WorldWideScience

Sample records for acoustic emission applications

  1. Acoustic Emission Technology and Application

    International Nuclear Information System (INIS)

    Joo, Y. S.; Lim, S. H.; Eom, H. S.; Kim, J. H.; Jung, H. K.

    2003-10-01

    Acoustic emission is the elastic wave that is generated by the rapid release of energy from the localized sources within a material. After the observation of acoustic emission phenomenon in 1950, the research and further investigation had been performed. Acoustic emission examination becomes a rapidly matured nondestructive testing method with demonstrated capabilities for characterizing material behavior and for detecting the defect. It is of interest as a possible passive monitoring technique for detecting, locating and characterizing the defects in component and structure. Acoustic emission technology has recently strengthened the on-line monitoring application for the detection of incipient failures and the assurance of structural integrity. The field of acoustic emission testing is still growing vigorously and presents many challenges. Especially, acoustic emission has been successfully applied in the leak detection of primary pressure boundary of nuclear power plants. In this state-of-art report, the principle, measurement and field applications of acoustic emission technique is reviewed and summarized. Acoustic emission technology will contribute to the assurance of nuclear safety as the on-line monitoring technique of structural integrity of NSSS components and structures

  2. Acoustic emission technique and its applications

    International Nuclear Information System (INIS)

    Sato, Ichiya; Sasaki, Soji

    1976-01-01

    Acoustic emission technique is described. The characteristics of acoustic emission signal, measurement techniques, and its application are explained. The acoustic signals are grouped into continuous and burst types. The continuous signal is due to plastic deformation, and the burst type is due to the generation and growth of cracks. The latter can be used for the identification of the position of cracks. The frequency of the acoustic emission is in the range from several tens of KHz to two MHz. Piezoelectric ceramics are used as the oscillators of sensors. The dynamic behavior of acoustic emission can be observed with a two-channel acoustic emission measuring apparatus. Multi-channel method was developed at Hitachi, Ltd., and is used for large structures. General computer identification method and simple zone identification method are explained. Noise elimination is important for the measurement, and the methods were studied. Examples of application are the observation of acoustic emission in the plastic deformation of steel, the tensile test of large welded material with natural defects, and others. The method will be used for the diagnosis and observation of large structures, the test and quality control of products. (Kato, T.)

  3. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  4. Developments in acoustic emission for application to nuclear reactor systems

    International Nuclear Information System (INIS)

    Bentley, P.G.

    1982-01-01

    Developments in acoustic emission are summarised as they relate to the principal applications to nuclear reactors, and light water reactor pressure vessels in particular. Improvement in the understanding of acoustic emission has come from materials tests and these confirm the problems in applying the technique for in-service or periodic proof test monitoring of growing fatique cracks. Applications in LMFBR have confirmed that acoustic emission can be applied in the nuclear environment and the detection of stress corrosion cracking in both BWR and LMFBR seems possible. Some information is included on the developing interest in applying the techniques of acoustic emission for leak detection during shop hydro and in-service monitoring. Acoustic emission is also being developed for weld fabrication monitoring and recently introduced pattern recognition techniques are having a significant impact in this application. (author)

  5. Status reports on developments and applications of acoustic emission analysis. Lectures

    International Nuclear Information System (INIS)

    1994-01-01

    The 25 lectures give a survey of the field of acoustic emission analysis. After a state-of-the-art report, the 4 new SE regulations of the DGZfP are presented which will standardize the applications of acoustic emission analysis. Acoustic emission sources and signal processing, including 3D detection, are discussed in 5 papers. After this, the practical applications of acoustic emission analysis are discussed in detail: Testing of gas tanks, inspection of storage container bottoms, reinforced concrete (3D analysis during extension testing), polymer-impregnated concrete, glass (testing up to 90 MHz), ceramics (thermoshock behaviour), fibre-reinforced plastics (4 contributions), PVD films, rock (analysis of workability and structure), glued joints between metals, monitoring of laser beam welding, metal cutting, and drying of cut wood. (orig.) [de

  6. Application of acoustic emission to hydride cracking

    International Nuclear Information System (INIS)

    Sagat, S.; Ambler, J.F.R.; Coleman, C.E.

    1986-07-01

    Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking

  7. Application of acoustic emission, as non destructive testing technique, to nuclear components inspection

    International Nuclear Information System (INIS)

    Sanchez Miro, J.J.

    1980-01-01

    A panorama of actual state of acoustic emission as non destructive testing technique, from stand point of its safety applications to nuclear reactor is offered. In first place the physic grounds of acoustic emission phenomenon is briefly exposed. After we speak about the experimental methods for detection, and overall is made an explanation of the problems which are found during the application of this technology to on-line inspection of nuclear oower plants. It is hoped that this repport makes a contribution in the sense of to create a favourable atmosphere toward the introduction in our country of this important technique, and concretely within the nuclear power industry. In this last field the employ of acoustic emission is overcoming the experimental stage. (author)

  8. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  9. A Preliminary Study Application Clustering System in Acoustic Emission Monitoring

    Directory of Open Access Journals (Sweden)

    Saiful Bahari Nur Amira Afiza

    2017-01-01

    Full Text Available Acoustic Emission (AE is a non-destructive testing known as assessment on damage detection in structural engineering. It also can be used to discriminate the different types of damage occurring in a composite materials. The main problem associated with the data analysis is the discrimination between the different AE sources and analysis of the AE signal in order to identify the most critical damage mechanism. Clustering analysis is a technique in which the set of object are assigned to a group called cluster. The objective of the cluster analysis is to separate a set of data into several classes that reflect the internal structure of data. In this paper was used k-means algorithm for partitioned clustering method, numerous effort have been made to improve the performance of application k-means clustering algorithm. This paper presents a current review on application clustering system in Acoustic Emission.

  10. World Conference on Acoustic Emission 2013

    CERN Document Server

    Wu, Zhanwen; Zhang, Junjiao

    2015-01-01

    This volume collects the papers from the 2013 World Conference on Acoustic Emission in Shanghai. The latest research and applications of Acoustic Emission (AE) are explored, with particular emphasis on detecting and processing of AE signals, development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques as well as experimental case studies.

  11. World Conference on Acoustic Emission 2015

    CERN Document Server

    Wu, Zhanwen; Zhang, Junjiao

    2017-01-01

    This volume collects the papers from the World Conference on Acoustic Emission 2015 (WCAE-2015) in Hawaii. The latest research and applications of Acoustic Emission (AE) are explored, with particular emphasis on detecting and processing of AE signals, development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques as well as experimental case studies.

  12. Calibration of acoustic emission transducers

    International Nuclear Information System (INIS)

    Leschek, W.C.

    1976-01-01

    A method is described for calibrating an acoustic emission transducer to be used in a pre-set frequency range. The absolute reception sensitivity of a reference transducer is determined at frequencies selected within the frequency range. The reference transducer and the acoustic emission transducer are put into acoustic communication with the surface of a limited acoustic medium representing an equivalent acoustic load appreciably identical to that of the medium in which the use of the acoustic emission transducer is intended. A blank random acoustic noise is emitted in the acoustic medium in order to establish a diffuse and reverberating sound field, after which the output responses of the reference transducer and of the acoustic emission transducer are obtained with respect to the diffuse and reverberating field, for selected frequencies. The output response of the acoustic emission transducer is compared with that of the reference transducer for the selected frequencies, so as to determine the reception sensitivity of the acoustic emission transducer [fr

  13. Acoustic emission from zirconium alloys during mechanical and fracture testing

    International Nuclear Information System (INIS)

    Coleman, C.E.

    1986-10-01

    The application of acoustic emission during the mechanical and fracture testing of zirconium alloys is reviewed. Acoustic emission is successful in following delayed hydride cracking quantitatively. It is especially useful when great sensitivity is required. Application to fatigue, tensile deformation and stress corrosion cracking appears promising but requires more work to separate phenomena before it can be used quantitatively. This report is based on an invited review for the American Society of Non-Destructive Testing Handbook: Volume 5, Acoustic Emission Testing

  14. Acoustic emission pickup essentially for waveguide

    International Nuclear Information System (INIS)

    Asty, Michel; Saglio, Robert.

    1979-01-01

    Lambda wave length acoustic emission pickup comprising two juxtaposed piezoelectric capsules of equal lambda/2 thickness and with opposite polarization, separated by an electrically insulating foil, the two opposite sides of the capsules being earthed. The electric signal resulting from the acoustic emission is picked up on the two sides facing both sides of the insulating foil and the assembly of the two piezoelectric capsules is mounted on a base insulating it from the structure on which the acoustic emission is being listened to. Application of this pickup to the surveillance of defects in the steel vessels of nuclear reactors, characterized in that it is placed at the end of a metal ultrasonic wave guide the other end of which is welded directly to the vessel [fr

  15. Acoustic emission: technical review for PWR applications

    International Nuclear Information System (INIS)

    Bentley, P.G.

    1981-07-01

    Acoustic emission has been studied since the early 1960's, particularly with a view to periodic or continuous monitoring of steel pressure vessels. In the years 1970-75 it was realised that ductile steels, used in nuclear vessels, give small amplitude signals which are barely detectable by available instruments. The technique for application in periodic or continuous monitoring and also as applied to leak detection and weld fabrication monitoring is reviewed. It is concluded that manufacturing defects may be detectable during pre-service hydrotest, but that there is insufficient evidence on which to base an estimate of detection probability. In-service hydrotest or continuous monitoring is unlikely to detect growing cracks because of the quiet nature of the material and the noisy reactor background. Both leak detection and fabrication weld monitoring show some promise of successful application in the future. (author)

  16. Pre-service Acoustic Emission Testing for Metal Pressure Vessel

    International Nuclear Information System (INIS)

    Lee, Jong O; Yoon, Woon Ha; Lee, Tae Hee; Lee, Jong Kyu

    2003-01-01

    The field application of acoustic emission(AE) testing for brand-new metal pressure vessel were performed. We will introduce the test procedure for acoustic emission test such as instrument check distance between sensors, sensor location, whole system calibration, pressurization sequence, noise reduction and evaluation. The data of acoustic emission test contain many noise signal, these noise can be reduced by time filtering which based on the description of observation during AE test

  17. Acoustic emission sensor radiation damage threshold experiment

    International Nuclear Information System (INIS)

    Beeson, K.M.; Pepper, C.E.

    1994-01-01

    Determination of the threshold for damage to acoustic emission sensors exposed to radiation is important in their application to leak detection in radioactive waste transport and storage. Proper response to system leaks is necessary to ensure the safe operation of these systems. A radiation impaired sensor could provide ''false negative or false positive'' indication of acoustic signals from leaks within the system. Research was carried out in the Radiochemical Technology Division at Oak Ridge National Laboratory to determine the beta/gamma radiation damage threshold for acoustic emission sensor systems. The individual system consisted of an acoustic sensor mounted with a two part epoxy onto a stainless steel waveguide. The systems were placed in an irradiation fixture and exposed to a Cobalt-60 source. After each irradiation, the sensors were recalibrated by Physical Acoustics Corporation. The results were compared to the initial calibrations performed prior to irradiation and a control group, not exposed to radiation, was used to validate the results. This experiment determines the radiation damage threshold of each acoustic sensor system and verifies its life expectancy, usefulness and reliability for many applications in radioactive environments

  18. Status reports on the development and application of acoustic emission analysis. Proceedings; Statusberichte zur Entwicklung und Anwendung der Schallemissionsanalyse. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This proceedings-CD comprises 20 papers presented at the 17. Kolloquium Schallemission (Acoustic Emission Colloquium) at Bad Schandau. The following subjects were discussed: 1. Acoustic emission analysis of tensile tests on standard test specimens of different wood materials; 2. Application of pattern recognition methods for damage analyses of fibre-reinforced plastics; 3. Acoustic emission analysis for measuring crack growth in finned armor steel under dynamic load; 4. Acoustic emission analysis with zonal sound location: Test objects, test results and evaluation of acoustic emission signals; 5. Acoustic emission analysis in overall fatigue testing of a wind rotor blade; 6. Laboratory methods for assessing the sensitivity of acoustic emission sensors; 7. Acoustic emission analysis in burst tests of cast aluminium casings; 8. Visualization of acoustic emission localizations; 9. Threshold-independent and complete recording of characteristics and wave forms of transient and continuous acoustic emission; 10. Characterization of wide-band acoustic emission sensors; 11. Handling of large data volumes in acoustic emission analysis, a contribution to the development of algorithms; 12. Acoustic emission analysis and ultrasonic analysis for the characterization of crack networks in saline rock. One of the papers is available as a separate record in this database. [German] Diese Tagungs-CD enthaelt 20 Vortraege, die auf dem 17. Kolloquium Schallemission in Bad Schandau gehalten wurden. Die Themen waren: 1. Schallemissionsanalyse von Zugversuchen an Standardpruefkoerpern aus unterschiedlichen Holzwerkstoffen; 2. Anwendung von Mustererkennungsverfahren zur Schadensanalyse in faserverstaerkten Kunststoffen; 3. Anwendung der Schallemissionsanalyse zur Ermittlung des Risswachstums bei schwingender Beanspruchung von geripptem Bewehrungsstahl; 4. Schallemissionspruefung mit zonaler Ortung Pruefobjekte, Pruefergebnisse und Nachbewertung von Schallemissionssignalen; 5

  19. Acoustic emission measurement on large scale coils at JAERI

    International Nuclear Information System (INIS)

    Yoshida, K.; Hattori, Y.; Nishi, M.F.; Shimamoto, S.; Tsuji, H.

    1986-01-01

    The objective of acoustic emission measurement at Japan Atomic Energy Research Institute (JAERI) is an establishment of a general diagnostic method for superconducting magnet systems. Output of strain and displacement gages can not cover a whole system in monitoring premonitory phenomena of a magnet system s failure, because these sensors are mounted on points and therefore localized. Acoustic emissions can be transmitted to sensors through structural materials without electrical noise. Monitoring of acoustic emission will be one of the methods to predict a serious failure of magnet systems in a vacuum vessel. For this purpose, several sensors were installed on the Japanese LCT coil and the Test Module Coil (TMC). Some of acoustic activity was similar as seen in these coils. The correlation between voltage spikes and acoustic events is excellent during single coil charging mode, but poorer during out of plane force mode. There are no indicative acoustical phenomena before a magnet quench or during normal zone generation. The conditioning of acoustic events and voltage spikes can be seen after any cooling down. The localization of electrical insulation damage with the acoustic emission technique is one of its most useful applications

  20. Acoustic emission methodology and application

    CERN Document Server

    Nazarchuk, Zinoviy; Serhiyenko, Oleh

    2017-01-01

    This monograph analyses in detail the physical aspects of the elastic waves radiation during deformation or fracture of materials. I presents the  methodological bases for the practical use of acoustic emission device, and describes the results of theoretical and experimental researches of evaluation of the crack growth resistance of materials, selection of the useful AE signals. The efficiency of this methodology is shown through the diagnostics of various-purpose industrial objects. The authors obtain results of experimental researches with the help of the new methods and facilities.

  1. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    Science.gov (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  2. Development of an incipient rotor crack detection method by acoustic emission techniques

    International Nuclear Information System (INIS)

    Le Reverend, D.; Massouri, M.H.

    1988-01-01

    The objective of the program presented is to develop a method of detection and monitoring of crack growth in machine rotor by application of acoustic emission techniques. This program is performed by R and D Division of Electricite de France, jointly with INSA de Lyon. The first task of the program is relative to the characterization of acoustic emission during a progressive tensile test performed on a NCT specimen. The second task of the program deals with the experimentation of acoustic emission techniques for the monitoring of a specimen during cycling bending tests. The last task of the program is relative to evaluation of application of acoustic emission techniques for a small rotor integrity monitoring during fatigue rotation tests [fr

  3. Acoustic emission

    International Nuclear Information System (INIS)

    Straus, A.; Lopez Pumarega, M.I.; Di Gaetano, J.O.; D'Atellis, C.E.; Ruzzante, J.E.

    1990-01-01

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  4. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  5. Novel Fiber-Optic Ring Acoustic Emission Sensor

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  6. Acoustic emission from hydrogen saturated Type 304L stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1978-01-01

    Acoustic emission is attributed to energy release within a material body by localized plastic deformation or failure processes. The elastic stress waves may come from slip band formation, mechanical twinning, martensite transformation, or crack propagation. Each of these processes has slightly different acoustic characteristics allowing for easy identification. Acoustic emission was monitored during tensile tests of Type 304L austenitic stainless steel to explore the applicability of the technique to hydrogen-assisted fracture

  7. Tasks tolerating application of analogue methods for determining acoustic emission source co-ordinates

    International Nuclear Information System (INIS)

    Artyukhov, V.I.; Vakar, K.B.; Makarov, V.I.; Ovchinnikov, N.I.; Perevezentsev, V.N.; Rzhevkin, V.R.; Shemyakin, V.V.; Yakovlev, G.V.

    1980-01-01

    Described are cases of coordinate detection of the acoustic emission (AE) sources during AE-testing of power reactors using analog systems. Five testing variants of design linear elements are considered and fields of their practical application to welded joint testing are pointed out. Described is the method of coordinate detection based on ''multibeam'' effect

  8. Microcracking in ceramics and acoustic emission

    International Nuclear Information System (INIS)

    Subbarao, E.C.

    1991-01-01

    One of the limitations in the use of ceramics in critical applications is due to the presence of microcracks, which may arise from differential thermal expansion and phase changes, among others. Acoustic emission signals occur when there are abrupt microdeformations in a material and thus offer a convenient means of non-destructive detection of microcracking. Examples of a study of acoustic emission from microcracking due to anisotropic thermal expansion in low thermal expansion single phase ceramics such as niobia and sodium zirconium phosphate ceramics and due to phase changes in zirconia and superconducting YBa 2 Cu 3 Osub(7-x) ceramics are presented, together with the case of lead titanate ceramics, which exhibits both a phase change (paraelectric to ferroelectric) and an anisotropic thermal expansion. The role of grain size on the extent of microcracking is illustrated in the case of niobia ceramics. Some indirect evidence of healing of microcracks on heating niobia and lead titanate ceramics is presented from the acoustic emission results. (author). 69 refs., 9 figs

  9. Acoustic emission evolution during sliding friction of Hadfield steel single crystal

    Science.gov (United States)

    Lychagin, D. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.

    2017-12-01

    Friction is a complex dynamic process. Direct observation of processes occurring in the friction zone is impossible due to a small size of a real contact area and, as a consequence, requires various additional methods applicable to monitor a tribological contact state. One of such methods consists in the analysis of acoustic emission data of a tribological contact. The use of acoustic emission entails the problem of interpreting physical sources of signals. In this paper, we analyze the evolution of acoustic emission signal frames in friction of Hadfield steel single crystals. The chosen crystallographic orientation of single crystals enables to identify four stages related to friction development as well as acoustic emission signals inherent in these stages. Acoustic emission signal parameters are studied in more detail by the short-time Fourier transform used to determine the time variation of the median frequency and its power spectrum. The results obtained will facilitate the development of a more precise method to monitor the tribological contact based on the acoustic emission method.

  10. Acoustic Emission Stethoscope - Measurements with Acoustic Emission on Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Krystof Kryniski [AaF Infrastructure, Stockholm (Sweden)

    2013-02-15

    been designed to offer also audible sound derived from the ultrasound produced by faulty components. Identifying which drive-train parts that are in danger, or require immediate attention, can then, with the developed method, be remotely accessed without any need to travel to and climbing-up the actual wind turbine. The new method for condition monitoring using acoustic emission has been shown to give results comparable to the proven methods using vibration acceleration and shock pulse, but the applications with acoustic emission have the potential to be more cost effective, simpler and more reliable. A warning or notification method has been developed in the project. A reference and disturbance measure is displayed continuously and is compared to normal, warning and alarm levels in the notification system. The reference measure is an average value that varies with the wind dependent load on the rotor and the disturbance is a measure of the instantaneous deviations from the average values. The disturbance measure is used to signal the presence of a defect in the machine. The method has been tested on a number of wind turbines. The alert or warning level is pre-set to a factor three times the standard deviation of the signal and the alarm level to five times the standard deviation. No damage has been encountered yet on the tested turbines, meaning that a full test of the capability to detect faults on a wind turbine has not been proved within the project and remains to be verified in future testing. When experience of the signals has been acquired and compared to observed physical damage, the alert and alarm levels can be modified in each application.

  11. Continuous and recurrent testing of acoustic emission sensors

    International Nuclear Information System (INIS)

    Sause, Markus G.R.; Schmitt, Stefan; Potstada, Philipp

    2017-01-01

    In many fields of application of acoustic emission, the testing can lead to a lasting change in the sensor characteristics. This can be caused by mechanical damage, thermal stress or use under aggressive environmental conditions. Irrespective of visually testable damages of the sensors, a shift in the spectral sensitivity, a reduction in the absolute sensitivity or a reduction in the signal-to-noise ratio can occur. During the test, this requires a possibility to periodically check the sensors, including the coupling aids used. For recurring testing, recommendations are given in Directive SE 02 ''Verification of acoustic emission sensors and their coupling in the laboratory''. This paper discusses possibilities for continuous monitoring of the sensors during the test and presents an application example for the partly automated recurring testing of acoustic emission sensors using Directive SE 02. For this purpose, a test stand for the supply of the sensors to be tested was constructed and the signal recording and data reduction implemented in freely available software programs. The operating principle is demonstrated using selected case studies. [de

  12. System for detecting acoustic emissions in multianvil experiments: Application to deep seismicity in the Earth

    International Nuclear Information System (INIS)

    Jung, Haemyeong; Fei Yingwei; Silver, Paul G.; Green, Harry W.

    2006-01-01

    One of the major goals in the experimental study of deep earthquakes is to identify slip instabilities at high pressure and high temperature (HPHT) that might be responsible for the occurrence of earthquakes. Detecting acoustic emissions from a specimen during faulting provides unique constraints on the instability process. There are few experimental studies reporting acoustic emissions under HPHT conditions, due to technical challenges. And those studies have used only one or at most two acoustic sensors during the experiments. Such techniques preclude the accurate location of the acoustic emission source region and thus the ability to distinguish real signal from noise that may be coming from outside the sample. We have developed a system for detecting acoustic emissions at HPHT. Here we present a four-channel acoustic emission detecting system working in the HPHT octahedral multianvil apparatus. Each channel has high resolution (12 bits) and a sampling rate of 30 MHz. In experiments at the pressures up to 6 GPa and temperatures up to 770 deg. C, we have observed acoustic emissions under various conditions. Analyzing these signals, we are able to show that this system permits us to distinguish between signal and noise, locate the source of the acoustic emission, and obtain reliable data on the radiation pattern. This system has greatly improved our ability to study faulting instabilities under high pressure and high temperature

  13. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam

    2018-03-13

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  14. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam; Zhao, Jiajun; Prather, Wayne E.; Wu, Ying; Zhang, Likun

    2018-01-01

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  15. Flaw identification using acoustic emission

    International Nuclear Information System (INIS)

    Woodward, B.; McDonald, N.R.

    1975-01-01

    Acoustic emission 'signatures' contain information about the fine structure of metallurgical source events and their interpretation may provide a means of assessing the severity of internal flaws as well as surface flaws. The ultimate aim of this research on signature analysis is to develop a real time non-destructive testing technique having the capability of flaw recognition as well as flaw location in nuclear reactor components and structures under stress. Thus the requisite, unlike that in most acoustic emission work to date, is for a technique which affords discrimination between acoustic emission from different types of flaws propagating simultaneously. The approach described here requires detailed analysis of the emission signatures in terms of a specific statistical parameter, energy spectral density. In order to realise the full inspection potential of acoustic emission monitoring data obtained from zirconium and steel testpieces have been correlated with metallurgical condition and mechanical behaviour, since the nature of emission signatures is strongly affected by the physical characteristics and internal structure of the material. (Auth.)

  16. Acoustic emission by self-organising effects of micro-hollow cathode discharges

    Science.gov (United States)

    Kotschate, Daniel; Gaal, Mate; Kersten, Holger

    2018-04-01

    We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.

  17. Considerations for acoustic emission monitoring of spherical Kevlar/epoxy composite pressure vessels

    Science.gov (United States)

    Hamstad, M. A.; Patterson, R. G.

    1977-01-01

    We are continuing to research the applications of acoustic emission testing for predicting burst pressure of filament-wound Kevlar 49/epoxy pressure vessels. This study has focused on three specific areas. The first area involves development of an experimental technique and the proper instrumentation to measure the energy given off by the acoustic emission transducer per acoustic emission burst. The second area concerns the design of a test fixture in which to mount the composite vessel so that the acoustic emission transducers are held against the outer surface of the composite. Included in this study area is the calibration of the entire test setup including couplant, transducer, electronics, and the instrument measuring the energy per burst. In the third and final area of this study, we consider the number, location, and sensitivity of the acoustic emission transducers used for proof testing composite pressure vessels.

  18. Pattern recognition methods for acoustic emission analysis

    International Nuclear Information System (INIS)

    Doctor, P.G.; Harrington, T.P.; Hutton, P.H.

    1979-07-01

    Models have been developed that relate the rate of acoustic emissions to structural integrity. The implementation of these techniques in the field has been hindered by the noisy environment in which the data must be taken. Acoustic emissions from noncritical sources are recorded in addition to those produced by critical sources, such as flaws. A technique is discussed for prescreening acoustic events and filtering out those that are produced by noncritical sources. The methodology that was investigated is pattern recognition. Three different pattern recognition techniques were applied to a data set that consisted of acoustic emissions caused by crack growth and acoustic signals caused by extraneous noise sources. Examination of the acoustic emission data presented has uncovered several features of the data that can provide a reasonable filter. Two of the most valuable features are the frequency of maximum response and the autocorrelation coefficient at Lag 13. When these two features and several others were combined with a least squares decision algorithm, 90% of the acoustic emissions in the data set were correctly classified. It appears possible to design filters that eliminate extraneous noise sources from flaw-growth acoustic emissions using pattern recognition techniques

  19. Relationships between acoustic emissions and microstructures

    International Nuclear Information System (INIS)

    Rao, G.V.; Gopal, R.

    1979-01-01

    Results of a systematic study of 'microstructure-deformation-acoustic emission' relationships on two widely used pressure retaining component materials, namely A533-B nuclear pressure vessel steel and a 7075 aluminum alloy, are presented. The study consists of conducting acoustic monitored tensile tests on a variety of quenched and aged microstructures in the two alloy systems and extensive microstructural characterization of test specimens by light optic and electron microscopy techniques. The results suggest a consistent relationship between acoustic emissions and microdeformation mechanisms. The role of specific microstructural constituents in generating acoustic emissions in the two alloys is discussed. (author)

  20. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  1. Investigation into some regularities in acoustic emission during deformation of the 16 GNMA steel

    International Nuclear Information System (INIS)

    Chelyshev, N.A.; Chervov, G.A.; Petrov, V.I.; Yakovenko, V.S.; Kazakov, V.V.

    1981-01-01

    A device with variable band of transmission and regulated width of emission band (3-20 kHz) is the most optimal variant of acoustic emission recorder. Change of signal registration frequency of acoustic emission results in change of both qualitative and quantitative peculiarities of summary emission during deformation. A zone of elastic deformation transition to elastic-plastic for the given steel is well marked out according to the data of summary acoustic emission and intensity of signals. Application of devices with variable registration frequency requires usage of wide-band transformers [ru

  2. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction

    Science.gov (United States)

    Brantut, Nicolas

    2018-02-01

    Acoustic emission and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenised wave velocity measurements and approximate source locations. Here I present a numerical method and its implementation in a free software to perform a joint inversion of acoustic emission locations together with the three-dimensional, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from acoustic emissions and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of acoustic emissions progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse acoustic emissions are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15%, with an increase in anisotropy of up to 20%. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localised changes associated with microcracking and damage generation.

  3. An overview of development and application of acoustic emission methods in the United States

    International Nuclear Information System (INIS)

    Hutten, P.H.

    1989-01-01

    Beneficial uses being made of acoustic emission (AE) technology for flaw or fault detection both inside of and outside of the nuclear industry tend to be obscured by some of the earlier disappointing efforts to utilize the technology. The objective of this paper is to counter that tendency by providing an overview of a variety of AE applications being made in the United States. In addition to nuclear power applications, the paper discusses applications in other nuclear areas, fossil power plant applications, and other industrial uses including aircraft monitoring. Major AE research and development programs in progress in the United States are also summarized. (orig.)

  4. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    Science.gov (United States)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  5. Acoustic emission measurements during impacts tests for determining ductile fracture data

    International Nuclear Information System (INIS)

    Richter, H.

    2000-09-01

    The document reports work for further development of methods and tests to obtain better information on the crack initiation toughness (J id ) under impact loading conditions, by acoustic emission measurements. The applicability of the acoustic emission tests for the given purpose was proven by instrumented Charpy tests using modified ISO-V specimens. The physical crack initiation toughness served as the reference value for reliable evaluation of the characteristic data obtained. This reference value is derived from the crack resistance curve determined by the multi-specimen cleavage fracture method combined with data from measurements of the stretching zone width. Verification of the acoustic emission-defined initiation value included a variety of tests, as e.g. additional dynamic single-specimen methods (L-COD, magnetic emission), and supplementary tests (D3PB, pendulum impact testing machine). The test materials are various steels with different strength/toughness properties. (orig./CB) [de

  6. Identification of acoustic emission sources in early stages of fatigue process of Inconel 713LC

    Energy Technology Data Exchange (ETDEWEB)

    Bartkova, Denisa; Vlasic, Frantisek; Mazal, Pavel [Brno Univ. of Technology, Brno (Czech Republic). Faculty of Mechanical Engineering

    2014-11-01

    Inconel 713LC is low carbon variant of Inconel 713 nickel-based cast alloy. The biggest advantage of these alloys is their ability to resist a wide variety of operating conditions (corrosive environment, high temperature, high stresses). Main area of applications is aircraft, energetic, chemical and petrochemical industry etc. In many applications, components undergo cyclic stresses. This study presents results of acoustic emission response of Inconel 713LC during high-cycle fatigue testing. In comparison with low-cycle fatigue, stage of initiation of micro cracks is in high-cycle region much more significant and can take several tens of percent of whole fatigue life. This work is focused on comparison of selected parameters of acoustic emission signal in pre-initiation and initiation stage of fatigue crack creation. Signal data were specified by linear location technique, hence only signal from shallow notch was analysed. Acoustic emission signal was correlated with frequency of load reversals which is a function of specimen's rigidity (modulus). Acoustic emission hits with higher stress were detected in pre-initiation stage whereas initiation stage hits exhibited low stress. Acoustic emission signal measurements are supplemented by fractographic and metallographic analysis.

  7. Acoustic emission generated by fluid leakage

    International Nuclear Information System (INIS)

    Kim, H.C.

    1987-01-01

    The noise generated by the leaking saturated steam and subcooled water form various sizes of hole has been measured as function of leak rate and stagnation pressure. Acoustic emission (proportinal to root mean sguare voltage) is shown to be proportional to the leak rate and stagnation pressure. A transition of acoustic emission power is observed at the stagnation pressure 0.185 MPa associated with the transition to the critical flow state. Substantially higher acoustic emission power generated by the subcooled water leakage is attributed to the flashing source involving the phase transformation and volume expansion. The relative amplitude of noise spectrum becomes more spiky as the leak rate and stagnation pressure increased. (Author)

  8. Acoustic emission from thermal-gradient cracks in UO2

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Kupperman, D.S.; Wrona, B.J.

    1975-01-01

    A feasibility study has been conducted to evaluate the potential use of acoustic emission to monitor thermal-shock damage in direct electrical heating of UO 2 pellets. In the apparatus used for the present tests, two acoustic-emission sensors were placed on extensions of the upper and lower electrical feedthroughs. Commercially available equipment was used to accumulate acoustic-emission data. The accumulation of events displayed on a cathode-ray-tube screen indicates the total number of acoustic-emission events at a particular location within the pellet stack. These tests have indicated that acoustic emission can be used to monitor thermal-shock damage in UO 2 pellets subjected to direct-electrical heating. 8 references

  9. An introduction to acoustic emission technology for in-process inspection of welds

    International Nuclear Information System (INIS)

    Goswami, G.L.

    1983-01-01

    Weld quality monitoring, as it stands today, is primarily done by X-ray radiography and ultrasonic testing which is applied after welding is complete. Acoustic Emission Technique (AET) also presents a possible substitute for weld quality monitoring which can be used during welding. Acoustic signals are generated during welding and the sound waves of weld defects are picked up by using AE sensors. With the introduction of sophisticated instrumentation in AET, it is possible to carry out the test even in noisy shop floor environments. Large number of reports on the subject of acoustic emission in recent years is a clear indication that it is gaining importance in welding industry. The present day status of the acoustic emission technology as an on-line weld quality monitoring technique has been reviewed. This report discusses the technique and system along with the acoustic emission parameters important for weld quality analysis. This also deals with the application of this technique in different welding processes like TIG, resistance, electro slag and submerged arc. It has been reported that monitoring of emission during welding can detect crack formation, crack growth and lack of fusion precisely. Static defects like porosity and inclusion do not generate very strong acoustic signals and are therefore difficult to intercept, but, however, lately they have detected successfully. (author)

  10. Time reversal signal processing in acoustic emission testing

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Dvořáková, Zuzana; Chlada, Milan; Dos Santos, S.

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : acoustic emission (AE) * ultrasonic testing (UT) * signal processing * source location * time reversal acoustic s * acoustic emission * signal processing and transfer Subject RIV: BI - Acoustic s http://www.ndt.net/events/ECNDT2014/app/content/Slides/637_Prevorovsky.pdf

  11. Acoustic Emission Analysis Applet (AEAA) Software

    Science.gov (United States)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  12. Acoustic emission during low temperature phase transformations in plutonium

    International Nuclear Information System (INIS)

    Khejpl, K.; Karpenter, S.

    1988-01-01

    To study the nature of phase transformations in plutonium and plutonium-gallium alloys (0.3 and 0.57% Ga) the measurement of acoustic emission is conducted. The presence of acoustic emission testifies to martensitic character of transformation, related to sharp local changes in the volume, which cause elastic waves. It is detected that during α reversible β transformations in non-alloyed plutonium acoustic emission is absent, and that testifies to nonmartensitic nature of the transformations. σ reversible α transformation in plutonium-gallium alloys is accompanied by the appearance of acoustic emission, i.e. it is of martensitic origin

  13. Acoustic emission leak monitoring system LMS-96

    International Nuclear Information System (INIS)

    Liska, J.; Cvrcek, M.; Mueller, L.

    1997-01-01

    On-line acoustic emission leak monitoring under industrial conditions of nuclear power plants is a problem with specific features setting specific demands on the leak monitoring system. The paper briefly reviews those problems (attenuation pattern of a real structure, acoustic background, alarm system, etc.) and the solution of some of them is discussed. Information is presented on the Acoustic Emission Leak Monitoring System LMS-96 by SKODA NUCLEAR MACHINERY and the system's function is briefly described. (author)

  14. Acoustic emission/flaw relationships for inservice monitoring of LWRs

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Friesel, M.A.; Skorpik, J.R.; Dawson, J.F.

    1991-10-01

    The program concerning Acoustic Emission/Flaw Relationships for Inservice Monitoring of LWRs was initiated in FY76 with the objective of validating the application of acoustic emission (AE) to monitor nuclear reactor pressure-containing components during operation to detect cracking. The program has been supported by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Research and development has been performed by Pacific Northwest Laboratory, operated for the Department of Energy by Battelle Memorial Institute. The program has shown the feasibility of continuous, on-line AE monitoring to detect crack growth and produced validated methods for applying the technology. Included are relationships for estimating flaw severity from AE data and field applications at Watts Bar Unit 1 Reactor, Limerick Unit 1 Reactor, and the High Flux Isotope Reactor. This report discusses the program scope and organization, the three program phases and the results obtained, standard and code activities, and instrumentation and software developed under this program

  15. Research on Acoustic Emission and Electromagnetic Emission Characteristics of Rock Fragmentation at Different Loading Rates

    Directory of Open Access Journals (Sweden)

    Fujun Zhao

    2018-01-01

    Full Text Available The relationships among the generation of acoustic emission, electromagnetic emission, and the fracture stress of rock grain are investigated, which are based on the mechanism of acoustic emission and electromagnetic emission produced in the process of indenting rock. Based on the relationships, the influence of loading rate on the characteristics of acoustic emission and electromagnetic emission of rock fragmentation is further discussed. Experiment on rock braking was carried out with three loading rates of 0.001 mm/s, 0.01 mm/s, and 0.1 mm/s. The results show that the phenomenon of acoustic emission and electromagnetic emission is produced during the process of loading and breaking rock. The wave forms of the two signals and the curve of the cutter indenting load show jumping characteristics. Both curves have good agreement with each other. With the increase of loading rate, the acoustic emission and electromagnetic emission signals are enhanced. Through analysis, it is found that the peak count rate, the energy rate of acoustic emission, the peak intensity, the number of pulses of the electromagnetic emission, and the loading rate have a positive correlation with each other. The experimental results agree with the theoretical analysis. The proposed studies can lead to an in-depth understanding of the rock fragmentation mechanism and help to prevent rock dynamic disasters.

  16. Application of acoustic emission testing as a non-destructive quality control of conrete

    International Nuclear Information System (INIS)

    Feineis, N.

    1982-01-01

    The time dependence of texture changes in concrete is studied in short-time pressure experiments, using the method of acoustic emission testing. These investigations have been performed as a function of strength and composition of the material under study. As a result, the method of acoustic emission testing is shown to be an adequate method to evaluate the evolution and the character of the structural changes. In the case where only the time developement is of interest, a simple electronic method, the pulse-sum-method or pulse rate method can be applied. However only a signal evaluation procedure can give information on the character of the structure changes. (orig./RW) [de

  17. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  18. Acoustic emission during hydrogen absorption and desorption in palladium

    International Nuclear Information System (INIS)

    Ramesh, R.; Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used to study charging and discharging of hydrogen in palladium. During charging, breaking of oxide film due to surface activation and saturation of hydrogen absorption have been identified by acoustic emission. In the discharging cycle, the desorption of hydrogen from the specimen leads to high AE activity immediately after initiation of discharging, followed by gradual decrease in the acoustic activity, which reaches a minimum upon completion of the desorption. The potential of the acoustic emission technique for studying the kinetics of hydrogen absorption and desorption in metals has been shown. (author)

  19. Acoustic and photon emissions during mechanical deformation of coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.

    1984-01-01

    Acoustic and photon emissions take place in the elastic and plastic as well as the fracture region of x-irradiated KBr, KCl and NaCl crystals. The rate of photon emission is linear with the strain rate: however, the RMS value of the acoustic emission is proportional to the square root of the strain rate. The acoustic emission is maximum for x-irradiated NaCl crystals; however, the photon emission is maximum for x-irradiated KBr crystals. From the similarity between the acoustic emission and the photon emission, it seems that mobile dislocations are responsible for the acoustic emission in coloured alkali halide crystals. (author)

  20. An acoustic emission study of plastic deformation in polycrystalline aluminium

    Science.gov (United States)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  1. Analysis of acoustic emission data for bearings subject to unbalance

    Directory of Open Access Journals (Sweden)

    Rapinder Sawhney

    2013-01-01

    Full Text Available Acoustic Emission (AE is an effective nondestructive method for investigating the behavior of materials under stress. In recent decades, AE applications in structural health monitoring have been extended to other areas such as rotating machineries and cutting tools. This research investigates the application of acoustic emission data for unbalance analysis and detection in rotary systems. The AE parameter of interest in this study is a discrete variable that covers the significance of count, duration and amplitude of AE signals. A statistical model based on Zero-Inflated Poisson (ZIP regression is proposed to handle over-dispersion and excess zeros of the counting data. The ZIP model indicates that faulty bearings can generate more transient wave in the AE waveform. Control charts can easily detect the faulty bearing using the parameters of the ZIP model. Categorical data analysis based on generalized linear models (GLM is also presented. The results demonstrate the significance of the couple unbalance.

  2. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology

    Directory of Open Access Journals (Sweden)

    Erqing Zhang

    2014-06-01

    Full Text Available Since the measurement of mechanical sealing film thickness and just-lift-off time is very difficult, the sealing film condition monitoring method based on acoustic emission signal is proposed. The mechanical seal acoustic emission signal present obvious characteristics of time-varying nonlinear and pulsating. In this paper, the acoustic emission signal is used to monitor the seal end faces just-lift-off time and friction condition. The acoustic emission signal is decomposed by empirical mode decomposition into a series of intrinsic mode function with independent characteristics of different time scales and different frequency band. The acoustic emission signal only generated by end faces friction is obtained by eliminating the false intrinsic mode function components. The correlation coefficient of acoustic emission signal and Multi-scale Laplace Wavelet is calculated. It is proved that the maximum frequency (8000 Hz of the correlation coefficient is appeared at the spindle speed of 300 rpm. And at this time (300 rpm the end faces have just lifted off. By a set of mechanical oil seal running test, it is demonstrated that this method could accurately identify mechanical seal end faces just-lift-off time and friction condition.

  3. Utilisation of acoustic emission technique to monitor lubrication condition in a low speed bearing

    International Nuclear Information System (INIS)

    Nordin Jamaludin; Mohd Jailani Mohd Nor

    2003-01-01

    Monitoring of lubrication condition in rolling element bearings through the use of vibration analysis is an established technique. However, this success has not mirrored at low rotational speeds. At low speeds the energy generated from the poor lubricated bearing lubrication might not show as an obvious change in signature and thus become undetectable using conventional vibration measuring equipment. This paper presents an investigation into the applicability of acoustic emission technique and analysis for detecting poorly lubricated bearing rotating at a speed of 1.12 rpm. Investigations were centered on a test-rig designed to simulate the real bearing used in the field. The variation of lubricant amount in the low-speed bearing was successfully monitored using a new developed method known as pulse injection technique (PIT). The PIT technique was based on acoustic emission method. The technique involved transmitting a Dirac pulse to the test bearing via a transmitting acoustic emission sensor while the bearing was in operation. Analysing the captured acoustic emission signatures using established statistical method could differentiate between properly and poorly lubricated bearing. (Author)

  4. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.

    1978-01-01

    In order to improve the security of handling special nuclear materials at the Oak Ridge Y-12 Plant, a sensitive acoustic emission detector has been developed that will detect forcible entry through block or tile walls, concrete floors, or concrete/steel vault walls. A small, low-powered processor was designed to convert the output from a sensitive, crystal-type acoustic transducer to an alarm relay signal for use with a supervised alarm loop. The unit may be used to detect forcible entry through concrete, steel, block, tile, and/or glass

  5. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    Directory of Open Access Journals (Sweden)

    Zhijie Wen

    2017-01-01

    Full Text Available Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE, which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the influence of different height to diameter ratio on the acoustic emission characteristics of coal-rock damage evolution was discussed by microparticle flow PFC2D software platform. The results show that coal-rock size influences the uniaxial compressive strength, peak strain, and elastic modulus of itself; the size effect has little effect on the acoustic emission law of coal-rock damage and the effects of the size of coal-rock samples on acoustic emission characteristics are mainly reflected in three aspects: the triggering time of acoustic emission, the strain range of strong acoustic emission, and the intensity of acoustic emission; the damage evolution of coal-rock specimen can be divided into 4 stages: initial damage, stable development, accelerated development, and damage.

  6. Acoustic emission signal measurements in pressure vessel testing

    International Nuclear Information System (INIS)

    Peter, A.

    1984-01-01

    The number of acoustic emission events per plastically deformed unit of volume caused by artificial notches in real pressure vessels has been calculated taking into account reference voltage, distance between acoustic emission source and sensor as well as the effect of noise background. A test performed at a 100 m 3 gasholder verifies the theoretical considerations. (author)

  7. Acoustic emission characterization of the tetragonal-monoclinic phase transformation in zirconia

    International Nuclear Information System (INIS)

    Clarke, D.R.; Arora, A.

    1983-01-01

    The processes accompanying the tetragonal-monoclinic phase transformation in zirconia (ZrO 2 ) have been studied using acoustic emission and electron microscopy in an attempt to characterize the different mechanisms by which the transformation can be accommodated in bulk materials. Experiments in which the acoustic emission is detected as specimens are cooled through the transformation, following densification by sintering, are described. For comparison, the acoustic emission from free, nominally unconstrained powders similarly cooled through the transformation is reported. The existence of distinct processes accompanying the phase transformation is established on the basis of postexperiment multiparametric correlation analysis of the acoustic emission

  8. Flaw identification using acoustic emission

    International Nuclear Information System (INIS)

    Woodward, B.; McDonald, N.R.

    1975-01-01

    In order to realise the full inspection potential of acoustic emission monitoring, data obtained from zirconium and steel testpieces have been correlated with metallurgical condition and mechanical behaviour, since the nature of emission signatures is strongly affected by the physical characteristics and internal structure of the material. During experiments, signals were tape recorded and the surface of each testpiece was recorded on movie film or videotape so that acoustic and visual information could be correlated. Large numbers of tape-recorded bursts have been analysed with a real time spectrum analyser, and statistical parameters (such as mean energy density, mean frequency and variance) derived from the spectra were calculated by an IBM 360/50 computer and selectively displayed on a line plotter. In the case of zirconium, observed differences in these parameters were an indication that the emission signals were generated by three different metallurgical mechanisms. A movie film of testpiece surface deformation revealed the occurrence of twin initiation, twin broadening and slip. Fracture events either in the zirconium matrix or in second phase particles are also possible although not observed directly. A direct correlation was confirmed between twin initiations and emission signals. Work is proceeding on establishing a different correlation between emission signals and stress corrosion cracks

  9. Holographic and acoustic emission evaluation of pressure vessels

    International Nuclear Information System (INIS)

    Boyd, D.M.

    1980-01-01

    Optical holographic interfereometry and acoustic emission monitoring were simultaneously used to evaluate two small, high pressure vessels during pressurization. The techniques provide pressure vessel designers with both quantitative information such as displacement/strain measurements and qualitative information such as flaw detection. The data from the holographic interferograms were analyzed for strain profiles. The acoustic emission signals were monitored for crack growth and vessel quality

  10. Acoustic emission from fiber reinforced plastic damaged hoop wrapped cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, A.; Kung, D.; Westbrook, D.R.

    2000-03-01

    Metal lined continuous fiber reinforced plastic (FRP) hoop wrapped cylinders with axial cuts to the FRP were modeled mathematically and tested experimentally. Steel lined and aluminum alloy lined glass FRP vessels were subjected to acoustic emission tests (AE) and hydraulic burst tests. The burst pressure decreased monotonically with the length of the axial cut. Acoustic emission increased initially with a decrease in burst pressure, and attained a maximum at an intermediate level of damage to the FRP. However, acoustic emission decreased when the level of damage was higher and the burst pressure was lower. Implications of the findings are discussed in the context of the search for an acoustic emission test method to inspect periodically the vessels used for the storage of compressed gaseous fuels on natural gas vehicles (NGV) and hydrogen vehicles.

  11. Acoustic emission linear pulse holography

    International Nuclear Information System (INIS)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-01-01

    This paper describes the emission linear pulse holography which produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. A thirty two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The concept behind the AE linear pulse holography is illustrated, and a block diagram of a data acquisition system to implement the concept is given. Array element spacing, synthetic frequency criteria, and lateral depth resolution are specified. A reference timing transducer positioned between the array and the inspection zone and which inititates the time-of-flight measurements is described. The results graphically illustrate the technique using a one-dimensional FFT computer algorithm (ie. linear backward wave) for an AE image reconstruction

  12. Acoustic emission monitoring of the bending under tension test

    DEFF Research Database (Denmark)

    Moghadam, Marcel; Sulaiman, Mohd Hafis Bin; Christiansen, Peter

    2017-01-01

    Preliminary investigations have shown that acoustic emission has promising aspects as an online monitoring technique for assessment of tribological conditions during metal forming as regards to determination of the onset of galling. In the present study the acoustic emission measuring technique h...... in BUT testing has been found to describe the frictional conditions during forming well and to allow for accurate assessment of the limits of lubrication....... been applied for online monitoring of the frictional conditions experienced during Bending Under Tension (BUT) testing. The BUT test emulates the forming conditions experienced when drawing sheet material over a die curvature as in deep drawing processes. Monitoring of the developed acoustic emission...

  13. Nondestructive online testing method for friction stir welding using acoustic emission

    Science.gov (United States)

    Levikhina, Anastasiya

    2017-12-01

    The paper reviews the possibility of applying the method of acoustic emission for online monitoring of the friction stir welding process. It is shown that acoustic emission allows the detection of weld defects and their location in real time. The energy of an acoustic signal and the median frequency are suggested to be used as informative parameters. The method of calculating the median frequency with the use of a short time Fourier transform is applied for the identification of correlations between the defective weld structure and properties of the acoustic emission signals received during welding.

  14. Continuous acoustic emission from aluminium

    International Nuclear Information System (INIS)

    Fenici, P.; Kiesewetter, N.; Schiller, P.

    1976-01-01

    Continuous acoustic emission of aluminum single crystals and polycrystals during tensile tests at constant cross-head speed and at room temperature is measured with a Root Mean Square Level recorder. By means of the Kaiser effect it is shown that the continuous emission is related to the plastic deformation. The plot of continuous emission against strain takes different shapes for pure single crystals, pure polycrystals and impure polycrystals. The measured voltages have about the same value for pure single and polycrystals and are considerably greater than that for impure polycrystals. A method is developed to distinguish between continuous emission and burst

  15. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.; Whittaker, J.W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal

  16. Application of acoustic emission monitoring to pressure tests of a steam receiver vessel with flawed nozzle welds

    International Nuclear Information System (INIS)

    Woodward, B.; McDonald, N.R.; Hincksman, M.J.

    1976-01-01

    As part of the first stage of an Australian Welding Research Association co-operative research project, acoustic emission monitoring has been applied to a steam receiver vessel withdrawn from service owing to severe weld cracking. This technique is used to check acceptance standards for defects in nozzle welds and to apply modern methods of assessing the integrity of pressurised plant. Acoustic emission monitoring has been used, together with strain gauge measurements and ultrasonic scanning, to detect the occurrence of any significant defect growth during cyclic pressurisation of the vessel. During this first stage, no significant defect growth has been produced by 1000 cycles of pressure up to 24.1 MPa (3500 psi), subsequent pressurisation up to 35.8 MPa (5200 psi), or 97 per cent of the expected yield stress of the vessel shell. The small amount of acoustic emission detected was consistent with this result. (author)

  17. Ellipsoidal reflector for measuring oto-acoustic emissions

    DEFF Research Database (Denmark)

    Epp, Bastian; Pulkki, Ville; Heiskanen, Vesa

    2014-01-01

    A truncated prolate ellipsoidal reflector having the ear canal of a listener at one focal point and large- diaphragm low-noise microphone at the other focal point is proposed for free-field recordings of oto-acoustic emissions. A prototype reflector consisting of three pieces is presented, which...... enables measuring the response of the system with different truncations. The response of the system is measured with a miniature loud- speaker, and proof-of-concept measurements of oto-acoustic emissions are presented. The effect of truncation and other physical parameters to the performance of the system...

  18. Study of green state ceramics damage by acoustic emission

    International Nuclear Information System (INIS)

    Kerboul, Genevieve

    1992-01-01

    Dry pressing is a delicate operation of the conventional process of elaboration of ceramic materials as most of the detected defects in sintered products are appearing during it, this research thesis reports the study of ceramic powder forming by using the non destructive technique of acoustic emission to detect defects in pressed samples as soon as they initiate. An original signal processing system has also been designed to analyse the effective value of acoustic signals emitted during pressing on industrial hydraulic presses, but comprising a single tooling. Three powders have been tested: UO_2, Al_2O_3 and a UO_2-PuO_2 mixture. In a first part, the author recalls some elements regarding the fabrication of nuclear fuel, knowledge on powder pressing, and general principles of acoustic emission. She reports a feasibility study and then defines experimental conditions. In the second part, she presents acoustic emission periods during a pressing cycle, and reports the study of the response of flawless and flawed pressed samples. She reports the examination of their evolution with respect to powder nature and to fabrication process parameters. She reports a detailed analysis of acoustic emission parameters as a basis to define the principle of operation of an in situ and real time detection of flawed pressed samples [fr

  19. Acoustic emission monitoring during hydrotest of a thin wall pressure vessel

    International Nuclear Information System (INIS)

    Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.

    1976-01-01

    Results are presented of the acoustic emission monitoring during hydrotests of a thin wall steel pressure vessel. Location of acoustic sources was based on longitudinal wave front detection. The careful calibration of the three sensors used for acoustic source location was found to be very useful, and allowed an accurate location error analysis. Acoustic emission in the hydrotests was found to be due mainly to stress release in weld seams

  20. Acoustic emission monitoring of HFIR vessel during hydrostatic testing

    International Nuclear Information System (INIS)

    Friesel, M.A.; Dawson, J.F.

    1992-08-01

    This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results

  1. Changes in oto-acoustic emissions after exposure to live music

    DEFF Research Database (Denmark)

    Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte; Voetmann, Jan

    2012-01-01

    Distortion Product Oto-acoustic Emissions (DPOAE) and Transient Evoked Oto-acoustic Emissions (TEOAE) were measured in subjects before and after attendance to live music. The changes measured were compared to the exposure levels measured at the position of the subject. The main objectives...

  2. Statistics of the acoustic emission signals parameters from Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Oliveto, Maria E.; Lopez Pumarega, Maria I.; Ruzzante, Jose E.

    2000-01-01

    Statistic analysis of acoustic emission signals parameters: amplitude, duration and risetime was carried out. CANDU type Zircaloy-4 fuel claddings were pressurized up to rupture, one set of five normal pieces and six with defects included, acoustic emission was used on-line. Amplitude and duration frequency distributions were fitted with lognormal distribution functions, and risetime with an exponential one. Using analysis of variance, acoustic emission was appropriated to distinguish between defective and non-defective subsets. Clusters analysis applied on mean values of acoustic emission signal parameters were not effective to distinguish two sets of fuel claddings studied. (author)

  3. Diesel Engine Valve Clearance Detection Using Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Fathi Elamin

    2010-01-01

    Full Text Available This paper investigated, using experimental method, the suitability of acoustic emission (AE technique for the condition monitoring of diesel engine valve faults. The clearance fault was adjusted experimentally in an exhaust valve and successfully detected and diagnosed in a Ford FSD 425 four-cylinder, four-stroke, in-line OHV, direct injection diesel engine. The effect of faulty exhaust valve clearance on engine performance was monitored and the difference between the healthy and faulty engine was observed from the recorded AE signals. The measured results from this technique show that using only time domain and frequency domain analysis of acoustic emission signals can give a superior measure of engine condition. This concludes that acoustic emission is a powerful and reliable method of detection and diagnosis of the faults in diesel engines and this is considered to be a unique approach to condition monitoring of valve performance.

  4. Detection of ductile crack initiation by acoustic emission testing

    International Nuclear Information System (INIS)

    Richter, H.; Boehmert, J.; Viehrig, H.W.

    1998-08-01

    A Charpy impact test equipment is described permitting simultaneous measurement of impact force, crack tip opening, acoustic emissions and magnetic emissions. The core of the equipment is an inverted pendulum ram impact testing machine and the tests have been performed with laterally notched, pre-fatigue ISO-V specimens made of steels of various strength and toughness properties. The tests are intended to ascertain whether the acoustic emission method is suitable for detecting steady crack initiation in highly ductile steels. (orig./CB) [de

  5. Analysis of the conical piezoelectric acoustic emission transducer

    Czech Academy of Sciences Publication Activity Database

    Červená, Olga; Hora, Petr

    2008-01-01

    Roč. 2, č. 1 (2008), s. 13-24 ISSN 1802-680X R&D Projects: GA ČR GA101/06/1689 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission * conical transducer * FEM Subject RIV: BI - Acoustics

  6. Acoustic Emission Measurements for Tool Wear Evaluation in Drilling

    Science.gov (United States)

    Gómez, Martín P.; Migliori, Julio; Ruzzante, José E.; D'Attellis, Carlos E.

    2009-03-01

    In this work, the tool condition in a drilling process of SAE 1040 steel samples was studied by means of acoustic emission. The studied drill bits were modified with artificial and real failures, such as different degrees of wear in the cutting edge and in the outer corner. Some correlation between mean power of the acoustic emission parameters and the drill bit wear condition was found.

  7. Acoustic emission measurement during instrumented impact tests

    International Nuclear Information System (INIS)

    Crostack, H.A.; Engelhardt, A.H.

    1983-01-01

    Results of instrumented impact tests are discussed. On the one hand the development of the loading process at the hammer tup was recorded by means of a piezoelectric transducer. This instrumentation supplied a better representation of the load versus time than the conventional strain gauges. On the other hand the different types of acoustic emission occurring during a test could be separated. The acoustic emission released at the impact of the hammer onto the specimen is of lower frequency and its spectrum is strongly decreasing with increasing frequency. Plastic deformation also emits signals of lower frequency that are of quasi-continuous character. Both signal types can be discriminated by filtering. As a consequence typical burst signal were received afterwards that can be correlated with crack propagation. Their spectra exhibit considerable portions up to about 1.9 MHz. The development in time of the burst signals points to the kind of crack propagation resp. its sequence of appearance. However, definitive comparison between load and acoustic emission should become possible, only when the disadvantages of the common load measurement can be reduced, e.g. by determining the load directly at the specimen instead of the hammer tup

  8. Acoustic emission generated by dislocation mechanisms during the deformation of metals

    International Nuclear Information System (INIS)

    Heiple, C.R.

    1978-01-01

    Acoustic emission is a transient elastic wave generated by the rapid release of energy within a material. A wide variety of mechanisms have been proposed as possible sources of acoustic emission. Proposed mechanisms have included crack propagation, precipitate fracture, twin formation, martensite formation, dislocation motion and/or multiplication. This paper is concerned with acoustic emission generated by dislocation mechanisms operating during plastic deformation. Twinning and martensitic phase transformations are excluded even though dislocation motion is involved in the nucleation and growth of twins and the growth of martensite

  9. Acoustic emission generated by dislocation mechanisms during the deformation of metals

    Energy Technology Data Exchange (ETDEWEB)

    Heiple, C.R.

    1978-01-01

    Acoustic emission is a transient elastic wave generated by the rapid release of energy within a material. A wide variety of mechanisms have been proposed as possible sources of acoustic emission. Proposed mechanisms have included crack propagation, precipitate fracture, twin formation, martensite formation, dislocation motion and/or multiplication. This paper is concerned with acoustic emission generated by dislocation mechanisms operating during plastic deformation. Twinning and martensitic phase transformations are excluded even though dislocation motion is involved in the nucleation and growth of twins and the growth of martensite.

  10. Acoustic and electromagnetic emission as a tool for crack localization

    International Nuclear Information System (INIS)

    Sedlak, P; Sikula, J; Lokajicek, T; Mori, Y

    2008-01-01

    The creation of cracks is accompanied by electric charge redistribution due to loosened chemical bounds. Electric charge on a crack wall creates dipole moments. Vibrations of crack walls produce time-dependent dipole moments and, consequently, electric and magnetic fields are generated. An electric signal is induced on metal electrodes. Simultaneously with the electromagnetic emission (EME) signal, an acoustic emission (AE) signal is generated, but due to the different velocities of propagation of both waves, the detection of the AE signal is delayed. This time delay presents the time of the wave propagation from the individual acoustic emission sensor to the crack. The defect can be located by means of these time intervals. This paper describes the localization using acoustic and electromagnetic emission signals for the two-dimensional case

  11. Acoustic emission experiments for PHWR technology development

    International Nuclear Information System (INIS)

    Pellionisz, P.; Jha, S.K.; Goswami, G.L.

    1992-06-01

    An Indian-Hungarian joint research project has been started with the aim of applying acoustic emission testing to solve specific problems of nuclear power plants. Acoustic emission measurement and analyzing instrumentation and software have been provided by the Hungarian side, while the measurements have been performed at the Bhabha Atomic Research Centre (BARC), India. The first task of the project was to check the capability of the method for leakage detection and shuttle movement monitoring of Pressurized Heavy Water Reactors (PHWR), and for monitoring manufacturing processes as laser welding. The preliminary measurements and results are presented. (R.P.) 15 refs.; 11 figs.; 3 tabs

  12. Bifurcation of ensemble oscillations and acoustic emissions from early stage cavitation clouds in focused ultrasound

    International Nuclear Information System (INIS)

    Gerold, Bjoern; Prentice, Paul; Rachmilevitch, Itay

    2013-01-01

    The acoustic emissions from single cavitation clouds at an early stage of development in 0.521 MHz focused ultrasound of varying intensity, are detected and directly correlated to high-speed microscopic observations, recorded at 1 × 10 6 frames per second. At lower intensities, a stable regime of cloud response is identified whereby bubble-ensembles exhibit oscillations at half the driving frequency, which is also detected in the acoustic emission spectra. Higher intensities generate clouds that develop more rapidly, with increased nonlinearity evidenced by a bifurcation in the frequency of ensemble response, and in the acoustic emissions. A single bubble oscillation model is subject to equivalent ultrasound conditions and fitted to features in the hydrophone and high-speed spectral data, allowing an effective quiescent radius to be inferred for the clouds that evolve at each intensity. The approach indicates that the acoustic emissions originate from the ensemble dynamics and that the cloud acts as a single bubble of equivalent radius in terms of the scattered field. Jetting from component cavities on the periphery of clouds is regularly observed at higher intensities. The results may be of relevance for monitoring and controlling cavitation in therapeutic applications of focused ultrasound, where the phenomenon has the potential to mediate drug delivery from vasculature. (paper)

  13. Acoustic emission monitoring during hydrotests of a thin wall pressure vessel

    International Nuclear Information System (INIS)

    Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.

    1975-01-01

    The results are presented of an acoustic emission monitoring performed during hydrotests of a thin wall steel pressure vessel. The location of acoustic sources was based on longitudinal wave front detection. The careful calibration of the three sensors instrumentation system used for acoustic source location was found to be useful, and alllowed an accurate location error analysis. Acoustic emission in the hydrotests was found to be mainly due to stress release in weld seams. (Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.)

  14. Correlation between acoustic emission and microstructure. Final technical report

    International Nuclear Information System (INIS)

    Mukherjee, A.K.; Bunch, R.

    1977-01-01

    Acoustic emission from pure metals undergoing deformation is caused by dislocation unpinning and can be described by a theory which was a modified version of Gilman's mobile dislocation density theory. Acoustic emission from alloys can be dislocation related, but is primarily due to inclusion fracture. Factors affecting this include inclusion size, inclusion density, and the stress state. Inclusions crack more frequently during tensile testing than during fracture toughness testing

  15. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    The present paper reports the dislocation unpinning model of acoustic emis- sion (AE) from ... Acoustic emission; dislocation; alkali halide crystals; plastic deformation. ..... [5] T Nishimura, A Tahara and T Kolama, Jpn. Metal Inst. 64, 339 (2000).

  16. Acoustic emission on stressed concrete

    International Nuclear Information System (INIS)

    Jamet, P.; Birac, C.; Prunelle, D. de; Contre, M.; Astruc, M.; Kavyrchine, M.

    1983-08-01

    In a first part of this study, a comparison is made between the mechanical behaviour and the acoustic emission measurements on laboratory specimen during four points bending tests. The specimen were made of plain or/and reinforced concrete. The second part confirms, on real reinforced beams, the laboratory study results

  17. Fundamental and assessment of concrete structure monitoring by using acoustic emission technique testing: A review

    Science.gov (United States)

    Desa, M. S. M.; Ibrahim, M. H. W.; Shahidan, S.; Ghadzali, N. S.; Misri, Z.

    2018-04-01

    Acoustic emission (AE) technique is one of the non-destructive (NDT) testing, where it can be used to determine the damage of concrete structures such as crack, corrosion, stability, sensitivity, as structure monitoring and energy formed within cracking opening growth in the concrete structure. This article gives a comprehensive review of the acoustic emission (AE) technique testing due to its application in concrete structure for structural health monitoring (SHM). Assessment of AE technique used for structural are reviewed to give the perception of its structural engineering such as dam, bridge and building, where the previous research has been reviewed based on AE application. The assessment of AE technique focusing on basic fundamental of parametric and signal waveform analysis during analysis process and its capability in structural monitoring. Moreover, the assessment and application of AE due to its function have been summarized and highlighted for future references

  18. Application of acoustic emission measurements in the evaluation of prestressed cast in-between decks

    NARCIS (Netherlands)

    Van Hemert, P.H.A.; Fennis-Huijben, S.A.A.M.; Hordijk, D.A.

    2014-01-01

    A large number of concrete structures, that is built in the sixties and seventies of the twentieth century, need to be re-evaluated. It should be judged whether their capacity is still sufficient for the increased traffic loads. Acoustic emission (AE) is a non-destructive technique that can possibly

  19. The application of acoustic emission measurements on laboratory testpieces to large scale pressure vessel monitoring

    International Nuclear Information System (INIS)

    Ingham, T.; Dawson, D.G.

    1975-01-01

    A test pressure vessel containing 4 artificial defects was monitored for emission whilst pressure cycling to failure. Testpieces cut from both the failed vessel and from as-rolled plate material were tested in the laboratory. A marked difference in emission characteristics was observed between plate and vessel testpieces. Activity from vessel material was virtually constant after general yield and emission amplitudes were low. Plate testpieces showed maximum activity at general yield and more frequent high amplitude emissions. An attempt has been made to compare the system sensitivities between the pressure vessel test and laboratory tests. In the absence of an absolute calibration device, system sensitivities were estimated using dummy signals generated by the excitation of an emission sensor. The measurements have shown an overall difference in sensitivity between vessel and laboratory tests of approximately 25db. The reduced sensitivity in the vessel test is attributed to a combination of differences in sensors, acoustic couplant, attenuation, and dispersion relative to laboratory tests and the relative significance of these factors is discussed. Signal amplitude analysis of the emissions monitored from laboratory testpieces showed that, whith losses of the order of 25 to 30db, few emissions would be detected from the pressure vessel test. It is concluded that no reliable prediction of acoustic behaviour of a structure may be made from laboratory test unless testpieces of the actual structural material are used. A considerable improvement in detection sensitivity, is also required for reliable detection of defects in low strength ductile materials and an absolute method of system calibration is required between tests

  20. Acoustic Emission Sensing for Maritime Diesel Engine Performance and Health

    Science.gov (United States)

    2016-05-01

    system does not provide direct current power to the preamplifier, equivalent pre-amplifiers with external power inputs were purchased , but the... behaviour of piston ring/cylinder liner interaction in diesel engines using acoustic emission. Tribology International 39 (12) 12 / 01 / 1634-1642...diesel engine using in-cylinder pressure and acoustic emission techniques. Dyanmics for Sustainable Engineering 1 454-463 26. Lowe, D. P., et al

  1. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    Science.gov (United States)

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.

    Science.gov (United States)

    Kumar, Jagadish; Ananthakrishna, G

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum

  3. Design of acoustic emission monitoring system based on VC++

    Science.gov (United States)

    Yu, Yang; He, Wei

    2015-12-01

    At present, a lot of companies at home and abroad have researched and produced a batch of specialized monitoring instruments for acoustic emission (AE). Most of them cost highly and the system function exists in less stable and less portability for the testing environment and transmission distance and other aspects. Depending on the research background and the status quo, a dual channel intelligent acoustic emission monitoring system was designed based on Microsoft Foundation Classes in Visual Studio C++ to solve some of the problems in the acoustic emission research and meet the needs of actual monitoring task. It contains several modules such as main module, acquisition module, signal parameters setting module and so on. It could give out corrosion AE waveform and signal parameters results according to the main menu selected parameters. So the needed information could be extracted from the experiments datum to solve the problem deeply. This soft system is the important part of AE detection g system.

  4. Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis

    International Nuclear Information System (INIS)

    Gallego, Antolino; Gil, Jose F.; Vico, Juan M.; Ruzzante, Jose E.; Piotrkowski, Rosa

    2005-01-01

    Coating-substrate adherence in galvanized steel is evaluated by acoustic emission wavelet analysis in scratch tests on hot-dip galvanized samples. The acoustic emission results are compared with optical and electron microscopy observations in order to understand coating features related to adherence and to establish criteria aimed at improving the manufacture process

  5. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source.

    Science.gov (United States)

    Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi

    2014-01-20

    The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.

  6. Acoustic emission monitoring of damage in ceramic matrix composites: Effects of weaves and feature

    Science.gov (United States)

    Ojard, Greg; Mordasky, Matt; Kumar, Rajesh

    2018-04-01

    Ceramic matrix composites (CMCs) are a class of high temperature materials with better damage tolerance properties compared to monolithic ceramics. The improved toughness is attributed to weak interface coating between the fiber and the matrix that allows for crack deflection and fiber pull-out. Thus, CMCs have gained consideration over monolithic materials for high temperature applications such as in gas turbines. The current standard fiber architecture for CMCs is a harness satin (HS) balanced weave (5HS and 8HS); however, other architectures such as uni-weave materials (tape layup) are now being considered due to fiber placement control and higher fiber volume fraction in the tensile loading direction. Engineering components require additional features in the CMC laminates, such as holes for attachments. Past work has shown that acoustic emission could differentiate the effect of changing interface conditions due to heat treatment effects. The focus of the present work is to investigate the effects of different weaves and the presence of a feature on damage behavior of CMCs as observed via acoustic emission technique. The results of the tensile testing with acoustic emission monitoring will be presented and discussed.

  7. Characteristic evaluation of acoustic emission sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun Kyu; Joo, Y. S.; Lee, N. H

    2000-12-01

    This report introduces the various kinds of Acoustic Emission(AE) sensors as well as the basic principle of AE sensors in order to select AE sensor suitably. The described sensors include : high sensitivity sensor, broadband sensor, underwater sensor, miniature sensor, directional sensor, integral pre-amplifier sensor. Sensor has two critical aspects of reliability and repeatability. For the high reliability, sensor has to be calibrated in accordance with ASTM standard E 1106 which explains to measure the characteristics of AE sensor accurately. For investigating the degradation of AE sensor under the severe environment for example the high radiation condition, It is important to perform the repeatability test which is described in detail in according to the ASTM standard E 976. Two kinds of AE sensor applications are also summarized.

  8. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    Science.gov (United States)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  9. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing

    International Nuclear Information System (INIS)

    Wachsmuth, Janne

    2016-01-01

    generated application oriented, on plates within the heat affected zone of a weld. Their AE signals were recorded with resonant sensors. On the one hand resonant sensors are very sensitive and able to detect small displacements on huge structures, which makes them applicable for condition monitoring. On the other hand, resonant sensors have a great influence on the AE signals and hinder signal analyses and pattern recognition. Pure fatigue crack growth, fatigue crack growth in a corrosive environment and pure corrosion were applied. Signal groups of the damage mechanisms were compared by their AE features. Differences between signal groups could be made after wave mode analysis, despite the spectral influence of the AE sensors. The damage condition of the test plates is investigated with the combination of AE features of the signal groups and fracture mechanic parameters. Furthermore, two methods of unsupervised pattern recognition of the AE signals are being performed: A commercial classification system, where mainly frequency based features are generated, and an AE feature based method. In the latter, classification takes place after the frequency distributions of the AE features of the signals from the examined damage mechanisms. Both methods result in an accurate classification for the AE signals, especially originating from corrosion damage mechanisms, in the correct damage class. Concluding, the detectability of AE events, the results of pattern recognition of AE signals in metal structures and the prospects and risks of condition monitoring by means of acoustic emission testing are discussed. Therefore, monitoring tests on a tank car and results from cyclic and static loading are consulted. An assessment for the selection of the monitoring method according to the cost effectiveness of dangerous goods transportation is made.

  10. Acoustic emission from fuel pellets in a simulated reactor environment

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Kennedy, C.R.; Reimann, K.J.

    1977-01-01

    Thermal-shock damage of nuclear reactor fuel pellets in a simulated reactor environment has been correlated with acoustic-emission data obtained from sensors placed on extensions of the electrical feedthroughs. Ringdown counts, rms output data, and event-location data has been acquired for experiments carried out with single pellets as well as multiple pellet stacks. These tests have shown that acoustic-emission monitoring can provide information indicating the onset and the extent of cracking

  11. Application of acoustic emission testing to quality control: examples and forecasting

    International Nuclear Information System (INIS)

    Dumousseau, P.

    1979-01-01

    A several years experience to evaluate and promote acoustic emission in the field of mechanical industries has permitted to recognize the domains of industrial interest. The first is detection of defective parts according to emissivity. Examples concerning forged, cast or welded fabrications are presented. It is concluded that signal processing is decisive but that its sophistication must be graded according to the case considered. The second is control of welding process. Examples concerning submerged arc, TIG and electron-beam welds are analyzed. It appears that automatic control is chiefly possible for welding under vacuum or inert gaz conditions. The third is monitoring of pressure vessels during hydrotest or in-service. Problems concerning materials behaviour, wave propagation, location accuracy are reviewed. To conclude prospects of future development are evaluated. Via signal processing the most important progresses are needed in characterization of defect severity and life time prediction. Importance of improving transducer calibration and codifying methods is also outlined [fr

  12. Acoustic emission events from sodium vapour bubble collapsing: a stochastic model

    Energy Technology Data Exchange (ETDEWEB)

    Colombino, A; Dentico, G; Pacilio, N; Papalia, B; Taglienti, S; Tosi, V; Vigo, A [Comitato Nazionale per l' Energia Nucleare, Casaccia (Italy). Centro di Studi Nucleari; Galli, C [Rome Univ. (Italy). Ist. di Matematica

    1981-01-01

    The forward Kolomogorov equation method has been applied to a zero-dimensional model which describes the time distribution of acoustic emissions from sodium vapour bubble collapsing. Processes taken into account as components for outlining the upstated phenomenon are: energy generation, energy dissipation, bubble creation, acoustic emission and energy release from bubble collapsing. Processes involve affect or are induced by a population of particles (bubbles, acoustic pulses) and pseudoparticles (energetic units). A formulation is obtained for the expected values of some stochastic indicators, i.e., factorial moments and cumulants, autocorrelation functions, waiting time distribution between contiguous events, of the time series consisting of acoustic emission pulses as detected by a suitable sensor. Preliminary, but promising, validation of the model and a sound prelude to effective boiling regime diagnosing is obtained by processing data from the out-of-pile CFNa loop in Grenoble, France. Data are collected from a piezoelectric accelerometer located nearby the circuit.

  13. Evaluation of forced-convection nucleate boiling detection by acoustic emission

    International Nuclear Information System (INIS)

    Wells, R.P.; Paterson, J.A.

    1981-10-01

    Acoustic Emission techniques are being investigated for use as protection systems in neutral beam accelerators and water cooled beam dumps. For this purpose, the characteristics of the boiling curve for forced-convection surface boiling have been compared to the Acoustic Emission (AE) produced. Results indicate that AE, in the form of count-rate, is a sensitive indicator of nucleate boiling incipience and is relatively insensitive to flow velocity in the 0 to 12 m/s range

  14. Structure Integrity Testing of Mineral Feed by Means of Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Jaroslav Začal

    2016-01-01

    Full Text Available This work deals with specific method of non-destructive testing – Acoustic emission (AE. Theoretical part of article is focused on underlying principle of this method and its applicability. The experimental part is focused on research of pressure resistance in mineral feed using the AE. Mineral feed is condensed cube of rock salt (sodium chloride with supplementary minerals, which is fed to livestock and game to supply the mineral elements necessary for their health and condition. Using the AE sensor is possible to provide monitoring of internal changes in the material. AE gives the overview of internal changes in material structure. With use of specific software we can interpret the acoustic signal and identify the current state of material integrity in real time.

  15. Acoustic emission generated during scratch test of various thin films

    Czech Academy of Sciences Publication Activity Database

    Boháč, Petr; Tomáštík, J.; Čtvrtlík, R.; Dráb, M.; Koula, V.; Cvrk, K.; Jastrabík, Lubomír

    2014-01-01

    Roč. 19, č. 12 (2014), s. 16635 ISSN 1435-4934 R&D Projects: GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : acoustic emission * scratch test * thin films * AE data analysis * mechanical toughness Subject RIV: BI - Acoustics

  16. Application of acoustic emission technique and friction welding for excavator hose nipple

    International Nuclear Information System (INIS)

    Kong, Yu Sik; Lee, Jin Kyung

    2013-01-01

    Friction welding is a very useful joining process to weld metals which have axially symmetric cross section. In this paper, the feasibility of industry application was determined by analyzing the mechanical properties of weld region for a specimen of tube-to-tube shape for excavator hose nipple with friction welding, and optimized welding variables were suggested. In order to accomplish this object, friction heating pressure and friction heating time were selected as the major process variables and the experiment was performed in three levels of each parameter. An acoustic emission(AE) technique was applied to evaluate the optimal friction welding conditions nondestructively. AE parameters of accumulative count and event were analyzed in terms of generating trend of AE signals across the full range of friction weld. The typical waveform and frequency spectrum of AE signals which is generated by friction weld were discussed. From this study the optimal welding variables could be suggested as rotating speed of 1300 rpm, friction heating pressure of 15 MPa, and friction heating time of 10 sec. AE event was a useful parameter to estimate the tensile strength of tube-to tube specimen with friction weld.

  17. Analysis of acoustic emission during abrasive waterjet machining of sheet metals

    Science.gov (United States)

    Mokhtar, Nazrin; Gebremariam, MA; Zohari, H.; Azhari, Azmir

    2018-04-01

    The present paper reports on the analysis of acoustic emission (AE) produced during abrasive waterjet (AWJ) machining process. This paper focuses on the relationship of AE and surface quality of sheet metals. The changes in acoustic emission signals recorded by the mean of power spectral density (PSD) via covariance method in relation to the surface quality of the cut are discussed. The test was made using two materials for comparison namely aluminium 6061 and stainless steel 304 with five different feed rates. The acoustic emission data were captured by Labview and later processed using MATLAB software. The results show that the AE spectrums correlated with different feed rates and surface qualities. It can be concluded that the AE is capable of monitoring the changes of feed rate and surface quality.

  18. Study of static characteristics of acoustic-emission radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vakar, K B; Rzhevkin, V R [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1982-09-01

    Experimental installation for measuring statistical parameters of acoustic emission is described and results of measuring dimetric histograms-amplitude of emission pulses-interval between pulses - are given. The installation was constructed on the base of CAMAC ideology and anables to analyse emission signals both in real time scale and after the experiment reading out the data from outer carrier. The given results demonstrate the principle possibility to distinguish processes, proceeding in material on load.

  19. Experimental study of advanced continuous acoustic-emission monitoring of BWR components. Final report

    International Nuclear Information System (INIS)

    McElroy, J.W.

    1982-01-01

    This report presents the results of a four year research program on the utilization of acoustic emission techniques on light water reactor component applications. Two techniques of the acoustic emission technology were applied to specific problems occurring within the light water reactor system. Crack detection AE monitoring was applied to thermal cycle fatigue cracking problems and stress corrosion cracking problems. Leak detection AE monitoring was applied to valve leakage in the main steam safety relief valves and incontainment packing gland valves. The report provides AE data showing how AE crack detection can be used as an on-line diagnostic monitoring tool. By having an active monitor on light water reactor components, the inservice inspection of the components is being performed during operation rather than refueling periods, thereby reducing critical path time during outages. The resultant benefit is increased plant availability and a reduction in accumulated radiation exposure

  20. Testing of acoustic emission method during pressure tests of WWER-440 steam generators and pressurizers

    International Nuclear Information System (INIS)

    Wuerfl, K.; Crha, J.

    1987-01-01

    The results are discussed of measuring acoustic emission in output pressure testing of steam generators and pressurizers for WWER-440 reactors. The objective of the measurements was to test the reproducibility of measurements and to find the criterion which would be used in assessing the condition of the components during manufacture and in operation. The acoustic emission was measured using a single-channel Dunegan/Endevco apparatus and a 16-channel LOCAMAT system. The results showed that after the first assembly, during a repeat dismantle of the lids and during seal replacement, processes due to seal contacts and bolt and washer deformations were the main source of acoustic emission. A procedure was defined of how to exclude new acoustic emission sources in such cases. The acoustic emission method can be used for the diagnostics of plastic deformation processes or of crack production and propagation in components during service. (Z.M.)

  1. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    International Nuclear Information System (INIS)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel; Kittel, Jean; Grosjean, Francois; Ropital, Francois

    2014-01-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C 4 H 10 + H 2 + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  2. Ambiguity of source location in acoustic emission technique

    International Nuclear Information System (INIS)

    Barat, P.; Mukherjee, P.; Kalyanasundaram, P.; Raj, B.

    1996-01-01

    Location of acoustic emission (AE) source in a plane is detected from the difference of the arrival times of the AE signal to at least three sensors placed on it. The detected location may not be unique in all cases. In this paper, the condition for the unambiguous solution for the location of the source has been deduced mathematically in terms of arrival times of the AE signal, the coordinate of the three sensors and the acoustic velocity. (author)

  3. Acoustic Emission Based In-process Monitoring in Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    The applicability of acoustic emission (AE) measurements for in-process monitoring in the Robot Assisted Polishing (RAP) process was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate removal...... improving the efficiency of the process. It also allows for intelligent process control and generally enhances the robustness and reliability of the automated RAP system in industrial applications....... of the part from the machine tool. In this study, development of surface roughness during polishing rotational symmetric surfaces by the RAP process was inferred from AE measurements. An AE sensor was placed on a polishing tool, and a cylindrical rod of Vanadis 4E steel having an initial turned surface...

  4. Inspection of nuclear power plant piping welds by in-process acoustic emission monitoring

    International Nuclear Information System (INIS)

    Prine, D.W.

    1976-01-01

    The results of using in-process acoustic emission monitoring on nuclear power plant piping welds are discussed. The technique was applied to good and intentionally flawed test welds as well as production welds, and the acoustic emission results are compared to standard NDT methods and selected metallographic cross-sections

  5. Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology

    Science.gov (United States)

    Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang

    Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).

  6. The use of the acoustic emission for the components of the primary circuit of the nuclear power plants

    International Nuclear Information System (INIS)

    Svoboda, V.

    1992-01-01

    Full text: The Modrany Engineering Works (Modranske strojirny) is a producer and a final supplier of the main connecting piping circuit systems and valves for the nuclear power plants (type VVER 440 and VVER 1000) built in Czechoslovakia. Besides the delivery and assembly of valves and components methods there were developed for a monitoring of the stated equipment ability of a service in the Material and Diagnostic Laboratory, which is a part of the company. An important object of this work is to obtain a sufficient set of data and to work out suitable methods, on the basis of which it would be possible to perform a serious estimation of residual service life of the main piping components after certain service operation of the nuclear power plant. During the operation of a nuclear power station a failure of the main piping circuit could happen in either of two possible modes: 1.) A sudden break - by an unstable defect propagation leading to a. final fracture of the piping; 2) A fatigue failure - which is characterised by a gradual subcritical growth of defect in relation to the loading parameters. This process is frequently accelerated by further processes, e.g. corrosion. It is therefore suitable to use such physical and mechanical quantities, which characterize the material damage. Acoustic emission signals belongs to these quantities. A knowledge of the response of these signals in relation to the damage of the material gives us the possibility to evaluate the residual life of the piping containing defects. The importance of this is increasing mainly after a long period of service. She paper deals in details with experience gained in application of acoustic emission, during pressure tests of primary circuit components (elbow, welds, T- junction etc) in laboratory conditions which imitate those in service. There are shown some results of cyclic fatigue tests by internal pressure on prototypes models and specimen. Acoustic emission method represents the

  7. Barkhausen Effect and Acoustic Emission in a Metallic Glass - Preliminary Results

    International Nuclear Information System (INIS)

    Lopez Sanchez, R.; Lopez Pumarega, M.I.; Armeite, M.; Piotrkowski, R.; Ruzzante, J.E.

    2004-01-01

    Magneto Acoustic Emission, which is Barkhausen Noise (BN) and Acoustic Emission (AE), depends on microstructure and existing residual stresses in magnetic materials. Preliminary results obtained by magnetization along two perpendicular directions on a metal glass foil are presented. Signals were analyzed with Statistic, Fast Fourier and Wavelet methods. Results are part of a Joint Research Project of the Faculty of Science, Cantabria University, Spain, and the Elastic Waves Group of the National Atomic Energy Commission, Argentina

  8. An assessment of acoustic emission for nuclear pressure vessel monitoring

    International Nuclear Information System (INIS)

    Scruby, C.B.

    1983-01-01

    Recent research has greatly improved our understanding of the basic mechanisms of deformation and fracture that generate detectable acoustic emission signals in structural steels. A critical review of the application of acoustic emission (AE) to the fabrication, proof testing and in-service monitoring of nuclear pressure vessels is presented in the light of this improved understanding. The detectability of deformation and fracture processes in pressure vessel steels is discussed, and recommendations made for improving source location accuracy and the development of quantitative source assessment techniques. Published data suggest that AE can make an important contribution to fabrication monitoring, and to the detection of defects in lower toughness materials during vessel proof testing. In high toughness materials, however, the signals generated during ductile crack growth may frequently be too weak for reliable detection. The feasibility of AE for continuous monitoring has not yet been adequately demonstrated because of high background noise levels and uncertainty about AE signal strengths from the defect growth processes that occur in service. In-service leak detection by AE shows considerable promise. It is recommended that further tests are carried out with realistic defects, and under realistic conditions of loading (including thermal shock and fatigue) and of environment. (author)

  9. Early-age acoustic emission measurements in hydrating cement paste: Evidence for cavitation during solidification due to self-desiccation

    DEFF Research Database (Denmark)

    Lura, Pietro; Couch, J.; Jensen, Ole Mejlhede

    2009-01-01

    . According to these experimental results, the acoustic emission measured around setting time was attributed to cavitation events occurring in the pores of the cement paste due to self-desiccation. This paper shows how acoustic emission might be used to indicate the time when the fluid–solid transition occurs......In this study, the acoustic emission activity of cement pastes was investigated during the first day of hydration. Deaired, fresh cement pastes were cast in sealed sample holders designed to minimize friction and restraint. The majority of acoustic emission events occurred in lower water to cement...... ratio pastes, while cement pastes with higher water to cement ratios showed significantly less acoustic activity. These acoustic events occurred around the time of setting. A layer of water on the surface of the cement pastes substantially reduced acoustic emission activity at the time of setting...

  10. Detecting and identifying damage in sandwich polymer composite by using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    McGugan, M.; Soerensen, Bent F.; Oestergaard, R.; Bech, T.

    2006-12-15

    Acoustic emission is a useful monitoring tool for extracting extra information during mechanical testing of polymer composite sandwich materials. The study of fracture mechanics within test specimens extracted from wind turbine blade material is presented. The contribution of the acoustic emission monitoring technique in defining different failure modes identified during the testing is discussed. The development of in-situ structural monitoring and control systems is considered. (au)

  11. Acoustic emission characterization of fracture toughness for fiber reinforced ceramic matrix composites

    International Nuclear Information System (INIS)

    Mei, Hui; Sun, Yuyao; Zhang, Lidong; Wang, Hongqin; Cheng, Laifei

    2013-01-01

    The fracture toughness of a carbon fiber reinforced silicon carbide composite was investigated relating to classical critical stress intensity factor K IC , work of fracture, and acoustic emission energy. The K IC was obtained by the single edge notch beam method and the work of fracture was calculated using the featured area under the load–displacement curves. The K IC , work of fracture, and acoustic emission energy were compared for the composites before and after heat treatment and then analyzed associated with toughening microstructures of fiber pullout. It indicates that the work of fracture and acoustic emission energy can be more suitable to reflect the toughness rather than the traditional K IC , which has certain limitation for the fracture toughness characterization of the crack tolerant fiber ceramic composites.

  12. Variations in frequency content of acoustic emission during extension of HF-1 steel

    International Nuclear Information System (INIS)

    Hartman, W.F.; Kline, R.A.

    1977-01-01

    Acoustic emissions resulting from continuous, dead-weight, tensile loading of quenched and tempered HF-1 steel were analyzed for frequency content. Three distinct frequency spectra were observed. These correspond to microplasticity, plasticity and deformation after recovery. It is shown that frequency analysis of acoustic emission can be a sensitive evaluation technique for assessing structural integrity

  13. Decision-making for acoustic emission data set

    International Nuclear Information System (INIS)

    Pellionisz, P.

    1992-12-01

    Acoustic emission techniques are widely applied in proof tests of pressure vessels. Correct interpretation of experimental data is of primary importance. The AE DATA EXPERT system performs this task in three procedures: source separation, source purification and source classification. Basic production rules are discussed. (author) 19 refs.; 16 figs.; 2 tabs

  14. Flaw evolution monitoring by acoustic emission technique

    International Nuclear Information System (INIS)

    Ghia, S.; Sala, A.; Lucia, A.

    1986-01-01

    Flaw evolution monitoring during mechanical fatigue test has been performed by acoustic emission (AE) technique. Testing on 1:5 reduced scale vessel containing fabrication defects was carried out in the frame of an European program for pressure component residual life evaluation. Characteristics of AE signals associated to flaw evolution are discussed

  15. Acoustic emission during the elastic-plastic deformation of low alloy reactor pressure vessel steels. I

    International Nuclear Information System (INIS)

    Holt, J.; Goddard, D.J.

    1980-01-01

    Measurements of the acoustic emission behaviour of A533B and C-Mn low alloy reactor pressure vessel steels subjected to uniaxial tensile deformation are described. The effects on the emission activity of the rolling plane orientation and the carbide morphology were examined. Detailed discussions are given of the stress dependence of the emission activity below yield and of its recovery by annealing at the stress relief temperature. It is shown that the dominant emission source is the same in both steels and is associated with inclusions, such as MnS, elongated by the rolling process, the carbide morphology being relatively unimportant. A criterion for the occurrence of an emission is obtained which is directly analogous to the general criterion for yielding. It is also shown that a large fraction, at least, of the emission activity arises from a recoverable process such as localized yielding around inclusions or limited inclusion decohesion and not from inclusion fracture. Low activity in C-Mn steel taken from reactor pressure vessels, previously attributed to spheroidization of carbides, is shown to be due to the limited acoustic recovery of these relatively high sulphur content steels when annealed at the stress relief temperature. It is concluded that the limited amplitudes of these emissions during deformation severely restrict their potential application in practice. (Auth.)

  16. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    Science.gov (United States)

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  17. Modified Acoustic Emission for Prognostic Health Monitoring, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Prime Photonics proposes to team with Dr. Duke of Virginia Tech to develop a multi-mode, enhanced piezoelectric acoustic emission sensing system to couple large...

  18. Radiation acoustics and its applications

    International Nuclear Information System (INIS)

    Lyamshev, L.M.

    1992-01-01

    Radiation acoustics is a new branch of acoustics, developing on the boundary of acoustics, nuclear physics, elementary particles and high-energy physics. Its fundamentals are laying in the research of acoustical effects due to the interaction of penetrating radiation with matter. The study of radiation-acoustical effects leads to the new opportunities in the penetration radiation research (acoustical detection, radiation-acoustical dosimetry), study of the physical parameters of matter, in a solution of some applied problems of nondestructive testing, and also for the radiation-acoustical influence on physical and chemical structure of the matter. Results of theoretical and experimental investigations are given. Different mechanisms of the sound generation by penetrating radiation of liquids and solids are considered. Some applications - the radiation acoustical microscopy and visualisation, the acoustical detection of high energy X-ray particles and possibility of using of high energy neutrino beams in geoacoustics - are discussed

  19. Acoustic emission measurements on real reactor components with fracture mechanical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Deuster, G

    1988-12-31

    This document presents acoustic emission measurements carried out on a reactor pressure vessel during different loadings: thermal shocking, hydro-test, cyclic loading. The acoustic emission system is described and results are provided. It appears that signals from crack border friction and crack propagation can be separated by the analysis of the signal parameters. During thermal shock, crack propagation can be detected very sensitively, together with crack border friction. During hydro-test, it appears that defects which do not grow during the experiment are not indicated, and no border friction appears. (TEC). 6 refs.

  20. Acoustic emission measurements on real reactor components with fracture mechanical interpretation

    International Nuclear Information System (INIS)

    Deuster, G.

    1988-01-01

    This document presents acoustic emission measurements carried out on a reactor pressure vessel during different loadings: thermal shocking, hydro-test, cyclic loading. The acoustic emission system is described and results are provided. It appears that signals from crack border friction and crack propagation can be separated by the analysis of the signal parameters. During thermal shock, crack propagation can be detected very sensitively, together with crack border friction. During hydro-test, it appears that defects which do not grow during the experiment are not indicated, and no border friction appears. (TEC)

  1. Study on acoustic emission signals of active defect in pressure piping under hydraulic pressure

    International Nuclear Information System (INIS)

    Ai Qiong; Liu Caixue; Wang Yao; He Pan; Song Jian

    2009-01-01

    Experimental investigations of acoustic emission (AE) of active defect in pressure piping with a prefabricated crack under hydraulic pressure tester were conducted. AE signals of fatigue-crack-growth in pressure piping were monitored incessantly in all processes, and all signals recorded were analyzed and processed. The result of signal processing show that the amplitude and energy of acoustic emission signals from defect in pressure pipeline increase gradually with the load time, and thus the active defects in pipeline can be identified; the amplitude, energy and count of acoustic emission signals increase sharply before the defect runs through, and we can forecast the penetrated leakage of pipeline. (authors)

  2. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    International Nuclear Information System (INIS)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-01-01

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring

  3. Acoustic emission during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches

    International Nuclear Information System (INIS)

    Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission generated during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches has been studied. The extent of acoustic activity generated depends on notch tip severity, notch tip blunting and tearing of the notches. The equation N=AK m applied to the acoustic emission data of the notched specimens has shown good correlation. Acoustic emission technique can be used to estimate the size of an unknown notch. (author)

  4. An FBG acoustic emission source locating system based on PHAT and GA

    Science.gov (United States)

    Shen, Jing-shi; Zeng, Xiao-dong; Li, Wei; Jiang, Ming-shun

    2017-09-01

    Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipment. In this paper, four fiber Bragg grating (FBG) sensors are used to establish the sensor array to locate the acoustic emission source. Firstly, the nonlinear locating equations are established based on the principle of acoustic emission, and the solution of these equations is transformed into an optimization problem. Secondly, time difference extraction algorithm based on the phase transform (PHAT) weighted generalized cross correlation provides the necessary conditions for the accurate localization. Finally, the genetic algorithm (GA) is used to solve the optimization model. In this paper, twenty points are tested in the marble plate surface, and the results show that the absolute locating error is within the range of 10 mm, which proves the accuracy of this locating method.

  5. The Acoustic Emission in the Nest of the Honey Bee Depending on the Extreme Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jaromír Tlačbaba

    2014-01-01

    Full Text Available The vibroacoustic signals are an important part of communication in the honey bees (Apis mellifera L.. The aim of this study was to observe the acoustic emission that varies in a bee colony during different weather phenomena (strong winds and hailstorms and to estimate the nature and the extent of the reactions of the colony by the analysis of the obtained data. Experiments were carried out in the volume-reduced hives. The specific weather phenomena were followed by significant (P < 0.0001 increasing of the intensity of the acoustic emission in the colony in comparison with acoustic emission before or after the phenomena. Close linear positive relationship was confirmed between the intensity of wind gusts and intensity of acoustic emission (r = 0.72; P < 0.001. With the increase in the maximum gust of 1 km·h−1, the intensity of acoustic emission increased by 0.1466 mV. The character and degree of reaction of the colony can be estimated with analysis of the measured data. Permeability of vibration signals directly induced weather phenomena through the construction of the experimental hive and the stress in the colony are discussed. Observation of the acoustic emission distributed within the colony is one of the methodical alternatives for research of the vibroacoustic communication in the colony.

  6. Experimental Study on Mechanical and Acoustic Emission Characteristics of Rock-Like Material Under Non-uniformly Distributed Loads

    Science.gov (United States)

    Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao

    2018-03-01

    The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.

  7. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    International Nuclear Information System (INIS)

    Bulanov, Alexey V.; Nagorny, Ivan G.

    2015-01-01

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained

  8. Mechanical Properties and Acoustic Emission Properties of Rocks with Different Transverse Scales

    Directory of Open Access Journals (Sweden)

    Xi Yan

    2017-01-01

    Full Text Available Since the stability of engineering rock masses has important practical significance to projects like mining, tunneling, and petroleum engineering, it is necessary to study mechanical properties and stability prediction methods for rocks, cementing materials that are composed of minerals in all shapes and sizes. Rocks will generate acoustic emission during damage failure processes, which is deemed as an effective means of monitoring the stability of coal rocks. In the meantime, actual mining and roadway surrounding rocks tend to have transverse effects; namely, the transverse scale is larger than the length scale. Therefore, it is important to explore mechanical properties and acoustic emission properties of rocks under transverse size effects. Considering the transverse scale effects of rocks, this paper employs the microparticle flow software PFC2D to explore the influence of different aspect ratios on damage mechanics and acoustic emission properties of rocks. The results show that (1 the transverse scale affects uniaxial compression strength of rocks. As the aspect ratio increases, uniaxial compression strength of rocks decreases initially and later increases, showing a V-shape structure and (2 although it affects the maximum hit rate and the strain range of acoustic emission, it has little influence on the period of occurrence. As the transverse scale increases, both damage degree and damage rate of rocks decrease initially and later increase.

  9. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    International Nuclear Information System (INIS)

    Lee, Do Hwan; Ha, Che Woong

    2015-01-01

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer

  10. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Hwan; Ha, Che Woong [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer.

  11. Acoustic emission test on a 25mm thick mild steel pressure vessel with inserted defects

    International Nuclear Information System (INIS)

    Bentley, P.G.; Dawson, D.G.; Hanley, D.J.; Kirby, N.

    1976-12-01

    Acoustic emission measurements have been taken on an experimental mild steel vessel with 4 inserted defects ranging in severity up to 90% of through thickness. The vessel was subjected to a series of pressure excursions of increasing magnitude until failure occurred by extension of the largest inserted defect through the vessel wall. No acoustic emission was detected throughout any part of the tests which would indicate the presence of such serious defects or of impending failure. Measurements of acoustic emission from metallurgical specimens are included and the results of post test inspection using conventional NDT and metallographic techniques are reported. (author)

  12. Coherent changes of multifractal properties of continuous acoustic emission at failure of heterogeneous materials

    Science.gov (United States)

    Panteleev, Ivan; Bayandin, Yuriy; Naimark, Oleg

    2017-12-01

    This work performs a correlation analysis of the statistical properties of continuous acoustic emission recorded in different parts of marble and fiberglass laminate samples under quasi-static deformation. A spectral coherent measure of time series, which is a generalization of the squared coherence spectrum on a multidimensional series, was chosen. The spectral coherent measure was estimated in a sliding time window for two parameters of the acoustic emission multifractal singularity spectrum: the spectrum width and the generalized Hurst exponent realizing the maximum of the singularity spectrum. It is shown that the preparation of the macrofracture focus is accompanied by the synchronization (coherent behavior) of the statistical properties of acoustic emission in allocated frequency intervals.

  13. A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Carlos Quiterio Gómez Muñoz

    2016-01-01

    Full Text Available The renewable energy industry is undergoing continuous improvement and development worldwide, wind energy being one of the most relevant renewable energies. This industry requires high levels of reliability, availability, maintainability and safety (RAMS for wind turbines. The blades are critical components in wind turbines. The objective of this research work is focused on the fault detection and diagnosis (FDD of the wind turbine blades. The FDD approach is composed of a robust condition monitoring system (CMS and a novel signal processing method. CMS collects and analyses the data from different non-destructive tests based on acoustic emission. The acoustic emission signals are collected applying macro-fiber composite (MFC sensors to detect and locate cracks on the surface of the blades. Three MFC sensors are set in a section of a wind turbine blade. The acoustic emission signals are generated by breaking a pencil lead in the blade surface. This method is used to simulate the acoustic emission due to a breakdown of the composite fibers. The breakdown generates a set of mechanical waves that are collected by the MFC sensors. A graphical method is employed to obtain a system of non-linear equations that will be used for locating the emission source. This work demonstrates that a fiber breakage in the wind turbine blade can be detected and located by using only three low cost sensors. It allows the detection of potential failures at an early stages, and it can also reduce corrective maintenance tasks and downtimes and increase the RAMS of the wind turbine.

  14. Acoustic emission non-destructive testing of structures using source location techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  15. In situ calibration of acoustic emission transducers by time reversal method

    Czech Academy of Sciences Publication Activity Database

    Kober, Jan; Převorovský, Zdeněk; Chlada, Milan

    2016-01-01

    Roč. 240, April (2016), s. 50-56 ISSN 0924-4247 Institutional support: RVO:61388998 Keywords : time reversed acoustic s * calibration * in situ * acoustic emission Subject RIV: BI - Acoustic s Impact factor: 2.499, year: 2016 http://ac.els-cdn.com/S0924424716300334/1-s2.0-S0924424716300334-main.pdf?_tid=0acf4736-ef6d-11e5-b826-00000aacb362&acdnat=1458568911_1c21eda9762b905a684ff939463ef3fe

  16. An experimental modeling and acoustic emission monitoring of abrasive wear in a steel/diabase pair

    Science.gov (United States)

    Korchuganov, M. A.; Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2016-11-01

    The earthmoving of permafrost soil is a critical task for excavation of minerals and construction on new territories. Failure by abrasive wear is the main reason for excavation parts of earthmoving and soil cutting machines. Therefore investigation of this type of wear is a challenge for developing efficient and wear resistant working parts. This paper is focused on conducting tribological experiments with sliding the steel samples over the surface of diabase stone sample where abrasive wear conditions of soil cutting are modeled experimentally. The worn surfaces of all samples have been examined and transfer of metal and stone particles revealed. The acoustic emission (AE) signals have been recorded and related to the results of worn surface analysis. he acoustic emission (AE) signals have been recorded and related to the results of worn surface analysis. As shown the wear intensity correlates to that of acoustic emission. Both acoustic emission signal median frequency and energy are found to be sensitive to the wear mode.

  17. The characteristics of acoustic emission signal under composite destruction on GFRP gas cylinder

    International Nuclear Information System (INIS)

    Jee, Hyun Sup; Lee, Jong O; Ju, No Hoe; So, Cheal Ho; Lee, Jong Kyu

    2013-01-01

    This study is investigation of the characteristics for acoustic emission signal generated by destruction on glass fiber bundles and specimen that was machined composite materials surrounding the outside of GFRP cylinder. The Amplitude of acoustic emission signal gets bigger as the cutting angle of knife increases. Accordingly, the number of hits in destruction of composite materials specimen have more in longitudinal direction (longitudinal direction to the glass fiber) than in hoop direction (horizontal direction to the glass fiber) while the amplitude of signals were bigger in hoop direction than longitudinal direction. It was found out that the amplitude of the glass fiber breakage is more than 40 dB and that the amplitude of signal for matrix crack was less than 40 dB because matrix crack signal was not observed when threshold value is 40 dB and matrix crack signal suddenly appeared when threshold value is 32 dB. The slope of the amplitude is related to the acoustic emission source and the slope of the amplitude of the horizontal and vertical directions are 0.16 and 0.08. In particular, The slope of the amplitude of longitudinal direction breakage appear similar to the glass fiber breakage and therefore Acoustic emission source of longitudinal direction breakage is estimated the glass fiber breakage.

  18. Acoustic emission localization on ship hull structures using a deep learning approach

    DEFF Research Database (Denmark)

    Georgoulas, George; Kappatos, Vassilios; Nikolakopoulos, George

    2016-01-01

    In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high dimension......In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high...

  19. Magneto acoustical emission in nanocrystalline Mn–Zn ferrites

    International Nuclear Information System (INIS)

    Praveena, K.; Murthty, S.R.

    2013-01-01

    Graphical abstract: Mn 0.4 Zn 0.6 Fe 2 O 4 powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 °C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz–1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie temperature. It is found that the magneto-acoustic emission (MAE) activity along hysteresis loop is proportional to the hysteresis losses during the same loop. This law has been verified on series of polycrystalline ferrites and found that the law is valid whatever the composition, the grain size and temperature. It is also found that the domain wall creation/or annihilation processes are the origin of the MAE. - Highlights: • The AE been measured along the hysteresis loops from 80 K to Curie temperature. • The MAE activity along hysteresis loop is proportional to P h during the same loop. • It is found that the domain wall creation/or annihilation processes are the origin of the MAE. - Abstract: Mn 0.4 Zn 0.6 Fe 2 O 4 powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 °C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz–1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie temperature. It is found that the magneto-acoustic

  20. Acoustic Emission Beamforming for Detection and Localization of Damage

    Science.gov (United States)

    Rivey, Joshua Callen

    The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over

  1. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate...... automatic detection of optimal process endpoint allow intelligent process control, creating fundamental elements in development of robust fully automated RAP process for its widespread industrial application....... removal of the part from the machine tool. In this study, stabilisation of surface roughness during polishing rotational symmetric surfaces by the RAP process was monitored by AE measurements. An AE sensor was placed on a polishing arm in direct contact with a bonded abrasive polishing tool...

  2. Acoustic emission measurements on type 316 stainless steel

    International Nuclear Information System (INIS)

    Palmer, I.G.; Holt, J.; Goddard, D.J.

    1976-01-01

    Acoustic emission measurements have been made on Type 316 stainless steel in the solution treated condition, as part of a feasibility study for the monitoring of fast reactor components. The work involved testing both plain tensile specimens and precracked compact tension specimens in the temperature range 20-200 deg C. At 20 deg C plastic deformation was a quiet process but ductile crack growth was accompanied by high amplitude emissions capable of detection on plant. At 200 deg C both plastic deformation and ductile crack growth were quiet

  3. Contribution of in situ acoustic emission analysis coupled with thermogravimetry to study zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Al Haj, O.; Peres, V.; Serris, E.; Cournil, M.; Grosjean, F.; Kittel, J.; Ropital, F.

    2015-01-01

    Zirconium alloy (zircaloy-4) corrosion behavior under oxidizing atmosphere at high temperature was studied using thermogravimetric experiment associated with acoustic emission analysis. Under a mixture of oxygen and air in helium, an acceleration of the corrosion is observed due to the detrimental effect of nitrogen which produces zirconium nitride. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration is accompanied by an acoustic emission (AE) activity. Most of the acoustic emission bursts were recorded after the kinetic transition or during the cooling of the sample. Acoustic emission signals analysis allows us to distinguish different populations of cracks in the ZrO 2 layer. These cracks have also been observed by SEM on post mortem cross section of oxidized samples and by in-situ microscopy observations on the top surface of the sample during oxidation. The numerous small convoluted thin cracks observed deeper in the zirconia scale are not detected by the AE technique. From these studies we can conclude that mechanisms as irreversible mechanisms, as cracks initiation and propagation, generate AE signals

  4. A study on the evaluation of internal leak in valve using acoustic emission method(3)

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Lee, Wook Ryun; Park, Jong Hyuck; Kim, Kwang Hong

    2005-01-01

    The objective of this study is to estimate the feasibility of acoustic emission method for the internal leak from the valves. In this study, valve leak tests using various types of specimen simulated seat damage were performed in order to analyzer acoustic emission properties when leaks arise in valve seat. As a result of leak test for specimens simulated valve seat, we conformed that leak sound level increased in proportion to the increase of hole diameter and leak velocity, and decreased in proportion to the increase of leak depth. And also, leak sound level has hysteresis for leak velocity. From the experimental results, it was suggested that the acoustic emission method for monitoring of leak was feasible.

  5. Acoustic phonon emission by two dimensional plasmons

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig

  6. Acoustic emission results obtained from testing the ZB-1 intermediate scale pressure vessel

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Pappas, R.A.; Dawson, J.F.; Dake, L.S.; Skorpik, J.R.

    1985-09-01

    Acoustic emission (AE) monitoring of flaw growth in an intermediate scale vessel during cyclic loading at 65 0 C and 288 0 C is described in this report. The report deals with background, methodology, and results. The work discussed is of major significance in a program supported by NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. Several areas of technical concern are addressed. Results support the feasibility of effective continuous monitoring

  7. On the possibility of the soliton description of acoustic emission during plastic deformation of crystals

    International Nuclear Information System (INIS)

    Pawelek, A.

    1987-06-01

    Two basic sources of acoustic emission (AE) during plastic deformation of pure crystals are discussed. One is related to non-stationary dislocation motion (the bremsstrahlung type of acoustic radiation), and the other to dislocation annihilation processes (the main component of the transition type of acoustic radiation). The possible soliton description of the bremsstrahlung acoustic radiation by oscillating dislocation kink and by bound kink-antikink pair (dislocation breather) is cosidered on the basis of Eshelby's theory (Proc. Roy. Soc. London A266, 222 (1962)). The dislocation annihilation component of transition acoustic emission is considered only in relation to the Frank-Read source operation. A soliton model for this type of acoustic radiation is proposed and the simple quantum-mechanical hypothesis is advanced for the purpose. Both soliton descriptions are discussed on the basis of available experimental data on the AE intensity behaviour during tensile deformation of crystals. (author). 36 refs, 5 figs

  8. Continuous and recurrent testing of acoustic emission sensors; Kontinuierliche und wiederkehrende Pruefung von Schallemissionssensoren

    Energy Technology Data Exchange (ETDEWEB)

    Sause, Markus G.R.; Schmitt, Stefan; Potstada, Philipp [Augsburg Univ. (Germany). Inst. fuer Materials Resource Management, Mechanical Engineering

    2017-08-01

    In many fields of application of acoustic emission, the testing can lead to a lasting change in the sensor characteristics. This can be caused by mechanical damage, thermal stress or use under aggressive environmental conditions. Irrespective of visually testable damages of the sensors, a shift in the spectral sensitivity, a reduction in the absolute sensitivity or a reduction in the signal-to-noise ratio can occur. During the test, this requires a possibility to periodically check the sensors, including the coupling aids used. For recurring testing, recommendations are given in Directive SE 02 ''Verification of acoustic emission sensors and their coupling in the laboratory''. This paper discusses possibilities for continuous monitoring of the sensors during the test and presents an application example for the partly automated recurring testing of acoustic emission sensors using Directive SE 02. For this purpose, a test stand for the supply of the sensors to be tested was constructed and the signal recording and data reduction implemented in freely available software programs. The operating principle is demonstrated using selected case studies. [German] In vielen Anwendungsbereichen der Schallemission kann es bei der Pruefung zu einer nachhaltigen Veraenderung der Sensorcharakteristik kommen. Dies kann durch mechanische Beschaedigung, thermische Belastung oder Verwendung unter aggressiven Umweltbedingungen geschehen. Unabhaengig von visuell pruefbaren Beschaedigungen der Sensoren kann es dabei zu einer Verschiebung der spektralen Empfindlichkeit, einer Verringerung der absoluten Empfindlichkeit oder einer Erniedrigung des Signal-Rausch Verhaeltnis kommen. Bei der Pruefung erfordert dies eine Moeglichkeit zur periodischen Ueberpruefung der Sensoren inklusive der verwendeten Koppelhilfsmittel. Fuer die wiederkehrende Pruefung finden sich entsprechende Handlungsempfehlungen in der Richtlinie SE 02 ''Verifizierung von

  9. Proportional monitoring of the acoustic emission in crypto-conditions

    Directory of Open Access Journals (Sweden)

    Petr Dostál

    2011-01-01

    Full Text Available The work is aimed at studying corrosion and fatigue properties of aluminum alloys by means of acoustic emission (AE. During material degradation are acoustic events scanned and evaluated. The main objective of the article is a description of behavior of aluminum alloys degraded in specific conditions and critical degradation stages determination. The first part of the article describes controlled degradation of the material in the crypto–conditions. The acoustic emission method is used for process analyzing. This part contains the AE signals assessment and comparing aluminium alloy to steel. Then the specimens are loaded on high-cyclic loading apparatus for fatigue life monitoring. Also, the synergy of fatigue and corrosion processes is taken into account.The aim is the description of fatigue properties for aluminum alloys that have already been corrosion-degraded. Attention is also focused on the structure of fatigue cracks. The main part of the article is aimed at corrosion degradation of aluminium alloys researched in real time by means of AE. The most important benefit of AE detection/recording is that it provides information about the process in real time. Using this measurement system is possible to observe the current status of the machines/devices and to prevent serious accidents.

  10. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.

    Directory of Open Access Journals (Sweden)

    Costas D Arvanitis

    Full Text Available The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001 larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R(2 = 0.78. Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology.

  11. Influence of water-soaking time on the acoustic emission characteristics and spatial fractal dimensions of coal under uniaxial compression

    Directory of Open Access Journals (Sweden)

    Jia Zheqiang

    2017-01-01

    Full Text Available The water-soaking time affects the physical and mechanical properties of coals, and the temporal and spatial evolution of acoustic emissions reflects the fracture damage process of rock. This study conducted uniaxial compression acoustic emissions tests of coal samples with different water-soaking times to investigate the influence of water-soaking time on the acoustic emissions characteristics and spatial fractal dimensions during the deformation and failure process of coals. The results demonstrate that the acoustic emissions characteristics decrease with increases in the water-soaking time. The acoustic emissions spatial fractal dimension changes from a single dimensionality reduction model to a fluctuation dimensionality reduction model, and the stress level of the initial descending point of the fractal dimension increases. With increases in the water-soaking time, the destruction of coal transitions from continuous intense failure throughout the process to a lower release of energy concentrated near the peak strength.

  12. Using acoustic emission technique to monitor fractures on the analogous pressure pipes

    International Nuclear Information System (INIS)

    Zhang Lichen

    1989-01-01

    By using the acoustic emission technique to monitor the fractures on analogous pressure pipes of the primary circuit which has had cracks and loading with pressure was investigated. The dynamical process, from cracking to fracturing, was recorded by the acoustic emission technique. Comparing with the conventional method, this method gives more informations, such as pre-cracking, cracking growing, fast fracturing and the pressure values at different phases. During testing time a microcomputer was used for real-time data processing and locating the fracturing position. These data are useful for the mechanical analysis of the reactor components

  13. Using acoustic emissions to enhance fracture toughness calculations for CCNBD marble specimens

    Directory of Open Access Journals (Sweden)

    K. Kaklis

    2017-04-01

    Full Text Available Rock fracture mechanics has been widely applied to blasting, hydraulic fracturing, mechanical fragmentation, rock slope analysis, geophysics, earthquake mechanics and many other science and technology fields. Development of failure in brittle materials is associated with microcracks, which release energy in the form of elastic waves called acoustic emissions. In the present study, acoustic emission (AE measurements were carried out during cracked chevron notched Brazilian disc (CCNBD tests on Nestos marble specimens. The fracture toughness of different modes of loading (mode-I and –II is calculated and the results are discussed in conjunction with the AE parameters.

  14. Acoustic emission: who needs it - and why

    International Nuclear Information System (INIS)

    Spanner, J.C.

    1979-05-01

    Acoustic emission (AE) is an emerging NDT method that offers attractive capabilities for monitoring structural integrity and characterizing materials behavior. Although its limitations are such that it should not be regarded as a panacea, AE is proving to be a viable complement to the other NDT methods. The paper examines the extent and reasons for the growing industrial interest in AE. Some of the inherent limitations of conventional NDT methods are discussed, and several surveys of defects found during the manufacture and operation of pressure boundary components are reviewed. Although welds and weld-affected areas are the most likely locations for significant defects, very little experience is available to date to describe the AE response during impending pressure vessel failures due to weld associated defects. Acoustic emission offers potential for providing increased assurance of both initial, and continued, structural integrity. Furthermore, if AE is properly applied in conjunction with recently proposed fitness-for-purpose criteria, it may be possible to reduce present manufacturing costs without compromising actual structural adequacy. This technology is exhibiting definite signs of increasing industrial maturity, as evidenced by the recent availability of industrial standards, and the activities of various AE related technical groups throughout the world

  15. Low temperature tensile deformation and acoustic emission signal characteristics of AISI 304LN stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Barat, K.; Bar, H.N. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Mandal, D. [Material Processing and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Roy, H., E-mail: himadri9504@gmail.com [NDT and Metallurgy Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209 (India); Sivaprasad, S.; Tarafder, S. [Material Science and Technology Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2014-03-01

    This investigation examines low temperature tensile deformation behavior of AISI 304LN stainless steel along with synergistic analysis of acoustic emission signals. The tensile tests are done at a range of temperatures starting from 283 K till 223 K. The fracture surfaces of the broken specimens are investigated using scanning electron microscope. The amount of deformation induced martensite is measured using a feritscope. The obtained results reveal that with decrease in test temperature, both strength and ductility increase. The increase in strength and ductility with decreasing temperature is explained in terms of void morphologies and formation of deformation induced martensite. The rapid increment in strength and ductility at 223 K is associated with the burst of martensitic transformation at that temperature; which has been clarified from acoustic emission signals. An additional initiative has been taken to model the evolution of martensite formation from the observed cumulative emission counts using a non linear logarithmic functional form. The fitted curves from the recorded acoustic emission cumulative count data are found to be better correlated compared to earlier obtained results. However, at 223 K normal non-linear logarithmic fit is not found suitable due to presence of burst type signals at intervals, therefore; piecewise logarithmic function to model acoustic emission bursts is proposed.

  16. In process acoustic emission in multirun submerged arc welding

    International Nuclear Information System (INIS)

    Asty, M.; Birac, C.

    1980-01-01

    In order to avoid the formation of deep grooves when repairing defects in welded joints in heavy plates, an investigation was made aiming to detect and locate the defects by in-process acoustic emission in multirun submerged arc welding. Twelve defects (lack of penetration, cracks, inclusions, lack of fusion together with inclusions, blowholes) were intentionally introduced when the first plate was welded. A space-time method for processing the acoustic activity during welding allowed the detection and the location of the intentional defects as well as of the most important accidental defects evidenced by ultrasonic testing [fr

  17. Acoustic emission monitoring of preservice testing at Watts Bar Unit 1 Nuclear Reactor

    International Nuclear Information System (INIS)

    Hutton, P.H.; Pappas, R.A.; Friesel, M.A.

    1985-02-01

    Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Plant in the US during hot functional preservice testing is described. Background, methodology, and results are included. The work discussed here is a major milestone in a program supported by the US NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing to AE monitoring during reactor operation. 3 refs., 6 figs

  18. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction

    Science.gov (United States)

    Brantut, Nicolas

    2018-06-01

    Acoustic emission (AE) and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenized wave velocity measurements and approximate source locations. Here, I present a numerical method and its implementation in a free software to perform a joint inversion of AE locations together with the 3-D, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from AEs and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of AEs progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse AEs are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15 per cent, with an increase in anisotropy of up to 20 per cent. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localized changes associated with microcracking and damage generation.

  19. Acoustic emission during the compaction of brittle UO2 particles

    International Nuclear Information System (INIS)

    Hegron, Lise

    2014-01-01

    One of the options considered for recycling minor actinides is to incorporate about 10% to UO 2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it. Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering. The goal of this study is to monitor the compaction of brittle UO 2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering. The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation. The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed. By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel. (author) [fr

  20. Estimation of the Tool Condition by Applying the Wavelet Transform to Acoustic Emission Signals

    International Nuclear Information System (INIS)

    Gomez, M. P.; Piotrkowski, R.; Ruzzante, J. E.; D'Attellis, C. E.

    2007-01-01

    This work follows the search of parameters to evaluate the tool condition in machining processes. The selected sensing technique is acoustic emission and it is applied to a turning process of steel samples. The obtained signals are studied using the wavelet transformation. The tool wear level is quantified as a percentage of the final wear specified by the Standard ISO 3685. The amplitude and relevant scale obtained of acoustic emission signals could be related with the wear level

  1. Progress for on-line acoustic emission monitoring of cracks in reactor systems

    International Nuclear Information System (INIS)

    Hutton, P.H.; Friesel, M.A.; Kurtz, R.J.

    1985-10-01

    This paper reviews FY1985 accomplishments and FY1986 plans for the NRC sponsored research program concerned with ''Acoustic Emission/Flaw Relationships for Inservice Monitoring of Nuclear Reactor Pressure Boundaries''. The objective of the acoustic emission (AE) monitoring program is to develop and validate the use of AE methods for continuous surveillance of reactor pressure boundaries to detect flaw growth. Topics discussed include testing AE monitoring on reactors, refinement of an AE signal identification relationship, study of slow crack growth rate effects on AE generation, and activity to produce an ASTM standard for AE monitoring and to gain ASME code acceptance of AE monitoring

  2. Laser method of acoustical emission control from vibrating surfaces

    Science.gov (United States)

    Motyka, Zbigniew

    2013-01-01

    For limitation of the noise in environment, the necessity occurs of determining and location of sources of sounds emitted from surfaces of many machines and devices, assuring in effect the possibility of suitable constructional changes implementation, targeted at decreasing of their nuisance. In the paper, the results of tests and calculations are presented for plane surface sources emitting acoustic waves. The tests were realized with the use of scanning laser vibrometer which enabled remote registration and the spectral analysis of the surfaces vibrations. The known hybrid digital method developed for determination of sound wave emission from such surfaces divided into small finite elements was slightly modified by distinguishing the phase correlations between such vibrating elements. The final method being developed may find use in wide range of applications for different forms of vibrations of plane surfaces.

  3. Automated valve fault detection based on acoustic emission parameters and support vector machine

    Directory of Open Access Journals (Sweden)

    Salah M. Ali

    2018-03-01

    Full Text Available Reciprocating compressors are one of the most used types of compressors with wide applications in industry. The most common failure in reciprocating compressors is always related to the valves. Therefore, a reliable condition monitoring method is required to avoid the unplanned shutdown in this category of machines. Acoustic emission (AE technique is one of the effective recent methods in the field of valve condition monitoring. However, a major challenge is related to the analysis of AE signal which perhaps only depends on the experience and knowledge of technicians. This paper proposes automated fault detection method using support vector machine (SVM and AE parameters in an attempt to reduce human intervention in the process. Experiments were conducted on a single stage reciprocating air compressor by combining healthy and faulty valve conditions to acquire the AE signals. Valve functioning was identified through AE waveform analysis. SVM faults detection model was subsequently devised and validated based on training and testing samples respectively. The results demonstrated automatic valve fault detection model with accuracy exceeding 98%. It is believed that valve faults can be detected efficiently without human intervention by employing the proposed model for a single stage reciprocating compressor. Keywords: Condition monitoring, Faults detection, Signal analysis, Acoustic emission, Support vector machine

  4. Experimental study of advanced continuous acoustic emission monitoring of BWR components. Final report

    International Nuclear Information System (INIS)

    McElroy, J.W.; Hartman, W.F.

    1980-09-01

    The program consisted of installing, maintaining, and monitoring AE sensors located on primary piping, nozzles, and valves in the BWR system. Analysis of the AE data was correlated to the results of supplementary nondestructive testing techniques used during the in-service inspection, performed at refueling outages. Purpose of the program was to develop the on-line surveillance acoustic emission technique in order to identify areas of possible structural degradation. Result of reducing inspection time was to reduce accumulated radiation exposure to inspecting personnel and to reduce the amount of critical plant outage time by identifying the critical inspection areas during operation. The program demonstrated the capability of acoustic emission instrumentation to endure the nuclear reactor environment. The acoustic emission sensors withstood 12 months of reactor operation at temperatures of 400 0 F and greater in high radiation fields. The preamplifiers, also mounted in the reactor environment, operated for the 12-month period in 100% humidity, 250 0 F conditions. The remaining cable and AE instrumentation were operated in controlled environments

  5. Health monitoring of Ceramic Matrix Composites from waveform-based analysis of Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Maillet Emmanuel

    2015-01-01

    Full Text Available Ceramic Matrix Composites (CMCs are anticipated for use in the hot section of aircraft engines. Their implementation requires the understanding of the various damage modes that are involved and their relation to life expectancy. Acoustic Emission (AE has been shown to be an efficient technique for monitoring damage evolution in CMCs. However, only a waveform-based analysis of AE can offer the possibility to validate and precisely examine the recorded AE data with a view to damage localization and identification. The present work fully integrates wave initiation, propagation and acquisition in the analysis of Acoustic Emission waveforms recorded at various sensors, therefore providing more reliable information to assess the relation between Acoustic Emission and damage modes. The procedure allows selecting AE events originating from damage, accurate determination of their location as well as the characterization of effects of propagation on the recorded waveforms. This approach was developed using AE data recorded during tensile tests on carbon/carbon composites. It was then applied to melt-infiltrated SiC/SiC composites.

  6. Acoustic emission technique for characterisation of deformation, fatigue, fracture and phase transformation and for leak detection with high sensitivity- our experiences

    International Nuclear Information System (INIS)

    Jayakumar, T.; Mukhopadhyay, C.K.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used for studying tensile deformation, fracture behaviour, detection and assessment of fatigue crack growth and α-martensite phase transformation in austenitic alloys. A methodology for amplification of weak acoustic emission signals has been established. Acoustic emission technique with advanced spectral analysis has enabled detection with high sensitivity of minute leaks in noisy environments. (author)

  7. Status reports on the development and application of acoustic emission analysis. Proceedings; Statusberichte zur Entwicklung und Anwendung der Schallemissionsanalyse. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-08-01

    The colloquium lectures represent the wide range of applications in acoustic emission analysis and testing in the areas of damage development and damage mechanisms, testing of components, condition monitoring, development of new measuring systems and sensors as well as software development regarding locating methods and signal analysis. One focus of the colloquium is on current hardware and software developments for status monitoring by means of AE monitoring. One of the papers was separately analyzed for this database. [German] Die Vortraege des Kolloquiums repraesentieren das breite Spektrum der Anwendungen der Schallemissionsanalyse und -pruefung in den Bereichen der Schadensentwicklung und Schadensmechanismen, Pruefung von Bauteilen, Zustandsueberwachung, Entwicklung neuer Messsysteme und Sensoren sowie Softwareentwicklung bezueglich Ortungsverfahren und Signalanalyse. Ein Schwerpunkt des Kolloquiums betrifft aktuelle Hard- und Softwareentwicklungen zur Zustandsueberwachung durch AE-Monitoring.

  8. Design of an Acoustic Probe to Measure Otoacoustic Emissions Below 0.5 kHz

    DEFF Research Database (Denmark)

    Christensen, Anders Tornvig; Ordoñez, Rodrigo; Hammershøi, Dorte

    2015-01-01

    Our ability to hear is reflected in low-level acoustic signals emitted from the ear. These otoacoustic emissions (OAEs) can be measured with an acoustic probe assembly coupling one or more small loudspeakers and microphones into the sealed ear canal. The electroacoustic instrumentation of commerc...

  9. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Directory of Open Access Journals (Sweden)

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini

    2011-01-01

    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  10. Control of inhomogeneous materials strength by method of acoustic emission

    Directory of Open Access Journals (Sweden)

    В. В. Носов

    2017-08-01

    Full Text Available The ambiguous connection between the results of acoustic emission control and the strength of materials makes acoustic-emission diagnosis ineffective and actualizes the problem of strength and metrological heterogeneity. Inhomogeneity is some deviation from a certain norm. The real object is always heterogeneous, homogeneity is an assumption that simplifies the image of the object and the solution of the tasks associated with it. The need to consider heterogeneity is due to the need to clarify a particular task and is a transition to a more complex level of research. Accounting for heterogeneity requires the definition of its type, criterion and method of evaluation. The type of heterogeneity depends on the problem being solved and should be related to the property that determines the function of the real object, the criterion should be informative, and the way of its evaluation is non-destructive. The complexity of predicting the behavior of heterogeneous materials necessitates the modeling of the destructive process that determines the operability, the formulation of the inhomogeneity criterion, the interpretation of the Kaiser effect, as showing inhomogeneity of the phenomenon of non-reproduction of acoustic emission (AE activity upon repeated loading of the examined object.The article gives an example of modeling strength and metrological heterogeneity, analyzes and estimates the informative effect of the Kaiser effect on the danger degree of state of diagnosed object from the positions of the micromechanical model of time dependencies of AE parameters recorded during loading of structural materials and technical objects.

  11. Measurement of acoustic emission signal energy. Calibration and tests

    International Nuclear Information System (INIS)

    Chretien, N.; Bernard, P.; Fayolle, J.

    1975-01-01

    The possibility of using an Audimat W device for analyzing the electric energy of signals delivered by a piezo-electric sensor for acoustic emission was investigated. The characteristics of the prototype device could be improved. The tests performed revealed that the 7075-T651 aluminium alloy can be used as a reference material [fr

  12. Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves.

    Science.gov (United States)

    Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J

    2011-04-13

    We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.

  13. ACEMAN (II): a PDP-11 software package for acoustic emission analysis

    International Nuclear Information System (INIS)

    Tobias, A.

    1976-01-01

    A powerful, but easy-to-use, software package (ACEMAN) for acoustic emission analysis has been developed at Berkeley Nuclear Laboratories. The system is based on a PDP-11 minicomputer with 24 K of memory, an RK05 DISK Drive and a Tektronix 4010 Graphics terminal. The operation of the system is described in detail in terms of the functions performed in response to the various command mnemonics. The ACEMAN software package offers many useful facilities not found on other acoustic emission monitoring systems. Its main features, many of which are unique, are summarised. The ACEMAN system automatically handles arrays of up to 12 sensors in real-time operation during which data are acquired, analysed, stored on the computer disk for future analysis and displayed on the terminal if required. (author)

  14. Study of the uniform corrosion of non alloy and stainless steels: combined utilization of acoustic emission and electrochemical techniques

    International Nuclear Information System (INIS)

    Jaubert, Lionel

    2004-01-01

    In chemical and petrochemical industry, uniform corrosion induces important economic and security disappointments. The mechanisms of this damaging corrosion mode are well understood, but methods for on-line detection are badly missing. Acoustic emission technique presents, to palliate this lack, potentialities that have been studied in an instrumented laboratory loop allowing the simulation of industrial uniform corrosion conditions. In acidic media, acoustic activity is related to the hydrogen evolution resulting from proton reduction; it is therefore well correlated to the damage severity. In neutral aerated media, the deposit formation of corrosion products is not very emissive. Yet, a specific study of frequency parameters allows detection of corrosion evolution, but in that case, the quantification of corrosion rate remains difficult. A subsidiary study confirms the technique applicability in the case of 'acidic' corrosion, even in very noisy conditions. (author) [fr

  15. Acoustic emission during fracture of ceramic superconducting materials

    International Nuclear Information System (INIS)

    Woźny, L; Kisiel, A; Łysy, K

    2016-01-01

    In the ceramic materials acoustic emission (AE) is associated with a rapid elastic energy release due to the formation and expansion of cracks, which causes generation and propagation of the elastic wave. AE pulses measurement allows monitoring of internal stresses changes and the development of macro- and micro-cracks in ceramic materials, and that in turn allows us to evaluate the time to failure of the object. In presented work the acoustic signals generated during cracking of superconducting ceramics were recorded. Results obtained were compared with other ceramic materials tested the same way. An analysis of the signals was carried out. The characteristics of the AE before destruction of the sample were determined, that allow the assessment of the condition of the material during operation and its expected lifetime. (paper)

  16. Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals

    Energy Technology Data Exchange (ETDEWEB)

    Kubakaddi, S. S., E-mail: sskubakaddi@gmail.com [Department of Physics, Karnatak University, Dharwad 580 003, Karnataka (India)

    2016-05-21

    Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd{sub 3}As{sub 2} in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity v{sub d} is greater than the sound velocity v{sub s}. This occurs at small E (∼few V/cm) due to large mobility. Frequency (ω{sub q}) and angular (θ) distribution of phonon emission spectrum P(ω{sub q}, θ) are studied for different electron drift velocities v{sub d} (i.e., different E) and electron concentrations n{sub e}. The frequency dependence of P(ω{sub q}, θ) shows a maximum P{sub m}(ω{sub q}, θ) at about ω{sub m} ≈ 1 THz and is found to increase with the increasing v{sub d} and n{sub e}. The value of ω{sub m} shifts to higher region for larger n{sub e}. It is found that ω{sub m}/n{sub e}{sup 1/3} and P{sub m}(ω{sub q}, θ)/n{sub e}{sup 2/3} are nearly constants. The latter is in contrast with the P{sub m}(ω{sub q}, θ)n{sub e}{sup 1/2 }= constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly “2k{sub f} cutoff,” where k{sub f} is the Fermi wave vector. Angular dependence of P(ω{sub q}, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing v{sub d}. P(θ) is found to increase linearly with n{sub e} giving the ratio P(θ)/(n{sub e}v{sub d}) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and n{sub e}. 3DDS with large n{sub e} and mobility can be a good source of acoustic phonon generation in ∼THz regime.

  17. Numerical Investigation of Acoustic Emission Events of Argillaceous Sandstones under Confining Pressure

    Directory of Open Access Journals (Sweden)

    Zhaohui Chong

    2017-01-01

    Full Text Available At the laboratory scale, locating acoustic emission (AE events is a comparatively mature method for evaluating cracks in rock materials, and the method plays an important role in numerical simulations. This study is aimed at developing a quantitative method for the measurement of acoustic emission (AE events in numerical simulations. Furthermore, this method was applied to estimate the crack initiation, propagation, and coalescence in rock materials. The discrete element method-acoustic emission model (DEM-AE model was developed using an independent subprogram. This model was designed to calculate the scalar seismic tensor of particles in the process of movement and further to determine the magnitude of AE events. An algorithm for identifying the same spatiotemporal AE event is being presented. To validate the model, a systematic physical experiment and numerical simulation for argillaceous sandstones were performed to present a quantitative comparison of the results with confining pressure. The results showed good agreement in terms of magnitude and spatiotemporal evolution between the simulation and the physical experiment. Finally, the magnitude of AE events was analyzed, and the relationship between AE events and microcracks was discussed. This model can provide the research basis for preventing seismic hazards caused by underground coal mining.

  18. Acoustic emission monitoring of crack formation during alkali silica\

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Přikryl, R.; Šachlová, Š.; Kuchařová, A.

    2017-01-01

    Roč. 220, MAR 30 (2017), s. 175-182 ISSN 0013-7952 R&D Projects: GA ČR(CZ) GAP104/12/0915 Institutional support: RVO:67985831 Keywords : Alkali-silica reaction * accelerated expansion test * ultrasonic sounding * acoustic emission * backscattered electron imaging Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 2.569, year: 2016

  19. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-01-01

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  20. Monitoring of lubrication conditions in journal bearing by acoustic emission

    International Nuclear Information System (INIS)

    Yoon, Dong Jin; Kwon, Oh Yang; Jung, Min Hwa

    1993-01-01

    Systems with journal bearings generally operate in large scale and under severe loading conditions such as steam generator turbines and internal combustion engines, in contrast to the machinery using rolling element bearings. Failure of the bearings in these machinery can result in the system breakdown. To avoid the time consuming repair and considerable economic loss, the detection of incipient failure in journal bearings becomes very important. In this experimental approach, acoustic emission monitoring is employed to the detection of incipient failure caused by intervention of foreign particles most probable in the journal bearing systems. It has been known that the intervention of foreign materials, insufficient lubrication and misassembly etc. are principal factors to cause bearing failure and distress. The experiment was conducted under such designed conditions as inserting alumina particles to the lubrication layer in the simulated journal bearing system. The results showed that acoustic emission could be an effective tool to detect the incipient failure in journal bearings.

  1. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    DEFF Research Database (Denmark)

    van Capel, P. J. S.; Turchinovich, Dmitry; Porte, Henrik

    2011-01-01

    signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlatedwith electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured......We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic...

  2. Large hoisting machinery local damage acoustic emission monitoring of optical information acquisition research

    Directory of Open Access Journals (Sweden)

    Wan Shuai

    2016-01-01

    Full Text Available AE technology, an advanced fault diagnosis technique,is impacted by environmental noise during monitoring equipment. The occurrence of interfere noise,the fashion of interfere and the effect to the system in the AE automatic online monitoring system is analyzed. At present, most of the acoustic emission signal transmission by cable, this way of transmission has a limited transmission distance, shortcomings and so on signal easily disturbed. Is proposed in this paper based on the optical fiber transmission technology, designed and developed a information collection system based on optical fiber acoustic emission monitoring.This way has the advantages of long distance transmission, strong anti-jamming capability.

  3. Diagnostics of flexible workpiece using acoustic emission, acceleration and eddy current sensors in milling operation

    Science.gov (United States)

    Filippov, A. V.; Tarasov, S. Yu.; Filippova, E. O.; Chazov, P. A.; Shamarin, N. N.; Podgornykh, O. A.

    2016-11-01

    Monitoring of the edge clamped workpiece deflection during milling has been carried our using acoustic emission, accelerometer and eddy current sensors. Such a monitoring is necessary in precision machining of vital parts used in air-space engineering where a majority of them made by milling. The applicability of the AE, accelerometers and eddy current sensors has been discussed together with the analysis of measurement errors. The appropriate sensor installation diagram has been proposed for measuring the workpiece elastic deflection exerted by the cutting force.

  4. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-01-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 ± 1.3%, emissivity reduction 8.2 ± 1.4%, and local suppression 68.5 ± 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10 -5 rad s -1 .

  5. Classification Identification of Acoustic Emission Signals from Underground Metal Mine Rock by ICIMF Classifier

    Directory of Open Access Journals (Sweden)

    Hongyan Zuo

    2014-01-01

    Full Text Available To overcome the drawback that fuzzy classifier was sensitive to noises and outliers, Mamdani fuzzy classifier based on improved chaos immune algorithm was developed, in which bilateral Gaussian membership function parameters were set as constraint conditions and the indexes of fuzzy classification effectiveness and number of correct samples of fuzzy classification as the subgoal of fitness function. Moreover, Iris database was used for simulation experiment, classification, and recognition of acoustic emission signals and interference signals from stope wall rock of underground metal mines. The results showed that Mamdani fuzzy classifier based on improved chaos immune algorithm could effectively improve the prediction accuracy of classification of data sets with noises and outliers and the classification accuracy of acoustic emission signal and interference signal from stope wall rock of underground metal mines was 90.00%. It was obvious that the improved chaos immune Mamdani fuzzy (ICIMF classifier was useful for accurate diagnosis of acoustic emission signal and interference signal from stope wall rock of underground metal mines.

  6. Acoustic emission testing of piston check valves

    International Nuclear Information System (INIS)

    Stewart, D.L.

    1994-01-01

    Based on test experience at Comanche Peak Unit 1, an acoustic emission data evaluation matrix for piston check valves has been developed. The degradations represented in this matrix were selected based on Edwards piston check valve failure data reported in the Nuclear Plant Reliability Data System. Evidence to support this matrix was collected from site test data on a variety of valve types. Although still under refinement, the matrix provides three major attributes for closure verification, which have proven useful in developing test procedures for inservice testing and preventing unnecessary disassembly

  7. Condition Monitoring and Management from Acoustic Emissions

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik Bohl

    2005-01-01

    In the following, I will use technical terms without explanation as it gives the freedom to describe the project in a shorter form for those who already know. The thesis is about condition monitoring of large diesel engines from acoustic emission signals. The experiments have been focused...... is the analysis of the angular position changes of the engine related events such as fuel injection and valve openings, caused by operational load changes. With inspiration from speech recognition and voice effects the angular timing changes have been inverted with the event alignment framework. With the event...

  8. Coupling creep and damage in concrete under high sustained loading: Experimental investigation on bending beams and application of Acoustic Emission technique

    Directory of Open Access Journals (Sweden)

    Grondin F.

    2010-06-01

    had a strengthening effect on concrete, probably because of the consolidation of the hardened cement paste. The influence of creep on fracture energy, fracture toughness, and characteristic length of concrete is also studied. The fracture energy and the characteristic length of concrete increases slightly when creep occurs prior to failure and the size of the fracture process zone increases too. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases with beams subjected to creep. Relatively more ductile fracture behavior was observed with beams subjected to creep. The contribution of non-destructive and instrumental investigation methods is currently exploited to check and measure the evolution of some negative structural phenomena, such as micro-and macro-cracking, finally resulting in a creep-like behaviour. Among these methods, the non-destructive technique based on acoustic Emission proves to be very effective, especially to check and measure micro-cracking that takes place inside a structure under mechanical loading. Thus as a part of the investigation quantitative acoustic emission techniques were applied to investigate microcracking and damage localization in concrete beams. The AE signals were captured with the AE WIN software and further analyzed with Noesis software analysis of acoustic emission data. AE waveforms were generated as elastic waves in concrete due to crack nucleation. And a multichannel data acquisition system was used to record the AE waveforms. During the three point bending tests, quantitative acoustic emission (AE techniques were used to monitor crack growth and to deduce micro fracture mechanics in concrete beams before and after creep. Several specimens are experimented in order to match each cluster with corresponding damage mechanism of the material under loading. At the same time acoustic

  9. Coupling creep and damage in concrete under high sustained loading: Experimental investigation on bending beams and application of Acoustic Emission technique

    Science.gov (United States)

    Saliba, J.; Loukili, A.; Grondin, F.

    2010-06-01

    effect on concrete, probably because of the consolidation of the hardened cement paste. The influence of creep on fracture energy, fracture toughness, and characteristic length of concrete is also studied. The fracture energy and the characteristic length of concrete increases slightly when creep occurs prior to failure and the size of the fracture process zone increases too. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases with beams subjected to creep. Relatively more ductile fracture behavior was observed with beams subjected to creep. The contribution of non-destructive and instrumental investigation methods is currently exploited to check and measure the evolution of some negative structural phenomena, such as micro-and macro-cracking, finally resulting in a creep-like behaviour. Among these methods, the non-destructive technique based on acoustic Emission proves to be very effective, especially to check and measure micro-cracking that takes place inside a structure under mechanical loading. Thus as a part of the investigation quantitative acoustic emission techniques were applied to investigate microcracking and damage localization in concrete beams. The AE signals were captured with the AE WIN software and further analyzed with Noesis software analysis of acoustic emission data. AE waveforms were generated as elastic waves in concrete due to crack nucleation. And a multichannel data acquisition system was used to record the AE waveforms. During the three point bending tests, quantitative acoustic emission (AE) techniques were used to monitor crack growth and to deduce micro fracture mechanics in concrete beams before and after creep. Several specimens are experimented in order to match each cluster with corresponding damage mechanism of the material under loading. At the same time acoustic emission was used to

  10. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors.

    Science.gov (United States)

    Qin, Lei; Ren, Hong-Wei; Dong, Bi-Qin; Xing, Feng

    2014-10-02

    Acoustic emission (AE) is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1-3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  11. Study of Acoustic Emission and Mechanical Characteristics of Coal Samples under Different Loading Rates

    Directory of Open Access Journals (Sweden)

    Huamin Li

    2015-01-01

    Full Text Available To study the effect of loading rate on mechanical properties and acoustic emission characteristics of coal samples, collected from Sanjiaohe Colliery, the uniaxial compression tests are carried out under various levels of loading rates, including 0.001 mm/s, 0.002 mm/s, and 0.005 mm/s, respectively, using AE-win E1.86 acoustic emission instrument and RMT-150C rock mechanics test system. The results indicate that the loading rate has a strong impact on peak stress and peak strain of coal samples, but the effect of loading rate on elasticity modulus of coal samples is relatively small. When the loading rate increases from 0.001 mm/s to 0.002 mm/s, the peak stress increases from 22.67 MPa to 24.99 MPa, the incremental percentage is 10.23%, and under the same condition the peak strain increases from 0.006191 to 0.007411 and the incremental percentage is 19.71%. Similarly, when the loading rate increases from 0.002 mm/s to 0.005 mm/s, the peak stress increases from 24.99 MPa to 28.01 MPa, the incremental percentage is 12.08%, the peak strain increases from 0.007411 to 0.008203, and the incremental percentage is 10.69%. The relationship between acoustic emission and loading rate presents a positive correlation, and the negative correlation relation has been determined between acoustic emission cumulative counts and loading rate during the rupture process of coal samples.

  12. Acoustic Emission from Elevator Wire Ropes During Tensile Testing

    Science.gov (United States)

    Bai, Wenjie; Chai, Mengyu; Li, Lichan; Li, Yongquan; Duan, Quan

    The acoustic emission (AE) technique was used to monitor the tensile testing process for two kinds of elevator wire ropes in our work. The AE signals from wire breaks were obtained and analyzed by AE parameters and waveforms. The results showed that AE technique can be a useful tool to monitor wire break phenomenon of wire ropes and effectively capture information of wire break signal. The relationship between AE signal characteristics and wire breaks is investigated and it is found that the most effective acoustic signal discriminators are amplitude and absolute energy. Moreover, the wire break signal of two kinds of ropes is a type of burst signal and it is believed that the waveform and spectrum can be applied to analyze the AE wire break signals.

  13. A study on the spectrum analyzing of internal leak in valve for power plant using acoustic emission method

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Lee, Sun Ki; Lee, Jun Shin; Sohn, Seok Man

    2004-01-01

    The purpose of this study is to estimate the availability of acoustic emission method to the internal leak of the valves at nuclear power plants. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. From the comparison of the background noise data with the experimental results as to relation between leak flow and acoustic signal, the minimum leak flow rates that can be detected by acoustic signal was suggested. When the background levels are higher than the acoustic signal, the method described below was considered that the analysis the remainder among the background noise frequency spectrum and the acoustic signal spectrum become a very useful leak detection method. A few experimental examples of the spectrum analysis that varied the background noise characteristic were given

  14. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  15. The application of the acoustic emission technique to stone decay by sodium sulphate in laboratory tests

    Directory of Open Access Journals (Sweden)

    Grossi, C. M.

    1997-03-01

    Full Text Available Acoustic emission was monitored during salt crystallisation cycles in order to study the mechanisms of rock deterioration by sodium sulphate in laboratory tests. Some porous carbonate stones used in Spanish monuments (Cathedral of Oviedo, Murcia and Seo Vella of Lérida were selected for this study. The acoustic emission detected during the different stages of the cycles (immersion, drying and cooling was interpreted to be the result of the salt behaviour inside the stone. The use of this technique has confirmed that this behaviour depends on salt characteristics (solubility, hydration state and polymorphism of anhydrous sodium sulphate and stone porosity and pore network.

    Para determinar los mecanismos de deterioro de las rocas debidos a la acción del sulfato de sodio, se ha registrado la emisión acústica durante ensayos de cristalización de sales en el laboratorio. Para ello, se han seleccionado tres piedras porosas carbonatadas utilizadas como materiales de construcción en monumentos españoles (Catedrales de Oviedo, Murcia y Seo Vella de Lérida. La emisión acústica detectada durante las diferentes etapas de los ciclos (inmersión, secado y enfriamiento se ha interpretado como debida al comportamiento de la sal en el interior de la piedra. Mediante esta técnica se ha confirmado que este comportamiento depende de las características de la sal (solubilidad, diferentes estados de hidratación y el polimorfismo del sulfato de sodio anhidro y de la porosidad y configuración del sistema poroso de las rocas.

  16. Investigation and Characterization of Acoustic Emissions of Tornadoes Using Arrays of Infrasound Sensors

    Science.gov (United States)

    Frazier, W. G.; Talmadge, C. L.; Waxler, R.; Knupp, K. R.; Goudeau, B.; Hetzer, C. H.

    2017-12-01

    Working in co-ordination with the NOAA Vortex Southeast (Vortex SE) research program, 9 infrasound sensor arrays were deployed at fixed sites across North Alabama, South-central Tennessee, and Northwest Georgia during March and April of 2017, to investigate the emission and characterization of infrasonic acoustic energy from tornadoes and related phenomena. Each array consisted of seven broadband acoustic sensors with calibrated frequency response from 0.02 Hz to 200 Hz. The arrays were configured in a pattern such that accurate bearings to acoustic sources could be obtained over a broad range of frequencies (nominally from 1 Hz to 100 Hz). Data were collected synchronously at a rate of 1000 samples per second. On 22 April 2017 a line of strong storms passed directly through the area being monitored producing at least three verified tornadoes. Two of these were rated at EF0 and the other an EF1. Subsequent processing of the data from several of the arrays revealed acoustic emissions from the tornadic storms ranging in frequencies below 1 Hz to frequencies greater than 10 Hz. Accurate bearings to the storms have been calculated from distances greater than 60 km. Preliminary analysis has revealed that continuous emissions occurred prior to the estimated touchdown times, while the storms were on the ground, and for short periods after the tornadoes lifted; however, the strongest emissions appeared to occur while the storms were on the ground. One of the storms passed near two arrays simultaneously, and therefore accurate an accurate track of the storm as it moved has been obtained only using the infrasound measurements. Initial results from the analysis of the infrasound data will be presented. Under Vortex SE meteorological data was collected on a large suite of sensors. Correlations between the infrasound data and the meteorological data will be investigated and discussed.

  17. Acoustic Emission Technique Applied in Textiles Mechanical Characterization

    Directory of Open Access Journals (Sweden)

    Rios-Soberanis Carlos Rolando

    2017-01-01

    Full Text Available The common textile architecture/geometry are woven, braided, knitted, stitch boded, and Z-pinned. Fibres in textile form exhibit good out-of-plane properties and good fatigue and impact resistance, additionally, they have better dimensional stability and conformability. Besides the nature of the textile, the architecture has a great role in the mechanical behaviour and mechanisms of damage in textiles, therefore damage mechanisms and mechanical performance in structural applications textiles have been a major concern. Mechanical damage occurs to a large extent during the service lifetime consequently it is vital to understand the material mechanical behaviour by identifying its mechanisms of failure such as onset of damage, crack generation and propagation. In this work, textiles of different architecture were used to manufacture epoxy based composites in order to study failure events under tensile load by using acoustic emission technique which is a powerful characterization tool due to its link between AE data and fracture mechanics, which makes this relation a very useful from the engineering point of view.

  18. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    D. G. Aggelis

    2013-01-01

    Full Text Available Barium osumilite (BMAS ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism.

  19. Proton beam characterization by proton-induced acoustic emission: simulation studies

    International Nuclear Information System (INIS)

    Jones, K C; Witztum, A; Avery, S; Sehgal, C M

    2014-01-01

    Due to their Bragg peak, proton beams are capable of delivering a targeted dose of radiation to a narrow volume, but range uncertainties currently limit their accuracy. One promising beam characterization technique, protoacoustic range verification, measures the acoustic emission generated by the proton beam. We simulated the pressure waves generated by proton radiation passing through water. We observed that the proton-induced acoustic signal consists of two peaks, labeled α and γ, with two originating sources. The α acoustic peak is generated by the pre-Bragg peak heated region whereas the source of the γ acoustic peak is the proton Bragg peak. The arrival time of the α and γ peaks at a transducer reveals the distance from the beam propagation axis and Bragg peak center, respectively. The maximum pressure is not observed directly above the Bragg peak due to interference of the acoustic signals. Range verification based on the arrival times is shown to be more effective than determining the Bragg peak position based on pressure amplitudes. The temporal width of the α and γ peaks are linearly proportional to the beam diameter and Bragg peak width, respectively. The temporal separation between compression and rarefaction peaks is proportional to the spill time width. The pressure wave expected from a spread out Bragg peak dose is characterized. The simulations also show that acoustic monitoring can verify the proton beam dose distribution and range by characterizing the Bragg peak position to within ∼1 mm. (paper)

  20. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator

    International Nuclear Information System (INIS)

    Ge, Yong; Liu, Shu-sen; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Sun, Hong-xiang; Zhang, Shu-yi

    2016-01-01

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.

  1. Acoustic emissions of a boiling liquid - an experimental survey in water and extrapolation to SFRs

    International Nuclear Information System (INIS)

    Vanderhaegen, M.; Paumel, K.; Tourin, A.

    2013-06-01

    The acoustic detection of sodium boiling is seen as a promising and innovative surveillance technique for sodium-cooled fast reactors (SFRs). It could be especially useful to detect in-core boiling that are the consequence of initiating accidents or whilst the mean subassembly temperature is very close to the nominal value. This latter is a consequence of the fuel assembly design of SFRs. Furthermore, it is a technique that has been proven to be successful in the past to follow the boiling behavior during SFR experiments that were aimed at simulating accidental conditions. However its effectiveness as in-core instrumentation still has to be demonstrated. In that aim, the acoustic emissions of sodium boiling in subassemblies are studied. Experimental studies are however limited to the boiling of common coolants due to the complications that arise when boiling liquid metals. As such, simple water experiments are performed. And although the results of these experiments are not completely representative for sodium boiling due to the incomplete thermo-hydraulic similarities between sodium and water, they can provide an interesting knowledge of the many influences that control the acoustic pressure field. In this article we'll specifically show how the condensation of vapor in subcooled liquid, the principal contribution to the acoustic emissions during boiling and hence the acoustic spectrum, is influenced by a pin-bundle geometry. We study this influence by comparing pool boiling experimental acoustic recordings with those of a simple pin-bundle geometry boiling experiment. The qualitative link, between this relatively simple pin-bundle experiment and the condensation phenomena that take place during sodium boiling inside SFR subassemblies, is used as a basis for this analysis. This simple experimental evidence, together with other theoretical arguments based on a thorough analysis of the sodium material properties, enables us to deduce that simple sodium

  2. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    Science.gov (United States)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  3. Experimental Investigations into the Effects of Lithology on Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Baozhu Tian

    2015-11-01

    Full Text Available In order to study how lithology affects acoustic emissions (AE, a series of tunnel rock burst simulation experiments, monitored by acoustic emission instruments, were conducted on granite, marble and basalt. By analyzing the characteristic parameters, this study found that AE events occur more frequently during the rock burst process on granite and basalt. Marble remains dormant until 75% of the loading time before the peak, at which point, cracks develop rapidly and AE events dramatically increase. During the rock burst process, the AE energy release demonstrates that low energy is released in the incubation phase and robust energy is released during the later phase. Before the rock burst occurs, increased in the heterogeneity index Cv values of the AE event are subject to lithology. The Cv values of granite and basalt have an increase of about 0.2-0.4, while marble shows an increase of 1.0-1.2. The heterogeneity index Cv value of an AE event is in line with the rock burst process.

  4. Acoustic Emission Weld Monitoring in the 2195 Aluminum-Lithium Alloy

    Science.gov (United States)

    Walker, James L.

    2005-01-01

    Due to its low density, the 2195 aluminum-lithium alloy was developed as a replacement for alloy 2219 in the Space Shuttle External Tank (ET). The external tank is the single largest component of the space shuttle system. It is 154 feet long and 27.6 feet in diameter, and serves as the structural backbone for the shuttle during launch, absorbing most of the 7 million plus pounds of thrust produced. The almost 4% decrease in density between the two materials provides an extra 7500 pounds of payload capacity necessary to put the International Space Station components into orbit. The ET is an all-welded structure; hence, the requirement is for up to five rewelds without hot cracking. Unfortunately, hot cracking during re-welding or repair operations was occurring and had to be dealt with before the new super lightweight tank could be used. Weld metal porosity formation was also of concern because it leads to hot cracking during weld repairs. Accordingly, acoustic emission (AE) nondestructive testing was employed to monitor the formation of porosity and hot cracks in order to select the best filler metal and optimize the weld schedule. The purpose of this work is to determine the feasibility of detecting hot cracking in welded aluminum-lithium (Al-Li) structures through the analysis of acoustic emission data. By acoustically characterizing the effects of reheating during a repair operation, the potential for hidden flaws coalescing and becoming "unstable" as the panel is repaired could be reduced. Identification of regions where microcrack growth is likely to occur and the location of active flaw growth in the repair weld will provide the welder with direct feedback as to the current weld quality enabling adjustments to the repair process be made in the field. An acoustic emission analysis of the source mechanisms present during welding has been conducted with the goals of locating regions in the weld line that are susceptible to damage from a repair operation

  5. Impact of the Test Device on the Behavior of the Acoustic Emission Signals: Contribution of the Numerical Modeling to Signal Processing

    Science.gov (United States)

    Issiaka Traore, Oumar; Cristini, Paul; Favretto-Cristini, Nathalie; Pantera, Laurent; Viguier-Pla, Sylvie

    2018-01-01

    In a context of nuclear safety experiment monitoring with the non destructive testing method of acoustic emission, we study the impact of the test device on the interpretation of the recorded physical signals by using spectral finite element modeling. The numerical results are validated by comparison with real acoustic emission data obtained from previous experiments. The results show that several parameters can have significant impacts on acoustic wave propagation and then on the interpretation of the physical signals. The potential position of the source mechanism, the positions of the receivers and the nature of the coolant fluid have to be taken into account in the definition a pre-processing strategy of the real acoustic emission signals. In order to show the relevance of such an approach, we use the results to propose an optimization of the positions of the acoustic emission sensors in order to reduce the estimation bias of the time-delay and then improve the localization of the source mechanisms.

  6. Acoustic emission measurements in petroleum-related rock mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Unander, Tor Erling

    2002-07-01

    Acoustic emission activity in rock has usually been studied in crystalline rock, which reflects that rock mechanics has also mostly been occupied with such rocks in relations to seismology, mining and tunneling. On the other hand, petroleum-related rock mechanics focuses on the behaviour of sedimentary rock. Thus, this thesis presents a general study of acoustic emission activity in sedimentary rock, primarily in sandstone. Chalk, limestone and shale have also been tested, but to much less degree because the AE activity in these materials is low. To simplify the study, pore fluids have not been used. The advent of the personal computer and computerized measuring equipment have made possible new methods both for measuring and analysing acoustic emissions. Consequently, a majority of this work is devoted to the development and implementation of new analysis techniques. A broad range of topics are treated: (1) Quantification of the AE activity level, assuming that the event rate best represents the activity. An algorithm for estimating the event rate and a methodology for objectively describing special changes in the activity e.g., onset determination, are presented. (2) Analysis of AE waveform data. A new method for determining the source energy of an AE event is presented, and it is shown how seismic source theory can be used to analyze even intermediate quality data. Based on these techniques, it is shown that a major part of the measured AE activity originates from a region close to the sensor, not necessarily representing the entire sample. (3) An improved procedure for estimating source locations is presented. The main benefit is a procedure that better handles arrival time data with large errors. Statistical simulations are used to quantify the uncertainties in the locations. The analysis techniques are developed with the application to sedimentary rock in mind, and in two articles, the techniques are used in the study of such materials. The work in the first

  7. Acoustic emission on thermoelastic martensitic transformations in alloys in the course of mechanical loading

    International Nuclear Information System (INIS)

    Plotnikov, V.A.; Kokhanenko, D.V.

    2004-01-01

    The connection of the emission process with the process of the deformation accumulation and relaxation in the cycle of the martensitic transformations is studied. The martensitic transformations cycling was investigated by cycling change in the temperature in the Ti 50 Ni 50 Cu 10 alloys. The deformation accumulation and recovery is observed in the alloys undergoing the thermoelastic martensitic transformations under the mechanical loading conditions. The acoustic emission, accompanying the martensitic transformations, reflects the peculiarities of the alloy deformation behavior by the martensitic transformations. The anomalous acoustic effect correlates with the reversible deformation accumulation and does not correlates with the irreversible deformation accumulation [ru

  8. Modeling of karst deformation and analysis of acoustic emission during sinkhole formation

    Science.gov (United States)

    Bakeev, R. A.; Stefanov, Yu. P.; Duchkov, A. A.; Myasnikov, A. V.

    2017-12-01

    In this paper, the fracture pattern and formation of a sinkhole are estimated depending on the rock properties. The possibility of using geophysical methods for recording and analyzing acoustic emission to monitor and predict the state of the medium is considered. The problem of deformation of the sedimentary cover over the growing karst cavity is solved on the basis of the elastoplastic Drucker-Prager-Nikolaevsky model and the equation of damage accumulation. The specified kinetics of accumulation of damages allows us to describe slow processes of degradation of the strength of the medium under stresses that are low for the development of inelastic deformations. The results are obtained for different values of the strength of karst rock; we show the influence of the kinetic parameters of damage accumulation on the shape of collapse depressions. We also model acoustic emission caused by the material fracture. One can follow different stages of the karst development by looking at patterns of cells which fail at a given time. Our observations show the relation between the intensity of material fracture and the intensity of seismic emission.

  9. The possibilities of the detection of boiling in the reactor core on the basis of acoustic emission method

    International Nuclear Information System (INIS)

    Liska, J.

    1978-01-01

    A method is described of detecting the crisis of boiling in the core of PWR type reactors which may lead to fuel element failure. The method can be applied both in reactor development and operation. It is based on boiling detection by acoustic emission testing. The acoustic signal is measured by means of a piezoelectric transducer immersed in water or attached to one end of a waveguide immersed in water. Signals may be measured in either a wide frequency range or in a band approaching the transducer resonance frequency. This is selected such as to be outside the noise band. Experiments in an open water tank and in a water loop showed that under favourable conditions, the acoustic emission testing method was very sensitive, the intensity of acoustic signals was proportional to boiling intensity, and information contained in the emission spectrum shape was primarily of a qualitative nature. The method remains to be tested in an actual reactor where many spurious noise sources exist. (O.K.)

  10. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor

    Directory of Open Access Journals (Sweden)

    Lidewei L Vergeynst

    2015-07-01

    Full Text Available When drought occurs in plants, acoustic emission signals can be detected, but the actual causes of these signals are still unknown. By analyzing the waveforms of the measured signals, it should however be possible to trace the characteristics of the acoustic emission source and get information about the underlying physiological processes. A problem encountered during this analysis is that the waveform changes significantly from source to sensor and lack of knowledge on wave propagation impedes research progress made in this field. We used finite element modeling and the well-known pencil lead break source to investigate wave propagation in a branch. A cylindrical rod of polyvinyl chloride was first used to identify the theoretical propagation modes. Two wave propagation modes could be distinguished and we used the finite element model to interpret their behavior in terms of source position for both the PVC rod and a wooden rod. Both wave propagation modes were also identified in drying-induced signals from woody branches, and we used the obtained insights to provide recommendations for further acoustic emission research in plant science.

  11. Standard practice for acoustic emission examination of plate-like and flat panel composite structures used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers acoustic emission (AE) examination or monitoring of panel and plate-like composite structures made entirely of fiber/polymer composites. 1.2 The AE examination detects emission sources and locates the region(s) within the composite structure where the emission originated. When properly developed AE-based criteria for the composite item are in place, the AE data can be used for nondestructive examination (NDE), characterization of proof testing, documentation of quality control or for decisions relative to structural-test termination prior to completion of a planned test. Other NDE methods may be used to provide additional information about located damage regions. For additional information see Appendix X1. 1.3 This practice can be applied to aerospace composite panels and plate-like elements as a part of incoming inspection, during manufacturing, after assembly, continuously (during structural health monitoring) and at periodic intervals during the life of a structure. 1.4 This pra...

  12. Analysis of Precursors Prior to Rock Burst in Granite Tunnel Using Acoustic Emission and Far Infrared Monitoring

    OpenAIRE

    Liang, Zhengzhao; Liu, Xiangxin; Zhang, Yanbo; Tang, Chunan

    2013-01-01

    To understand the physical mechanism of the anomalous behaviors observed prior to rock burst, the acoustic emission (AE) and far infrared (FIR) techniques were applied to monitor the progressive failure of a rock tunnel model subjected to biaxial stresses. Images of fracturing process, temperature changes of the tunnel, and spatiotemporal serials of acoustic emission were simultaneously recorded during deformation of the model. The b-value derived from the amplitude distribution data of AE wa...

  13. Particle filtering based structural assessment with acoustic emission sensing

    Science.gov (United States)

    Yan, Wuzhao; Abdelrahman, Marwa; Zhang, Bin; Ziehl, Paul

    2017-02-01

    Nuclear structures are designed to withstand severe loading events under various stresses. Over time, aging of structural systems constructed with concrete and steel will occur. This deterioration may reduce service life of nuclear facilities and/or lead to unnecessary or untimely repairs. Therefore, online monitoring of structures in nuclear power plants and waste storage has drawn significant attention in recent years. Of many existing non-destructive evaluation and structural monitoring approaches, acoustic emission is promising for assessment of structural damage because it is non-intrusive and is sensitive to corrosion and crack growth in reinforced concrete elements. To provide a rapid, actionable, and graphical means for interpretation Intensity Analysis plots have been developed. This approach provides a means for classification of damage. Since the acoustic emission measurement is only an indirect indicator of structural damage, potentially corrupted by non-genuine data, it is more suitable to estimate the states of corrosion and cracking in a Bayesian estimation framework. In this paper, we will utilize the accelerated corrosion data from a specimen at the University of South Carolina to develop a particle filtering-based diagnosis and prognosis algorithm. Promising features of the proposed algorithm are described in terms of corrosion state estimation and prediction of degradation over time to a predefined threshold.

  14. Gary-scale stimulated acoustic emission: differential diagnosis between hepatocelluar carcinoma and metastastic adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jang Jae; Yoon, Kwon Ha [Wongwang Univ. School of Medicine, Wonkwang (Korea, Republic of)

    2001-01-01

    To assess the value of gray-scale stimulated acoustic emission in differential diagnosis between hepatocellular carcinoma and metastatic adenocarcinoma.Twenty-four cases of hepatocellular carcinoma (HCC) in 23 patients and 26 cases of metastatic adenocarcinoma in 14 patients were prospectively examined using the pluse-inversion harmonic technique after intravenous SH U 508A administration. Gray-scale stimulated acoustic emission (SAE) was measured 5 mins after bolus injection of a contrast agent (4g, 400 mg/ml). The presence or absence of SAE signas at internal and marginal areas of the tumor and the appearance (smooth or irregular) of its border were compared. In addition, the SAE index (SAE (parenchyma) - SAE (tumor)/ SAE (parenchyma)) was histographycally determined using a computerized program (PiView{sup TM}; Mediface, Seoul, Korea). The statistics were analysed using student's test. Of the 24 HCC cases, 20 (83%) showed internal SAE signals, while 23 (96%) marginal signals were emitted. Of the 26 cases of metaststic adenocarcinoma, one (4%) showed internal SAE signals, while in five 23 metastatic lesions (88%). For HCC and metastatic tumors, the mean SAE index was 0.38{+-}0.15 and 0.60{+-}0.08, respectively ({rho}< 0.001). Gray-scale stimulated acoustic emission can be a useful tool in differential diagnosis between hepatocellular carcinoma and metastatic adenocarcinoma.

  15. Monitoring of Acoustic Emission During the Disintegration of Rock

    Czech Academy of Sciences Publication Activity Database

    Tripathi, R.; Srivastava, M.; Hloch, Sergej; Adamčík, P.; Chattopadhyaya, S.; Das, A. K.

    2016-01-01

    Roč. 149, č. 149 (2016), s. 481-488 E-ISSN 1877-7058. [International Conference on Manufacturing Engineering and Materials, ICMEM 2016. Nový Smokovec, 06.06.2016-10.06.2016] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : acoustic emission * rock disintegration * waterjet Subject RIV: JQ - Machines ; Tools http://www.sciencedirect.com/science/article/pii/S1877705816312127

  16. Evoked acoustic emissions from the human ear. III. Findings in neonates

    DEFF Research Database (Denmark)

    Johnsen, N J; Bagi, P; Elberling, C

    1983-01-01

    Stimulated acoustic emissions were recorded in a consecutive series of 20 full-term and otherwise normal neonates with the equipment and method previously used in adults. One ear randomly chosen was tested in each baby, and otoscopy and tympanometry were normal in all ears. A 2 kHz click stimulus...

  17. Acoustic emissions of digital data video projectors- Investigating noise sources and their change during product aging

    Science.gov (United States)

    White, Michael Shane

    2005-09-01

    Acoustic emission testing continues to be a growing part of IT and telecommunication product design, as product noise is increasingly becoming a differentiator in the marketplace. This is especially true for digital/video display companies, such as InFocus Corporation, considering the market shift of these products to the home entertainment consumer as retail prices drop and performance factors increase. Projectors and displays using Digital Light Processing(tm) [DLP(tm)] technology incorporate a device known as a ColorWheel(tm) to generate the colors displayed at each pixel in the image. These ColorWheel(tm) devices spin at very high speeds and can generate high-frequency tones not typically heard in liquid crystal displays and other display technologies. Also, acoustic emission testing typically occurs at the beginning of product life and is a measure of acoustic energy emitted at this point in the lifecycle. Since the product is designed to be used over a long period of time, there is concern as to whether the acoustic emissions change over the lifecycle of the product, whether these changes will result in a level of nuisance to the average customer, and does this nuisance begin to develop prior to the intended lifetime of the product.

  18. Acoustic emission: a bibliography for 1970--1972

    International Nuclear Information System (INIS)

    Drouillard, T.F.

    1975-01-01

    The bibliography includes nearly all references in the literature on acoustic emission published during the three-year period, 1970 through 1972. Included in the 412 references are several for each of the associated technologies including: signature analysis, boiling detection, cavitation, leak detection, seismology, and rock mechanics. Information has also been obtained from eight abstracting and indexing services searched in compiling the bibliography. The bibliography has been arranged alphabetically by author and is cross referenced with a list of approximately 400 authors. Also included is a subject index. Technical articles listed were published in some 90 different journals and in 8 different languages. (U.S.)

  19. On-line monitoring on thermal shock damage of ceramics using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Lee, Joon Hyun; Song, Sang Hun

    1999-01-01

    The objective of this paper is to investigate the degree of the thermal shock damage on alumina ceramic using acoustic emission technique. For this purpose, alumina ceramic specimen was heated in the elastic furnace and then was quenched into the water tank. When the specimen was quenched into water tank, a lot of micro-cracks were generated on the surface of specimen due to the thermal shock damage. In this study, acoustic emission technique was used to evaluate the elastic waves generated by the crack initiation and propagation on the surface of specimen. It was found that when the micro-crack was initiated on the surface of specimen, AE signals were the higher in amplitude than those of bubbling effect and crack propagation. A lot of AE events were generated at the first thermal shock, the number of AE events decreased gradually as the thermal shock cycle increased.

  20. Acoustic emission mechanism at switching of ferroelectric crystals

    International Nuclear Information System (INIS)

    Belov, V.V.; Morozova, G.P.; Serdobol'skaya, O.Yu.

    1986-01-01

    Process of acoustic emission (AE) in lead germanate (PGO) representing pure ferroelectric, and gadolinium molybdate (GMO) representing ferroelectric-ferroelastic, for which switching may be conducted both by the field and pressure, were studied. A conclusion has been drawn that piezoelectric excitation of a crystal from the surface by pulses of overpolarization current in the process of domain coalescence is the main AE source in PGO. Not only piezoresponse, but also direct sound generation in the moment of domain penetration and collapse is considered as AE mechanism in GMO

  1. Acoustic emission mechanism at switching of ferroelectric crystals

    Energy Technology Data Exchange (ETDEWEB)

    Belov, V V; Morozova, G P; Serdobol' skaya, O Yu

    1986-01-01

    Process of acoustic emission (AE) in lead germanate (PGO) representing pure ferroelectric, and gadolinium molybdate (GMO) representing ferroelectric-ferroelastic, for which switching may be conducted both by the field and pressure, were studied. A conclusion has been drawn that piezoelectric excitation of a crystal from the surface by pulses of overpolarization current in the process of domain coalescence is the main AE source in PGO. Not only piezoresponse, but also direct sound generation in the moment of domain penetration and collapse is considered as AE mechanism in GMO.

  2. Diagnostics of Polymer Composite Materials and Analysis of Their Production Technology by Using the Method of Acoustic Emission

    Science.gov (United States)

    Bashkov, O. V.; Protsenko, A. E.; Bryanskii, A. A.; Romashko, R. V.

    2017-09-01

    The strength properties of glass-fiber-reinforced plastics produced by vacuum and vacuum autoclave molding techniques are studied. Based on acoustic emission data, a method of diagnostic and prediction of the bearing capacity of polymer composite materials by using data from three-point bending tests is developed. The method is based on evaluating changes in the exponent of a power function relating the total acoustic emission to the test stress.

  3. 31{sup st} conference of the European Working Group on Acoustic Emission (EWGAE)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-11-01

    This CD-ROM contains lectures and posters which were held on the conference of the European Working Group on Acoustic Emission in Dresden (Germany). Six of the contributions are separately analyzed for the INIS database.

  4. The Influence of Sensor Size on Acoustic Emission Waveforms—A Numerical Study

    Directory of Open Access Journals (Sweden)

    Eleni Tsangouri

    2018-01-01

    Full Text Available The performance of Acoustic Emission technique is governed by the measuring efficiency of the piezoelectric sensors usually mounted on the structure surface. In the case of damage of bulk materials or plates, the sensors receive the acoustic waveforms of which the frequency and shape are correlated to the damage mode. This numerical study measures the waveforms received by point, medium and large size sensors and evaluates the effect of sensor size on the acoustic emission signals. Simulations are the only way to quantify the effect of sensor size ensuring that the frequency response of the different sensors is uniform. The cases of horizontal (on the same surface, vertical and diagonal excitation are numerically simulated, and the corresponding elastic wave displacement is measured for different sizes of sensors. It is shown that large size sensors significantly affect the wave magnitude and content in both time and frequency domains and especially in the case of surface wave excitation. The coherence between the original and received waveform is quantified and the numerical findings are experimentally supported. It is concluded that sensors with a size larger than half the size of the excitation wavelength start to seriously influence the accuracy of the AE waveform.

  5. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing; Analyse der Schallemissionssignale aus Ermuedungsrisswachstum und Korrosionsprozessen. Untersuchung der Moeglichkeiten fuer die kontinuierliche Zustandsueberwachung von Transportbehaeltern mittels Schallemissionspruefung

    Energy Technology Data Exchange (ETDEWEB)

    Wachsmuth, Janne

    2016-05-01

    generated application oriented, on plates within the heat affected zone of a weld. Their AE signals were recorded with resonant sensors. On the one hand resonant sensors are very sensitive and able to detect small displacements on huge structures, which makes them applicable for condition monitoring. On the other hand, resonant sensors have a great influence on the AE signals and hinder signal analyses and pattern recognition. Pure fatigue crack growth, fatigue crack growth in a corrosive environment and pure corrosion were applied. Signal groups of the damage mechanisms were compared by their AE features. Differences between signal groups could be made after wave mode analysis, despite the spectral influence of the AE sensors. The damage condition of the test plates is investigated with the combination of AE features of the signal groups and fracture mechanic parameters. Furthermore, two methods of unsupervised pattern recognition of the AE signals are being performed: A commercial classification system, where mainly frequency based features are generated, and an AE feature based method. In the latter, classification takes place after the frequency distributions of the AE features of the signals from the examined damage mechanisms. Both methods result in an accurate classification for the AE signals, especially originating from corrosion damage mechanisms, in the correct damage class. Concluding, the detectability of AE events, the results of pattern recognition of AE signals in metal structures and the prospects and risks of condition monitoring by means of acoustic emission testing are discussed. Therefore, monitoring tests on a tank car and results from cyclic and static loading are consulted. An assessment for the selection of the monitoring method according to the cost effectiveness of dangerous goods transportation is made.

  6. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Science.gov (United States)

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  7. A case for Acoustic Emission surveillance of operating reactors

    International Nuclear Information System (INIS)

    Hartman, W.F.

    1985-01-01

    In the nuclear power industry, the potential consequences of cracks and leaks, the problems of personnel and public exposure to radiation, are certainly as serious as ever. The costs of repairing advanced damage soar higher every year and the established inspection methods, taken together, still leave some gaps which Acoustic Emission (AE) can potentially close. The intergranular stress corrosion cracking (IGSCC) problem not only poses safety problems, but entails remedies costing the industry billions of dollars. If crack growth could be detected during plant operation, particular welds could be designated as requiring inspection during the next outage. Furthermore, if a highly sensitive, reliable leak-detection capability were applied to the system, any through-wall crack would be instantaneously detected. AE monitoring has the potential for both of these, on-line, in real time. So, there is renewed interest in what AE can do to solve these problems. Reviewing the progress in AE, relevant to nuclear applications, indicates that a strong case can be made for AE surveillance of operating reactors. This progress can be reviewed under two headings: leak detection and crack detection

  8. Acoustic emission for on-line reactor monitoring: results from field tests

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.

    1984-09-01

    The objective of the acoustic emission (AE)/flaw characterization program is to develop use of the AE method on a continuous basis (during operation and during hydrotest) to detect and analyze flaw growth in reactor pressure vessels and primary piping. AE has the unique capability for continuous monitoring, high sensitivity, and remote flaw location

  9. Acoustic emission of heat treated compared graphite iron under 873-1173 K

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Woo; Lee, Soo Chul [Pukyong National University, Busan (Korea, Republic of); Ahn, Byung Kun [Korea Polytechnic, Busan Campus, Busan (Korea, Republic of)

    2013-10-15

    CGI is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently, compacted graphite iron has been used for diesel engine blocks, turbo housings and exhaust manifolds. This paper were assessed acoustic emission characteristics according to the mechanical properties change of degraded CGI340 during 1-24 hours at 873-1173 K. In results of pencil lead fracture test, the dominant frequency and the velocity of base metal were 97 kHz and 5490 m/sec, respectively. The base metal in a tensile test was obtained relatively high dominant frequency. However, the heat treated materials, the longer the heat treatment time, the higher the heat treatment temperature, were obtained in the area of lower frequencies. This phenomenon appears by long-term use.

  10. Acoustic emission of heat treated compared graphite iron under 873-1173 K

    International Nuclear Information System (INIS)

    Nam, Ki Woo; Lee, Soo Chul; Ahn, Byung Kun

    2013-01-01

    CGI is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently, compacted graphite iron has been used for diesel engine blocks, turbo housings and exhaust manifolds. This paper were assessed acoustic emission characteristics according to the mechanical properties change of degraded CGI340 during 1-24 hours at 873-1173 K. In results of pencil lead fracture test, the dominant frequency and the velocity of base metal were 97 kHz and 5490 m/sec, respectively. The base metal in a tensile test was obtained relatively high dominant frequency. However, the heat treated materials, the longer the heat treatment time, the higher the heat treatment temperature, were obtained in the area of lower frequencies. This phenomenon appears by long-term use.

  11. “Smart COPVs” - Continued Successful Development of JSC IR&D Acoustic Emissions (AE) SHM

    Data.gov (United States)

    National Aeronautics and Space Administration — Developed and applied promising quantitative pass/fail criteria to COPVs using acoustic emission (AE) and developed automated data analysis software. This lays the...

  12. Standard practice for examination of fiberglass reinforced plastic fan blades using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examinations of fiberglass reinforced plastic (FRP) fan blades of the type used in industrial cooling towers and heat exchangers. 1.2 This practice uses simulated service loading to determine structural integrity. 1.3 This practice will detect sources of acoustic emission in areas of sensor coverage that are stressed during the course of the examination. 1.4 This practice applies to examinations of new and in-service fan blades. 1.5 This practice is limited to fan blades of FRP construction, with length (hub centerline to tip) of less than 3 m [10 ft], and with fiberglass content greater than 15 % by weight. 1.6 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to evaluate the significance of AE sources. Procedures for other NDE methods are beyond the scope of this practice. 1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as sta...

  13. Network sensor calibration for retrieving accurate moment tensors of acoustic emissions

    Czech Academy of Sciences Publication Activity Database

    Davi, Rosalia; Vavryčuk, Václav; Charalampidou, E.-M.; Kwiatek, G.

    2013-01-01

    Roč. 62, September (2013), s. 59-67 ISSN 1365-1609 R&D Projects: GA ČR(CZ) GAP210/12/1491 EU Projects: European Commission(XE) 230669 - AIM Institutional support: RVO:67985530 Keywords : acoustic emissions * focal mechanisms * fracturing * moment tensors * sensor calibration Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.424, year: 2013

  14. Acoustic emission during tensile deformation of M250 grade maraging steel

    Science.gov (United States)

    Mukhopadhyay, Chandan Kumar; Rajkumar, Kesavan Vadivelu; Chandra Rao, Bhaghi Purna; Jayakumar, Tamanna

    2012-05-01

    Acoustic emission (AE) generated during room temperature tensile deformation of varyingly heat treated (solution annealed and thermally aged) M250 grade maraging steel specimens have been studied. Deformation of microstructure corresponding to different heat treated conditions in this steel could be distinctly characterized using the AE parameters such as RMS voltage, counts and peak amplitude of AE hits (events).

  15. Acoustic emission and estimation of flaw significance in reactor pressure boundaries

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.

    1982-01-01

    The work discussed is intended to establish the feasibility of using acoustic emission (AE) to detect and evaluate growing flaws in nuclear reactor pressure boundaries. Basic AE identification and interpretation methods have grown out of Phase 1. Phases 2 and 3 to test and demonstrate developed methodology on a vessel test and on a reactor are in progress

  16. Magneto acoustic emission and magnetic barkhausen noise

    International Nuclear Information System (INIS)

    Neyra Astudillo, M R; Nunez, N; Lopez Pumarega, M I; Ruzzante, J

    2012-01-01

    Results obtained in the characterization of a sample of A508 Class II steel, are showed. This material is usually used for pressure vessels construction. Two techniques not very spread in our country, but developed at our Research Group were used: Magnetic Barkhausen Noise (MBN) and Magneto Acoustic Emission (MAE). Both techniques only can be used with ferromagnetic materials. A sinusoidal low frequency magnetic field (10 Hz) was applied on the material under test, producing a sudden movement of the magnetic domain walls. This movement produces an induced EMF. In this case it is amplified and filtered in the wide band between 20 kHz and 300 kHz. The electrical signal generated at the sensing coil is called Magnetic Barkhausen Noise (MBN). The MBN was known since 1919 when it was observed for the first time. The movement of the magnetic domain walls generates at the same time elastic waves which propagate inside the material. Fixing a piezoelectric transducer on the sample surface, it is possible to detect these waves. This phenomenon is known as Magneto Acoustic Emission (MAE) and its frequency band is 20 kHz up to 1 MHz. As it is widely known, the domain structure and their walls movement are deeply influenced by the metal defects and microstructure (stress, grain size, precipitates, etc.). Then studying the domain wall movement it is possible to induce the material state. At the present study, we can infer that the material analyzed with these two techniques, has an anisotropy showed at the polar graphs, but does not totally showed at the metallographic study. Subsequent studies employing the Baumann imprint technique showed that manganese sulphides present an orientation similar to that founded with MNB and MAE. This work is completed with MEB and EDAX (author)

  17. Medidas imitanciométricas em crianças com ausência de emissões otoacústicas Acoustic immittance in children without otoacoustic emissions

    Directory of Open Access Journals (Sweden)

    Ana Emilia Linares

    2008-06-01

    Full Text Available Partindo da hipótese de que alterações da função de orelha média possam prejudicar a captação das EOAs, é possível que a ausência destas, em lactentes, esteja associada a discretas alterações timpanométricas. OBJETIVO: Verificar a associação entre resposta de EOAT e alteração imitanciométrica com a sonda de 226Hz em lactentes. MÉTODOS: Estudo de coorte contemporânea com corte transversal. Foram avaliados 20 lactentes com ausência de EOAT (grupo pesquisa e 101 lactentes com presença de EOAT (grupo comparação, com idades variando entre o nascimento e oito meses. Os lactentes foram submetidos a: timpanometria; pesquisa dos limiares de reflexo acústico contralateral com estímulos de 0,5k, 1k, 2k, 4kHz e ruído de faixa larga; emissões otoacústicas (transiente e por produtos de distorção. O potencial evocado auditivo de tronco encefálico para pesquisa do limiar de resposta foi realizado no grupo pesquisa. RESULTADOS: Observou-se diferença estatisticamente significante entre os grupos (pConsidering the hypothesis that middle ear changes can impair the recording of otoacoustic emissions, it is possible that absent otoacoustic emissions in infants could be associated with a light tympanometric change. AIM: To study the association between transient otoacoustic emissions and changes in acoustic immittance measurements with 226Hz probe tone in neonates. METHODS: Cross-sectional contemporary cohort study. 20 infants with no transient otoacoustic emissions (study group and 101 infants with transient otoacoustic emissions (control group, with ages ranged from birth to eight months, were assessed. Infants were submitted to: admittance tympanometry; contralateral acoustic reflex threshold with stimulus of 0.5, 1, 2, 4 kHz and broad band noise; transient and distortion product otoacoustic emissions. The auditory brain response was used to study the threshold in neonates without transient otoacoustic emissions. RESULTS

  18. Observation of damage process in RC beams under cucle bending by acoustic emission

    International Nuclear Information System (INIS)

    Shigeishi, Mitsuhiro; Ohtsu, Masayasu; Tsuji, Nobuyuki; Yasuoka, Daisuke

    1997-01-01

    Reinforced concrete (RC) structures are generally applied to construction of buildings and bridges, and are imposed on cyclic loading incessantly. It is considered that detected acoustic emission (AE) waveforms are associated with the damage degree and the fracture mechanisms of RC structures. Therefor, the cyclic bending tests are applied to damaged RC beam specimens. To evaluate the interior of the damaged RC beams, the AE source kinematics are determined by 'SiGMA' procedure for AE moment tensor analysis. By using 'SiGMA' procedure, AE source kinematics, such as source locations, crack types, crack orientations and crack motions, can be identified. The results show the applicability to observation of the fracture process under cyclic bending load and evaluation the degree of damage of RC beam.

  19. Correlating Inertial Acoustic Cavitation Emissions with Material Erosion Resistance

    Science.gov (United States)

    Ibanez, I.; Hodnett, M.; Zeqiri, B.; Frota, M. N.

    The standard ASTM G32-10 concerns the hydrodynamic cavitation erosion resistance of materials by subjecting them to acoustic cavitation generated by a sonotrode. The work reported extends this technique by detecting and monitoring the ultrasonic cavitation, considered responsible for the erosion process, specifically for coupons of aluminium-bronze alloy. The study uses a 65 mm diameter variant of NPL's cavitation sensor, which detects broadband acoustic emissions, and logs acoustic signals generated in the MHz frequency range, using NPL's Cavimeter. Cavitation readings were made throughout the exposure duration, which was carried out at discrete intervals (900 to 3600 s), allowing periodic mass measurements to be made to assess erosion loss under a strict protocol. Cavitation measurements and erosion were compared for different separations of the sonotrode tip from the material under test. The maximum variation associated with measurement of cavitation level was between 2.2% and 3.3% when the separation (λ) between the transducer horn and the specimen increased from 0.5 to 1.0 mm, for a transducer (sonotrode) displacement amplitude of 43.5 μm. Experiments conducted at the same transducer displacement amplitude show that the mass loss of the specimen -a measure of erosion- was 67.0 mg (λ = 0.5 mm) and 66.0 mg (λ = 1.0 mm).

  20. Compaction of a Bed of Fragmentable Particles and Associated Acoustic Emission

    International Nuclear Information System (INIS)

    Hegron, L.; Sornay, P.; Favretto-Cristini, N.

    2013-06-01

    The nuclear fuel of light water power reactors are manufactured by powder metallurgy. This is also the method that is used for the production of fuels containing minor actinides that have high activity and long life. Given their radiotoxicity, it is necessary to simplify the manufacturing process to the maximum, limiting dissemination and retention of matter. In addition, the fuel must have a mostly open porosity. Implementation of particles of a few hundred micrometers and controlled cohesion could meet this dual objective. However, it should be ensured that the mechanical strength of compacts before sintering is sufficient without adding binder. The phenomena that occur during the manufacture of compact are thus analyzed and quantified. It is shown that only a portion of the particles breaks upon application of a stress up to 600 MPa and it is possible to detect this fragmentation by acoustic emission (AE). (authors)

  1. Acoustic emission in a superconductor (Nb-Ti) during magnetic field and current sweep

    International Nuclear Information System (INIS)

    Nomura, Harehiko

    1980-01-01

    Though superconducting magnets are indispensable in the fields of nuclear fusion, MHD power generation, high energy technology, and the trains using magnetic levitation, the safety of the magnets used for those fields is required to be fully investigated because their accumulating energy reaches up to several GJ. For this purpose, the improvement of monitoring techniques is extremely important to grasp exactly the magnetization of such large energy magnets. Although the detection of the terminal voltage of the magnets has been mainly used so far, the purpose has not yet been fulfilled because various phenomena appear in the form of noises in the terminal voltage. The authors have found the monitoring method using acoustic emission in a system completely independent from voltage observation. From this viewpoint, the experiments have been performed aiming at the generation of acoustic emission in conjunction with magnetization out of the fine structure of super-conductors, taking notice of the emitted sound frequency ranging over several hundred kHz. The results and investigation revealed that the superconductor itself emitted ultrasonic sound. It was found that the observation of this acoustic power intensity was able to monitor not only the magnetization of superconductors but also its current sweep. Since the motion of the magnetic flux is converted into the signal of acoustic field, this measuring method is less affected by noise disturbance from electromagnetic systems, and is expected to be useful for the researches on analyzing superconductor characteristics. (Wakatsuki, Y.)

  2. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    International Nuclear Information System (INIS)

    Ludwig, Benno

    2009-01-01

    decreasing cooling rates. In the case of Au 50.5 Cd 49.5 , by contrast, the low rates allow aging to become significant. This leads to higher energy barriers and, as a consequence, to stronger acoustic emission signals. The excellent agreement of this result with a model introduced by Otsuka et al. [127], suggests that aging should be included into the framework of driving rate effects in avalanche-mediated phase transitions [135]. In contrast to what has been stated earlier [20, 172], the author concludes that only the detection of rate-dependent acoustic activity or the detection of incubation times are necessary and sufficient conditions for time-dependent dynamics. Rate-dependent exponents are a sufficient but not necessary condition for time-dependent behavior. The determination of power law exponents has been proven to be a reliable tool for the characterization of the transition dynamics and associated energy barriers, because the exponents are robust and do not depend on experimental details. This observation reveals a close relation to the concept of self organized criticality [9]. In this work it has been shown for the first time by the evaluation of power law exponents how an applied magnetic field alters energy barriers during structural transitions of magnetic shape memory alloys. Depending on the symmetry of the product phase opposing results can be found: The symmetry-breaking process of a martensitic transition under an applied magnetic field leads to an increase of the activity due to a twofold process, including phase and twin boundary motion. Furthermore, the application of a magnetic field breaks the degeneracy, which leads to larger constraints reflected in stronger signals due to the satisfaction of the invariant habit plane condition. By contrast, less acoustic activity and weaker signals appear in association with the symmetry-conserving premartensitic transition under an applied field. The application of a field leads to an alignment of the magnetic

  3. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Benno

    2009-09-24

    intrinsic disorder leads to a lower acoustic activity and weaker signals under decreasing cooling rates. In the case of Au{sub 50.5}Cd{sub 49.5}, by contrast, the low rates allow aging to become significant. This leads to higher energy barriers and, as a consequence, to stronger acoustic emission signals. The excellent agreement of this result with a model introduced by Otsuka et al. [127], suggests that aging should be included into the framework of driving rate effects in avalanche-mediated phase transitions [135]. In contrast to what has been stated earlier [20, 172], the author concludes that only the detection of rate-dependent acoustic activity or the detection of incubation times are necessary and sufficient conditions for time-dependent dynamics. Rate-dependent exponents are a sufficient but not necessary condition for time-dependent behavior. The determination of power law exponents has been proven to be a reliable tool for the characterization of the transition dynamics and associated energy barriers, because the exponents are robust and do not depend on experimental details. This observation reveals a close relation to the concept of self organized criticality [9]. In this work it has been shown for the first time by the evaluation of power law exponents how an applied magnetic field alters energy barriers during structural transitions of magnetic shape memory alloys. Depending on the symmetry of the product phase opposing results can be found: The symmetry-breaking process of a martensitic transition under an applied magnetic field leads to an increase of the activity due to a twofold process, including phase and twin boundary motion. Furthermore, the application of a magnetic field breaks the degeneracy, which leads to larger constraints reflected in stronger signals due to the satisfaction of the invariant habit plane condition. By contrast, less acoustic activity and weaker signals appear in association with the symmetry-conserving premartensitic transition

  4. Inspection of nuclear reactor welding by acoustic emission

    International Nuclear Information System (INIS)

    Prine, D.W.

    1977-01-01

    The objective of the work described is to evaluate in-process acoustic emission weld monitoring with the goal of upgrading the inspection techniques for assuring better weld quality in nuclear reactor piping and pressure vessels. To accomplish this overall objective, the following specific goals have been set within a three year program: (1) prove the feasibility of in-process AE under shop conditions and validate the AE findings by currently acceptable NDE techniques; (2) develop and build a prototype monitor for use in Nuclear Fabrication shops; and (3) provide data for NRC/ASME acceptance of the inspection practice

  5. An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks

    Science.gov (United States)

    Zheng, Jing; Lu, Jiren; Peng, Suping; Jiang, Tianqi

    2018-02-01

    The conventional arrival pick-up algorithms cannot avoid the manual modification of the parameters for the simultaneous identification of multiple events under different signal-to-noise ratios (SNRs). Therefore, in order to automatically obtain the arrivals of multiple events with high precision under different SNRs, in this study an algorithm was proposed which had the ability to pick up the arrival of microseismic or acoustic emission events based on deep recurrent neural networks. The arrival identification was performed using two important steps, which included a training phase and a testing phase. The training process was mathematically modelled by deep recurrent neural networks using Long Short-Term Memory architecture. During the testing phase, the learned weights were utilized to identify the arrivals through the microseismic/acoustic emission data sets. The data sets were obtained by rock physics experiments of the acoustic emission. In order to obtain the data sets under different SNRs, this study added random noise to the raw experiments' data sets. The results showed that the outcome of the proposed method was able to attain an above 80 per cent hit-rate at SNR 0 dB, and an approximately 70 per cent hit-rate at SNR -5 dB, with an absolute error in 10 sampling points. These results indicated that the proposed method had high selection precision and robustness.

  6. Passive acoustic monitoring of bed load for fluvial applications

    Science.gov (United States)

    The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...

  7. Monitoring of temperature fatigue failure mechanism for polyvinyl alcohol fiber concrete using acoustic emission sensors.

    Science.gov (United States)

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed.

  8. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    Science.gov (United States)

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  9. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    Directory of Open Access Journals (Sweden)

    Eber Huanca Cayo

    2012-05-01

    Full Text Available The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  10. Acoustic emission as a screening tool for ceramic matrix composites

    Science.gov (United States)

    Ojard, Greg; Goberman, Dan; Holowczak, John

    2017-02-01

    Ceramic matrix composites are composite materials with ceramic fibers in a high temperature matrix of ceramic or glass-ceramic. This emerging class of materials is viewed as enabling for efficiency improvements in many energy conversion systems. The key controlling property of ceramic matrix composites is a relatively weak interface between the matrix and the fiber that aids crack deflection and fiber pullout resulting in greatly increased toughness over monolithic ceramics. United Technologies Research Center has been investigating glass-ceramic composite systems as a tool to understand processing effects on material performance related to the performance of the weak interface. Changes in the interface have been shown to affect the mechanical performance observed in flexural testing and subsequent microstructural investigations have confirmed the performance (or lack thereof) of the interface coating. Recently, the addition of acoustic emission testing during flexural testing has aided the understanding of the characteristics of the interface and its performance. The acoustic emission onset stress changes with strength and toughness and this could be a quality tool in screening the material before further development and use. The results of testing and analysis will be shown and additional material from other ceramic matrix composite systems may be included to show trends.

  11. A Practical Method of Acoustic Emission Source Location in Anisotropic Composite Laminates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Kon; Kang, Yong Kyu; Kwon, Oh Yang [Inha University, Incheon (Korea, Republic of)

    2003-06-15

    Since the velocity is dependent on the fiber orientation in anisotropic composites, the application of traditional acoustic emission (AE) source location techniques based on the constant velocity to composite structures has been practically impossible. The anisotropy makes the source location procedure complicated and deteriorates the accuracy of the location. In this study, we have divided the region of interest(ROI) into a set of finite elements, taken each element as a virtual source, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. The calculated and the experimentally measured values of the arrival time difference aye then compared to minimize the location error. The results from two different materials, namely AA6061-T6 and CFRP(uni-directional; UD, [0]{sub 32}4 ) laminate confirmed the practical usefulness of the proposed method

  12. Progress toward acoustic emission characterization for continuous monitoring of reactor pressure vessels

    International Nuclear Information System (INIS)

    Hutton, P.H.; Schwenk, E.B.; Kurtz, R.J.

    1980-01-01

    The purpose of this work is to evaluate the feasibility of detecting and analyzing flaw growth in an operating reactor vessel using acoustic emission (AE) data. A preliminary AE-flaw growth relationship has been developed encompassing six variables. This model relates AE count and energy to fatigue crack driving force ΔK. Pattern recognition has been examined as a means of distinguishing crack growth AE from other acoustic signals with encouraging results. The program is moving into hardware implementation of relationships for testing and refinement by monitoring tests in heavy section specimens and subscale structures. The hardware system will become a reactor monitor prototype. (orig.) [de

  13. Acoustic Research on the Damage Mechanism of Carbon Fiber Composite Materials

    Science.gov (United States)

    Wang, Bing; Liu, Yanlei; Sheng, Shuiping

    This thesis involves the study about different processes including the tensile fracture, inter-layer tear or avulsion, as well as the interlaminar shear or split regarding carbon fiber composite materials with the aid of acoustic emission technique. Also, various acoustic emission signals that are released by composite samples in the process of fracture are analyzed. As is indicated by the test results, different acoustic emissive signals that are released by carbon fiber layers in various stages of damage and fracture bear different characteristics. Acoustic detection can effectively monitor the whole stage of elastic deformation, the damage development, and even the accumulation process while figuring out in an efficient manner about the internal activities of the composites, plus the diverse types of damages. In addition, its fabulous application value lies in its relevant structural evaluation as well as the evaluation of integrity with regard to carbon fiber composite.

  14. Leak detection evaluation of boiler tube for power plant using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Nam, Ki Woo

    2001-01-01

    Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. And also the automatic control facilities controlling the main equipment are at the applying step of the localization. and many parts of BOP(Balance Of Plant) equipment are utilizing, localized. But because the special equipment monitoring the operation status of the main facilities such as boiler and turbine are still dependent upon foreign technology and especially boiler tube leak detection system is under the initial step of first application to newly-constructed plants and the manufacturing and application are done by foreign techniques mostly, fast localization development is required. Therefore, so as to study and develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, acoustic emission(AE) signal analysis and discrimination etc. As a result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power generation facilities.

  15. Monitoring the viscosity of diesel engine lubricating oil by using acoustic emission technique, the selection of measurement parameters

    International Nuclear Information System (INIS)

    Othman Inayatullah; Nordin Jamaludin; Fauziah Mat

    2009-04-01

    Acoustic emission technique has been developed through years of monitoring and diagnosis of bearing, but it is still new in the diagnosis and monitoring of lubrication oil to bearings drive. The propagation of acoustic emission signal is generated when the signal piston on the cylinder liner lubricating oil which is a par. The signal is analyzed in time domain to obtain the parameters of root mean squared, amplitude, energy and courtesy. Lubricant viscosity will undergo changes due to temperature, pressure and useful. This study focuses on the appropriate parameters for the diagnosis and monitoring of lubricating oil viscosity. Studies were conducted at a constant rotational speed and temperature, but use a different age. The results showed that the energy parameter is the best parameter used in this monitoring. However, this parameter cannot be used directly and it should be analyzed using mathematical formulas. This mathematical formula is a relationship between acoustic emission energy with the viscosity of lubricating oil. (author)

  16. Measurement of effective solvus temperature of hydrogen in Zr - 2. 5 wt % Nb using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C.E.; Ambler, J.F.R.

    1978-01-01

    The effect of applied tensile stress on the solvus temperature of hydrogen in cold-worked Zr - 2.5 wt % Nb has been measured using acoustic emission. Hydrides are necessary for delayed hydrogen cracking and the lowest temperature at which hydride cracking cannot be detected by acoustic emission was taken as the solvus temperature. The results show that any effect of tensile stress on terminal solubility, Cs, is undetectable. Between about 2 and 100 ppM hydrogen, the results can be described by: C/sub s/ = 1.40 x 10/sup 5/ exp - (36100/RT) ppM. They also suggest that the equilibrium phase, delta-hydride, is responsible for delayed hydrogen cracking.

  17. Monitoring of martensite formation during welding by means of acoustic emission

    International Nuclear Information System (INIS)

    Bohemen, S.M.C. van; Hermans, M.J.M.; Ouden, G. den

    2001-01-01

    The martensitic transformation during gas tungsten arc (GTA) welding of steel 42CrMo4 has been studied using the acoustic emission (AE) monitoring technique. Welds were produced under static conditions (spot welding) and under stationary conditions (travelling arc welding). After spot welding, the root mean square (RMS) value of the continuous acoustic emission was measured, revealing a peak that reflects the evolution of martensite formation during cooling of the spot weld. The RMS value was also measured during travelling arc welding at different heat inputs and corrected for the noise of the welding process to obtain the RMS value due to martensite formation. After welding, optical metallography was carried out to quantify the amount of martensite formed during cooling of the weld. An analysis of the results shows that the squared RMS value is proportional to the volume rate of martensite formation during welding, which is consistent with theory and in good agreement with the results obtained in the case of spot welding. The obtained results suggest that AE can be applied as a real time monitoring technique for the detection of martensite formation during steel welding. (author)

  18. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.

    Science.gov (United States)

    Wiklund, Martin; Green, Roy; Ohlin, Mathias

    2012-07-21

    In part 14 of the tutorial series "Acoustofluidics--exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation", we provide a qualitative description of acoustic streaming and review its applications in lab-on-a-chip devices. The paper covers boundary layer driven streaming, including Schlichting and Rayleigh streaming, Eckart streaming in the bulk fluid, cavitation microstreaming and surface-acoustic-wave-driven streaming.

  19. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Directory of Open Access Journals (Sweden)

    Tongzhi Zhang

    2016-11-01

    Full Text Available We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  20. Research on Relationship Between Parameters Correlation of Acoustic Emission and Rock Failure

    Directory of Open Access Journals (Sweden)

    Duan Dong

    2014-12-01

    Full Text Available Analyzes that granite AE signal parameters under uniaxial loading by that way of Pearson linear correlation, research that correlation of characterization parameters within that separate group with various characteristics, and analyzes that relationship between each parameter and destruction. This study shows that: impact, events and ringing are mainly used to describe the damage degree of rock, amplitude characteristics, time characteristics and frequency characteristics are mainly used for acoustic emission source properties, and energy characteristics can not only be used to describe the damage degree of rock, but also be used to analyze the acoustic emission source. That ringing counts are highly interrelated with energy, intensity, duration, RMS and ASL have high correlation, a high correlation is in the three parameters of the energy characteristics, and there is a higher correlation between the two parameters of the timing characteristics. The correlation between the parameters of frequency is very low, and the acoustic emission parameters can't be replaced for each other in analysis, which need separate analysis. Characteristics of ringing and energy can be a very good description of failure, but failure precursors can't be quantized. However, the amplitude, RMS, ASL, can quantify characterization of that precursor of failure, such as the effective voltage value 0.7 V as the precursor of destruction, the emergence of amplitude exceeding 95 dB as that destructive precursor. The relationship between the timing characteristics and damage is not obvious, so you can't use those parameters analysis that fracture of rocks. But those parameters can be used to describe AE source characteristics. The peak frequency, inverse frequency and the center frequency can't reflect AE source characteristics, and that average frequency and initial frequency can reflect AE source characteristics.

  1. Development of an acoustic emission equipment for valves of the Nuclear Power Station Atucha 1

    International Nuclear Information System (INIS)

    Giaccheta, R.; Lopez Pumarega, I.; Straus, A.; Ruzzante, J.; Herzovich, P.

    1994-01-01

    A four channel Acoustic Emission was developed by the Acoustic Emission Group, INEND Department, of the Atomic Energy Commission of Argentina, for the detection of leaks in valves of the pressurized air system: ''Sistema de desconexion de emergencias por acido deuteroborico''. Basically, the system consists of four piezoelectric transducers with their corresponding preamplifiers coupled to the piping close to the valves. The following stages: amplifiers, threshold levels, channel identifications and visual alarm system are gathered in a box. The system was installed in the controlled zone of the Nuclear Power Stations Atucha I. It was calibrated and works on line. The values shown on the display are registered daily in order to separate the normal values from the leak ones. (author). 4 refs, 9 figs

  2. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Francisco J. Rescalvo

    2018-04-01

    Full Text Available This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes, reinforced using carbon composite materials (CFRP. Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE sensors. Results demonstrate that: (1 the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness; (2 Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  3. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    Science.gov (United States)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  4. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors.

    Science.gov (United States)

    Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino

    2018-04-17

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  5. Fatigue crack propagation of super duplex stainless steel and time-frequency analysis of acoustic emission

    International Nuclear Information System (INIS)

    Lee, Sang Kee; Nam, Ki Woo; Kang, Chang Yong; Do, Jae Yoon

    2000-01-01

    On this study, the fatigue crack propagation of super duplex stainless steel is investigated in conditions of various volume fraction of austenite phase by changing heat treatment temperature. And we analysed acoustic emission signals during the fatigue test by time-frequency analysis methods. As the temperature of heat treatment increased, volume fraction of austenite decreased and coarse grain was obtained. The specimen heat treated at 1200 deg. C had longer fatigue life and slower rate of crack growth. As a result of time-frequency analyze of acoustic emission signals during fatigue test, main frequency was 200∼300 kHz having no correlation with heat treatment and crack length, and 500 kHz was obtained by dimple and separate of inclusion

  6. Computer-assisted acoustic emission analysis in alternating current magnetization and hardness testing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Blochwitz, M.; Kretzschmar, F.; Rattke, R.

    1985-01-01

    Non-destructive determination of material characteristics such as nilductility transition temperature is of high importance in component monitoring during long-term operation. An attempt has been made to obtain characteristics correlating with mechanico-technological material characteristics by both acoustic resonance through magnetization (ARDM) and acoustic emission analysis in Vickers hardness tests. Taking into account the excitation mechanism of acoustic emission generation, which has a quasistationary stochastic character in a.c. magnetization and a transient nature in hardness testing, a microcomputerized device has been constructed for frequency analysis of the body sound level in ARDM evaluation and for measuring the pulse sum and/or pulse rate during indentation of the test specimen in hardness evaluation. Prerequisite for evaluating the measured values is the knowledge of the frequency dependence of the sensors and the instrument system. The results obtained are presented. (author)

  7. Experimental analysis of crack evolution in concrete by the acoustic emission technique

    Directory of Open Access Journals (Sweden)

    J. Saliba

    2015-10-01

    Full Text Available The fracture process zone (FPZ was investigated on unnotched and notched beams with different notch depths. Three point bending tests were realized on plain concrete under crack mouth opening displacement (CMOD control. Crack growth was monitored by applying the acoustic emission (AE technique. In order to improve our understanding of the FPZ, the width and length of the FPZ were followed based on the AE source locations maps and several AE parameters were studied during the entire loading process. The bvalue analysis, defined as the log-linear slope of the frequency-magnitude distribution of acoustic emissions, was also carried out to describe quantitatively the influence of the relative notch depth on the fracture process. The results show that the number of AE hits increased with the decrease of the relative notch depth and an important AE energy dissipation was observed at the crack initiation in unnotched beams. In addition, the relative notch depth influenced the AE characteristics, the process of crack propagation, and the brittleness of concrete.

  8. Why and how acoustic emission in pressure vessel first hydrotest

    International Nuclear Information System (INIS)

    Panzani, C.; Tonolini, F.; Villa, G.; Regis, V.

    1985-01-01

    The main advantages obtained performing the Acoustic Emission (AE) examination during pressure vessel first hydrotest are presented. The characteristics and performance of the AE instrumentation to be used for a correct test are illustrated. The main criteria for AE source characterization (location, typical AE parameters and their correlation with pressure value), the calibration and test procedures are discussed. The ndt post-test examinations and laboratory specimen experiments are also outlined. Personnel qualification requirements are finally indicated. (Author) [pt

  9. The use of cluster analysis method for the localization of acoustic emission sources detected during the hydrotest of PWR pressure vessels

    International Nuclear Information System (INIS)

    Liska, J.; Svetlik, M.; Slama, K.

    1982-01-01

    The acoustic emission method is a promising tool for checking reactor pressure vessel integrity. Localization of emission sources is the first and the most important step in processing emission signals. The paper describes the emission sources localization method which is based on cluster analysis of a set of points depicting the emission events in the plane of coordinates of their occurrence. The method is based on using this set of points for constructing the minimum spanning tree and its partition into fragments corresponding to point clusters. Furthermore, the laws are considered of probability distribution of the minimum spanning tree edge length for one and several clusters with the aim of finding the optimum length of the critical edge for the partition of the tree. Practical application of the method is demonstrated on localizing the emission sources detected during a hydrotest of a pressure vessel used for testing the reactor pressure vessel covers. (author)

  10. Inspection of nuclear reactor welding by acoustic emission, May 1976--March 1977

    International Nuclear Information System (INIS)

    Prine, D.W.; Mathieson, T.A.

    1977-03-01

    Evaluation of acoustic emission monitoring of welds in heavy section steel under pressure vessel shop conditions is described for a nuclear pressure vessel inlet nozzle weld and a repair weld on a test pressure vessel (V-7) for ORNL. On-line analysis of the AE results indicates that both welds should be free of code rejectable flaws

  11. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.T. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA (USA))

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  12. Evaluation on damage of pipe using ultrasonic and acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung; Lee, Sang Pill; Lee, Moon Hee [Dongeui Univ., Busan (Korea, Republic of); Lee, Joon Hyun [Pusan National Univ., Busan (Korea, Republic of)

    2008-07-01

    An elastic waves like ultrasonic and acoustic emission were used to evaluate the propagating properties of the wave in pipe, and study on mode conversion of the elastic wave due to the defects on the pipe was performed. In this study an Acoustic Emission (AE) sensor was used to receive the propagated ultrasonic wave. AE technique has a advantage that it can identify the received ultrasonic wave by the analysis of the AE parameters such as count, energy, frequency, duration time and amplitude. For transmitting and receiving of the wave, an universal angle wedge was manufactured. The optimum angles for transmitting of ultrasonic wave and signal receiving at the attached AE sensor on the pipe were determined. Theoretical dispersion curve was compared with the results of the time-frequency analysis based on the wavelet transformation. The received modes showed a good agreement with theoretical one. The used ultrasonic sensor was 1MHz, and AE sensor was broadband. The artificial cracks were induced in the pipe to measure the propagation characteristics of the elastic wave for the cracks. AE parameters for the received signals were also varied with the crack types in the pipe. AE parameters of amplitude and duration time were more effective factors than the analysis of mode conversion for evaluation of the cracks in the pipe.

  13. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    International Nuclear Information System (INIS)

    Amami, Souhail; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim

    2010-01-01

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  14. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    Energy Technology Data Exchange (ETDEWEB)

    Amami, Souhail [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)], E-mail: souhail.amami@utc.fr; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)

    2010-05-15

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  15. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    Science.gov (United States)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  16. Acoustic Emission Analysis of Prestressed Concrete Structures

    Science.gov (United States)

    Elfergani, H. A.; Pullin, R.; Holford, K. M.

    2011-07-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  17. Acoustic Emission Analysis of Prestressed Concrete Structures

    International Nuclear Information System (INIS)

    Elfergani, H A; Pullin, R; Holford, K M

    2011-01-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  18. Examples and applications in long-range ocean acoustics

    International Nuclear Information System (INIS)

    Vera, M D

    2007-01-01

    Acoustic energy propagates effectively to long ranges in the ocean interior because of the physical properties of the marine environment. Sound propagation in the ocean is relevant to a variety of studies in communication, climatology and marine biology. Examples drawn from ocean acoustics, therefore, are compelling to students with a variety of interests. The dependence of sound speed on depth results in a waveguide that permits the detection of acoustic energy at ranges, in some experiments, of thousands of kilometres. This effect serves as an illustration of Snell's law with a continuously variable index of refraction. Acoustic tomography also offers a means for imaging the ocean's thermal structure, because of the dependence of sound speed on temperature. The ability to perform acoustic thermometry for large transects of the ocean provides an effective means of studying climate change. This application in an area of substantial popular attention allows for an effective introduction to concepts in ray propagation. Aspects of computational ocean acoustics can be productive classroom examples in courses ranging from introductory physics to upper-division mathematical methods courses

  19. New methods for leaks detection and localisation using acoustic emission

    International Nuclear Information System (INIS)

    Boulanger, P.

    1993-01-01

    Real time monitoring of Pressurized Water nuclear Reactor secondary coolant system tends to integrate digital processing machines. In this context, the method of acoustic emission seems to exhibit good performances. Its principle is based on passive listening of noises emitted by local micro-displacements inside a material under stress which propagate as elastic waves. The lack of a priori knowledge on leak signals leads us to go deeper into understanding flow induced noise generation. Our studies are conducted using a simple leak model depending on the geometry and the king of flow inside the slit. Detection and localization problems are formulated according to the maximum likelihood principle. For detection, the methods using a indicator of similarity (correlation, higher order correlation) seems to give better results than classical ones (rms value, envelope, filter banks). For leaks location, a large panel of classical (generalized inter-correlation) and innovative (convolution, adaptative, higher order statistics) methods of time delay estimation are presented. The last part deals with the applications of higher order statistics. The analysis of higher order estimators of a non linear non Gaussian stochastic process family, the improvement of non linear prediction performances and the optimal-order choice problem are addressed in simple analytic cases. At last, possible applications to leak signals analysis are pointed out. (authors).264 refs., 7 annexes

  20. Dynamic behaviour of magneto-acoustic emission in a grain-oriented steel

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Alexandr; Perevertov, Oleksiy; Landa, Michal

    2017-01-01

    Roč. 426, Mar (2017), s. 685-690 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G; GA ČR GA13-18993S Institutional support: RVO:68378271 ; RVO:61388998 Keywords : magneto-acoustic emission * magnetization dynamics * Barkhausen noise * surface field measurement * magnetization waveform control Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  1. Acoustic displacement sensor for harsh environment: application to SFR core support plate monitoring

    International Nuclear Information System (INIS)

    PeRISSE, J.; MACe, J.R.; VOUAGNER, P.

    2013-06-01

    The need for instrumentation able to monitor internal parameters inside reactor vessels during plant operation is getting stronger. Internal mechanical structures important for safety are concerned: for example core support plate, fuel assemblies or primary pumps. Because of very harsh environmental conditions (high temperature, pressure and radiation) and maintenance requirements, sensors are generally located on the outer shell of the vessel with, for example, strain gages, accelerometers, eddy current or US sensors. Then, some complex signal processing calculations must be performed to address internal structure behavior or health analysis but with bias effects (transfer path analysis method for example). This study will show an original displacement sensor based on an acoustic wave guide that can measure small displacement of mechanical structures inside reactor vessels. The application selected in this case is the monitoring of the core support plate for a sodium fast reactor (SFR). The wave guide - a thin tube sealed with pressurized argon gas inside - is installed inside the liquid sodium vessel (temperature between 400 deg. C to 550 deg. C). One extremity is connected to the mechanical structure for control. It includes two acoustic reflectors; such reflectors are dedicated to a calibration procedure to estimate the acoustic wave velocity whatever the temperature profile along the wave guide (velocity is temperature dependent). The opposite extremity of the wave guide is located outside the vessel and includes an emission/reception acoustic transducer. Using acoustic pulse reflectometry method, a plane wave pressure signal propagates inside the tube and reflects from the extremity and acoustic reflectors. The pulse-echo signals are recorded and processed in the frequency domain. Signal processing is performed to estimate the time of flight of pulse reflections patterns along the acoustic path. Then, monitored structure displacement - i.e. movement of the

  2. Acoustic black holes: recent developments in the theory and applications.

    Science.gov (United States)

    Krylov, Victor

    2014-08-01

    Acoustic black holes are relatively new physical objects that have been introduced and investigated mainly during the last decade. They can absorb almost 100% of the incident wave energy, and this makes them very attractive for such traditional engineering applications as vibration damping in different engineering structures and sound absorption in gases and liquids. They also could be useful for some ultrasonic devices using Lamb wave propagation to provide anechoic termination for such waves. So far, acoustic black holes have been investigated mainly for flexural waves in thin plates, for which the required gradual changes in local wave velocity with distance can be easily achieved by changing the plates' local thickness. The present paper provides a brief review of the theory of acoustic black holes, including their comparison with optic black holes introduced about five years ago. Review is also given of the recent experimental work carried out at Loughborough University on damping structural vibrations using the acoustic black hole effect. This is followed by the discussion on potential applications of the acoustic black hole effect for sound absorption in air.

  3. Acoustic Emission Assessment of Impending Fracture in a Cyclically Loading Structural Steel

    Directory of Open Access Journals (Sweden)

    Igor Rastegaev

    2016-11-01

    Full Text Available Using the advanced acoustic emission (AE technique, we address the problem of early identification of crack initiation and growth in ductile structural steels under cyclic loading. The notched 9MnSi5 steel specimens with weld joints were fatigue tested at room and lower temperatures with concurrent AE measurements. Detection of AE in ductile materials where fatigue crack initiation and propagation is mediated by local dislocation behavior ahead of the notch or crack tip is challenging because of an extremely low amplitude of the AE signal. With account of this issue, two new practically oriented criteria for recognition of different stages of fatigue are proposed on the basis of AE data: (1 a power spectrum-based criterion and (2 a pattern recognition-based criterion utilizing modern clustering algorithms. The applicability of both criteria is verified using obtained AE data. A good correspondence between AE outcomes and experimental observations of the fatigue behavior was obtained and is discussed.

  4. Preliminary studies for monitoring erosion in pipelines by the acoustic emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiboni, G.B. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Mecanica e de Materiais; Marquardt, T.A.S; SantaMaria, V.A.R.; Silva, C.H. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    The aim of this work is to present some applications of Acoustic Emission (AE), which is a powerful technique for nondestructive testing in Tribology, treated here as tests of friction, wear by contact fatigue, wear by slip and wear by erosion. In this work a special attention is given to solid particle erosion and hydro-abrasive erosion, problems found in almost every pipeline that lead to local loss of material and eventually rupture of the line. The technique of AE can be used as an efficient online tool when, primarily, to monitor tribological aspects such as the rate of wear of materials, as well as detect the spread of flaws in them. In wear by erosion, specifically, the parameters of RMS and acoustic energy are capable of correlation with the type of mechanism for removal of material. As a preliminary goal, erosive tests were performed with gas (air) without erosive particles, monitored by AE, varying the surface of the samples and the internal diameter the nozzle, taking the differences in signs of AE. Correlation between parameters of RMS and amplitude were noticed with the variables of the tests, such as roughness and fluid velocity. The RMS parameter showed a exponential correction with the fluid velocity, however the amplitude signals had a linear behavior. The knowledge of these parameters is essential for the development of a system that is able to quantify the wear rate of a pipeline without taking it out of operation. (author)

  5. Evaluation of Acoustic Emission NDE of Kevlar Composite Over Wrapped Pressure Vessels

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2008-01-01

    Pressurization and failure tests of small Kevlar/epoxy COPV bottles were conducted during 2006 and 2007 by Texas Research Institute Austin, Inc., at TRI facilities. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. Results of some of the tests indicate a possibility that AE can be used to track the stress-rupture degradation of COPV vessels.

  6. Acoustic array systems theory, implementation, and application

    CERN Document Server

    Bai, Mingsian R; Benesty, Jacob

    2013-01-01

    Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applic

  7. Acoustic Emission Source Location Using a Distributed Feedback Fiber Laser Rosette

    Directory of Open Access Journals (Sweden)

    Fang Li

    2013-10-01

    Full Text Available This paper proposes an approach for acoustic emission (AE source localization in a large marble stone using distributed feedback (DFB fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location.

  8. Experimental investigation of acoustic emissions and their moment tensors in rock during failure

    Czech Academy of Sciences Publication Activity Database

    Aker, E.; Kühn, D.; Vavryčuk, Václav; Soldal, M.; Oye, V.

    2014-01-01

    Roč. 70, September (2014), s. 286-295 ISSN 1365-1609 R&D Projects: GA ČR(CZ) GAP210/12/1491 EU Projects: European Commission(XE) 230669 - AIM Institutional support: RVO:67985530 Keywords : acoustic emissions * focal mechanisms * moment tensors * rock fracturing * hoop stresses * laboratory experiment Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.686, year: 2014

  9. A review of the application Acoustic Emission (AE) incorporating mechanical approach to monitor Reinforced concrete (RC) strengthened with Fiber Reinforced Polymer (FRP) properties under fracture

    Science.gov (United States)

    Syed Mazlan, S. M. S.; Abdullah, S. R.; Shahidan, S.; Noor, S. R. Mohd

    2017-11-01

    Concrete durability may be affected by so many factors such as chemical attack and weathering action that reduce the performance and the service life of concrete structures. Low durability Reinforced concrete (RC) can be greatly improved by using Fiber Reinforce Polymer (FRP). FRP is a commonly used composite material for repairing and strengthening RC structures. A review on application of Acoustic Emission (AE) techniques of real time monitoring for various mechanical tests for RC strengthened with FRP involving four-point bending, three-point bending and cyclic loading was carried out and discussed in this paper. Correlations between each AE analyses namely b-value, sentry and intensity analysis on damage characterization also been critically reviewed. From the review, AE monitoring involving RC strengthened with FRP using b-value, sentry and intensity analysis are proven to be successful and efficient method in determining damage characterization. However, application of AE analysis using sentry analysis is still limited compared to b-value and intensity analysis in characterizing damages especially for RC strengthened with FRP specimen.

  10. Qualitative internal surface roughness classification using acoustic emission

    International Nuclear Information System (INIS)

    Mohd Hafizi Zohari; Mohd Hanif Saad

    2009-04-01

    This paper describes a novel new nondestructive method of qualitative internal surface roughness classification for pipes utilizing Acoustic Emission (AE) signal. Two different flowrate are introduced in a pipe obstructed using normally available components (e.g.: valve). The AE signal at suitable location from the obstruction are obtained and the peak amplitudes, RMS amplitude and energy of the AE signal are obtained. A dimensionless number, the Bangi Number, AB, is then calculated as a ratio of the AE parameters (peak amplitude, RMS amplitude or energy) in low flowrate measurement compared to the AE parameters in high flowrate measurement. It was observed that the Bangi Number, AB obtained can then be used to successfully discriminate between rough and smooth internal surface roughness. (author)

  11. Application of the selected physical methods in biological research

    Directory of Open Access Journals (Sweden)

    Jaromír Tlačbaba

    2013-01-01

    Full Text Available This paper deals with the application of acoustic emission (AE, which is a part of the non-destructive methods, currently having an extensive application. This method is used for measuring the internal defects of materials. AE has a high potential in further research and development to extend the application of this method even in the field of process engineering. For that matter, it is the most elaborate acoustic emission monitoring in laboratory conditions with regard to external stimuli. The aim of the project is to apply the acoustic emission recording the activity of bees in different seasons. The mission is to apply a new perspective on the behavior of colonies by means of acoustic emission, which collects a sound propagation in the material. Vibration is one of the integral part of communication in the community. Sensing colonies with the support of this method is used for understanding of colonies biological behavior to stimuli clutches, colony development etc. Simulating conditions supported by acoustic emission monitoring system the illustrate colonies activity. Collected information will be used to represent a comprehensive view of the life cycle and behavior of honey bees (Apis mellifera. Use of information about the activities of bees gives a comprehensive perspective on using of acoustic emission in the field of biological research.

  12. Applications of antireflection coatings in sonic crystal-based acoustic devices

    International Nuclear Information System (INIS)

    Wang Yun; Deng Ke; Xu Shengjun; Qiu Chunyin; Yang Hai; Liu Zhengyou

    2011-01-01

    The unwanted reflection seriously baffles the practical applications of sonic crystals, such as for various acoustic lenses designed by utilizing the in-band properties of sonic crystals. Herein we introduce the concept of the antireflection coating into the sonic crystal-based devices. The efficiency of such accessorial structures is demonstrated well by an originally high reflection system. Promising perspectives can be anticipated in extending the antireflection coating layers into more general acoustic applications through a flexible design process.

  13. Computational simulation in architectural and environmental acoustics methods and applications of wave-based computation

    CERN Document Server

    Sakamoto, Shinichi; Otsuru, Toru

    2014-01-01

    This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.  

  14. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    OpenAIRE

    Wen, Zhijie; Wang, Xiao; Chen, Lianjun; Lin, Guan; Zhang, Hualei

    2017-01-01

    Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE), which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the i...

  15. Study on Leak Detection of the Pipeline System by Acoustic Emission

    International Nuclear Information System (INIS)

    Yoon, D. J.; Kim, C. J.

    1987-01-01

    Leak detection testing for the pipeline system was performed by the acoustic emission method. It was found that the detected signal spectrum was influenced by the frequency response of sensors and pressure changes. AE parameters and frequency spectrum distributions were used to analyze the leak signals. The slope rise time of AE parameters were the important factors for distinguishing leak signals. The amplitude of leak signal was more affected by the changes of leak, rate and pressure than those of leak type

  16. Acoustic signal emission monitoring as a novel method to predict steam pops during radiofrequency ablation: preliminary observations.

    Science.gov (United States)

    Chik, William W B; Kosobrodov, Roman; Bhaskaran, Abhishek; Barry, Michael Anthony Tony; Nguyen, Doan Trang; Pouliopoulos, Jim; Byth, Karen; Sivagangabalan, Gopal; Thomas, Stuart P; Ross, David L; McEwan, Alistair; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-04-01

    Steam pop is an explosive rupture of cardiac tissue caused by tissue overheating above 100 °C, resulting in steam formation, predisposing to serious complications associated with radiofrequency (RF) ablations. However, there are currently no reliable techniques to predict the occurrence of steam pops. We propose the utility of acoustic signals emitted during RF ablation as a novel method to predict steam pop formation and potentially prevent serious complications. Radiofrequency generator parameters (power, impedance, and temperature) were temporally recorded during ablations performed in an in vitro bovine myocardial model. The acoustic system consisted of HTI-96-min hydrophone, microphone preamplifier, and sound card connected to a laptop computer. The hydrophone has the frequency range of 2 Hz to 30 kHz and nominal sensitivity in the range -240 to -165 dB. The sound was sampled at 96 kHz with 24-bit resolution. Output signal from the hydrophone was fed into the camera audio input to synchronize the video stream. An automated system was developed for the detection and analysis of acoustic events. Nine steam pops were observed. Three distinct sounds were identified as warning signals, each indicating rapid steam formation and its release from tissue. These sounds had a broad frequency range up to 6 kHz with several spectral peaks around 2-3 kHz. Subjectively, these warning signals were perceived as separate loud clicks, a quick succession of clicks, or continuous squeaking noise. Characteristic acoustic signals were identified preceding 80% of pops occurrence. Six cardiologists were able to identify 65% of acoustic signals accurately preceding the pop. An automated system identified the characteristic warning signals in 85% of cases. The mean time from the first acoustic signal to pop occurrence was 46 ± 20 seconds. The automated system had 72.7% sensitivity and 88.9% specificity for predicting pops. Easily identifiable characteristic acoustic emissions

  17. Feasibility of evaluating the integrity of FTR duct to end fixture welds using acoustic emission monitoring

    International Nuclear Information System (INIS)

    Trantow, R.L.

    1975-11-01

    A method of applying real-time acoustic emission (AE) source location to evaluate the integrity of duct-to-end fixture welds was developed and evaluated using the HEDL R8-4 AE monitor coupled with a PDP-8e minicomputer. Operational software was developed to control the system's data acquisition, storage, and display functions. Performance was evaluated on the basis of comparisons between AE source location data and subsequent destructive examination of six duct-to-transition ring qualification welds. Ten separate discontinuities seen in the metallography performed at 35 locations along these welds correlated with the averaged acoustic emission activity revealed by the AE source location maps. This relationship is not presently considered to be usable as a system calibration method however, because of the limited range of discontinuity lengths (from 0.0003 to 0.004 in. long) that were correlated. The presence of six other discontinuities, found in regions showing low levels of emission activity, indicated that significant stress risers can go undetected under the conditions investigated

  18. Digital sonar design in underwater acoustics principles and applications

    CERN Document Server

    Li, Qihu

    2012-01-01

    "Digital Sonar Design in Underwater Acoustics Principles and Applications" provides comprehensive and up-to-date coverage of research on sonar design, including the basic theory and techniques of digital signal processing, basic concept of information theory, ocean acoustics, underwater acoustic signal propagation theory, and underwater signal processing theory. This book discusses the general design procedure and approaches to implementation, the design method, system simulation theory and techniques, sonar tests in the laboratory, lake and sea, and practical validation criteria and methods for digital sonar design. It is intended for researchers in the fields of underwater signal processing and sonar design, and also for navy officers and ocean explorers. Qihu Li is a professor at the Institute of Acoustics, Chinese Academy of Sciences, and an academician of the Chinese Academy of Sciences.

  19. Online monitoring of Accessories for Underground Electrical Installations through Acoustics Emissions

    Directory of Open Access Journals (Sweden)

    Casals-Torrens P.

    2012-04-01

    Full Text Available The acoustic waves caused by Partial Discharges inside the dielectric materials, can be detected by acoustic emission (AE sensors and analyzed in the time domain. The experimental results presented, show the online detection capability of these sensors in the environment near a cable accessory, such as a splice or terminal. The AE sensors are immune to electromagnetic interference and constitute a detection method non-intrusive and non-destructive, which ensures a galvanic decoupling with respect to electric networks, this technique of partial discharge detection can be applied as a test method for preventive or predictive maintenance (condition-based maintenance to equipments or facilities of medium and high voltage in service and represents an alternative method to electrical detection systems, conventional or not, that continue to rely on the detection of current pulses. This paper presents characterization tests of the sensors AE through comparative tests of partial discharge on accessories for underground power cables.

  20. Mechanical Properties and Acoustic Emission Properties of Rocks with Different Transverse Scales

    OpenAIRE

    Yan, Xi; Jun, Li; Gonghui, Liu; Xueli, Guo

    2017-01-01

    Since the stability of engineering rock masses has important practical significance to projects like mining, tunneling, and petroleum engineering, it is necessary to study mechanical properties and stability prediction methods for rocks, cementing materials that are composed of minerals in all shapes and sizes. Rocks will generate acoustic emission during damage failure processes, which is deemed as an effective means of monitoring the stability of coal rocks. In the meantime, actual mining a...

  1. STUDIES OF ACOUSTIC EMISSION SIGNATURES FOR QUALITY ASSURANCE OF SS 316L WELDED SAMPLES UNDER DYNAMIC LOAD CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. V. RANGANAYAKULU

    2016-10-01

    Full Text Available Acoustic Emission (AE signatures of various weld defects of stainless steel 316L nuclear grade weld material are investigated. The samples are fabricated by Tungsten Inert Gas (TIG Welding Method have final dimension of 140 mm x 15 mm x 10 mm. AE signals from weld defects such as Pinhole, Porosity, Lack of Penetration, Lack of Side Fusion and Slag are recorded under dynamic load conditions by specially designed mechanical jig. AE features of the weld defects were attained using Linear Location Technique (LLT. The results from this study concluded that, stress release and structure deformation between the sections in welding area are load conditions major part of Acoustic Emission activity during loading.

  2. Background noise of acoustic emission signals in sodium piping loop

    International Nuclear Information System (INIS)

    Mori, Y.; Aoki, K.; Kuribayashi, K.; Kishi, T.; Sakakibara, Y.

    1985-01-01

    Background noise measurement in the frequency range of acoustic emission (AE) signals was made on the sodium piping loops of a 50 MW steam generator test facility in the Power Reactor and Nuclear Fuel Development Corporation (PNC). During the dynamic characteristics test of the steam generator over a wide range of operating conditions, the background noise generated on the pipe surface was measured using wideband AE sensor externally mounted with waveguide. Data were obtained for the effect of power loads of steam generator on both amplitude and frequency spectra of background noise signals. Source and nature of background noise were established

  3. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    KAUST Repository

    Zhou, Wei

    2015-07-12

    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  4. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    International Nuclear Information System (INIS)

    Torres-Arredondo, M-A; Fritzen, C-P; Tibaduiza, D-A; Mujica, L E; Rodellar, J; McGugan, M; Toftegaard, H; Borum, K-K

    2013-01-01

    Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures. (paper)

  5. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy and Implications for Composite Structures

    Science.gov (United States)

    Waller, J. M.; Nichols, C. T.; Wentzel, D. J.; Saulsberry R. L.

    2010-01-01

    Broad-band modal acoustic emission (AE) data was used to characterize micromechanical damage progression in uniaxial IM7 and T1000 carbon fiber-epoxy tows and an IM7 composite overwrapped pressure vessel (COPV) subjected to an intermittent load hold tensile stress profile known to activate the Felicity ratio (FR). Damage progression was followed by inspecting the Fast Fourier Transforms (FFTs) associated with acoustic emission events. FFT analysis revealed the occurrence of cooperative micromechanical damage events in a frequency range between 100 kHz and 1 MHz. Evidence was found for the existence of a universal damage parameter, referred to here as the critical Felicity ratio, or Felicity ratio at rupture (FR*), which had a value close to 0.96 for the tows and the COPV tested. The implications of using FR* to predict failure in carbon/epoxy composite materials and related composite components such as COPVs are discussed. Trends in the FFT data are also discussed; namely, the difference between the low and high energy events, the difference between early and late-life events, comparison of IM7 and T1000 damage progression, and lastly, the similarity of events occurring at the onset of significant acoustic emission used to calculate the FR.

  6. Relationship of acoustic emission to the kinetics and micromechanism of fatigue failure of high-strength steel with a martensitic structure

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Kirillov, K.I.; Zima, Yu.V.; Nikiforchin, G.N.

    1987-01-01

    Techniques and results are presented for the rules of change in acoustic emission in fatigue crack propagation in hardened and low-temperature tempered 40Kh steel intended, in this study, for use as a reactor material. The results of the acoustic measurements are compared with data of quantitative aimed microfractography conducted during mechanical fracture tests

  7. Lightweight acoustic treatments for aerospace applications

    Science.gov (United States)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their

  8. An investigation of thermal and deformation properties of quartzite at the temperature interval of polymorphic α - β transition by neutron diffraction and acoustic emission

    International Nuclear Information System (INIS)

    Nikitin, A.N.; Vasin, R.N.; Balagurov, A.M.; Sobolev, G.A.; Ponomarev, A.V.

    2006-01-01

    The results of complex application of neutron diffraction and acoustic emission for investigation of the physical properties of synthetic quartz and natural quartzite at the temperature interval of α-β transition are given. During the experiments the quartzite sample was exposed to heating and also to uniaxial compression. The changes of the lattice spacings of quartzite at the temperature interval of 540-620 C were measured and values of lattice stresses were estimated; estimated lattice stresses several times exceed the applied stresses. It is found that short strong splashes of acoustic emission (AE) occurred when the phase transition was completed; the intensity of those splashes exceeds by two orders the level of AE, caused by the thermal bursting of the sample under heating up to the transition temperature. The assumption is placed that anomalous behaviour of quartz-containing rocks being under relatively small stresses near the phase transition temperature could cause the appearance of the concentrators of local stresses. These stresses are commensurable to the strength of quartz, and initiate the microcracking of the material

  9. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  10. Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload

    Science.gov (United States)

    Welsh, David; Smith, Holly; Wang, Shuo

    2010-01-01

    Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.

  11. A new mode of acoustic NDT via resonant air-coupled emission

    Science.gov (United States)

    Solodov, Igor; Dillenz, Alexander; Kreutzbruck, Marc

    2017-06-01

    Resonant modes of non-destructive testing (NDT) which make use of local damage resonance (LDR) have been developed recently and demonstrated a significant increase in efficiency and sensitivity of hybrid inspection techniques by laser vibrometry, ultrasonic thermography, and shearography. In this paper, a new fully acoustic version of resonant NDT is demonstrated for defects in composite materials relevant to automotive and aviation applications. This technique is based on an efficient activation of defect vibrations by using a sonic/ultrasonic wave matched to a fundamental LDR frequency of the defect. On this condition, all points of the faulty area get involved in synchronous out-of-plane vibrations which produce a similar in-phase wave motion in ambient air. This effect of resonant air-coupled emission results in airborne waves emanating from the defect area, which can be received by a commercial microphone (low LDR frequency) or an air-coupled ultrasonic transducer (high frequency LDR). A series of experiments confirm the feasibility of both contact and non-contact versions of the technique for NDT and imaging of simulated and realistic defects (impacts, delaminations, and disbonds) in composites.

  12. Simulation of non-destructive inspections and acoustic emission measurements involving guided waves

    International Nuclear Information System (INIS)

    Baronian, V; Lhemery, A; Bonnet-BenDhia, A-S

    2009-01-01

    In a structure that guides elastic waves, a discontinuity (defect, shape variation) causes scattering (reflection, partial extinction or mode conversion). Two modal formulations have been developed to link separate models dealing with the calculation of the modal decomposition, with the generation and reception of guided waves (GW), with their scattering. The first concerns pulse-echo configurations (involving a single transducer), the other concerns pitch-catch configurations (two transducers involved). A new finite element (FE) method has been developed to compute the scattering by an arbitrary discontinuity, based on the modal decomposition of the field. Perfectly transparent boundary conditions (Dirichlet-to-Neuman boundaries) are developed, allowing the FE computation zone to be reduced to a minimum. A specific variational problem including these boundary conditions was obtained and solved using FE tools. By combining the modal formulations, the new FE scheme and tools for GW radiation, propagation and reception based on the Semi-Analytical Finite Element (SAFE) method, a new simulation tool has been developed. It can address almost arbitrary configurations of GW nondestructive testing. Moreover, a source inside the FE computation zone can be defined so that configurations of testing by acoustic emission can also be simulated. Examples of use of this tool are shown, some dealing with junctions of complex geometry between two guides, other with surface or bulk sources of acoustic emission.

  13. Acoustic Emission Monitoring of Cementitious Wasteforms

    International Nuclear Information System (INIS)

    Spasova, L.M.; Ojovan, M.I.

    2013-01-01

    A summary is presented of the potential of non-destructive acoustic emission (AE) method to be applied for structures immobilising nuclear wastes. The use and limitations of the method are discussed with given examples of experimental configurations and results obtained from AE monitoring and data analysis of two different processes addressing particular issues related to the nuclear waste immobilisation. These are (a) corrosion of aluminium, classified as intermediate level waste (ILW) in the UK, encapsulated in cementitious structures and (b) partial melting and solidification during cooling of granite at a pressure of 0.15 GPa which simulates the conditions in a deep borehole disposal of canisters of vitrified high level waste (HLW). Methodology for analysis of the collected data and characterisation of the potential AE sources is performed at different steps including simple signals count and more complex signal parameter-based approach and advanced signal processing. The AE method has been shown as a potential tool for monitoring and inspection of structures immobilising nuclear wastes in relation to the time progress of different interactions of the waste with the encapsulating matrix or the wasteform with the hosting environment for permanent disposal. (author)

  14. Standard practice for determining damage-Based design Stress for fiberglass reinforced plastic (FRP) materials using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This practice details procedures for establishing the direct stress and shear stress damage-based design values for use in the damage-based design criterion for materials to be used in FRP vessels and other composite structures. The practice uses data derived from acoustic emission examination of four-point beam bending tests and in-plane shear tests (see ASME Section X, Article RT-8). 1.2 The onset of lamina damage is indicated by the presence of significant acoustic emission during the reload portion of load/reload cycles. "Significant emission" is defined with historic index. 1.3 Units - The values stated in inch-pound units are to be regarded as standard. The values given in brackets are mathematical conversions to SI units which are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health pr...

  15. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    Science.gov (United States)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  16. Acoustic Emission Monitoring of Incipient in Journal Bearings - Part I : Detectability and measurement for bearing damages

    International Nuclear Information System (INIS)

    Yoon, Dong Jin; Kwon, Oh Yang; Chung, Min Hwa; Kim, Kyung Woong

    1994-01-01

    In contrast to the machinery using rolling element bearings, systems with journal bearings generally operate in large scale and under severe loading condition such as steam generator turbines and internal combustion engines. Failure of the bearings in these machinery can result in the system breakdown. To avoid the time consuming repair and considerable economic loss, the detection of incipient failure in journal bearings becomes very important. In this experimental approach, acoustic emission monitoring is applied to the detection of incipient failure caused by several types of abnormal operating condition most probable in the journal bearing systems. It has been known that the intervention of foreign materials, insufficient lubrication and misassembly etc. are principal factors to cause bearing failure and distress. The experiment was conducted under such designed conditions as hard particles in the lubrication layer, insufficient lubrication, and metallic contact in the simulated journal bearing system. The results showed that acoustic emission could be an effective tool to detect the incipient failure in journal bearings

  17. Quantitative evaluation of rejuvenators to restore embrittlement temperatures in oxidized asphalt mixtures using acoustic emission

    Science.gov (United States)

    Sun, Zhe; Farace, Nicholas; Arnold, Jacob; Behnia, Behzad; Buttlar, William G.; Reis, Henrique

    2015-03-01

    Towards developing a method capable to assess the efficiency of rejuvenators to restore embrittlement temperatures of oxidized asphalt binders towards their original, i.e., unaged values, three gyratory compacted specimens were manufactured with mixtures oven-aged for 36 hours at 135 °C. In addition, one gyratory compacted specimen manufactured using a short-term oven-aged mixture for two hours at 155 °C was used for control to simulate aging during plant production. Each of these four gyratory compacted specimens was then cut into two cylindrical specimen 5 cm thick for a total of six 36-hour oven-aged specimens and two short term aging specimens. Two specimens aged for 36 hours and the two short-term specimens were then tested using an acoustic emission approach to obtain base acoustic emission response of short-term and severely-aged specimens. The remaining four specimens oven-aged for 36 hours were then treated by spreading their top surface with rejuvenator in the amount of 10% of the binder by weight. These four specimens were then tested using the same acoustic emission approach after two, four, six, and eight weeks of dwell time. It was observed that the embrittlement temperatures of the short-term aged and severely oven-aged specimens were -25 °C and - 15 °C, respectively. It was also observed that after four weeks of dwell time, the rejuvenator-treated samples had recuperated the original embrittlement temperatures. In addition, it was also observed that the rejuvenator kept acting upon the binder after four weeks of dwell time; at eight weeks of dwell time, the specimens had an embrittlement temperature about one grade cooler than the embrittlement temperature corresponding to the short-term aged specimen.

  18. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-03-01

    Full Text Available Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  19. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Science.gov (United States)

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  20. Fatigue crack propagation of super duplex stainless steel with dispersed structure and time-frequency analysis of acoustic emission

    Science.gov (United States)

    Nam, Ki-Woo; Kang, Chang-Yong; Do, Jae-Yoon; Ahn, Seok-Hwan; Lee, Sang-Kee

    2001-06-01

    The fatigue crack propagation of super duplex stainless steel was investigated for the effect of various volume fractions of the austenite phase by changing the heat treatment temperature. We also analyzed acoustic emission signals obtained during the fatigue crack propagation by the time-frequency analysis method. As the temperature of the heat treatment increased, the volume fraction of austenite decreased and coarse grain was obtained. The specimen treated at 1200 had a longer fatigue life and slower rate of crack growth. Results of time-frequency analysis of acoustic emission signals during the fatigue test showed the main frequency of 200-300 kHz to have no correlation with heat treatment and crack length, and the 500 kHz signal to be due to dimples and separation of inclusion.

  1. Evaluation of the sensitivity of electro-acoustic measurements for process monitoring and control of an atmospheric pressure plasma jet system

    Energy Technology Data Exchange (ETDEWEB)

    Law, V J [Dublin City University, National Centre of Plasma Science and Technology, Collins Avenue, Glasnevin, Dublin 9, Dublin (Ireland); O' Neill, F T; Dowling, D P, E-mail: vic.law@dcu.ie [School Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4 (Ireland)

    2011-06-15

    The development of non-invasive process diagnostic techniques for the control of atmospheric plasmas is a critical issue for the wider adoption of this technology. This paper evaluates the use of a frequency-domain deconvolution of an electro-acoustic emission as a means to monitor and control the plasma formed using an atmospheric pressure plasma jet (APPJ) system. The air plasma system investigated was formed using a PlasmaTreat(TM) OpenAir applicator. Change was observed in the electro-acoustic signal with changes in substrate type (ceramic, steel, polymer). APPJ nozzle to substrate distance and substrate feature size were monitored. The decoding of the electro-acoustic emission yields three subdatasets that are described by three separate emission mechanisms. The three emissions are associated with the power supply fundamental drive frequency and its harmonics, the APPJ nozzle longitudinal mode acoustic emission and its odd overtones, and the acoustic surface reflection that is produced by the impedance mismatch between the discharge and the surface. Incorporating this knowledge into a LabVIEW program facilitated the continuous deconvolution of the electro-acoustic data. This enabled the use of specific frequency band test limits to control the APPJ treatment process which is sensitive to both plasma processing conditions and substrate type and features.

  2. Mechanical seal monitoring technique by acoustic emission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Tadashi; Fujita, Yoshihiro; Kawaguchi, Kazunori; Saito, Kazuhiro; Yokota, Setsuo; Hisada, Yasuhide; Masahiro, Komatsu

    1987-09-20

    This report describes a technique for mechanical seal monitoring through acoustic emission (AE) measurement. The equipment consists of an AE sensor, preamplifier, multiplexer, main amplifier, effective value transducer and computer system. When the sealed liquid pressure undergoes a large change, the seal surface configuration is monitored and evaluated accurately through AE measurement. If the mechanical seal surface id damaged or worn, the AE level is kept high or continues to fluctuate largely for a rather long period. When leak occurs, the AE value shows great fluctuations either at extremely low levels or at high levels. The former trend is considered to result from a decrease in solid contact due to an excessive amount of liquid film being formed at the seal surface during leak. In the latter case, the leak is attributed to severe damage to the seal surface. (18 figs, 1 tab, 5 photos, 3 refs)

  3. Relaxor-like behavior of BaTiO.sub.3./sub. crystals from acoustic emission study

    Czech Academy of Sciences Publication Activity Database

    Dul´kin, E.; Petzelt, Jan; Kamba, Stanislav; Mojaev, E.; Roth, M.

    2010-01-01

    Roč. 97, č. 3 (2010), 032903/1-032903/3 ISSN 0003-6951 R&D Projects: GA ČR GAP204/10/0616; GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : relaxor ferroelectrics * acoustic emission * phase transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.820, year: 2010

  4. Fatigue characteristics of high strength fire resistance steel for frame structure and time-frequency analysis its acoustic emission signal

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Kang, Chang Young

    2000-01-01

    Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc

  5. Anomalous acoustic effect during martensitic transformations in titanium nickelide base alloys

    International Nuclear Information System (INIS)

    Plotnikov, V.A.; Kokhanenko, D.V.

    2002-01-01

    One carried out experiments to determine effect of external static stress on martensitic transformations and acoustic emission, Martensitic transformations in titanium nickelide base alloys under mechanical stress were determined to change nature of acoustic emission to anomalous one - cycling of transformations under gradual increase of mechanical stress during direct martensitic transformation was followed by increase of acoustic emission energy instead of reduction. The mentioned nature of acoustic emission is indicative of essential effect of external stress on martensitic transformations and energy dissipation during transformations [ru

  6. Interior acoustic cloak

    Directory of Open Access Journals (Sweden)

    Wael Akl

    2014-12-01

    Full Text Available Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which are invariably heavy and bulky. The transformation acoustics relationships that govern the operation of this class of interior acoustic cloaks are presented. Physical insights are given to relate these relationships to the reasons behind the effectiveness of the proposed interior acoustic cloaks. Finite element models are presented to demonstrate the characteristics of interior acoustic cloaks used in treating the interior walls of circular and square cavities both in the time and frequency domains. The obtained results emphasize the effectiveness of the proposed interior cloaks in eliminating the reflections of the acoustic waves from the walls of the treated cavities and thereby rendering these cavities acoustically quiet. It is important to note here that the proposed interior acoustic cloaks can find applications in acoustic cavities such as aircraft cabins and auditoriums as well as many other critical applications.

  7. Acoustical Detection Of Leakage In A Combustor

    Science.gov (United States)

    Puster, Richard L.; Petty, Jeffrey L.

    1993-01-01

    Abnormal combustion excites characteristic standing wave. Acoustical leak-detection system gives early warning of failure, enabling operating personnel to stop combustion process and repair spray bar before leak grows large enough to cause damage. Applicable to engines, gas turbines, furnaces, and other machines in which acoustic emissions at known frequencies signify onset of damage. Bearings in rotating machines monitored for emergence of characteristic frequencies shown in previous tests associated with incipient failure. Also possible to monitor for signs of trouble at multiple frequencies by feeding output of transducer simultaneously to multiple band-pass filters and associated circuitry, including separate trigger circuit set to appropriate level for each frequency.

  8. Damage Detection in Railway Prestressed Concrete Sleepers using Acoustic Emission

    Science.gov (United States)

    Clark, A.; Kaewunruen, S.; Janeliukstis, R.; Papaelias, M.

    2017-10-01

    Prestressed concrete sleepers (or railroad ties) are safety-critical elements in railway tracks that distribute the wheel loads from the rails to the track support system. Over a period of time, the concrete sleepers age and deteriorate in addition to experiencing various types of static and dynamic loading conditions, which are attributable to train operations. In many cases, structural cracks can develop within the sleepers due to high intensity impact loads or due to poor track maintenance. Often, cracks of sleepers develop and present at the midspan due to excessive negative bending. These cracks can cause broken sleepers and sometimes called ‘center bound’ problem in railway lines. This paper is the world first to present an application of non-destructive acoustic emission technology for damage detection in railway concrete sleepers. It presents experimental investigations in order to detect center-bound cracks in railway prestressed concrete sleepers. Experimental laboratory testing involves three-point bending tests of four concrete sleepers. Three-point bending tests correspond to a real failure mode, when the loads are not transferred uniformly to the ballast support. It is observed that AE sensing provides an accurate means for detecting the location and magnitude of cracks in sleepers. Sensor location criticality is also highlighted in the paper to demonstrate the reliability-based damage detection of the sleepers.

  9. Optimum Position of Acoustic Emission Sensors for Ship Hull Structural Health Monitoring Based on Deep Machine Learning

    DEFF Research Database (Denmark)

    Kappatos, Vassilios; Karvelis, Petros; Georgoulas, George

    2018-01-01

    In this paper a method for the estimation of the optimum sensor positions for acoustic emission localization on ship hull structures is presented. The optimum sensor positions are treated as a classification (localization) problem based on a deep learning paradigm. In order to avoid complex...

  10. Application of acoustic agglomeration for removing sulfuric acid mist from air stream

    Directory of Open Access Journals (Sweden)

    Asghar Sadighzadeh

    2018-01-01

    Full Text Available The application of acoustic fields at high sound pressure levels (SPLs for removing sulfuric acid mists from the air stream was studied. An acoustic agglomeration chamber was used to conduct the experiments. The studied SPLs ranged from 115 to 165 decibel (dB, with three inlet concentrations of acid mist at 5–10, 15–20, and 25–30 ppm. The air flow rates for conducting experiments were 20, 30, and 40 L min−1. The concentration of sulfuric acid mist was measured using US Environmental Protection Agency Method 8 at inlet and outlet of the chamber. The resonance frequencies for experiments were found to be 852, 1410, and 3530 Hz. The maximum acoustic agglomeration efficiency of 86% was obtained at optimum frequency of 852 Hz. The analysis of variance test revealed significant differences between agglomeration efficiency at three resonance frequencies (p-value < 0.001. The maximum acoustic agglomeration efficiency was obtained at SPL level of 165 dB. High initial concentrations of acid mists and lower air flow rates enhance the acoustic agglomeration of mists. High removal efficiency of acid mists from air stream could be achieved by the application of acoustic agglomeration method with appropriate range of frequencies and SPLs. Keywords: Sulfuric acid, Mist, Acoustic agglomeration, SPL

  11. Application of the collapsing method to acoustic emissions in a rock salt sample during a triaxial compression experiment

    International Nuclear Information System (INIS)

    Manthei, G.; Eisenblaetter, J.; Moriya, H.; Niitsuma, H.; Jones, R.H.

    2003-01-01

    Collapsing is a relatively new method. It is used for detecting patterns and structures in blurred and cloudy pictures of multiple soundings. In the case described here, the measurements were made in a very small region with a length of only a few decimeters. The events were registered during a triaxial compression experiment on a compact block of rock salt. The collapsing method showed a cellular structure of the salt block across the whole length of the test piece. The cells had a length of several cm, enclosing several grains of salt with an average grain size of less than one cm. In view of the fact that not all cell walls corresponded to acoustic emission events, it was assumed that only those grain boundaries are activated that are oriented at a favourable angle to the field of tension of the test piece [de

  12. Shear dilatancy and acoustic emission in dry and saturated granular materials

    Science.gov (United States)

    Brodsky, E. E.; Siman-Tov, S.

    2017-12-01

    Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via

  13. On the application of acoustic emission analysis in research. Pt. 1

    International Nuclear Information System (INIS)

    Eisenblaetter, J.; Fanninger, G.

    1977-01-01

    The sound emission analysis is based on the phenomenon that processes in solids involving a rapid release of elastically stored energy lead to the emission of short sound pulses. This phenomenon is more and more utilized in research and engineering to detect deformations, phase transitions, formation of defects, leakages and others. Especially in the testing and controlling of large size parts like pressure vessels and pipelines the sound emission analysis can lead to a substantial reduction in time and costs. (orig.) [de

  14. A monitoring of superconducting magnets by acoustic emission

    International Nuclear Information System (INIS)

    Nomura, Harehiko; Tateishi, Hiroshi; Onishi, Toshitada

    1990-01-01

    Since superconducting magnets (SCM) are going to be indispensable to magnetic levitated train, nuclear fusion, magnetic resonating imaging, rotational machines, etc., they must be placed great reliance on its repetitional operations. But without appropriate evaluating methods, these promising techniques must remain still in science levels and hard to be transferable to real human technologies. SCM, being used under dynamical operation with linking other electro-magnetic systems as said above, induce high voltage from which monitoring superconducting to normal transitional voltage is difficult to distinguish. To solve this problem, monitoring SCM by Acoustic Emission (AE) from themselves, have been found effective, in particular, during the dynamical energizing of them. As for a demonstration, this paper will report mainly how to monitor 3 MJ-SCM and a few results of the experiments aquired both by counting and locational mode of AE in pulsed and repeated operations of the magnet. Some discussions on the AE monitorings are also made along the main issues to be solved in future. (author)

  15. Acoustic emission for interlaminar toughness testing of CFRP: Evaluation of the crack growth due to burst analysis

    Czech Academy of Sciences Publication Activity Database

    Lissek, F.; Haegerb, A.; Knoblauch, V.; Hloch, Sergej; Pude, F.; Kaufeld, M.

    2018-01-01

    Roč. 136, č. 1 (2018), s. 55-62 ISSN 1359-8368 Institutional support: RVO:68145535 Keywords : DCB * interlaminar toughness testing * acoustic emission * CFRP * burst analysis Subject RIV: JQ - Machines ; Tools Impact factor: 4.727, year: 2016 http://www.sciencedirect.com/science/article/pii/S1359836817313720

  16. Acoustic emission for interlaminar toughness testing of CFRP: Evaluation of the crack growth due to burst analysis

    Czech Academy of Sciences Publication Activity Database

    Lissek, F.; Haegerb, A.; Knoblauch, V.; Hloch, Sergej; Pude, F.; Kaufeld, M.

    2018-01-01

    Roč. 136, č. 1 (2018), s. 55-62 ISSN 1359-8368 Institutional support: RVO:68145535 Keywords : DCB * interlaminar toughness testing * acoustic emission * CFRP * burst analysis Subject RIV: JQ - Machines ; Tools Impact factor: 4.727, year: 2016 http://www. science direct.com/ science /article/pii/S1359836817313720

  17. Acoustics an introduction

    CERN Document Server

    Kuttruff, Heinrich

    2006-01-01

    This definitive textbook provides students with a comprehensive introduction to acoustics. Beginning with the basic physical ideas, Acoustics balances the fundamentals with engineering aspects, applications and electroacoustics, also covering music, speech and the properties of human hearing. The concepts of acoustics are exposed and applied in:room acousticssound insulation in buildingsnoise controlunderwater sound and ultrasoundScientifically thorough, but with mathematics kept to a minimum, Acoustics is the perfect introduction to acoustics for students at any level of mechanical, electrical or civil engineering courses and an accessible resource for architects, musicians or sound engineers requiring a technical understanding of acoustics and their applications.

  18. Translational illusion of acoustic sources by transformation acoustics.

    Science.gov (United States)

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  19. Nondestructive Online Detection of Welding Defects in Track Crane Boom Using Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2014-04-01

    Full Text Available Nondestructive detection of structural component of track crane is a difficult and costly problem. In the present study, acoustic emission (AE was used to detect two kinds of typical welding defects, that is, welding porosity and incomplete penetration, in the truck crane boom. Firstly, a subsidiary test specimen with special preset welding defect was designed and added on the boom surface with the aid of steel plates to get the synchronous deformation of the main boom. Then, the AE feature information of the welding defect could be got without influencing normal operation of equipment. As a result, the rudimentary location analysis can be attained using the linear location method and the two kinds of welding defects can be distinguished clearly using AE characteristic parameters such as amplitude and centroid frequency. Also, through the comparison of two loading processes, we concluded that the signal produced during the first loading process was mainly caused by plastic deformation damage and during the second loading process the stress release and structure friction between sections in welding area are the main acoustic emission sources. Thus, the AE is an available tool for nondestructive online detection of latent welding defects of structural component of track crane.

  20. Determination of bearing steel heat treatment with the use of the acoustic emission method

    Directory of Open Access Journals (Sweden)

    T. Z. Wozniak

    2010-10-01

    Full Text Available A study on the control of an extremely important stage of the martensitic-bainitic austempering and obtaining the M-B structure in the 100CrMnSi6-4 steel with the use of the acoustic emission (AE has been undertaken. In order to enrich retained austenite with carbon, steels are austempered at appropriately low temperatures. A martensitic transformation, resulting from diffusionless and displacive transformation is associated with significant AE signs. The strain energy produced during growth due to the shape change is reduced by plastic deformation. Predominant source of (AE is the movement of dislocations in order to relieve internal stresses.The heat treatment was performed in a modern, purpose-constructed device which simultaneously records acoustic emission effects. The signals were recorded with the use of an AE analyzer 20–800 kHz, and they were received by means of a broadband piezoelectric transducer with the use of a specialist card with a sampling frequency of 1200 kHz. The results regarding a correlation of austempering temperature and the maximum number of AE events and dilatometric results have been presented. This parameter can be used for precise Ms temperature estimation. Basing on microstructural investigations, it has been found that previously formed martensite with midrib morphology also accelerates the bainitic transformation.

  1. Determination of bearing steel heat treatment with the use of the acoustic emission method

    Directory of Open Access Journals (Sweden)

    T.Z. Woźniak

    2010-07-01

    Full Text Available A study on the control of an extremely important stage of the martensitic-bainitic austempering and obtaining the M-B structure in the 100CrMnSi6-4 steel with the use of the acoustic emission (AE has been undertaken. In order to enrich retained austenite with carbon,steels are austempered at appropriately low temperatures. A martensitic transformation, resulting from diffusionless and displacive transformation is associated with significant AE signs. The strain energy produced during growth due to the shape change is reduced by plastic deformation. Predominant source of (AE is the movement of dislocations in order to relieve internal stresses.The heat treatment was performed in a modern, purpose-constructed device which simultaneously records acoustic emission effects. The signals were recorded with the use of an AE analyzer 20–800 kHz, and they were received by means of a broadband piezoelectric transducer with the use of a specialist card with a sampling frequency of 1200 kHz. The results regarding a correlation of austempering temperature and the maximum number of AE events and dilatometric results have been presented. This parameter can be used for precise Ms temperatureestimation. Basing on microstructural investigations, it has been found that previously formed martensite with midrib morphology alsoaccelerates the bainitic transformation.

  2. Acoustic emission monitoring of leakage through seal-plug in PHWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Jha, S K; Badgujar, B P; Goswami, G L [Bhabha Atomic Research Centre, Bombay (India). Atomic Fuels Div.; Patel, R J; Bhattacharya, S; Agrawal, R G [Bhabha Atomic Research Centre, Mumbai (India). Refuelling Technology Division

    1994-12-31

    Acoustic Emission (AE) technique is being developed as an in-service inspection tool for monitoring the leakage through seal-plugs in Pressurised Heavy Water Reactors (PHWRs). Time as well as frequency domain analysis have been utilised during the experiment carried out at Bhabha Atomic Research Centre (BARC) using test set up simulating the pressure and temperature conditions. The work involved were to determine the temperature profile on end-fitting, effect of pressure and temperature on leakage etc. This paper discusses various relationships like signal-level vs. pressure, frequency spectrum of signal, signal-level vs. leakage based on the above experimental work. (author). 4 refs., 6 figs.

  3. Acoustic Emission Signatures of Fatigue Damage in Idealized Bevel Gear Spline for Localized Sensing

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2017-06-01

    Full Text Available In many rotating machinery applications, such as helicopters, the splines of an externally-splined steel shaft that emerges from the gearbox engage with the reverse geometry of an internally splined driven shaft for the delivery of power. The splined section of the shaft is a critical and non-redundant element which is prone to cracking due to complex loading conditions. Thus, early detection of flaws is required to prevent catastrophic failures. The acoustic emission (AE method is a direct way of detecting such active flaws, but its application to detect flaws in a splined shaft in a gearbox is difficult due to the interference of background noise and uncertainty about the effects of the wave propagation path on the received AE signature. Here, to model how AE may detect fault propagation in a hollow cylindrical splined shaft, the splined section is essentially unrolled into a metal plate of the same thickness as the cylinder wall. Spline ridges are cut into this plate, a through-notch is cut perpendicular to the spline to model fatigue crack initiation, and tensile cyclic loading is applied parallel to the spline to propagate the crack. In this paper, the new piezoelectric sensor array is introduced with the purpose of placing them within the gearbox to minimize the wave propagation path. The fatigue crack growth of a notched and flattened gearbox spline component is monitored using a new piezoelectric sensor array and conventional sensors in a laboratory environment with the purpose of developing source models and testing the new sensor performance. The AE data is continuously collected together with strain gauges strategically positioned on the structure. A significant amount of continuous emission due to the plastic deformation accompanied with the crack growth is observed. The frequency spectra of continuous emissions and burst emissions are compared to understand the differences of plastic deformation and sudden crack jump. The

  4. Correlation analysis between ceramic insulator pollution and acoustic emissions

    Directory of Open Access Journals (Sweden)

    Benjamín Álvarez-Nasrallah

    2015-01-01

    Full Text Available Most of the studies related to insulator pollution are normally performed based on individual analysis among leakage current, relative humidity and equivalent salt deposit density (ESDD. This paper presents a correlation analysis between the leakage current and the acoustic emissions measured in a 230 kV electrical substations in the city of Barranquilla, Colombia. Furthermore, atmospheric variables were considered to develop a characterization model of the insulator contamination process. This model was used to demonstrate that noise emission levels are a reliable indicator to detect and characterize pollution on high voltage insulators. The correlation found amount the atmospheric, electrical and sound variables allowed to determine the relations for the maintenance of ceramic insulators in high-polluted areas. In this article, the results on the behavior of the leakage current in ceramic insulators and the sound produced with different atmospheric conditions are shown, which allow evaluating the best time to clean the insulator at the substation. Furthermore, by experimentation on site and using statistical models, the correlation between ambient variables and the leakage current of insulators in an electrical substation was obtained. Some of the problems that bring the external noise were overcome using multiple microphones and specialized software that enabled properly filter the sound and better measure the variables.

  5. A technique for the deconvolution of the pulse shape of acoustic emission signals back to the generating defect source

    International Nuclear Information System (INIS)

    Houghton, J.R.; Packman, P.F.; Townsend, M.A.

    1976-01-01

    Acoustic emission signals recorded after passage through the instrumentation system can be deconvoluted to produce signal traces indicative of those at the generating source, and these traces can be used to identify characteristics of the source

  6. [Acoustic emission diagnostic techniques for high-field high current-density super inducting poles

    International Nuclear Information System (INIS)

    1990-01-01

    Acoustic emission technology was introduced in the late 1970's to monitor superconducting magnets. It has now been firmly established that acoustic signals in superconducting magnets are emitted principally by mechanical events such as conductor strain, conductor motion, frictional motion, and epoxy cracking. Despite earlier suggestions, flux motion, except during flux jumping, does not appear to be an important source of AE signals in superconducting magnets. Of these several potential sources of AE signals in superconducting magnets, mechanical disturbances have been identified to be most important in high-performance, ''adiabatic'' magnets such as the dipoles used in accelerators. These mechanical disturbances are transitory, each generating a packet of AE signals that can be located with sensors. Source identification and location has been achieved with a number of superconducting magnets. In this section, the basic principle for the operation of adiabatic magnets is discussed, followed by presentation of some of the important experimental results relevant to the question of premature quench obtained at MIT

  7. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications.

    Science.gov (United States)

    Segura-Garcia, Jaume; Navarro-Ruiz, Juan Miguel; Perez-Solano, Juan J; Montoya-Belmonte, Jose; Felici-Castell, Santiago; Cobos, Maximo; Torres-Aranda, Ana M

    2018-02-26

    Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN) to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT) environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system.

  8. Acoustic emission technique for leak detection in an end shield of a pressurized heavy water reactor

    International Nuclear Information System (INIS)

    Kalyanasundaram, P.; Jayakumar, T.; Raj, B.

    1989-01-01

    This paper discusses the successful application of the Acoustic Emission Technique (AET) for detection and location of leak paths present on the inaccessible side of an end shield of a Pressurized Heavy Water Reactor (PHWR). The methodology was based on the fact that air and water leak AE signals have different characteristic features. Baseline data was generated from a sound end-shield of a PHWR for characterizing the background noise. A mock up end-shield system with saw cut leak paths was used to verify the validity of the methodology. It was found that air leak signals under pressurisation (as low as 3 psi) could be detected by frequency domain analysis. Signals due to air leaks from various locations of a defective end-shield were acquired and analysed. It was possible to detect and locate leak paths. Presence of detected leak paths were further confirmed by alternate test. (orig.)

  9. Design of Passive Acoustic Wave Shaping Devices and Their Experimental Validation

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, Ole; Fernandez Grande, Efren

    We discuss a topology optimization based approach for designing passive acoustic wave shaping devices and demonstrate its application to; directional sound emission [1], sound focusing and wave splitting. Optimized devices, numerical and experimental results are presented and benchmarked against...... other designs proposed in the literature. We focus on design problems where the size of the device is on the order of the wavelength, a problematic region for traditional design methods, such as ray tracing.The acoustic optimization problem is formulated in the frequency domain and modeled...

  10. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  11. Comparison of PAM Systems for Acoustic Monitoring and Further Risk Mitigation Application.

    Science.gov (United States)

    Ludwig, Stefan; Kreimeyer, Roman; Knoll, Michaela

    2016-01-01

    We present results of the SIRENA 2011 research cruises conducted by the NATO Undersea Research Centre (NURC) and joined by the Research Department for Underwater Acoustics and Geophysics (FWG), Bundeswehr Technical Centre (WTD 71) and the Universities of Kiel and Pavia. The cruises were carried out in the Ligurian Sea. The main aim of the FWG was to test and evaluate the newly developed towed hydrophone array as a passive acoustic monitoring (PAM) tool for risk mitigation applications. The system was compared with the PAM equipment used by the other participating institutions. Recorded sounds were used to improve an automatic acoustic classifier for marine mammals, and validated acoustic detections by observers were compared with the results of the classifier.

  12. Enhanced sources of acoustic power surrounding AR 11429

    International Nuclear Information System (INIS)

    Donea, Alina; Hanson, Christopher

    2013-01-01

    Multi-frequency power maps of the local acoustic oscillations show acoustic enhancements (''acoustic-power halos'') at high frequencies surrounding large active region. Computational seismic holography reveals a high-frequency ''acoustic-emission halo'', or ''seismic glory'' surrounding large active regions. In this study, we have applied computational seismic holography to map the seismic seismic source density surrounding AR 11429. Studies of HMI/SDO Doppler data, shows that the ''acoustic halos'' and the ''seismic glories'' are prominent at high frequencies 5–8 mHz. We investigate morphological properties of acoustic-power and acoustic emission halos around an active region to see if they are spatially correlated. Details about the local magnetic field from vectormagnetograms of AR 11429 are included. We identify a 15'' region of seismic deficit power (dark moat) shielding the white-light boundary of the active region. The size of the seismic moat is related to region of intermediate magnetic field strength. The acoustic moat is circled by the halo of enhanced seismic amplitude as well as enhanced seismic emission. Overall, the results suggest that features are related. However, if we narrow the frequency band to 5.5 – 6.5 mHz, we find that the seismic source density dominates over the local acoustic power, suggesting the existence of sources that emit more energy downward into the solar interior than upward toward the solar surface.

  13. Investigation of Material Performance Degradation for High-Strength Aluminum Alloy Using Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Yibo Ai

    2015-02-01

    Full Text Available Structural materials damages are always in the form of micro-defects or cracks. Traditional or conventional methods such as micro and macro examination, tensile, bend, impact and hardness tests can be used to detect the micro damage or defects. However, these tests are destructive in nature and not in real-time, thus a non-destructive and real-time monitoring and characterization of the material damage is needed. This study is focused on the application of a non-destructive and real-time acoustic emission (AE method to study material performance degradation of a high-strength aluminum alloy of high-speed train gearbox shell. By applying data relative analysis and interpretation of AE signals, the characteristic parameters of materials performance were achieved and the failure criteria of the characteristic parameters for the material tensile damage process were established. The results show that the AE method and signal analysis can be used to accomplish the non-destructive and real-time detection of the material performance degradation process of the high-strength aluminum alloy. This technique can be extended to other engineering materials.

  14. Monitoring of pipeline hydrostatic testing with artificial flaws applying acoustic emission and ultra-sonic techniques; Monitoracao de teste hidrostatico de tubos com descontinuidades artificiais empregando as tecnicas de emissao acustica e ultra-som

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sergio Damasceno [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2003-07-01

    Charts and parameters used to perform and analyzing the acoustic emission data collected during the hydrostatic test in pipe samples build in API XL 60 with 20 inches of diameter and 14 millimeters of thickness are shown. These pipes had internal and external artificial flaws done by electro-erosion process with aspect ratio 1 x 20. A relationship between acoustic emission results, ultrasound and J-Integral were established using the applied pressurization sequence. Characteristics values of acoustic emission signals were shown as a criteria of field tests. (author)

  15. Early corrosion monitoring of prestressed concrete piles using acoustic emission

    Science.gov (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul H.

    2013-04-01

    The depassivation and corrosion of bonded prestressing steel strands in concrete bridge members may lead to major damage or collapse before visual inspections uncover evident signs of damage, and well before the end of the design life. Recognizing corrosion in its early stage is desirable to plan and prioritize remediation strategies. The Acoustic Emission (AE) technique is a rational means to develop structural health monitoring and prognosis systems for the early detection and location of corrosion in concrete. Compelling features are the sensitivity to events related to micro- and macrodamage, non-intrusiveness, and suitability for remote and wireless applications. There is little understanding of the correlation between AE and the morphology and extent of early damage on the steel surface. In this paper, the evidence collected from prestressed concrete (PC) specimens that are exposed to salt water is discussed vis-à-vis AE data from continuous monitoring. The specimens consist of PC strips that are subjected to wet/dry salt water cycles, representing portions of bridge piles that are exposed to tidal action. Evidence collected from the specimens includes: (a) values of half-cell potential and linear polarization resistance to recognize active corrosion in its early stage; and (b) scanning electron microscopy micrographs of steel areas from two specimens that were decommissioned once the electrochemical measurements indicated a high probability of active corrosion. These results are used to evaluate the AE activity resulting from early corrosion.

  16. Acoustic valve leak detection in nuclear plants

    International Nuclear Information System (INIS)

    Dimmick, J.G.; Dickey, J.W.

    1983-01-01

    Internal valve leakage is a hidden energy loss and can cause or prolong a forced outage. Recent advances in acoustic detection of internal valve leakage have reduced piping system maintenance costs, unnecessary downtime, and energy waste. Extremely short payback periods have been reported by plants applying this technology to preventive maintenance, troubleshooting, energy conservation and outage planning. Sensors temporarily attached to the outside of valves and connected to the instruments detect ultrasonic acoustic emissions which are characteristic of internal valve leakage. Since the sensors are attached to the outside of the valves, the time and expense of dismantling the valves or removing them from the systems are eliminated. This paper describes the instrumentation and specific applications to nuclear plant valves, including independent verification of initial findings. Guidelines for potential users, including instrumentation selection, training requirements, application planning, and the choice of in-house versus contract services are discussed

  17. Feasibility of using acoustic emission to determine in-process tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, L.J.

    1996-04-01

    Acoustic emission (AE) was evaluated for its ability to predict and recognize failure of cutting tools during machining processes when the cutting tool rotates and the workpiece is stationary. AE output was evaluated with a simple algorithm. AE was able to detect drill failure when the transducer was mounted on the workpiece holding fixture. Drill failure was recognized as size was reduced to 0.0003 in. diameter. The ability to predict failure was reduced with drill size, drill material elasticity, and tool coating. AE output for the turning process on a lathe was compared to turning tool insert wear. The turning tool must have sufficient wear to produce a detectable change in AE output to predict insert failure.

  18. In-situ acoustic signature monitoring in additive manufacturing processes

    Science.gov (United States)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  19. Topological Acoustics

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  20. Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique

    International Nuclear Information System (INIS)

    Mathis, K.; Chmelik, F.; Janecek, M.; Hadzima, B.; Trojanova, Z.; Lukac, P.

    2006-01-01

    Microstructure changes in an AM60 magnesium alloy were monitored using the acoustic emission (AE) technique during tensile tests in the temperature range from 20 to 300 deg. C. The correlation of the AE signal and the deformation processes is discussed. It is shown, using transmission electron and light microscopy, that the character of the AE response is associated with various modes of mechanical twinning at lower temperatures, whereas at higher temperatures also the influence of non-basal dislocations on the AE response must be taken into account

  1. ANALYSIS OF CHIP FORMATION DURING HARD TURNING THROUGH ACOUSTIC EMISSION

    Directory of Open Access Journals (Sweden)

    Miroslav Neslušan

    2012-01-01

    Full Text Available The paper deals with analysis of chip formation and related aspects of the chip formation during turning hardened steel 100Cr6. The paper draws a comparison of some aspects of the chip formation between turning annealed and hardened roll bearing steel. The results of the analysis show that there is the formation of a segmented chip in the case of hard turning. Frequency of segmentation is very high. A conventional piezoelectric dynamometer limits the frequency response to about 3.5 kHz. On the other hand, the frequency of process fluctuation may by obtained by using accelerometers or acoustic emission. This paper reports about the dynamic character of cutting process when hard turning and correlation among the calculated segmentation frequencies and the experimental analysis.

  2. Potencials of sap flow evaluation by means of acoustic emission measurements

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2011-01-01

    measurements became possible due to application of psychrometric method (Dixon and Tyree, 1985. There exist also other physical variables carrying important information, which can be measured using different principles. This includes e.g., acoustic methods, which can detect quantitative variation of pulses occurring during cavitation events, associated with interruptions of water columns in vessels. This must not necessarily be a single source of acoustic emissions. In this study we are focused on a general description of acoustic events measurable in a wide range of their spectrum. The first aim was to detect such signals and the second to learn them and gradually analyze in order to better understand the associated processes causing their occurrence and their relations to plant life.

  3. Acoustic emission of fire damaged fiber reinforced concrete

    Science.gov (United States)

    Mpalaskas, A. C.; Matikas, T. E.; Aggelis, D. G.

    2016-04-01

    The mechanical behavior of a fiber-reinforced concrete after extensive thermal damage is studied in this paper. Undulated steel fibers have been used for reinforcement. After being exposed to direct fire action at the temperature of 850°C, specimens were subjected to bending and compression in order to determine the loss of strength and stiffness in comparison to intact specimens and between the two types. The fire damage was assessed using nondestructive evaluation techniques, specifically ultrasonic pulse velocity (UPV) and acoustic emission (AE). Apart from the strong, well known, correlation of UPV to strength (both bending and compressive), AE parameters based mainly on the frequency and duration of the emitted signals after cracking events showed a similar or, in certain cases, better correlation with the mechanical parameters and temperature. This demonstrates the sensitivity of AE to the fracture incidents which eventually lead to failure of the material and it is encouraging for potential in-situ use of the technique, where it could provide indices with additional characterization capability concerning the mechanical performance of concrete after it subjected to fire.

  4. Standard practice for examination of liquid-Filled atmospheric and Low-pressure metal storage tanks using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers guidelines for acoustic emission (AE) examinations of new and in-service aboveground storage tanks of the type used for storage of liquids. 1.2 This practice will detect acoustic emission in areas of sensor coverage that are stressed during the course of the examination. For flat-bottom tanks these areas will generally include the sidewalls (and roof if pressure is applied above the liquid level). The examination may not detect flaws on the bottom of flat-bottom tanks unless sensors are located on the bottom. 1.3 This practice may require that the tank experience a load that is greater than that encountered in normal use. The normal contents of the tank can usually be used for applying this load. 1.4 This practice is not valid for tanks that will be operated at a pressure greater than the examination pressure. 1.5 It is not necessary to drain or clean the tank before performing this examination. 1.6 This practice applies to tanks made of carbon steel, stainless steel, aluminum and oth...

  5. Investigation of correlation of LF power modulation of light in natural and artificial illumination situations and acoustic emission

    Science.gov (United States)

    Kleeberg, Florian P.; Gutzmann, Holger L.; Weyer, Cornelia; Weiß, Jürgen; Dörfler, Joachim; Hahlweg, Cornelius F.

    2014-09-01

    The present paper is a follow up of a paper presented in 2013 at the Novel Optical Systems conference in the session on Optics and Music. It is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects to be observed which are interesting in the context of occupational medicine. It seems, that acoustic stimuli in the frequency range of the flicker fusion and below might lead to unexpected perceptible effects beyond those of the single stimuli. The effect of infrasound stimuli as a whole body perception seems to be boosted. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we question if such coherence is perceivable at all. Further, the problem of modulation of optical signals by acoustical signal is concerned. A catalogue of scenarios and 'effects to look for' including measurement concepts is presented and discussed.

  6. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    Science.gov (United States)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  7. Spatio-Temporal Analysis of Urban Acoustic Environments with Binaural Psycho-Acoustical Considerations for IoT-Based Applications

    Directory of Open Access Journals (Sweden)

    Jaume Segura-Garcia

    2018-02-01

    Full Text Available Sound pleasantness or annoyance perceived in urban soundscapes is a major concern in environmental acoustics. Binaural psychoacoustic parameters are helpful to describe generic acoustic environments, as it is stated within the ISO 12913 framework. In this paper, the application of a Wireless Acoustic Sensor Network (WASN to evaluate the spatial distribution and the evolution of urban acoustic environments is described. Two experiments are presented using an indoor and an outdoor deployment of a WASN with several nodes using an Internet of Things (IoT environment to collect audio data and calculate meaningful parameters such as the sound pressure level, binaural loudness and binaural sharpness. A chunk of audio is recorded in each node periodically with a microphone array and the binaural rendering is conducted by exploiting the estimated directional characteristics of the incoming sound by means of DOA estimation. Each node computes the parameters in a different location and sends the values to a cloud-based broker structure that allows spatial statistical analysis through Kriging techniques. A cross-validation analysis is also performed to confirm the usefulness of the proposed system.

  8. Leak Detection in Water-Filled Small-Diameter Polyethylene Pipes by Means of Acoustic Emission Measurements

    OpenAIRE

    Alberto Martini; Marco Troncossi; Alessandro Rivola

    2016-01-01

    The implementation of effective strategies to manage leaks represents an essential goal for all utilities involved with drinking water supply in order to reduce water losses affecting urban distribution networks. This study concerns the early detection of leaks occurring in small-diameter customers’ connections to water supply networks. An experimental campaign was carried out in a test bed to investigate the sensitivity of Acoustic Emission (AE) monitoring to water leaks. Damages were artifi...

  9. Acoustic classification schemes in Europe – Applicability for new, existing and renovated housing

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2016-01-01

    The first acoustic classification schemes for dwellings were published in the 1990’es as national standards with the main purpose to introduce the possibility of specifying easily stricter acoustic criteria for new-build than the minimum requirements found in building regulations. Since then, more...... countries have introduced acoustic classification schemes, the first countries updated more times and some countries introduced acoustic classification also for other building categories. However, the classification schemes continued to focus on new buildings and have in general limited applicability...... for existing buildings from before implementation of acoustic regulations, typically in the 1950’es or later. The paper will summarize main characteristics, differences and similarities of the current national quality classes for housing in ten countries in Europe. In addition, the status and challenges...

  10. Acoustic emission diagnosis of concrete-piles damaged by earthquakes

    International Nuclear Information System (INIS)

    Shiotami, Tomoki; Sakaino, Norio; Ohtsu, Masayasu; Shigeishi, Mitsuhiro

    1997-01-01

    Earthquakes often impose unexpected damage on structures. Concerning the soundness of the structure, the upper portion is easily estimated by visual observation, while the lower portion located in deep underground is difficult to be estimated. Thus there exist few effective methods to investigate underground structures. In this paper, a new inspection technique for damage evaluation of concrete-piles utilizing acoustic emission (AE) is proposed, and is verified by a series of experiments. Firstly, such basic characteristics as the attenuation and effective wave-guides for detecting AE underground, are examined through laboratory tests. Secondary, fracture tests of full-scale prefabricated concrete piles are conducted, and the characteristics of the AE are examined. Finally, actual concrete-piles attacked by the 1995 Great Hanshin Earthquake are investigated. Results confirm that the estimated damages by the proposed method are in good agreement with actual damaged locations. Thus, the method is very effective for the diagnosis of the concrete-piles.

  11. A wireless acoustic emission sensor remotely powered by light

    International Nuclear Information System (INIS)

    Zahedi, F; Huang, H

    2014-01-01

    In this paper, wireless sensing of acoustic emission (AE) signals using a battery-free sensor node remotely powered by light is presented. The wireless sensor consists of a piezoelectric wafer active sensor (PWAS) for AE signal acquisition and a wireless transponder that performs signal conditioning, frequency conversion, and wireless transmission. For signal conditioning, a voltage follower that consumes less than 2 mW was introduced to buffer the high impedance of the PWAS from the low impedance of the wireless transponder. A photocell-based energy harvester with a stable voltage output was developed to power the voltage follower so that the wireless AE sensor can operate without an external power source. The principle of operation of the battery-free wireless AE sensor node and the sensor interrogation system is described, followed by a detailed description of the hardware implementation. The voltage follower and the wireless channel were characterized by ultrasound pitch–catch and pencil lead break experiments. (paper)

  12. Acoustic emission monitoring of recycled aggregate concrete under bending

    Science.gov (United States)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  13. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  14. Characterization of martensitic transformations using acoustic emission

    International Nuclear Information System (INIS)

    Tatro, C.A.

    1984-01-01

    Acoustic emission (AE) is a highly sensitive technique which can reveal changes in materials not detectable by other means. The goal of this project was to obtain basic information on the AE response to martensitic transformation in steel. This information will enable the use of AE for improved quality assurance testing of rough-cut component blanks and semifinished parts. The AE response was measured as a function of temperature in four steels undergoing martensitic transformation, and the AE response was compared with martensitic start temperature M/sub s/ and finish temperature M/sub f/ obtained by other methods. As measured by AE activity, M/sub s/ occurred as much as 26 0 C higher than previously reported using less sensitive measurement techniques. It was also found that 10 to 30% of an alloy of Fe-0.2% C-27% Ni transformed to martensite during one AE burst. These results show that AE can be used to study transformations both inside and outside the classical M/sub s/-M/sub f/ ranges. The findings will help to achieve the goal of using AE for quality assurance testing, and will add to the knowledge of the basic materials science of martensitic transformations

  15. Experimental study of ultra-thin films mechanical integrity by combined nanoindentation and nano-acoustic emission

    Science.gov (United States)

    Zhang, Zihou

    Advancement of interconnect technology has imposed significant challenge on interface characterization and reliability for blurred interfaces between layers. There is a need for material properties and these miniaturized length scales and assessment of reliability; including the intrinsic film fracture toughness and the interfacial fracture toughness. The nano-meter range of film thicknesses currently employed, impose significant challenges on evaluating these physical quantities and thereby impose significant challenge on the design cycle. In this study we attempted to use a combined nano-indentation and nano-acoustic emission to qualitatively and quantitatively characterize the failure modes in ultra-thin blanket films on Si substrates or stakes of different characteristics. We have performed and analyzed an exhaustive group of testes that cove many diverge combination of film-substrate combination, provided by both Intel and IBM. When the force-indentation depth curve shows excursion, a direct measure of the total energy release rate is estimated. The collected acoustic emission signal is then used to partition the total energy into two segments, one associated with the cohesive fracture toughness of the film and the other is for the adhesive fracture toughness of the interface. The acoustic emission signal is analyzed in both the time and frequency domain to achieve such energy division. In particular, the signal time domain analysis for signal skewness, time of arrival and total energy content are employed with the proper signal to noise ratio. In the frequency domain, an expansive group of acoustic emission signals are utilized to construct the details of the power spectral density. A bank of band-pass filters are designed to sort the individual signals to those associated with adhesive interlayer cracking, cohesive channel cracking, or other system induced noise. The attenuation time and the energy content within each spectral frequency were the key elements

  16. Dromion solutions for an electron acoustic wave and its application ...

    Indian Academy of Sciences (India)

    Davey–Stewartson equation; electron acoustic wave; space plasma. ... Its potential application in different physical fields are also well .... bi-linear method. .... One of the authors, S S Ghosh, would like to thank CSIR for its financial assistance ...

  17. Intermittent flow under constant forcing: Acoustic emission from creep avalanches

    Science.gov (United States)

    Salje, Ekhard K. H.; Liu, Hanlong; Jin, Linsen; Jiang, Deyi; Xiao, Yang; Jiang, Xiang

    2018-01-01

    While avalanches in field driven ferroic systems (e.g., Barkhausen noise), domain switching of martensitic nanostructures, and the collapse of porous materials are well documented, creep avalanches (avalanches under constant forcing) were never observed. Collapse avalanches generate particularly large acoustic emission (AE) signals and were hence chosen to investigate crackling noise under creep conditions. Piezoelectric SiO2 has a strong piezoelectric response even at the nanoscale so that we chose weakly bound SiO2 spheres in natural sandstone as a representative for the study of avalanches under time-independent, constant force. We found highly non-stationary crackling noise with four activity periods, each with power law distributed AE emission. Only the period before the final collapse shows the mean field behavior (ɛ near 1.39), in agreement with previous dynamic measurements at a constant stress rate. All earlier event periods show collapse with larger exponents (ɛ = 1.65). The waiting time exponents are classic with τ near 2.2 and 1.32. Creep data generate power law mixing with "effective" exponents for the full dataset with combinations of mean field and non-mean field regimes. We find close agreement with the predicted time-dependent fiber bound simulations, including events and waiting time distributions. Båth's law holds under creep conditions.

  18. Study of brittle crack jump rate using acoustic emission method

    International Nuclear Information System (INIS)

    Yasnij, P.V.; Pokrovskij, V.V.; Strizhalo, V.A.; Dobrovol'skij, Yu.V.

    1987-01-01

    A new peocedure is elaborated to detect brittle jumps of small length (0.1...5mm) occuring both inside the specimen and along the crack front under static and cyclic loading using the phenomena of acoustic emission (AE). Recording of the crack start and stop moments with an AE sensor as well as evaluation of the brittle crack jump length by the after-failure specimen fracture make it possible to find the mean crack propagation rate. Experimental dependences are obtained for the crack propagation rate with a brittle crack jump in steel 15Kh2MFA (σ B =1157 MPa, σ 0.2 =100 MPa) at 293 K and under cyclic loading as a function of the jump length and also as a function of the critical stress intensity factor K jc i corresponding to the crack jump

  19. Design of crude oil storage tank for acoustic emission testing

    International Nuclear Information System (INIS)

    Shukri Mohd; Masrul Nizam Salleh; Abd Razak Hamzah; Norasiah Abd Kasim

    2005-01-01

    The integrity of crude oil storage tank needs to be well managed because they can contain a large inventory of hazardous material and because of the high cost such as cleaning and waste disposal prior to disposal and maintenance. Costs involved in cleaning and inspection can be up to several hundreds thousand Malaysian Ranting. If the floor then proves to be in good condition, these costs have been wasted. Acoustic Emission (AE) is proposed to be use for monitoring the floor of the storage tank on line without doing cleaning and waste disposal. A storage tank will be fabricated for storing the crude oil and then the corrosion process will be monitor using AE method. This paper will discuss the background, material and is technical specification, design and also the difficulties faced during design and fabrication process. (Author)

  20. Method and apparatus for generating acoustic waves

    International Nuclear Information System (INIS)

    Rao, G.V.; Gopal, R.

    1982-01-01

    A portable source of acoustic waves comprises a sample of iron-nickel alloy including an austenite phase cooled to become martensite, and a wave guide to transmit the acoustic waves. The source is applied to the pressure boundary region of a pressurized water reactor to simulate an actual metal flaw and test the calibration of the monitoring and surveillance system. With at most 29.7% nickel in the sample, the source provides acoustic emission due to ductile deformation, and with at least 30% nickel the acoustic emission is characteristic of a brittle deformation. Thus, the monitoring and surveillance system can be tested in either or both situations. In the prior art, synthetic waveform signals were used for such calibration but found not suitable for on-line simulation of the surveillance system. This invention provides an improved system in that it generates true acoustic signals. (author)

  1. Tuning avalanche criticality: acoustic emission during the martensitic transformation of a compressed Ni-Mn-Ga single crystal

    Czech Academy of Sciences Publication Activity Database

    Niemann, R.; Baró, J.; Heczko, Oleg; Schultz, L.; Fähler, S.; Vives, E.; Mañosa, L.; Planes, A.

    2012-01-01

    Roč. 86, č. 21 (2012), "214101-1"-"214101-6" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional research plan: CEZ:AV0Z10100520 Keywords : stress -induced martensitic transformation * Ni-Mn-Ga * magnetic shape memory alloy * ferromagnetic martensite * acoustic emission during transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  2. Identification of a Critical Time with Acoustic Emission Monitoring during Static Fatigue Tests on Ceramic Matrix Composites: Towards Lifetime Prediction

    Directory of Open Access Journals (Sweden)

    Nathalie Godin

    2016-02-01

    Full Text Available Non-oxide fiber-reinforced ceramic-matrix composites are promising candidates for some aeronautic applications that require good thermomechanical behavior over long periods of time. This study focuses on the behavior of a SiCf/[Si-B-C] composite with a self-healing matrix at intermediate temperature under air. Static fatigue experiments were performed below 600 °C and a lifetime diagram is presented. Damage is monitored both by strain measurement and acoustic emission during the static fatigue experiments. Two methods of real-time analysis of associated energy release have been developed. They allow for the identification of a characteristic time that was found to be close to 55% of the measured rupture time. This critical time reflects a critical local energy release assessed by the applicability of the Benioff law. This critical aspect is linked to a damage phase where slow crack growth in fibers is prevailing leading to ultimate fracture of the composite.

  3. Preliminary study of acoustic emission (ae) noise signal identification for crude oil storage tank

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Shukri Mohd

    2008-08-01

    This preliminary work was carried out to simulate the Acoustic Emission (AE) signal contributed by pitting corrosion, and noise signal from environment during crude oil storage tanks monitoring. The purpose of this study is to prove that acoustic emission (AE) could be used to detect the formation of pitting corrosion in the crude oil storage tank and differentiated it from other sources of noise signal. In this study, the pitting corrosion was simulated by inducing low voltage and low amperage current onto the crude oil storage tank material (ASTM 516 G 70). Water drop, air blow and surface rubbing were applied onto the specimen surface. To simulate the noise signal produce by rain fall, wind blow and other sources of noise during AE crude oil storage tanks monitoring. AE sensor was attached onto the other surface of specimen to acquire all of these AE signals which then has send to AE DiSP 24 data acquisition system for signal conditioning. AE win software has been used to analyse this entire signal. It is found that, simulated pitting corrosion could be detected by AE system and differentiated from other sources of noise by using amplitude analysis. From the amplitude analysis is shown that 20-30 dB is the range amplitude for the blow test, 50-60 dB for surface rubbing test and over than 60 dB for water drop test. (Author)

  4. Prospects of Frequency-Time Correlation Analysis for Detecting Pipeline Leaks by Acoustic Emission Method

    International Nuclear Information System (INIS)

    Faerman, V A; Cheremnov, A G; Avramchuk, V V; Luneva, E E

    2014-01-01

    In the current work the relevance of nondestructive test method development applied for pipeline leak detection is considered. It was shown that acoustic emission testing is currently one of the most widely spread leak detection methods. The main disadvantage of this method is that it cannot be applied in monitoring long pipeline sections, which in its turn complicates and slows down the inspection of the line pipe sections of main pipelines. The prospects of developing alternative techniques and methods based on the use of the spectral analysis of signals were considered and their possible application in leak detection on the basis of the correlation method was outlined. As an alternative, the time-frequency correlation function calculation is proposed. This function represents the correlation between the spectral components of the analyzed signals. In this work, the technique of time-frequency correlation function calculation is described. The experimental data that demonstrate obvious advantage of the time-frequency correlation function compared to the simple correlation function are presented. The application of the time-frequency correlation function is more effective in suppressing the noise components in the frequency range of the useful signal, which makes maximum of the function more pronounced. The main drawback of application of the time- frequency correlation function analysis in solving leak detection problems is a great number of calculations that may result in a further increase in pipeline time inspection. However, this drawback can be partially reduced by the development and implementation of efficient algorithms (including parallel) of computing the fast Fourier transform using computer central processing unit and graphic processing unit

  5. On the state of acoustic emission analysis in pressure vessel and model vessel testing

    International Nuclear Information System (INIS)

    Morgner, W.; Theis, K.; Henke, F.; Imhof, D.

    1985-01-01

    In the GDR acoustic emission analysis is being applied primarily in connection with hydraulic pressure testing of vessels in chemical industry. It is, however, also used for testing and monitoring of equipment and components in other branches of industry. The state-of-the-art is presented with regard to equipment needed, training of personnel, licensing of testing methods and appropriate testing procedures. In particular, the evaluation of the sum curves and amplitude distributions is explained, using rupture tests of two oxygen cylinders and a compressed-air bottle as examples. (author)

  6. Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    E. Tsangouri

    2013-01-01

    Full Text Available Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.

  7. Experimental investigation of starting characteristics and wave propagation from a shallow open cavity and its acoustic emission at supersonic speed

    Science.gov (United States)

    Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo

    2018-01-01

    Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.

  8. Study of the performances of acoustic emission testing for glass fibre reinforced plastic pipes containing defects

    International Nuclear Information System (INIS)

    Villard, D.; Vidal, M.C.

    1995-08-01

    Glass fibre reinforced plastic pipes are more and more often used, in nuclear power plants, for building or replacement of water pipings classified 'nuclear safety'. Tests have been performed to evaluate the performances of acoustic emission testing for in service inspection of these components. The tests were focused on glass fibre reinforced polyester and vinyl-ester pipes, in as received conditions or containing impacts, and intentionally introduced defects. They have been carried out by CETIM, following the ASTM Standard E 1118 (code CARP), to a maximum pressure lever of 25 Bar The results show that the CARP procedure can be used for detection of defects and evaluation of their noxiousness towards internal pressure: most of the tubes containing low energy impacts could not be distinguished from tubes without defect; on the other hand the important noxiousness of lacks of impregnation of roving layer appeared clearly. Complementary tests have been performed on some tubes at a more important pressure lever, for which the damage of the tubes in enough to deteriorate there elastic properties. The results showed that CARP procedure give valuable informations on damage level. It would be interesting to evaluate acoustic emission on tubes containing realistic in-service degradations. (author). 11 refs., 15 figs., 6 tabs., 2 appends

  9. Real-time measurement of electron beam weld penetration in uranium by acoustic emission monitoring

    International Nuclear Information System (INIS)

    Whittaker, J.W.; Murphy, J.L.

    1991-07-01

    High quality electron beam (EB) welds are required in uranium test articles. Acoustic emission (AE) techniques are under development with the goal of measuring weld penetration in real-time. One technique, based on Average Signal Level (ASL) measurement was used to record weld AE signatures. Characteristic AE signatures were recorded for bead-on-plate (BOP) and butt joint (BJ) welds made under varied welding conditions. AE waveforms were sampled to determine what microscopic AE behavior led to the observed macroscopic signature features. Deformation twinning and weld expulsion are two of the main sources of emission. AE behavior was correlated with weld penetration as measured by standard metallographic techniques. The ASL value was found to increase approximately linearly with weld penetration in BJ welds. These results form the basis for a real-time monitoring technique for weld penetration. 5 refs

  10. Interior acoustic cloak

    OpenAIRE

    Wael Akl; A. Baz

    2014-01-01

    Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which a...

  11. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  12. Magnetic Barkhausen noise and magneto acoustic emission in pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Neyra Astudillo, Miriam Rocío, E-mail: neyra@cnea.gov.ar [IT Sabato, Universidad Nacional de San Martín, UNSAM, Av. General Paz 1499, Buenos Aires (Argentina); Universidad Tecnológica Nacional UTN, Regional Delta, Buenos Aires (Argentina); López Pumarega, María Isabel, E-mail: lopezpum@cnea.gov.ar [Comisión Nacional de Energía Atómica, CNEA, Av. General Paz 1499, Buenos Aires (Argentina); Núñez, Nicolás Marcelo, E-mail: nnunez@cnea.gov.ar [Comisión Nacional de Energía Atómica, CNEA, Av. General Paz 1499, Buenos Aires (Argentina); Pochettino, Alberto, E-mail: alberto.poch@gmail.com [Comisión Nacional de Energía Atómica, CNEA, Av. General Paz 1499, Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental (3iA), Campus Miguelete, UNSAM, Av. 25 de Mayo y Francia, 1650 San Martín Argentina (Argentina); Ruzzante, José, E-mail: ruzzante@gmail.com [Universidad Tecnológica Nacional UTN, Regional Delta, Buenos Aires (Argentina); Universidad Nacional de Tres de Febrero UNTREF, Caseros, Buenos Aires (Argentina); Universidad Nacional de Chilecito, UNdeC, La Rioja (Argentina)

    2017-03-15

    Magnetic Barkhausen Noise (MBN) and Magneto Acoustic Emission (MAE) were studied in A508 Class II forged steel used for pressure vessels in nuclear power stations. The magnetic experimental determinations were completed with a macro graphic study of sulfides and the texture analysis of the material. The analysis of these results allows us to determine connections between the magnetic anisotropy, texture and microstructure of the material. Results clearly suggest that the plastic flow direction is different from the forging direction indicated by the material supplier - Highlights: • MBN and MAE studied in nuclear power pressure vessel steel. • Comparison with macro graphic study of sulfides and texture analysis of the material. • Connections with magnetic anisotropy, texture and microstructure of material. • Plastic flow direction different from the forging direction indicated.

  13. Magnetic Barkhausen noise and magneto acoustic emission in pressure vessel steel

    International Nuclear Information System (INIS)

    Neyra Astudillo, Miriam Rocío; López Pumarega, María Isabel; Núñez, Nicolás Marcelo; Pochettino, Alberto; Ruzzante, José

    2017-01-01

    Magnetic Barkhausen Noise (MBN) and Magneto Acoustic Emission (MAE) were studied in A508 Class II forged steel used for pressure vessels in nuclear power stations. The magnetic experimental determinations were completed with a macro graphic study of sulfides and the texture analysis of the material. The analysis of these results allows us to determine connections between the magnetic anisotropy, texture and microstructure of the material. Results clearly suggest that the plastic flow direction is different from the forging direction indicated by the material supplier - Highlights: • MBN and MAE studied in nuclear power pressure vessel steel. • Comparison with macro graphic study of sulfides and texture analysis of the material. • Connections with magnetic anisotropy, texture and microstructure of material. • Plastic flow direction different from the forging direction indicated.

  14. New methods for leaks detection and localisation using acoustic emission; Nouvelles methodes de detection et de localisation de fuites par emission acoustique

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, P

    1993-12-08

    Real time monitoring of Pressurized Water nuclear Reactor secondary coolant system tends to integrate digital processing machines. In this context, the method of acoustic emission seems to exhibit good performances. Its principle is based on passive listening of noises emitted by local micro-displacements inside a material under stress which propagate as elastic waves. The lack of a priori knowledge on leak signals leads us to go deeper into understanding flow induced noise generation. Our studies are conducted using a simple leak model depending on the geometry and the king of flow inside the slit. Detection and localization problems are formulated according to the maximum likelihood principle. For detection, the methods using a indicator of similarity (correlation, higher order correlation) seems to give better results than classical ones (rms value, envelope, filter banks). For leaks location, a large panel of classical (generalized inter-correlation) and innovative (convolution, adaptative, higher order statistics) methods of time delay estimation are presented. The last part deals with the applications of higher order statistics. The analysis of higher order estimators of a non linear non Gaussian stochastic process family, the improvement of non linear prediction performances and the optimal-order choice problem are addressed in simple analytic cases. At last, possible applications to leak signals analysis are pointed out. (authors).264 refs., 7 annexes.

  15. Acoustic Emission Monitoring of Incipient Failure in Journal Bearings( III ) - Development of AE Diagnosis System for Journal Bearings -

    International Nuclear Information System (INIS)

    Chung, Min Hwa; Cho, Yong Sang; Yoon, Dong Jin; Kwon, Oh Yang

    1996-01-01

    For the condition monitoring of the journal bearing in rotating machinery, a system for their diagnosis by acoustic emission(AE) was developed. AE has been used to detect abnormal conditions in the bearing system. It was found from the field application study as well as the laboratory experiment using a simulated journal bearing system that AE RMS voltage was the most efficient parameter for the purpose of current study. Based on the above results, algorithms and judgement criteria for the diagnosis system was established. The system is composed of four parts as follows: the sensing part including AE sensor and preamplifier, the signal processing part for RMS-to-DC conversion to measure AE ms voltage, the interface part for transferring RMS voltage data into PC using A/D converter, and the software part including the graphic display of bearing conditions and the diagnosis program

  16. Online laboratory evaluation of seeding-machine application by an acoustic technique

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, H.; Navid, H.; Mahmoudi, A.

    2015-07-01

    Researchers and planter manufacturers have been working closely to develop an automated system for evaluating performance of seeding. In the present study, an innovative use of acoustic signal for laboratory evaluation of seeding-machine application is described. Seed detection technique of the proposed system was based on a rising voltage value that a microphone sensed in each impaction of seeds to a steel plate. Online determining of seed spacing was done with a script which was written in MATLAB software. To evaluate the acoustic system with desired seed spacing, a testing rig was designed. Seeds of wheat, corn and pelleted tomato were used as experimental material. Typical seed patterns were positioned manually on a belt stand with different spacing patterns. When the belt was running, the falling seeds from the end point of the belt impacted to the steel plate, and their acoustic signal was sensed by the microphone. In each impact, data was processed and spacing between the seeds was automatically obtained. Coefficient of determination of gathered data from the belt system and the corresponding seeds spacing measured with the acoustic system in all runs was about 0.98. This strong correlation indicates that the acoustic system worked well in determining the seeds spacing. (Author)

  17. Comparison between sensitivities of quality control methods using ultrasonic waves, radiography and acoustic emission for the thick welded joint testing

    International Nuclear Information System (INIS)

    Asty, Michel; Birac, Claude

    1981-09-01

    The testing of the thick welded joints of the nuclear industry is carried out by radiography and ultrasonics on completion of welding. When a fault is found, its repair requires a sometimes deep cut down to the position of the fault, then filling in of the cut by hand welding with a coated electrode. This very costly operation also involves the risk of causing new defects when building up by hand. Listening to the acoustic emission during the welding has been considered in order to seek the possibility of detecting defects when they appear, or soon after. The industrial use of this method would make an instant repair of the defective areas possible at less cost and with greater reliability. The study presented concerns the comparison between the results of the various non-destructive testing methods: radiography, ultrasonics and acoustic emission, for a thick welded joint in which the defects have been brought about [fr

  18. Accoustic emission measurements during phase change

    Energy Technology Data Exchange (ETDEWEB)

    Tensi, H M; Radtke, W [Technische Univ. Muenchen (Germany, F.R.). Inst. fuer Werkstoff- und Verarbeitungswissenschaften

    1978-07-01

    Acoustic emission measurements during solidification and melting of metals are heavily disturbed by noise originating from frictional movements between crucible and specimen. These disturbances may be cancelled by means of specially arranged crucibles. Thus it was possible to use acoustic emission generated during solidification of residual eutectic liquid for real-time judgement of macrosegregation and microsegregation. With the help of crucibles made of silicone tubes the effect of melting velocity and concentration on acoustic emission generated by melting of bismuth and bismuth alloys was measured.

  19. Application of acoustic agglomerators for emergency use in liquid-metal fast breeder reactor plants

    International Nuclear Information System (INIS)

    Shaw, D.T.; Rajendran, N.

    1979-01-01

    The use of acoustic agglomerators for the suppression of sodium-fire aerosols in the case of a hypothetical core disruptive accident of a liquid-metal fast breeder reactor is discussed. The basic principle for the enhancement of agglomeration of airborne particles under the influence of an acoustic field is first discussed, followed by theoretical predictions of the optimum operating conditions for such application. It is found that with an acoustic intensity of 160 dB (approx. 1 W/cm 2 ), acoustic agglomeration is expected to be several hundred times more effective than gravitational agglomeration. For particles with a radius larger than approx. 2 μm, hydrodynamic interaction becomes more important than the inertial capture. For radii between 0.5 and 2 μm, both mechanisms have to included in the theoretical predictions of the acoustic agglomeration rate

  20. Systems and methods for biometric identification using the acoustic properties of the ear canal

    International Nuclear Information System (INIS)

    Bouchard, A.M.; Osbourn, G.C.

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications. 5 figs

  1. Systems and methods for biometric identification using the acoustic properties of the ear canal

    Science.gov (United States)

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.

  2. Solid waves and acoustic emission first phase: Problems direct and inverse and equations elasto dynamics fields

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2002-07-01

    The present work is the first of a series of three memoirs briefs, destinadas to revise the classic theoretical foundations that allow to understand the generation,la diffusion and the detection of the elastic waves in those been accustomed to from the point of view of the mechanics of the means continuos. The study is faced in the mark of the non destructive rehearsals, emphasizing aspects related with the rehearsals based on the acoustic emission of the material defects

  3. Laser Generated Leaky Acoustic Waves for Needle Visualization.

    Science.gov (United States)

    Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi

    2018-04-01

    Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.

  4. Study on the Measurement of Valve Leak Rate Using Acoustic Emission Technology

    International Nuclear Information System (INIS)

    Lee, Sang-Guk; Park, Jong-Hyuck; Yoo, Keun-Bae; Lee, Sun-Ki; Hong, Sung-Yull

    2006-01-01

    This study is to estimate the feasibility of acoustic emission(AE) method for the internal leak from the valves. In this study, 4 inch ball water valve leak tests using three different leak path and various leak rates were performed in order to analyze AE properties when leaks arise in valve seat. As a result of leak test for specimens simulated valve seat, we conformed that leak sound amplitude increased in proportion to the increase of leak rate, and leak rates were plotted versus peak acoustic amplitudes recorded within those two narrow frequency bands on each spectrum plot. The resulting plots of leak rate versus peak AE amplitude were the primary basis for determining the feasibility of quantifying leak acoustically. The large amount of data attained also allowed a favorable investigation of the effects of different leak paths, leak rates, pressure differentials and AE sensors on the AE amplitude spectrum. From the experimental results, it was suggested that the AE method for monitoring of leak was feasible. This paper describes quantitative measurements of fluid valve leak rates by the analysis of AE. Experimental apparatus were fabricated to accept a variety of leaking water valves in order to determine what characteristics of AE signal change with leak rate. The data for each valve were generated by varying the leak rate and recording the time averaged amplitude of AE versus frequency. Leak rates were varied by modifying the valve seating surfaces in ways designed to simulate actual defects observed in service. Most of the data analysis involved plotting the leak rate versus signal amplitude at a specific frequency to determine how well the two variables correlate in terms of accuracy, resolution, and repeatability

  5. Arguments for fundamental emission by the parametric process L yields T + S in interplanetary type III bursts. [langmuir, electromagnetic, ion acoustic waves (L, T, S)

    Science.gov (United States)

    Cairns, I. H.

    1984-01-01

    Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.

  6. An efficient closed-form solution for acoustic emission source location in three-dimensional structures

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2014-02-01

    Full Text Available This paper presents an efficient closed-form solution (ECS for acoustic emission(AE source location in three-dimensional structures using time difference of arrival (TDOA measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.

  7. Mesoscale analysis of failure in quasi-brittle materials: comparison between lattice model and acoustic emission data.

    Science.gov (United States)

    Grégoire, David; Verdon, Laura; Lefort, Vincent; Grassl, Peter; Saliba, Jacqueline; Regoin, Jean-Pierre; Loukili, Ahmed; Pijaudier-Cabot, Gilles

    2015-10-25

    The purpose of this paper is to analyse the development and the evolution of the fracture process zone during fracture and damage in quasi-brittle materials. A model taking into account the material details at the mesoscale is used to describe the failure process at the scale of the heterogeneities. This model is used to compute histograms of the relative distances between damaged points. These numerical results are compared with experimental data, where the damage evolution is monitored using acoustic emissions. Histograms of the relative distances between damage events in the numerical calculations and acoustic events in the experiments exhibit good agreement. It is shown that the mesoscale model provides relevant information from the point of view of both global responses and the local failure process. © 2015 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.

  8. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  9. Listening in on Friction: Stick-Slip Acoustical Signatures in Velcro

    Science.gov (United States)

    Hurtado Parra, Sebastian; Morrow, Leslie; Radziwanowski, Miles; Angiolillo, Paul

    2013-03-01

    The onset of kinetic friction and the possible resulting stick-slip motion remain mysterious phenomena. Moreover, stick-slip dynamics are typically accompanied by acoustic bursts that occur temporally with the slip event. The dry sliding dynamics of the hook-and-loop system, as exemplified by Velcro, manifest stick-slip behavior along with audible bursts that are easily micrphonically collected. Synchronized measurements of the friction force and acoustic emissions were collected as hooked Velcro was driven at constant velocity over a bed of looped Velcro in an anechoic chamber. Not surprising, the envelope of the acoustic bursts maps well onto the slip events of the friction force time series and the intensity of the bursts trends with the magnitude of the difference of the friction force during a stick-slip event. However, the analysis of the acoustic emission can serve as a sensitive tool for revealing some of the hidden details of the evolution of the transition from static to kinetic friction. For instance, small acoustic bursts are seen prior to the Amontons-Coulomb threshold, signaling precursor events prior to the onset of macroscopically observed motion. Preliminary spectral analysis of the acoustic emissions including intensity-frequency data will be presented.

  10. Analysis of Precursors Prior to Rock Burst in Granite Tunnel Using Acoustic Emission and Far Infrared Monitoring

    Directory of Open Access Journals (Sweden)

    Zhengzhao Liang

    2013-01-01

    Full Text Available To understand the physical mechanism of the anomalous behaviors observed prior to rock burst, the acoustic emission (AE and far infrared (FIR techniques were applied to monitor the progressive failure of a rock tunnel model subjected to biaxial stresses. Images of fracturing process, temperature changes of the tunnel, and spatiotemporal serials of acoustic emission were simultaneously recorded during deformation of the model. The b-value derived from the amplitude distribution data of AE was calculated to predict the tunnel rock burst. The results showed that the vertical stress enhanced the stability of the tunnel, and the tunnels with higher confining pressure demonstrated a more abrupt and strong rock burst. Abnormal temperature changes around the wall were observed prior to the rock burst of the tunnel. Analysis of the AE events showed that a sudden drop and then a quiet period could be considered as the precursors to forecast the rock burst hazard. Statistical analysis indicated that rock fragment spalling occurred earlier than the abnormal temperature changes, and the abnormal temperature occurred earlier than the descent of the AE b-value. The analysis indicated that the temperature changes were more sensitive than the AE b-value changes to predict the tunnel rock bursts.

  11. Surface Acoustic Wave (SAW for Chemical Sensing Applications of Recognition Layers

    Directory of Open Access Journals (Sweden)

    Adnan Mujahid

    2017-11-01

    Full Text Available Surface acoustic wave (SAW resonators represent some of the most prominent acoustic devices for chemical sensing applications. As their frequency ranges from several hundred MHz to GHz, therefore they can record remarkably diminutive frequency shifts resulting from exceptionally small mass loadings. Their miniaturized design, high thermal stability and possibility of wireless integration make these devices highly competitive. Owing to these special characteristics, they are widely accepted as smart transducers that can be combined with a variety of recognition layers based on host-guest interactions, metal oxide coatings, carbon nanotubes, graphene sheets, functional polymers and biological receptors. As a result of this, there is a broad spectrum of SAW sensors, i.e., having sensing applications ranging from small gas molecules to large bio-analytes or even whole cell structures. This review shall cover from the fundamentals to modern design developments in SAW devices with respect to interfacial receptor coatings for exemplary sensor applications. The related problems and their possible solutions shall also be covered, with a focus on emerging trends and future opportunities for making SAW as established sensing technology.

  12. Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers.

    Science.gov (United States)

    Mujahid, Adnan; Dickert, Franz L

    2017-11-24

    Surface acoustic wave (SAW) resonators represent some of the most prominent acoustic devices for chemical sensing applications. As their frequency ranges from several hundred MHz to GHz, therefore they can record remarkably diminutive frequency shifts resulting from exceptionally small mass loadings. Their miniaturized design, high thermal stability and possibility of wireless integration make these devices highly competitive. Owing to these special characteristics, they are widely accepted as smart transducers that can be combined with a variety of recognition layers based on host-guest interactions, metal oxide coatings, carbon nanotubes, graphene sheets, functional polymers and biological receptors. As a result of this, there is a broad spectrum of SAW sensors, i.e., having sensing applications ranging from small gas molecules to large bio-analytes or even whole cell structures. This review shall cover from the fundamentals to modern design developments in SAW devices with respect to interfacial receptor coatings for exemplary sensor applications. The related problems and their possible solutions shall also be covered, with a focus on emerging trends and future opportunities for making SAW as established sensing technology.

  13. Standard practice for examination of Gas-Filled filament-wound composite pressure vessels using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examination of filament-wound composite pressure vessels, for example, the type used for fuel tanks in vehicles which use natural gas fuel. 1.2 This practice requires pressurization to a level equal to or greater than what is encountered in normal use. The tanks' pressurization history must be known in order to use this practice. Pressurization medium may be gas or liquid. 1.3 This practice is limited to vessels designed for less than 690 bar [10,000 psi] maximum allowable working pressure and water volume less than 1 m3 or 1000 L [35.4 ft3]. 1.4 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to gain additional insight into the emission source. Procedures for other NDE methods are beyond the scope of this practice. 1.5 This practice applies to examination of new and in-service filament-wound composite pressure vessels. 1.6 This practice applies to examinations conducted at amb...

  14. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha

    2016-01-19

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  15. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha; Wu, Ying

    2016-01-01

    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  16. Study of the loading mode dependence of the twinning in random textured cast magnesium by acoustic emission and neutron diffraction methods

    Czech Academy of Sciences Publication Activity Database

    Čapek, J.; Máthis, K.; Clausen, B.; Stráská, J.; Beran, Přemysl; Lukáš, Petr

    2014-01-01

    Roč. 602, APR (2014), s. 25-32 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GAP204/12/1360 Institutional support: RVO:61389005 Keywords : magnesium * acoustic emission * neutron diffraction * deformation twinning Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.567, year: 2014

  17. The application of standard definitions of sound to the fields of underwater acoustics and acoustical oceanography

    Science.gov (United States)

    Carey, William M.

    2004-05-01

    Recent societal concerns have focused attention on the use of sound as a probe to investigate the oceans and its use in naval sonar applications. The concern is the impact the use of sound may have on marine mammals and fishes. The focus has changed the fields of acoustical oceanography (AO) and underwater acoustics (UW) because of the requirement to communicate between disciplines. Multiple National Research Council publications, Dept. of Navy reports, and several monographs have been written on this subject, and each reveals the importance as well as the misapplication of ASA standards. The ANSI-ASA standards are comprehensive, however not widely applied. The clear definition of standards and recommendations of their use is needed for both scientists and government agencies. Traditionally the U.S. Navy has been responsible for UW standards and calibration; the ANSI-ASA standards have been essential. However, recent changes in the Navy and its laboratory structure may necessitate a more formal recognition of ANSI-ASA standards and perhaps incorporation of UW-AO in the Bureau of Standards. A separate standard for acoustical terminology, reference levels, and notation used in the UW-AO is required. Since the problem is global, a standard should be compatible and cross referenced with the International Standard (CEI/IEC 27-3).

  18. Evaluation of temper embrittlement of martensitic and ferritic-martensitic steels by acoustic emission

    International Nuclear Information System (INIS)

    Lu, Yusho; Takahashi, Hideaki; Shoji, Tetsuo

    1987-01-01

    Martensitic (HT-9) and ferritic-martensitic steels (9Cr-2Mo) are considered as fusion first wall materials. In this investigation in order to understand the sensitivity of temper embrittlement in these steels under actual service condition, fracture toughness testing was made by use of acoustic emission technique. The temper embrittlement was characterized in terms of fracture toughness. The fracture toughness of these steels under 500 deg C, 100 hrs, and 1000 hrs heat treatment was decreased and their changes in micro-fracture process have been observed. The fracture toughness changes by temper embrittlement was discussed by the characteristic of AE, AE spectrum analysis and fractographic investigation. The relation between micro-fracture processes and AE has been clarified. (author)

  19. Acoustic Metamaterials in Aeronautics

    Directory of Open Access Journals (Sweden)

    Giorgio Palma

    2018-06-01

    Full Text Available Metamaterials, man-made composites that are scaled smaller than the wavelength, have demonstrated a huge potential for application in acoustics, allowing the production of sub-wavelength acoustic absorbers, acoustic invisibility, perfect acoustic mirrors and acoustic lenses for hyper focusing, and acoustic illusions and enabling new degrees of freedom in the control of the acoustic field. The zero, or even negative, refractive sound index of metamaterials offers possibilities for the control of acoustic patterns and sound at sub-wavelength scales. Despite the tremendous growth in research on acoustic metamaterials during the last decade, the potential of metamaterial-based technologies in aeronautics has still not been fully explored, and its utilization is still in its infancy. Thus, the principal concepts mentioned above could very well provide a means to develop devices that allow the mitigation of the impact of civil aviation noise on the community. This paper gives a review of the most relevant works on acoustic metamaterials, analyzing them for their potential applicability in aeronautics, and, in this process, identifying possible implementation areas and interesting metabehaviors. It also identifies some technical challenges and possible future directions for research with the goal of unveiling the potential of metamaterials technology in aeronautics.

  20. Standard practice for examination of seamless, Gas-Filled, pressure vessels using acoustic emission

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice provides guidelines for acoustic emission (AE) examinations of seamless pressure vessels (tubes) of the type used for distribution or storage of industrial gases. 1.2 This practice requires pressurization to a level greater than normal use. Pressurization medium may be gas or liquid. 1.3 This practice does not apply to vessels in cryogenic service. 1.4 The AE measurements are used to detect and locate emission sources. Other nondestructive test (NDT) methods must be used to evaluate the significance of AE sources. Procedures for other NDT techniques are beyond the scope of this practice. See Note 1. Note 1—Shear wave, angle beam ultrasonic examination is commonly used to establish circumferential position and dimensions of flaws that produce AE. Time of Flight Diffraction (TOFD), ultrasonic examination is also commonly used for flaw sizing. 1.5 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.6 This standa...

  1. Investigation of active vibration drilling using acoustic emission and cutting size analysis

    Directory of Open Access Journals (Sweden)

    Yingjian Xiao

    2018-04-01

    Full Text Available This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests (DOTs were conducted where the drilling rate-of-penetration (ROP was measured at a series of step-wise increasing static bit thrusts or weight-on-bits (WOBs. Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission (AE system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT (linear variable differential transformer recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP. Keywords: Active bit vibration, Diamond coring drilling, Drill

  2. Acoustic energy propagation around railways

    Science.gov (United States)

    Cizkova, Petra

    2017-09-01

    The article deals with the issues of acoustic energy propagation around railways. The research subject was noise emission spreading into the surroundings during the passage of trains over a directly travelled steel bridge construction. Noise emissions were measured using direct measurements in the field. The measurements were performed in two measurement profiles. The noise exposures A LAE measured near the steel bridge construction were compared against the noise exposures A LAE captured on an open track. From the difference of these data, the noise level of the steel bridge structure was determined. Part of the research was to evaluate the effect of the reconstruction of the railway track superstructure on the acoustic situation in the given section of the railway track. The article describes the methodology of measurements, including the processing and evaluation of measured data. The article points out the noise levels of the steel bridge construction and assesses changes in the acoustic situation after the reconstruction.

  3. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  4. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  5. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.

    Science.gov (United States)

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-02-27

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  6. Digital image correlation, acoustic emission and ultrasonic pulse velocity for the detection of cracks in the concrete buffer of the Belgian nuclear supercontainer

    International Nuclear Information System (INIS)

    Iliopoulos, Sokratis; Tsangouri, Eleni; Aggelis, Dimitrios G.; Pyl, Lincy; Areias, Lou; Vrije Univ., Brussels

    2014-01-01

    The long term management of high-level and heat emitting radioactive waste is a worldwide concern, as it directly influences the environment and future generations. To address this issue, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the conceptual design of a massive concrete structure called Supercontainer. The feasibility to construct these structures is being evaluated through a number of scaled models that are tested using classical as well as state of the art measurement techniques. In the current paper, the results obtained from the simultaneous application of the Digital Image Correlation (DIC), the Acoustic Emission (AE) and the Ultrasonic Pulse Velocity (UPV) nondestructive testing techniques on the second scaled model for the detection and monitoring of cracks will be presented.

  7. Auto-inflammatory challenge of the endolymphatic sac - Cochlear damage measured by distortion product oto-acoustic emissions

    DEFF Research Database (Denmark)

    Larsen, Michael; Friis, Morten; Karlsen, Charlotte Vestrup

    2015-01-01

    CONCLUSION: Twenty-five rats were challenged by an immunologic attack of the endolymphatic sac. After 6 months, distortion product oto-acoustic emissions (DPOAE) revealed a dysfunction of the outer hair cells and immunological active cells were observed in the endolymphatic sac. This information...... could contribute to the understanding of Ménière's disease. OBJECTIVES: This study investigated if an autoimmune challenge of the endolymphatic sac could affect DPOAE output measurements in rats. Also, a potential autoimmune cell infiltration of the endolymphatic sac was investigated. METHODS: Eighteen...

  8. Education in acoustics in Argentina

    Science.gov (United States)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  9. Preliminary Development of Online Monitoring Acoustic Emission System for the Integrity of Research Reactor Components

    Science.gov (United States)

    Bakhri, S.; Sumarno, E.; Himawan, R.; Akbar, T. Y.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    Three research reactors owned by BATAN have been more than 25 years. Aging of (Structure, System and Component) SSC which is mainly related to mechanical causes become the most important issue for the sustainability and safety operation. Acoustic Emission (AE) is one of the appropriate and recommended methods by the IAEA for inspection as well as at the same time for the monitoring of mechanical SSC related. However, the advantages of AE method in detecting the acoustic emission both for the inspection and the online monitoring require a relatively complex measurement system including hardware software system for the signal detection and analysis purposes. Therefore, aim of this work was to develop an AE system based on an embedded system which capable for doing both the online monitoring and inspection of the research reactor’s integrity structure. An embedded system was selected due to the possibility to install the equipment on the field in extreme environmental condition with capability to store, analyses, and send the required information for further maintenance and operation. The research was done by designing the embedded system based on the Field Programmable Gate Array (FPGA) platform, because of their execution speed and system reconfigurable opportunities. The AE embedded system is then tested to identify the AE source location and AE characteristic under tensile material testing. The developed system successfully acquire the AE elastic waveform and determine the parameter-based analysis such as the amplitude, peak, duration, rise time, counts and the average frequency both for the source location test and the tensile test.

  10. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part B Cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-04-15

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.

  11. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part B Cluster analysis

    International Nuclear Information System (INIS)

    Halim, Zakiah Abd; Jamaludin, Nordin; Junaidi, Syarif; Yahya, Syed Yusainee Syed

    2015-01-01

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.

  12. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part A Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-04-15

    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. This paper presents a statistical analysis of high frequency stress wave signals captured from a newly developed noninvasive, non-destructive tube inspection technique known as the vibration impact acoustic emission (VIAE) technique. Acoustic emission (AE) signals have been introduced into the ASTM A179 seamless steel tubes using an impact hammer, and the AE wave propagation was captured using an AE sensor. Specifically, a healthy steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AE features extracted from the captured signals are rise time, peak amplitude, duration and count. The VIAE technique also analysed the AE signals using statistical features such as root mean square (r.m.s.), energy, and crest factor. It was evident that duration, count, r.m.s., energy and crest factor could be used to automatically identify the presence of defect in carbon steel tubes using AE signals captured using the non-invasive VIAE technique.

  13. Acoustic emission studies of cermet BK structural modifications under thermal and radiation action and hydrogenation

    International Nuclear Information System (INIS)

    Ul'yanov, V.L.; Chernov, I.P.; Botaki, A.A.; Chakhlov, B.V.

    1992-01-01

    Elastic wave attenuation and acoustic emission (AE) in tungsten monocarbide base cermets were investigated with the purpose of studying structural changes and microplastic strains under heating within the range of 100-1000 K, gamma-irradiation up to absorbed dose of 10 7 J·kg -1 and hydrogenation. Interrelations were revealed of AE signals and a decrement of elastic wave damping to temperature- and radiation-induced transformations in microstructure of 94 % WC -6 % Co and 92 % WC - 8 % Co hard alloys. AE peaks under thermal action were found to be associated with cobalt phase microstrain or with dislocation of hydrogen in preliminary hyudrogenated alloys

  14. The 'spontaneous' acoustic emission of the shock front in a perfect fluid: solving a riddle

    International Nuclear Information System (INIS)

    Brun, Louis

    2013-06-01

    In the fifties, S. D'yakov discovered that theory allows for suitable EOS shock fronts to emit acoustic waves 'spontaneously'. Section 90 of Fluid Mechanics of Landau and Lifshitz, 2. Ed., deals with the phenomenon, leaving it unexplained. This open question was chosen to introduce a monograph in progress about 'the shock front in the perfect fluid'. The novelty of our approach consists in having the phenomenon generated - which means it is non-spontaneous -- from an appropriate solicitation of the front and studying its development analytically. The non classical source and mechanism of the emission are thus brought to light. (author)

  15. Acoustic waves in M dwarfs: Maintaining a corona

    Science.gov (United States)

    Mullan, D. J.; Cheng, Q. Q.

    1994-01-01

    We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.

  16. Department of Cybernetic Acoustics

    Science.gov (United States)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  17. Failure Mechanism of Rock Bridge Based on Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    2015-01-01

    Full Text Available Acoustic emission (AE technique is widely used in various fields as a reliable nondestructive examination technology. Two experimental tests were carried out in a rock mechanics laboratory, which include (1 small scale direct shear tests of rock bridge with different lengths and (2 large scale landslide model with locked section. The relationship of AE event count and record time was analyzed during the tests. The AE source location technology and comparative analysis with its actual failure model were done. It can be found that whether it is small scale test or large scale landslide model test, AE technique accurately located the AE source point, which reflected the failure generation and expansion of internal cracks in rock samples. Large scale landslide model with locked section test showed that rock bridge in rocky slope has typical brittle failure behavior. The two tests based on AE technique well revealed the rock failure mechanism in rocky slope and clarified the cause of high speed and long distance sliding of rocky slope.

  18. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in KEVLAR® 49 Composites

    Science.gov (United States)

    Waller, J. M.; Andrade, E.; Saulsberry, R. L.

    2010-02-01

    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar® 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio <1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  19. Implant test and acoustic emission technique used to investigate hydrogen assisted cracking in the melted zone of a welded HSLA-80 steel

    International Nuclear Information System (INIS)

    Fals, H. C.; Trevisan, R. E.

    1999-01-01

    Weld metal hydrogen assisted cracking was studied using two flux cored wire (AWS E 70T-5 and AWS E 120 T5-K4) and a mixture gas of CO 2 +5% H 2 to induce values of diffusible hydrogen in high strength low alloy steel (HSLA-80) weldments. An acoustical Emission Measurement System (AEMS) RMS voltmeter was coupled to the implant test (NF 89-100) apparatus to determine energy, amplitude and event numbers of signal. All cracks were initiated in the partially melted zone and propagated into the coarse-grained region of the heat affected zone when E 70 T5 consumable was used, and the quasi-cleavage fracture mode was predominant. When E 120 T5 K4 consumable was used the cracks propagated vertically across the fusion zone, and a mixed fracture mode was the most important. A significant relationship between acoustic emission parameters and fracture modes was found. (Author) 12 refs

  20. 4-D imaging of seepage in earthen embankments with time-lapse inversion of self-potential data constrained by acoustic emissions localization

    Science.gov (United States)

    Rittgers, J. B.; Revil, A.; Planes, T.; Mooney, M. A.; Koelewijn, A. R.

    2015-02-01

    New methods are required to combine the information contained in the passive electrical and seismic signals to detect, localize and monitor hydromechanical disturbances in porous media. We propose a field experiment showing how passive seismic and electrical data can be combined together to detect a preferential flow path associated with internal erosion in a Earth dam. Continuous passive seismic and electrical (self-potential) monitoring data were recorded during a 7-d full-scale levee (earthen embankment) failure test, conducted in Booneschans, Netherlands in 2012. Spatially coherent acoustic emissions events and the development of a self-potential anomaly, associated with induced concentrated seepage and internal erosion phenomena, were identified and imaged near the downstream toe of the embankment, in an area that subsequently developed a series of concentrated water flows and sand boils, and where liquefaction of the embankment toe eventually developed. We present a new 4-D grid-search algorithm for acoustic emissions localization in both time and space, and the application of the localization results to add spatially varying constraints to time-lapse 3-D modelling of self-potential data in the terms of source current localization. Seismic signal localization results are utilized to build a set of time-invariant yet spatially varying model weights used for the inversion of the self-potential data. Results from the combination of these two passive techniques show results that are more consistent in terms of focused ground water flow with respect to visual observation on the embankment. This approach to geophysical monitoring of earthen embankments provides an improved approach for early detection and imaging of the development of embankment defects associated with concentrated seepage and internal erosion phenomena. The same approach can be used to detect various types of hydromechanical disturbances at larger scales.

  1. Acoustic emission characteristics during bending fracture process of piezoelectric composite actuators

    International Nuclear Information System (INIS)

    Woo, Sung Choong; Goo, Nam Seo

    2006-01-01

    The objective of this study is to investigate the damage mechanisms in a thin monolithic PZT wafer and an asymmetrically laminated piezoelectric composite actuator (PCA) under bending loading by the acoustic emission (AE) technique. Fracture surface examinations were conducted using a scanning electron microscope (SEM) and an optical microscope. Using the fabricated PCAs, correlations were established between the observed damage growth mechanisms and the AE results in terms of the AE amplitude and dominant frequency band which was processed by fast Fourier transform (FFT). These correlations can be used to monitor the damage evolution in the plate-type piezoelectric composite actuators exhibiting multiple modes of damage. Results from this study revealed that the AE technique is a powerful and effective tool for identifying damage mechanisms such as brittle fracture in the PZT, matrix cracking, fiber-matrix debonding, fiber breakage and delamination between the PZT layer and fiber composite layer in the asymmetrically laminated PCAs.

  2. Signal Simulation and Experimental Research on Acoustic Emission using LS-DYNA

    Directory of Open Access Journals (Sweden)

    Zhang Jianchao

    2015-09-01

    Full Text Available To calculate sound wave velocity, we performed the Hsu-Nielsen lead break experiment using the ANSYS/LS-DYNA finite element software. First, we identified the key problems in the finite element analysis, such as selecting the exciting force, dividing the grid density, and setting the calculation steps. Second, we established the finite element model of the sound wave transmission in a plate under the lead break simulation. Results revealed not only the transmission characteristics of the sound wave but also the simulation and calculation of the transmission velocity of the longitudinal and transverse waves through the time travel curve of the vibration velocity of the sound wave at various nodes. Finally, the Hsu-Nielsen lead break experiment was implemented. The results of the theoretical calculation and simulation analysis were consistent with the experimental results, thus demonstrating that the research method using the ANSYS/LS-DYNA software to simulate sound wave transmissions in acoustic emission experiments is feasible and effective.

  3. Evaluation of fatigue damage for wind turbine blades using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Hyun Sup; Ju, No Hoe [Korea Institute of Materials Science, Changwon (Korea, Republic of); So, Cheal Ho [Dongshin University, Naju (Korea, Republic of); Lee, Jong Kyu [Dept. of Physics, Pukyung National University, Busan (Korea, Republic of)

    2015-06-15

    In this study, the flap fatigue test of a 48 m long wind turbine blade was performed for 1 million cycles to evaluate the characteristics of acoustic emission signals generated from fatigue damage of the wind blades. As the number of hits and total energy continued to increase during the first 0.6 million cycles, blade damage was constant. The rise-time result showed that the major aspects of damage were initiation and propagation of matrix cracks. In addition, the signal analysis of each channel showed that the most seriously damaged sections were the joint between the skin and spar, 20 m from the connection, and the spot of actual damage was observable by visual inspection. It turned out that the event source location was related to the change in each channel{sup s} total energy. It is expected that these findings will be useful for the optimal design of wind turbine blades.

  4. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  5. Generation of acoustic phonons from quasi-two-dimensional hole gas

    International Nuclear Information System (INIS)

    Singh, J.; Oh, I.K.

    2002-01-01

    Full text: Generation of phonons from two dimensional electron and hole gases in quantum wells has attracted much attraction recently. The mechanism of phonon emission plays an important role in the phonon spectroscopy which enables us to study the angular and polarization dependence of phonon emission. The acoustic phonon emission from a quasi-two-dimensional hole gas (2DHG) in quantum wells is influenced by the anisotropic factors in the valence band structure, screening, elastic property, etc. The anisotropy in the valence band structure gives rise to anisotropic effective mass and deformation potential and that in the elastic constants leads to anisotropic sound velocity. Piezoelectric coupling in non-centrosymmetric materials such as GaAs is also anisotropic. In this paper, considering the anisotropy in the effective mass, deformation potential, piezoelectric coupling and screening effect, we present a theory to study the angular and polarization dependence of acoustic phonon emission from a quasi-2DHG in quantum wells. The theory is finally applied to calculate the rate of acoustic phonon emission in GaAs quantum wells

  6. Acoustic Emission Characteristics of Red Sandstone Specimens Under Uniaxial Cyclic Loading and Unloading Compression

    Science.gov (United States)

    Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Chen, Yanlong

    2018-04-01

    To explore the acoustic emission (AE) characteristics of rock materials during the deformation and failure process under periodic loads, a uniaxial cyclic loading and unloading compression experiment was conducted based on an MTS 815 rock mechanics test system and an AE21C acoustic emissions test system. The relationships among stress, strain, AE activity, accumulated AE activity and duration for 180 rock specimens under 36 loading and unloading rates were established. The cyclic AE evolutionary laws with rock stress-strain variation at loading and unloading stages were analyzed. The Kaiser and Felicity effects of rock AE activity were disclosed, and the impact of the significant increase in the scale of AE events on the Felicity effect was discussed. It was observed that the AE characteristics are closely related to the stress-strain properties of rock materials and that they are affected by the developmental state and degree of internal microcracks. AE events occur in either the loading or unloading stages if the strain is greater than zero. Evolutionary laws of AE activity agree with changes in rock strain. Strain deformation is accompanied by AE activity, and the density and intensity of AE events directly reflect the damage degree of the rock mass. The Kaiser effect exists in the linear elastic stage of rock material, and the Felicity effect is effective in the plastic yield and post-peak failure stages, which are divided by the elastic yield strength. This study suggests that the stress level needed to determine a significant increase in AE activity was 70% of the i + 1 peak stress. The Felicity ratio of rock specimens decreases with the growth of loading-unloading cycles. The cycle magnitude and variation of the Felicity effect, in which loading and unloading rates play a weak role, are almost consistent.

  7. Evaluation of Acoustic Emission NDE of Composite Crew Module Service Module/Alternate Launch Abort System (CCM SM/ALAS) Test Article Failure Tests

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2010-01-01

    Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.

  8. Acoustic energy harvesting based on a planar acoustic metamaterial

    Science.gov (United States)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  9. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    International Nuclear Information System (INIS)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 μs, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1 + to 4 + . The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  10. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 {mu}s, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1{sup +} to 4{sup +}. The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  11. Analysis on the Acoustic Emission Signals in the Crack Evolution of Steam Generator Tube

    International Nuclear Information System (INIS)

    Han, Jung Ho; Hur, Do Haeng; Kim, Kyung Mo; Choi, Myung Sik; Lee, Deok Hyun

    2007-01-01

    The evolution of a defect in steam generator (SG) tube during plant operation can be classified into the stages of initiation and propagation. However, the detection and discrimination of these two stages are difficult, and the real time monitoring of the defect evolution in plant operation is impossible. Moreover, it was generally known that the commercial nondestructive examination techniques such as eddy current test(ECT) can detect the defect already grown up to the size of more than 40% in tube wall thickness. Therefore, the scope of the present study is to develop the fundamental technology for monitoring the degradation process from the initiation stage to the subsequent propagation stage by acoustic emission (AE) signal measurement

  12. Analysis of Thermo-Acoustic Emission from Damage in Composite Laminates under Thermal Cyclic Loading

    International Nuclear Information System (INIS)

    Kim, Young Bok; Min, Dae Hong; Lee, Deok Bo; Choi, Nak Sam

    2001-01-01

    An investigation on nondestructive evaluation of thermal stress-reduced damage in the composite laminates (3mm in thickness and [+45 6 /-45 6 ] S lay-up angles) has been performed using the thermo-acoustic emission technique. Reduction of thermo-AE events due to repetitive thermal load cycles showed a Kaiser effect. An analysis of the thermo-AE behavior determined the stress free temperature of composite laminates. Fiber fracture and matrix cracks were observed using the optical microscopy, scanning electron microscopy and ultrasonic C-sean. Short-Time Fourier Transform of thermo-AE signals offered the time-frequency characteristics which might classify the thermo-AE as three different types to estimate the damage processes of the composites

  13. Applied acoustics concepts, absorbers, and silencers for acoustical comfort and noise control alternative solutions, innovative tools, practical examples

    CERN Document Server

    Fuchs, Helmut V

    2013-01-01

    The author gives a comprehensive overview of materials and components for noise control and acoustical comfort. Sound absorbers must meet acoustical and architectural requirements, which fibrous or porous material alone can meet. Basics and applications are demonstrated, with representative examples for spatial acoustics, free-field test facilities and canal linings. Acoustic engineers and construction professionals will find some new basic concepts and tools for developments in order to improve acoustical comfort. Interference absorbers, active resonators and micro-perforated absorbers of different materials and designs complete the list of applications.

  14. Identification of the Onset of Cracking in Gear Teeth Using Acoustic Emission

    International Nuclear Information System (INIS)

    Pullin, R; Clarke, A; Eaton, M J; Pearson, M R; Holford, K M

    2012-01-01

    The development of diagnostic methods for gear tooth faults in aerospace power transmission systems is an active research area being driven largely by the interests of military organisations or large aerospace organisations. In aerospace applications, the potential results of gear failure are serious, ranging from increased asset downtime to, at worst, catastrophic failure with life-threatening consequences. New monitoring techniques which can identify the onset of failure at earlier stages are in demand. Acoustic Emission (AE) is the most sensitive condition monitoring tool and is a passive technique that detects the stress wave emitted by a structure as cracks propagate. In this study a gear test rig that allows the fatigue loading of an individual gear tooth was utilised. The rig allows a full AE analysis of damage signatures in gear teeth without the presence of constant background noise due to rotational and frictional sources. Furthermore this approach allows validation of AE results using crack gauges or strain gauges. Utilising a new approach to AE monitoring a sensor was mounted on the gear and used to continuously capture AE data for a complete fatigue load cycle of data, rather than the traditional approach where discrete signals are captured on a threshold basis. Data was captured every 10th load cycle for the duration of the test. A developed fast fourier transform analysis technique was compared with traditional analytical methods. In this investigation the developed techniques were validated against visual inspection and were shown to be far superior to the traditional approach.

  15. Numerical Models for the Assessment of Historical Masonry Structures and Materials, Monitored by Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Stefano Invernizzi

    2016-04-01

    Full Text Available The paper reviews some recent numerical applications for the interpretation and exploitation of acoustic emission (AE monitoring results obtained from historical masonry structures and materials. Among possible numerical techniques, the finite element method and the distinct method are considered. The analyzed numerical models cover the entire scale range, from microstructure and meso-structure, up to full-size real structures. The micro-modeling includes heterogeneous concrete-like materials, but mainly focuses on the masonry texture meso-structure, where each brick and mortar joint is modeled singularly. The full-size models consider the different typology of historical structures such as masonry towers, cathedrals and chapels. The main difficulties and advantages of the different numerical approaches, depending on the problem typology and scale, are critically analyzed. The main insight we can achieve from micro and meso numerical modeling concerns the scaling of AE as a function of volume and time, since it is also able to simulate the b-value temporal evolution as the damage spread into the structure. The finite element modeling of the whole structure provides useful hints for the optimal placement of the AE sensors, while the combination of AE monitoring results is crucial for a reliable assessment of structural safety.

  16. Study of domain depinning during repeated polarization reversal in hard PZT ceramics using acoustic emission

    International Nuclear Information System (INIS)

    Prabakar, K; Rao, S P Mallikarjun

    2006-01-01

    Acoustic emission (AE) has been studied during repeated polarization reversals (at 50 Hz) in hard PZT-8 ceramics. The AE and hysteresis loop were monitored at regular intervals of electric field (±20 kV cm -1 peak) application till 10 8 cycles. The sample did not fatigue and an increase in saturation polarization (Ps) was observed. AE was observed with zero threshold till 10 5 cycles when the field was increasing in both half cycles of the applied field. The initial increase in AE activity with increasing number of field cycles till 10 5 was explained on the basis of defect dipoles encouraging the 90 deg. domain switches, i.e. domain depinning. The decrease in AE activity, an increase in threshold field for the observed AE and a further increase in Ps after 10 5 cycles were explained based on the changes in the orientation of defect dipoles with respect to Ps due to the applied field cycles. This was found to encourage the 180 0 domain switches but pin the 90 deg. domains. An increase in AE at 10 8 cycles after applying a higher field of ±25 kV cm -1 was found to be mainly due to microcracking

  17. Sustainable Acoustic Metasurfaces for Sound Control

    Directory of Open Access Journals (Sweden)

    Paola Gori

    2016-01-01

    Full Text Available Sound attenuation with conventional acoustic materials is subject to the mass law and requires massive and bulky structures at low frequencies. A possible alternative solution is provided by the use of metamaterials, which are artificial materials properly engineered to obtain properties and characteristics that it is not possible to find in natural materials. Theory and applications of metamaterials, already consolidated in electromagnetism, can be extended to acoustics; in particular, they can be applied to improve the properties of acoustical panels. The design of acoustic metasurfaces that could effectively control transmitted sound in unconventional ways appears a significant subject to be investigated, given its wide-ranging possible applications. In this contribution, we investigate the application of a metasurface-inspired technique to achieve the acoustical insulation of an environment. The designed surface has subwavelength thickness and structuring and could be realized with cheap, lightweight and sustainable materials. We present a few examples of such structures and analyze their acoustical behavior by means of full-wave simulations.

  18. Effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Amulya Bihari Pattnaik

    2015-04-01

    Full Text Available In the present investigation, the effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al 5052 aluminium alloy have been studied. Microstructural analysis showed the presence of primary α solid solution. No Al–Mg phase was found to be formed due to the presence of magnesium in the solid solution. The results indicated that the addition of Al–5Ti–1B grain refiner into the alloy caused a significant improvement in ultimate tensile strength (UTS and elongation values from 114 MPa and 7.8% to 185 MPa and 18% respectively. The main mechanisms behind this improvement were found to be due to the grain refinement during solidification and segregation of Ti at primary α grain boundaries. Acoustic emission (AE results indicated that intensity of AE signals increased with increase in Al–5Ti–1B master alloy content, which had been attributed to the combined effect of dislocation motion and grain refinement. The field emission scanning electron microscopy (FESEM and energy dispersive X-ray (EDX analysis were used to study the microstructure and fracture surfaces of the samples.

  19. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  20. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    International Nuclear Information System (INIS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-01-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  1. The Present Status of Using Natural Gas Cylinders and Acoustic Emission in Thailand

    Science.gov (United States)

    Jomdecha, C.; Jirarungsatian, C.; Methong, W.; Poopat, B.

    This chapter presents the status of using natural gas cylinders (CNG/NGV) and acoustic emission (AE) in Thailand. During the period from 2006 to 2013, more than 600,000 CNG cylinder units for vehicles were installed and used for transportation, cars, and trucks in Thailand. The number of cylinder units will be tentatively increased in the future due to the increase in gasoline price. Due to the use of high-pressurization equipment in public, the issue of a risk to public safety has been raised. As of this writing, in 2013, the testing standard from the Thai Department of Energy Business recommends inspection every 5 years using effective inspection methods in order to guarantee safe usage of gas cylinders, including the AE method, following ISO 16148. Normally in Thailand, AE is used in research and petrochemical plants as a special technique. The main applications are testing of pressure vessels, aboveground storage tanks, and university research. Few companies are available to conduct AE for testing natural gas cylinders due to the limited safety of the high-pressure operation and AE equipment and a lack of qualified AE personnel. To develop AE techniques, equipment, procedures, and acceptance criteria of natural gas cylinders are the main focus of AE personnel in Thailand. A desired achievement for current development is for natural gas cylinder testing, which can be applied in field tests and supported by a national testing standard.

  2. Variable-Position Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  3. Acoustic, electromagnetic, neutron emissions from fracture and earthquakes

    CERN Document Server

    Lacidogna, Giuseppe; Manuello, Amedeo

    2015-01-01

    This book presents the relevant consequences of recently discovered and interdisciplinary phenomena, triggered by local mechanical instabilities. In particular, it looks at emissions from nano-scale mechanical instabilities such as fracture, turbulence, buckling and cavitation, focussing on vibrations at the TeraHertz frequency and Piezonuclear reactions. Future applications for this work could include earthquake precursors, climate change, energy production, and cellular biology. A series of fracture experiments on natural rocks demonstrates that the TeraHertz vibrations are able to induce fission reactions on medium weight elements accompanied by neutron emissions. The same phenomenon appears to have occurred in several different situations, particularly in the chemical evolution of the Earth and Solar System, through seismicity (rocky planets) and storms (gaseous planets). As the authors explore, these phenomena can also explain puzzles related to the history of our planet, like the ocean formation or th...

  4. Breakdown of antiferromagnet order in polycrystalline NiFe/NiO bilayers probed with acoustic emission

    Science.gov (United States)

    Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.

    2017-07-01

    Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.

  5. Application of an ultrasonic focusing radiator for acoustic levitation of submillimeter samples

    Science.gov (United States)

    Lee, M. C.

    1981-01-01

    An acoustic apparatus has been specifically developed to handle samples of submillimeter size in a gaseous medium. This apparatus consists of an acoustic levitation device, deployment devices for small liquid and solid samples, heat sources for sample heat treatment, acoustic alignment devices, a cooling system and data-acquisition instrumentation. The levitation device includes a spherical aluminum dish of 12 in. diameter and 0.6 in. thickness, 130 pieces of PZT transducers attached to the back side of the dish and a spherical concave reflector situated in the vicinity of the center of curvature of the dish. The three lowest operating frequencies for the focusing-radiator levitation device are 75, 105 and 163 kHz, respectively. In comparison with other levitation apparatus, it possesses a large radiation pressure and a high lateral positional stability. This apparatus can be used most advantageously in the study of droplets and spherical shell systems, for instance, for fusion target applications.

  6. A feasibility study of in vivo applications of single beam acoustic tweezers

    International Nuclear Information System (INIS)

    Li, Ying; Lee, Changyang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for in vivo and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 μm, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for in vivo applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles in vivo inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

  7. A feasibility study of in vivo applications of single beam acoustic tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying, E-mail: yli582@usc.edu; Lee, Changyang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk [NIH Transducer Resource Center and Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089-1111 (United States)

    2014-10-27

    Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for in vivo and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 μm, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for in vivo applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles in vivo inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

  8. Applicabilities of ship emission reduction methods

    Energy Technology Data Exchange (ETDEWEB)

    Guleryuz, Adem [ARGEMAN Research Group, Marine Division (Turkey)], email: ademg@argeman.org; Kilic, Alper [Istanbul Technical University, Maritime Faculty, Marine Engineering Department (Turkey)], email: enviromarineacademic@yahoo.com

    2011-07-01

    Ships, with their high consumption of fossil fuels to power their engines, are significant air polluters. Emission reduction methods therefore need to be implemented and the aim of this paper is to assess the advantages and disadvantages of each emissions reduction method. Benefits of the different methods are compared, with their disadvantages and requirements, to determine the applicability of such solutions. The methods studied herein are direct water injection, humid air motor, sea water scrubbing, diesel particulate filter, selected catalytic reduction, design of engine components, exhaust gas recirculation and engine replacement. Results of the study showed that the usefulness of each emissions reduction method depends on the particular case and that an evaluation should be carried out for each ship. This study pointed out that methods to reduce ship emissions are available but that their applicability depends on each case.

  9. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    Science.gov (United States)

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  10. Study of secondary electronic emission in some piezo-electric materials: application to ultrasonic visualization; Etude de l'emission electronique secondaire de quelques materiaux piezoelectriques: application a la visualisation ultrasonore

    Energy Technology Data Exchange (ETDEWEB)

    Marini, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    Methods allowing the visualization of acoustic images appear at the moment to be of great interest in the field of non-destructive testing as well as in that of underwater detection. In order to carry out certain calculations on the operation of an ultrasonic camera, it has been necessary to study the secondary electron emission of some piezoelectric materials liable to be incorporated into the equipment. The secondary electron emission of insulators is a rather complex phenomenon; in order to find a rational explanation for the observations made, a theory has been developed for the energy spectrum of the emitted electrons. The experimental results of this work have then been used to build an ultrasonic visualization installation. Some examples of acoustic images which have been visualized are also presented. (author) [French] Les methodes qui permettent de visualiser des images acoustiques trouvent a l'heure actuelle un grand interet dans le domaine du controle non destructif comme dans celui de la detection sous-marine. De maniere a effectuer certains calculs sur le fonctionnement d'une camera ultrasons, il a ete necessaire d'etudier l'emission electronique secondaire de quelques materiaux piezoelectriques susceptibles d'etre utilises dans sa construction. L'emission electronique secondaire des isolants est un phenomene assez complexe et de maniere a trouver des explications coherentes aux observations effectuees, une theorie du spectre energetique des electrons emis a ete elaboree. Une installation de visualisation ultrasonore a alors ete realisee a partir des donnees experimentales de cette etude. Quelques exemples d'images acoustiques visualisees par cette methode sont egalement presentees. (auteur)

  11. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  12. Monitoring of drilling process with the application of acoustic signal

    Directory of Open Access Journals (Sweden)

    Labaš Milan

    2000-09-01

    Full Text Available Monitoring of rock disintegration process at drilling, scanning of input quantities: thrust F, revolution n and the course of some output quantities: the drilling rate v and the power input P are needed for the control of this process. We can calculate the specific volume work of rock disintegration w and ϕ - quotient of drilling rate v and the specific volume work of disintegration w from the presented quantities.Works on an expertimental stand showed that the correlation relationships between the input and output quantities can be found by scanning the accompanying sound of the drilling proces.Research of the rock disintegration with small-diameter diamond drill tools and different rock types is done at the Institute of Geotechnics. The aim of this research is the possibility of monitoring and controlling the rock disintegration process with the application of acoustic signal. The acoustic vibrations accompanying the drilling process are recorded by a microphone placed in a defined position in the acoustic space. The drilling device (drilling stand, the drilling tool and the rock are the source of sound. Two basic sound states exist in the drilling stand research : the noise at no-load running and the noise at the rotary drilling of rock. Suitable quantities for optimizing the rock disintegration process are searched by the study of the acoustic signal. The dominant frequencies that characterize the disintegration process for the given rock and tool are searched by the analysis of the acoustic signal. The analysis of dominant frequencies indicates the possibility of determining an optimal regime for the maximal drilling rate. Extreme of the specific disintegration energy is determinated by the dispersion of the dominant frequency.The scanned acoustic signal is processed by the Fourier transformation. The Fourier transformation facilitates the distribution of the general non-harmonic periodic process into harmonic components. The harmonic

  13. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Karl A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Candy, Jim V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guss, Gabe [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  14. Bridging aero-fracture evolution with the characteristics of the acoustic emissions in a porous medium

    Directory of Open Access Journals (Sweden)

    Semih eTurkaya

    2015-09-01

    Full Text Available The characterization and understanding of rock deformation processes due to fluid flow is a challenging problem with numerous applications. The signature of this problem can be found in Earth Science and Physics, notably with applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control, volcanic eruptions, or in industrial applications such as hydraulic-fracturing, steam-assisted gravity drainage, CO₂ sequestration operations or soil remediation. Here we investigate the link between the visual deformation and the mechanical wave signals generated due to fluid injection into porous media. In a rectangular Hele-Shaw Cell, side air injection causes burst movement and compaction of grains along with channeling (creation of high permeability channels empty of grains. During the initial compaction and emergence of the main channel, the hydraulic fracturing in the medium generates a large non-impulsive low frequency signal in the frequency range 100 Hz - 10 kHz. When the channel network is established, the relaxation of the surrounding medium causes impulsive aftershock-like events, with high frequency (above 10 kHz acoustic emissions, the rate of which follows an Omori Law. These signals and observations are comparable to seismicity induced by fluid injection. Compared to the data obtained during hydraulic fracturing operations, low frequency seismicity with evolving spectral characteristics have also been observed. An Omori-like decay of microearthquake rates is also often observed after injection shut-in, with a similar exponent p≃0.5 as observed here, where the decay rate of aftershock follows a scaling law dN/dt ∝(t-t₀-p . The physical basis for this modified Omori law is explained by pore pressure diffusion affecting the stress relaxation.

  15. Acoustic emissions and electric signal recordings, when cement mortar beams are subjected to three-point bending under various loading protocols

    Directory of Open Access Journals (Sweden)

    A. Kyriazopoulos

    2017-04-01

    Full Text Available Two experimental techniques are used study the response of cement mortar beams subjected to three-point bending under various load¬ing protocols. The techniques used are the detection of weak electric current emissions known as Pressure Stimulated Currents and the Acoustic Emissions (in particular, the cumulative AE energy and the b-value analysis. Patterns are detected that can be used to predict upcoming fracture, regard¬less of the adopted loading protocol in each experiment. The expe¬rimental results of the AE and PSC techniques lead to the conclusion that when the calculated Ib values decrease, the PSC starts increasing strongly.

  16. Identifying Technical Condition of Vehicle Gearbox Using Acoustic Emission

    Science.gov (United States)

    Furch, Jan; Glos, Josef

    2017-06-01

    The article examines the technical condition of rotating parts using acoustic diagnostics. The measured object was a mechanical transmission of a field vehicle. Recently this method has been developing very quickly and is expected to be used not only for the signal analysis itself, but also for the failure occurrence prediction which is our aim in the future. In our article we observe the technical condition of a four-speed transmission and analyse the acoustic signal expressed by the root mean square of a noise level in decibels.

  17. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  18. Acoustic remote monitoring of rock and concrete structures for nuclear waste repositories

    International Nuclear Information System (INIS)

    Young, R.P.

    2000-01-01

    Excavation and thermally induced damage is of significance for many types of engineering structures but no more so than in the case of nuclear waste repository design. My research and that of my group, formally at Queen's University Canada and Keele University UK and now at the University of Liverpool UK, has focused on the development of acoustic techniques for the in situ detection and quantification of induced damage and fracturing. The application of earthquake seismology to this problem has provided the opportunity to study the micro mechanics of damage mechanisms in situ and provide validation data for predictive geomechanical models used for engineering design. Since 1987 I have been a principal investigator at Atomic Energy of Canada's Underground Research Laboratory (URL), responsible for the development of acoustic emission techniques (AE). In the last twelve years, the application of acoustic techniques to rock damage assessment has been pioneered by my group at the URL and successfully applied in several other major international projects including the ZEDEX, Retrieval and Prototype repository experiments at the Aspo Hard Rock Laboratory (HRL) of SKB Sweden. In this paper I describe what information is available by remote acoustic monitoring of rock and concrete structures and demonstrate this with reference to two international scientific experiments carried out at the URL Canada and the HRL Sweden. (author)

  19. Anti-sound and Acoustical Cloaks

    Directory of Open Access Journals (Sweden)

    Veturia CHIROIU

    2016-12-01

    Full Text Available The principles by which the acoustics can be mimicked in order to reduce or cancel the vibrational field are based on anti-sound concept which can be materialized by acoustic cloaks. Geometric transformations open an elegant way towards the unconstrained control of sound through acoustic metamaterials. Acoustic cloaks can be achieved through geometric transformations which bring exotic metamaterial properties into the acoustic equations. Our paper brings new ideas concerning the technological keys for manufacturing of novel metamaterials based on the spatial compression of Cantor structures, and the architecture of 3D acoustic cloaks in a given frequency band, with application to architectural acoustics.

  20. Hot topics: Signal processing in acoustics

    Science.gov (United States)

    Gaumond, Charles F.

    2005-09-01

    Signal processing in acoustics is a multidisciplinary group of people that work in many areas of acoustics. We have chosen two areas that have shown exciting new applications of signal processing to acoustics or have shown exciting and important results from the use of signal processing. In this session, two hot topics are shown: the use of noiselike acoustic fields to determine sound propagation structure and the use of localization to determine animal behaviors. The first topic shows the application of correlation on geo-acoustic fields to determine the Greens function for propagation through the Earth. These results can then be further used to solve geo-acoustic inverse problems. The first topic also shows the application of correlation using oceanic noise fields to determine the Greens function through the ocean. These results also have utility for oceanic inverse problems. The second topic shows exciting results from the detection, localization, and tracking of marine mammals by two different groups. Results from detection and localization of bullfrogs are shown, too. Each of these studies contributed to the knowledge of animal behavior. [Work supported by ONR.