference data. A Markov chain Monte Carlo (MCMC algorithm is employed to draw samples to approximate the posteriors. Also, a data fusion scheme is performed to fuse results identified at multiple frequencies to increase accuracy and reduce uncertainty of the final localization results. Experimental studies on a stiffened aluminum panel with simulated AE events by pensile lead breaks (PLBs are conducted to validate the proposed Bayesian AE source localization approach.

  2. A New Method to Identify Quaternary Moraine:Acoustic Emission Stress Measurement

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhizhong; QIAO Yansong; TIAN Jiaorong; WANG Min; LI Mingze; HE Peiyuan; QIAN Fang

    2006-01-01

    How to effectively identify glacial sediments, especially Quaternary moraine, has been in dispute for decades. The traditional methods, e.g., sedimentary and geomorphologic ones, are facing challenge in eastern China where controversial moraine deposits are dominatingly distributed. Here,for the first time, we introduce the acoustic emission (AE) stress measurement, a kind of historical stress measurement, to identify Quaternary moraine. The results demonstrate that it can be employed to reconstruct stress information of glaciation remaining in gravels, and may shed light on the identification of Quaternary moraine in eastern China. First, we measured the AE stress of gravels of glacial origin that are underlying the Xidatan Glacier, eastern Kunlun Mountains in western China.Second, we calculated the stress according to the actual thickness of the glacier. The almost identical stress values suggest that the glacial gravels can memorize and preserve the overlying glacier-derived aplomb stress. And then we introduce this new approach to the controversial moraine in Mount Lushan, eastern China. The results indicate that the stress is attributed to the Quaternary glacier, and the muddy gravels in the controversial moraine in Mount Lushan are moraine deposits but not others.

  3. Influence of geometry on the fracturing behavior of textile reinforced cement monitored by acoustic emission

    Science.gov (United States)

    Aggelis, D. G.; Blom, J.; El Kadi, M.; Wastiels, J.

    2014-03-01

    In this work the flexural behavior of textile reinforced cement (TRC) laminate is examined using acoustic emission (AE). The TRC composite is a combination of inorganic phosphate cement (IPC) with randomly distributed glass fibres. IPC has been developed at the "Vrije Universiteit Brussel" and shows a neutral pH meaning that glass fibers are hardly attacked. During bending, stresses lead to the activation of damage mechanisms like matrix cracking, delaminations and fiber pull-out being in succession or overlapping in time. AE records the responses of the damage propagation events and allows the monitoring of the fracture behavior from the onset to the final stage. The effect of the span in three-point bending tests, which is varied to create different stress fields, is targeted. Parameters like duration and frequency reveal information about the mode of the damage sources in relation to the span. Results show that as the span decreases, the dominant damage mode shifts away from bending and acquires more shear characteristics by increasing the interlaminar shearing events.

  4. Application of acoustic emission on the characterization of fracture in textile reinforced cement laminates.

    Science.gov (United States)

    Blom, J; Wastiels, J; Aggelis, D G

    2014-01-01

    This work studies the acoustic emission (AE) behavior of textile reinforced cementitious (TRC) composites under flexural loading. The main objective is to link specific AE parameters to the fracture mechanisms that are successively dominating the failure of this laminated material. At relatively low load, fracture is initiated by matrix cracking while, at the moment of peak load and thereafter, the fiber pull-out stage is reached. Stress modeling of the material under bending reveals that initiation of shear phenomena can also be activated depending on the shape (curvature) of the plate specimens. Preliminary results show that AE waveform parameters like frequency and energy are changing during loading, following the shift of fracturing mechanisms. Additionally, the AE behavior of specimens with different curvature is very indicative of the stress mode confirming the results of modeling. Moreover, AE source location shows the extent of the fracture process zone and its development in relation to the load. It is seen that AE monitoring yields valuable real time information on the fracture of the material and at the same time supplies valuable feedback to the stress modeling.

  5. Signal Simulation and Experimental Research on Acoustic Emission using LS-DYNA

    Directory of Open Access Journals (Sweden)

    Zhang Jianchao

    2015-09-01

    Full Text Available To calculate sound wave velocity, we performed the Hsu-Nielsen lead break experiment using the ANSYS/LS-DYNA finite element software. First, we identified the key problems in the finite element analysis, such as selecting the exciting force, dividing the grid density, and setting the calculation steps. Second, we established the finite element model of the sound wave transmission in a plate under the lead break simulation. Results revealed not only the transmission characteristics of the sound wave but also the simulation and calculation of the transmission velocity of the longitudinal and transverse waves through the time travel curve of the vibration velocity of the sound wave at various nodes. Finally, the Hsu-Nielsen lead break experiment was implemented. The results of the theoretical calculation and simulation analysis were consistent with the experimental results, thus demonstrating that the research method using the ANSYS/LS-DYNA software to simulate sound wave transmissions in acoustic emission experiments is feasible and effective.

  6. Acoustic emission monitoring of medieval towers considered as sensitive earthquake receptors

    Directory of Open Access Journals (Sweden)

    A. Carpinteri

    2007-01-01

    Full Text Available Many ancient masonry towers are present in Italian territory. In some cases these structures are at risk on account of the intensity of the stresses they are subjected to due to the high level of regional seismicity. In order to preserve this inestimable cultural heritage, a sound safety assessment should take into account the evolution of damage phenomena. In this connection, acoustic emission (AE monitoring can be highly effective. This study concerns the structural stability of three medieval towers rising in the centre of Alba, a characteristic town in Piedmont (Italy. During the monitoring period a correlation between peaks of AE activity in the masonry of these towers and regional seismicity was found. Earthquakes always affect structural stability. Besides that, the towers behaved as sensitive earthquake receptors. Here a method to correlate bursts of AE activity in a masonry building and regional seismicity is proposed. In particular, this method permits to identify the premonitory signals that precede a catastrophic event on a structure, since, in most cases, these warning signs can be captured well in advance.

  7. Fracture Formation Evaluation of Reinforced Concrete Structure Using Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Alireza Panjsetooni

    2013-01-01

    Full Text Available Acoustic emission (AE is an important nondestructive evaluation (NDE technique used in the field of structural engineering for both case local and global monitoring. In this study AE technique with a new approach was employed to investigate the process of fracture formation in reinforced concrete structure. A number of reinforced concrete (RC one story frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data was analyzed using the relaxation ratio and calm and load ratio method. Also, the relaxation ratio was dominated with approaching load to 58% of the ultimate load. In addition three levels of damage using calm and load ratio were distinguished. The trend of relaxation ratio and calm and load ratio method during loading and unloading showed that these methods are strongly sensitive with cracks growth in RC frame specimens and were able to indicate the levels of damage. Also, results showed that AE can be considered as a viable method to predict the remaining service life of reinforced concrete. In addition, with respect to the results obtained from relaxation ratio and, load and calm ratio indicated, a new chart is proposed.

  8. Fractal analysis on the spatial distribution of acoustic emission in the failure process of rock specimens

    Institute of Scientific and Technical Information of China (English)

    Rui-fu Yuan; Yuan-hui Li

    2009-01-01

    The spatial distribution of acoustic emission (AE) events in the failure process of several rock specimens was acquired us-ing an advanced AE acquiring and analyzing system.The box counting method (BCM) was employed to calculate the fractal dimen-sion (FD) of AE spatial distribution.There is a similar correlation between the fractal dimension and the load strength for different rock specimens.The fractal dimension presents a decreasing trend with the increase of load strength.For the same kind of specimens,their FD values will decrease to the level below a relatively same value when they reach failure.This value can be regarded as the critical value,which implies that the specimen will reach failure soon.The results reflect that it is possible to correlate the damage of rock with a macroscopic parameter,the FD value of AE signals.Furthermore,the FD value can be also used to forecast the final fail-ure of rock.This conclusion allows identifying or predicting the damage in rock with a great advantage over the classic theory and is very crucial for forecasting rockburst or other dynamic disasters in mines.

  9. Acoustic emission monitoring of multicell reinforced concrete box girders subjected to torsion.

    Science.gov (United States)

    Bagherifaez, Marya; Behnia, Arash; Majeed, Abeer Aqeel; Hwa Kian, Chai

    2014-01-01

    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis.

  10. Acoustic Emission Monitoring of Multicell Reinforced Concrete Box Girders Subjected to Torsion

    Directory of Open Access Journals (Sweden)

    Marya Bagherifaez

    2014-01-01

    Full Text Available Reinforced concrete (RC box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis.

  11. Analysis and Classification of Acoustic Emission Signals During Wood Drying Using the Principal Component Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ho Yang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Ki Bok [Chungnam National University, Daejeon (Korea, Republic of)

    2003-06-15

    In this study, acoustic emission (AE) signals due to surface cracking and moisture movement in the flat-sawn boards of oak (Quercus Variablilis) during drying under the ambient conditions were analyzed and classified using the principal component analysis. The AE signals corresponding to surface cracking showed higher in peak amplitude and peak frequency, and shorter in rise time than those corresponding to moisture movement. To reduce the multicollinearity among AE features and to extract the significant AE parameters, correlation analysis was performed. Over 99% of the variance of AE parameters could be accounted for by the first to the fourth principal components. The classification feasibility and success rate were investigated in terms of two statistical classifiers having six independent variables (AE parameters) and six principal components. As a result, the statistical classifier having AE parameters showed the success rate of 70.0%. The statistical classifier having principal components showed the success rate of 87.5% which was considerably than that of the statistical classifier having AE parameters

  12. Intensity of noise in the classroom and analysis of acoustic emissions in schoolchildren

    Directory of Open Access Journals (Sweden)

    Almeida Filho, Nelson de

    2012-01-01

    Full Text Available Introduction: Noise-induced hearing loss is a sensorineural hearing loss, usually bilateral, irreversible and progressive with time of exposure. As the noise made by children in school may be considered detrimental, the study looks of their occurrence in Taubaté's schools. Objective: To determine if students are exposed to noise intensity affecting the cochlea, define the profile of these schoolchildren, demonstrating the occurrence of changes in cochlear activity following exposure to noise in a day of class. Method: Study's way prospective transversal cross sectional cut with 28 elementary school students in the first half of 2009. Questionnaires for assessing preexisting cochlear damage . Evaluation of cochlear function by analysis of acoustic emissions evoked distortion product, made before the students come into class and immediately after the end of these. Measurement of noise inside the classrooms and recreation areas during the interval. Results: 57.1% accused some hearing loss in the examinations before class. By day's end, 04 girls and 03 boys had worsened in relation of the first examination. The noise reached levels higher than recommended at the three class rooms. The largest number of students with worsening, belong to the class room with higher noise level. The noise during the intervals is also excessive. Conclusions: The noise in this school is above the limit. 42.85% of students who had experienced worsening had school performance inadequate. 25% had worse after noise exposure in a school day.

  13. Acoustic emission for characterising the crack propagation in strain-hardening cement-based composites (SHCC)

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.C. [Department of Civil Engineering, Stellenbosch University (South Africa); Pirskawetz, S. [BAM Federal Institute for Materials Research and Testing (Germany); Zijl, G.P.A.G. van, E-mail: gvanzijl@sun.ac.za [Department of Civil Engineering, Stellenbosch University (South Africa); Schmidt, W. [BAM Federal Institute for Materials Research and Testing (Germany)

    2015-03-15

    This paper presents the analysis of crack propagation in strain-hardening cement-based composite (SHCC) under tensile and flexural load by using acoustic emission (AE). AE is a non-destructive technique to monitor the development of structural damage due to external forces. The main objective of this research was to characterise the cracking behaviour in SHCC in direct tensile and flexural tests by using AE. A better understanding of the development of microcracks in SHCC will lead to a better understanding of pseudo strain-hardening behaviour of SHCC and its general performance. ARAMIS optical deformation analysis was also used in direct tensile tests to observe crack propagation in SHCC materials. For the direct tensile tests, SHCC specimens were prepared with polyvinyl alcohol (PVA) fibre with three different volume percentages (1%, 1.85% and 2.5%). For the flexural test beam specimens, only a fibre dosage of 1.85% was applied. It was found that the application of AE in SHCC can be a good option to analyse the crack growth in the specimens under increasing load, the location of the cracks and most importantly the identification of matrix cracking and fibre rupture or slippage.

  14. Acoustic emission studies for characterization of fatigue crack growth behavior in HSLA steel

    Science.gov (United States)

    Kumar, Jalaj; Ahmad, S.; Mukhopadhyay, C. K.; Jayakumar, T.; Kumar, Vikas

    2016-01-01

    High strength low alloy (HSLA) steels are a group of low carbon steels and used in oil and gas pipelines, automotive components, offshore structures and shipbuilding. Fatigue crack growth (FCG) characteristics of a HSLA steel have been studied at two different stress ratios (R = 0.3 and 0.5). Acoustic emission (AE) signals generated during the FCG tests have been used to understand the FCG processes. The AE signals were captured by mounting two piezoelectric sensors on compact tension specimens in liner location configuration. The AE generated in stage II of the linear Paris region of FCG has been attributed to the presence of two sub-stages with two different slopes. The AE generated at higher values of stress intensity factor is found to be useful to identify the transition from stage II to stage III of the FCG. AE location analysis has provided support for increased damage at the crack tip for higher stress ratio. The peak stress intensity (Kmax) values at the crack tip have shown good correlation with the transitions from stage IIa to stage IIb and stage II to stage III of the FCG for the two stress ratios.

  15. Applications of Wigner high-order spectra in feature extraction of acoustic emission signals

    Institute of Scientific and Technical Information of China (English)

    Xiao Siwen; Liao Chuanjun; Li Xuejun

    2009-01-01

    The characteristics of typical AE signals initiated by mechanical component damages are analyzed. Based on the extracting principle of acoustic emission(AE) signals from damaged components, the paper introduces Wigner high-order spectra to the field of feature extraction and fault diagnosis of AE signals. Some main performances of Wigner bi-nary spectra, Wigner triple spectra and Wigner-Ville distribution (WVD) are discussed, including of time-frequency resolution, energy accumulation, reduction of crossing items and noise elimination. Wigncr triple spectra is employed to the fault diagnosis of rolling bearings with AE techniques. The fault features reading from experimental data analysis are clear, accurate and intuitionistic. The validity and accuracy of Wigner high-order spectra methods proposed agree quite well with simulation results. Simulation and research results indicate that wigncr high-order spectra is quite useful for condition monitoring and fault diagnosis in conjunction with AE technique, and has very important research and applica-tion values in feature extraction and faults diagnosis based on AE signals due to mechanical component damages.

  16. Study of the Tensile Damage of High-Strength Aluminum Alloy by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Chang Sun

    2015-11-01

    Full Text Available The key material of high-speed train gearbox shells is high-strength aluminum alloy. Material damage is inevitable in the process of servicing. It is of great importance to study material damage for in-service gearboxes of high-speed train. Structural health monitoring methods have been widely used to study material damage in recent years. This study focuses on the application of an acoustic emission (AE method to quantify tensile damage evolution of high-strength aluminum alloy. First, a characteristic parameter was developed to connect AE signals with tensile damage. Second, a tensile damage quantification model was presented based on the relationship between AE counts and tensile behavior to study elastic deformation of tensile damage. Then tensile tests with AE monitoring were employed to collect AE signals and tensile damage data of nine samples. The experimental data were used to quantify tensile damage of high-strength aluminum alloy A356 to demonstrate the effectiveness of the proposed method.

  17. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study.

    Science.gov (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-14

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  18. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yongzhi Qu

    2014-01-01

    Full Text Available In recent years, acoustic emission (AE sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  19. 数字化声发射技术在潜水器管道泄漏监测中的应用研究%Research on the application of digital acoustic emission technique to monitoring pipeline leakage for submersible

    Institute of Scientific and Technical Information of China (English)

    韦朋余; 岳亚霖; 张炜; 陈颖; 李盛华

    2012-01-01

    In order to study on the feasibility of digital acoustic emission technique to monitoring pipeline leakage for submersible, a combination system was constructed to simulate the acoustic emission pipeline leak detection. Acoustic emission channel acquisition parameters for pipeline leakage of submersible were proposed. The effectivity and practicability of system was verified by the experimental investigation of submersible pipeline leakage. Meanwhile, through statistical analysis and Fourier transformation of acoustic emission signal parameters, summarization of change regulation of RMS (root mean square), ASL (average signal level), energy and frequency with propagation distance and pressure was discovered. This study may provide material foundation and technical support for the acoustic emission real-time monitor to submersible in service.%为了研究数字化声发射技术在潜水器管道泄漏监测中的可行性,文章创建了管道泄漏声发射检测系统,提出了应用于潜水器管道泄漏的声发射通道采集控制参数,对潜水器管道泄漏现象进行了试验研究,验证了系统的有效性和实用性.同时通过对管道泄漏声发射信号参数的统计分析和傅里叶变换,获得了潜水器管道泄漏声发射信号的RMS、ASL、能量以及频率等幅频响应特性随传播距离和管道内部压力的变化规律,为在潜水器服役过程中进行声发射实时监测提供物质基础和技术支撑.

  20. Analysis of acoustic to seismic coupling technique for buried landmines detection

    Institute of Scientific and Technical Information of China (English)

    WANG Chi; XIE Yulai; LI Xingfei; SUN Fei; ZHANG Guoxiong

    2009-01-01

    The mechanical interaction between the induced seismic waves and landmines was analyzed according to acoustic-to-seismic coupling theory. And a geophone array based exper-imental system for landmine detection was developed. By modeling a compliant mine and the soil on top of the mine as a mass-spring system, analytic method was adopted to study the resonance mechanism of the system. A loudspeaker was employed as energy source to excite a swept sine tone over the soil. We also used a geophone array to measure the vibration velocity of the ground surface. In order to analysis the landmine effect on the surface vibration, the magnitude spectra curves of the measured velocity values on-and-off mine were plotted. The results showed that the data measured on mine is much bigger than that off target and the proposed system can be applied to further investigation of acoustic landmines detection.

  1. Acoustic detection and localization from a tethered aerostat during the NATO TG-53 test

    Science.gov (United States)

    Reiff, C.; Scanlon, M.; Noble, J.

    2006-05-01

    Acoustic sensors mounted to a tethered aerostat detect and localize transient signals from mortars, artillery, C-4, propane cannon, and small arms fire. Significant enhancements to soldier lethality and survivability can be gained when using the aerostat array to detect, localize, and cue an aerial imager to a weapon's launch site, or use the aerostat's instantaneous position and orientation to calculate a vector solution to the ground coordinates of the launch site for threat neutralization. The prototype aerostat-mounted array was tested at Yuma Proving Grounds (YPG) as part of the NATO TG-53 signature collection exercise. Acoustic wave form data was collected simultaneously with aerostat and ground-based sensor arrays for comparing wind noise, signal to noise related parameters, and atmospheric effects on propagation to an elevated array. A test description and summary of localization accuracy will be presented for various altitudes, ranges to target, and under differing meteorological conditions.

  2. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Lazić, S., E-mail: lazic.snezana@uam.es; Chernysheva, E.; Meulen, H. P. van der; Calleja Pardo, J. M. [Departamento de Física de Materiales, Instituto “Nicolás Cabrera” and Instituto de Física de Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gačević, Ž.; Calleja, E. [ISOM-DIE, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2015-09-15

    The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW). The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ∼330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  3. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    Science.gov (United States)

    Lazić, S.; Chernysheva, E.; Gačević, Ž.; van der Meulen, H. P.; Calleja, E.; Calleja Pardo, J. M.

    2015-09-01

    The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW). The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ˜330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  4. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    Directory of Open Access Journals (Sweden)

    S. Lazić

    2015-09-01

    Full Text Available The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW. The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ∼330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  5. Marine mammal acoustic detections in the northeastern Chukchi Sea, September 2007-July 2011

    Science.gov (United States)

    Hannay, David E.; Delarue, Julien; Mouy, Xavier; Martin, Bruce S.; Leary, Del; Oswald, Julie N.; Vallarta, Jonathan

    2013-09-01

    Several cetacean and pinniped species use the northeastern Chukchi Sea as seasonal or year-round habitat. This area has experienced pronounced reduction in the extent of summer sea ice over the last decade, as well as increased anthropogenic activity, particularly in the form of oil and gas exploration. The effects of these changes on marine mammal species are presently unknown. Autonomous passive acoustic recorders were deployed over a wide area of the northeastern Chukchi Sea off the coast of Alaska from Cape Lisburne to Barrow, at distances from 8 km to 200 km from shore: up to 44 each summer and up to 8 each winter. Acoustic data were acquired at 16 kHz continuously during summer and on a duty cycle of 40 or 48 min within each 4-h period during winter. Recordings were analyzed manually and using automated detection and classification systems to identify calls. Bowhead (Balaena mysticetus) and beluga (Delphinapterus leucas) whale calls were detected primarily from April through June and from September to December during their migrations between the Bering and Beaufort seas. Summer detections were rare and usually concentrated off Wainwright and Barrow, Alaska. Gray (Eschrichtius robustus) whale calls were detected between July and October, their occurrence decreasing with increasing distance from shore. Fin (Balaenoptera physalus), killer (Orcinus orca), minke (Balaenoptera acutorostrata), and humpback (Megaptera novaeangliae) whales were detected sporadically in summer and early fall. Walrus (Odobenus rosmarus) was the most commonly detected species between June and October, primarily occupying the southern edge of Hanna Shoal and haul-outs near coastal recording stations off Wainwright and Point Lay. Ringed (Pusa hispida) and bearded (Erignathus barbatus) seals occur year-round in the Chukchi Sea. Ringed seal acoustic detections occurred throughout the year but detection numbers were low, likely due to low vocalization rates. Bearded seal acoustic detections

  6. Ultrasound contrast agents for bleeding detection and acoustic hemostasis

    Science.gov (United States)

    Zderic, Vesna; Luo, Wenbo; Brayman, Andrew; Crum, Lawrence; Vaezy, Shahram

    2005-04-01

    Objective: To investigate the application of ultrasound contrast agents (UCA) in improving both therapeutic and diagnostic aspects of ultrasound-guided High Intensity Focused Ultrasound (HIFU) therapy. Methods: Incisions (3 cm long, 0.5 cm deep) were made in rabbit livers (in anterior surface for HIFU treatment, or posterior surface for bleeding detection). UCA Optison (~0.1 ml/kg) was injected into mesenteric vein or ear vein. A HIFU applicator (5.5 MHz, 6400 W/cm2) was scanned manually over the incision until hemostasis was achieved. Occult bleeding was monitored with Doppler ultrasound. Results: The presence of Optison produced 37% reduction in hemostasis times normalized to initial bleeding rates. Gross and histological observations showed similar appearance of HIFU lesions produced in the presence of Optison and control HIFU lesions. The temperature reached 100°C in both HIFU only and HIFU+UCA treatments. Tension strength of hemostatic liver incisions was 0.9+/-0.5 N. Almost no bleeding could be detected before Optison injection. First appearance of contrast enhancement localized at the bleeding site was 15 s after Optison injection, and lasted for ~50 s. Conclusion: The presence of UCA during HIFU treatment of liver incisions resulted in shortening of HIFU application times and better visualization of bleeding sites.

  7. Monitoring the Ocean Acoustic Environment: A Model-Based Detection Approach

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Sullivan, E.J.

    2000-03-13

    A model-based approach is applied in the development of a processor designed to passively monitor an ocean acoustic environment along with its associated variations. The technique employs an adaptive, model-based processor embedded in a sequential likelihood detection scheme. The trade-off between state-based and innovations-based monitor designs is discussed, conceptually. The underlying theory for the innovations-based design is briefly developed and applied to a simulated data set.

  8. An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling.

    Science.gov (United States)

    Xiang, Ning; Sabatier, James M

    2003-03-01

    An acoustic-to-seismic system to detect buried antipersonnel mines exploits airborne acoustic waves penetrating the surface of the ground. Acoustic waves radiating from a sound source above the ground excite Biot type I and II compressional waves in the porous soil. The type I wave and type II waves refract toward the normal and cause air and soil particle motion. If a landmine is buried below the surface of the insonified area, these waves are scattered or reflected by the target, resulting in distinct changes to the acoustically coupled ground motion. A scanning laser Doppler vibrometer measures the motion of the ground surface. In the past, this technique has been employed with remarkable success in locating antitank mines during blind field tests [Sabatier and Xiang, IEEE Trans. Geosci. Remote Sens. 39, 1146-1154 (2001)]. The humanitarian demining mission requires an ability to locate antipersonnel mines, requiring a surmounting of additional challenges due to a plethora of shapes and smaller sizes. This paper describes an experimental study on the methods used to locate antipersonnel landmines in recent field measurements.

  9. A compact array calibrator to study the feasibility of acoustic neutrino detection

    Directory of Open Access Journals (Sweden)

    Ardid M.

    2016-01-01

    Full Text Available Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino “signature” that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  10. Fiber-optic photo-acoustic spectroscopy sensor for harsh environment gas detection

    Science.gov (United States)

    Wu, Juntao; Deng, Kung-Li; Guida, Renato; Lee, Boon

    2007-09-01

    Photo-acoustic spectroscopy (PAS) has been successfully applied to detect various gases and chemicals due to its high selectivity and sensitivity. However, the performance of the conventional acoustic sensors prohibits the application of PAS for harsh environment gas species real-time monitoring. By replacing conventional acoustic sensors, such as microphone and piezo-transducers, with a high-temperature Fiber Bragg Grating (FBG) vibration sensor, we developed a fiber-optic PAS sensing system that can be used in high-temperature and high-pressure harsh environments for gas species identification and concentration measurement. A resonant acoustic chamber is designed, and FBG vibration sensor is embedded in the molybdenum membrane. An OPO laser is used for spectrum scanning. Preliminary test on water vapor has been conducted, and the result is analyzed. This sensing technology can be adapted into harsh environments, such as Integrated Gasification Combined Cycle (IGCC) power plant, and provide on-line real-time monitoring of gases species, such as CO, H IIO, and O II. Presently, our FBG-based vibration sensor can withstand the high temperature up to 800°C.

  11. Machine Fault Detection Based on Filter Bank Similarity Features Using Acoustic and Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Mauricio Holguín-Londoño

    2016-01-01

    Full Text Available Vibration and acoustic analysis actively support the nondestructive and noninvasive fault diagnostics of rotating machines at early stages. Nonetheless, the acoustic signal is less used because of its vulnerability to external interferences, hindering an efficient and robust analysis for condition monitoring (CM. This paper presents a novel methodology to characterize different failure signatures from rotating machines using either acoustic or vibration signals. Firstly, the signal is decomposed into several narrow-band spectral components applying different filter bank methods such as empirical mode decomposition, wavelet packet transform, and Fourier-based filtering. Secondly, a feature set is built using a proposed similarity measure termed cumulative spectral density index and used to estimate the mutual statistical dependence between each bandwidth-limited component and the raw signal. Finally, a classification scheme is carried out to distinguish the different types of faults. The methodology is tested in two laboratory experiments, including turbine blade degradation and rolling element bearing faults. The robustness of our approach is validated contaminating the signal with several levels of additive white Gaussian noise, obtaining high-performance outcomes that make the usage of vibration, acoustic, and vibroacoustic measurements in different applications comparable. As a result, the proposed fault detection based on filter bank similarity features is a promising methodology to implement in CM of rotating machinery, even using measurements with low signal-to-noise ratio.

  12. A compact array calibrator to study the feasibility of acoustic neutrino detection

    Science.gov (United States)

    Ardid, M.; Camarena, F.; Felis, I.; Herrero, A.; Llorens, C. D.; Martínez-Mora, J.; Saldaña, M.

    2016-04-01

    Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino "signature" that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  13. A Correlated Microwave-Acoustic Imaging method for early-stage cancer detection.

    Science.gov (United States)

    Gao, Fei; Zheng, Yuanjin

    2012-01-01

    Microwave-based imaging technique shows large potential in detecting early-stage cancer due to significant dielectric contrast between tumor and surrounding healthy tissue. In this paper, we present a new way named Correlated Microwave-Acoustic Imaging (CMAI) of combining two microwave-based imaging modalities: confocal microwave imaging(CMI) by detecting scattered microwave signal, and microwave-induced thermo-acoustic imaging (TAI) by detecting induced acoustic signal arising from microwave energy absorption and thermal expansion. Necessity of combining CMI and TAI is analyzed theoretically, and by applying simple algorithm to CMI and TAI separately, we propose an image correlation approach merging CMI and TAI together to achieve better performance in terms of resolution and contrast. Preliminary numerical simulation shows promising results in case of low contrast and large variation scenarios. A UWB transmitter is designed and tested for future complete system implementation. This preliminary study inspires us to develop a new medical imaging modality CMAI to achieve real-time, high resolution and high contrast simultaneously.

  14. Acoustic harmonic generation measurement applications: Detection of tight cracks in powder metallurgy compacts

    Science.gov (United States)

    Barnard, D. J.; Foley, J. C.

    2000-05-01

    Standard linear ultrasonic testing techniques have long been employed for locating and characterizing relatively open cracks in a wide variety of materials, from metallic alloys and ceramics to composites. In all these materials, the detection of open cracks easily accomplished because the void between the two crack surfaces provides sufficient acoustic impedance mismatch to reflect the incident energy. Closed or partially closed cracks, however, may often go undetected because contacting interfaces allow transmission of ultrasound. In the green (unsintered) state, powder metallurgy compacts typically contain high residual stresses that have the ability to close cracks formed during the compaction process, a result of oxide films, improper powder lubricant, mold design, etc. After sintering, the reduction of residual stresses may no longer be sufficient to close the crack. Although the crack may be more easily detected, it is obvious most desirable to discover defects prior to sintering. It has been shown that the displacements of an interface may be highly nonlinear if a stress wave of sufficient intensity propagates across it, a result of the stress wave either opening or closing the interface. Current efforts involve the application of nonlinear acoustic techniques, in particular acoustic harmonic generation measurements, for the detection and characterization of tightly closed cracks in powder metallurgy parts. A description of the equipment and the measurement technique will be discussed and initial experimental results on sintered and green compacts will be presented.—This work was performed at the Ames Laboratory, Iowa State University under USDOE Contract No. W-7405-ENG-82.

  15. Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics.

    Science.gov (United States)

    Papadakis, G; Friedt, J M; Eck, M; Rabus, D; Jobst, G; Gizeli, E

    2017-09-01

    The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical applications and molecular diagnostics. Based on a systematic study we optimized the mechanics of the flow cell attachment and the sealing material so that fluidic interfacing/encapsulation would impose minimal losses to the acoustic wave. We have also investigated combinations of operating frequencies with waveguide materials and thicknesses for maximum sensitivity during the detection of protein and DNA biomarkers. Within our investigations neutravidin was used as a model protein biomarker and unpurified PCR amplified Salmonella DNA as the model genetic target. Our results clearly indicate the need for experimental verification of the optimum engineering and analytical parameters, in order to develop commercially viable systems for integrated analysis. The good reproducibility of the signal together with the ability of the array biochip to detect multiple samples hold promise for the future use of the integrated system in a Lab-on-a-Chip platform for application to molecular diagnostics.

  16. The role of acoustic emission in the study of rock fracture

    Science.gov (United States)

    Lockner, D.

    1993-01-01

    The development of faults and shear fracture systems over a broad range of temperature and pressure and for a variety of rock types involves the growth and interaction of microcracks. Acoustic emission (AE), which is produced by rapid microcrack growth, is a ubiquitous phenomenon associated with brittle fracture and has provided a wealth of information regarding the failure process in rock. This paper reviews the successes and limitations of AE studies as applied to the fracture process in rock with emphasis on our ability to predict rock failure. Application of laboratory AE studies to larger scale problems related to the understanding of earthquake processes is also discussed. In this context, laboratory studies can be divided into the following categories. 1) Simple counting of the number of AE events prior to sample failure shows a correlation between AE rate and inelastic strain rate. Additional sorting of events by amplitude has shown that AE events obey the power law frequency-magnitude relation observed for earthquakes. These cumulative event count techniques are being used in conjunction with damage mechanics models to determine how damage accumulates during loading and to predict failure. 2) A second area of research involves the location of hypocenters of AE source events. This technique requires precise arrival time data of AE signals recorded over an array of sensors that are essentially a miniature seismic net. Analysis of the spatial and temporal variation of event hypocenters has improved our understanding of the progression of microcrack growth and clustering leading to rock failure. Recently, fracture nucleation and growth have been studied under conditions of quasi-static fault propagation by controlling stress to maintain constant AE rate. 3) A third area of study involves the analysis of full waveform data as recorded at receiver sites. One aspect of this research has been to determine fault plane solutions of AE source events from first motion

  17. Detection of 183 GHz water megamaser emission towards NGC 4945

    CERN Document Server

    Humphreys, Elizabeth; Impellizzeri, Violette; Galametz, Maud; Olberg, Michael; Conway, John; Belitsky, Victor; De Breuck, Carlos

    2016-01-01

    Aim: The aim of this work is to search Seyfert 2 galaxy NGC 4945, a well-known 22 GHz water megamaser galaxy, for water (mega)maser emission at 183 GHz. Method: We used APEX SEPIA Band 5 to perform the observations. Results: We detected 183 GHz water maser emission towards NGC 4945 with a peak flux density of ~3 Jy near the galactic systemic velocity. The emission spans a velocity range of several hundred km/s. We estimate an isotropic luminosity of > 1000 Lsun, classifying the emission as a megamaser. A comparison of the 183 GHz spectrum with that observed at 22 GHz suggests that 183 GHz emission also arises from the active galactic nucleus (AGN) central engine. If the 183 GHz emission originates from the circumnuclear disk, then we estimate that a redshifted feature at 1084 km/s in the spectrum should arise from a distance of 0.022 pc from the supermassive black hole (1.6 x 10(5) Schwarzschild radii), i.e. closer than the water maser emission previously detected at 22 GHz. This is only the second time 183 G...

  18. Detection of thermal radio emission from a single coronal giant

    CERN Document Server

    O'Gorman, Eamon; Vlemmings, Wouter

    2016-01-01

    We report the detection of thermal continuum radio emission from the K0 III coronal giant Pollux ($\\beta$ Gem) with the Karl G. Jansky Very Large Array (VLA). The star was detected at 21 and 9 GHz with flux density values of $150\\pm21$ and $43\\pm8\\,\\mu$Jy, respectively. We also place a $3\\sigma_{\\mathrm{rms}}$ upper limit of $23\\,\\mu$Jy for the flux density at 3 GHz. We find the stellar disk-averaged brightness temperatures to be approximately 9500, 15000, and $<71000\\,$K, at 21, 9, and 3 GHz, respectively, which are consistent with the values of the quiet Sun. The emission is most likely dominated by optically thick thermal emission from an upper chromosphere at 21 and 9 GHz. We discuss other possible additional sources of emission at all frequencies and show that there may also be a small contribution from gyroresonance emission above active regions, coronal free-free emission and free-free emission from an optically thin stellar wind, particularly at the lower frequencies. We constrain the maximum mass-...

  19. Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs

    Science.gov (United States)

    2015-05-26

    inversion testing. Due to time limitations and to facilitate the deployments of both sonars, the 7125s were deployed using a pole mount on the...FINAL REPORT Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs SERDP...2015 Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXO’s W912HQ-12-C-0049 MR

  20. Detection of Exomoons Through Their Modulation of Exoplanetary Radio Emissions

    CERN Document Server

    Noyola, Joaquin P; Musielak, Zdzislaw E

    2013-01-01

    In the Jupiter-Io system, the moon's motion produces currents along the field lines that connect the moon to the Jupiter's polar regions, where the radio emission is modulated by the currents. Based on this process, we suggest that such modulation of planetary radio emissions may reveal the presence of exomoons around giant planets in exoplanetary systems. The required physical conditions for the modulation are established and used to select potential candidates for exomoon's detection. A cautiously optimistic scenario of possible detection of such exomoons with the Long Wavelength Array (LWA) and the Low-Frequency Array (LOFAR) radio telescopes is provided.

  1. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    Science.gov (United States)

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  2. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    Directory of Open Access Journals (Sweden)

    Eber Huanca Cayo

    2012-05-01

    Full Text Available The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  3. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    Science.gov (United States)

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  4. Online monitoring of accessories for underground electrical installations through acoustics emissions; Monitoreo en linea de accesorios de instalaciones electricas subterraneas mediante emisiones acusticas

    Energy Technology Data Exchange (ETDEWEB)

    Casals-Torrens, P. [Universidad Politecnica de Cataluna, Barcelona (Espana)]. E-mail: p.casals@upc.edu; Gonzalez-Parada, A. [Universidad de Guanajuato, Guanajuato (Mexico)]. E-mail: gonzaleza@salamanca.ugto.mx; Bosch-Tous, R. [Universidad Politecnica de Cataluna, Barcelona (Espana)

    2012-04-15

    The acoustic waves caused by Partial Discharges inside the dielectric materials, can be detected by acoustic emission (AE) sensors and analyzed in the time domain. The experimental results presented, show the online detection capability of these sensors in the environment near a cable accessory, such as a splice or terminal. The AE sensors are immune to electromagnetic interference and constitute a detection method non-intrusive and non-destructive, which ensures a galvanic decoupling with respect to electric networks, this technique of partial discharge detection can be applied as a test method for preventive or predictive maintenance (condition-based maintenance) to equipment or facilities of medium and high voltage in service and represents an alternative method to electrical detection systems, conventional or not, that continue to rely on the detection of current pulses. This paper presents characterization tests of the sensors AE through comparative tests of partial discharge on accessories for underground power cables. [Spanish] Las ondas acusticas provocadas por las descargas parciales en el interior de un dielectrico pueden ser detectadas por sensores de Emisiones Acusticas (EA) y analizadas en el dominio del tiempo. Los resultados experimentales que se presentan, evidencian la capacidad de deteccion en linea de estos sensores, en el entorno proximo a un accesorio de cable, empalme o terminal. Los sensores EA son inmunes a las interferencias electromagneticas, son un metodo de deteccion no destructivo y garantizan desacople galvanico respecto a la red electrica; esta tecnica de deteccion de descargas parciales puede ser aplicada como metodo de prueba para mantenimiento preventivo o predictivo (mantenimiento basado en la condicion), en equipos o instalaciones de media y alta tension en servicio, y representa una alternativa a los sistemas electricos de deteccion, convencionales o no, que continuan basandose en la deteccion del impulsos de corriente. En el

  5. A methodology to condition distorted acoustic emission signals to identify fracture timing from human cadaver spine impact tests.

    Science.gov (United States)

    Arun, Mike W J; Yoganandan, Narayan; Stemper, Brian D; Pintar, Frank A

    2014-12-01

    While studies have used acoustic sensors to determine fracture initiation time in biomechanical studies, a systematic procedure is not established to process acoustic signals. The objective of the study was to develop a methodology to condition distorted acoustic emission data using signal processing techniques to identify fracture initiation time. The methodology was developed from testing a human cadaver lumbar spine column. Acoustic sensors were glued to all vertebrae, high-rate impact loading was applied, load-time histories were recorded (load cell), and fracture was documented using CT. Compression fracture occurred to L1 while other vertebrae were intact. FFT of raw voltage-time traces were used to determine an optimum frequency range associated with high decibel levels. Signals were bandpass filtered in this range. Bursting pattern was found in the fractured vertebra while signals from other vertebrae were silent. Bursting time was associated with time of fracture initiation. Force at fracture was determined using this time and force-time data. The methodology is independent of selecting parameters a priori such as fixing a voltage level(s), bandpass frequency and/or using force-time signal, and allows determination of force based on time identified during signal processing. The methodology can be used for different body regions in cadaver experiments.

  6. Investigation of correlation of LF power modulation of light in natural and artificial illumination situations and acoustic emission

    Science.gov (United States)

    Kleeberg, Florian P.; Gutzmann, Holger L.; Weyer, Cornelia; Weiß, Jürgen; Dörfler, Joachim; Hahlweg, Cornelius F.

    2014-09-01

    The present paper is a follow up of a paper presented in 2013 at the Novel Optical Systems conference in the session on Optics and Music. It is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects to be observed which are interesting in the context of occupational medicine. It seems, that acoustic stimuli in the frequency range of the flicker fusion and below might lead to unexpected perceptible effects beyond those of the single stimuli. The effect of infrasound stimuli as a whole body perception seems to be boosted. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we question if such coherence is perceivable at all. Further, the problem of modulation of optical signals by acoustical signal is concerned. A catalogue of scenarios and 'effects to look for' including measurement concepts is presented and discussed.

  7. Bridging aero-fracture evolution with the characteristics of the acoustic emissions in a porous medium

    Directory of Open Access Journals (Sweden)

    Semih eTurkaya

    2015-09-01

    Full Text Available The characterization and understanding of rock deformation processes due to fluid flow is a challenging problem with numerous applications. The signature of this problem can be found in Earth Science and Physics, notably with applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control, volcanic eruptions, or in industrial applications such as hydraulic-fracturing, steam-assisted gravity drainage, CO₂ sequestration operations or soil remediation. Here we investigate the link between the visual deformation and the mechanical wave signals generated due to fluid injection into porous media. In a rectangular Hele-Shaw Cell, side air injection causes burst movement and compaction of grains along with channeling (creation of high permeability channels empty of grains. During the initial compaction and emergence of the main channel, the hydraulic fracturing in the medium generates a large non-impulsive low frequency signal in the frequency range 100 Hz - 10 kHz. When the channel network is established, the relaxation of the surrounding medium causes impulsive aftershock-like events, with high frequency (above 10 kHz acoustic emissions, the rate of which follows an Omori Law. These signals and observations are comparable to seismicity induced by fluid injection. Compared to the data obtained during hydraulic fracturing operations, low frequency seismicity with evolving spectral characteristics have also been observed. An Omori-like decay of microearthquake rates is also often observed after injection shut-in, with a similar exponent p≃0.5 as observed here, where the decay rate of aftershock follows a scaling law dN/dt ∝(t-t₀-p . The physical basis for this modified Omori law is explained by pore pressure diffusion affecting the stress relaxation.

  8. Anatomic and acoustic sexual dimorphism in the sound emission system of Phoenicoprocta capistrata (Lepidoptera: Arctiidae)

    Science.gov (United States)

    Rodríguez-Loeches, Laura; Barro, Alejandro; Pérez, Martha; Coro, Frank

    2009-04-01

    Both sexes of Phoenicoprocta capistrata have functional tymbals. The scanning electron microscopy revealed differences in the morphology of these organs in males and females. Male tymbals have a well-developed striated band, constituted by 21 ± 2 regularly arranged striae whereas female tymbals lack a striated band. This type of sexual dimorphism is rare in Arctiidae. The recording of the sound produced by moths held by the wings revealed that while males produced trains of pulses organized in modulation cycles, females produced clicks at low repetition rate following very irregular patterns. Statistically, there are differences between sexes in terms of the duration of pulses, which were 355 ± 24 μs in the case of males and 289 ± 29 μs for females. The spectral characteristics of the pulses also show sexual dimorphism. Male pulses are more tuned ( Q 10 = 5.2 ± 0.5) than female pulses ( Q 10 = 2.7 ± 0.5) and have a higher best frequency (42 ± 1 kHz vs. 29 ± 2 kHz). To our knowledge, this is the first report on an arctiid moth showing sexual dimorphism in tymbal’s anatomy that leads to a best frequency dimorphism. Males produce sound at mating attempts. The sounds recorded during mating are modulation cycles with the same spectral characteristics as those recorded when males are held by the wings. The morphological and acoustic features of female tymbals could indicate a process of degeneration and adaptation to conditions under which the emission of complex patterns is not necessary.

  9. Acoustic emission signals frequency-amplitude characteristics of sandstone after thermal treated under uniaxial compression

    Science.gov (United States)

    Kong, Biao; Wang, Enyuan; Li, Zenghua; Wang, Xiaoran; Niu, Yue; Kong, Xiangguo

    2017-01-01

    Thermally treated sandstone deformation and fracture produced abundant acoustic emission (AE) signals. The AE signals waveform contained plentiful precursor information of sandstone deformation and fracture behavior. In this paper, uniaxial compression tests of sandstone after different temperature treatments were conducted, the frequency-amplitude characteristics of AE signals were studied, and the main frequency distribution at different stress level was analyzed. The AE signals frequency-amplitude characteristics had great difference after different high temperature treatment. Significant differences existed of the main frequency distribution of AE signals during thermal treated sandstone deformation and fracture. The main frequency band of the largest waveforms proportion was not unchanged after different high temperature treatments. High temperature caused thermal damage to the sandstone, and sandstone deformation and fracture was obvious than the room temperature. The number of AE signals was larger than the room temperature during the initial loading stage. The low frequency AE signals had bigger proportion when the stress was 0.1, and the maximum value of the low frequency amplitude was larger than high frequency signals. With the increase of stress, the low and high frequency AE signals were gradually increase, which indicated that different scales ruptures were broken in sandstone. After high temperature treatment, the number of high frequency AE signals was significantly bigger than the low frequency AE signals during the latter loading stage, this indicates that the small scale rupture rate of recurrence and frequency were more than large scale rupture. The AE ratio reached the maximum during the sandstone instability failure period, and large scale rupture was dominated in the failure process. AE amplitude increase as the loading increases, the deformation and fracture of sandstone was increased gradually. By comparison, the value of the low frequency

  10. Indirect measurement of cylinder pressure from diesel engines using acoustic emission

    Science.gov (United States)

    El-Ghamry, M.; Steel, J. A.; Reuben, R. L.; Fog, T. L.

    2005-07-01

    Indirect measurement of the cylinder pressure from diesel engines is possible using acoustic emission (AE). A method is demonstrated for a large two-stroke marine diesel engine and a small four-stroke diesel engine, which involves reconstructing the cylinder crank angle domain diagram from the AE generated during the combustion phase. Raw AE was used for modelling and reconstructing the pressure waveform in the time domain but this could not be used to model the pressure rise (compression). To overcome this problem the signal was divided into two sections representing the compression part of the signal and the fuel injection/expansion stroke. The compression part of the pressure signal was reconstructed by using polynomial fitting. An auto-regressive technique was used during the injection/expansion stroke. The rms AE signal is well correlated with the pressure signal in the time and frequency domain and complex cepstrum analysis was used to model the pressure signal for the complete combustion phase (compression, injection and expansion). The main advantage of using cepstral analysis is that the model uses the frequency content of the rms AE signal rather than the energy content of the rms AE signal, which gives an advantage when the signal has lower energy content, during the compression process. By calculating the engine running speed from the rms AE signal and selecting the proper cepstrum model correlated to the combustion rms AE energy content, an analytical algorithm was developed to give a wide range of applicability over the different conditions of engine speed, engine type and load. The pressure reconstructed from both AE and acceleration data are compared. AE has the advantage of a much higher signal-to-noise ratio and improved time resolution and is shown to be better than the acceleration.

  11. Acoustic emission source location in complex structures using full automatic delta T mapping technique

    Science.gov (United States)

    Al-Jumaili, Safaa Kh.; Pearson, Matthew R.; Holford, Karen M.; Eaton, Mark J.; Pullin, Rhys

    2016-05-01

    An easy to use, fast to apply, cost-effective, and very accurate non-destructive testing (NDT) technique for damage localisation in complex structures is key for the uptake of structural health monitoring systems (SHM). Acoustic emission (AE) is a viable technique that can be used for SHM and one of the most attractive features is the ability to locate AE sources. The time of arrival (TOA) technique is traditionally used to locate AE sources, and relies on the assumption of constant wave speed within the material and uninterrupted propagation path between the source and the sensor. In complex structural geometries and complex materials such as composites, this assumption is no longer valid. Delta T mapping was developed in Cardiff in order to overcome these limitations; this technique uses artificial sources on an area of interest to create training maps. These are used to locate subsequent AE sources. However operator expertise is required to select the best data from the training maps and to choose the correct parameter to locate the sources, which can be a time consuming process. This paper presents a new and improved fully automatic delta T mapping technique where a clustering algorithm is used to automatically identify and select the highly correlated events at each grid point whilst the "Minimum Difference" approach is used to determine the source location. This removes the requirement for operator expertise, saving time and preventing human errors. A thorough assessment is conducted to evaluate the performance and the robustness of the new technique. In the initial test, the results showed excellent reduction in running time as well as improved accuracy of locating AE sources, as a result of the automatic selection of the training data. Furthermore, because the process is performed automatically, this is now a very simple and reliable technique due to the prevention of the potential source of error related to manual manipulation.

  12. Acoustic Emission Characteristics of Gas-Containing Coal during Loading Dilation Process

    Directory of Open Access Journals (Sweden)

    Z. Q. Yin

    2015-12-01

    Full Text Available Raw coal was used as the study object in this paper to identify the evolution characteristics of acoustic emission (AE during the dilation process of gas-containing coal. The coal specimens were stored in gas seal devices filled with gas at different pressures (0, 0.5, 1.0, and 1.5 MPa for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the deformation and crack fracture patterns were recorded by using strain gauges and an AE system. The axial and volumetric strains–stress curves were analyzed in relation to the AE and the failure mode. Results show that as gas pressure increases, the uniaxial compression strength and elasticity modulus of gas-containing coal decreases, whereas the Poisson’s ratio increases. In all the coal specimens, the dilation initiation stress decreases, and the dilation degree increases. During the dilation process, before the loaded coal specimens reach peak stress, and as the load increases, the changes in the specimens and in the AE energy parameter of specimens can be divided into four phases: crack closure deformation, elastic deformation, stable crack propagation, and unstable crack propagation (dilation process. Across the four phases, the AE energy increases evidently during crack closure and elastic deformation but decreases during stable crack propagation. As the gas pressure increases, the AE signal frequency increases from 4.5 KHz to 8.1 KHz during the dilation process. Thus, the gas presence in coal specimens exerts a significant influence on the closure of sample cracks and dilation damage.

  13. Control of deviations and prediction of surface roughness from micro machining of THz waveguides using acoustic emission signals

    Science.gov (United States)

    Griffin, James M.; Diaz, Fernanda; Geerling, Edgar; Clasing, Matias; Ponce, Vicente; Taylor, Chris; Turner, Sam; Michael, Ernest A.; Patricio Mena, F.; Bronfman, Leonardo

    2017-02-01

    By using acoustic emission (AE) it is possible to control deviations and surface quality during micro milling operations. The method of micro milling is used to manufacture a submillimetre waveguide where micro machining is employed to achieve the required superior finish and geometrical tolerances. Submillimetre waveguide technology is used in deep space signal retrieval where highest detection efficiencies are needed and therefore every possible signal loss in the receiver has to be avoided and stringent tolerances achieved. With a sub-standard surface finish the signals travelling along the waveguides dissipate away faster than with perfect surfaces where the residual roughness becomes comparable with the electromagnetic skin depth. Therefore, the higher the radio frequency the more critical this becomes. The method of time-frequency analysis (STFT) is used to transfer raw AE into more meaningful salient signal features (SF). This information was then correlated against the measured geometrical deviations and, the onset of catastrophic tool wear. Such deviations can be offset from different AE signals (different deviations from subsequent tests) and feedback for a final spring cut ensuring the geometrical accuracies are met. Geometrical differences can impact on the required transfer of AE signals (change in cut off frequencies and diminished SNR at the interface) and therefore errors have to be minimised to within 1 μm. Rules based on both Classification and Regression Trees (CART) and Neural Networks (NN) were used to implement a simulation displaying how such a control regime could be used as a real time controller, be it corrective measures (via spring cuts) over several initial machining passes or, with a micron cut introducing a level plain measure for allowing setup corrective measures (similar to a spirit level).

  14. In-situ Observation of Boiling Dynamics on Fuel Cladding Surface in Non-pressurized Water Using Acoustic Emission Method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kaige; Baek, Seung Heon; Shim, Hee-Sang; Hur, Do Haeng; Lee, Deok Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In the PWR primary coolant system, a phenomenon of axial offset anomaly (AOA) can be caused due to accumulated boron hide out in porous CRUD deposition on the fuel cladding surface. Up to now, the CRUD deposition has been well known to be driven by subcooled nucleate boiling (SNB) on the cladding surface based on large scale experimental work. Therefore, monitoring and evaluation of the SNB-phenomenon is an important approach to study the CRUD deposition. Many attempts have been made to study the SNB and CRUD deposition using thermal hydraulic or model calculation. However, a comprehensive understanding of the SNB during CRUD deposition is still far from being realized. Acoustic emission (AE) technique, as an in-situ nondestructive evaluation (NDE) method, has been widely used to monitor the boiling activity in containers and pipes. Accordingly, this work aimed to investigate the exact AE characteristics of SNB-phenomenon on the fuel cladding surface at atmospheric pressure, with the purpose of providing an experimental groundwork for the AE investigation on SNB in high-temperature pressurized coolant system. In this study, we conducted an in-situ experimental observation of the bubble dynamic of SNB in non-pressurized water at atmospheric pressure using AE method. The AE of heater noise was confirmed to cluster between 8 and 26 khz. Three AE groups were detected during the boiling process in the Snob zones. AE group 1 and 3 seemed to be the results of bubble growth and collapse, while bubble departure from the cladding surface was reasonably associated with an isolated AE group 2.

  15. Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models

    Energy Technology Data Exchange (ETDEWEB)

    Riber Marklund, A. [CEA, Cadarache, DEN/DTN/STCP/LIET, Batiment 202, 13108 St Paul-lez-Durance, (France); Kishore, S. [Fast Reactor Technology Group of IGCAR, (India); Prakash, V. [Vibrations Diagnostics Division, Fast Reactor Technology Group of IGCAR, (India); Rajan, K.K. [Fast Reactor Technology Group and Engineering Services Group of IGCAR, (India)

    2015-07-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)

  16. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DU), Girinagar, Pune 411 025, Maharashtra (India); Choubey, Ravi Kant [Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Noida 201 313 (India)

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  17. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Science.gov (United States)

    Pawar, Dnyandeo; Rao, Ch. N.; Choubey, Ravi Kant; Kale, S. N.

    2016-01-01

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  18. Detection of ultra high energy neutrinos with an underwater very large volume array of acoustic sensors: A simulation study

    CERN Document Server

    Karg, T

    2006-01-01

    This thesis investigates the detection of ultra high energy (E > 1 EeV) cosmic neutrinos using acoustic sensors immersed in water. The method is based on the thermoacoustic model describing the production of microsecond bipolar acoustic pulses by neutrino-induced particle cascades. These cascades locally heat the medium which leads to rapid expansion and a short sonic pulse detectable in water with hydrophones over distances of several kilometres. This makes acoustic detection an approach complementary to todays optical Cerenkov and radio Cerenkov detectors, and could help to reduce the respective systematic uncertainties. In this work a complete simulation / reconstruction chain for a submarine acoustic neutrino telescope is developed, and the sensitivity of such a detector to a diffuse flux of ultra highenergy cosmic neutrinos is estimated.

  19. Effects of Acoustic Emission and Energy Evolution of Rock Specimens Under the Uniaxial Cyclic Loading and Unloading Compression

    Science.gov (United States)

    Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Nie, Taoyi

    2016-10-01

    Characteristics of energy accumulation, evolution, and dissipation in uniaxial cyclic loading and unloading compression of 30 sandstone rock specimens under six different loading rates were explored. Stress-strain relations and acoustic emission characteristics of the deformation and failure of rock specimens were analyzed. The densities and rates of stored energy, elastic energy, and dissipated energy under different loading rates were confirmed, and an effective approach for the equivalent energy surface was presented. The energy evolution of rock deformation and failure were revealed. It turns out that the rock deformation behavior under uniaxial cyclic loading and unloading compression remained almost unchanged compared with that of uniaxial compression. The degree of match between reloading stress-strain curves and previous unloading curves was high, thereby demonstrating the memory function of rock masses. The intensity of acoustic emission fluctuated continually during the entire cyclic process. Emissions significantly increased as the stress exceeded the unloading level. The peak of acoustic emission increased with increasing loading stress level. Relationships between energy density and axial load indicate that the rock mass possesses a certain energy storage limitation. The energy evolution of rock masses is closely related to the axial loading stress, rather than to the axial loading rate. With increasing axial loading stress, stored energy varied most rapidly, followed by that of the elastic energy, then dissipated energy. Energy accumulation dominates prior to the axial load reaching peak strength; thereafter, energy dissipation becomes dominant. The input energy causes the irreversible initiation and extension of microcracks in the rock body. Elastic energy release leads to sudden instability of rock bodies and drives rock damage.

  20. Acoustic model of micro-pressure wave emission from a high-speed train tunnel

    Science.gov (United States)

    Miyachi, T.

    2017-03-01

    The micro-pressure wave (MPW) radiated from a tunnel portal can, if audible, cause serious problems around tunnel portals in high-speed railways. This has created a need to develop an acoustic model that considers the topography around a radiation portal in order to predict MPWs more accurately and allow for higher speed railways in the future. An acoustic model of MPWs based on linear acoustic theory is developed in this study. First, the directivity of sound sources and the acoustical effect of topography are investigated using a train launcher facility around a portal on infinitely flat ground and with an infinite vertical baffle plate. The validity of linear acoustic theory is then discussed through a comparison of numerical results obtained using the finite difference method (FDM) and experimental results. Finally, an acoustic model is derived that considers sound sources up to the second order and Green's function to represent the directivity and effect of topography, respectively. The results predicted by this acoustic model are shown to be in good agreement with both numerical and experimental results.