WorldWideScience

Sample records for acoustic doppler current

  1. Tethered acoustic doppler current profiler platforms for measuring streamflow

    Science.gov (United States)

    Rehmel, Michael S.; Stewart, James A.; Morlock, Scott E.

    2003-01-01

    The U.S. Geological Survey tested and refined tethered-platform designs for measuring streamflow. Platform specifications were developed, radio-modem telemetry of acoustic Doppler current profiler (ADCP) data and potential platform-hull sources were investigated, and hulls were tested and evaluated.

  2. Acoustic Doppler Current Profiling near Myrtle Bend, June 3, 2013, Kootenai River near Bonners Ferry, ID

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Acoustic doppler current profiling (ADCP) data was collected to describe streamflow characteristics including total streamflow, velocity magnitude and secondary flow...

  3. Acoustic Doppler Current Profiling near Shorty's Island, June 1, 2012, Kootenai River near Bonners Ferry, ID

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An Acoustic Doppler Current Profiler (ADCP) was used to survey streamflow characteristics including total streamflow, velocity magnitude and secondary flow...

  4. Buoyancy package for self-contained acoustic doppler current profiler mooring

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Krishnakumar, V.

    A buoyancy package for self-contained Acoustic Doppler Current Profiler(SC-ADCP 1200 RD instruments USA) was designed and fabricated indigenously, for subsurface mooring in coastal waters. The system design is discussed. The design to keep SC...

  5. Estimation of suspended sediment flux from acoustic Doppler current profiling along the Jinhae Bay entrance

    Institute of Scientific and Technical Information of China (English)

    WANG Yaping; CHU Yong Shik; LEE Hee Jun; HAN Choong Keun; OH Byung Chul

    2005-01-01

    A Nortek acoustic Doppler current profiler (NDP) was installed on a moving vessel to survey the entrance to the Jinhae Bay on August 22~23, 2001. The current velocity and acoustic backscattering signal were collected along two cross-sections; water samples were also collected during the measurement. The acoustic signals were normalized to compensate for the loss incurred by acoustic beam spreading in the seawater. The in situ calibration shows that a significant relationship is present between suspended sediment concentrations (SSC) and normalized acoustic signals. Two acoustic parameters have been determined to construct an acoustic-concentration model.Using this derived model, the SSC patterns along the surveyed cross-sections were obtained by the conversion of acoustic data. Using the current velocity and SSC data, the flux of suspended sediment was estimated. It indicates that the sediment transport into the bay through the entrance has an order of magnitude of 100 t per tidal cycle.

  6. Comparison of shipboard acoustic Doppler current profiler and moored current measurements in the Equatorial Pacific

    Science.gov (United States)

    Chereskin, T. K.; Regier, L. A.; Halpern, D.

    1987-01-01

    Depth-averaged current shears computed from shipboard acoustic Doppler current profiler (ADCP) and moored Savonius rotor and vane vector-averaging current meter (VACM) measurements are compared at 35, 62.5, 100 and 140 m depths within 7 km of each other near 0 deg, 140 deg W during a 12-day interval in November 1984. The agreement between the VACM and ADCP shears was excellent. The average root-mean-square difference of hourly shear values was small, approximately 0.0021/s, and the average correlation coefficient was 0.90. Spectral estimates were equivalent to within a 95 percent significance level and the VACM and ADCP shears were 95 percent statistically coherent with zero phase difference for frequencies below 0.2 cycles per hour.

  7. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Buschman, F.A.; Vermeulen, B.

    2009-01-01

    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP

  8. Implementation of a Novel Algorithm on Acoustic Doppler Current Profiler Signal Processing System

    Institute of Scientific and Technical Information of China (English)

    ZHU Hao; LIU Wenyao

    2005-01-01

    Acoustic Doppler current profiler (ADCP) uses acoustic energy directed along narrow beams for current measurement. In conventional method, the quantity of sampling affects the precision of fast Fourier transform (FFT) algorithm, and the algorithm needs a large amount of data to process. A novel frequency estimator,enhanced least mean square (ELMS) algorithm for a single complex sinusoid in complex white Gaussian noise, is proposed in ADCP system. As sampling frequency equals 120 krad/s and the sampling number equals 240, the minimum resolving is 0.5 krad/s. All variances keep 11.11%. ELMS algorithm needs less data than FFT. And the robust algorithm can estimate the spectrum true value to 99.9% when the signal to noise ratio (SNR) is equal to 0 dB. Experiments prove that the estimation values will diverge much from the ideal when SNR is less than -6 dB.

  9. Ocean currents measured by Shipboard Acoustic Doppler Current Profilers (SADCP) from global oceans accumulated at Joint Archive for SADCP from 2004 to 2013 (NODC Accession 0123302)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high-frequency sampling (nominally 5 minutes...

  10. Variance of discharge estimates sampled using acoustic Doppler current profilers from moving boats

    Science.gov (United States)

    Garcia, Carlos M.; Tarrab, Leticia; Oberg, Kevin; Szupiany, Ricardo; Cantero, Mariano I.

    2012-01-01

    This paper presents a model for quantifying the random errors (i.e., variance) of acoustic Doppler current profiler (ADCP) discharge measurements from moving boats for different sampling times. The model focuses on the random processes in the sampled flow field and has been developed using statistical methods currently available for uncertainty analysis of velocity time series. Analysis of field data collected using ADCP from moving boats from three natural rivers of varying sizes and flow conditions shows that, even though the estimate of the integral time scale of the actual turbulent flow field is larger than the sampling interval, the integral time scale of the sampled flow field is on the order of the sampling interval. Thus, an equation for computing the variance error in discharge measurements associated with different sampling times, assuming uncorrelated flow fields is appropriate. The approach is used to help define optimal sampling strategies by choosing the exposure time required for ADCPs to accurately measure flow discharge.

  11. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    Science.gov (United States)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  12. Acoustic Doppler current profiler measurements in coastal and estuarine environments: examples from the Tay Estuary, Scotland

    Science.gov (United States)

    Wewetzer, Silke F. K.; Duck, Robert W.; Anderson, James M.

    1999-08-01

    Acoustic Doppler current profilers (ADCPs) provide a means to measure the components of water current velocities in three dimensions. Such instruments have been used widely by the oil industry in deep offshore waters but their application to nearshore coastal and estuarine environments has been principally confined to the USA. Using examples of ADCP datasets acquired from the macrotidal Tay Estuary, eastern Scotland, the principles of field deployment, data acquisition and forms of output are critically summarised. It is shown, for the first time in the Tay Estuary, that vertical current velocities are significant and are particularly so in downwelling zones associated with the development and passage of axially convergent tidal fronts. The improved understanding of three-dimensional water and suspended sediment dynamics in coastal and estuarine waters is crucial to, inter alia, the sustainable management of effluent discharges and, in more general terms, it is predicted on the basis of the Tay case study, that ADCP measurements afford significant opportunities to refine understanding of geomorphological processes in a variety of aquatic environments worldwide.

  13. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California

    Science.gov (United States)

    Gartner, J.W.

    2004-01-01

    The estimation of mass concentration of suspended solids is one of the properties needed to understand the characteristics of sediment transport in bays and estuaries. However, useful measurements or estimates of this property are often problematic when employing the usual methods of determination from collected water samples or optical sensors. Analysis of water samples tends to undersample the highly variable character of suspended solids, and optical sensors often become useless from biological fouling in highly productive regions. Acoustic sensors, such as acoustic Doppler current profilers that are now routinely used to measure water velocity, have been shown to hold promise as a means of quantitatively estimating suspended solids from acoustic backscatter intensity, a parameter used in velocity measurement. To further evaluate application of this technique using commercially available instruments, profiles of suspended solids concentrations are estimated from acoustic backscatter intensity recorded by 1200- and 2400-kHz broadband acoustic Doppler current profilers located at two sites in San Francisco Bay, California. ADCP backscatter intensity is calibrated using optical backscatterance data from an instrument located at a depth close to the ADCP transducers. In addition to losses from spherical spreading and water absorption, calculations of acoustic transmission losses account for attenuation from suspended sediment and correction for nonspherical spreading in the near field of the acoustic transducer. Acoustic estimates of suspended solids consisting of cohesive and noncohesive sediments are found to agree within about 8-10% (of the total range of concentration) to those values estimated by a second optical backscatterance sensor located at a depth further from the ADCP transducers. The success of this approach using commercially available Doppler profilers provides promise that this technique might be appropriate and useful under certain conditions in

  14. Coupling airborne laser scanning and acoustic Doppler current profiler data to model stream rating curves

    Science.gov (United States)

    Lam, N.; Lyon, S. W.; Kean, J. W.

    2015-12-01

    The rating curve enables the translation of water depth into discharge through a reference cross section. Errors in estimating stream channel geometry can therefore result in increased discharge uncertainty. This study investigates coupling national-scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. Specifically, stream channel geometries were generated from coupled ALS and ADCP scanning data collected for a well-monitored site located in northern Sweden. These data were used to define the hydraulic geometry required by a physically-based 1-D hydraulic model. The results of our study demonstrate that the effects of potential scanning data errors on the model generated rating curve were less than the uncertainties due to stream gauging measurements and empirical rating curve fitting. Further analysis of the ALS data showed that an overestimation of the streambank elevation (the main scanning data error) was primarily due to vegetation that could be adjusted for through a root-mean-square-error bias correction. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establish rating curves at gauging stations.

  15. Correcting acoustic Doppler current profiler discharge measurements biased by sediment transport

    Science.gov (United States)

    Mueller, D.S.; Wagner, C.R.

    2007-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment on or near the streambed, and is an issue widely acknowledged by the scientific community. The integration of a differentially corrected global positioning system (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias, based on the closure error resulting from a two-way crossing of the river, is presented. The uncertainty in the mean moving-bed velocity measured by the loop method is shown to be approximately 0.6cm/s. For the 13 field measurements presented, the loop method resulted in corrected discharges that were within 5% of discharges measured utilizing DGPS to compensate for moving-bed conditions. ?? 2007 ASCE.

  16. Velocity Data collected from moored Hull-Mounted Acoustic Doppler Current Profilers positioned in Vieques Sound and Virgin Passage in the US Caribbean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Velocity data were collected from Hull-Mounted Acoustic Doppler Current Profilers moored across Virgin Passage between Culebra, Puerto Rico and St. Thomas, USVI, and...

  17. Validation of streamflow measurements made with M9 and RiverRay acoustic Doppler current profilers

    Science.gov (United States)

    Boldt, Justin A.; Oberg, Kevin A.

    2015-01-01

    The U.S. Geological Survey (USGS) Office of Surface Water (OSW) previously validated the use of Teledyne RD Instruments (TRDI) Rio Grande (in 2007), StreamPro (in 2006), and Broadband (in 1996) acoustic Doppler current profilers (ADCPs) for streamflow (discharge) measurements made by the USGS. Two new ADCPs, the SonTek M9 and the TRDI RiverRay, were first used in the USGS Water Mission Area programs in 2009. Since 2009, the OSW and USGS Water Science Centers (WSCs) have been conducting field measurements as part of their stream-gaging program using these ADCPs. The purpose of this paper is to document the results of USGS OSW analyses for validation of M9 and RiverRay ADCP streamflow measurements. The OSW required each participating WSC to make comparison measurements over the range of operating conditions in which the instruments were used until sufficient measurements were available. The performance of these ADCPs was evaluated for validation and to identify any present and potential problems. Statistical analyses of streamflow measurements indicate that measurements made with the SonTek M9 ADCP using firmware 2.00–3.00 or the TRDI RiverRay ADCP using firmware 44.12–44.15 are unbiased, and therefore, can continue to be used to make streamflow measurements in the USGS stream-gaging program. However, for the M9 ADCP, there are some important issues to be considered in making future measurements. Possible future work may include additional validation of streamflow measurements made with these instruments from other locations in the United States and measurement validation using updated firmware and software.

  18. Temperature, conductivity, pressure, oxygen concentration, beam attenuation, Chlorophyll-a fluorescence, current speed and direction, and particle size distribution collected from moored platform using CTD, ADCP, acoustic Doppler velocimeter, and benthic optical sensors in Monterey Bay from 2011-05-03 to 2012-10-29 (NODC Accession 0123606)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational oceanographic data obtained by an autonomous moored CTD profiler, thermistor mooring, acoustic Doppler current profiler, acoustic Doppler velocimeter,...

  19. Acoustic Doppler Current Profiler Measurements in the Tailrace at John Day Dam

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Dibrani, Berhon; Serkowski, John A.; Richmond, Marshall C.; Titzler, P. Scott; Dennis, Gary W.

    2006-01-30

    Acoustic Doppler current profilers (ADCPs) were used to measure water velocities in the tailrace at John Day Dam over a two-week period in February 2005. Data were collected by the Pacific Northwest National Laboratory for the Hydraulic Design Section, Portland District, U.S. Army Corps of Engineers (USACE). The objective of this project was therefore to collect field measurements of water velocities in the near-field draft tube exit zone as well as the far-field tailrace to be used for improving these models. Field data were collected during the project using five separate ADCPs. Mobile ADCP data were collected using two ADCPs mounted on two separate boats. Data were collected by either holding the boat on-station at pre-defined locations for approximately 10 minutes or in moving transect mode when the boat would move over large distances during the data collection. Results from the mobile ADCP survey indicated a complex hydrodynamic flow field in the tailrace downstream of John Day Dam. A large gyre was noted between the skeleton section of the powerhouse and non-spilling portion of the spillway. Downstream of the spillway, the spillway flow is constrained against the navigation lock guide wall, and large velocities were noted in this region. Downstream of the guide wall, velocities decreased as the spillway jet dispersed. Near the tailrace island, the flow split was measured to be approximately equal on Day 2 (25.4 kcfs spillway/123 kcfs total). However, approximately 60% of the flow passed along the south shore of the island on Day 1 (15.0 kcfs spillway/150 kcfs total). At a distance of 9000 ft downstream of the dam, flows had equalized laterally and were generally uniform over the cross section. The collection of water velocities near the draft tube exit of an operating turbine unit is not routine, and equipment capable of measuring 3D water velocities in these zones are at the forefront of hydraulic measurement technology. Although the feasibility of

  20. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 8 October 1993 to 16 March 2008 (NODC Accession 0049878)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  1. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 13 September 1999 to 28 April 2007 (NCEI Accession 0036863)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  2. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for Shipboard ADCP holdings from 16 June 1985 to 22 July 2003 (NODC Accession 0001206)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high frequency sampling (nominally 5 minutes...

  3. Ocean currents measured by Shipboard Acoustic Doppler Current Profiler (SADCP) from global oceans as part of the Joint Archive for SADCP holdings from 20 August 1999 to 13 May 2009 (NCEI Accession 0067774)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high-frequency sampling (nominally 5 minutes...

  4. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—User’s manual for version 2.8

    Science.gov (United States)

    Mueller, David S.

    2016-05-12

    The software program, QRev computes the discharge from moving-boat acoustic Doppler current profiler measurements using data collected with any of the Teledyne RD Instrument or SonTek bottom tracking acoustic Doppler current profilers. The computation of discharge is independent of the manufacturer of the acoustic Doppler current profiler because QRev applies consistent algorithms independent of the data source. In addition, QRev automates filtering and quality checking of the collected data and provides feedback to the user of potential quality issues with the measurement. Various statistics and characteristics of the measurement, in addition to a simple uncertainty assessment are provided to the user to assist them in properly rating the measurement. QRev saves an extensible markup language file that can be imported into databases or electronic field notes software. The user interacts with QRev through a tablet-friendly graphical user interface. This report is the manual for version 2.8 of QRev.

  5. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    Science.gov (United States)

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  6. Seasonal Suspended Particles Distribution Patterns in Western South Yellow Sea Based on Acoustic Doppler Current Profiler Observation

    Institute of Scientific and Technical Information of China (English)

    LI Jianchao; LI Guangxue; XU Jishang; QIAO Lulu; DONG Ping; DING Dong; LIU Shidong

    2015-01-01

    An Acoustic Doppler Current Profiler (ADCP) observation site was set up in the Western South Yellow Sea from 2012 to 2013 to study the local suspended particle matters (SPM) distribution pattern. The SPM concentration could be semi-quantitatively represented by backscatter intensity (Sv), converted by the echo intensity (EI) of ADCP. Results show two types of SPM in the water column: the quasi-biological SPM and quasi-mineral SPM. The quasi-biological SPM mainly exists in summer half year and is con-centrated above the thermocline. It has periodically diurnal variations with high concentration at night and low concentration in the daytime. The quasi-mineral SPM is located in lower part of the water column, with similar relation to monthly tidal current variation all year round. However, the daily quasi-mineral SPM distribution patterns vary between summer and winter half year. The sunlight is thought to be the origin factor leading to the diurnally vertical motion of the biological features, which might cause the diurnalSv variation. Unlike in winter half year when tidal current is relatively single driving force of the monthly SPM pattern, the high speed current near the thermocline is also responsible for the concentration of quasi-mineral SPM in summer half year. The sediment input difference between summer and winter half year contribute to the varied daily variation of quasi-mineral SPM with re-suspended SPM in winter and sediments from Yellow Sea Mud Area (YSMA) in summer. The seasonal variations in hydrodynamics, water structure and heavy-wind incidents are the primary factors influencing the differential seasonal SPM distribution patterns.

  7. Acoustic Doppler current profiler raw measurements on the Missouri and Yellowstone rivers, 2000-2016, Columbia Environmental Research Center

    Science.gov (United States)

    Bulliner, Edward A.; Elliott, Caroline M.; Jacobson, Robert B.

    2017-01-01

    Between the years 2000 and 2016, scientists and technicians from the U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC) have collected over 400 field-days worth of acoustic Doppler current profiler (ADCP) measurements on the Missouri and Yellowstone Rivers, primarily for the purposes of assessing physical aquatic habitat for the pallid sturgeon. Scientists and technicians collected data using boat-mounted Teledyne Rio Grande ADCPs, which were processed using customized scripting tools and archived in standardized formats. To assess longitudinal variability in depth and velocity distributions along the Missouri River, as well as compare the Missouri River to its unaltered analog, the Yellowstone River, we compiled the collected datasets into a single comma-separated value (csv) file using a series of data-processing scripts written in Python. To allow for the comparison of measurements collected only within a specific window of flow exceedance, we conducted geospatial analyses to attribute each ADCP measurement by a discharge from the most relevant USGS gage location (with the most relevant gage location being the gage located between the same major tributaries as the measurement, even if it was not the closest spatially), and assigned each measurement a flow exceedance percentile based on the relevant gage's record between 2000 and 2016. We also conducted general quality control on the data, discarding any ADCP returns where the ADCP measured a depth-averaged velocity greater than 3 meters per second or a depth greater than 16 meters; these values were considered to be an approximate upper bounds for realistic values on the Missouri and Yellowstone Rivers. The presented csv file lists individual ADCP bins for all measurements that have been archived between 2000 and 2016 by CERC scientists along with their three-dimensional velocity components, depth-averaged velocity magnitude for a given ADCP return, average channel depth for a given ADCP

  8. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    Science.gov (United States)

    Wagner, C.R.; Mueller, D.S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks. ?? 2011 Published by Elsevier B.V.

  9. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    Science.gov (United States)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  10. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    Science.gov (United States)

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  11. Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Freidoonkenar Bay, Iran

    Directory of Open Access Journals (Sweden)

    P. Ghaffari

    2009-12-01

    Full Text Available The results of offshore bottom-mounted ADCP measurements and wind records carried out from August to September 2003 in the coastal waters off Freidoonkenar Bay (FB in the south Caspian Sea (CS are examined in order to characterize the shelf motion, the steady current field and to determine the main driving forces of currents on the study area. Owing to closed basin and absence of the astronomical tide, the atmospheric forcing plays an important role in the flow field of the CS. The lasting regular sea breeze system is present almost throughout the year that performs motive force in diurnal and semi-diurnal bands similar to tides in other regions. In general, current field in the continental shelf could be separated into two distinguishable schemes, which in cross-shelf direction is dominated by high frequencies (1 cpd and higher frequencies, and in along-shelf orientation mostly proportional to lower frequencies in synoptic weather bands. Long-period wave currents, whose velocities are much greater than those of direct wind-induced currents, are dominating the current field in the continental shelf off FB. The propagation of the latter could be described in terms of shore-controlled waves that are remotely generated and travel across the shelf in the southern CS. It has also been shown that long term displacements in this area follow the classic cyclonic, circulation pattern in the southern CS.

  12. Correcting acoustic Doppler current profiler discharge measurement bias from moving-bed conditions without global positioning during the 2004 Glen Canyon Dam controlled flood on the Colorado River

    Science.gov (United States)

    Gartner, J.W.; Ganju, N.K.

    2007-01-01

    Discharge measurements were made by acoustic Doppler current profiler at two locations on the Colorado River during the 2004 controlled flood from Glen Canyon Dam, Arizona. Measurement hardware and software have constantly improved from the 1980s such that discharge measurements by acoustic profiling instruments are now routinely made over a wide range of hydrologic conditions. However, measurements made with instruments deployed from moving boats require reliable boat velocity data for accurate measurements of discharge. This is normally accomplished by using special acoustic bottom track pings that sense instrument motion over bottom. While this method is suitable for most conditions, high current flows that produce downstream bed sediment movement create a condition known as moving bed that will bias velocities and discharge to lower than actual values. When this situation exists, one solution is to determine boat velocity with satellite positioning information. Another solution is to use a lower frequency instrument. Discharge measurements made during the 2004 Glen Canyon controlled flood were subject to moving-bed conditions and frequent loss of bottom track. Due to site conditions and equipment availability, the measurements were conducted without benefit of external positioning information or lower frequency instruments. This paper documents and evaluates several techniques used to correct the resulting underestimated discharge measurements. One technique produces discharge values in good agreement with estimates from numerical model and measured hydrographs during the flood. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  13. Patterns of distribution of sound-scattering zooplankton in warm- and cold-core eddies in the Gulf of Mexico, from a narrowband acoustic Doppler current profiler survey

    Science.gov (United States)

    Zimmerman, Robert A.; Biggs, Douglas C.

    1999-03-01

    The acoustic backscatter intensity (ABI) reflected from epipelagic zooplankton communities in the central Gulf of Mexico was measured during June 1995 with a vessel-mounted, narrowband-153-kHz acoustic Doppler current profiler (ADCP). Horizontal and vertical variations in ABI were documented in three kinds of mesoscale hydrographic features commonly found in the Gulf of Mexico: the warm-core Loop Current (LC), a warm-core Loop Current eddy (LCE), and a cold-core region that separated the two warm-core features. Since new nitrogen domes close to surface waters in cold-core features whereas surface waters of warm-core features are nutrient depleted, the cold-core region was expected to have higher biological stocks as a result of locally higher primary production. Both ABI and net tow data confirmed that the cold-core region was in fact a zone of local aggregation of zooplankton and micronekton. During both day and night, ABI when integrated for the upper 50 and 100 m in the cold-core region was significantly greater than in the LC or in the LCE, and ABI was positively correlated with standing stock biomass taken by the net tows. Further investigations into the biological differences between Gulf of Mexico divergence and convergence regimes are warranted, and the ADCP will be a useful tool for examination of the distribution of sound scatterers in such features.

  14. The diel vertical migration of sound scatterers observed by an acoustic Doppler current profiler in the Luzon Strait from July 2009 to April 2011

    Institute of Scientific and Technical Information of China (English)

    YANG Chenghao; LIAO Guanghong; YUAN Yaochu; CHEN Hong; ZHU Xiaohua

    2013-01-01

    Acoustic Doppler current profiler (ADCP) receives echoes from sound scatterers, then their speed is calcu-lated by the Doppler effect. In the open ocean, most of these backscatterers are from the plankton. The sound scatterers descend down to depth at around dawn, their mean speed is 2.9 cm/s, then they ascend up to the surface layer at around dusk with a mean speed of 2.1 cm/s, in the Luzon Strait. The descending speed is faster, which suggests that this zooplankton population may accelerate its downward migration under the action of the gravity. The vertical distribution of a mean volume backscattering strength (MVB-S) in the nighttime has two peaks, which locate near the upper and lower boundary layers of halocline, respectively. However, the backscatterers only aggregate near the surface layer in the daytime. The diel ver-tical migration (DVM) of sound scatterers has several characteristic patterns, it is stronger in summer, but weaker in winter, and the maximum peak occurs in September. The DVM occurrence is synchronous with the seawater temperature increasing at around dawn and dusk, it may affect the ocean mixing and water stratification.

  15. Temporal characteristics of coherent flow structures generated over alluvial sand dunes, Mississippi River, revealed by acoustic doppler current profiling and multibeam echo sounding

    Science.gov (United States)

    Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.

    2009-01-01

    This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.

  16. Application of acoustic-Doppler current profiler and expendable bathythermograph measurements to the study of the velocity structure and transport of the Gulf Stream

    Science.gov (United States)

    Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.

    1988-01-01

    The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.

  17. First results from Acoustic Doppler Current Profiler measurements of meltwater flux in a large supraglacial river in western Greenland compared with downstream proglacial river outflow

    Science.gov (United States)

    Pitcher, L. H.; Smith, L. C.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Yang, K.

    2015-12-01

    A vast network of seasonally evolving, thermally eroding supraglacial rivers on the southwestern Greenland Ice Sheet (GrIS) is the preeminent transporter of meltwater across this area of the ablation zone. Supraglacial rivers are important for estimating surface water storage and transport into moulins and into the en-, sub-, and proglacial environments. Yet, little is known about their role in the GrIS cryo-hydrologic system. To that end, supraglacial river discharge in a large river, the "Rio Behar" (67.05°, -49.02°; ~75 km from the Kangerlussuaq International Airport), was measured in situ over 300 times: approximately four times per hour over three consecutive days from July 19 - 22, 2015. The Rio Behar drains a ~ 70 km2 ice catchment and enters a large moulin in the Watson River land-ice watershed in western Greenland. River discharge was measured using a Sontek M9 Acoustic Doppler Current Profiler. Each profile records water temperature, depth-integrated velocity, channel width and channel bathymetry. This novel dataset can be used to assess diurnal variations in river discharge, slope, velocity, stream power, and channel incision in order to enhance process-level understanding of GrIS meltwater routing, storage and transport. Future work will compare supraglacial river discharge in the Rio Behar with in situ estimates of proglacial river outflow upstream of the Watson River bridge in Kangerlussuaq, Greenland.

  18. Using Principal Component and Tidal Analysis as a Quality Metric for Detecting Systematic Heading Uncertainty in Long-Term Acoustic Doppler Current Profiler Data

    Science.gov (United States)

    Morley, M. G.; Mihaly, S. F.; Dewey, R. K.; Jeffries, M. A.

    2015-12-01

    Ocean Networks Canada (ONC) operates the NEPTUNE and VENUS cabled ocean observatories to collect data on physical, chemical, biological, and geological ocean conditions over multi-year time periods. Researchers can download real-time and historical data from a large variety of instruments to study complex earth and ocean processes from their home laboratories. Ensuring that the users are receiving the most accurate data is a high priority at ONC, requiring quality assurance and quality control (QAQC) procedures to be developed for all data types. While some data types have relatively straightforward QAQC tests, such as scalar data range limits that are based on expected observed values or measurement limits of the instrument, for other data types the QAQC tests are more comprehensive. Long time series of ocean currents from Acoustic Doppler Current Profilers (ADCP), stitched together from multiple deployments over many years is one such data type where systematic data biases are more difficult to identify and correct. Data specialists at ONC are working to quantify systematic compass heading uncertainty in long-term ADCP records at each of the major study sites using the internal compass, remotely operated vehicle bearings, and more analytical tools such as principal component analysis (PCA) to estimate the optimal instrument alignments. In addition to using PCA, some work has been done to estimate the main components of the current at each site using tidal harmonic analysis. This paper describes the key challenges and presents preliminary PCA and tidal analysis approaches used by ONC to improve long-term observatory current measurements.

  19. Evaluation of Acoustic Doppler Current Profiler to Measure Discharge at New York Power Authority's Niagara Power Project, Niagara Falls, New York

    Science.gov (United States)

    Zajd, Henry J.

    2007-01-01

    The need for accurate real-time discharge in the International Niagara River hydro power system requires reliable, accurate and reproducible data. The U.S. Geological Survey has been widely using Acoustic Doppler Current Profilers (ADCP) to accurately measure discharge in riverine channels since the mid-1990s. The use of the ADCP to measure discharge has remained largely untested at hydroelectric-generation facilities such as the New York Power Authority's (NYPA) Niagara Power Project in Niagara Falls, N.Y. This facility has a large, engineered diversion channel with the capacity of high volume discharges in excess of 100,000 cubic feet per second (ft3/s). Facilities such as this could benefit from the use of an ADCP, if the ADCP discharge measurements prove to be more time effective and accurate than those obtained from the flow-calculation techniques that are currently used. Measurements of diversion flow by an ADCP in the 'Pant Leg' diversion channel at the Niagara Power Project were made on November 6, 7, and 8, 2006, and compared favorably (within 1 percent) with those obtained concurrently by a conventional Price-AA current-meter measurement during one of the ADCP measurement sessions. The mean discharge recorded during each 2-hour individual ADCP measurement session compared favorably with (3.5 to 6.8 percent greater than) the discharge values computed by the flow-calculation method presently in use by NYPA. The use of ADCP technology to measure discharge could ultimately permit increased power-generation efficiency at the NYPA Niagara Falls Power Project by providing improved predictions of the amount of water (and thus the power output) available.

  20. Use of the Acoustic Doppler Current Profiler (ADCP in the study of the circulation of the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    L. Ursella

    Full Text Available The results of basin-wide vessel-mounted ADCP measurements carried out from May 1995 through February 1996 in the Adriatic Sea are analysed in order to characterise the tidal flow, the steady current field and some specific sub-basin scale features. The M2 tide shows the amphidromic point close to the location predicted from theory. The K1 presents an almost constant phase structure that increases in the northern part from east to west during summer. The circulation in the Italian coastal shelf area is highly variable, due to the local wind forcing and pulses of the Po River discharge. The propagation of the signal associated with the latter, can be described in terms of hybrid internal Kelvin waves, revealed also from the upwelling events. It is also shown that the bottom density-driven current draining the bottom layer of the northern Adriatic is, to a large extent, a time-dependent feature with a temporal scale on the order of days.

    Key words. Oceanography: general (descriptive and regional oceanography; marginal and semi-enclosed seas Oceanography: physical (currents

  1. Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling

    Science.gov (United States)

    Parsons, D. R.; Best, J. L.; Orfeo, O.; Hardy, R. J.; Kostaschuk, R.; Lane, S. N.

    2005-12-01

    Most past studies of river dune dynamics have concentrated on two-dimensional (2-D) bed forms, with constant heights and straight crest lines transverse to the flow, and their associated turbulent flow structure. This morphological simplification imposes inherent limitations on the interpretation and understanding of dune form and flow dynamics in natural channels, where dune form is predominantly three-dimensional. For example, studies over 2-D forms neglect the significant influence that lateral flows and secondary circulation may have on the flow structure and thus dune morphology. This paper details a field study of a swath of 3-D dunes in the Rio Paraná, Argentina. A large (0.35 km wide, 1.2 km long) area of dunes was surveyed using a multibeam echo sounder (MBES) that provided high-resolution 3-D detail of the river bed. Simultaneous with the MBES survey, 3-D flow information was obtained with an acoustic Doppler current profiler (ADCP), revealing a complicated pattern of dune morphology and associated flow structure within the swath. Dune three-dimensionality appears intimately connected to the morphology of the upstream dune, with changes in crest line curvature and crest line bifurcations/junctions significantly influencing the downstream dune form. Dunes with lobe or saddle-shaped crest lines were found to have larger, more structured regions of vertical velocity with smaller separation zones than more 2-D straight-crested dunes. These results represent the first integrated study of 3-D dune form and mean flow structure from the field and show several similarities to recent laboratory models of flow over 3-D dunes.

  2. Use of the acoustic Doppler current profiler (ADCP) in the study of the circulation of the Adriatic sea

    Energy Technology Data Exchange (ETDEWEB)

    Ursella, L.; Gacic, M. [Ist. Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste (Italy)

    2001-09-01

    The results of basin-wide vessel-mounted ADCP measurements carried out from May 1995 through February 1996 in the Adriatic Sea are analysed in order to characterise the tidal flow, the steady current field and some specific subbasin scale features. The M2 tide shows the amphidromic point close to the location predicted from theory. The K1 presents an almost constant phase structure that increases in the northern part from east to west during summer. The circulation in the Italian coastal shelf area is highly variable, due to the local wind forcing and pulses of the Po River discharge. The propagation of the signal associated with the latter, can be described in terms of hybrid internal Kelvin waves, revealed also from the upwelling events. It is also shown that the bottom density-driven current draining the bottom layer of the northern Adriatic is, to a large extent, a time-dependent feature with a temporal scale on the order of days. (orig.)

  3. Hanalei Bay, Kauai tide, and directional current and wave data collected from Acoustic Doppler Current Profiler (ADCP), from 08 June 2006 to 05 September 2006 (NODC Accession 0067695)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Hanalei Bay, Kauai,Hawaii during the summer of 2006....

  4. Laser and acoustic Doppler techniques for the measurement of fluid velocities

    Science.gov (United States)

    Cliff, W. C.

    1975-01-01

    An overview of current laser and acoustic Doppler techniques is presented. Results obtained by Doppler anemometry and conventional sensors are compared. Comparisons include simultaneous velocity measurements by hot wire and a three-dimensional laser anemometer made in a gaseous pipe flow as well as direct comparisons of atmospheric velocities measured with propeller and cup anemometry. Scanning techniques are also discussed. Conclusions and recommendations for future work are presented.

  5. Ocean Current Velocity Moored Time-Series Records, collected from moored Acoustic Doppler Current Profilers (ADCP) during 2011 near Grammanik Bank SPAG and Frenchcap Cay, USVI (NODC Accession 0088064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nortek 600kHz Aquadopp acoustic current profilers were deployed between April 2011 and September 2011 on shallow water moorings located on the coastal shelf south of...

  6. Ocean Current Velocity Moored Time-Series Records collected from moored Acoustic Doppler Current Profilers near Grammanik Bank Spawning Aggregation Site (SPAG) and Frenchcap Cay, United States Virgin Islands, from April 24, 2011 to September 25, 2011 (NODC Accession 0088064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nortek 600kHz Aquadopp acoustic current profilers were deployed between April 2011 and September 2011 on shallow water moorings located on the coastal shelf south of...

  7. Calculating "g" from Acoustic Doppler Data

    Science.gov (United States)

    Torres, Sebastian; Gonzalez-Espada, Wilson J.

    2006-01-01

    Traditionally, the Doppler effect for sound is introduced in high school and college physics courses. Students calculate the perceived frequency for several scenarios relating a stationary or moving observer and a stationary or moving sound source. These calculations assume a constant velocity of the observer and/or source. Although seldom…

  8. Application of acoustic doppler velocimeters for streamflow measurements

    Science.gov (United States)

    Rehmel, M.

    2007-01-01

    The U.S. Geological Survey (USGS) principally has used Price AA and Price pygmy mechanical current meters for measurement of discharge. New technologies have resulted in the introduction of alternatives to the Price meters. One alternative, the FlowTracker acoustic Doppler velocimeter, was designed by SonTek/YSI to make streamflow measurements in wadeable conditions. The device measures a point velocity and can be used with standard midsection method algorithms to compute streamflow. The USGS collected 55 quality-assurance measurements with the FlowTracker at 43 different USGS streamflow-gaging stations across the United States, with mean depths from 0.05to0.67m, mean velocities from 13 to 60 cm/s, and discharges from 0.02 to 12.4m3/s. These measurements were compared with Price mechanical current meter measurements. Analysis of the comparisons shows that the FlowTracker discharges were not statistically different from the Price meter discharges at a 95% confidence level. ?? 2007 ASCE.

  9. Measurement and Analysis of Coherent Flow Structures over Sand Dunes in the Missouri River near St. Louis, MO, by means of an Acoustic Doppler Current Profiler and a Multibeam Echo Sounder

    Science.gov (United States)

    Boldt, J.; Oberg, K. A.; Best, J. L.; Parsons, D. R.

    2011-12-01

    The topology, magnitude, and sediment transport capabilities of large-scale turbulence generated over alluvial sand dunes is influential in creating and maintaining dune morphology and in dominating both the flow field and the transport of suspended sediment above dune-covered beds. Combined measurements by means of an acoustic Doppler current profiler (ADCP) and a multibeam echo sounder (MBES) were made in order to examine flow over a series of sand dunes in the Missouri River, near St. Louis, MO, USA in October 2007. The bed topography of the Missouri River was mapped using a RESON 7125 MBES immediately before the ADCP data collection. Time series of velocity and acoustic backscatter were measured using a down-looking 1200 kHz ADCP while anchored at two locations in the dune field. The ADCP used in this study has a sampling rate of 2-3 Hz with 20-25 cm bin sizes. Two time series were collected having durations of 712 and 589 seconds at one location, while the third time series, collected about 4 meters upstream, was 2,270 seconds in duration. Measured streamwise velocities ranged from 0.1 to 2.7 ms-1 for all three stationary time series. Sediment concentration profiles were obtained at the same two locations as the stationary ADCP data using a P-61 sediment sampler and were compared to ADCP acoustic backscatter. Characteristics of turbulent flow structures in a sand bed river are presented. This paper presents data that can be used to investigate the issue of obtaining reliable estimates of turbulence parameters with an ADCP. The analyses will include mean velocity profiles, turbulence intensities, Reynolds shear stresses, quadrant analysis, power spectra, cross-correlation, and frequency analysis. Semi-periodic patterns were observed in each time series, characterized by periods of elevated acoustic backscatter with positive vertical velocities, followed by reduced acoustic backscatter with negative vertical velocities. The utility and limitations of combined

  10. Gulf stream velocity structure through combined inversion of hydrographic and acoustic Doppler data

    Science.gov (United States)

    Pierce, S. D.

    1986-01-01

    Near-surface velocities from an acoustic Doppler instrument are used in conjunction with CTD/O2 data to produce estimates of the absolute flow field off Cape Hatteras. The data set consists of two transects across the Gulf Stream made by the R/V Endeavor cruise EN88 in August 1982. An inverse procedure is applied which makes use of both the acoustic Doppler data and property conservation constraints. Velocity sections at approximately 73 deg. W and 71 deg. W are presented with formal errors of 1-2 cm/s. The net Gulf Stream transports are estimated to be 116 + or - 2 Sv across the south leg and 161 + or - 4 Sv across the north. A Deep Western Boundary Current transport of 4 + or - 1 Sv is also estimated. While these values do not necessarily represent the mean, they are accurate estimates of the synoptic flow field in the region.

  11. CRED Acoustic Doppler Profiler (ADP); AMSM, ROS; Long: -168.15481, Lat: -14.53510 (WGS84); Sensor Depth: 7.01m; Data Range: 20080311-20080314.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Island Fisheries Science Center Acoustic Doppler Profilers (ADP) provide a time series of water current...

  12. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Acoustic doppler current profilers data on CD-ROM (NODC Accession 0000312)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World-Wide shipboard current data were collected from ADCP casts from the ALPHA HELIX and other platforms as part of World Ocean Circulation Experiment (WOCE). Data...

  13. An acoustic spanner and its associated rotational Doppler shift

    Energy Technology Data Exchange (ETDEWEB)

    Skeldon, K D; Wilson, C; Edgar, M; Padgett, M J [Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom)

    2008-01-15

    Light carries a spin angular momentum associated with its polarization and an orbital angular momentum arising from its phase cross-section. Sound, being a longitudinal wave, carries no spin component but can carry an orbital component of angular momentum when endowed with an appropriate phase structure. Here, we use a circular array of loudspeakers driven at a common angular frequency {omega}{sub s} but with an azimuthally changing phase delay to create a sound wave with helical phase fronts described by exp (il{theta}). Such waves are predicted to have an orbital angular momentum to energy ratio of l/{omega}{sub s}. We confirm this angular momentum content by measuring its transfer to a suspended 60 cm diameter acoustic absorbing tile. The resulting torque on the tile ({approx}6.1x10{sup -6} Nm) is measured from observation of the motion for various torsional pendulums. Furthermore, we confirm the helical nature of the acoustic beam by observing the rotational Doppler shift, which results from a rotation between source and observer of angular velocity {omega}{sub r}. We measure Doppler shifted frequencies of {omega}{sub s}{+-}l{omega}{sub r} depending on the direction of relative rotation.

  14. Evaluation of Acoustic Doppler Velocimeters (ADVs) and Pulse Coherent Acoustic Doppler Profiler (PCADP) in Estimating Suspended Sediment Concentration

    Science.gov (United States)

    Ha, H.; Maa, J.

    2008-12-01

    Laboratory experiments were conducted to estimate the suspended sediment concentration (SSC) or its profile using acoustic backscatter strengths. Three acoustic Doppler velocimeters (ADVs) with different frequencies (5, 10 and 16 MHz) and a pulse coherent acoustic Doppler profiler (PCADP) with 1.5 MHz were used with selected sediments: two different commercial clays and Clay Bank sediment in the York River. Each ADV showed different backscatter responses depending on the sediment type and SSC. Not all devices had a good linear relationship between backscatter strength and SSC. Within a limited range of SSC, however, the backscatter strength can be well correlated with the SSC. Compared with optical backscatter sensor (OBS), ADV's backscatter signals were too noisy to be directly converted to the fluctuation of SSC, due to high amplification ratio and small sampling volume. There is another unexpected response for the backscatter strength: high signals from small particles but low signals from large particles. This might be caused by the internal gain setting built in ADVs, which should be further clarified. For profiling the SSC, a PCADP was tested in a controlled water tank. The sound attenuation by sediments was included in the signal inversion algorithm since most target regions measured by PCADP are located at near-bed high concentration layer. Clay Bank sediment showed a higher correlation coefficient (r2=0.92) between range- corrected volume scattering and PCADP signal when SSCcontrolled by the particle size in suspension at a given frequency. The profiling test for Clay Bank sediments showed that the PCADP-derived SSC profile has a good agreement with sample- and OBS-derived outcomes. This study suggests that both ADV and PCADP are useful instruments to estimate the SSC if the aforementioned questions are clarified and the particle (floc) size is sufficiently large enough to be sensed.

  15. A New Underwater Acoustic Navigation Method Based on the Doppler Principle

    Directory of Open Access Journals (Sweden)

    Jinsong Tang

    2013-07-01

    Full Text Available In this paper, a new underwater acoustic navigation method is proposed, which is named from Doppler Acoustic Omnirange Beacon (DAOB. It is borrowed from the idea of Doppler VHF Omnirange (DVOR and based on the Doppler principle. The cause of Doppler effect in the received signal is the motion or position change of one or two sources. The effect of multipath is analyzed, and an improved signal form is presented to solve the rigorous multipath environment underwater. Some simulation is presented to verify the performance.    

  16. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomson, Jim [Univ. of Washington, Seattle, WA (United States); Talbert, Joe [Univ. of Washington, Seattle, WA (United States); DeKlerk, Alex [Univ. of Washington, Seattle, WA (United States)

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  17. River Bed Sediment Classification Using Acoustic Doppler Profiler

    Science.gov (United States)

    Shields, F. D.

    2008-12-01

    Restoration or rehabilitation of degraded stream and river habitats requires definition of a target condition and preferably post-implementation monitoring to gage progress toward the target. Stream habitat has been characterized by computing statistics based on measurements of water depth and velocity at each point of a horizontal grid. In many cases stream bed type and cover, both qualitatively assessed, were included as additional grid variables. Resultant statistics describing the central tendency, variability and spatial distribution of these three or four variables and their combinations have been used to explain key differences between more- and less-degraded streams and to infer biotic responses. Usually the required data are collected by wading observers, but application to larger rivers is problematic. Collection of water depth and velocity information may be automated across a wide range of stream sizes using an acoustic Doppler profiler (aDp). Herein we suggest that aDp data may also be used to infer bed hardness and thus type by extracting the return signal strength from the bottom track signal and using this information to compute the echo intensity at the bed. A method for computing echo intensity, along with key assumptions is presented. Echo intensity is computed for a range of river environments and related to the size and related characteristics of bed material. Habitat maps for river reaches depicting water depth, velocity and bed type developed from aDp data sets are presented.

  18. Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids

    Science.gov (United States)

    Brunker, Joanna; Beard, Paul

    2016-02-01

    Photoacoustic Doppler velocimetry provides a major opportunity to overcome limitations of existing blood flow measuring methods. By enabling measurements with high spatial resolution several millimetres deep in tissue, it could probe microvascular blood flow abnormalities characteristic of many different diseases. Although previous work has demonstrated feasibility in solid phantoms, measurements in blood have proved significantly more challenging. This difficulty is commonly attributed to the requirement that the absorber spatial distribution is heterogeneous relative to the minimum detectable acoustic wavelength. By undertaking a rigorous study using blood-mimicking fluid suspensions of 3 μm absorbing microspheres, it was discovered that the perceived heterogeneity is not only limited by the intrinsic detector bandwidth; in addition, bandlimiting due to spatial averaging within the detector field-of-view also reduces perceived heterogeneity and compromises velocity measurement accuracy. These detrimental effects were found to be mitigated by high-pass filtering to select photoacoustic signal components associated with high heterogeneity. Measurement under-reading due to limited light penetration into the flow vessel was also observed. Accurate average velocity measurements were recovered using “range-gating”, which furthermore maps the cross-sectional velocity profile. These insights may help pave the way to deep-tissue non-invasive mapping of microvascular blood flow using photoacoustic methods.

  19. Doppler effect in a solid medium: Spin wave emission by a precessing domain wall drifting in spin current

    Science.gov (United States)

    Xia, Hong; Chen, Jie; Zeng, Xiaoyan; Yan, Ming

    2016-04-01

    The Doppler effect is a fundamental physical phenomenon observed for waves propagating in vacuum or various media, commonly gaseous or liquid. Here, we report on the occurrence of a Doppler effect in a solid medium. Instead of a real object, a topological soliton, i.e., a magnetic domain wall (DW) traveling in a current-carrying ferromagnetic nanowire, plays the role of the moving wave source. The Larmor precession of the DW in an external field stimulates emission of monochromatic spin waves (SWs) during its motion, which show a significant Doppler effect, comparable to the acoustic one of a train whistle. This process involves two prominent spin-transfer-torque effects simultaneously, the current-driven DW motion and the current-induced SW Doppler shift. The latter gives rise to an interesting feature, i.e., the observed SW Doppler effect appears resulting from a stationary source and a moving observer, contrary to the laboratory frame.

  20. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System.

    Science.gov (United States)

    Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-27

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy.

  1. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System

    Directory of Open Access Journals (Sweden)

    Kesai Ouyang

    2015-08-01

    Full Text Available The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS. Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy.

  2. In situ estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter (ADV)

    DEFF Research Database (Denmark)

    Andersen, T.J.; Fredsøe, Jørgen; Pejrup, M.

    2007-01-01

    Field-based estimations of bed shear stress have been made using SonTek/YSI 10 MHz ADVs (Acoustic Doppler Velocimeter) at the Kongsmark mudflat, Danish Wadden Sea, in order to test if it was possible to estimate erosion and deposition thresholds in situ by use of unidirectional tidal and orbital...... (wave) currents. The results were promising and erosion thresholds were in the same range as those observed in EROMES erosion experiments carried out at the same site. Similarly, the short-term erosion rates which could be calculated matched closely those obtained with EROMES, and were in the same range...... as those published for a large annular flume (Sea Carousel) from another fine-grained site. This indicates that the erosion rates obtained with those two erosion-instruments are reasonable estimates of the actual erosion taking place under natural tidal current and waves. One advantage of the use of ADVs...

  3. Current measurements from acoustic doppler current profilers (ADCP) in the southwest Atlantic Ocean from the World Ocean Circulation Experiment (WOCE) from 1991-01-03 to 1992-11-26 (NODC Accession 0087597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data from the ADCP instruments of BE/335 and BW/333 from January 3, 1991 to November 26, 1992 collected as part of the World Ocean Circulation...

  4. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system

    Science.gov (United States)

    Zhang, Haibin; Zhang, Shangbin; He, Qingbo; Kong, Fanrang

    2016-01-01

    Wayside acoustic condition monitoring and fault diagnosis for train bearings depend on acquired acoustic signals, which consist of mixed signals from different train bearings with obvious Doppler distortion as well as background noises. This study proposes a novel scheme to overcome the difficulties, especially the multi-source problem in wayside acoustic diagnosis system. In the method, a time-frequency data fusion (TFDF) strategy is applied to weaken the Heisenberg's uncertainty limit for a signal's time-frequency distribution (TFD) of high resolution. Due to the Doppler Effect, the signals from different bearings have different time centers even with the same frequency. A Doppler feature matching search (DFMS) algorithm is then put forward to locate the time centers of different bearings in the TFD spectrogram. With the determined time centers, time-frequency filters (TFF) are designed with thresholds to separate the acoustic signals in the time-frequency domain. Then the inverse STFT (ISTFT) is taken and the signals are recovered and filtered aiming at each sound source. Subsequently, a dynamical resampling method is utilized to remove the Doppler Effect. Finally, accurate diagnosis for train bearing faults can be achieved by applying conventional spectrum analysis techniques to the resampled data. The performance of the proposed method is verified by both simulated and experimental cases. It shows that it is effective to detect and diagnose multiple defective bearings even though they produce multi-source acoustic signals.

  5. Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow

    Science.gov (United States)

    Lacy, J.R.; Sherwood, C.R.

    2004-01-01

    The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s-1 and currents up to 40 cm s-1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is -0.4 cm s-1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s-1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s-1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s-1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ??? 50 cm s-1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ??? 5 cm s-1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.

  6. Evaluation of performance of Son Tek Argonaut acoustic doppler velocity log in tow tank and sea

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A; Madhan, R.; Mascarenhas, A.A; Desai, R.G.P.; VijayKumar, K.; Dias, M.; Tengali, S.; Methar, A

    Performance of a 500-kHz, 3-beam downward-looking Sontex Argonaut acoustic Doppler velocity log (DVL) based on measurements at tow-tank and sea is addressed. Its accuracy and linearity under tow-tank measurements were largely scattered...

  7. A micro-Doppler sonar for acoustic surveillance in sensor networks

    Science.gov (United States)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  8. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    Science.gov (United States)

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558

  9. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    Directory of Open Access Journals (Sweden)

    Tran MinhHai

    2016-01-01

    Full Text Available We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1 estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2 symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically.

  10. Acoustic Doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. THOMPSON: TN043, January 8, 1995--February 4, 1995; TN044, February 8, 1995--February 25, 1995; TN045, March 14, 1995--April 10, 1995; TN046, April 14, 1995--April 29, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Flagg, C.N.; Kim, H.S.; Shi, Y.

    1995-09-01

    Acoustic Doppler current profiler (ADCP) data from the R/V T.G. THOMPSON is part of the core data for the US JGOFS Arabian Sea project along with hydrographic and nutrient data. Seventeen cruises on the THOMPSON are scheduled to take place between September 1994 and January 1996. This is the second in a series of data reports covering the ADCP data from the Arabian Sea JGOFS cruises TNO43 through TNO46. ADCP data are being collected on all the JGOFS Arabian Sea cruises using an autonomous data acquisition system developed for ship-of-opportunity cruises. This system, referred to as the AutoADCP, makes it possible to collect the ADCP data without the constant monitoring usually necessary and assures constant data coverage and uniform data quality. This data report presents ADCP results from the second group of four JGOFS cruises, TNO43 through TNO46, concentrating on the data collection and processing methods. The ADCP data itself reside in a CODAS data base at Brookhaven National Laboratory and is generally available to JGOFS investigators through contact with the authors. The CODAS data base and associated ADCP processing software were developed over a number of years by Eric Firing and his group at the University of Hawaii. The CODAS software is shareware available for PC`s or Unix computers and is the single most widely used ADCP processing program for ship mounted units.

  11. Estimation of suspended sediment concentrations using Pulse-coherent Acoustic Doppler Profiler (PCADP)

    Institute of Scientific and Technical Information of China (English)

    BAI Xiufang; LI Siren; GONG Dejun; XU Yongping; JIANG Jingbo

    2009-01-01

    The objective of the study is to investigate the suitability of using Pulse-coherent Acoustic Doppler Profiler (PCADP) to estimate suspended sediment concentration (SSC). The acoustic backscatter intensity was corrected for spreading and absorption loss, then calibrated with OBS and finally converted to SSC. The results show that there is a good correlation between SSC and backscatter intensity with R value of 0.74. The mean relative error is 22.4%. Then the time span of little particle size variation was also analyzed to exclude the influence of size variation. The correlation coefficient increased to 0.81 and the error decreased to 18.9%. Our results suggest that the PCADP can meet the requirement of other professional instruments to estimate SSC with the errors between 20% and 50%, and can satisfy the need of dynamics study of suspended particles.

  12. Overview of hydro-acoustic current-measurement applications by the U.S. geological survey in Indiana

    Science.gov (United States)

    Morlock, Scott E.; Stewart, James A.

    1999-01-01

    The U.S. Geological Survey (USGS) maintains a network of 170 streamflow-gaging stations in Indiana to collect data from which continuous records of river discharges are produced. Traditionally, the discharge record from a station is produced by recording river stage and making periodic discharge measurements through a range of stage, then developing a relation between stage and discharge. Techniques that promise to increase data collection accuracy and efficiency include the use of hydro-acoustic instrumentation to measure river velocities. The velocity measurements are used to compute river discharge. In-situ applications of hydro-acoustic instruments by the USGS in Indiana include acoustic velocity meters (AVM's) at six streamflow-gaging stations and newly developed Doppler velocity meters (DVM's) at two stations. AVM's use reciprocal travel times of acoustic signals to measure average water velocities along acoustic paths, whereas DVM's use the Doppler shift of backscattered acoustic signals to compute water velocities. In addition to the in-situ applications, three acoustic Doppler current profilers (ADCP's) are used to make river-discharge measurements from moving boats at streamflow-gaging stations in Indiana. The USGS has designed and is testing an innovative unmanned platform from which to make ADCP discharge measurements.

  13. Theory and signal processing of acoustic correlation techniques for current velocity measurement

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiqing; FENG Lei; WANG Changhong; WANG Yuling; QIU Wei

    2008-01-01

    A theoretical model and signal processing of acoustic correlation measurements to estimate current velocity are discussed. The sonar space-time correlation function of vol-ume reverberations within Fraunhofer zone is derived. The function, which is in exponential forms, is the theoretical model of acoustic correlation measurements. The characteristics of the correlation values around the maximum of the amplitude of the correlation function, where most information about current velocity is contained, are primarily analyzed. Localized Least Mean Squares (LLMS) criterion is put forward for velocity estimation. Sequential Quadratic Programming (SQP) method is adopted as the optimization method. So the systematic sig-nal processing method of acoustic correlation techniques for current velocity measurement is established. A prototype acoustic correlation current profiler (ACCP) underwent several sea trials, the results show that theoretical model approximately coincides with experimental re-sults. Current profiles including the speed and direction from ACCP are compared with those from acoustic Doppler current profiler (ADCP). The current profiles by both instruments agree reasonably well. Also, the standard deviation of velocity measurement by ACCP is statistically calculated and it is a little larger than predicted value.

  14. ALOHA Cabled Observatory (ACO): Acoustic Doppler Current Profiler (ADCP): Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Hawaii's ALOHA ("A Long-term Oligotrophic Habitat Assessment") Cabled Observatory (ACO) is located 100 km north of the island of Oahu, Hawaii (22...

  15. ALOHA Cabled Observatory (ACO): Acoustic Doppler Current Profiler (ADCP): Velocity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Hawaii's ALOHA ("A Long-term Oligotrophic Habitat Assessment") Cabled Observatory (ACO) is located 100 km north of the island of Oahu, Hawaii (22...

  16. Acoustic resolution photoacoustic Doppler velocity measurements in fluids using time-domain cross-correlation

    Science.gov (United States)

    Brunker, J.; Beard, P.

    2013-03-01

    Blood flow measurements have been demonstrated using the acoustic resolution mode of photoacoustic sensing. This is unlike previous flowmetry methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1mm. Here we describe a pulsed time correlation photoacoustic Doppler technique that is inherently flexible, lending itself to both resolution modes. Doppler time shifts are quantified via cross-correlation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. The use of short laser pulses allows depth-resolved measurements to be obtained with high spatial resolution, offering the prospect of mapping flow within microcirculation. Whilst our previous work has been limited to a non-fluid phantom, we now demonstrate measurements in more realistic blood-mimicking phantoms incorporating fluid suspensions of microspheres flowing along an optically transparent tube. Velocities up to 110 mm/s were measured with accuracies approaching 1% of the known velocities, and resolutions of a few mm/s. The velocity range and resolution are scalable with excitation pulse separation, but the maximum measurable velocity was considerably smaller than the value expected from the detector focal beam width. Measurements were also made for blood flowing at velocities up to 13.5 mm/s. This was for a sample reduced to 5% of the normal haematocrit; increasing the red blood cell concentration limited the maximum measurable velocity so that no results were obtained for concentrations greater than 20% of a physiologically realistic haematocrit. There are several possible causes for this limitation; these include the detector bandwidth and irregularities in the flow pattern. Better

  17. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.

    Science.gov (United States)

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping

    2015-05-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.

  18. Absorption measurement of acoustic materials using a scanning laser Doppler vibrometer

    Science.gov (United States)

    Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick; de Sitter, Gert

    2005-03-01

    In this article a method is proposed to estimate the normal incidence reflection ratio and absorption coefficient of acoustical materials using measurements in a transparent tube excited with a loudspeaker and terminated with the material under investigation. The waveforms are measured at different locations in the tube using a scanning laser Doppler vibrometer. Because the measurement probe (i.e., the laser beam) does not interfere with the wave in the tube, narrow tubes can be used. This means that-in contrast to the standardized wide tube tests using microphones-the proposed experiment could be used for high frequencies (in the paper an 8 mm tube was used, resulting in a 25 kHz upper frequency limit). It is shown based on theoretically known scenarios (i.e., an open tube and a rigid termination) that the absorption coefficient can be obtained with an error of about three percent. In addition, the absorption coefficient of two commonly used absorption materials-glass fiber wool and carpet-were determined and found to be in good agreement with material databases. .

  19. Synoptic Gulf Stream velocity profiles through simultaneous inversion of hydrographic and acoustic Doppler data

    Science.gov (United States)

    Joyce, T. M.; Wunsch, C.; Pierce, S. D.

    1986-01-01

    Data from a shipborne acoustic profiling device have been combined with conductivity, temperature, depth/O2 sections across the Gulf Stream to form estimates of the absolute flow fields. The procedure for the combination was a form of inverse method. The results suggest that at the time of the observations (June 1982) the net Gulf Stream transport off Hatteras was 107 + or - 11 Sv and that across a section near 72.5 W it had increased to 125 + or - 6 Sv. The transport of the deep western boundary current was 9 + or - 3 Sv. For comparison purposes an inversion was done using the hydrographic/O2 data alone as in previously published results and obtained qualitative agreement with the combined inversion. Inversion of the acoustic measurements alone, when corrected for instrument biases, leaves unacceptably large mass transport residuals in the deep water.

  20. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    Science.gov (United States)

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  1. Estimating hydrodynamic roughness in a wave-dominated environment with a high-resolution acoustic Doppler profiler

    Science.gov (United States)

    Lacy, J.R.; Sherwood, C.R.; Wilson, D.J.; Chisholm, T.A.; Gelfenbaum, G.R.

    2005-01-01

    Hydrodynamic roughness is a critical parameter for characterizing bottom drag in boundary layers, and it varies both spatially and temporally due to variation in grain size, bedforms, and saltating sediment. In this paper we investigate temporal variability in hydrodynamic roughness using velocity profiles in the bottom boundary layer measured with a high-resolution acoustic Doppler profiler (PCADP). The data were collected on the ebb-tidal delta off Grays Harbor, Washington, in a mean water depth of 9 m. Significant wave height ranged from 0.5 to 3 m. Bottom roughness has rarely been determined from hydrodynamic measurements under conditions such as these, where energetic waves and medium-to-fine sand produce small bedforms. Friction velocity due to current u*c and apparent bottom roughness z0a were determined from the PCADP burst mean velocity profiles using the law of the wall. Bottom roughness kB was estimated by applying the Grant-Madsen model for wave-current interaction iteratively until the model u*c converged with values determined from the data. The resulting kB values ranged over 3 orders of magnitude (10-1 to 10-4 m) and varied inversely with wave orbital diameter. This range of kB influences predicted bottom shear stress considerably, suggesting that the use of time-varying bottom roughness could significantly improve the accuracy of sediment transport models. Bedform height was estimated from kB and is consistent with both ripple heights predicted by empirical models and bedforms in sonar images collected during the experiment. Copyright 2005 by the American Geophysical Union.

  2. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...

  3. California Current Monitoring Using the NPS Ocean Acoustic Observatory

    Science.gov (United States)

    2016-06-07

    California Current Monitoring Using The NPS Ocean Acoustic Observatory Ching-Sang Chiu Curtis A. Collins Department of Oceanography Naval...frequency sound traveling initially downslope from a seamount, through the California Current Front over deep water, and then upslope through inshore...monitor the California Current System. APPROACH The approach is to implement a tomographic observing system consisting of the decommissioned Pt Sur, San

  4. Doppler effect for sound emitted by a moving airborne source and received by acoustic sensors located above and below the sea surface.

    Science.gov (United States)

    Ferguson, B G

    1993-12-01

    The acoustic emissions from a propeller-driven aircraft are received by a microphone mounted just above ground level and then by a hydrophone located below the sea surface. The dominant feature in the output spectrum of each acoustic sensor is the spectral line corresponding to the propeller blade rate. A frequency estimation technique is applied to the acoustic data from each sensor so that the Doppler shift in the blade rate can be observed at short time intervals during the aircraft's transit overhead. For each acoustic sensor, the observed variation with time of the Doppler-shifted blade rate is compared with the variation predicted by a simple ray-theory model that assumes the atmosphere and the sea are distinct isospeed sound propagation media separated by a plane boundary. The results of the comparison are shown for an aircraft flying with a speed of about 250 kn at altitudes of 500, 700, and 1000 ft.

  5. Ocean current data measured by the Acoustic Doppler Current Profiler (ADCP) aboard the Discoverer Enterprise oil platform from May 23, 2010 to July 04, 2010 in the Gulf of Mexico in response to the Deepwater Horizon oil spill (NODC Accession 0083684)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean current data were collected by ADCP aboard the Discoverer Enterprise in the Gulf of Mexico in response to the Deepwater Horizon oil spill event on April 20,...

  6. Ocean current data measured by the Acoustic Doppler Current Profiler (ADCP) aboard the Development Driller III from 2010-05-31 to 2010-07-04 in the Gulf of Mexico in response to the Deepwater Horizon oil spill (NODC Accession 0083634)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean current data were collected by ADCP aboard the Discoverer Enterprise in the Gulf of Mexico in response to the Deepwater Horizon oil spill event on April 20,...

  7. Compensation of Linear Multiscale Doppler for OFDM-Based Underwater Acoustic Communication Systems

    Directory of Open Access Journals (Sweden)

    A. E. Abdelkareem

    2012-01-01

    Full Text Available In particular cases, such as acceleration, it is required to design a receiver structure that is capable of accomplishing time varying Doppler compensation. In this paper, two approaches are taken into consideration in order to estimate the symbol timing offset parameter. The first method employed to achieve an estimate of this particular parameter is based upon centroid localization and this prediction is reinforced by a second technique which utilises linear prediction, based on the assumption that the speed changes linearly during the OFDM symbol time. Subsequently, the two estimations of the symbol timing offset parameter are smoothed in order to obtain a fine tuned approximation of the Doppler scale. Additionally, the effects of weighting coefficients on smoothing the Doppler scale and on the performance of the receiver are also investigated. The proposed receiver is investigated, incorporating an improvement that includes fine tuning of the coarse timing synchronization in order to accommodate the time-varying Doppler. Based on this fine-tuned timing synchronization, an extension to the improved receiver is presented to assess the performance of two point correlations. The proposed algorithms' performances were investigated using real data obtained from an experiment that took place in the North Sea in 2009.

  8. Current Density Imaging through Acoustically Encoded Magnetometry: A Theoretical Exploration

    CERN Document Server

    Sheltraw, Daniel J

    2014-01-01

    The problem of determining a current density confined to a volume from measurements of the magnetic field it produces exterior to that volume is known to have non-unique solutions. To uniquely determine the current density, or the non-silent components of it, additional spatial encoding of the electric current is needed. In biological systems such as the brain and heart, which generate electric current associated with normal function, a reliable means of generating such additional encoding, on a spatial and temporal scale meaningful to the study of such systems, would be a boon for research. This paper explores a speculative method by which the required additional encoding might be accomplished, on the time scale associated with the propagation of sound across the volume of interest, by means of the application of a radially encoding pulsed acoustic spherical wave.

  9. Signal transformation and processing of pulsed Doppler acoustic remote sensing system

    Institute of Scientific and Technical Information of China (English)

    赵松年; 熊小芸; 文峰

    1995-01-01

    Acoustic remote sensing is a principal method in the probing system of the atmospheric bounda-ry layer(ABL).Three effective methods for the wind profile obtained from transformation and processingof acoustic echo wave are provided,i.e.(i)convolution algorithm by separating segments;(ii)complex polesmodel and its spectral estimation and,(iii)tracking filtering phase locked loop.Under the bound condition inlimited data recording length or sampling number of recording data,the satisfactory resolution power of frequen-cy can be obtained.Because of the wide applications of VLSI circuit chip of high speed DSP,the threemethods discussed can be applied to radar and sonar systems.

  10. Evaluation of performance of Son Tek Argonaut acoustic doppler velocity log in tow tank and sea

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Madhan, R.; Mascarenhas, A.A.M.Q.; Desai, R.G.P.; VijayKumar, K.; Dias, M.; Tengali, S.; Methar, A.

    stream_size 22108 stream_content_type text/plain stream_name Proc_Sympol_2003_1.pdf.txt stream_source_info Proc_Sympol_2003_1.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Evaluation... was not affected by flow disturbances in its vicinity. 2. Description Performance evaluation experiments were conducted on a hull-mountable downward-looking three-beam Sontek Argonaut acoustic DVL (Model: Argonaut type DL; serial # N60). Fig. 1 Support...

  11. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    Science.gov (United States)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  12. Current state of the radiological diagnosis of acoustic neuroma

    Energy Technology Data Exchange (ETDEWEB)

    Valavanis, A.; Dabir, K.; Hamdi, R.; Oguz, M.; Wellauer, J.

    1982-03-01

    Thin, overlapping section, contrast-enhanced, axial and coronal CT, with additional high-resulution (HR) treatment of the sections through the internal auditory canal, was performed on 31 patients clinically suspected of acoustic neuroma. With this technique 13 acoustic neuromas protruding more than 10 mm and eight acoustic neuromas protruding between 2 and 10 mm outside the internal auditory canal were unequivocally diagnosed. O/sub 2/CT cisternography was performed on ten patients. An intracanalicular neuroma was diagnosed in three cases with this technique, also a small extracanalicular neuroma in one case, and an acoustic neuroma was definitely excluded in six cases. It is concluded that O/sub 2/CT cisternography is the diagnostic procedure of choice for the detection of purely intracanalicular neuromas and the definite exclusion of acoustic neuroma. HR CT proved superior to polytomography for the evaluation of the internal auditory canal and should be performed in every case suspected of acoustic neuroma. A protocol for the radiological investigation of patients suspected of acoustic neuroma is given.

  13. Using Acoustic Tomography to Monitor Deep Ocean Currents in the Eastern Gulf of Mexico

    Science.gov (United States)

    2010-06-01

    Toward the improved prediction and monitoring of deep-water currents and eddies in the Gulf of Mexico , the Gulf Eddy Monitoring System group (GEMS...proposes that a network of acoustic transmitter receiver pairs be deployed in the northeastern Gulf of Mexico . Acoustic travel times are inverted to

  14. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  15. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Luyi [Univ. of California, Berkeley, CA (United States)

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly

  16. Current capability of a matured disposable acoustic sensor network

    Science.gov (United States)

    Beale, D. A. R.; Geddes, N. J., II; Hume, A.; Gray, A. J.

    2006-05-01

    In response to the needs of the UK MOD QinetiQ have designed, developed and trialled an ad-hoc, self organising network of acoustic nodes for in-depth deployment that can detect and track military targets in a range of environments and for all types of weapon locating. Research conducted has shown that disposable technologies are sufficiently mature to provide a useful military capability. Work this year has included a 3 month series of trials to exercise the prototype equipment and has provided an indication of in-service capability across a broad range of environments. This paper will discuss the scientific approach that was applied to the development of the equipment, from early laboratory development through to the prototype sensor network deployment in operationally representative environments. Highlights from the trials have been provided. New findings from the fusion of a low cost thermal imager that can be cued by the acoustic network are also discussed.

  17. Experimental study of near-wall turbulent characteristics in an open-channel with gravel bed using an acoustic Doppler velocimeter

    Science.gov (United States)

    Wang, X. Y.; Yang, Q. Y.; Lu, W. Z.; Wang, X. K.

    2012-01-01

    This experimental study investigated the mean velocity profiles, skin friction and turbulent characteristics of a gravel bed over a wide range of roughness using an acoustic Doppler velocimeter (ADV). The median diameter of bed material ranged from 2 to 40 mm, and the normalized roughness heights ranged from 47 to 4,881 mm. The flow regime was fully developed turbulence with a Reynolds number in the range of 4.2 × 104-9.86 × 104. All velocity curves exhibited logarithmic distributions, and the log-law region was influenced greatly by both the roughness and the Reynolds number. Moreover, the roughness of the gravel bed exerted a strong effect on Reynolds stress, and the turbulence tended towards isotropic with increasing roughness. Using statistical analyses, the third-order turbulence moments, sweep, and ejection motions were also examined. The results of this experimental analysis present a contrast to the classical wall similarity hypothesis.

  18. Currents and other physical parameters collected from moored current meters and various ADCPs offshore the United Kingdom, as part of British Oceanographic Data Center's (BODC) current meter series, from 21 June 1967 to 29 April 2007 (NODC Accession 0067029)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The BODC current meter data set provides all currents data held in the BODC National Oceanographic Database (NODB). It includes entries for Moored Acoustic Doppler...

  19. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Rastbood, E. [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of); Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  20. Damping of an ion acoustic surface wave due to surface currents

    CERN Document Server

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  1. Steerable Doppler transducer probes

    Energy Technology Data Exchange (ETDEWEB)

    Fidel, H.F.; Greenwood, D.L.

    1986-07-22

    An ultrasonic diagnostic probe is described which is capable of performing ultrasonic imaging and Doppler measurement consisting of: a hollow case having an acoustic window which passes ultrasonic energy and including chamber means for containing fluid located within the hollow case and adjacent to a portion of the acoustic window; imaging transducer means, located in the hollow case and outside the fluid chamber means, and oriented to direct ultrasonic energy through the acoustic window toward an area which is to be imaged; Doppler transducer means, located in the hollow case within the fluid chamber means, and movably oriented to direct Doppler signals through the acoustic window toward the imaged area; means located within the fluid chamber means and externally controlled for controllably moving the Doppler transducer means to select one of a plurality of axes in the imaged area along which the Doppler signals are to be directed; and means, located external to the fluid chamber means and responsive to the means for moving, for providing an indication signal for identifying the selected axis.

  2. Current Applications of Scanning Coherent Doppler Lidar in Wind Energy Industry

    Directory of Open Access Journals (Sweden)

    Krishnamurthy R

    2016-01-01

    Full Text Available Scanning Doppler Lidars have become more prominent in the wind energy industry for a variety of applications. Scanning Lidar’s provide spatial variation of winds and direction over a large area, which can be used to assess the spatial uncertainty of winds and analyze complex flows. Due to the recent growth in wind energy, wind farms are being built in complex terrain areas and fine tuning of the existing wind farms for optimized performance have gained significant interest. Scanning Lidar is an ideal tool for improved assessment of flow over complex terrains and wake characterization of large wind farms. In this article, the various applications of Lidar in the wind industry are discussed and results from several campaigns conducted in US and Europe is presented. The conglomeration of results provided in this article would assist wind energy developers and researchers in making improved decisions about their wind farm operations and pre-construction analysis using scanning Lidar’s.

  3. Current-less solar wind driven dust acoustic instability in cometary plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [Belgian Institute for Space Aeronomy, Ringlaan 3, 1180 Brussels (Belgium)

    2011-08-15

    A quantitative analysis is presented of the dust acoustic wave instability driven by the solar and stellar winds. This is a current-less kinetic instability which develops in permeating plasmas, i.e.., when one quasi-neutral electron-ion wind plasma in its propagation penetrates through another quasi-neutral plasma which contains dust, electrons, and ions.

  4. Acoustic and Laser Doppler Anemometer Results for Confluent, 22-Lobed, and Unique-Lobed Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    Science.gov (United States)

    Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)

    2002-01-01

    The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.

  5. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range

  6. The average direct current offset values for small digital audio recorders in an acoustically consistent environment.

    Science.gov (United States)

    Koenig, Bruce E; Lacey, Douglas S

    2014-07-01

    In this research project, nine small digital audio recorders were tested using five sets of 30-min recordings at all available recording modes, with consistent audio material, identical source and microphone locations, and identical acoustic environments. The averaged direct current (DC) offset values and standard deviations were measured for 30-sec and 1-, 2-, 3-, 6-, 10-, 15-, and 30-min segments. The research found an inverse association between segment lengths and the standard deviation values and that lengths beyond 30 min may not meaningfully reduce the standard deviation values. This research supports previous studies indicating that measured averaged DC offsets should only be used for exclusionary purposes in authenticity analyses and exhibit consistent values when the general acoustic environment and microphone/recorder configurations were held constant. Measured average DC offset values from exemplar recorders may not be directly comparable to those of submitted digital audio recordings without exactly duplicating the acoustic environment and microphone/recorder configurations.

  7. NOAA/EcoFOCI Chukchi Sea ADCP Mooring time-series data, stations C1, C2, and C3, 2010-08-29 to 2012-08-22, including zonal (U) and meridional (V) current measurements. (NCEI Accession 0149848)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Acoustic Doppler Current Profiler (ADCP) time-series data sets, consist of zonal current (U) and meridional current (V) measurements from moored instruments at...

  8. The dispersion modification of electrostatic geodesic acoustic mode by electron geodesic drift current

    OpenAIRE

    Zhang, Shuangxi

    2014-01-01

    The past studies treated the perturbed distribution of circulating electrons as adiabatic one when studying the dispersion relation of electrostatic geodesic acoustic mode(GAM). In this paper, the flow of electron geodesic current (FEGC) is added to modify this adiabatic distribution. Based on the drift kinetic theory, it is found that FEGC obviously increases the magnitude of the standard GAM's frequency and reduces its damping rate. The increase of frequency results from the contribution of...

  9. Superharmonic microbubble Doppler effect in ultrasound therapy

    Science.gov (United States)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  10. Current meter data from moored current meter in the Gulf of Mexico as part of the Gulf of Mexico Physical Oceanography project from 05 May 1984 to 18 May 1989 (NODC Accession 8900258)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data consists of Acoustic Doppler Current Profiles recorded in NODC'S F004 format. The data were collected using an Ametek-Straza instrument aboard the R/V CAPE...

  11. Comparison of three formulations for eddy-current problems in a spiral coil electromagnetic acoustic transducer

    Institute of Scientific and Technical Information of China (English)

    石文泽; 吴运新; 龚海; 赵志然; 范吉志; 谭良辰

    2016-01-01

    Three differential equations based on different definitions of current density are compared. FormulationⅠ is based on an incomplete equation for total current density (TCD). FormulationsⅡ andⅢ are based on incomplete and complete equations for source current density (SCD), respectively. Using the weak form of finite element method (FEM), three formulations were applied in a spiral coil electromagnetic acoustic transducer (EMAT) example to solve magnetic vector potential (MVP). The input impedances calculated by Formulation III are in excellent agreement with the experimental measurements. Results show that the errors for Formulations I & II vary with coil diameter, coil spacing, lift-off distance and external excitation frequency, for the existence of eddy-current and skin & proximity effects. And the current distribution across the coil conductor also follows the same trend. It is better to choose Formulation I instead of Formulation III to solve MVP when the coil diameter is less than twice the skin depth for Formulation I is a low cost and high efficiency calculation method.

  12. Seasonal absolute acoustic intensity, atmospheric forcing and currents in a tropical coral reef system

    Science.gov (United States)

    de Jesús Salas Pérez, José; Salas-Monreal, David; Monreal-Gómez, María Adela; Riveron-Enzastiga, Mayra Lorena; Llasat, Carme

    2012-03-01

    The seasonal patterns of marine circulation and biovolume were obtained from time-series measurements carried out in the "Parque Nacional Sistema Arrecifal Veracruzano" (PNSAV), located in the western continental shelf of the Gulf of Mexico, from June 2008 to September 2009. Two mechanisms were depicted as the responsible for the current pattern observed in the PNSAV and not only one as suggested in large-scale studies. The first mechanism is the wind generated currents. This mechanism by itself is responsible for up to 78% of total variation of the seasonal circulation in the PNSAV as estimated with the first mode of the EOF's (Empirical Orthogonal Functions), which was correlated (Normalized Lagged Correlation) with the north-south wind component. Therefore, the wind and the first mode were highly correlated for most of the year (r > 0.7). The second mode was attributed to the low frequency current, associated to the meso-scale circulation of the Gulf of Mexico, owing to the cyclonic eddy of the Campeche Bay. Both mechanisms were mostly observed throughout the year. Nevertheless, the cyclonic eddy of the Campeche Bay (meso-scale) was the first responsible for the current fluctuations observed during the summer of 2008 and 2009. The absolute acoustic intensity (plankton biovolumes) was highly correlated to currents, showing high spatial variability, attributed to advection produced by the meso-scale circulation and to river discharges, but also by eddy diffusion produced by atmospheric and coastal water fronts.

  13. Study on Doppler Effects Estimate in Underwater Acoustic Communication Based on Fractional Fourier Transform%基于分数阶Fourier变换的水声通信多普勒系数估计技术研究

    Institute of Scientific and Technical Information of China (English)

    霍雁明; 刘媛; 张晓

    2012-01-01

    An estimate method of the Doppler effects in mobile underwater acoustic communication based on fractional Fourier transform has been proposed.The Doppler coefficients are obtained by estimating chirp rate change of LFM signal with fractional Fourier transform(FRFT) in this paper.And the performance of the Doppler effects estimation method based on FRFT is verified by the computer simulation.%本文基于传统多普勒系数估计方法,提出一种基于分数阶Fourier变换的多普勒系数估计方法,该方法利用分数阶Fourier变换估计得到经过信道后LFM信号调频斜率的变化量值,进而得到多普勒系数的估计。通过计算机仿真研究验证了该方法的有效性与稳健性。

  14. The dispersion modification of electrostatic geodesic acoustic mode by electron geodesic drift current

    CERN Document Server

    Zhang, Shuangxi

    2014-01-01

    The past studies treated the perturbed distribution of circulating electrons as adiabatic one when studying the dispersion relation of electrostatic geodesic acoustic mode(GAM). In this paper, the flow of electron geodesic current (FEGC) is added to modify this adiabatic distribution. Based on the drift kinetic theory, it is found that FEGC obviously increases the magnitude of the standard GAM's frequency and reduces its damping rate. The increase of frequency results from the contribution of FEGC to the radial flow. The reason for the reduction of damping rate is that when the effect of FEGC counts, the new resonant velocity becomes much larger than ions thermal velocity with equilibrium distribution obeying Maxwellian distribution, compared with unmodified Landau resonant velocity. Especially, FEGC changes the characters of the frequency and damping rate of low-frequency GAM as functions of safety factor $q$ .

  15. Real-time current, wave, temperature, salinity, and meteorological data from Gulf of Maine Ocean Observing System (GoMOOS) buoys, 11/30/2003 - 12/7/2003 (NODC Accession 0001259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Maine Ocean Observing System (GoMOOS) collected real-time data with buoy-mounted instruments (e.g., accelerometers and Acoustic Doppler Current...

  16. The current status of measurement standards for acoustics and vibration at Inmetro

    OpenAIRE

    Ripper, Gustavo Palmeira; Hoffmann, Walter Erico

    2002-01-01

    ABSTRACT: The Division of Acoustics and Vibration (DIAVI) of INMETRO establishes, validates and maintains the Brazilian national measurement standards used for the realization of the units of physical quantities related to the field of acoustics and vibration. The basic vibration quantity realized by DIAVI is translational acceleration, from which the other motion quantities, i.e., velocity and displacement can be derived. Acoustical physical quantities include sound pressure and sound power...

  17. Integration of an Acoustic Modem onto a Wave Glider Unmanned Surface Vehicle

    Science.gov (United States)

    2012-06-01

    their vehicle. To Teledyne Benthos and their employees, for providing their views on best possible integration schemes for the modem. To David Jackson... Benthos and Liquid Robotics were interested in integrating an Acoustic Doppler Current Profiler (ADCP) with the vehicle in order to collect current

  18. Teaching the Doppler effect in astrophysics

    Science.gov (United States)

    Hughes, Stephen W.; Cowley, Michael

    2017-03-01

    The Doppler effect is a shift in the frequency of waves emitted from an object moving relative to the observer. By observing and analysing the Doppler shift in electromagnetic waves from astronomical objects, astronomers gain greater insight into the structure and operation of our Universe. In this paper, a simple technique is described for teaching the basics of the Doppler effect to undergraduate astrophysics students using acoustic waves. An advantage of the technique is that it produces a visual representation of the acoustic Doppler shift. The equipment comprises a 40 kHz acoustic transmitter and a microphone. The sound is bounced off a computer fan and the signal collected by a DrDAQ ADC and processed by a spectrum analyser. Widening of the spectrum is observed as the fan power supply potential is increased from 4 to 12 V.

  19. Acoustic and Laser Doppler Anemometer Results for Confluent and 12-Lobed E(exp 3) Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    Science.gov (United States)

    Salikuddin, M.; Babbit, R. R.; Shin, H.; Wisler, S.; Janardan, B. A.; Majjigi, R. K.; Bridges, James (Technical Monitor)

    2002-01-01

    The research described in this report has been funded by NASA Glenn Research Center as part of the Advanced Subsonic Technologies (AST) initiative. The program operates under the Large Engine Technologies (LET) as Task Order #3 1. Task Order 31 is a three year research program divided into three subtasks. Subtask A develops the experimental acoustic and aerodynamic subsonic mixed flow exhaust system databases. Subtask B seeks to develop and assess CFD-based aero-acoustic methods for subsonic mixed flow exhaust systems. Subtask B relies on the data obtained from Subtask A to direct and calibrate the aero-acoustic methods development. Subtask C then seeks to utilize both the aero-acoustic data bases developed in Subtask A and the analytical methods developed in Subtask B to define improved subsonic mixed-flow exhaust systems. The mixed flow systems defined in Subtask C will be experimentally demonstrated for improved noise reduction in a scale model aero-acoustic test conducted similarly to the test performed in Subtask A. The overall object of this Task Order is to develop and demonstrate the technology to define a -3EPNdB exhaust system relative to 1992 exhaust system technology.

  20. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  1. Speaker-Oriented Classroom Acoustics Design Guidelines in the Context of Current Regulations in European Countries

    DEFF Research Database (Denmark)

    Pelegrin Garcia, David; Brunskog, Jonas; Rasmussen, Birgit

    2014-01-01

    experienced at work. With the aim of improving working conditions for teachers, this article presents guidelines for classroom acoustics design that meet simultaneously criteria of vocal comfort and speech intelligibility, which may be of use in future discussions for updating regulatory requirements...... in classroom acoustics. Two room acoustic parameters are shown relevant for a speaker: the voice support, linked to vocal effort, and the decay time derived from an oral-binaural impulse response, linked to vocal comfort. Theoretical prediction models for room-averaged values of these parameters are combined...... with a model of speech intelligibility based on the useful-to-detrimental ratio and empirical models of signal-to-noise ratio in classrooms in order to derive classroom acoustic guidelines, taking into account physical volume restrictions linked to the number of students present in a classroom. The recommended...

  2. Modificações da hemodinâmica fetal pelo estímulo sonoro: avaliação pela dopplervelocimetria colorida Vibro-acoustic stimulation induced hemodynamic fetal changes assessed by color doppler

    Directory of Open Access Journals (Sweden)

    Francisco Mauad Filho

    1999-04-01

    Full Text Available Objetivos: verificar se ocorrem ou não alterações hemodinâmicas na aréria cerebral média (ACM aferido pela dopplervelocimetria colorida após realização de um estímulo sonoro. Métodos: trinta fetos de gestantes consideradas clinicamente normais com idade gestacional igual ou superior a 28 semanas foram submetidos a um estímulo sonoro. Examinamos as alterações da velocidade sangüínea na ACM fetal por meio do índice de resistência e da freqüência cardíaca fetal, pelo doppler colorido, antes e depois do estímulo acústico. Resultados: a média da freqüência cardíaca fetal (FCF antes do estímulo sonoro foi de 142,41 batimentos por minuto (bpm com desvio padrão de 9,01 e faixa de variação de 122 a 162 bpm. Após o estímulo sonoro, a média da FCF foi de 159,44 bpm com desvio padrão de 15,49, com faixa de variação de 130 a 187 bpm (pPurpose: to determine the possible occurrence of hemodynamic changes in the middle cerebral artery of the fetus (MCA using color doppler after vibro-acoustic stimulation. Methods: thirty fetuses from pregnant women considered to be clinically normal, with a gestational age of 28 weeks or more were submitted to vibro-acoustic stimulation. We examined the changes in blood flow rate in the middle cerebral artery of the fetus on the basis of resistance index (RI and fetal heart rate (FHR by color doppler before and after the sound stimulus. Results: mean FHR before vibro-acoustic stimulation was 142.41 beats per minute (bpm with a standard deviation of 9.01 and a range of 122 to 162 bpm. After stimulation, mean FHR was 159.44 bpm with a standard deviation of 15.49 and a range of 130 to 187 bpm (p<0.01. Mean RI in the MCA of the fetuses was 75.89% (range: 64 to 91% before the experiment. After the vibro-acoustic stimulation, mean RI was 66.93% (range: 47 to 83%; p < 0.01. Conclusions: we observed that a sound stimulus provokes the well-known immediate and significant elevation of FHR and a

  3. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC Brain Potential Changes

    Directory of Open Access Journals (Sweden)

    Karin Trimmel

    2014-09-01

    Full Text Available Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes. This study investigated brain direct current (DC potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  4. Acoustic noise alters selective attention processes as indicated by direct current (DC) brain potential changes.

    Science.gov (United States)

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-09-26

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts-which are discussed to represent different states of cortical activation-of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest-besides some limitations-that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested "attention shift". Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  5. Doppler Tomography

    CERN Document Server

    Marsh, T R

    2000-01-01

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the a...

  6. Why Current Doppler Ultrasound Methodology Is Inaccurate in Assessing Cerebral Venous Return: The Alternative of the Ultrasonic Jugular Venous Pulse

    Directory of Open Access Journals (Sweden)

    Paolo Zamboni

    2016-01-01

    Full Text Available Assessment of cerebral venous return is growing interest for potential application in clinical practice. Doppler ultrasound (DUS was used as a screening tool. However, three meta-analyses of qualitative DUS protocol demonstrate a big heterogeneity among studies. In an attempt to improve accuracy, several authors alternatively measured the flow rate, based on the product of the time average velocity with the cross-sectional area (CSA. However, also the quantification protocols lacked of the necessary accuracy. The reasons are as follows: (a automatic measurement of the CSA assimilates the jugular to a circle, while it is elliptical; (b the use of just a single CSA value in a pulsatile vessel is inaccurate; (c time average velocity assessment can be applied only in laminar flow. Finally, the tutorial describes alternative ultrasound calculation of flow based on the Womersley method, which takes into account the variation of the jugular CSA overtime. In the near future, it will be possible to synchronize the electrocardiogram with the brain inflow (carotid distension wave and with the outflow (jugular venous pulse in order to nicely have a noninvasive ultrasound picture of the brain-heart axis. US jugular venous pulse may have potential use in neurovascular, neurocognitive, neurosensorial, and neurodegenerative disorders.

  7. Why Current Doppler Ultrasound Methodology Is Inaccurate in Assessing Cerebral Venous Return: The Alternative of the Ultrasonic Jugular Venous Pulse.

    Science.gov (United States)

    Zamboni, Paolo

    2016-01-01

    Assessment of cerebral venous return is growing interest for potential application in clinical practice. Doppler ultrasound (DUS) was used as a screening tool. However, three meta-analyses of qualitative DUS protocol demonstrate a big heterogeneity among studies. In an attempt to improve accuracy, several authors alternatively measured the flow rate, based on the product of the time average velocity with the cross-sectional area (CSA). However, also the quantification protocols lacked of the necessary accuracy. The reasons are as follows: (a) automatic measurement of the CSA assimilates the jugular to a circle, while it is elliptical; (b) the use of just a single CSA value in a pulsatile vessel is inaccurate; (c) time average velocity assessment can be applied only in laminar flow. Finally, the tutorial describes alternative ultrasound calculation of flow based on the Womersley method, which takes into account the variation of the jugular CSA overtime. In the near future, it will be possible to synchronize the electrocardiogram with the brain inflow (carotid distension wave) and with the outflow (jugular venous pulse) in order to nicely have a noninvasive ultrasound picture of the brain-heart axis. US jugular venous pulse may have potential use in neurovascular, neurocognitive, neurosensorial, and neurodegenerative disorders.

  8. Amplification of surface acoustic waves by transverse electric current in piezoelectric semiconductors

    DEFF Research Database (Denmark)

    Gulyaev, Yuri V.

    1974-01-01

    It is shown that the principal characteristic feature of the surface acoustic waves in piezoelectrics—the presence of an alternating electric field transverse to the surface, which can be of the same order of magnitude as the longitudinal field—may not only give rise to the known transverse...... acoustoelectric effect but also lead to amplification of surface acoustic waves by electron drift perpendicular to the surface. For Love waves in a piezoelectric semiconductor film on a highly conducting substrate, the amplification coefficient is found and the conditions necessary for amplification...

  9. Surface and subsurface geostrophic current variability in the Indian Ocean from altimetry

    Digital Repository Service at National Institute of Oceanography (India)

    Cadden, D.D.H.; Subrahmanyam, B.; Chambers, D.P.; Murty, V.S.N.

    the World Ocean Atlas 2005. The results of this method were validated with currents measured using Acoustic Doppler Current Profilers moored along the equator at 77 degrees E, 83 degrees E, and 93 degrees E. The measured and computed currents compared...

  10. Doppler imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piskunov, N [Department of Physics and Astronomy, Uppsala University, Box 515, S-75120 Uppsala (Sweden)], E-mail: piskunov@fysast.uu.se

    2008-12-15

    In this paper, I present a short review of the history and modern status of Doppler imaging techniques, highlighting their dependence on the knowledge of the fundamental stellar parameters, the quality of stellar atmospheric models and the accuracy of spectral synthesis.

  11. Acoustic estimation of suspended sediment concentration

    Institute of Scientific and Technical Information of China (English)

    ZHU; Weiqing(

    2001-01-01

    [1]Morse, P. H. , Theoretical Acoustics, New York: McGraw-Hill Book Co. , 1968.[2]Skudrjuk, E., Die Grundlagen der Akustik, Wien: Springer-Verlag, 1954.[3]Olshevskii, V. V., Statistical Characteristics of Sea Reverberation, Moscow: Nauka Publisher, 1966.[4]Thorne, P. D., Hardcastl, P. J., Soulsby, R. L., Analysis of acoustic measurements of suspended sediments, J. Geop.Res. , 1993, 98: 899.[5]Guo Jijie, Ren Laifa, Li Yunwu, ln-situ calibration of acoustic measurement of suspended sedienmt, Acta Oceanologica Sini-ca, 1998, (20): 120-125.[6]Zhang Shuying, Li Yunwu, Development and application of an acoustic suspended sediemnt monitoring system, Acta Oceanologica Sinica, 1998, (20): 114-119.[7]Zhang Shuying, Li Yunwu, A theoretical analysis of acoustic suspended sediment obsvervation, Acta Acoustica, 1999, (24):267-274.[8]Zhu Weiqing, Pan Feng, Zhu Min et al. , IOA-1 Multi-function Acoustic Doppler Current Profiler (MADCP), OCEAN'2000,Rhode Island, USA.

  12. Range-instantaneous Doppler imaging of inverse synthetic aperture sonar

    Institute of Scientific and Technical Information of China (English)

    XU Jia; JIANG Xingzhou; TANG Jingsong

    2003-01-01

    Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both individual scatter′s Doppler and imaging projection plane. To resolve the problem, a new range-instantaneous Doppler imaging method is proposed for imaging maneuvering targets based on time-frequency analysis. The proposed approach is verified using real underwater acoustic data.

  13. The doppler ultrasound. La ecografia Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Cecilia, E.; Lozano Setien, E.; Hernandez Montero, J.; Ganado Diaz, T.; Jorquera Moya, M.; Blasco Pascual, E. (Hospital Universitario San Carlos. Madrid (Spain))

    1994-01-01

    The discovery and development of Doppler ultrasound has had a great influence on Medical practice since it allows the noninvasive study of vascular pathology, both arterial and venous, as well as the flow patterns of the different parenchyma. This article deals with the principles, limitations and interpretation of the Doppler signal, as well as the different Doppler ultrasound systems routinely employed in Medicine.

  14. VM-ADCP measured upper ocean currents in the southeastern Arabian Sea and Equatorial Indian Ocean during December, 2000

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Suryanarayana, A.; Somayajulu, Y.K.; Raikar, V.; Tilvi, V.

    The Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents in the upper 200 m along the cruise track covering the southeastern Arabian Sea and the Eastern Equatorial Indian Ocean during northern winter monsoon (10-31 December...

  15. Laser double Doppler flowmeter

    Science.gov (United States)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  16. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Science.gov (United States)

    Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.

    2014-04-01

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  17. Time domain algorithm for accelerated determination of the first order moment of photo current fluctuations in high speed laser Doppler perfusion imaging

    NARCIS (Netherlands)

    Draijer, M.; Hondebrink, E.; van Leeuwen, T.; Steenbergen, W.

    2009-01-01

    Advances in optical array sensor technology allow for the real time acquisition of dynamic laser speckle patterns generated by tissue perfusion, which, in principle, allows for real time laser Doppler perfusion imaging (LDPI). Exploitation of these developments is enhanced with the introduction of f

  18. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  19. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  20. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  1. QRev—Software for computation and quality assurance of acoustic doppler current profiler moving-boat streamflow measurements—Technical manual for version 2.8

    Science.gov (United States)

    Mueller, David S.

    2016-06-21

    The software program, QRev applies common and consistent computational algorithms combined with automated filtering and quality assessment of the data to improve the quality and efficiency of streamflow measurements and helps ensure that U.S. Geological Survey streamflow measurements are consistent, accurate, and independent of the manufacturer of the instrument used to make the measurement. Software from different manufacturers uses different algorithms for various aspects of the data processing and discharge computation. The algorithms used by QRev to filter data, interpolate data, and compute discharge are documented and compared to the algorithms used in the manufacturers’ software. QRev applies consistent algorithms and creates a data structure that is independent of the data source. QRev saves an extensible markup language (XML) file that can be imported into databases or electronic field notes software. This report is the technical manual for version 2.8 of QRev.

  2. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    OpenAIRE

    Perron, P. J. G.; J.-M. A. Noël; Kabin, K.; St-Maurice, J.-P.

    2013-01-01

    Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA) instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius...

  3. Outdoor Synthetic Aperture Acoustic Ground Target Measurements

    Science.gov (United States)

    2010-04-19

    1341 (2003). [11] C. A. Dimarzio, T. Shi, F. J. Blonigen et al., “ Laser -Induced Acoustic Landmine Detection,” The Journal Of The Acoustical Society...High Frequency A/S Coupling For Ap Buried Landmine Detection Using Laser Doppler Vibrometers,” Proc. SPIE 5415(1), 35-41 (2004). [16] Bishop, S... Dolphin Echolocation Clicks For Target Discrimination,” The Journal Of The Acoustical Society Of America 124(1), 657-666 (2008). [20] Y. Nakamura

  4. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    Science.gov (United States)

    Yack, Tina M.

    The objectives of this research were to test available automated detection methods for passive acoustic monitoring and integrate the best available method into standard marine mammal monitoring protocols for ship based surveys. The goal of the first chapter was to evaluate the performance and utility of PAMGUARD 1.0 Core software for use in automated detection of marine mammal acoustic signals during towed array surveys. Three different detector configurations of PAMGUARD were compared. These automated detection algorithms were evaluated by comparing them to the results of manual detections made by an experienced bio-acoustician (author TMY). This study provides the first detailed comparisons of PAMGUARD automated detection algorithms to manual detection methods. The results of these comparisons clearly illustrate the utility of automated detection methods for odontocete species. Results of this work showed that the majority of whistles and click events can be reliably detected using PAMGUARD software. The second chapter moves beyond automated detection to examine and test automated classification algorithms for beaked whale species. Beaked whales are notoriously elusive and difficult to study, especially using visual survey methods. The purpose of the second chapter was to test, validate, and compare algorithms for detection of beaked whales in acoustic line-transect survey data. Using data collected at sea from the PAMGUARD classifier developed in Chapter 2 it was possible to measure the clicks from visually verified Baird's beaked whale encounters and use this data to develop classifiers that could discriminate Baird's beaked whales from other beaked whale species in future work. Echolocation clicks from Baird's beaked whales, Berardius bairdii, were recorded during combined visual and acoustic shipboard surveys of cetacean populations in the California Current Ecosystem (CCE) and with autonomous, long-term recorders at four different sites in the Southern

  5. Optical Doppler shift with structured light

    OpenAIRE

    2011-01-01

    When a light beam with a transverse spatially varying phase is considered for optical remote sensing, in addition to the usual longitudinal Doppler frequency shift of the returned signal induced by the motion of the scatter along the beam axis, a new transversal Doppler shift appears associated to the motion of the scatterer in the plane perpendicular to the beam axis. We discuss here how this new effect can be used to enhance the current capabilities of optical measurement system...

  6. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    P. J. G. Perron

    2013-03-01

    Full Text Available Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius corrections are small. We derived a new fluid-like expression for the critical drift which depends explicitly on ion anisotropy. More importantly, for ion to electron temperature ratios typical of F-region, solutions of the kinetic dispersion relation show that ion temperature anisotropy may significantly lower the drift threshold required for instability. In some cases, a perpendicular to parallel ion temperature ratio of 2 and may reduce the relative drift required for the onset of instability by a factor of approximately 30, assuming the ion-acoustic speed of the medium remains constant. Therefore, the ion temperature anisotropy should be considered in future studies of ion-acoustic waves and instabilities in the high-latitude ionospheric F-region.

  7. Differential doppler heterodyning technique

    DEFF Research Database (Denmark)

    Lading, Lars

    1971-01-01

    Measuring velocity without disturbing the moving object is possible by use of the laser doppler heterodyning technique. Theoretical considerations on the doppler shift show that the antenna property of the photodetector can solve an apparent conflict between two different ways of calculating the ...

  8. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue ...

  9. Complex Doppler effect in left-handed metamaterials

    CERN Document Server

    Ziemkiewicz, David

    2014-01-01

    The Doppler shift is investigated in one-dimensional system with moving source. Theoretical findings are confirmed in numerical simulations of optical and acoustical waves propagation in simple metamaterial model, showing the reversed shift and the existence of multiple frequency modes. The properties of these waves are discussed. The effect of absorption on the phenomenon is outlined.

  10. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been......Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  11. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Maulik, D. [Winthrop Univ. Hospital, Mineola, NY (United States). Dept. of Obstetrics and Gynecology; Zalud, I. (eds.) [Kapiolani Medical Center for Women and Children, Honolulu, HI (United States)

    2005-07-01

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  12. The Estimation and Compensation of Doppler Effect on Underwater Acoustic Spread Spectrum Communication%水声扩频通信中多普勒估计与补偿算法研究

    Institute of Scientific and Technical Information of China (English)

    袁兆凯; 隋天宇; 李宇; 黄海宁

    2012-01-01

    The Doppler effect is inherent in communication systems which makes the carrier synchronization critical to the whole system. In underwater communication environment, the Doppler effect is more severe due to the limited sound speed. In this paper, the Doppler effect of underwater channel is analyzed by formulas on a software-defined radio communication system. Then an effective algorithm is developed which can estimate and compensate the frequency shift. The simulation results show that this algorithm works out within the speed of 15 m/s, when the signal to noise ratio is above -22 dB. The sea experimental results show that the system can successfully achieve the carry wave synchronization with the speed to be 6 knots.%通信系统普遍受多普勒效应影响,因而载波同步成为通信中的一项关键技术.在水声通信中,由于声速有限,信道中的多普勒效应的影响更为明显.该文在一个基于软件无线电机制的水声扩频通信系统中,对水声信道的多普勒效应进行分析和建模,并在此基础上提出了一种有效的水声扩频多普勒估计与补偿算法.仿真实验表明,算法能够在-22 dB的情况下有效地对15 m/s以内产生的多普勒频移进行估计与补偿.算法经过海试测试,在6节速度及加速减速过程中,系统均能够成功地完成载波同步.

  13. A simple method for retrieving significant wave height from Dopplerized X-band radar

    Science.gov (United States)

    Carrasco, Ruben; Streßer, Michael; Horstmann, Jochen

    2017-02-01

    Retrieving spectral wave parameters such as the peak wave direction and wave period from marine radar backscatter intensity is very well developed. However, the retrieval of significant wave height is difficult because the radar image spectrum (a backscatter intensity variance spectrum) has to be transferred to a wave spectrum (a surface elevation variance spectrum) using a modulation transfer function (MTF) which requires extensive calibration for each individual radar setup. In contrast to the backscatter intensity, the Doppler velocity measured by a coherent radar is induced by the radial velocity (or line-of-sight velocity) of the surface scattering and its periodic component is mainly the contribution of surface waves. Therefore, the variance of the Doppler velocity can be utilized to retrieve the significant wave height. Analyzing approximately 100 days of Doppler velocity measurements of a coherent-on-receive radar operating at X-band with vertical polarization in transmit and receive, a simple relation was derived and validated to retrieve significant wave heights. Comparison to wave measurements of a wave rider buoy as well as an acoustic wave and current profiler resulted in a root mean square error of 0.24 m with a bias of 0.08 m. Furthermore, the different sources of error are discussed and investigated.

  14. Pulse subtraction Doppler

    Science.gov (United States)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  15. Development of the doppler electron velocimeter: theory.

    Energy Technology Data Exchange (ETDEWEB)

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  16. Doppler cooling a microsphere

    CERN Document Server

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The scattering force is not limited by saturation, but can be controlled by the incident power. Cooling times on the order of seconds are calculated for a 20 micron diameter silica microsphere trapped within optical tweezers, with a Doppler temperature limit in the microKelvin regime.

  17. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  18. Optical Doppler shift with structured light.

    Science.gov (United States)

    Belmonte, Aniceto; Torres, Juan P

    2011-11-15

    When a light beam with a transverse spatially varying phase is considered for optical remote sensing, in addition to the usual longitudinal Doppler frequency shift of the returned signal induced by the motion of the scatter along the beam axis, a new transversal Doppler shift appears associated to the motion of the scatterer in the plane perpendicular to the beam axis. We discuss here how this new effect can be used to enhance the current capabilities of optical measurement systems, adding the capacity to detect more complex movements of scatters.

  19. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  20. The Doppler Pendulum Experiment

    Science.gov (United States)

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  1. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  2. Acoustic telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  3. Doppler electron velocimetry : notes on creating a practical tool.

    Energy Technology Data Exchange (ETDEWEB)

    Reu, Phillip L.; Milster, Tom (University of Arizona)

    2008-11-01

    The Doppler electron velocimeter (DEV) has been shown to be theoretically possible. This report attempts to answer the next logical question: Is it a practical instrument? The answer hinges upon whether enough electrons are available to create a time-varying Doppler current to be measured by a detector with enough sensitivity and bandwidth. The answer to both of these questions is a qualified yes. A target Doppler frequency of 1 MHz was set as a minimum rate of interest. At this target a theoretical beam current signal-to-noise ratio of 25-to-1 is shown for existing electron holography equipment. A detector is also demonstrated with a bandwidth of 1-MHz at a current of 10 pA. Additionally, a Linnik-type interferometer that would increase the available beam current is shown that would offer a more flexible arrangement for Doppler electron measurements over the traditional biprism.

  4. Information-Driven Blind Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks

    Science.gov (United States)

    2015-08-24

    Underwater Wireless Sensor Networks The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...reviewed journals: Final Report: Information-Driven Blind Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ...Report Title We investigated different methods for blind Doppler shift estimation and compensation in underwater acoustic wireless sensor networks

  5. Accurate determination of the Boltzmann constant by Doppler spectroscopy: Towards a new definition of the kelvin

    CERN Document Server

    Darquié, Benoît; Sow, Papa Lat Tabara; Lemarchand, Cyril; Triki, Meriam; Tokunaga, Sean; Bordé, Christian J; Chardonnet, Christian; Daussy, Christophe

    2015-01-01

    Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 $\\mu$m enables a determination of the Boltzmann constant k B. We report on our latest measurements. By fitting this lineshape to several models which include Dicke narrowing or speed-dependent collisional effects, we find that a determination of k B with an uncertainty of a few ppm is reachable. This is comparable to the best current uncertainty obtained using acoustic methods and would make a significant contribution to any new value of k B determined by the CODATA. Furthermore, having multiple independent measurements at these accuracies opens the possibility of defining the kelvin by fixing k B, an exciting prospect considering the upcoming redefinition of the International System of Units.

  6. Accurate determination of the Boltzmann constant by Doppler spectroscopy: Towards a new definition of the kelvin

    Directory of Open Access Journals (Sweden)

    Darquié Benoît

    2013-08-01

    Full Text Available Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 μm enables a determination of the Boltzmann constant kB. We report on our latest measurements. By fitting this lineshape to several models which include Dicke narrowing or speed-dependent collisional effects, we find that a determination of kB with an uncertainty of a few ppm is reachable. This is comparable to the best current uncertainty obtained using acoustic methods and would make a significant contribution to any new value of kB determined by the CODATA. Furthermore, having multiple independent measurements at these accuracies opens the possibility of defining the kelvin by fixing kB, an exciting prospect considering the upcoming redefinition of the International System of Units.

  7. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  8. Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    Science.gov (United States)

    van Haren, H.; Taupier-Letage, I.; Aguilar, J. A.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, G.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Schoeck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-08-01

    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.

  9. Evaluation of multiple-frequency, active and passive acoustics as surrogates for bedload transport

    Science.gov (United States)

    Wood, Molly S.; Fosness, Ryan L.; Pachman, Gregory; Lorang, Mark; Tonolla, Diego

    2015-01-01

    The use of multiple-frequency, active acoustics through deployment of acoustic Doppler current profilers (ADCPs) shows potential for estimating bedload in selected grain size categories. The U.S. Geological Survey (USGS), in cooperation with the University of Montana (UM), evaluated the use of multiple-frequency, active and passive acoustics as surrogates for bedload transport during a pilot study on the Kootenai River, Idaho, May 17-18, 2012. Four ADCPs with frequencies ranging from 600 to 2000 kHz were used to measure apparent moving bed velocities at 20 stations across the river in conjunction with physical bedload samples. Additionally, UM scientists measured the sound frequencies of moving particles with two hydrophones, considered passive acoustics, along longitudinal transects in the study reach. Some patterns emerged in the preliminary analysis which show promise for future studies. Statistically significant relations were successfully developed between apparent moving bed velocities measured by ADCPs with frequencies 1000 and 1200 kHz and bedload in 0.5 to 2.0 mm grain size categories. The 600 kHz ADCP seemed somewhat sensitive to the movement of gravel bedload in the size range 8.0 to 31.5 mm, but the relation was not statistically significant. The passive hydrophone surveys corroborated the sample results and could be used to map spatial variability in bedload transport and to select a measurement cross-section with moving bedload for active acoustic surveys and physical samples.

  10. Laser Doppler flowmetry imaging

    Science.gov (United States)

    Nilsson, Gert E.; Wardell, Karin

    1994-02-01

    A laser Doppler perfusion imager has been developed that makes possible mapping of tissue blood flow over surfaces with extensions up to about 12 cm X 12 cm. The He-Ne laser beam scans the tissue under study throughout 4096 measurement sites. A fraction of the backscattered and Doppler broadened light is detected by a photo diode positioned about 20 cm above the tissue surface. After processing, a signal that scales linearly with perfusion is stored in a computer and a color coded image of the spatial tissue perfusion is shown on a monitor. A full format scan is completed in about 4.5 minutes. Algorithms for calculating perfusion profiles and averages as well as substraction of one image from another, form an integral part of the system data analysis software. The perfusion images can also be exported to other software packages for further processing and analysis.

  11. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  12. Scanning laser Doppler vibrometry

    OpenAIRE

    2016-01-01

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from Polytec Inc. – was acquired and put to operation in October 2014, paid by a sub-donation of DKK 1,5 mill. of the total VILLUM CASMaT grant. Opening possibilities of measuring complicated vibration shapes...

  13. Acoustic imaging of the passage of turbidity currents and associated hydraulic jumps on underlying cyclic step bedforms. Squamish, BC

    Science.gov (United States)

    Hughes Clarke, J. E.

    2013-12-01

    Active channelized turbidity currents have been repeatedly imaged in 60m of water on the Squamish prodelta. Previously in 2011 and 2012, the prodelta has been repetitively surveyed on daily and hourly timescales and is thus known to exhibit trains of bedforms along the channel floors that resemble cyclic steps that migrate upslope intermittently. Beyond the channel mouths, clear turbidity current flows had previously been detected using a seabed mounted ADCP. In order to directly observe the passage of the flow in the channelized section of the prodelta, in June 2013 a vessel was moored using 4 anchors directly above one of the channels. The vessel operated two hull-mounted single beam sonars at 28 and 200 kHz and a multibeam sonar at 95 kHz, all imaging a near stationary point or swath within or across the channel. In addition a 1200 kHz ADCP was suspended 12m above the seabed and two 500 kHz imaging multibeams were suspended 10m above the channel floor. One of the suspended multibeams was oriented facing upslope examining a 150m range, 120 degree, plan view sector of the channel. The second suspended multibeam was oriented downward to derive a ~30m long along-track section over the length of one of the bedforms. A mechanically dipped CTD and optical backscatter probe was lower repeatedly directly into the active flows until it touched the seabed at about one minute periods. Over a period of 5 days, between 1 and 7 discrete flows per day were monitored passing by within one hour of low water. Their head velocities ranged from ~ 0.5 to 2.5m/s and their thicknesses were generally in the 3-5m range. Looking upstream in plan view, the lobate head of the approaching flows could be seen to be constricted to specific talwegs within the channel floor and rise up and over successive cyclic step bedforms. The higher velocity flows exhibit clear turbulent eddies on their upper surface. The duration of the high velocity component of the flow rarely lasted for more than a few

  14. Universal miniaturized signal evaluation for laser doppler anemometers; Universelle Miniatur-Signalauswertung fuer die Laser Doppler Anemometrie

    Energy Technology Data Exchange (ETDEWEB)

    Wnuck, J. von; Strunck, V.; Dopheide, D.

    1994-01-01

    A laser doppler anemometer (LDA) is a contactless optical sensor for flow rate measurement. Interference of two laser beams generates a measuring volume with interference lines in the point of intersection. A particle moving through the measuring volume with a current scatters light modulated wiith the doppler frequency, which is received by a detector. The frequency of the doppler-modulated light is proportional to the velocity of the particle. The report describes the technical details of an electronic evaluation system for laser doppler signals in the time range using programmable gate arrays by Xilinix. (orig.) [Deutsch] Ein Laser Doppler Anemometer (LDA) ist ein beruehrungsloser optischer Sensor, der Stroemungsgeschwindigkeiten misst. Die Ueberlagerung zweier Laserstrahlen erzeugt im Schnittpunkt ein Messvolumen mit Inferenzstreifen. Ein Teilchen, das sich mit einer Stroemung durch das Messvolumen bewegt, streut mit der Doppelfrequenz des Doppler moduliertes Licht, das von einem Detektor empfangen wird. Die Frequenz des Doppler-modulierten Lichts ist der Geschwindigkeit des Teilchens proportional. Hier wird die technische Realisierung einer Auswerteelektronik fuer Laser Doppler Signale im Zeitbereich mit programmierbaren Gate-Arrays von Xilinx beschrieben. (orig.)

  15. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, BAK; Long: -176.46025, Lat: 00.19005 (WGS84); Sensor Depth: 18.90m; Data Range: 20020201-20040122.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  16. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); MHI, KAU; Long: -159.51350, Lat: 22.21593 (WGS84); Sensor Depth: 15.24m; Data Range: 20060914-20070420.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  17. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); Guam, SRR; Long: 144.41784, Lat: 12.83819 (WGS84); Sensor Depth: 20.40m; Data Range: 20030929-20050908.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  18. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, BAK; Long: -176.46012, Lat: 00.18994 (WGS84); Sensor Depth: 18.80m; Data Range: 20060131-20080209.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  19. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); Guam, SRR; Long: 144.41778, Lat: 12.83819 (WGS84); Sensor Depth: 20.42m; Data Range: 20051007-20070121.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  20. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); NWHI, PHR; Long: -175.88112, Lat: 27.78204 (WGS84); Sensor Depth: 21.34m; Data Range: 20060922-20070805.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  1. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, BAK; Long: -176.46025, Lat: 00.19005 (WGS84); Sensor Depth: 18.90m; Data Range: 20040123-20060130.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  2. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, BAK; Long: -176.46012, Lat: 00.18994 (WGS84); Sensor Depth: 19.81m; Data Range: 20080210-20100130.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  3. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); NWHI, MID; Long: -177.42977, Lat: 28.23180 (WGS84); Sensor Depth: 29.26m; Data Range: 20060916-20080928.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  4. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, JAR; Long: -160.01553, Lat: -00.37917 (WGS84); Sensor Depth: 15.00m; Data Range: 20020311-20040325.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  5. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); PRIA, JAR; Long: -160.01547, Lat: -00.37915 (WGS84); Sensor Depth: 14.60m; Data Range: 20040327-20051016.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  6. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); NWHI, PHR; Long: -175.88110, Lat: 27.78209 (WGS84); Sensor Depth: 21.34m; Data Range: 20070806-20070912.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  7. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); AMSM, SWA; Long: -171.09092, Lat: -11.05848 (WGS84); Sensor Depth: 15.00m; Data Range: 20020227-20021207.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  8. CRED Ocean Data Platform (ODP), Acoustic Doppler Profiler (ADP); NWHI, NEC; Long: -164.71215, Lat: 23.56792 (WGS84); Sensor Depth: 24.90m; Data Range: 20050411-20060903.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Data Platform (ODP) is placed on the sea floor to measure water current profiles, waves, temperature and conductivity. The ODP consists of an upward...

  9. Acoustic Imaging of Combustion Noise

    Science.gov (United States)

    Ramohalli, K. N.; Seshan, P. K.

    1984-01-01

    Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.

  10. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  11. Mitigating Doppler shift effect in HF multitone data modem

    Science.gov (United States)

    Sonlu, Yasar

    1989-09-01

    Digital communications over High Frequency (HF) radio channels are getting important in recent years. Current HF requirements are for data transmission at rates 2.4 kbps or more to accommodate computer data links and digital secure voice. HF modems which were produced to meet these speeds are, serial modems and parallel modems. On the other hand, the HF sky-wave communication medium, the ionosphere, has some propagation problems such as multipath and Doppler shift. The effect of Doppler shift in a parallel modem which employs Differential Quadrature Phase Shift Keying (DQPSK) modulation is considered and a correction method to mitigate the Doppler Shift effect is introduced.

  12. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  13. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  14. Acoustic biosensors

    OpenAIRE

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...

  15. Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    CERN Document Server

    van Haren, H; Aguilar, J A; Albert, A; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J -J; Auer, R; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabof, M; Bouwhuis, M C; Brown, A; Brunner, J; Busto, J; Camarena, F; Capone, A; Carminati, G; Carr, J; Castel, D; Castorina, E; Cavasinni, V; Cecchini, S; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Cottini, N; Coyleh, P; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J -P; Escoffier, S; Fehr, F; Flaminio, V; Fratini, K; Fritsch, U; Fuda, J -L; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; de Jong, M; Kalantar-Nayestanakia, N; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kretschmer, W; Lahmann, R; Lamare, P; Lambard, G; Laros, G; Laschinsky, H; Lefèvre, D; Lelaizant, G; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Lucarelli, F; Lyons, K; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Maurin, G; Mazure, A; Melissas, M; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Ostasch, R; Palioselitis, G; Păvălaş, G E; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Picqu, C; Pillet, R; Popa, V; Pradier, T; Presani, E; Racca, C; Radu, A; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Russo, G V; Sales, F; Schoeck, F; Schuller, J -P; Shanidze, R; Simeone, F; Spurio, M; Steijger, J J M; Stolarczyk, Th; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2011-01-01

    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are ...

  16. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  17. Myocardial Strain and Strain Rate Imaging: Comparison between Doppler Derived Strain Imaging and Speckle Tracking Echocardiography

    Directory of Open Access Journals (Sweden)

    Anita Sadeghpour

    2013-05-01

    Full Text Available Regional myocardial function has been traditionally assessed by visual estimation (1. Echocardiographic strain imaging which is known as deformation imaging, has been emerged as a quantitative technique to accurately estimate regional myocardial function and contractility. Currently, strain imaging has been regarded as a research tool in the most echocardiography laboratories. However, in recent years, strain imaging has gain momentum in daily clinical practice (2. The following two techniques have dominated the research arena of echocardiography: (1 Doppler based tissue velocity measurements, frequently referred to tissue Doppler or myocardial Doppler, and (2 speckle tracking on the basis of displacement measurements (3. Over the past two decades, Tissue Doppler Imaging (TDI and Doppler –derived strain (S and strain rate (SR imaging were introduced to quantify regional myocardial function. However, Doppler–derived strain variables faced criticisms, with regard to the angle dependency, noise interference, and substantial intraobserver and interobserver variability. The angle dependency is the major weakness of Doppler based methodology; however, it has the advantage of online measurements of velocities and time intervals with excellent temporal resolution, which is essential for the assessment of ischemia (4. Speckle-tracking echocardiography (STE or Non Doppler 2D strain echocardiography is a relatively new, largely angle-independent technique that analyzes motion by tracking natural acoustic reflections and interference patterns within an ultrasonic window. The image-processing algorithm tracks elements with approximately 20 to 40 pixels containing stable patterns and are described as ‘‘speckles’’ or ‘‘fingerprints’’. The speckles seen in grayscale B-mode (2D images are tracked consecutively frame to frame (5, 6. Assessment of 2D strain by STE is a semiautomatic method that requires definition of the myocardium

  18. Doppler sensitivity and its effect on transatlantic TWSTFT links

    Science.gov (United States)

    Zhang, Shengkang; Parker, Thomas; Zhang, Victor

    2017-02-01

    Some investigations have concluded that the diurnal pattern in the time comparison results of present two way satellite time and frequency transfer (TWSTFT) links may come mainly from Doppler dependent errors in the time of arrival (TOA) measurements made by the receivers of the TWSTFT modems. In this paper, several experiments were carried out to test if there is a Doppler dependent error in the ‘delay’ measurements of the receivers currently used. By simulating quantitative Doppler effects in the time transfer signal both on the carrier and the code, a type of Doppler sensitivity on the code was observed in the receivers, which has about  -0.49 ns offset in ‘delay’ measurement for a 1  ×  10-9 fractional Doppler shift. This sensitivity is basically the same for modems with different serial numbers from the same manufacture. We calculated this Doppler caused diurnal pattern in the time comparison results of the transatlantic TWSTFT link between NIST and PTB and found that it is very small and negligible, because the Doppler dependent error is almost identical in the NIST and PTB measurements and therefore it is nearly canceled in the TWSTFT difference. Commercial products are identified for technical completeness only, and no endorsement by NIST is implied.

  19. Comparisons between PW Doppler system and enhanced FM Doppler system

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P. C.

    1995-01-01

    This paper presents a new implementation of an echo-ranging FM Doppler system with improved performance, relative to the FM Doppler system reported previously. The use of long sweeps provides a significant reduction in peak to average power ratio compared to pulsed wave (PW) emission. A PW Doppler...... system exploits the direct relationship between arrival time of the received signal and range from the transducer. In the FM Doppler systems, a similar relationship exists in the spectral domain of the demodulated received signals, so that range is represented by frequency. Thus, a shift in location...... of moving scatterers between consecutive emissions corresponds to a frequency shift in the spectral signature. The improvement relative to the earlier version of the FM Doppler system is attained by utilizing cross-correlation of real spectra rather than of magnitude spectra for assessing flow velocity...

  20. ANL Doppler flowmeter

    Science.gov (United States)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  1. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  2. Validation of a new blood-mimicking fluid for use in Doppler flow test objects

    NARCIS (Netherlands)

    Ramnarine, KV; Nassiri, DK; Hoskins, PR; Lubbers, J

    1998-01-01

    A blood-mimicking fluid (BMF) suitable for use in Doppler flow test objects is described and characterised, The BMF consists of 5 mu m diameter nylon scattering particles suspended in a fluid base of water, glycerol, dextran and surfactant, The acoustical properties of various BMF preparations were

  3. Laser Doppler Imaging of Microflow

    CERN Document Server

    Gross, Michel; Leng, Jacques

    2013-01-01

    We report a pilot study with a wide-field laser Doppler detection scheme used to perform laser Doppler anemometry and imaging of particle seeded microflow. The optical field carrying the local scatterers (particles) dynamic state, as a consequence of momentum transfer at each scattering event, is analyzed in the temporal frequencies domain. The setup is based on heterodyne digital holography, which is used to map the scattered field in the object plane at a tunable frequency with a multipixel detector. We show that wide-field heterodyne laser Doppler imaging can be used for quantitative microflow diagnosis; in the presented study, maps of the first-order moment of the Doppler frequency shift are used as a quantitative and directional estimator of the Doppler signature of particles velocity.

  4. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  5. Acoustic and optical methods to infer water transparency at Time Series Station Spiekeroog, Wadden Sea

    Science.gov (United States)

    Schulz, Anne-Christin; Badewien, Thomas H.; Garaba, Shungudzemwoyo P.; Zielinski, Oliver

    2016-11-01

    Water transparency is a primary indicator of optical water quality that is driven by suspended particulate and dissolved material. A data set from the operational Time Series Station Spiekeroog located at a tidal inlet of the Wadden Sea was used to perform (i) an inter-comparison of observations related to water transparency, (ii) correlation tests among these measured parameters, and (iii) to explore the utility of both acoustic and optical tools in monitoring water transparency. An Acoustic Doppler Current Profiler was used to derive the backscatter signal in the water column. Optical observations were collected using above-water hyperspectral radiometers and a submerged turbidity metre. Bio-fouling on the turbidity sensors optical windows resulted in measurement drift and abnormal values during quality control steps. We observed significant correlations between turbidity collected by the submerged metre and that derived from above-water radiometer observations. Turbidity from these sensors was also associated with the backscatter signal derived from the acoustic measurements. These findings suggest that both optical and acoustic measurements can be reasonable proxies of water transparency with the potential to mitigate gaps and increase data quality in long-time observation of marine environments.

  6. Cooperative OFDM underwater acoustic communications

    CERN Document Server

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  7. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  8. Characterization and Simulation of an Acoustic Source Moving through an Oceanic Waveguide

    Science.gov (United States)

    1994-09-01

    algorithms, classical spectrum estimation methods are employed [1, 2] to estimate the auto- and cross-spectra of data received at the array of...Acoust. Soc. Am., 65(3):675-681 (March). [4] Rao, Kodali V., Thomas M. Michaud, and Henrik Schmidt. 1991. "Doppler shifts in underwater acoustics using

  9. Frequency steerable acoustic transducers

    Science.gov (United States)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  10. Observation of the inverse Doppler effect in negative-index materials at optical frequencies

    Science.gov (United States)

    Chen, Jiabi; Wang, Yan; Jia, Baohua; Geng, Tao; Li, Xiangping; Feng, Lie; Qian, Wei; Liang, Bingming; Zhang, Xuanxiong; Gu, Min; Zhuang, Songlin

    2011-04-01

    The Doppler effect is a fundamental frequency shift phenomenon that occurs whenever a wave source and an observer are moving with respect to one another. It has well-established applications in astrophotonics, biological diagnostics, weather and aircraft radar systems, velocimetry and vibrometry. The counterintuitive inverse Doppler effect was theoretically predicted in 1968 by Veselago in negative-index materials. However, because of the tremendous challenges of frequency shift measurements inside such materials, most investigations of the inverse Doppler effect have been limited to theoretical predictions and numerical simulations. Indirect experimental measurements have been conducted only in nonlinear transmission lines at ~1-2 GHz (ref. 8) and in acoustic media at 1-3 kHz (ref. 9). Here, we report the first experimental observation of the inverse Doppler shift at an optical frequency (λ = 10.6 µm) by refracting a laser beam in a photonic-crystal prism that has the properties of a negative-index material.

  11. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  12. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  13. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  14. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  15. An ideal blood mimicking fluid for doppler ultrasound phantoms.

    Science.gov (United States)

    Samavat, H; Evans, J A

    2006-10-01

    In order to investigate the problems of detecting tumours by ultrasound it is very important to have a portable Doppler flow test object to use as a standardising tool. The flow Doppler test objects are intended to mimic the flow in human arteries. To make the test meaningful, the acoustic properties of the main test object components (tissue and blood mimic) should match closely the properties of the corresponding human tissues, while the tube should ideally have little influence. The blood mimic should also represent the haemodynamic properties of blood. An acceptable flow test object has been designed to closely mimic blood flow in arteries. We have evaluated the properties of three blood mimicking fluid: two have been described recently in the literature, the third is a local design. One of these has emerged as being particularly well matched to the necessary characteristics for in-vitro work.

  16. An ideal blood mimicking fluid for doppler ultrasound phantoms

    Directory of Open Access Journals (Sweden)

    Samavat H

    2006-01-01

    Full Text Available In order to investigate the problems of detecting tumours by ultrasound it is very important to have a portable Doppler flow test object to use as a standardising tool. The flow Doppler test objects are intended to mimic the flow in human arteries. To make the test meaningful, the acoustic properties of the main test object components (tissue and blood mimic should match closely the properties of the corresponding human tissues, while the tube should ideally have little influence. The blood mimic should also represent the haemodynamic properties of blood. An acceptable flow test object has been designed to closely mimic blood flow in arteries. We have evaluated the properties of three blood mimicking fluid: two have been described recently in the literature, the third is a local design. One of these has emerged as being particularly well matched to the necessary characteristics for in-vitro work.

  17. How to study the Doppler effect with Audacity software

    Science.gov (United States)

    Adriano Dias, Marco; Simeão Carvalho, Paulo; Rodrigues Ventura, Daniel

    2016-05-01

    The Doppler effect is one of the recurring themes in college and high school classes. In order to contextualize the topic and engage the students in their own learning process, we propose a simple and easily accessible activity, i.e. the analysis of the videos available on the internet by the students. The sound of the engine of the vehicle passing by the camera is recorded on the video; it is then analyzed with the free software Audacity by measuring the frequency of the sound during approach and recede of the vehicle from the observer. The speed of the vehicle is determined due to the application of Doppler effect equations for acoustic waves.

  18. Combined perfusion and doppler imaging using plane-wave nonlinear detection and microbubble contrast agents.

    Science.gov (United States)

    Tremblay-Darveau, Charles; Williams, Ross; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2014-12-01

    Plane-wave imaging offers image acquisition rates at the pulse repetition frequency, effectively increasing the imaging frame rates by up to two orders of magnitude over conventional line-by-line imaging. This form of acquisition can be used to achieve very long ensemble lengths in nonlinear modes such as pulse inversion Doppler, which enables new imaging trade-offs that were previously unattainable. We first demonstrate in this paper that the coherence of microbubble signals under repeated exposure to acoustic pulses of low mechanical index can be as high as 204 ± 5 pulses, which is long enough to allow an accurate power Doppler measurement. We then show that external factors, such as tissue acceleration, restrict the detection of perfusion at the capillary level with linear Doppler, even if long Doppler ensembles are considered. Hence, perfusion at the capillary level can only be detected with ultrasound through combined microbubbles and Doppler imaging. Finally, plane-wave contrast-enhanced power and color Doppler are performed on a rabbit kidney in vivo as a proof of principle. We establish that long pulse-inversion Doppler sequences and conventional wall-filters can create an image that simultaneously resolves both the vascular morphology of veins and arteries, and perfusion at the capillary level with frame rates above 100 Hz.

  19. Doppler characteristics of sea clutter.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  20. Doppler visibility of coherent random noise radar systems

    Science.gov (United States)

    Li, Zhixi; Narayanan, Ram M.

    2005-05-01

    Random noise radar has recently been used in a variety of imaging and surveillance applications. These systems can be made phase coherent using the technique of heterodyne correlation. Phase coherence has been exploited to measure Doppler and thereby the velocity of moving targets. The Doppler visibility, i.e., the ability to extract Doppler information over the inherent clutter spectra, is constrained by system parameters, especially the phase noise generated by microwave components. Our paper proposes a new phase noise model for the heterodyne mixer as applicable for ultrawideband (UWB) random noise radar and for the local oscillator in the time domain. The Doppler spectra are simulated by including phase noise contamination effects and compared to our previous experimental results. A Genetic Algorithm (GA) optimization routine is applied to synthesize the effects of a variety of parameter combinations to derive a suitable empirical formula for estimating the Doppler visibility in dB. According to the phase noise analysis and the simulation results, the Doppler visibility of UWB random noise radar depends primarily on the following parameters: (a) the local oscillator (LO) drive level of the receiver heterodyne mixer; (b) the saturation current in the receiver heterodyne mixer; (c) the bandwidth of the transmit noise source, and; (d) the target velocity. Other parameters such as the carrier frequency of the receiver LO and the loaded quality factor of the LO have a small effect over the range of applicability of the model and are therefore neglected in the model formulation. The Doppler visibility curves generated from this formula match the simulation results very well over the applicable parameter range within 1 dB. Our model may therefore be used to quickly estimate the Doppler visibility of random noise radars for trade-off analysis.

  1. Novel instantaneous laser Doppler velocimeter.

    Science.gov (United States)

    Avidor, J M

    1974-02-01

    A laser Doppler velocimeter capable of directly measuring instantaneous velocities is described. The new LDV uses a novel detection technique based on the utilization of a static slightly defocused spherical Fabry-Perot interferometer used in conjunction with a special mask for the detection of instantaneous Doppler frequency shifts. The essential characteristics of this LDV are discussed, and such a system recently developed is described. Results of turbulent flow measurements show good agreement with data obtained using hot wire anemometry.

  2. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    Science.gov (United States)

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  3. Photospheric high-frequency acoustic power excess in sunspot umbra: signature of magneto-acoustic modes

    Directory of Open Access Journals (Sweden)

    S. Zharkov

    2013-08-01

    Full Text Available We present observational evidence for the presence of MHD (magnetohydrodynamic waves in the solar photosphere deduced from SOHO/MDI (Solar and Heliospheric Observatory/Michelson Doppler Imager Dopplergram velocity observations. The magneto-acoustic perturbations are observed as acoustic power enhancement in the sunspot umbra at high-frequency bands in the velocity component perpendicular to the magnetic field. We use numerical modelling of wave propagation through localised non-uniform magnetic field concentration along with the same filtering procedure as applied to the observations to identify the observed waves. Guided by the results of the numerical simulations we classify the observed oscillations as magneto-acoustic waves excited by the trapped sub-photospheric acoustic waves. We consider the potential application of the presented method as a diagnostic tool for magnetohelioseismology.

  4. Acoustic biosensors

    Science.gov (United States)

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  5. Droplets Acoustics

    CERN Document Server

    Dahan, Raphael; Carmon, Tal

    2015-01-01

    Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.

  6. Acoustic Resonance between Ground and Thermosphere

    Directory of Open Access Journals (Sweden)

    M Matsumura

    2009-04-01

    Full Text Available Ultra-low frequency acoustic waves called "acoustic gravity waves" or "infrasounds" are theoretically expected to resonate between the ground and the thermosphere. This resonance is a very important phenomenon causing the coupling of the solid Earth, neutral atmosphere, and ionospheric plasma. This acoustic resonance, however, has not been confirmed by direct observations. In this study, atmospheric perturbations on the ground and ionospheric disturbances were observed and compared with each other to confirm the existence of resonance. Atmospheric perturbations were observed with a barometer, and ionospheric disturbances were observed using the HF Doppler method. An end point of resonance is in the ionosphere, where conductivity is high and the dynamo effect occurs. Thus, geomagnetic observation is also useful, so the geomagnetic data were compared with other data. Power spectral density was calculated and averaged for each month. Peaks appeared at the theoretically expected resonance frequencies in the pressure and HF Doppler data. The frequencies of the peaks varied with the seasons. This is probably because the vertical temperature profile of the atmosphere varies with the seasons, as does the reflection height of infrasounds. These results indicate that acoustic resonance occurs frequently.

  7. Hull-Mounted (shipboard) Acoustic Doppler Current Profiler (ADCP) data collected during shipboard surveys during 2010 and 2011 in Vieques Sound, Virgin Passage and surrounding regions (NODC Accession 0088063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Teledyne RD Instruments Ocean Surveyor 150kHz and Workhorse 300kHz ADCPs were utilized during cruises conducted between March 2010 and April 2011 in Vieques Sound,...

  8. Acoustic doppler current meter data collected in support of the Minerals Management Service-supported Deep Water Program in the the Gulf of Mexico, 1999 - 2003 (NODC Accession 0002196)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A research program has been initiated by the Minerals Management Service (Contract No. 1435-01-99-CT-30991) to gain better knowledge of the benthic communities of...

  9. General principles of carotid Doppler ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Whal [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2014-03-15

    Carotid Doppler ultrasonography is a popular tool for evaluating atherosclerosis of the carotid artery. Its two-dimensional gray scale can be used for measuring the intima-media thickness, which is very good biomarker for atherosclerosis and can aid in plaque characterization. The plaque morphology is related to the risk of stroke. The ulceration of plaque is also known as one of the strong predictors of future embolic event risk. Color Doppler ultrasonography and pulse Doppler ultrasonography have been used for detecting carotid artery stenosis. Doppler ultrasonography has unique physical properties. The operator should be familiar with the physics and other parameters of Doppler ultrasonography to perform optimal Doppler ultrasonography studies.

  10. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  11. Venstre ventrikels diastoliske funktion vurderet med transtorakal Doppler-ekkokardiografi

    DEFF Research Database (Denmark)

    Poulsen, S H; Jensen, S E; Gøtzsche, O;

    1996-01-01

    Left ventricular diastolic dysfunction is currently recognized in patients with different heart diseases. Three abnormal filling patterns of the left ventricle detected by pulsed-Doppler echocardiography are observed in patients with heart disease. Each filling pattern is characterised by differe...

  12. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler.

    Science.gov (United States)

    Errico, Claudia; Osmanski, Bruno-Félix; Pezet, Sophie; Couture, Olivier; Lenkei, Zsolt; Tanter, Mickael

    2016-01-01

    Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100μm, 1ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500Hz compounded sequence with three tilted plane waves, PRF=1500Hz with a 128 element 15MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ=0.7±0.1, p=0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain.

  13. The Tsushima Warm Current from a High Resolution Ocean Prediction Model, HYCOM

    Directory of Open Access Journals (Sweden)

    Seongbong Seo

    2013-06-01

    Full Text Available This study investigates the characteristic of the Tsushima Warm Current from an assimilated high resolution global ocean prediction model, 1/12o Global HYbrid Coordiate Ocean Model (HYCOM. The model results were verified through a comparison with current measurements obtained by acoustic Doppler current profiler (ADCP mounted on the passenger ferryboat between Busan, Korea, and Hakata, Japan. The annual mean transport of the Tsushima Warm Current was 2.56 Sverdrup (Sv (1 Sv = 106 m3s−1, which is similar to those from previous studies (Takikawa et al. 1999; Teague et al. 2002. The volume transport time series of the Tsushima Warm Current from HYCOM correlates to a high degree with that from the ADCP observation (the correlation coefficient between the two is 0.82. The spatiotemporal structures of the currents as well as temperature and salinity from HYCOM are comparable to the observed ones.

  14. Inverse Doppler Effects in Flute

    CERN Document Server

    Zhao, Xiao P; Liu, Song; Shen, Fang L; Li, Lin L; Luo, Chun R

    2015-01-01

    Here we report the observation of the inverse Doppler effects in a flute. It is experimentally verified that, when there is a relative movement between the source and the observer, the inverse Doppler effect could be detected for all seven pitches of a musical scale produced by a flute. Higher tone is associated with a greater shift in frequency. The effect of the inverse frequency shift may provide new insights into why the flute, with its euphonious tone, has been popular for thousands of years in Asia and Europe.

  15. Doppler peaks from active perturbations

    CERN Document Server

    Magueijo, J; Coulson, D; Ferreira, P; Magueijo, Joao; Albrecht, Andreas; Coulson, David; Ferreira, Pedro

    1995-01-01

    We examine how the qualitative structure of the Doppler peaks in the angular power spectrum of the cosmic microwave anisotropy depends on the fundamental nature of the perturbations which produced them. The formalism of Hu and Sugiyama is extended to treat models with cosmic defects. We discuss how perturbations can be ``active'' or ``passive'' and ``incoherent'' or ``coherent'', and show how causality and scale invariance play rather different roles in these various cases. We find that the existence of secondary Doppler peaks and the rough placing of the primary peak unambiguously reflect these basic properties.

  16. Aerial ultrasonic micro Doppler sonar detection range in outdoor environments.

    Science.gov (United States)

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets. Sonar performance is shown to rapidly decay as the sensor is moved closer to the ground due to increasing surface backscatter levels.

  17. Corrections to sodar Doppler winds due to wind drift

    Directory of Open Access Journals (Sweden)

    Stuart Bradley

    2015-11-01

    Full Text Available Refraction of the acoustic beam from a sodar, or translation of the beam due to the wind (known as wind drift, both affect the scattering angle and hence the Doppler shift of the return signal. Wind drift has been the subject of a number of previous studies, which have shown that errors increase with wind speed, giving about 6 % error in the estimated wind speed when the actual wind speed is 7 ms−1. Since previous studies have not treated the general case of finite angular beam width, a new analytic treatment is given here for monostatic sodars. Surprisingly, it is found that the Doppler error contributed by the transmitted beam is exactly compensated by the Doppler error contributed by the received beam, if the two beam widths are the same. If the transmitter beam width is not equal to the receiver beam width, then either over-estimation or under-estimation of wind speed results, depending on which beam is wider. This has implications for bi-static sodars, in which it is not possible to match beam widths. Contrary to this new theory, examples of field comparisons with mast instrumentation show a non-linear relationship between wind speeds measured by a sodar and wind speeds measured by mast-mounted instruments. It is proposed that this is due to the acoustic baffle clipping the received beam and changing its width, since the received beam must return at lower elevations from scattering downwind. This is shown to be feasible for a Metek sodar. The sign and magnitude of the observed non-linear dependence of estimated wind speed on actual wind speed are consistent with this proposed mechanism.

  18. Doppler Ultrasound: What Is It Used for?

    Science.gov (United States)

    ... in your neck (carotid artery stenosis) A Doppler ultrasound can estimate how fast blood flows by measuring the rate of change in its pitch (frequency). During a Doppler ultrasound, a technician trained in ultrasound imaging (sonographer) presses ...

  19. Doppler tomography in fusion plasmas and astrophysics

    CERN Document Server

    Salewski, Mirko; Heidbrink, Bill; Jacobsen, Asger Schou; Korsholm, Soren Bang; Leipold, Frank; Madsen, Jens; Moseev, Dmitry; Nielsen, Stefan Kragh; Rasmussen, Jesper; Stagner, Luke; Steeghs, Danny; Stejner, Morten; Tardini, Giovani; Weiland, Markus

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined plasma, the D-alpha-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures, and flow patterns. Fusion plasma Doppler tomography has lead to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography, and what ...

  20. It's all in the past: Deconstructing the temporal Doppler effect.

    Science.gov (United States)

    Aksentijevic, Aleksandar; Treider, John Melvin Gudnyson

    2016-10-01

    A recent study reported an asymmetry between subjective estimates of future and past distances with passive estimation and virtual movement. The temporal Doppler effect refers to the contraction of future distance judgments relative to past ones. We aimed to replicate the effect using real and imagined motion in both directions as well as different temporal perspectives. To avoid the problem of subjective anchoring, we compared real- and imagined-, ego- and time-moving conditions to a control group. Generally, Doppler-like distortion was only observed in conditions in which the distance between the participant and a frontal target increased. No effects of temporal perspective were observed. The "past-directed temporal Doppler effect" presents a challenge for the current theories of temporal cognition by demonstrating absence of psychological movement into the future. The effect could open new avenues in memory research and serve as a starting point in a systematic examination of how the humans construct future.

  1. The Acoustic Properties of Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability

    Directory of Open Access Journals (Sweden)

    Massimo Guerrero

    2016-01-01

    Full Text Available The use of echo-levels from Acoustic Doppler Current Profiler (ADCP recordings has become more and more common for estimating suspended bed-material and wash loads in rivers over the last decade. Empirical, semi-empirical and physical-based acoustic methods have been applied in different case studies, which provided relationships between scattering particles features derived from samples (i.e., concentration and grain size and corresponding backscattering strength and sound attenuation. These methods entail different assumptions regarding sediment heterogeneity in the ensonified volume (e.g., particle size distribution (PSD and spatial concentration gradient. Our work was to compare acoustic backscatter and attenuation properties of suspended sediments, sampled in the rivers Parana and Danube that represented rather different hydro-sedimentological conditions during the surveys. The Parana represents a large sandy river, characterized through a huge watershed and the typical bimodal PSD of sediment in suspension, while the Danube represents in the investigated reach an exposed sand-gravel bed and clay-silt particles transported in the water column in suspension. Sand and clay-silt concentrations clearly dominate the analyzed backscattering strength in the rivers Parana and Danube, respectively, with an effect of PSD level of sorting in the latter case. This comparison clarifies the extent of assumptions made, eventually advising on the actual possibility of applying certain ADCP methods, depending on the expected concentration gradients and PSD of suspended sediment to be investigated.

  2. A combined use of acoustic and optical devices to investigate suspended sediment in rivers

    Science.gov (United States)

    Guerrero, Massimo; Rüther, Nils; Haun, Stefan; Baranya, Sandor

    2017-04-01

    The use of acoustic and optic devices has become more and more common for estimating suspended sediment loads in rivers. The echo intensity levels (EIL) recorded by means of an Acoustic Doppler Current Profiler (ADCP) have been applied in different methods, which provided relationships between scattering particles features derived from samples (i.e., concentration and grain size) and corresponding backscattering strength and sound attenuation. At the same time, the laser diffraction was applied by an in-stream sampler (LISST-SL) to measure suspended sediment concentration and the corresponding particle size distribution (PSD). These two techniques exhibited different limitations in terms of the measured range of concentration, sensitivity to a certain spectrum of particle sizes, and instruments deploy feasibility especially in large rivers, in a way that the use of sampled PSD by LISST-SL to validate ADCP methods may not be trivial. The aim of this study was to combine the vertical profiling of EIL by an ADCP with results from LISST-SL, eventually demonstrating the possibility of using moving ADCP measurements to detect different suspended matters along a Danube River section characterized by a small tributary junction. At the same time, this work elucidates optical to acoustic method deviations that hinders an actual validation of ADCP methods based on LISST-SL rather than with physical samplings.

  3. Wayside bearing fault diagnosis based on a data-driven Doppler effect eliminator and transient model analysis.

    Science.gov (United States)

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-05-05

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects.

  4. Wayside Bearing Fault Diagnosis Based on a Data-Driven Doppler Effect Eliminator and Transient Model Analysis

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2014-05-01

    Full Text Available A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects.

  5. Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord

    Science.gov (United States)

    Petrusevich, Vladislav; Dmitrenko, Igor; Kirillov, Sergey; Rysgaard, Søren; Falk-Petersen, Stig; Barber, David; Ehn, Jens

    2016-04-01

    Six and a half month time series of acoustic backscatter and velocity from three ice-tethered Acoustic Doppler Current Profilers deployed in the Young Sound fjord in Northeast Greenland were used to analyse the acoustic signal. During period of civil polar night below the land-fast ice, the acoustic data suggest a systematic diel vertical migration (DVM) of backscatters likely comprised of zooplankton. The acoustic backscatter and vertical velocity data were also arranged in a form of actograms. Results show that the acoustic signal pattern typical to DVM in Young Sound persists throughout the entire winter including the period of civil polar night. However, polynya-enhanced estuarine-like cell circulation that occurred during winter disrupted the DVM signal favouring zooplankton to occupy the near-surface water layer. This suggests that zooplankton avoided spending additional energy crossing the interface with a relatively strong velocity gradient comprised by fjord inflow in the intermediate layer and outflow in the subsurface layer. Instead the zooplankton tended to favour remaining in the upper 40 m layer where also the relatively warmer water temperatures associated with upward heat flux during enhanced estuarine-like circulation could be energetically favourable. Furthermore, our data show moonlight disruption of DVM in the subsurface layer and weaker intensity of vertical migration beneath snow covered land-fast ice during polar night. Using existing models for lunar illuminance and light transmission through sea ice and snow cover we estimated under ice illuminance and compared it with known light sensitivity for Arctic zooplankton species.

  6. Validation of a new blood-mimicking fluid for use in Doppler flow test objects.

    Science.gov (United States)

    Ramnarine, K V; Nassiri, D K; Hoskins, P R; Lubbers, J

    1998-03-01

    A blood-mimicking fluid (BMF) suitable for use in Doppler flow test objects is described and characterised. The BMF consists of 5 microns diameter nylon scattering particles suspended in a fluid base of water, glycerol, dextran and surfactant. The acoustical properties of various BMF preparations were measured under uniform flow to study the effects of particle size, particle concentration, surfactant concentration, flow rate and stability. The physical properties, (density, viscosity and particle size), and acoustical properties (velocity, backscatter and attenuation) of the BMF are within draft International Electrotechnical Commission requirements.

  7. The Doppler Effect--A New Approach

    Science.gov (United States)

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  8. Micro-Doppler Analysis of Small UAVs

    NARCIS (Netherlands)

    Wit, J.J.M. de; Harmanny, R.I.A.; Prémel Cabic, G.

    2012-01-01

    Coherent radar measures micro-Doppler properties of moving objects. The micro-Doppler signature depends on parts of an object moving and rotating in addition to the main body motion (e.g. rotor blades) and is therefore characteristic for the type of object. In this study, the micro-Doppler signature

  9. Speckles in laser doppler perfusion imaging

    NARCIS (Netherlands)

    Rajan, Vinayakrishnan

    2007-01-01

    Laser Doppler Flowmetry (LDF) is a noninvasive diagnostic method to measure blood flow in tissue [1]. The technique is based on measuring the Doppler shift induced by moving red blood cells to the illuminating coherent light. A laser Doppler instrument often gives output signals related to the flux,

  10. Velocity-aligned Doppler spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Koplitz, B.; Wittig, C.

    1989-03-01

    The technique of velocity-aligned Doppler spectrosocopy (VADS) is presented and discussed. For photolysis/probe experiments with pulsed initiation, VADS can yield Doppler profiles for nascent photofragments that allow detailed center-of-mass (c.m.) kinetic energy distributions to be extracted. When compared with traditional forms of Doppler spectroscopy, the improvement in kinetic energy resolution is dramatic. Changes in the measured profiles are a consequence of spatial discrimination (i.e., focused and overlapping photolysis and probe beams) and delayed observation. These factors result in the selective detection of species whose velocities are aligned with the wave vector of the probe radiation k/sub pr/, thus revealing the speed distribution along k/sub pr/ rather than the distribution of nascent velocity components projected upon this direction. Mathematical details of the procedure used to model VADS are given, and experimental illustrations for HI, H/sub 2/S, and NH/sub 3/ photodissociation are presented. In these examples, pulsed photodissociation produces H atoms that are detected by sequential two-photon, two-frequency ionization via Lyman-..cap alpha.. with a pulsed laser (121.6+364.7 nm), and measuring the Lyman-..cap alpha.. Doppler profile as a function of probe delay reveals both internal and c.m. kinetic energy distributions for the photofragments. Strengths and weaknesses of VADS as a tool for investigating photofragmentation phenomena are also discussed.

  11. Photoacoustics meets ultrasound: micro-Doppler photoacoustic effect and detection by ultrasound

    CERN Document Server

    Gao, Fei; Zheng, Yuanjin; Ohl, Claus-Dieter

    2014-01-01

    In recent years, photoacoustics has attracted intensive research for both anatomical and functional biomedical imaging. However, the physical interaction between photoacoustic generated endogenous waves and an exogenous ultrasound wave is a largely unexplored area. Here, we report the initial results about the interaction of photoacoustic and external ultrasound waves leading to a micro-Doppler photoacoustic (mDPA) effect, which is experimentally observed and consistently modelled. It is based on a simultaneous excitation on the target with a pulsed laser and continuous wave (CW) ultrasound. The thermoelastically induced expansion will modulate the CW ultrasound and leads to transient Doppler frequency shift. The reported mDPA effect can be described as frequency modulation of the intense CW ultrasound carrier through photoacoustic vibrations. This technique may open the possibility to sensitively detect the photoacoustic vibration in deep optically and acoustically scattering medium, avoiding acoustic distor...

  12. Acoustic dose and acoustic dose-rate.

    Science.gov (United States)

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  13. Widefield laser doppler velocimeter: development and theory.

    Energy Technology Data Exchange (ETDEWEB)

    Hansche, Bruce David; Reu, Phillip L.; Massad, Jordan Elias

    2007-03-01

    The widefield laser Doppler velocimeter is a new measurement technique that significantly expands the functionality of a traditional scanning system. This new technique allows full-field velocity measurements without scanning, a drawback of traditional measurement techniques. This is particularly important for tests in which the sample is destroyed or the motion of the sample is non-repetitive. The goal of creating ''velocity movies'' was accomplished during the research, and this report describes the current functionality and operation of the system. The mathematical underpinnings and system setup are thoroughly described. Two prototype experiments are then presented to show the practical use of the current system. Details of the corresponding hardware used to collect the data and the associated software to analyze the data are presented.

  14. An upper ocean current jet and internal waves in a Gulf Stream warm core ring

    Science.gov (United States)

    Joyce, T. M.; Stalcup, M. C.

    1984-01-01

    On June 22, 1982, the R/V Endeavor, while participating in a multi-ship study of a warm core ring 82B, encountered a strong front in the core of the ring. The vessel was headed on a radial section outward from ring center while a CTD was repeatedly raised and lowered between 10 and 300 m. Current profiles in the upper 100 m were obtained continuously with a Doppler acoustic profiling system. Above the shallow 45 m seasonal thermocline, a current jet of 4 km width was encountered having a central core of relatively light water and a maximum current of 1.1 m/s. This jet was both highly nonlinear and totally unexpected. A high frequency packet of directional internal waves was acoustically observed in the seasonal thermocline at the outer edge of the jet. Vertical velocities were large enough (6 cm/s) as to be directly observable in the Doppler returns. The waves were propagating from the northeast, parallel to the ship track, and orthogonal to the jet toward the center of the warm core ring. While a nonlinear, centrifugal term was required for the force balance of the jet, the high-frequency internal wave packet could be explained with linear, gravest-mode wave dynamics.

  15. A Doppler Transient Model Based on the Laplace Wavelet and Spectrum Correlation Assessment for Locomotive Bearing Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Changqing Shen

    2013-11-01

    Full Text Available The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully.

  16. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Science.gov (United States)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  17. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  18. Doppler indicates of uterine artery Doppler velocimetry by placental location

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sung Shik; Park, Yong Won; Cho, Jae Sung; Kwon, Hye Kyeung; Kim, Jae Wook [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2001-09-15

    Our purpose was to investigate the relation between the vascular resistance of uterine artery and placental location and to establish the reference value of Doppler index in uterine artery by placental location. Placental location and flow velocity waveforms of both uterine arteries in 7,016 pregnant women after 18 weeks gestation were examined using color Doppler ultrasonography. Placental location was classified as central and lateral placental and the uterine artery with lateral placental were divided into ipsilateral uterine artery (same side of the placental) and contralateral uterine artery (opposite side of the placenta). The uterine artery with central placental was classified as the central uterine artery. Systolic-Diastolic ratio (S/D ratio) of uterine arteries by gestational weeks were calculated and compared with the placental location and perinatal outcomes. In the lateral placental group, the S/D ratio of the contralateral uterine artery was higher than the ipsilateral one (mean=2.08+0.34 vs 1.89+0.34, p=0.0001). S/D ratio of the uterine artery decreased during second trimester and the ratio after 27 weeks was a tendency to have a constant values(ipsilateral: 1.85+ 0.34, central : 1.96+ 0.40, contralateral: 2.01+0.54). S/D ratio of the uterine artery was affected by placental location. So when we evaluate Doppler spectrum of uterine artery, placental location should be considered and we established the reference value of Doppler index of uterine artery by placental location.

  19. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    Science.gov (United States)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  20. Integration of Acoustic Detection Equipment into ANTARES

    CERN Document Server

    Lahmann, R; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Naumann, C; Salomon, K

    2005-01-01

    The ANTARES group at the University of Erlangen is working towards the integration of a set of acoustic sensors into the ANTARES Neutrino Telescope. With this setup, tests of acoustic particle detection methods and background studies shall be performed. The ANTARES Neutrino Telescope, which is currently being constructed in the Mediterranean Sea, will be equipped with the infrastructure to accommodate a 3-dimensional array of photomultipliers for the detection of Cherenkov light. Within this infrastructure, the required resources for acoustic sensors are available: Bandwidth for the transmission of the acoustic data to the shore, electrical power for the off-shore electronics and physical space to install the acoustic sensors and to route the connecting cables (transmitting signals and power) into the electronics containers. It will be explained how the integration will be performed with minimal modifications of the existing ANTARES design and which setup is foreseen for the acquisition of the acoustic data.

  1. Reducing Antenna Mechanical Noise in Precision Doppler Tracking

    Science.gov (United States)

    Armstrong, J. W.; Estabrook, F. B.; Asmar, S. W.; Iess, L.; Tortora, P.

    2006-05-01

    Precision Doppler tracking of deep-space probes is central to spacecraft navigation and many radio science investigations. The most sensitive Doppler observations to date have been taken using the NASA/JPL Deep Space Network (DSN) antenna DSS 25, a 34-m-diameter beam-waveguide station especially instrumented with simultaneous X-band (approximately 8.4-GHz) and Ka-band (approximately 32-GHz) links and tropospheric scintillation calibration equipment, tracking the Cassini spacecraft. These Cassini observations achieved Doppler fractional frequency stability (Doppler frequency fluctuation divided by center frequency, Delta f / f_o ) of approximately 3 x 10^-15 at tau = 1000 s integration. In those very-high-sensitivity tracks, the leading disturbance was antenna mechanical noise: time-dependent unmodeled physical motion of the ground antenna's phase center caused by antenna sag as the elevation angle changed, unmodeled subreflector motion, wind loading, bulk motion of the antenna as it rolled over irregularities in the supporting azimuth ring, differential thermal expansion of the structure, etc. This noise has seemed irreducible at reasonable cost, since it is unclear how to build a practical, large, moving, steel structure having mechanical stability significantly better than that of current tracking stations. Here we show how the mechanical noise of a large tracking antenna can effectively be removed when two-way Doppler tracking data from an existing DSN antenna are suitably combined with simultaneous tracking data using an ancillary (smaller and stiffer) antenna. Using our method, the mechanical noise in the final Doppler observable can be reduced, substantially, to that of the stiffer antenna.

  2. Applications of Doppler optical coherence tomography

    Science.gov (United States)

    Xu, Zhiqiang

    longitudinal resolution and the imaging depth for OCT imaging. Doppler OCT is becoming an increasingly popular field of investigation within optical coherence tomography with potentially important applications in cardiovascular and microfluidic research. We have spent some of the effort on searching for accurate and efficient methods for processing the experimental data. We applied the pseudo Wigner time-frequency distribution method to the data processing of Doppler OCT and compared its performance to that of the short-time Fourier transform method, the Hilbert-based phase-resolved method and the autocorrelation method. We concluded that the pseudo Wigner-distribution signal processing method is overall more precise than other often-used methods in Doppler OCT for the analysis of cross-sectional velocity distributions, especially in the high velocity regime. We also discovered the advantage of using the time-domain instead of the frequency domain for Doppler OCT for some applications where precise Doppler-speed metrology is essential. Based on the fact that the obtained local OCT interference signal is almost a single periodic waveform, we have developed a novel, simple and less time-consuming processing method based on the zero-crossing points in an OCT signal for the measurement of the Doppler frequency in a laminar flow. This method was compared to other processing approaches currently used in Doppler OCT. The results show that in the case of laminar flow, the zero-crossing method gives the more precise results, especially in the higher velocity regime with a substantial economy in processing time and an increase in dynamic range which can reach 70 dB. This feature becomes a major advantage in metrology if one wants to measure velocities over several orders of magnitude. We have applied this technique to some real flow models and the preliminary results on flow velocity distributions obtained in the case of a microfluidic circuit and in that of a phantom of a blood vessel

  3. Velocity-aligned Doppler spectroscopy

    Science.gov (United States)

    Xu, Z.; Koplitz, B.; Wittig, C.

    1989-03-01

    The use of velocity-aligned Doppler spectroscopy (VADS) to measure center-of-mass kinetic-energy distributions of nascent photofragments produced in pulsed-initiation photolysis/probe experiments is described and demonstrated. In VADS, pulsed photolysis and probe laser beams counterpropagate through the ionization region of a time-of-flight mass spectrometer. The theoretical principles of VADS and the mathematical interpretation of VADS data are explained and illustrated with diagrams; the experimental setup is described; and results for the photodissociation of HI, H2S, and NH3 are presented in graphs and characterized in detail. VADS is shown to give much higher kinetic-energy resolution than conventional Doppler spectroscopy.

  4. Nonlinear characterization of a single-axis acoustic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  5. Concepts and Tradeoffs in Velocity Estimation With Plane-Wave Contrast-Enhanced Doppler.

    Science.gov (United States)

    Tremblay-Darveau, Charles; Williams, Ross; Sheeran, Paul S; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2016-11-01

    While long Doppler ensembles are, in principle, beneficial for velocity estimates, short acoustic pulses must be used in microbubble contrast-enhanced (CE) Doppler to mitigate microbubble destruction. This introduces inherent tradeoffs in velocity estimates with autocorrelators, which are studied here. A model of the autocorrelation function adapted to the microbubble Doppler signal accounting for transit time, the echo frequency uncertainty, and contrast-agent destruction is derived and validated in vitro. It is further demonstrated that a local measurement of the center frequency of the microbubble echo is essential in order to avoid significant bias in velocity estimates arising from the linear and nonlinear frequency-dependent scattering of microbubbles and compensate for the inherent speckle nature of the received echo frequency. For these reasons, broadband Doppler estimators (2-D autocorrelator and Radon projection) are better suited than simpler narrow-band estimators (1-D autocorrelator and 1-D Fourier transform) for CE flow assessment. A case study of perfusion in a VX-2 carcinoma using CE plane-wave Doppler is also shown. We demonstrate that even when considering all uncertainties associated with microbubble-related decorrelation (destruction, pulse bandwidth, transit time, and flow gradient) and the need for real-time imaging, a coefficient of variation of 4% on the axial velocity is achievable with plane-wave imaging.

  6. Concepts and trade-offs in velocity estimation with plane-wave contrast-enhanced Doppler.

    Science.gov (United States)

    Tremblay-Darveau, Charles; Williams, Ross; Sheeran, Paul; Milot, Laurent; Bruce, Matthew; Burns, Peter

    2016-07-29

    While long Doppler ensembles are, in principle, beneficial for velocity estimates, short acoustic pulses must be used in microbubble contrast-enhanced Doppler to mitigate microbubble destruction. This introduces inherent trade-offs in velocity estimates with autocorrelators, which are studied here. A model of the autocorrelation function adapted to the microbubble Doppler signal, accounting for transit time, the echo frequency uncertainty and contrast-agent destruction is derived and validated in vitro. It is further demonstrated that a local measurement of the center frequency of the microbubble echo is essential in order to avoid significant bias in velocity estimates arising from the linear and nonlinear frequency-dependent scattering of microbubbles, and compensate the inherent speckle nature of the received echo frequency. For these reasons, broadband Doppler estimators (2D autocorrelator, Radon projection) are better suited than simpler narrowband estimators (1D autocorrelator, 1D Fourier transform) for contrast-enhanced flow assessment. A case study of perfusion in a VX-2 carcinoma using contrast-enhanced planewave Doppler is also shown. We demonstrate that even when considering all uncertainties associated with microbubble-related decorrelation (destruction, pulse bandwidth, transit time, flow gradient) and the need for real-time imaging, a coefficient of variation of 4% on the an axial velocity is achievable with planewave imaging.

  7. Phase Doppler anemometry as an ejecta diagnostic

    Science.gov (United States)

    Bell, D. J.; Chapman, D. J.

    2017-01-01

    When a shock wave is incident on a free surface, micron sized pieces of the material can be ejected from that surface. Phase Doppler Anemometry (PDA) is being developed to simultaneously measure the sizes and velocities of the individual shock induced ejecta particles; providing an important insight into ejecta phenomena. The results from experiments performed on the 13 mm bore light gas gun at the Institute of Shock Physics, Imperial College London are presented. Specially grooved tin targets were shocked at pressures of up to 14 GPa, below the melt on release pressure, to generate ejecta particles. These experiments are the first time that PDA has been successfully fielded on dynamic ejecta experiments. The results and current state of the art of the technique are discussed along with the future improvements required to optimise performance and increase usability.

  8. Reduction of Doppler effect for the needs of wayside condition monitoring system of railway vehicles

    Science.gov (United States)

    Dybała, Jacek; Radkowski, Stanisław

    2013-07-01

    Technology of acoustic condition monitoring of vehicles in motion is based on the assumption that diagnostically relevant information is stored in the acoustic signal generated by a passing vehicle. Analyzing the possibilities of increasing the effectiveness of condition monitoring of a passing vehicle with stationary microphones, it should be noted that the acoustic signal recorded in these conditions is disturbed with the disturbance resulting from the Doppler effect. Reduction of signal's frequential structure disturbance resulting from the Doppler effect allows efficient analysis of changes in frequential structure of recorded signals and as a result extraction of relevant diagnostic information related with technical condition of running gear of vehicle. This article presents a method for removal of signal's frequential structure disturbances related with relative move of vehicles and stationary monitoring station. For elimination of the frequential non-stationary of signals disturbance-oriented dynamic signal resampling method was used. The paper provides a test of two methods for defining the time course of local disturbance of signal's frequential structure: the method based on the Hilbert transform and the method of analytical description of signal's disturbance based on the knowledge of a phenomenon that causes frequential non-stationarity of signals. As an example, the results of the processing and analysis of acoustic signals recorded by wayside measuring station, during the passage of WM-15A railway vehicle on an experimental track of Polish Railway Institute, are presented.

  9. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  10. Acoustic cryocooler

    Science.gov (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  11. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.;

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  12. Advanced Technology MEMS-based Acoustic Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interdisciplinary Consulting Corporation proposes a technological advancement of current state-of-the-art acoustic energy harvester for harsh environment...

  13. Frequency Diversity for OFDM Mobile Communication via Underwater Acoustic Channels

    Institute of Scientific and Technical Information of China (English)

    Gang Qiao; Wei Wang; Ran Guo; Rehan Khan; Yue Wang

    2012-01-01

    The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal.In this paper,Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange.In practice,for mobile communication,adjustment and tuning of transducers in order to get spatial diversity is extremely difficult.Considering the relatively low coherence bandwidth in UWA,the frequency diversity design with the Doppler compensation function was elaborated here.The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s.Hz) spectral efficiency.The validity and the dependability of the scheme were also analyzed.

  14. DOPPLER ANALYSIS IN PREGNANCY INDUCED HYPERTENSION

    Directory of Open Access Journals (Sweden)

    Tushar

    2014-12-01

    Full Text Available A study of 50 cases was conducted to evaluate the role of Colour Doppler imaging in pregnancy induced hypertension with women over 28 weeks of gestation, the initial scan was performed immediately after the diagnosis of PIH to avoid any influence of treatment on Doppler evaluation. This study was aimed to analyze the blood flow in umbilical artery, maternal uterine artery & fetal middle cerebral artery using Doppler ultrasound.

  15. Emboli detection using the Doppler ultrasound technique

    Institute of Scientific and Technical Information of China (English)

    WANG Yuanyuan; CHEN Xi; ZHANG Yu; WANG Weiqi

    2003-01-01

    Embolic detection is very important to the early diagnosis of vessel disease. The Doppler ultrasound technique is one of the common methods to detect the emboli non-invasively. When the emboli pass through the sample volume of the Doppler ultrasound instrument, there exist high intensity transient Doppler signals. Thus the emboli can be detected directly from the variation of Doppler signal amplitude. Since there may be some disturbance in the system, this general detection method has great limitation. To improve the accuracy of emboli auto-detection, several novel methods are studied to obtain the sensitive characteristic of the emboli signals using the new signal processing theories.

  16. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    Science.gov (United States)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  17. The efficacy of the Cook-Swartz implantable Doppler in the detection of free-flap compromise: a systematic review protocol

    OpenAIRE

    Agha, Riaz A.; Gundogan, Buket; Fowler, Alexander J.; Bragg, Thomas W H; Orgill, Dennis P.

    2014-01-01

    Introduction The Cook-Swartz implantable Doppler monitors venous or arterial blood flow from free flaps and can detect free-flap compromise. Previous studies have shown that the use of this Doppler can improve detection and salvage rates as it provides an earlier warning than the current method of clinical assessment. Such studies assert that the implantable Doppler is of great value in monitoring free flaps in current microsurgical units. This systematic review aims to compare the efficacy o...

  18. Optimization of Concurrent Deployments of the Juvenile Salmon Acoustic Telemetry System and Other Hydroacoustic Equipment at John Day Dam

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Hughes, James S.; Khan, Fenton; Kim, Jina; Lamarche, Brian L.; Johnson, Gary E.; Choi, Eric Y.; Faber, Derrek M.; Wilberding, Matthew C.; Deng, Zhiqun; Weiland, Mark A.; Zimmerman, Shon A.; Fischer, Eric S.; Cushing, Aaron W.

    2008-09-01

    The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimization study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage

  19. Fabrication of Two Flow Phantoms for Doppler Ultrasound Imaging.

    Science.gov (United States)

    Zhou, Xiaowei; Kenwright, David A; Wang, Shiying; Hossack, John A; Hoskins, Peter R

    2017-01-01

    Flow phantoms are widely used in studies associated with Doppler ultrasound measurements, acting as an effective experimental validation system in cardiovascular-related research and in new algorithm/instrumentation development. The development of materials that match the acoustic and mechanical properties of the vascular system is of great interest while designing flow phantoms. Although recipes that meet the flow phantom standard defined by the International Electrotechnical Commission 61685 are already available in the literature, the standard procedure for material preparations and phantom fabrications has not been well established. In this paper, two types of flow phantoms, with and without blood vessel mimic, are described in detail in terms of the material preparation and phantom fabrication. The phantom materials chosen for the two phantoms are from published phantom studies, and their physical properties have been investigated previously. Both the flow phantoms have been scanned by ultrasound scanners and images from different modes are presented. These phantoms may be used in the validation and characterization of Doppler ultrasound measurements in blood vessels with a diameter above 1 mm.

  20. Transcranial Doppler ultrasonography: From methodology to major clinical applications

    Institute of Scientific and Technical Information of China (English)

    Antonello D’Andrea; Marianna Conte; Massimo Cavallaro; Raffaella Scarafile; Lucia Riegler; Rosangela Cocchia; Enrica Pezzullo; Andreina Carbone; Francesco Natale; Giuseppe Santoro; Pio Caso; Maria Giovanna Russo; Eduardo Bossone; Raffaele Calabrò

    2016-01-01

    Non-invasive Doppler ultrasonographic study of cerebral arteries [transcranial Doppler(TCD)] has been extensively applied on both outpatient and inpatient settings. It is performed placing a low-frequency(≤ 2 MHz) transducer on the scalp of the patient over specific acoustic windows, in order to visualize the intracranial arterial vessels and to evaluate the cerebral blood flow velocity and its alteration in many different conditions. Nowadays the most widespread indication for TCD in outpatient setting is the research of right to left shunting, responsable of so called "paradoxical embolism", most often due to patency of foramen ovale which is responsable of the majority of cryptogenic strokes occuring in patients younger than 55 years old. TCD also allows to classify the grade of severity of such shunts using the so called "microembolic signal grading score". In addition TCD has found many useful applications in neurocritical care practice. It is useful on both adults and children for day-to-day bedside assessment of critical conditions including vasospasm in subarachnoidal haemorrhage(caused by aneurysm rupture or traumatic injury), traumatic brain injury, brain stem death. It is used also to evaluate cerebral hemodynamic changes after stroke. It also allows to investigate cerebral pressure autoregulation and for the clinical evaluation of cerebral autoregulatory reserve.

  1. Transcranial Doppler ultrasonography: From methodology to major clinical applications.

    Science.gov (United States)

    D'Andrea, Antonello; Conte, Marianna; Cavallaro, Massimo; Scarafile, Raffaella; Riegler, Lucia; Cocchia, Rosangela; Pezzullo, Enrica; Carbone, Andreina; Natale, Francesco; Santoro, Giuseppe; Caso, Pio; Russo, Maria Giovanna; Bossone, Eduardo; Calabrò, Raffaele

    2016-07-26

    Non-invasive Doppler ultrasonographic study of cerebral arteries [transcranial Doppler (TCD)] has been extensively applied on both outpatient and inpatient settings. It is performed placing a low-frequency (≤ 2 MHz) transducer on the scalp of the patient over specific acoustic windows, in order to visualize the intracranial arterial vessels and to evaluate the cerebral blood flow velocity and its alteration in many different conditions. Nowadays the most widespread indication for TCD in outpatient setting is the research of right to left shunting, responsable of so called "paradoxical embolism", most often due to patency of foramen ovale which is responsable of the majority of cryptogenic strokes occuring in patients younger than 55 years old. TCD also allows to classify the grade of severity of such shunts using the so called "microembolic signal grading score". In addition TCD has found many useful applications in neurocritical care practice. It is useful on both adults and children for day-to-day bedside assessment of critical conditions including vasospasm in subarachnoidal haemorrhage (caused by aneurysm rupture or traumatic injury), traumatic brain injury, brain stem death. It is used also to evaluate cerebral hemodynamic changes after stroke. It also allows to investigate cerebral pressure autoregulation and for the clinical evaluation of cerebral autoregulatory reserve.

  2. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  3. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  4. Development of Photon Doppler Velocimeter for Explosives Research

    Science.gov (United States)

    2013-01-01

    to competing methods such as VISAR and Fabry- Perot interferometry . This report describes the development of a PDV and an application of it to the...He worked in Electronic Warfare and Radar Division at DSTO on the development of fibre lasers. Shayne is currently undertaking his PhD studies in...Heterodyne theory A concept schematic demonstrating in- principle operation of a Photon Doppler Velocimeter is shown in Figure 3. Source waveguide

  5. Acoustic Localization with Infrasonic Signals

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  6. Modification of the Doppler effect due to the helicity-rotation coupling

    Energy Technology Data Exchange (ETDEWEB)

    Mashhoon, Bahram

    2002-12-30

    The helicity-rotation coupling and its current empirical basis are examined. The modification of the Doppler effect due to the coupling of photon spin with the rotation of the observer is considered in detail in connection with its applications in the Doppler tracking of spacecraft. Further implications of this coupling and the possibility of searching for it in the intensity response of a rotating detector are briefly discussed.

  7. Progress towards Acoustic Suspended Sediment Transport Monitoring: Fraser River, BC

    Science.gov (United States)

    Attard, M. E.; Venditti, J. G.; Church, M. A.; Kostaschuk, R. A.

    2011-12-01

    Our ability to predict the timing and quantity of suspended sediment transport is limited because fine sand, silt and clay delivery are supply limited, requiring empirical modeling approaches of limited temporal stability. A solution is the development of continuous monitoring techniques capable of tracking sediment concentrations and grain-size. Here we examine sediment delivery from upstream sources to the lower Fraser River. The sediment budget of the lower Fraser River provides a long-term perspective of the net changes in the channels and in sediment delivery to Fraser Delta. The budget is based on historical sediment rating curves developed from data collected from 1965-1986 by the Water Survey of Canada. We explore the possibility of re-establishing the sediment-monitoring program using hydro-acoustics by evaluating the use of a 300 kHz side-looking acoustic Doppler current profiler (aDcp), mounted just downstream of the sand-gravel transition at Mission, for continuous measurement of suspended sediment transport. Complementary field observations include conventional bottle sampling with a P-63 sampler, vertical profiles with a downward-looking 600 kHz aDcp, and 1200 kHz aDcp discharge measurements. We have successfully completed calibration of the downward-looking aDcp with the P-63 samples; the side-looking aDcp signals remain under investigation. A comparison of several methods for obtaining total sediment flux indicates that suspended sediment concentration (SSC) closely follows discharge through the freshet and peaks in total SSC and sand SSC coincide with peak measurements of discharge. Low flows are dominated by fine sediment and grain size increases with higher flows. This research assesses several techniques for obtaining sediment flux and contributes to the understanding of sediment delivery to sand-bedded portions of the river.

  8. Experimental Investigation of Turbulence Specifications of Turbidity Currents

    Directory of Open Access Journals (Sweden)

    B Firoozabadi

    2010-01-01

    Full Text Available The present study investigates the turbulence characteristic of turbidity current experimentally. The three-dimensional Acoustic-Doppler Velocimeter (ADV was used to measure the instantaneous velocity and characteristics of the turbulent flow. The experiments were conducted in a three-dimensional channel for different discharge flows, concentrations, and bed slopes. Results are expressed at various distances from the inlet, for all flow rates, slopes and concentrations as the distribution of turbulence energy, Reynolds stress and the turbulent intensity. It was concluded that the maximum turbulence intensity happens in both the interface and near the wall. Also, it was observed that the turbulence intensity reaches its minimum where maximum velocity occurs.

  9. Laser Doppler flowmetry in endodontics: a review.

    Science.gov (United States)

    Jafarzadeh, H

    2009-06-01

    Vascular supply is the most accurate marker of pulp vitality. Tests for assessing vascular supply that rely on the passage of light through a tooth have been considered as possible methods for detecting pulp vitality. Laser Doppler flowmetry (LDF), which is a noninvasive, objective, painless, semi-quantitative method, has been shown to be reliable for measuring pulpal blood flow. The relevant literature on LDF in the context of endodontics up to March 2008 was reviewed using PubMed and MEDLINE database searches. This search identified papers published between June 1983 and March 2008. Laser light is transmitted to the pulp by means of a fibre optic probe. Scattered light from moving red blood cells will be frequency-shifted whilst that from the static tissue remains unshifted. The reflected light, composed of Doppler-shifted and unshifted light, is returned by afferent fibres and a signal is produced. This technique has been successfully employed for estimating pulpal vitality in adults and children, differential diagnosis of apical radiolucencies (on the basis of pulp vitality), examining the reactions to pharmacological agents or electrical and thermal stimulation, and monitoring of pulpal responses to orthodontic procedures and traumatic injuries. Assessments may be highly susceptible to environmental and technique-related factors. Nonpulpal signals, principally from periodontal blood flow, may contaminate the signal. Because this test produces no noxious stimuli, apprehensive or distressed patients accept it more readily than current methods of pulp vitality assessment. A review of the literature and a discussion of the application of this system in endodontics are presented.

  10. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  11. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  12. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  13. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  14. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  15. Doppler tomography in fusion plasmas and astrophysics

    NARCIS (Netherlands)

    Salewski, M.; Geiger, B.; Heidbrink, W. W.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S.K.; Rasmussen, J.; Stagner, L.; Steeghs, D.; Stejner, M.; Tardini, G.; Weiland, M.; ASDEX Upgrade team,

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined pl

  16. Multimodal integration of micro-Doppler sonar and auditory signals for behavior classification with convolutional networks.

    Science.gov (United States)

    Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas

    2013-10-01

    The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.

  17. Observation of the Zero Doppler Effect

    Science.gov (United States)

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  18. Estimating the Doppler centroid of SAR data

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang

    1989-01-01

    After reviewing frequency-domain techniques for estimating the Doppler centroid of synthetic-aperture radar (SAR) data, the author describes a time-domain method and highlights its advantages. In particular, a nonlinear time-domain algorithm called the sign-Doppler estimator (SDE) is shown to have...... attractive properties. An evaluation based on an existing SEASAT processor is reported. The time-domain algorithms are shown to be extremely efficient with respect to requirements on calculations and memory, and hence they are well suited to real-time systems where the Doppler estimation is based on raw SAR...... data. For offline processors where the Doppler estimation is performed on processed data, which removes the problem of partial coverage of bright targets, the ΔE estimator and the CDE (correlation Doppler estimator) algorithm give similar performance. However, for nonhomogeneous scenes it is found...

  19. Methods of temperature measurement in a radio-acoustic tropospheric sounder

    Directory of Open Access Journals (Sweden)

    P. TRIVERO

    1976-06-01

    Full Text Available The temperature of the lower troposphere is inferred
    by measuring with a doppler radar the speed of a powerful acoustic wave,
    capable of periodically perturbing the index of refraction of air. Three
    methods for performing these measurements are described.

  20. Comparison of advanced optical imaging techniques with current otolaryngology diagnostics for improved middle ear assessment (Conference Presentation)

    Science.gov (United States)

    Nolan, Ryan M.; Shelton, Ryan L.; Monroy, Guillermo L.; Spillman, Darold R.; Novak, Michael A.; Boppart, Stephen A.

    2016-02-01

    Otolaryngologists utilize a variety of diagnostic techniques to assess middle ear health. Tympanometry, audiometry, and otoacoustic emissions examine the mobility of the tympanic membrane (eardrum) and ossicles using ear canal pressure and auditory tone delivery and detection. Laser Doppler vibrometry provides non-contact vibrational measurement, and acoustic reflectometry is used to assess middle ear effusion using sonar. These technologies and techniques have advanced the field beyond the use of the standard otoscope, a simple tissue magnifier, yet the need for direct visualization of middle ear disease for superior detection, assessment, and management remains. In this study, we evaluated the use of portable optical coherence tomography (OCT) and pneumatic low-coherence interferometry (LCI) systems with handheld probe delivery to standard tympanometry, audiometry, otoacoustic emissions, laser Doppler vibrometry, and acoustic reflectometry. Comparison of these advanced optical imaging techniques and current diagnostics was conducted with a case study subject with a history of unilateral eardrum trauma. OCT and pneumatic LCI provide novel dynamic spatiotemporal structural data of the middle ear, such as the thickness of the eardrum and quantitative detection of underlying disease pathology, which could allow for more accurate diagnosis and more appropriate management than currently possible.

  1. The effect of nonuniform motion on the Doppler spectrum of scattered continuous-wave waveforms

    Science.gov (United States)

    Gray, John E.; Addison, Stephen R.

    2003-04-01

    The Doppler effect is a widely treated phenomena in both radar and sonar for objects undergoing uniform motion. There are many different models (Censor has written a history of the subject) one can use to derive the Doppler effect. The treatment of non-uniform motion is not widely discussed in the literature of radar and sonar. Some authors argue it is negligible, while others refer to work dating back to Kelly in the early sixties. The treatment by Kelly, based on waveform analysis in acoustics, is difficult to justify in electromagnetism. Using the language of waveform analysis it is difficult to determine when approximations are justified by the physics of the waveform interaction and when they aren't. By returning to electromagnetic considerations in the derivation and subsequent analysis, issues associated with the correct physics and proper approximations become transparent. We present a straight forward analysis of the non-uniform Doppler effect based on the relativistic mirror (moving boundary) that is undergoing arbitrary motion. The resultant structure of the scattered waveform provides a simple representation of the effect of non-uniform motion on the scattered waveform that can be more easily analyzed. This work is a continuation of earlier work done by Censor, De Smedt, and Cooper. This analysis is independent of narrow-band assumptions so it is completely general. Non-uniform motion can produce two types of effects associated with the Doppler spectrum, a baseband line that isn't straight and micro-Doppler off of the baseband that produces complicated sideband behavior. Complicated baseband and micro-Doppler are illustrated by using the example of a particular waveform, the continuous wave (CW) which is analyzed for a number of examples of interest to the radar community. Application of this information is then discussed.

  2. Color doppler sonography in thickened gallbladder wall

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Suk; Choi, Seok Jin; Seo, Chang Hae; Eun, Choong Ki [Inje Univ. College of Medicine, Kimhae (Korea, Republic of)

    1996-11-01

    The thickening of the gallbladder wall is a valuable finding for the diagnosis of cholecystitis, but may be seen in non-cholecystic disease as well as in acute or chronic cholecystitis. The purpose of this study is to determine the value of color Doppler sonography in differentiating the causes of thickened gallbladder wall. Ninety eight patients with thickened gallbladder wall(more than 3mm) which was not due to gallbladder cancer were prospectively evaluated with color Doppler sonography. Sixty-six cases, confirmed by pathologic reports and clinical records, were analyzed for correlation between thickened gallbladder wall and color flow signal according to the underlying causes. Of the 66 patients, 28 cases were cholecystitis and 38 cases had non-cholecystic causes such as liver cirrhosis, ascites, hepatitis, pancreatitis, renal failure, and hypoalbuminemia. Of the 28 patients with cholecystitis(12 acute, 16 chronic), 23(82%) had color Doppler flow signals in the thickened gallbladder wall. Of the 38 patients with non-cholecystic causes, eight(21%) had color Doppler flow signals. There was a statistically significant difference of color Doppler flow signals between the cholecystitis and non-cholecystic groups(p=0.0001). No significant difference of color Doppler flow signals was found between cases of acute and chronic cholecystitis. Of the 23 patients with color Doppler flow signals in 28 cases of cholecystitis, 18(78.3%) showed a linear pattern and five(21.7%) showed a spotty pattern. Of the eight patients with color Doppler flow signals in the 38 non-cholecystic cases, four(50%) showed a linear pattern and four(50%) showed a spotty pattern. In cholecystitis, a linear color Doppler flow signal pattern is a much more frequent finding than a spotty pattern. Color Doppler sonography is a useful and adequate method for determining whether a thickened gallbladder wall is the result of cholecystitis or has non-cholecystic causes.

  3. New acoustic system for continuous measurement of river discharge and water temperature

    Directory of Open Access Journals (Sweden)

    Kiyosi KAWANISI

    2010-03-01

    Full Text Available In many cases, river discharge is indirectly estimated from water level or streamflow velocity near the water surface. However, these methods have limited applicability. In this study, an innovative system, the fluvial acoustic tomography system (FATS, was used for continuous discharge measurement. Transducers with a central frequency of 30 kHz were installed diagonally across the river. The system’s significant functions include accurate measurement of the travel time of the transmission signal using a GPS clock and the attainment of a high signal-to-noise ratio as a result of modulation of the signal by the 10th order M-sequence. In addition, FATS is small and lightweight, and its power consumption is low. Operating in unsteady streamflow, FATS successfully measured the cross-sectional average velocity. The agreement between FATS and acoustic Doppler current profilers (ADCPs on water discharge was satisfactory. Moreover, the temporal variation of the cross-sectional average temperature deduced from the sound speed of FATS was similar to that measured by a temperature sensor near the bank.

  4. Vibro-acoustic characterization of flexible hose in CO2 car air conditioning systems

    Science.gov (United States)

    Angelini, F.; Bergami, A.; Martarelli, M.; Tomasini, E. P.

    2008-06-01

    Following the EU directive 2006/40/EC proscribing from 2011 that refrigerant fluids must have a global warming potential not higher than 150, it will not be allowed anymore to employ the current R134a on car air conditioning systems. Maflow s.p.a (automotive hose maker) is developing products for each possible new refrigerant. This paper is focused on hoses for CO2 refrigerants operating in the worst conditions because of the high pressures and temperatures at which they are working (with R134a the high pressure is 18 bar and low pressure is 3 bar; with CO2 the high pressure is 100 bar and low pressure is 35 bar). Therefore the noise emission control of the CO2 air conditioning systems is very important. The aim of this study is to develop a standard measurement method for the vibro - acoustic characterization of High Pressure (HP - Shark F4) and Low Pressure (LP - ULEV) hoses to reduce noise emission and raise car passenger comfort; in particular deep research on high pressure hose. The method is based on the measurement of the vibration level of the hoses in a standard test bench by means of a Laser Doppler Vibrometer (LDV) and its acoustic emission by a sound intensity probe.

  5. Complete velocity distribution in river cross-sections measured by acoustic instruments

    Science.gov (United States)

    Cheng, R.T.; Gartner, J.W.; ,

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  6. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  7. A comprehensive radial velocity error budget for next generation Doppler spectrometers

    CERN Document Server

    Halverson, Samuel; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefánsson, Guðmundur Kári; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; McElwain, Michael; Schwab, Christian; Ramsey, Lawrence; Wright, Jason; Wang, Sharon; Gong, Qian; Robertson, Paul

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance erro...

  8. Novel Doppler Frequency Extraction Method Based on Time-Frequency Analysis and Morphological Operation

    Institute of Scientific and Technical Information of China (English)

    HOU Shu-juan; WU Si-liang

    2006-01-01

    A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequency extraction becomes curve detection in the image-view. A set of morphological operations are used to implement curve detection. And a map fusion scheme is presented to eliminate the influence of strong direct current (DC) component of echo signal during curve detection. The radar real-life data are used to illustrate the performance of the new approach. Experimental results show that the proposed method can over come the shortcomings of piecewise-processing-based FFT method and can improve the measuring precision of miss distance.

  9. Dipolar modulation in the size of galaxies: The effect of Doppler magnification

    CERN Document Server

    Bonvin, Camille; Bacon, David; Clarkson, Chris; Maartens, Roy; Moloi, Teboho; Bull, Philip

    2016-01-01

    Objects falling into an overdensity appear larger on its near side and smaller on its far side than other objects at the same redshift. This produces a dipolar pattern of magnification, primarily as a consequence of the Doppler effect. At low redshift this Doppler magnification completely dominates the usual integrated gravitational lensing contribution to the lensing magnification. We show that one can optimally observe this pattern by extracting the dipole in the cross-correlation of number counts and galaxy sizes. This dipole allows us to almost completely remove the contribution from gravitational lensing up to redshift 0.5, and even at high redshift z~1 the dipole picks up the Doppler magnification predominantly. Doppler magnification should be easily detectable in current and upcoming optical and radio surveys; by forecasting for telescopes such as the SKA, we show that this technique is competitive with using peculiar velocities via redshift-space distortions to constrain dark energy. It produces simil...

  10. Gravity theories, Transverse Doppler and Gravitational Redshifts in Galaxy Clusters

    CERN Document Server

    Zhao, Hongsheng; Li, Baojiu

    2012-01-01

    There is growing interest in testing alternative gravity theories using the subtle Gravitational Redshifts in clusters of galaxies. However, current models all neglect a Transverse Doppler redshift of similar magnitude, and some models are not self-consistent. An equilibrium model would fix the Gravitational and Transverse Doppler velocity shifts to be about 6\\sigma^2/c and 3\\sigma^2/2c in order to fit the observed velocity dispersion \\sigma self-consistently. This result is from the Virial Theorem for a spherical isotropic cluster, and is insensitive to the theory of gravity. In any case, a gravitational redshift signal cannot directly distinguish between the Einsteinian and f(R) gravity theories, because the mass of the cluster dark halo must be treated as an unknown fitting parameter, whose value must vary according to the theory adopted, otherwise the system would be in equilibrium in one gravity theory and out of equilibrium in another.

  11. Japanese sounding rocket experiment with the solar XUV Doppler telescope

    Science.gov (United States)

    Sakao, Taro; Tsuneta, Saku; Hara, Hirohisa; Kano, Ryouhei; Yoshida, Tsuyoshi; Nagata, Shin'ichi; Shimizu, Toshifumi; Kosugi, Takeo; Murakami, Katsuhiko; Wasa, Wakuna; Inoue, Masao; Miura, Katsuhiro; Taguchi, Koji; Tanimoto, Kazuo

    1996-11-01

    We present an overview of an ongoing Japanese sounding rocket project with the Solar XUV Doppler telescope. The telescope employs a pair of normal incidence multilayer mirrors and a back-thinned CCD, and is designed to observe coronal velocity field of the whole sun by measuring line- of-sight Doppler shifts of the Fe XIV 211 angstroms line. The velocity detection limit is estimated to be better than 100 km/s. The telescope will be launched by the Institute of Space and Astronautical Science in 1998, when the solar activity is going to be increasing towards the cycle 23 activity maximum. Together with the overview of the telescope, the current status of the development of each telescope components including multilayer mirrors, telescope structure, image stabilization mechanism, and focal plane assembly, are reviewed. The observation sequence during the flight is also briefly described.

  12. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  13. Acoustic Communications (ACOMMS) ATD

    Science.gov (United States)

    2016-06-14

    develop and demonstrate emerging undersea acoustic communication technologies at operationally useful ranges and data rates. The secondary objective...Technology Demonstration program (ACOMMS ATD) was to demonstrate long range and moderate data rate underwater acoustic communications between a submarine...moderate data rate acoustic communications capability for tactical use between submarines, surface combatants, unmanned undersea vehicles (UUVs), and other

  14. Transcranial Doppler ultrasound in the diagnosis of brain death. Is it useful or does it delay the diagnosis?

    Science.gov (United States)

    Escudero, D; Otero, J; Quindós, B; Viña, L

    2015-05-01

    Transcranial Doppler ultrasound is able to demonstrate cerebral circulatory arrest associated to brain death, being especially useful in sedated patients, or in those in which complete neurological exploration is not possible. Transcranial Doppler ulstrasound is a portable, noninvasive and high-availability technique. Among its limitations, mention must be made of the absence of acoustic windows and false-negative cases. In patients clinically diagnosed with brain death, with open skulls or with anoxia as the cause of death, cerebral blood flow can be observed by ultrasound, since cerebral circulatory arrest is not always synchronized to the clinical diagnosis. The diagnostic rate is therefore time-dependent, and this fact that must be recognized in order to avoid delays in death certification. Despite its limitations, transcranial Doppler ulstrasound helps solve common diagnostic problems, avoids the unnecessary consumption of resources, and can optimize organ harvesting for transplantation.

  15. Radar Sensor Networks: Algorithms for Waveform Design and Diversity with Application to ATR with Delay-Doppler Uncertainty

    Directory of Open Access Journals (Sweden)

    Qilian Liang

    2007-01-01

    Full Text Available Automatic target recognition (ATR in target search phase is very challenging because the target range and mobility are not yet perfectly known, which results in delay-Doppler uncertainty. In this paper, we firstly perform some theoretical studies on radar sensor network (RSN design based on linear frequency modulation (LFM waveform: (1 the conditions for waveform coexistence, (2 interferences among waveforms in RSN, (3 waveform diversity in RSN. Then we apply RSN to ATR with delay-Doppler uncertainty and propose maximum-likeihood (ML ATR algorithms for fluctuating targets and nonfluctuating targets. Simulation results show that our RSN vastly reduces the ATR error compared to a single radar system in ATR with delay-Doppler uncertainty. The proposed waveform design and diversity algorithms can also be applied to active RFID sensor networks and underwater acoustic sensor networks.

  16. Shaping and Timing Gradient Pulses to Reduce MRI Acoustic Noise

    NARCIS (Netherlands)

    Segbers, Marcel; Sierra, Carlos V. Rizzo; Duifhuis, Hendrikus; Hoogduin, Johannes M.

    2010-01-01

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an aco

  17. Optical Doppler tomography and spectral Doppler imaging of localized ischemic stroke in a mouse model

    Science.gov (United States)

    Yu, Lingfeng; Nguyen, Elaine; Liu, Gangjun; Rao, Bin; Choi, Bernard; Chen, Zhongping

    2010-02-01

    We present a combined optical Doppler tomography/spectral Doppler imaging modality to quantitatively evaluate the dynamic blood circulation and the artery blockage before and after a localized ischemic stroke in a mouse model. Optical Doppler Tomography (ODT) combines the Doppler principle with optical coherence tomography for noninvasive localization and measurement of particle flow velocity in highly scattering media with micrometer scale spatial resolution. Spectral Doppler imaging (SDI) provides complementary temporal flow information to the spatially distributed flow information of Doppler imaging. Fast, repeated, ODT scans across an entire vessel were performed to record flow dynamic information with high temporal resolution of cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time for scatters within the imaging volume using spectral Doppler waveforms. Furthermore, vascular conditions can be quantified with various Doppler-angle-independent flow indices. Non-invasive in-vivo mice experiments were performed to evaluate microvascular blood circulation of a localized ischemic stroke mouse model.

  18. Staggered Multiple-PRF Ultrafast Color Doppler.

    Science.gov (United States)

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  19. Rotational Doppler effect in nonlinear optics

    Science.gov (United States)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  20. 2013-2014 California Current Ecosystem (CCE14): Acoustic-Trawl Survey of Coastal Pelagic Fishes (Legs I and II); and Investigations of hake survey methods, life history, and associated ecosystem (Legs III and IV) (SH1405, ME70)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2014 acoustic-trawl method (ATM) project aboard Bell M. Shimada represents a joint effort between the SWFSC and the NWFSC in investigating elements of the...

  1. 2013-2014 California Current Ecosystem (CCE14): Acoustic-Trawl Survey of Coastal Pelagic Fishes (Legs I and II); and Investigations of hake survey methods, life history, and associated ecosystem (Legs III and IV) (SH1405, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2014 acoustic-trawl method (ATM) project aboard Bell M. Shimada represents a joint effort between the SWFSC and the NWFSC in investigating elements of the...

  2. Numerical simulation of a laser-acoustic landmine detection system

    Science.gov (United States)

    Lancranjan, Ion I.; Miclos, Sorin; Savastru, Dan; Savastru, Roxana; Opran, Constantin

    2012-06-01

    The preliminary numerical simulation results obtained in the analysis of a landmine detection system based on laser excitation of acoustic - seismic waves in the soil and observing its surface vibration above the embedded landmine are presented. The presented numerical simulations comprise three main parts: 1) Laser oscillator and laser beam propagation and absorption in soil; a laser oscillator operated in Q-switched regime is considered; different laser wavelengths are investigated. 2) Acoustic - seismic wave generation by absorption in soil of laser pulse energy; 3) Evaluation of acoustic - seismic wave generation by the buried in soil landmine; 4) Comparison of Distributed Feed- Back Fiber Laser (DFB-FL) and Laser Doppler Vibrometer (LDV) detector used for soil vibrations evaluation. The above mentioned numerical simulation is dedicated for evaluation of an integrated portable detection system.

  3. Doppler method leak detection for LMFBR steam generators. Pt. 1. Experimental results of bubble detection using small models

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    1999-05-01

    To prevent the expansion of the tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBRs), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method was developed. Previous studies have revealed that in practical steam generators the active acoustic method can detect bubbles of 10 l/s within 10 seconds. To prevent the expansion of damage to neighboring tubes, it is necessary to detect smaller leakages of water from the heat transfer tubes. The Doppler method is designed to detect small leakages and to find the source of the leak before damage spreads to neighboring tubes. To evaluate the relationship between the detection sensitivity of the Doppler method and the bubble volume and bubble size, the structural shapes and bubble flow conditions were investigated experimentally, using a small structural model. The results show that the Doppler method can detect the bubbles under bubble flow conditions, and it is sensitive enough to detect small leakages within a short time. The doppler method thus has strong potential for the detection of water leakage in SGs. (author)

  4. Tissue Doppler Findings in Patients with Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Firoozeh Abtahi

    2016-09-01

    Full Text Available In conclusion, our results suggested that increasing degrees of pulmonary artery systolic pressure affected timing of some tissue Doppler-derived intervals within the cardiac cycle, including IVC time, time to peak systolic myocardial velocity (Sm, and time to peak strain. Therefore, tissue Doppler imaging could be used in assessment of patients with suspected pulmonary arterial hypertension. Background: Pulmonary hypertension is an untreatable condition with poor prognosis and factors such as more elevated pulmonary arterial systolic pressure and right ventricular dysfunction are associated with a worse outcome. Objectives: Considering the limitations of the current modalities, this study aimed to find the relationship between tissue Doppler-derived systolic and diastolic parameters and elevated pulmonary arterial pressure in order to assess the routine application of tissue Doppler imaging in evaluation of pulmonary arterial hypertension. Patients and Methods: This study was conducted on 100 inpatient and outpatient individuals referred to the Department of Echocardiography in Shahid Faghihi hospital, Shiraz, Iran from July 2012 to March 2013. The individuals who had preserved right ventricular function in the presence of pulmonary arterial hypertension were included in the case group. On the other hand, the patients who did not have echocardiographic signs of pulmonary arterial hypertension were enrolled into the control group. All the patients underwent a complete transthoracic echocardiogram including 2-dimensional, color flow, and spectral Doppler as well as tissue Doppler imaging using a vivid E9 system, and the desired systolic and diastolic parameters were recorded. The relationship among these parameters was evaluated by independent sample t-test using the SPSS statistical software, version 16. Besides, P < 0.05 was considered to be statistically significant. Results: The mean time to peak strain was significantly longer in the case

  5. Acoustic elliptical cylindrical cloaks

    Institute of Scientific and Technical Information of China (English)

    Ma Hua; Qu Shao-Bo; Xu Zhuo; Wang Jia-Fu

    2009-01-01

    By making a comparison between the acoustic equations and the 2-dimensional (2D) Maxwell equations, we obtain the material parameter equations (MPE) for acoustic elliptical cylindrical cloaks. Both the theoretical results and the numerical results indicate that an elliptical cylindrical cloak can realize perfect acoustic invisibility when the spatial distributions of mass density and bulk modulus are exactly configured according to the proposed equations. The present work is the meaningful exploration of designing acoustic cloaks that are neither sphere nor circular cylinder in shape, and opens up possibilities for making complex and multiplex acoustic cloaks with simple models such as spheres, circular or elliptic cylinders.

  6. Indoor acoustic gain design

    Science.gov (United States)

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  7. Doppler backscatter properties of a blood-mimicking fluid for Doppler performance assessment.

    Science.gov (United States)

    Ramnarine, K V; Hoskins, P R; Routh, H F; Davidson, F

    1999-01-01

    The Doppler backscatter properties of a blood-mimickig fluid (BMF) were studied to evaluate its suitability for use in a Doppler flow test object. Measurements were performed using a flow rig with C-flex tubing and BMF flow produced by a roller pump or a gear pump. A SciMed Doppler system was used to measure the backscattered Doppler power with a root-mean-square power meter connected to the audio output. Studies investigated the dependence of the backscattered Doppler power of the BMF with: circulation time; batch and operator preparations; storage; sieve size; flow speed; and pump type. A comparison was made with human red blood cells resuspended in saline. The backscatter properties are stable and within International Electrotechnical Commission requirements. The BMF is suitable for use in a test object for Doppler performance assessment.

  8. Investigating the use of the acousto-optic effect for acoustic holography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Fernandez Grande, Efren; Jacobsen, Finn;

    2012-01-01

    Recent studies have demonstrated that the acousto-optic effect, that is, the interaction between sound and light, can be used as a means to visualize acoustic fields in the audible frequency range. The changes of density caused by sound waves propagating in air induce phase shifts to a laser beam...... that travels through the acoustic field. This phenomenon can in practice be captured with a laser Doppler vibrometer (LDV), and the pressure distribution of the acoustic field can be reconstructed using tomography. The present work investigates the potential of the acousto-optic effect in acoustic holography....... Two different holographic methods are examined for this purpose. One method first reconstructs the hologram plane using acousto-optic tomography and then propagates it using conventional near-field acoustic holography (NAH). The other method exploits the so-called Fourier Slice Theorem and bases all...

  9. Doppler wind lidar using a MOPA semiconductor laser at stable single-frequency operation

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2009-01-01

    A compact master-oscillator power-amplifier semiconductor laser (MOPA-SL) is a good candidate for a coherent light source (operating at 1550 nm) in a Doppler wind Lidar. The MOPA-SL requires two injection currents: Idfb for the distributed-feedback (DFB) laser section (master oscillator) and Iamp...... to the laser. This was done by observing the spectral characteristic of the laser using an optical spectrum at different drive current combinations. When using the laser for a Doppler wind Lidar application, a combination of (Idfb, Iamp) which is close to the center of an identified stable single......-frequency regime is used. The current settings for the laser result in a highly stable Lidar as shown by a 5-day long continuous measurement of the Doppler shift produced by a constantly rotating diffusely reflecting target....

  10. Gestational trophoblastic neoplasia: efficacy of color doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sun Wha; Jee, Won Hee; Choe, Bo Young; Byun, Jae Young; Choi, Byung Gil; Shinn, Kyung Sub [Catholic Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-04-01

    To evaluate the efficacy of color Doppler ultrasound (US) in the diagnosis of gestational trophoblastic neoplasia (GTN). Intralesional color flows and resistive index (RI) on color Doppler US were prospectively analyzed in 21 consecutive suspected GTN cases. RI of the intralesional artery was investigated on the basis of the presence or absence of mass and metastasis. Correlation between RI of intralesional artery and urinary {beta}-hCG was also investigated. Intralesional color flows were identified in 15 patients with GTN. On operation, intralesional color flows were observed in one of two patients in whom the presence of completely necrotic tissue was confirmed. Intralesional color flows, however, were not detected in four patients who were proved not to be GTN sufferers. Sensitivity, specificity, accuracy, positive and negative predictive values, and accuracy were 100%, 83%, 95%, 94% and 100%, respectively. Significant correlation between RI of the intralesional artery and urinary {beta}-hCG was not established (p=0.49, r=0.19). RI of this artery was not substantially different between groups with and without mass, and between groups with and without metastasis (p=0.32, p=0.82). The current study demonstrates that color Doppler US is a sensitive and useful method for the diagnosis of GTN.

  11. On the Fly Doppler Broadening Using Multipole Representation

    Energy Technology Data Exchange (ETDEWEB)

    Khassenov, Azamat; Choi, Sooyoung; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    On the Fly Doppler broadening is the technique to avoid pre-generation of the microscopic cross section, in other words, reduce the amount of storage. Currently, there are different types of formalisms used by NJOY code to generate reaction cross section and accomplish its Doppler broadening. Single-Level Breit-Wigner (SLBW) formalism is limited to well-separated resonances, in other words, it does not consider interference between energy levels. Multi-Level Breit- Wigner formalism (MLBW) was tested as the candidate for the cross section generation in the Monte Carlo code, which is under development in UNIST. According to the results, MLBW method requires huge amount of computational time to produce cross section at certain energy point. Reich-Moore (RM) technique can generate only 0K cross section, which means that it cannot produce broaden cross section directly from resonance parameters. The first step was to convert resonance parameters given in nuclear data file into multipoles. MPR shows very high potential to be used as the formalism in the on-the-fly Doppler broadening module of MCS. One of the main reasons is that comparison of the time cost shown in Table IV supports application of multipole representation.

  12. The role of Doppler ultrasound in rheumatic diseases.

    Science.gov (United States)

    Porta, Francesco; Radunovic, Goran; Vlad, Violeta; Micu, Mihaela C; Nestorova, Rodina; Petranova, Tzvetanka; Iagnocco, Annamaria

    2012-06-01

    The use of Doppler techniques, including power, colour and spectral Doppler, has greatly increased in rheumatology in recent years. This is due to the ability of Doppler US (DUS) to detect pathological vascularization within joints and periarticular soft tissues, thereby demonstrating the presence of active inflammation, which has been reported to be correlated with the local neo-angiogenesis. In synovitis, DUS showed a high correlation with histological and MRI findings, thus it is considered a valid tool to detect pathological synovial vascularization. Moreover, it is more sensitive than clinical examination in detecting active joint inflammation and in the evaluation of response to treatment. In addition, DUS may be considered as a reference imaging modality in the assessment of enthesitis, MRI being not sensitive and histology not feasible. Moreover, it has been demonstrated to be able to detect changes in asymptomatic enthesis. In conclusion, DUS is a useful and sensitive tool in the evaluation and monitoring of active inflammation. Its widespread use in clinical rheumatological practice is recommended. The aim of this article is to review the current literature about the role of DUS in rheumatic diseases, analysing its validity, reliability and feasibility.

  13. Single mode, extreme precision Doppler spectrographs

    CERN Document Server

    Schwab, Christian; Betters, Christopher H; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2012-01-01

    The 'holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a...

  14. Underway Doppler current profiles in the Gulf of California

    Science.gov (United States)

    Badan-Dangon, Antoine; Lavin, Miguel F.; Hendershott, Myrl C.

    The circulation of the Gulf of California has long been of scientific interest. The first hydrographic expedition there was in 1889 [Roden and Groves, 1959], followed half a century later by Sverdrup's cruise on the R/V E.W. Scripps [Suerdrup, 1941] in February and March of 1939. Since then, the Gulfs circulation has been the subject of active research [Alvarez-Boirego, 1983]. During the 1980s, scientists at CICESE and at the Scripps Institution of Oceanography designed a cooperative effort, the Pichicuco project, to investigate some of the notable physical oceanographic features of the Gulf.The Gulf of California is a marginal sea close to 1500 km long and about 200 km wide, oriented northwest to southeast, between the peninsula of Baja California and western continental Mexico. It consists of a succession of basins that shoal progressively from about 3500 m at the mouth, where the Gulf connects with the Pacific Ocean, to just over 2000 m in the central Guaymas Basin. In contrast, the far northern Gulf is a continental shelf sea whose depth exceeds 200 m only in a few small basins. The Gulf's circulation is profoundly influenced by processes taking place at the narrows that connect Guaymas Basin to the northern Gulf between 28°N and 29°N (see Figure 1). These are a sequence of channels, each about 15 km wide, between San Lorenzo, San Esteban, and Tiburón islands, which reduce the effective cross section of the Gulf to about 2.25×106m2. The westernmost connection, close to Baja California, is the Ballenas-Salsipuedes (hereafter Ballenas) channel, whose depth exceeds 1600 m in its central part. It is bounded partially to the north by a lateral constriction with a maximum depth of 600 m, near the northern extreme of Angel de la Guarda island, and to the east by a ridge from which rise Angel de la Guarda, San Lorenzo, and other smaller islands. This ridge extends underwater about 20 km to the southeast from San Lorenzo into Guaymas Basin, where it forms the eastern wall of San Lorenzo sill, the southern end of Ballenas channel. A narrow canyon on this sill has a maximum depth of about 430 m. The central San Esteban channel is located between San Lorenzo and San Esteban islands, and is the deepest and widest of the three. It possesses a single, rather broad sill, formed by a westward underwater extension of San Esteban island. The third channel, between San Esteban and Tiburon islands, is narrower than the first two, has a broad sill at about 300 m depth, and connects the extension of the Sonoran shelf with the deeper basin to the north. Little studied before, it now appears to play a significant role in the regional exchange of water. A fourth, narrow channel between Tiburon island and mainland Mexico is too shallow to participate strongly in the circulation.

  15. High range resolution micro-Doppler analysis

    Science.gov (United States)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.

    2015-05-01

    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  16. Student Microwave Experiments Involving the Doppler Effect.

    Science.gov (United States)

    Weber, F. Neff; And Others

    1980-01-01

    Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)

  17. High Throughput Direct Detection Doppler Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lite Cycles, Inc. (LCI) proposes to develop a direct-detection Doppler lidar (D3L) technology called ELITE that improves the system optical throughput by more than...

  18. Doppler echocardiography in normal functioning valve prostheses.

    Science.gov (United States)

    Cha, R; Yang, S S; Salvucci, T; DiBlasi, S

    1994-09-01

    Even though there has been some criticism regarding the Doppler evaluation in prosthetic valves because of inter-observer and intra-observer variability, among other factors, and Doppler study has a tendency to have falsely high gradients compared to invasive studies, especially mechanical aortic prostheses, Doppler evaluation can provide reliable hemodynamic information about valve function. This test may be particularly useful if used serially, when baseline values are known. Doppler measurement of gradient and valve area has an expected normal range that is specific for the prosthetic type, size, anatomical position, and chronological age. Clearly, a database involving these aspects is needed to provide a more accurate normal range. This study is intended to provide guidance for echocardiographers.

  19. Adaptive Model-Based Mine Detection/Localization using Noisy Laser Doppler Vibration Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, E J; Xiang, N; Candy, J V

    2009-04-06

    The acoustic detection of buried mines is hampered by the fact that at the frequencies required for obtaining useful penetration, the energy is quickly absorbed by the ground. A recent approach which avoids this problem, is to excite the ground with a high-level low frequency sound, which excites low frequency resonances in the mine. These resonances cause a low-level vibration on the surface which can be detected by a Laser Doppler Vibrometer. This paper presents a method of quickly and efficiently detecting these vibrations by sensing a change in the statistics of the signal when the mine is present. Results based on real data are shown.

  20. The influence of current speed and vegetation density on flow structure in two macrotidal eelgrass canopies

    Science.gov (United States)

    Lacy, Jessica R.; Wyllie-Echeverria, Sandy

    2011-01-01

    The influence of eelgrass (Zostera marina) on near-bed currents, turbulence, and drag was investigated at three sites in two eelgrass canopies of differing density and at one unvegetated site in the San Juan archipelago of Puget Sound, Washington, USA. Eelgrass blade length exceeded 1 m. Velocity profiles up to 1.5 m above the sea floor were collected over a spring-neap tidal cycle with a downward-looking pulse-coherent acoustic Doppler profiler above the canopies and two acoustic Doppler velocimeters within the canopies. The eelgrass attenuated currents by a minimum of 40%, and by more than 70% at the most densely vegetated site. Attenuation decreased with increasing current speed. The data were compared to the shear-layer model of vegetated flows and the displaced logarithmic model. Velocity profiles outside the meadows were logarithmic. Within the canopies, most profiles were consistent with the shear-layer model, with a logarithmic layer above the canopy. However, at the less-dense sites, when currents were strong, shear at the sea floor and above the canopy was significant relative to shear at the top of the canopy, and the velocity profiles more closely resembled those in a rough-wall boundary layer. Turbulence was strong at the canopy top and decreased with height. Friction velocity at the canopy top was 1.5–2 times greater than at the unvegetated, sandy site. The coefficient of drag CD on the overlying flow derived from the logarithmic velocity profile above the canopy, was 3–8 times greater than at the unvegetated site (0.01–0.023 vs. 2.9 × 10−3).

  1. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  2. with Ultrasound Color Doppler Imaging

    Directory of Open Access Journals (Sweden)

    Shin Takayama

    2012-01-01

    Full Text Available Color Doppler imaging (CDI can be used to noninvasively create images of human blood vessels and quantitatively evaluate blood flow in real-time. The purpose of this study was to assess the effects of acupuncture on the blood flow of the peripheral, mesenteric, and retrobulbar arteries by CDI. Statistical significance was defined as P values less than 0.05. Blood flow in the radial and brachial arteries was significantly lower during needle stimulation on LR3 than before in healthy volunteers, but was significantly higher after needle stimulation than before. LR3 stimulation also resulted in a significant decrease in the vascular resistance of the short posterior ciliary artery and no significant change of blood flow through the superior mesenteric artery (SMA during acupuncture. In contrast, ST36 stimulation resulted in a significant increase in blood flow through the SMA and no significant change in the vascular resistance of the retrobulbar arteries. Additionally, acupuncture at previously determined acupoints in patients with open-angle glaucoma led to a significant reduction in the vascular resistance of the central retinal artery and short posterior ciliary artery. Our results suggest that acupuncture can affect blood flow of the peripheral, mesenteric, and retrobulbar arteries, and CDI can be useful to evaluate hemodynamic changes by acupuncture.

  3. The Doppler effect in NMR spectroscopy.

    Science.gov (United States)

    Guéron, Maurice

    2003-02-01

    An NMR sample may be subject to motions, such as those due to sample spinning or to liquid flow. Is the spectrum of such a sample affected by the Doppler effect? The question arises because, instrumental dimensions being much shorter than the wavelength, it is the near-field of the precessing magnetic moment which couples to the receiver coil, rather than the radiated far-field. We expand the near-field into plane propagating waves. For each such wave there is another one with the same amplitude, propagating in the opposite direction. The Doppler shifts are therefore equal and opposite. In the model case of a small fluid sample moving with constant velocity, this leads to a distribution of Doppler shifts which is symmetrical with respect to the unshifted frequency: there is no net spectral shift. We examine the possibility of observing the Doppler distribution in this case. We also consider the case of thermal motion of a gas. We draw attention to the resolved Doppler splitting of molecular rotational transitions in a supersonic burst as observed in a microwave resonator. We also mention briefly the Doppler effect in molecular beam spectroscopy.

  4. Doppler micro sense and avoid radar

    Science.gov (United States)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  5. Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico: determination of dominant zooplankton and micronekton scatterers

    Science.gov (United States)

    Ressler, Patrick H.

    2002-11-01

    A 153 kHz narrowband acoustic Doppler current profiler (ADCP) was used to measure volume backscattering strength ( Sv) during a deepwater oceanographic survey of cetacean and seabird habitat in the northeastern Gulf of Mexico. Sv was positively related to zooplankton and micronekton biomass (wet displacement volume) in 'sea-truth' net hauls made with a 1 m 2 Multiple Opening-Closing Net Environmental Sensing System (MOCNESS). A subset of these MOCNESS tows was used to explore the relationship between the numerical densities of various taxonomic categories of zooplankton and the ADCP backscatter signal. Crustaceans, small fish, and fragments of non-gas-bearing siphonophores in the net samples all showed significant, positive correlations with the acoustic signal, while other types of gelatinous zooplankton, pteropod and atlantid molluscs, and gas-filled siphonophore floats showed no significant correlation with Sv. Previously published acoustic scattering models for zooplankton were used to calculate expected scattering for several general zooplankton types and sizes for comparison with the field data. Even though gelatinous material often made up a large fraction of the total biomass, crustaceans, small fish, and pteropods were most likely the important scatterers. Since only crustacean and small fish densities were significantly correlated with Sv, it is suggested that Sv at 153 kHz can be used as a relative proxy for the abundance of these organisms in the Gulf of Mexico.

  6. Flow velocity profiling using acoustic time of flight flow metering based on wide band signals and adaptive beam-forming techniques

    Science.gov (United States)

    Murgan, I.; Candel, I.; Ioana, C.; Digulescu, A.; Bunea, F.; Ciocan, G. D.; Anghel, A.; Vasile, G.

    2016-11-01

    In this paper, we present a novel approach to non-intrusive flow velocity profiling technique using multi-element sensor array and wide-band signal's processing methods. Conventional techniques for the measurements of the flow velocity profiles are usually based on intrusive instruments (current meters, acoustic Doppler profilers, Pitot tubes, etc.) that take punctual velocity readings. Although very efficient, these choices are limited in terms of practical cases of applications especially when non-intrusive measurements techniques are required and/or a spatial accuracy of the velocity profiling is required This is due to factors related to hydraulic machinery down time, the often long time duration needed to explore the entire section area, the frequent cumbersome number of devices that needs to be handled simultaneously, or the impossibility to perform intrusive tests. In the case of non-intrusive flow profiling methods based on acoustic techniques, previous methods concentrated on using a large number of acoustic transducers placed around the measured section. Although feasible, this approach presents several major drawbacks such as a complicated signal timing, transmission, acquisition and recording system, resulting in a relative high cost of operation. In addition, because of the geometrical constraints, a desired number of sensors may not be installed. Recent results in acoustic flow metering based on wide band signals and adaptive beamforming proved that it is possible to achieve flow velocity profiles using less acoustic transducers. In a normal acoustic time of flight path the transducers are both emitters and receivers, sequentially changing their roles. In the new configuration, proposed in this paper, two new receivers are added on each side. Since the beam angles of each acoustic transducer are wide enough the newly added transducers can receive the transmitted signals and additional time of flight estimation can be done. Thus, several flow

  7. Single Mode, Extreme Precision Doppler Spectrographs

    Science.gov (United States)

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2014-04-01

    The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.

  8. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  9. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  10. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-04-30

    OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-043016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to...improve our understanding. During the past few years, the physics effects studied have been three-dimensional propagation on global scales, deep water

  11. Nearfield Acoustical Holography

    Science.gov (United States)

    Hayek, Sabih I.

    Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.

  12. Acoustic assessment of sound scattering zooplankton in warm- and cold-core eddies in the Gulf of Mexico

    Science.gov (United States)

    Zimmerman, Robert Allen

    Zooplankton and micronekton which cause a density discontinuity with the surrounding seawater reflect acoustic energy. This acoustic backscatter intensity (ABI) was measured using a vessel mounted 153 kHz acoustic Doppler current profiler. The ABI was used to describe vertical migration and distribution of sound scatterers in several mesoscale hydrographic features commonly found in the Gulf of Mexico: cold-core rings (CCRs), warm-core Loop Current eddies (LCEs) and the Loop Current (LC). The present paradigm contends that cold- core (cyclonic) features are mesoscale areas of enhanced production due to an influx of new nitrogen to surface waters as a result of divergent flow. The null hypothesis which was tested in this study was that the acoustic signatures of these features were not significantly different from one another. Clear diel differences in all of the features and a robust, positive correlation between ABI and plankton and micronekton wet displacement volume collected in MOCNESS tows in the upper 100 m of the water column were observed. During the day, ABI in CCRs was significantly greater than in LCEs and in the LC with regards to the upper 200 m. However, ABI in the LCEs and LC were not significantly different from each other. During the night, the ABI in the upper 50 m of the CCRs was significantly greater than that in the LCEs and the LC. However, there were no differences between features when ABI at night was summed for the entire upper 200 m, due to substantial vertical migrations of organisms into the upper 200 m of the water column at night. Two LCEs were revisited at an age of 8-9 months after their initial acoustic transects. The null hypothesis that there would be no significant difference in integrated ABI when the LCEs were resampled was rejected: both LCEs showed a reduction in integrated ABI over the upper 200 m. Further investigations into the faunal changes of these features are warranted, but the ADCP should continue to be a useful

  13. Ultrasonography with color Doppler and power Doppler in the diagnosis of periapical lesions

    Directory of Open Access Journals (Sweden)

    Sumit Goel

    2011-01-01

    Full Text Available Aim: To evaluate the efficacy of ultrasonography (USG with color Doppler and power Doppler applications over conventional radiography in the diagnosis of periapical lesions. Materials and Methods: Thirty patients having inflammatory periapical lesions of the maxillary or mandibular anterior teeth and requiring endodontic surgery were selected for inclusion in this study. All patients consented to participate in the study. We used conventional periapical radiographs as well as USG with color Doppler and power Doppler for the diagnosis of these lesions. Their diagnostic performances were compared against histopathologic examination. All data were compared and statistically analyzed. Results: USG examination with color Doppler and power Doppler identified 29 (19 cysts and 10 granulomas of 30 periapical lesions accurately, with a sensitivity of 100% for cysts and 90.91% for granulomas and a specificity of 90.91% for cysts and 100% for granulomas. In comparison, conventional intraoral radiography identified only 21 lesions (sensitivity of 78.9% for cysts and 45.4% for granulomas and specificity of 45.4% for cysts and 78.9% for granulomas. There was definite correlation between the echotexture of the lesions and the histopathological features except in one case. Conclusions: USG imaging with color Doppler and power Doppler is superior to conventional intraoral radiographic methods for diagnosing the nature of periapical lesions in the anterior jaws. This study reveals the potential of USG examination in the study of other jaw lesions.

  14. Microembolus Detection by Transcranial Doppler Sonography: Review of the Literature

    Directory of Open Access Journals (Sweden)

    Vlasta Vuković-Cvetković

    2012-01-01

    Full Text Available Transcranial Doppler can detect microembolic signals which are characterized by unidirectional high intensity increase, short duration, random occurrence, and a “whistling” sound. Microembolic signals have been detected in a number of clinical settings: carotid artery stenosis, aortic arch plaques, atrial fibrillation, myocardial infarction, prosthetic heart valves, patent foramen ovale, valvular stenosis, during invasive procedures (angiography, percutaneous transluminal angioplasty, surgery (carotid, cardiopulmonary bypass, orthopedic, and in certain systemic diseases. Microembolic signals are frequent in large artery disease, less commonly detected in cardioembolic stroke, and infrequent in lacunar stroke. This article provides an overview about the current state of technical and clinical aspects of microembolus detection.

  15. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  16. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  17. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  18. Localized acoustic surface modes

    Science.gov (United States)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  19. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  20. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  1. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  2. A comprehensive radial velocity error budget for next generation Doppler spectrometers

    Science.gov (United States)

    Halverson, Samuel; Terrien, Ryan; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefánsson, Gudmundur K.; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; McElwain, Michael; Schwab, Christian; Ramsey, Lawrence; Wright, Jason; Wang, Sharon; Gong, Qian; Roberston, Paul

    2016-08-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.

  3. Laboratory Experiments of Rip Current Generation

    Science.gov (United States)

    Garnier, R.; Coco, G.; Lomonaco, P.; Dalrymple, R. A.; Alvarez, A.; Gonzalez, M.; Medina, R.

    2014-12-01

    The hypothesis of rip current generation from purely hydrodynamic processes is here investigated through laboratory experiments. The experiments have been performed at the Cantabria Coastal and Ocean Basin (CCOB) with a segmented wavemaker consisting of 64 waveboards. The basin measures 25m in the cross-shore and 32m in the alongshore direction and the water depth at the wavemaker is 1m. A concrete plane sloping (1:5) beach has been built in the opposite side of the wave machine, its toe is 15m from the waveboards. Reflective lateral walls covered the full length of the basin. The set of instruments consists of 33 wave gauges deployed along two longshore and two cross-shore transects, 7 acoustic Doppler velocimeters and 15 run-up wires. Furthermore a set of two cameras has been synchronized with the data acquisition system. Two types of experiments have been performed to specifically study the generation of rip currents under wave group forcing. First, similarly to the experiments of Fowler and Dalrymple (Proc. 22nd Int. Conf. Coast. Eng.,1990), two intersecting wave trains with opposite directions have been imposed. They give rise to the formation of a non-migrating rip current system with a wavelength that depends on wave frequency and direction. Second, single wave trains with alongshore periodic amplitude attenuation have been imposed. Although the attenuation has been set such that the incident wave field has the same envelope as in the first type of experiments, the rip current system differs due to diffraction and interference processes. The results for different wave conditions (maximum incident wave height from 0.2m to 0.4m, wave period from 1.4s to 2s) will be presented and the intensity of the rip currents will be compared to the alongshore variation in wave set-up. This research is part of the ANIMO project funded by the Spanish Government under contract BIA2012-36822.

  4. Environmental Acoustics and Intensity Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface

    Science.gov (United States)

    2014-09-30

    Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface Peter H. Dahl Applied Physics Laboratory University of Washington...To understand and predict key properties of the signal intensity vector field as it propagates away from an active sound source, with emphasis is on...exploit acoustic vector field properties (velocity, acceleration, intensity) much more than today’s. Furthermore, advancement of current Navy

  5. Chromospheric heating by acoustic waves compared to radiative cooling

    CERN Document Server

    Sobotka, M; Švanda, M; Jurčák, J; del Moro, D; Berrilli, F

    2016-01-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of solar atmosphere. A weak chromospheric plage near a large solar pore NOAA 11005 was observed on October 15, 2008 in the lines Fe I 617.3 nm and Ca II 853.2 nm with the Interferometric Bidimemsional Spectrometer (IBIS) attached to the Dunn Solar Telescope. Analyzing the Ca II observations with spatial and temporal resolutions of 0.4" and 52 s, the energy deposited by acoustic waves is compared with that released by radiative losses. The deposited acoustic flux is estimated from power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven 1D hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 72 %. In quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only of about 15 %. In active areas with photospheric ma...

  6. Finite element estimation of acoustical response functions in HID lamps

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Bernd; Wolff, Marcus [Department of Mechanical Engineering and Production, School of Engineering and Computer Science, Hamburg University of Applied Sciences, Berliner Tor 21, 20099 Hamburg (Germany); Hirsch, John; Antonis, Piet [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Bhosle, Sounil [Universite de Toulouse (United States); Barrientos, Ricardo Valdivia, E-mail: bernd.baumann@haw-hamburg.d [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)

    2009-11-21

    High intensity discharge lamps can experience flickering and even destruction when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp's arc tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.

  7. 增升装置气动噪声研究现状与发展趋势%Current Status and Future Trend for Aero-acoustics Research on High-lift Devices

    Institute of Scientific and Technical Information of China (English)

    邓一菊; 段卓毅; 侯银珠

    2012-01-01

    在对绿色航空发展要求、噪声适航标准、机体噪声概念介绍的基础上,对增升装置气动噪声进行了详细论述,包括数值分析技术、试验研究、飞行试验、降噪设计等的研究现状;阐述了增升装置气动噪声研究的重要性,提出重视机理研究和数值分析方法验证工作的观点,指出增升装置气动与噪声一体化设计的发展趋势。%Based on the green aviation requirements, FAR noise standards, air frame noise sources, the state of the art of aero-acoustics techniques including CFD, wind tunnel test, flight test and noise reduction are discussed in details. The importance of aero-acoustics research on high-lift devices is described, the viewpoint of paying regard to mechanism research and verifying by digital analysis method is presented and the future trend of high- lift devices aero-acoustics, i.e. the aero acoustics and high-lift devices integrated design, is clearly pointed out.

  8. Active acoustic metamaterials reconfigurable in real-time

    CERN Document Server

    Popa, Bogdan-Ioan; Konneker, Adam; Cummer, Steven A

    2015-01-01

    A major limitation of current acoustic metamaterials is that their acoustic properties are either locked into place once fabricated or only modestly tunable, tying them to the particular application for which they are designed. We present in this paper a design approach that yields active metamaterials whose physical structure is fixed, yet their local acoustic response can be changed almost arbitrarily and in real-time by configuring the digital electronics that control the metamaterial acoustic properties. We demonstrate experimentally this approach by designing a metamaterial slab configured to act as a very thin acoustic lens that manipulates differently three identical, consecutive pulses incident on the lens. Moreover, we show that the slab can be configured to implement simultaneously various roles, such as that of a lens and beam steering device. Finally, we show that the metamaterial slab is suitable for efficient second harmonic acoustic imaging devices capable to overcome the diffraction limit of l...

  9. ADEPT - Abnormal Doppler Enteral Prescription Trial

    Directory of Open Access Journals (Sweden)

    McCormick Kenny

    2009-10-01

    Full Text Available Abstract Background Pregnancies complicated by abnormal umbilical artery Doppler blood flow patterns often result in the baby being born both preterm and growth-restricted. These babies are at high risk of milk intolerance and necrotising enterocolitis, as well as post-natal growth failure, and there is no clinical consensus about how best to feed them. Policies of both early milk feeding and late milk feeding are widely used. This randomised controlled trial aims to determine whether a policy of early initiation of milk feeds is beneficial compared with late initiation. Optimising neonatal feeding for this group of babies may have long-term health implications and if either of these policies is shown to be beneficial it can be immediately adopted into clinical practice. Methods and Design Babies with gestational age below 35 weeks, and with birth weight below 10th centile for gestational age, will be randomly allocated to an "early" or "late" enteral feeding regimen, commencing milk feeds on day 2 and day 6 after birth, respectively. Feeds will be gradually increased over 9-13 days (depending on gestational age using a schedule derived from those used in hospitals in the Eastern and South Western Regions of England, based on surveys of feeding practice. Primary outcome measures are time to establish full enteral feeding and necrotising enterocolitis; secondary outcomes include sepsis and growth. The target sample size is 400 babies. This sample size is large enough to detect a clinically meaningful difference of 3 days in time to establish full enteral feeds between the two feeding policies, with 90% power and a 5% 2-sided significance level. Initial recruitment period was 24 months, subsequently extended to 38 months. Discussion There is limited evidence from randomised controlled trials on which to base decisions regarding feeding policy in high risk preterm infants. This multicentre trial will help to guide clinical practice and may also

  10. APPLICATION OF DOMAIN DECOMPOSITION IN ACOUSTIC AND STRUCTURAL ACOUSTIC ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Conventional element based methods for modeling acoustic problems are limited to low-frequency applications due to the huge computational efforts. For high-frequency applications, probabilistic techniques, such as statistical energy analysis (SEA), are used. For mid-frequency range, currently no adequate and mature simulation methods exist. Recently, wave based method has been developed which is based on the indirect TREFFTZ approach and has shown to be able to tackle problems in the mid-frequency range. In contrast with the element based methods, no discretization is required. A sufficient, but not necessary, condition for convergence of this method is that the acoustic problem domain is convex. Non-convex domains have to be partitioned into a number of (convex) subdomains. At the interfaces between subdomains, specific coupling conditions have to be imposed. The considered two-dimensional coupled vibro-acoustic problem illustrates the beneficial convergence rate of the proposed wave based prediction technique with high accuracy. The results show the new technique can be applied up to much higher frequencies.

  11. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ziminsky, Willy Steve (Simpsonville, SC); Krull, Anthony Wayne (Anderson, SC); Healy, Timothy Andrew (Simpsonville, SC), Yilmaz, Ertan (Glenville, NY)

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  12. Acoustic fluidization for earthquakes?

    OpenAIRE

    Sornette, D.; Sornette, A.

    2000-01-01

    Melosh [1996] has suggested that acoustic fluidization could provide an alternative to theories that are invoked as explanations for why some crustal faults appear to be weak. We show that there is a subtle but profound inconsistency in the theory that unfortunately invalidates the results. We propose possible remedies but must acknowledge that the relevance of acoustic fluidization remains an open question.

  13. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  14. Diabetic Nephropathy : Evaluation with Doppler Ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jung Suk; Kim, Seung Hyup; Kang, Heung Sik; Park, Jae Hyung; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-06-15

    To compare Doppler ultrasonography with laboratory tests in evaluation of diabetic nephropathy. Fifty-five patients (mean age = 60, M : F = 26 : 29) with diabetes mellitus underwent renal Doppler ultrasonography. Resistive indices were compared with degree of proteinuria, serum creatinine level, and creatinine clearance rate. Eighteen patients who showed no proteinuria or microscopic proteinuria had a mean resistive index (RI) of 0.72 (SD, 0.05), 16 patients with macroscopic proteinuria without nephrotic syndrome had a mean RI of 0.82 (SD, 0.13), and 21 patients with nephrotic syndrome had a mean RI of 0.90 (SD, 0.12). Renal RI correlated highly with serum creatinine level (r = 0.62) and creatinine clearance rate (r = -0.43). Renal Doppler ultrasonography provides a useful indication of renal function in diabetic nephropathy but cannot offer an advantage over conventional laboratory test

  15. Acoustic ground impedance meter

    Science.gov (United States)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  16. Cochlear bionic acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  17. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  18. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  19. Acoustic estimates of zooplankton and micronekton biomass in cyclones and anticyclones of the northeastern Gulf of Mexico

    Science.gov (United States)

    Ressler, Patrick Henry

    2001-12-01

    In the Gulf of Mexico (GOM), coarse to mesoscale eddies can enhance the supply of limiting nutrients into the euphotic zone, elevating primary production. This leads to 'oases' of enriched standing stocks of zooplankton and micronekton in otherwise oligotrophic deepwater (>200 m bottom depth). A combination of acoustic volume backscattering (Sv) measurements with an acoustic Doppler current profiler (ADCP) and concurrent net sampling of zooplankton and micronekton biomass in GOM eddy fields between October 1996 and November 1998 confirmed that cyclones and flow confluences were areas of locally enhanced Sv and standing stock biomass. Net samples were used both to 'sea-truth' the acoustic measurements and to assess the influence of taxonomic composition on measured Sv. During October 1996 and August 1997, a mesoscale (200--300 km diameter) cyclone-anticyclone pair in the northeastern GOM was surveyed as part of a cetacean (whale and dolphin) and seabird habitat, study. Acoustic estimates of biomass in the upper 10--50 m of the water column showed that the cyclone and flow confluence were enriched relative to anticyclonic Loop Current Eddies during both years. Cetacean and seabird survey results reported by other project researchers imply that these eddies provide preferential habitat because they foster locally higher concentrations of higher-trophic-level prey. Sv measurements in November 1997 and 1998 showed that coarse scale eddies (30--150 km diameter) probably enhanced nutrients and S, in the deepwater GOM within 100 km of the Mississippi delta, an area suspected to be important habitat for cetaceans and seabirds. Finally, Sv, data collected during November-December 1997 and October-December 1998 from a mooring at the head of DeSoto Canyon in the northeastern GOM revealed temporal variability at a single location: characteristic temporal decorrelation scales were 1 day (diel vertical migration of zooplankton and micronekton) and 5 days (advective processes). A

  20. An Undergraduate Experiment on Nuclear Lifetime Measurement Using the Doppler Effect

    Science.gov (United States)

    Campbell, J. L.; And Others

    1972-01-01

    While designed for a senior undergraduate laboratory, the experiment illustrates the principles involved in the various Doppler techniques currently used in nuclear lifetime studies and demonstrates the versatility of the Ge(Li) detector in applications other than direct energy or intensity measurement. (Author/TS)

  1. Assessment of myocardial strain and strain rate by tissue doppler echocar-diography

    Directory of Open Access Journals (Sweden)

    Ekimova N.A.

    2013-03-01

    Full Text Available The objective of the article is to review the current data on the method of quantitative evaluation of cardiac mechanics — assessment of myocardial strain and strain rate according to the results of the tissue Doppler echocardiography and prospects of its clinical application.

  2. Observation of the inverse Doppler effect.

    Science.gov (United States)

    Seddon, N; Bearpark, T

    2003-11-28

    We report experimental observation of an inverse Doppler shift, in which the frequency of a wave is increased on reflection from a receding boundary. This counterintuitive effect has been produced by reflecting a wave from a moving discontinuity in an electrical transmission line. Doppler shifts produced by this system can be varied in a reproducible manner by electronic control of the transmission line and are typically five orders of magnitude greater than those produced by solid objects with kinematic velocities. Potential applications include the development of tunable and multifrequency radiation sources.

  3. Reversed Doppler effect in photonic crystals.

    Science.gov (United States)

    Reed, Evan J; Soljacić, Marin; Joannopoulos, John D

    2003-09-26

    Nonrelativistic reversed Doppler shifts have never been observed in nature and have only been speculated to occur in pathological systems with simultaneously negative effective permittivity and permeability. This Letter presents a different, new physical phenomenon that leads to a nonrelativistic reversed Doppler shift in light. It arises when light is reflected from a moving shock wave propagating through a photonic crystal. In addition to reflection of a single frequency, multiple discrete reflected frequencies or a 10 GHz periodic modulation can also be observed when a single carrier frequency of wavelength 1 microm is incident.

  4. Preprocessing of ionospheric echo Doppler spectra

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHAO Zhengyu; WANG Feng; SU Fanfan

    2007-01-01

    The real-time information of the distant ionosphere can be acquired by using the Wuhan ionospheric oblique backscattering sounding system(WIOBSS),which adopts a discontinuous wave mechanism.After the characteristics of the ionospheric echo Doppler spectra were analyzed,the signal preprocessing was developed in this paper,which aimed at improving the Doppler spectra.The results indicate that the preprocessing not only makes the system acquire a higher ability of target detection but also suppresses the radio frequency interference by 6-7 dB.

  5. Magnetic Doppler Imaging of Active Stars

    CERN Document Server

    Kochukhov, O

    2007-01-01

    We present a new implementation of the magnetic Doppler imaging technique, which aims at self-consistent temperature and magnetic mapping of the surface structures in cool active stars. Our magnetic imaging procedure is unique in its capability to model individual spectral features in all four Stokes parameters. We discuss performance and intrinsic limitations of the new magnetic Doppler imaging method. A special emphasis is given to the simultaneous modelling of the magnetically sensitive lines in the optical and infrared regions and to combining information from both atomic and molecular spectral features. These two techniques may, for the first time, give us a tool to study magnetic fields in the starspot interiors.

  6. Research of smoothing pseudo-range algorithm by Doppler based on GPS/BD

    Science.gov (United States)

    Kang, Chuanli; Zhou, Yanliu

    2015-12-01

    GNSS (Global Navigation Satellite System) technology not only in the general field of surveying and mapping, geology, mining, water and electricity, and in particular in the field of public security, fire protection, tourism, search and rescue, adventure have been more widely used. These special areas require real-time and high positioning accuracy. Currently, GNSS precision positioning technology has become a hot research direction. This paper introduced an algorithm of smoothing pseudo range by Doppler based GPS/BD to improve GNSS positioning precision. This algorithm decoded the pseudo range data and ephemeris data, and then designed algorithm of smoothing pseudo range by Doppler according principle of Doppler smoothing pseudo range. This algorithm was realized by C++ and proved its efficiency. At last, this algorithm has proved its correctness through calculating and analyzing practical Doppler and pseudo range data, and then a conclusion has been obtained: the Doppler value precision is sub-meter, far better than the pseudo-range accuracy, so that if the two data are combined to calculate position that can help to improve the positioning accuracy.

  7. Aortic isthmus Doppler velocimetry: role in assessment of preterm fetal growth restriction.

    LENUS (Irish Health Repository)

    Kennelly, M M

    2012-02-01

    Intrauterine fetal growth restriction (IUGR) is an important pregnancy complication associated with significant adverse clinical outcome, stillbirth, perinatal morbidity and cerebral palsy. To date, no uniformly accepted management protocol of Doppler surveillance that reduces mortality and cognitive morbidity has emerged. Aortic isthmus (AoI) evaluation has been proposed as a potential monitoring tool for IUGR fetuses. In this review, the current knowledge of the relationship between AoI Doppler velocimetry and preterm fetal growth restriction is reviewed. Relevant technical aspects and reproducibility data are reviewed as we discuss AoI Doppler and its place within the existing repertoire of Doppler assessments in placental insufficiency. The AoI is a link between the right and left ventricles which perfuse the lower and upper body, respectively. The clinical use of AoI waveforms for monitoring fetal deterioration in IUGR has been limited, but preliminary work suggests that abnormal AoI impedance indices are an intermediate step between placental insufficiency-hypoxemia and cardiac decompensation. Further prospective studies correlating AoI indices with arterial and venous Doppler indices and perinatal outcome are required before encorporating this index into clinical practice.

  8. From the big bang to cleaner teeth - doppler shift - a practical engineering tool

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, R [Vibrometry and Velocimetry Product Specialist, Lambda Photometrics Ltd, UK Division of Polytec GmbH, Lambda House, Batford Mill, Harpenden, Hertfordshire, AL5 5BZ (United Kingdom)], E-mail: roger@lambdaphoto.co.uk

    2008-03-01

    Many basic engineering techniques rely on fundamental science that is so well embedded and accepted, that it becomes effectively 'invisible' to the average user. Doppler Shift is one such physical phenomenon that is widely used throughout science and engineering, but often without being noticed. Probably the most familiar scientific application of Doppler is the measurement of the speed of stars, to identify the expansion of the Universe since the 'Big Bang'. But in engineering and R and D, it can and is being used as a powerful vibration measurement tool. Using laser-based interferometric techniques, with Doppler Frequency Shifting in one path of the interferometer, velocities and displacements as subtle as those of the hearing mechanisms of flies and as fierce as the motion of Formula 1 engines valves can be measured This paper describes the basics of Doppler Shift and its use within Laser Doppler Vibration and Velocity measurement instruments. It will cover the extremely wide performance capabilities of the technique and the practical advantages of such instruments, with some practical examples of how and where they are currently being used. Of these examples, many are unique and would not be practical or even feasible without the availability of such tools.

  9. Fish embryo multimodal imaging by laser Doppler digital holography

    CERN Document Server

    Verrier, Nicolas; Picart, Pascal; Gross, Michel

    2015-01-01

    A laser Doppler imaging scheme combined to an upright microscope is proposed. Quantitative Doppler imaging in both velocity norm and direction, as well as amplitude contrast of either zebrafish flesh or vasculature is demonstrated.

  10. Operational Bright-Band Snow Level Detection Using Doppler Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  11. Flat acoustic lens by acoustic grating with curled slits

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  12. In-vivo three-dimensional Doppler variance imaging for tumor angiogenesis on chorioallantoic membrane

    Science.gov (United States)

    Qi, Wenjuan; Liu, Gangjun; Chen, Zhongping

    2011-03-01

    Non-invasive tumor microvasculature visualization and characterization play significant roles in the detection of tumors and importantly, for aiding in the development of therapeutic strategies. The feasibility and effectiveness of a Doppler variance standard deviation imaging method for tumor angiogenesis on chorioallantoic membrane were tested in vivo on a rat glioma F98 tumor spheroid. Utilizing a high resolution Doppler Variance Optical Coherence Tomography (DVOCT) system with A-line rate of 20 kHz, three-dimensional mapping of a tumor with a total area of 3×2.5mm2 was completed within 15 seconds. The top-view image clearly visualized the complex vascular perfusion with the detection of capillaries as small as approximately 10μm. The results of the current study demonstrate the capability of the Doppler variance standard deviation imaging method as a non-invasive assessment of tumor angiogenesis, with the potential for its use in clinical settings.

  13. A Comprehensive Method of Estimating Electric Fields from Vector Magnetic Field and Doppler Measurements

    CERN Document Server

    Kazachenko, Maria D; Welsch, Brian T

    2014-01-01

    Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal (PTD) decomposition of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the "{\\bf P}TD-{\\bf D}oppler-{\\bf F}LCT {\\bf I}deal" (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the \\texttt{FISHPACK} software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (\\te...

  14. [Echo-color Doppler in the study of hypothyroidism in the adult].

    Science.gov (United States)

    Lagalla, R; Caruso, G; Benza, I; Novara, V; Calliada, F

    1993-09-01

    Color-Doppler US was performed on 20 patients with sub-clinic hypothyroidism which had been confirmed by laboratory tests. In all cases, color-Doppler US showed increased parenchymal flow, whose semiology was similar to the one known as "thyroid inferno" and currently associated, in the literature, with diffuse hyperfunction conditions. Quantitative measurements yielded no further element for differential diagnosis, while showing high flow speeds which were similar to those in hyperfunction. On the basis of consequent physiopathologic considerations, hypervascularization, as observed in hypothyroidism, is likely to be referred to the hypertrophic action of TSH, which was reported as high in all patients. In conclusion, the color-Doppler "thyroid inferno" pattern, which has been to date considered as specific of thyroid hyperfunction, has lost part of its diagnostic specificity, and further investigation--e.g. hormonal titers, scintigraphy--is needed for an unquestionable diagnosis to be made.

  15. Virtual reflections in electronic acoustic architecture

    Science.gov (United States)

    van Munster, Bjorn

    2005-09-01

    In the era of the ancient Greeks and Byzantines, the first attempts for increasing reverberation time are noted. In the 1950s, the Ambiophonic system accomplished this by means of an electronic device, for the first time. The early systems only increased the reverberation time by delaying the picked-up reverberation. With the introduction of multichannel feedback-based systems, the reverberation level also could be increased. Later, it was understood that it was important to also fill in the missing reflections, address reflection density, frequency dependence, etc. This resulted in the development of the SIAP concept. Current DSP technology led to the development of a processor whereby density, length, level, and the frequency content can be controlled for different areas in the same room or different rooms, leading to the concept of the acoustic server. electronic acoustic architecture has become the current state-of-the-art approach for solving acoustic deficiencies in, among others, rehearsal rooms, theaters, churches, and multipurpose venues. Incorporation of complementary passive acoustic solutions provides an optimum solution for all room problems. This paper discusses the utilization of virtual reflections in the new approach of electronic acoustic architecture for different environments. Measurements performed in the Sejong Performing Arts Centre, Seoul, South Korea, show the power of this approach.

  16. Acoustic Gaits: Gait Analysis With Footstep Sounds.

    Science.gov (United States)

    Altaf, M Umair Bin; Butko, Taras; Juang, Biing-Hwang Fred

    2015-08-01

    We describe the acoustic gaits-the natural human gait quantitative characteristics derived from the sound of footsteps as the person walks normally. We introduce the acoustic gait profile, which is obtained from temporal signal analysis of sound of footsteps collected by microphones and illustrate some of the spatio-temporal gait parameters that can be extracted from the acoustic gait profile by using three temporal signal analysis methods-the squared energy estimate, Hilbert transform and Teager-Kaiser energy operator. Based on the statistical analysis of the parameter estimates, we show that the spatio-temporal parameters and gait characteristics obtained using the acoustic gait profile can consistently and reliably estimate a subset of clinical and biometric gait parameters currently in use for standardized gait assessments. We conclude that the Teager-Kaiser energy operator provides the most consistent gait parameter estimates showing the least variation across different sessions and zones. Acoustic gaits use an inexpensive set of microphones with a computing device as an accurate and unintrusive gait analysis system. This is in contrast to the expensive and intrusive systems currently used in laboratory gait analysis such as the force plates, pressure mats and wearable sensors, some of which may change the gait parameters that are being measured.

  17. Acoustic field effects on a negative corona discharge

    Science.gov (United States)

    Bálek, R.; Červenka, M.; Pekárek, S.

    2014-06-01

    For a negative corona discharge under atmospheric pressure in different regimes, we investigated the effects of an acoustic field both on its electrical parameters and on the change in its visual appearance. We found that the application of an acoustic field on the true corona discharge, for particular currents, decreases the discharge voltage. The application of an acoustic field on the discharge in the filamentary streamer regime substantially extends the range of currents for which the discharge voltage remains more or less constant, i.e. it allows a substantial increase in the power delivered to the discharge. The application of an acoustic field on the discharge causes the discharge to spread within the discharge chamber and consequently, a highly reactive non-equilibrium plasma is created throughout the inter-electrode space. Finally, our experimental apparatus radiates almost no acoustic energy from the discharge chamber.

  18. Photoacoustic Doppler effect from flowing small light-absorbing particles.

    Science.gov (United States)

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V

    2007-11-01

    From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.

  19. Photoacoustic Doppler flow measurement in optically scattering media

    Science.gov (United States)

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V.

    2007-12-01

    We recently observed the photoacoustic Doppler effect from flowing small light-absorbing particles. Here, we apply the effect to measure blood-mimicking fluid flow in an optically scattering medium. The light scattering in the medium decreases the amplitude of the photoacoustic Doppler signal but does not affect either the magnitude or the directional discrimination of the photoacoustic Doppler shift. This technology may hold promise for a new Doppler method for measuring blood flow in microcirculation with high sensitivity.

  20. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...

  1. Underwater Applications of Acoustical Holography

    Directory of Open Access Journals (Sweden)

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  2. Current situation of the study on Kaiser effect of rock acoustic emission in in-situ stress measurement%声发射Kaiser效应在地应力测量中的应用现状

    Institute of Scientific and Technical Information of China (English)

    李利峰; 邹正盛; 张庆

    2011-01-01

    Based on periodical literature, the statistics of papers on accoustic emission since recent twenty years were made. The principle and mechanism of acoustic emission, space positioning for the samples were presented.With the theory of elastic mechanics, six direction and four direction methods in space for in-sim measurement using the rock acoustic emission were derived. There are two sampling methods according to the different methods.Influence factors of acoustic emission in in-sim stress measurement, determining method of Kaiser Point and treatment technique for signal and noise were systematically expounded. Two methods which are different from the traditional in-situ measurement are introduced. Problems and research trend of the in-situ stress measurement using acoustic emission were analyzed.%对近20年来岩石声发射测量地应力的研究现状进行了分析,介绍了声发射的原理和机理及试样的空间定位方法.利用弹性力学原理推导了声发射方法测定地应力的空间6向和4向的计算过程,对应有两种常用的取样方式.系统地阐述了影响声发射地应力测量的因素、Kaiser点的确定方法以及信噪处理技术,简单介绍了不同于传统利用声发射测量地应力的另外两种方法.对声发射测量地应力中存在的问题和研究趋势进行了分析.

  3. From HARPS to CODEX: exploring the limits of Doppler measurements

    Science.gov (United States)

    Pepe, F. A.; Lovis, C.

    2008-08-01

    Only 3 6 years ago, the Doppler technique was believed to have reached its final limitations in measuring stellar velocities and finding extra-solar planets. The 3 4 m s-1 precision level achieved, at that time, by various teams, was certainly limited by instrumental performances, but also constrained, as believed by a part of the community, by intrinsic stellar limitations. The advent of HARPS drastically changed this view. The instrument demonstrated, through its recent discoveries, that stars more 'stable' than 1 m s-1 actually exist, and that their radial velocity (RV) can be measured at that level of precision. Short-term precision of 20 cm s-1 rms and long-term precision of the order of 30 60 cm s-1 rms have been actually achieved on real stars, showing that RVs still harbor a great potential, and not only in the domain of extra-solar planets. Indeed, HARPS inspired the CODEX@ELT experiment for the direct determination of the expansion of the Universe, measuring the Doppler shift of Ly-α forest lines as a function of time. This experiment calls for a Doppler precision as low as 1 cm s-1, which in turn inspires new possibilities in the domain of extra-solar planets. We will investigate the obstacles on the way to cm s-1 precision. The discussion presented here will be based on our experience with HARPS and what we consider to be the current limitations set by the instrument, telescope, atmosphere and star. Finally, we will also provide an outlook on possible improvements and expected performances, which will finally define new scientific opportunities.

  4. From HARPS to CODEX: exploring the limits of Doppler measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pepe, F A; Lovis, C [Observatoire Astronomique, Universite de Geneve, CH-1290 Sauverny (Switzerland)], E-mail: Francesco.Pepe@obs.unige.ch

    2008-08-15

    Only 3-6 years ago, the Doppler technique was believed to have reached its final limitations in measuring stellar velocities and finding extra-solar planets. The 3-4 m s{sup -1} precision level achieved, at that time, by various teams, was certainly limited by instrumental performances, but also constrained, as believed by a part of the community, by intrinsic stellar limitations. The advent of HARPS drastically changed this view. The instrument demonstrated, through its recent discoveries, that stars more 'stable' than 1 m s{sup -1} actually exist, and that their radial velocity (RV) can be measured at that level of precision. Short-term precision of 20 cm s{sup -1} rms and long-term precision of the order of 30-60 cm s{sup -1} rms have been actually achieved on real stars, showing that RVs still harbor a great potential, and not only in the domain of extra-solar planets. Indeed, HARPS inspired the CODEX at ELT experiment for the direct determination of the expansion of the Universe, measuring the Doppler shift of Ly-{alpha} forest lines as a function of time. This experiment calls for a Doppler precision as low as 1 cm s{sup -1}, which in turn inspires new possibilities in the domain of extra-solar planets. We will investigate the obstacles on the way to cm s{sup -1} precision. The discussion presented here will be based on our experience with HARPS and what we consider to be the current limitations set by the instrument, telescope, atmosphere and star. Finally, we will also provide an outlook on possible improvements and expected performances, which will finally define new scientific opportunities.

  5. On the Doppler distortion of the sea-wave spectra

    Science.gov (United States)

    Korotkevich, A. O.

    2008-11-01

    Discussions on a form of a frequency spectrum of wind-driven sea waves just above the spectral maximum have continued for the last three decades. In 1958 Phillips made a conjecture that wave breaking is the main mechanism responsible for the spectrum formation [O.M. Phillips, J. Fluid Mech. 4 (1958) 426]. That leads to the spectrum decay ˜ω-5, where ω is the frequency of waves. There is a contradiction between the numerous experimental data and this spectrum. Experiments frequently show decay ˜ω-4 [Y. Toba, J. Oceanogr. Soc. Japan 29 (1973) 209; M.A. Donelan, J. Hamilton, W.H. Hui, Phil. Trans. R. Soc. London A315 (1985) 509; P.A. Hwang, et al., J. Phys. Oceanogr. 30 (1999) 2753]. There are several ways of the explanation of this phenomenon. One of them (proposed by Banner [M.L. Banner, J. Phys. Oceanogr. 20 (1990) 966]) takes into account the Doppler effect due to surface circular currents generated by underlying waves in the Phillips model. In this article the influence of the Doppler effect on an arbitrary averaged spectrum is considered using both analytic and numerical approaches. Although we mostly concentrated on the very important case of Phillips model, the developed technique and general formula can be used for the analysis of other spectra. For the particular case of Phillips spectra we got analytic asymptotics in the vicinity of spectral maximum and for high frequencies. Results were obtained for two most important angular dependences of the spectra: isotropic and strongly anisotropic. Together with the analytic investigation we performed numerical calculations in a wide range of frequencies. Both high and low frequency asymptotics are in very good agreement with the numerical results. It was shown that at least at low frequencies, the correction to the spectrum due to the Doppler shift is negligible. At high frequencies there is an asymptotic with tail ˜ω-3.

  6. Solid breast neoplasms: Differential diagnosis with pulsed Doppler ultrasound

    NARCIS (Netherlands)

    T.J.A. Kuijpers (T. J A); A.I.M. Obdeijn (Inge-Marie); Ph.M. Kruyt (Philip); M. Oudkerk (Matthijs)

    1994-01-01

    textabstractIn this prospective study, duplex Doppler ultrasound was used in 95 consecutive patients with solid breast masses to evaluate the presence of neovascular flow. A positive Doppler signal, i.e., a Doppler shift frequency of more than 1 kHz using a 5 MHz insonating frequency, was found in 3

  7. Radar micro-doppler signatures processing and applications

    CERN Document Server

    Chen, Victor C; Miceli, William J

    2014-01-01

    Radar Micro-Doppler Signatures: Processing and applications concentrates on the processing and application of radar micro-Doppler signatures in real world situations, providing readers with a good working knowledge on a variety of applications of radar micro-Doppler signatures.

  8. On acceleration dependence of Doppler effect in light

    Indian Academy of Sciences (India)

    Sanjay M Wagh

    2013-09-01

    Using only the geometric relationships of suitable locations, we analyse Doppler effect in light to show how the acceleration of the source also contributes to the Doppler shift. We further propose that an experiment be performed using cyclotron-type devices to determine the acceleration dependence of the Doppler shift.

  9. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended...

  10. Musculoskeletal colour/power Doppler in sports medicine

    DEFF Research Database (Denmark)

    Boesen, M I; Boesen, M; Langberg, Henning

    2010-01-01

    guidelines and recommendations are based on personal experience since no evidence in literature exists. The basic technical background of Doppler ultrasound and typical artefacts will be discussed, in order to understand and interpret the Doppler result. Recommendations for the Doppler settings are given...

  11. Spectroscopic observation of the rotational Doppler effect.

    Science.gov (United States)

    Barreiro, S; Tabosa, J W R; Failache, H; Lezama, A

    2006-09-15

    We report on the first spectroscopic observation of the rotational Doppler shift associated with light beams carrying orbital angular momentum. The effect is evidenced as the broadening of a Hanle electromagnetically induced transparency coherence resonance on Rb vapor when the two incident Laguerre-Gaussian laser beams have opposite topological charges. The observations closely agree with theoretical predictions.

  12. Method for Canceling Ionospheric Doppler Effect

    Science.gov (United States)

    Vessot, R. F. C.

    1982-01-01

    Unified transponder system with hydrogen-maser oscillators at both stations can compensate for both motional and ionospheric components of Doppler shift. Appropriate choices of frequency shift in output of mixer m3. System exploits proportionality between dispersive component of frequency shift and reciprocal of frequency to achieve cancellation of dispersive component at output.

  13. Doppler-ultralydundersøgelse af underekstremitetsarteriosklerose

    DEFF Research Database (Denmark)

    Rørdam, P; von Jessen, F; Sillesen, H H;

    1992-01-01

    Arteriography, which requires resources and is not entirely without risk, has hitherto been a prerequisite for reconstructive surgery in cases of symptom-producing arteriosclerosis in the lower limbs. As an alternative, indirect Doppler ultrasonic examination has been employed but does not appear...

  14. Transcranial Doppler velocimetry in aneurysmal subarachnoid haemorrhage

    DEFF Research Database (Denmark)

    Staalsø, J M; Edsen, T; Romner, B

    2013-01-01

    -coded transcranial Doppler (TCCD), with the secondary aim of describing prediction of angiographic vasospasm and mortality. METHODS: /st>Sixty patients and 70 healthy controls were each examined in duplicate by alternating operators. A total of 939 measurements divided on 201 examination sets were conducted by four...

  15. Coherent Detection in Laser Doppler Velocimeters

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner

    1974-01-01

    , but intelligible particle picture of electromagnetic waves. The analysis is carried out with special emphasis on the heterodyning process in the laser Doppler velocimeter (LDV) because the main purpose of this article is to provide a better understanding of this instrument. An aid for this purpose...

  16. [Phlegmasia alba dolens diagnosed with Doppler ultrasonography].

    Science.gov (United States)

    Wulff, C; Lorentzen, T; Christensen, E; Pedersen, E B

    1996-11-11

    Differential diagnostic problems may occur in a patient with a cold, pale and swollen leg. Especially when the peripheral blood pressure is reduced, it is particularly difficult to distinguish cases caused by venous thrombosis from those caused by arterial embolism. Colour-Doppler ultra-sonography might be helpful for establishing the correct diagnosis. A case history is presented.

  17. Investigations of Near-Zone Doppler Effects.

    Science.gov (United States)

    Prouty, Dale Austen

    Far away from an electromagnetic source the normal Doppler shifts in frequency occur--a red shift for receding and a blue shift for approaching. As indicated by previous work with an infinitesimal dipole, different frequency shifts occur when the source and observer move closer together, into the near-zone. These "near-zone Doppler effects" are investigated for general sources and subsequently two specific examples are presented. The general results show that near-zone shifts are similar to far-zone shifts, but the local phase velocity must be used, i.e. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). In the far zone the phase velocity is the speed of light; in the near zone it differs. Fundamentally, the distance between surfaces of constant phase in the near zone is changed. The surfaces of constant phase for the waves are no longer spherical, but more ellipsoidal or spheroidal, so that a moving observer sees a different frequency shift. Two specific examples are presented to indicate the actual magnitude of near-zone effects. The examples include a prolate spheroidal antenna and a circular aperture. Once the magnitude of the effects is determined, the measurability of near-zone Doppler effects is discussed. The investigation concentrates on Fresnel zone effects due to the measurement problem. Finally, it is shown that for an electrically large wire antenna (the spheroidal example) near-zone Doppler effects are measurable.

  18. Tissue Doppler imaging reproducibility during exercise.

    Science.gov (United States)

    Bougault, V; Nottin, S; Noltin, S; Doucende, G; Obert, P

    2008-05-01

    Tissue Doppler imaging (TDI) is an echocardiographic technique used during exercising to improve the accuracy of a cardiovascular diagnostic. The validity of TDI requires its reproducibility, which has never been challenged during moderate to maximal intensity exercising. The present study was specifically designed to assess the transmitral Doppler and pulsed TDI reproducibility in 19 healthy men, who had undergone two identical semi-supine maximal exercise tests on a cycle ergometer. Systolic (S') and diastolic (E') tissue velocities at the septal and lateral walls as well as early transmitral velocities (E) were assessed during exercise up to maximal effort. The data were compared between the two tests at 40 %, 60 %, 80 % and 100 % of maximal aerobic power. Despite upper body movements and hyperventilation, good quality echocardiographic images were obtained in each case. Regardless of exercise intensity, no differences were noticed between the two tests for all measurements. The variation coefficients for Doppler variables ranged from 3 % to 9 % over the transition from rest to maximal exercise. The random measurement error was, on average, 5.8 cm/s for E' and 4.4 cm/s for S'. Overall, the reproducibility of TDI was acceptable. Tissue Doppler imaging can be used to accurately evaluate LV diastolic and/or systolic function for this range of exercise intensity.

  19. Doppler Shift Compensation Schemes in VANETs

    Directory of Open Access Journals (Sweden)

    F. Nyongesa

    2015-01-01

    Full Text Available Over the last decade vehicle-to-vehicle (V2V communication has received a lot of attention as it is a crucial issue in intravehicle communication as well as in Intelligent Transportation System (ITS. In ITS the focus is placed on integration of communication between mobile and fixed infrastructure to execute road safety as well as nonsafety information dissemination. The safety application such as emergence alerts lays emphasis on low-latency packet delivery rate (PDR, whereas multimedia and infotainment call for high data rates at low bit error rate (BER. The nonsafety information includes multimedia streaming for traffic information and infotainment applications such as playing audio content, utilizing navigation for driving, and accessing Internet. A lot of vehicular ad hoc network (VANET research has focused on specific areas including channel multiplexing, antenna diversity, and Doppler shift compensation schemes in an attempt to optimize BER performance. Despite this effort few surveys have been conducted to highlight the state-of-the-art collection on Doppler shift compensation schemes. Driven by this cause we survey some of the recent research activities in Doppler shift compensation schemes and highlight challenges and solutions as a stock-taking exercise. Moreover, we present open issues to be further investigated in order to address the challenges of Doppler shift in VANETs.

  20. Measuring Norwegian dialect distances using acoustic features

    NARCIS (Netherlands)

    Heeringa, Wilbert; Johnson, Keith; Gooskens, Charlotte

    2009-01-01

    Levenshtein distance has become a popular tool for measuring linguistic dialect distances, and has been applied to Irish Gaelic, Dutch, German and other dialect groups. The method, in the current state of the art, depends upon phonetic transcriptions, even when acoustic differences are used the numb

  1. An acoustic spacetime and the Lorentz transformation in aeroacoustics

    CERN Document Server

    Gregory, Alastair Logan; Agarwal, Anurag; Lasenby, Joan

    2014-01-01

    This paper introduces acoustic space-time and Geometric Algebra as a new theoretical framework for modelling aeroacoustic phenomena. This new framework is applied to sound propagation in uniform flows. The problem is modelled by means of transformations that turn the convected wave equation into an ordinary wave equation, in either time-space coordinates or frequency-wavenumber coordinates. The transformations are shown to combine a Galilean transformation with a Lorentz transformation and geometrical and physical interpretations are provided. The Lorentzian frame is the natural frame for describing acoustic waves in uniform flow. A key feature of this frame is that it combines space and time in a way that is best described using a hyperbolic geometry. The power of this new theoretical framework is illustrated by providing simple derivations for two classical aeroacoustic problems: the free-field Greens function for the convected wave equation and the Doppler shift for a stationary observer and a source in un...

  2. Continuous measurements of flow rate in a shallow gravel-bed river by a new acoustic system

    Science.gov (United States)

    Kawanisi, K.; Razaz, M.; Ishikawa, K.; Yano, J.; Soltaniasl, M.

    2012-05-01

    The continuous measurement of river discharge for long periods of time is crucial in water resource studies. However, the accurate estimation of river discharge is a difficult and labor-intensive procedure; thus, a robust and efficient method of measurement is required. Continuous measurements of flowrate have been carried out in a wide, shallow gravel bed river (water depth ≈ 0.6 m under low-flow conditions, width ≈ 115 m) using Fluvial Acoustic Tomography System (FATS) that has 25 kHz broadband transducers with horizontally omnidirectional and vertically hemispherical beam patterns. Reciprocal sound transmissions were performed between the two acoustic stations located diagonally on both sides of the river. The horizontal distance between the transducers was 301.96 m. FATS enabled the measurement of the depth- and range-averaged sound speed and flow velocity along the ray path. In contrast to traditional point/transect measurements of discharge, in a fraction of a second, FATS covers the entire cross section of river in a single measurement. The flow rates measured by FATS were compared to those estimated by moving boat Acoustic Doppler Current Profiler (ADCP) and rating curve (RC) methods. FATS estimates were in good agreement with ADCP estimates over a range of 20 to 65 m3 s-1. The RMS of residual between the two measurements was 2.41 m3 s-1. On the other hand the flowrate by RC method fairly agreed with FATS estimates for greater discharges than around 40 m3 s-1. This inconsistency arises from biased RC estimates in low flows. Thus, the flow rates derived from FATS could be considered reliable.

  3. Magneto-acoustic imaging by continuous-wave excitation.

    Science.gov (United States)

    Shunqi, Zhang; Zhou, Xiaoqing; Tao, Yin; Zhipeng, Liu

    2016-07-01

    The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10(-7) Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.

  4. Range estimation by Doppler of multi-line in radiated noise spectrum

    Institute of Scientific and Technical Information of China (English)

    WU Guoqing; MA Li

    2005-01-01

    A method by applying Doppler frequency shift of multi-line in radiated noise spectrum to estimate the vertical range from a receiver to a moving vessel, which is supposed to move along a straight line at a constant velocity, is developed. This method is based on passive ranging by a single sensor and the depth of the sea and other environment parameters are not necessarily known. First the Wigner-Ville distribution is used as the instantaneous frequency estimator to find out the instantaneous frequencies of the muti-lines as a signal. Then define Doppler frequency shift basis functions, based on an algorithm called matching pursuit, by a searching strategy of variable span, and explore the minimum spatial distance between the signal and the Doppler frequency shift basis functions in a five-dimension space. The basis function of the obtained minimum spatial distance corresponds to the estimation of range and speed of the moving vessel. Computer simulations yield statistics errors in the range and speed estimates with differing intensities of noise. If the white noise deviation is less than 10% of the maximum Doppler frequency shift and time-window width is 1.47 times of reference-duration,relative error of range estimate is less than 5.4% and relative error of speed estimate is less than 1.4%. This estimation method has been tested and the result conforms to data collected during an experiment on the sea, the estimated speed is 52 knots and the estimated range is 42 m. The single point passive ranging method can be used for ranging purposes in sonar-buoys, mines,movement analysis of an underwater object in underwater acoustics experiment, and sound source level measurements.

  5. Rubidium atomic line filtered (RALF) Doppler velocimetry

    Science.gov (United States)

    Fajardo, Mario E.; Molek, Christopher D.; Vesely, Annamaria L.

    2017-01-01

    We report recent improvements to our Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus [M.E. Fajardo, C.D. Molek, and A.L. Vesely, J. Appl. Phys. 118, 144901 (2015)]. RALF is a high-velocity and high-acceleration adaptation of the Doppler Global Velocimetry method for measuring multi-dimensional velocity vector flow fields, which was developed in the 1990s by aerodynamics researchers [H. Komine, U.S. Patent #4,919,536]. Laser velocimetry techniques in common use within the shock physics community (e.g. VISAR, Fabry-Pérot, PDV) decode the Doppler shift of light reflected from a moving surface via interference phenomena. In contrast, RALF employs a completely different physical principle: the frequency-dependent near-resonant optical transmission of a Rb/N2 gas cell, to encode the Doppler shift of reflected λ0 ≈ 780.24 nm light directly onto the transmitted light intensity. Thus, RALF is insensitive to minor changes to the optical pathlengths and transit times of the Doppler shifted light, which promises a number of practical advantages in imaging velocimetry applications. The single-point RALF proof-of-concept apparatus described here is fiber optic based, and our most recent modifications include the incorporation of a larger bandwidth detection system, and a second 780 nm laser for simultaneous upshifted-PDV (UPDV) measurements. We report results for the laser driven launch of a 10-μm-thick aluminum flyer which show good agreement between the RALF and UPDV velocity profiles, within the limitations of the admittedly poor signal:noise ratio (SNR) RALF data.

  6. Nonlinear Acoustics Used To Reduce Leakage Flow

    Science.gov (United States)

    Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    attached to one end of the resonator while the other end remained open to ambient pressure. Measurements were taken at several values of applied pressure with the assembly stationary, oscillated at an off-resonance frequency, and then oscillated on-resonance. The three cases show that the flow through the conical resonator can be reduced by oscillating the resonator at the resonance frequency of the air contained within the cavity. The results are currently being compared with results obtained from a commercial computational fluid dynamics code. The objective is to improve the design through numerical simulation before fabricating a next-generation prototype sealing device. Future work is aimed at implementing acoustic seal design improvements to further reduce the leakage flow rate through the device and at reducing the device's overall size.

  7. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  8. Acoustic imaging system

    Science.gov (United States)

    Kendall, J. M., Jr.

    1977-01-01

    Tool detects noise sources by scanning sound "scene" and displaying relative location of noise-producing elements in area. System consists of ellipsoidal acoustic mirror and microphone and a display device.

  9. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  10. An acoustic invisible gateway

    CERN Document Server

    Zhu, Yi-Fan; Liang, Bin; Kan, Wei-Wei; Yang, Jun; Cheng, Jian-Chun

    2015-01-01

    The recently-emerged concept of "invisible gateway" with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of "restoring" a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the "gate" to mimic a rigid "wall" and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet ef...

  11. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  12. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  13. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  14. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  15. Symptoms of Acoustic Neuroma

    Science.gov (United States)

    ... Programs & Services Search ANAUSA.org Connect with us! Symptoms of Acoustic Neuroma Each heading slides to reveal more information. Early Symptoms Early Symptoms Early symptoms are easily overlooked, thus making diagnosis ...

  16. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  17. Exact classical Doppler effect derived from the photon emission process

    CERN Document Server

    Lin, Chyi-Lung; Hsieh, Shang-Lin; Tsai, Chun-Ming

    2016-01-01

    The concept of photon is not necessary only applied to the relativistic Doppler theory. It may also work well for classical theory. As conservation of momentum and energy are physical laws, if applying these laws gives the exact relativistic Doppler effect, it should also give the exact classical Doppler effect. So far the classical Doppler effect is only obtained by using some approximation, as derived by Fermi in 1932. We show that the exact classical Doppler effect can be derived from the photon emission process in the exact treatment and reveal that these results are the same as those derived from the wave theory of light.

  18. On the Doppler effect for photons in rotating systems

    CERN Document Server

    Giuliani, Giuseppe

    2015-01-01

    The analysis of the Doppler effect for photons in rotating systems, studied using the M\\"ossbauer effect, confirms the general conclusions of a previous paper dedicated to experiments with photons emitted/absorbed by atoms/nuclei in inertial flight. The wave theory of light is so deeply rooted that it has been--and currently is--applied to describe phenomena in which the fundamental entities at work are discrete (photons). The fact that the wave theory of light can describe one aspect of these phenomena can not overshadow two issues: the corpuscular theory of light, firstly applied to the Doppler effect for photons by Schr\\"odinger in 1922, is by far more complete since it describes all the features of the studied phenomena; the wave theory can be used only when the number of photons at work is statistically significant. The disregard of basic methodological criteria may appear as a minor fault. However, the historical development of quantum physics shows that the predominance of the wave theory of radiation,...

  19. Doppler radar sensor positioning in a fall detection system.

    Science.gov (United States)

    Liu, Liang; Popescu, Mihail; Ho, K C; Skubic, Marjorie; Rantz, Marilyn

    2012-01-01

    Falling is a common health problem for more than a third of the United States population over 65. We are currently developing a Doppler radar based fall detection system that already has showed promising results. In this paper, we study the sensor positioning in the environment with respect to the subject. We investigate three sensor positions, floor, wall and ceiling of the room, in two experimental configurations. Within each system configuration, subjects performed falls towards or across the radar sensors. We collected 90 falls and 341 non falls for the first configuration and 126 falls and 817 non falls for the second one. Radar signature classification was performed using a SVM classifier. Fall detection performance was evaluated using the area under the ROC curves (AUCs) for each sensor deployment. We found that a fall is more likely to be detected if the subject is falling toward or away from the sensor and a ceiling Doppler radar is more reliable for fall detection than a wall mounted one.

  20. Doppler method leak detection for LMFBR steam generators. Pt. 2. Detection characteristics of bubble in-water using large scale SG model

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    2000-06-01

    To prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of a fast breeder reactor (FBR), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method was developed. Previous studies have revealed that, in practical steam generators, the active acoustic method can detect bubbles of 10 l/s within 10 seconds. However to prevent the expansion of damage to neighboring tubes, it is necessary to detect smaller leakages of water from the heat transfer tubes. The Doppler method is designed to detect small leakages and to find the source of a leak before damage spreads to neighboring tubes. The detection sensitivity of the Doppler method and the influence of background noise were investigated experimentally. In-water experiments were performed using an SG full-sector model that simulates actual SGs. The results show that the Doppler method can detect bubbles of 0.1 l/s (equivalent to a water leak rate of about 0.1 g/s) within a few seconds and that the background noise has little effect on water leak detection performance. The Doppler method thus has great potential for the detection of water leakage in SGs. (author)

  1. Turbulence-Resolving Coherent Acoustic Sediment Flux Probe Device and Method for Using

    OpenAIRE

    2001-01-01

    Patent This invention describes a new method to estimate the sediment flux in front of a Coherent Acoustic Sediment Probe (CASP) instrument. Also, described is a newly invented Bistatic Doppler Velocity and Sediment Profiler (BDVSP) device for measuring sediment concentration, sediment velocity, and the resultant sediment transport in a sediment bed, and for the measurement of turbulent stresses and dissipation in the ocean. This invention describes a new method to ...

  2. Acoustic Absorption of Natural Fiber Composites

    Directory of Open Access Journals (Sweden)

    Hasina Mamtaz

    2016-01-01

    Full Text Available The current study is a bibliographic observation on prevailing tendencies in the development of acoustic absorption by natural fiber composites. Despite having less detrimental environmental effects and thorough availability, natural fibers are still unsuitable for wide implementation in industrial purposes. Some shortcomings such as the presence of moisture contents, thicker diameter, and lower antifungus quality hold up the progress of natural fiber composites in staying competitive with synthetic composites. The review indicates the importance of the pretreatment of fresh natural fiber to overcome these shortcomings. However, the pretreatment of natural fiber causes the removal of moisture contents which results in the decrease of its acoustic absorption performance. Incorporation of granular materials in treated fiber composite is expected to play a significant role as a replacement for moisture contents. This review aims to investigate the acoustic absorption behavior of natural fiber composites due to the incorporation of granular materials. It is intended that this review will provide an overview of the analytical approaches for the modeling of acoustic wave propagation through the natural fiber composites. The possible influential factors of fibers and grains were described in this study for the enhancement of low frequency acoustic absorption of the composites.

  3. Power and color Doppler ultrasound settings for inflammatory flow

    DEFF Research Database (Denmark)

    Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin

    2015-01-01

    OBJECTIVE: To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. METHODS: Six different types of ultrasound machines were used....... On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA......: Power Doppler was more sensitive on half of the machines, whereas color Doppler was more sensitive on the other half, using both factory settings and study settings. There was an average increase in Doppler sensitivity, despite modality, of 78% when study settings were applied. Over the 6 machines, 2...

  4. ESTIMATION OF DOPPLER CENTROID FREQUENCY IN SPACEBORNE SCANSAR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Doppler centroid frequency is an essential parameter in the imaging processing of the Scanning mode Synthetic Aperture Radar(ScanSAR).Inaccurate Doppler centroid frequency will result in ghost images in imaging result.In this letter,the principle and algorithms of Doppler centroid frequency estimation are introduced.Then the echo data of ScanSAR system is analyzed.Based on the algorithms of energy balancing and correlation Doppler estimator in the estimation of Doppler centroid fequency in strip mode SAR,an improved method for Doppler centroid frequency estimation in ScanSAR is proposed.The method has improved the accuracy of Doppler centroid fequency estimation in ScanSAR by zero padding between burst data.Finally,the proposed method is validated with the processing of ENVironment SATellite Advanced Synthetic Aperture Radar(ENVISAT ASAR)wide swath raw data.

  5. Acoustic vector sensor signal processing

    Institute of Scientific and Technical Information of China (English)

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  6. The influence of laser spot size on the micro-Doppler spectrum

    Science.gov (United States)

    Zhang, Dehua; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi; Zhao, Changming; Yang, Suhui

    2015-08-01

    Micro-Doppler effect, which is induced by micro motion of target or any structure on the target, is a frequency modulation that generates sidebands about the target's Doppler frequency shift, such as mechanical vibration or rotation. When a target's motions incorporate micro motions, the radar echo signal will contain micro-Doppler characteristics related to these motions. Therefore, the micro-Doppler effect provides a new approach to obtain the dynamic properties of targets, which can be used to accomplish the detection and identification of targets, such as the identification of different types of helicopters. Scattering of the laser spot from a target surface modulates the Doppler signal, causes broadening of the signal spectrum, and, adds uncertainty to the signature analysis. A mathematic model of cone spin, which is a typical micro motion, is built first in this paper. Furthermore, an analyzed equation is deduced to predict the micro-Doppler spectral broadening of acquired medium current signals in situations of different laser spot size. It is found that the beam spot size on the target affects the resulting spectral broadening. Finally, an experiment based on the scaled model is performed to verify the simulation. A narrow-linewidth single frequency fiber laser is employed to detect the cone target at different laser spot size by coherent detection with constant detect distance and laser power. The experimental result shows that the beam spot size on the target affects the resulting spectral broadening caused by speckle, which corresponds to the simulation result. The experimental broadening was consistently greater than the theoretical broadening due to other effects that also contribute to the total broadening.

  7. High-frequency Ultrasound Doppler System for Biomedical Applications with a 30 MHz Linear Array

    Science.gov (United States)

    Xu, Xiaochen; Sun, Lei; Cannata, Jonathan M.; Yen, Jesse T.; Shung, K. Kirk

    2008-01-01

    In this paper, we report the development of the first high-frequency (HF) pulsed-wave Doppler system using a 30 MHz linear array transducer to assess the cardiovascular functions in small animal. This array based pulsed-wave Doppler system included a 16-channel HF analog beamformer, a HF pulsed-wave Doppler module, timing circuits, HF bipolar pulsers, and analog front-ends. The beamformed echoes acquired by the 16 channel analog beamformer, were directly fed to the HF pulsed-wave Doppler module. Then the in-phase and quadrature-phase (IQ) audio Doppler signals were digitized by either a sound card or a Gage digitizer and stored in a PC. The Doppler spectrogram was displayed on a PC in real time. The two-way beam-widths were determined to be 160 μm to 320 μm when the array was electronically focused at different focal points at depths from 5–10 mm. A micro flow phantom, consisting of a polyimide tube with inner diameter of 127 μm, and the wire phantom were used to evaluate and calibrate the system. The results show that the system is capable of detecting motion velocity of the wire phantom as low as 0.1 mm/s, and detecting blood-mimicking flow velocity in the 127 μm tube lower than 7 mm/s. The system was subsequently used to measure the blood flow in vivo in two mouse abdominal superficial vessels with diameters of approximately 200 μm, and a mouse aorta close to the heart. These results demonstrated that this system may become an indispensable part of the current HF array based imaging systems for small animal studies. PMID:17993243

  8. Assessment of Regional Myocardial Displacement via Spectral Tissue Doppler Compared with Color Tissue Tracking

    Directory of Open Access Journals (Sweden)

    Zahra Ojaghi-Haghighi

    2008-12-01

    Full Text Available Background: The recent developments in tissue Doppler imaging (TDI now more than ever permit the quantification of the myocardial function. In the current systems, tissue tracking or displacement curves are generated from color tissue Doppler data through the instantaneous temporal integral of velocity-time curves. Methods: The purpose of the present study was to assess regional myocardial displacement via spectral TDI. Maximum myocardial velocities were extracted from spectral pulsed tissue Doppler images using a developed computer program and were integrated throughout the cardiac cycle. Spectral tissue Doppler echocardiography was performed to evaluate longitudinal and radial functions in 20 healthy men, and the calculated end-systolic displacements were subsequently compared with the displacements measured from the same areas via color tissue tracking. Results: According to the Bland-Altman analysis between spectral tissue tracking and color tissue tracking, the significant arithmetic mean was 7.34 mm with SD mean differences of ±2.24 mm in all of the evaluated segments. Despite significant differences (p<0.001, there was a good significant correlation between the two methods (r=0.79, p<0.001. Conclusion: A verification study showed that the proposed approach had the ability to assess regional myocardial displacement using spectral TDI, which can be used in a wider range of equipment than is currently possible.

  9. Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate

    Science.gov (United States)

    Kumar, A.; Anderson, N.; Phillips, W. D.; Eckel, S.; Campbell, G. K.; Stringari, S.

    2016-02-01

    The Doppler effect, the shift in the frequency of sound due to motion, is present in both classical gases and quantum superfluids. Here, we perform an in situ, minimally destructive measurement, of the persistent current in a ring-shaped, superfluid Bose-Einstein condensate using the Doppler effect. Phonon modes generated in this condensate have their frequencies Doppler shifted by a persistent current. This frequency shift will cause a standing-wave phonon mode to be ‘dragged’ along with the persistent current. By measuring this precession, one can extract the background flow velocity. This technique will find utility in experiments where the winding number is important, such as in emerging ‘atomtronic’ devices.

  10. Integration of Acoustic Neutrino Detection Methods into ANTARES

    CERN Document Server

    Graf, K; Hoessl, J; Kappes, A; Katz, U F; Lahmann, R; Naumann, C; Salomon, K

    2007-01-01

    The ANTARES Neutrino Telescope is a water Cherenkov detector currently under construction in the Mediterranean Sea. It is also designed to serve as a platform for investigations of the deep-sea environment. In this context, the ANTARES group at the University of Erlangen will integrate acoustic sensors within the infrastructure of the experiment. With this dedicated setup, tests of acoustic particle detection methods and deep-sea acoustic background studies shall be performed. The aim of this project is to evaluate the feasibility of a future acoustic neutrino telescope in the deep sea operating in the ultra-high energy regime. In these proceedings, the implementation of the project is described in the context of the premises and challenges set by the physics of acoustic particle detection and the integration into an existing infrastructure.

  11. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  12. Interactions in an acoustic world

    CERN Document Server

    Simaciu, Ion; Borsos, Zoltan; Bradac, Mariana

    2016-01-01

    The present paper aims to complete an earlier paper where the acoustic world was introduced. This is accomplished by analyzing the interactions which occur between the inhomogeneities of the acoustic medium, which are induced by the acoustic vibrations traveling in the medium. When a wave packet travels in a medium, the medium becomes inhomogeneous. The spherical wave packet behaves like an acoustic spherical lens for the acoustic plane waves. According to the principle of causality, there is an interaction between the wave and plane wave packet. In specific conditions the wave packet behaves as an acoustic black hole.

  13. [Color-Doppler semiology in transplanted kidney].

    Science.gov (United States)

    Rivolta, R; Castagnone, D; Burdick, L; Mandelli, C; Mangiarotti, R

    1993-05-01

    Color-encoded duplex ultrasonography (CEDU) makes a more accurate technique in kidney graft monitoring by combining real-time US with pulsed Doppler studies of renal vasculature. It is a non-invasive and easy technique. Suitable to study the whole renal artery and vein, CEDU also allows the qualitative and quantitative assessment of the intrarenal vasculature and therefore the easy diagnosis of such vessel dysfunctions as arteriovenous fistulas following biopsy. Moreover, Doppler spectral analysis can be used to distinguish among different causes of renal allograft dysfunction--i.e. rejection, cyclosporine nephrotoxicity or acute tubular necrosis. The value of the resistive index for the differential diagnosis is discussed. CEDU allows a more reliable measurement of renal blood flow thanks to the more precise evaluation of renal artery diameter and mean flow velocity.

  14. Transcranial Doppler sonography in familial hemiplegic migraine

    Energy Technology Data Exchange (ETDEWEB)

    Pierelli, F.; Pauri, F.; Cupini, L.M.; Fiermonte, G.; Rizzo, P.A. (Universita la Sapienza, Roma (Italy))

    1991-02-01

    A patient affected by familial hemiplegic migraine underwent transcranial Doppler sonography twice: the first during a spontaneous attack with right hemiparesis and aphasia, the second during a headachefree period. During the attack the following haemodynamic changes were seen: (a) bilateral increase in the middle cerebral artery and anterior cerebral artery blood flow velocities (this increase was more pronounced on the left side), (b) decreased systo-diastolic ratio and pulsatility index on the right side, (c) increased systo-diastolic ratio and pulsatility index on the left side. The results indicate that during the attack in this familial hemiplegic migraine patient, a diffuse vasoconstriction of the basal cerebral arteries developed. Moreover, transcranial Doppler sonography data suggest that a prolonged vasoconstriction of the peripheral arterioles could play a role in determining the neurological symptoms in this syndrome. 13 refs., 1 figs., 1 tab.

  15. Color Doppler US of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Bertolotto, Michele (ed.) [Trieste Univ. Ospedale di Cattinara (Italy). Dept. Radiology

    2008-07-01

    This book provides a comprehensive reference and practical guide on the application of US to penile diseases and conditions. After introductory chapters on technical requirements and penile anatomy, subsequent chapters offer a systematic overview of the diverse applications of color Doppler US. The topics covered include erectile dysfunction, Peyronie's disease, priapism, trauma, tumors, the postoperative penis, inflammation, and fibrosis. Each topic is introduced by a clinical overview with the purpose of clarifying the problems and elucidating what the urologist may expect from color Doppler US. Thereafter, performance of the US study is explained and the pathological anatomy reviewed. High-quality images obtained with high-end US equipment are included. Each chapter also contains a section on the diagnostic information provided by other imaging modalities, and in particular MRI. (orig.)

  16. Renal duplex Doppler ultrasound findings in diabetics

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyang Yee; Kim, Young Geun; Kook, Cheol Keu; Yoon, Chong Hyun; Lee, Shin Hyung; Lee, Chang Joon [National Medical Center, Seoul (Korea, Republic of)

    1993-12-15

    The correlation between clinical-laboratory findings and renal duplex Doppler ultrasound findings was studied in 45 patients with diabetes mellitus to see the role of duplex Doppler ultrasound in the detection of diabetic nephropathy. The resistive indices in patients with elevated serum creatinine, BUN, proteinuria, and systolic blood pressure levels were statistically significantly higher than those in patients with normal levels (p<0.05). Also resistive indics in patients with retinopathy were higher than that in patients without retinopathy (p<0.05). But the ultrasound morphologic changes of kidney such as renal length, cortical eye-catching, and corticomedullarycontrast were not well correlated with clinical-laboratory data and resistive index. The resistive index of the kidney in conjunction with clinical-laboratory data in diabetics may be helpful in the evaluation of diabetic nephropathy

  17. Colour Doppler ultrasound of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, C.J.; Sriprasad, S.; Sidhu, P.S. E-mail: paulsidhu@compuserve.com

    2003-07-01

    Because it is a superficial structure, the penis is ideally suited to ultrasound imaging. A number of disease processes, including Peyronie's disease, penile fractures and penile tumours, are clearly visualized with ultrasound. An assessment of priapism can also be made using spectral Doppler waveform technology. Furthermore, dynamic assessment of cavernosal arterial changes after pharmaco-stimulation allows diagnosis of arterial and venogenic causes for impotence. This pictorial review illustrates the range of diseases encountered with ultrasound of the penis.

  18. Doppler Lidar Wind Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  19. Doppler Lidar for Wind Measurements on Venus

    Science.gov (United States)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  20. Precise Doppler Monitoring of Barnard's Star

    CERN Document Server

    Choi, Jieun; Marcy, Geoffrey W; Howard, Andrew W; Fischer, Debra A; Johnson, John A; Isaacson, Howard; Wright, Jason T

    2012-01-01

    We present 248 precise Doppler measurements of Barnard's Star (Gl 699), the second nearest star system to Earth, obtained from Lick and Keck Observatories during 25 years between 1987 and 2012. The early precision was 20 \\ms{} but was 2 \\ms{} during the last 8 years, constituting the most extensive and sensitive search for Doppler signatures of planets around this stellar neighbor. We carefully analyze the 136 Keck radial velocities spanning 8 years by first applying a periodogram analysis to search for nearly circular orbits. We find no significant periodic Doppler signals with amplitudes above $\\sim$2 \\ms{}, setting firm upper limits on the minimum mass (\\msini) of any planets with orbital periods from 0.1 to 1000 days. Using a Monte Carlo analysis for circular orbits, we determine that planetary companions to Barnard's Star with masses above 2 \\mearth{} and periods below 10 days would have been detected. Planets with periods up to 2 years and masses above 10 \\mearth{} (0.03 \\mjup) are also ruled out. A sim...

  1. Neuroticism and vigilance revisited: A transcranial doppler investigation.

    Science.gov (United States)

    Mandell, Arielle R; Becker, Alexandra; VanAndel, Aaron; Nelson, Andrew; Shaw, Tyler H

    2015-11-01

    Selecting for vigilance assignments remains an important factor in human performance research. The current study revisits the potential relationship between vigilance performance and trait neuroticism, in light of two possible theories. The first theory suggests that neuroticism impairs vigilance performance by competing for available resources. The second theory, attentional control theory, posits that high neuroticism can result in similar or superior performance levels due to the allocation of compensatory effort. In the present study, Transcranial Doppler Sonography was used to investigate the neurophysiological underpinnings of neuroticism during a 12-min abbreviated vigilance task. Performance results were not modified by level of neuroticism, but high neuroticism was associated with higher initial CBFV levels and a greater CBFV decrement over time. These findings indicate that participants higher in neuroticism recruited additional cognitive resources in order to achieve similar performance, suggesting that there is more of an effect on processing efficiency than effectiveness.

  2. Photonic Doppler Velocimetry Multiplexing Techniques: Evaluation of Photonic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Edward Daykin

    2012-05-24

    This poster reports progress related to photonic technologies. Specifically, the authors developed diagnostic system architecture for a Multiplexed Photonic Doppler Velocimetry (MPDV) that incorporates frequency and time-division multiplexing into existing PDV methodology to provide increased channel count. Current MPDV design increases number of data records per digitizer channel 8x, and also operates as a laser-safe (Class 3a) system. Further, they applied heterodyne interferometry to allow for direction-of-travel determination and enable high-velocity measurements (>10 km/s) via optical downshifting. They also leveraged commercially available, inexpensive and robust components originally developed for telecom applications. Proposed MPDV architectures employ only commercially available, fiber-coupled hardware.

  3. Micro-Doppler Frequency Comb Generation by Axially Rotating Scatterers

    CERN Document Server

    Kozlov, Vitali; Yankelevich, Yefim; Ginzburg, Pavel

    2016-01-01

    Electromagnetic scattering in accelerating reference frames inspires a variety of phenomena, requiring employment of general relativity for their description. While the quasi-stationary field analysis could be applied to slowly-accelerating bodies as a first-order approximation, the scattering problem remains fundamentally nonlinear in boundary conditions, giving rise to multiple frequency generation (micro-Doppler shifts). Here a frequency comb, generated by an axially rotating subwavelength (cm-range) wire and split ring resonator (SRR), is analyzed theoretically and observed experimentally by illuminating the system with a 2GHz carrier wave. Highly accurate lock in detection scheme enables factorization of the carrier and observation of more than ten peaks in a comb. The Hallen integral equation is employed for deriving the currents induced on the scatterer at rest and a set of coordinate transformations, connecting laboratory and rotating frames, is applied in order to predict the spectral positions and a...

  4. The Doppler effect is not what you think it is: dramatic pitch change due to dynamic intensity change.

    Science.gov (United States)

    McBeath, Michael K; Neuhoff, John G

    2002-06-01

    Historically, auditory pitch has been considered to be a function of acoustic frequency, with only a small effect being due to absolute intensity. Yet we found that when tones are Doppler shifted so that frequency drops, the pitch dramatically rises and falls, closely following the pattern of dynamic intensity change. We show that continuous intensity change can produce pitch variation comparable to a frequency change approaching an octave. This effect opposes and is an order of magnitude larger than the well-known effect of discrete intensity change in the frequency range employed. We propose that the perceptual interaction of continuous changes in pitch and loudness reflects a natural correlation between changes in frequency and intensity that is neurally encoded to facilitate the parsing and processing of meaningful acoustic patterns.

  5. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    Science.gov (United States)

    Cho, Y.; Kumar, A.; Xu, S.; Zou, J.

    2016-10-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  6. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  7. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  8. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  9. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  10. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  11. Acoustics of courtyard theatres

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing

    2008-01-01

    The traditional Chinese theatre was often built with a courtyard. In such open-top space, the absence of a roof would mean little reverberation and non-diffused sound field.Acoustically the situation is quite different from that of any enclosed space. The refore, theclassic room acoustics, such as Sabine reverberation formula, would no longer be applicable due to the lack of sound reflections from the ceiling. As the parameter of reverberation time T30 shows the decay rate only, it would not properly characterize the prominent change in the fine structure of the echogram, particularly in case of a large reduction of reflections during the decay process. The sense of reverbrance in a courtyard space would differ noticeably from that of the equivalent 3D-T30 in an enclosed space. Based upon the characteristic analysis of the sound field in an open-top space, this paper presents a preliminary study on the acoustics of the courtyard theatres.

  12. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  13. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; Modlin, Edward A.; Barnes, Bruce W.; Demoz, Belay B.

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  14. Initiation of acoustic emission in fluid-saturated sandstone samples

    Science.gov (United States)

    Lapshin, V. B.; Patonin, A. V.; Ponomarev, A. V.; Potanina, M. G.; Smirnov, V. B.; Stroganova, S. M.

    2016-07-01

    A rock behavior experiment with uniaxial compression revealed the effect of acoustic activity in loaded fluid-saturated Berea sandstone samples in response to an electric current. It is established that it is substantially intensified in periods of the current impact and decreases after its cut-off. The current impact also results in a growth of radial deformation indicating an increase in the sample volume. The effect of acoustic activation increases in response to increased heat emitted by the electric current during its flow through the sample, which allows the discovered effect to be explained by initiation of its destruction due to thermal expansion of the fluid in rock interstices and fissures.

  15. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  16. Doppler effect in resonant photoemission from SF6: correlation between Doppler profile and Auger emission anisotropy.

    Science.gov (United States)

    Kitajima, M; Ueda, K; De Fanis, A; Furuta, T; Shindo, H; Tanaka, H; Okada, K; Feifel, R; Sorensen, S L; Gel'mukhanov, F; Baev, A; Agren, H

    2003-11-21

    Fragmentation of the SF6 molecule upon F 1s excitation has been studied by resonant photoemission. The F atomiclike Auger line exhibits the characteristic Doppler profile that depends on the direction of the photoelectron momentum relative to the polarization vector of the radiation as well as on the photon energy. The measured Doppler profiles are analyzed by the model simulation that takes account of the anisotropy of the Auger emission in the molecular frame. The Auger anisotropy extracted from the data decreases with an increase in the F-SF5 internuclear distance.

  17. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  18. Acoustic black holes

    CERN Document Server

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  19. Predicting room acoustical behavior with the ODEON computer model

    DEFF Research Database (Denmark)

    Naylor, Graham; Rindel, Jens Holger

    1992-01-01

    for discrepancies are discussed. These discrepancies indicate areas in which the computational model has to be improved, and highlight some shortcomings of current room acoustical survey methods. The effects of various calculation parameters (e.g., number of rays, early reflection order) are also briefly considered.......The computational bases of the ODEON model for room acoustics are described in a companion paper. The model is implemented for general use of a PC. In this paper, various technical features of the program relevant to the acoustical design process are presented. These include interactive...

  20. Analysis and compensation for code Doppler effect of BDS II signal under high dynamics

    Science.gov (United States)

    Ouyang, Xiaofeng; Zeng, Fangling

    2016-01-01

    In high dynamic circumstances, the acquisition of BDS (BeiDou Navigation Satellite System) signal would be affected by the pseudo-code Doppler. The pseudo-code frequency shift is more prominent and complex when BOC modulation has been adopted by BDS-II, but is not yet involved in current compensation algorithm. In addition, the most frequently used code Doppler compensation algorithm is modifying the sampling rate or local bit rate, which not only increases the complexity of the acquisition and tracking, but also is barely realizable for the hardware receiver to modify the local frequency. Therefore, this paper proposes a code Doppler compensation method based on double estimator receiver, which simultaneously controls NCO delay of code tracking loop and subcarrier tracking loop to compensate for pseudo-code frequency shift. The simulation and test are implemented with BDS-II BOC signal. The test results demonstrate that the proposed algorithm can effectively compensate for pseudo-code Doppler of BOC signal and has detection probability 3dB higher than the uncompensated situation when the false alarm rate is under 0.01 and the coherent integration time is 1ms.

  1. Single-electron transport driven by surface acoustic waves: Moving quantum dots versus short barriers

    DEFF Research Database (Denmark)

    Utko, Pawel; Hansen, Jørn Bindslev; Lindelof, Poul Erik;

    2007-01-01

    We have investigated the response of the acoustoelectric-current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or t...

  2. Modelling Solar Oscillation Power Spectra: II. Parametric Model of Spectral Lines Observed in Doppler Velocity Measurements

    CERN Document Server

    Vorontsov, Sergei V

    2013-01-01

    We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements and extends naturally to the analysis of high-frequency pseudo modes (interference peaks at frequencies above the atmospheric acoustic cutoff).

  3. Vertical structure of extreme currents in the Faroe-Bank Channel

    Directory of Open Access Journals (Sweden)

    C. Carollo

    2005-09-01

    Full Text Available Extreme currents are studied with the aim of understanding their vertical and spatial structures in the Faroe-Bank Channel. Acoustic Doppler Current Profiler time series recorded in 3 deployments in this channel were investigated. To understand the main features of extreme events, the measurements were separated into their components through filtering and tidal analysis before applying the extreme value theory to the surge component. The Generalized Extreme Value (GEV distribution and the Generalized Pareto Distribution (GPD were used to study the variation of surge extremes from near-surface to deep waters. It was found that this component alone is not able to explain the extremes measured in total currents, particularly below 500 m. Here the mean residual flow enhanced by tidal rectification was found to be the component feature dominating extremes. Therefore, it must be taken into consideration when applying the extreme value theory, not to underestimate the return level for total currents. Return value speeds up to 250 cm s–1 for 50/250 years return period were found for deep waters, where the flow is constrained by the topography at bearings near 300/330° It is also found that the UK Meteorological Office FOAM model is unable to reproduce either the magnitude or the form for the extremes, perhaps due to its coarse vertical and horizontal resolution, and is thus not suitable to model extremes on a regional scale.

    Keywords. Oceanography: Physical (Currents; General circulation; General or miscellaneous

  4. Doppler-compensated three-photon electromagnetically induced transparency

    CERN Document Server

    Carr, Christopher; Sargsyan, Armen; Sarkisyan, David; Adams, Charles S; Weatherill, Kevin J

    2012-01-01

    We demonstrate Doppler-compensated bright and dark states in a resonant four-level atomic system. The spectral features are the result of electromagnetically induced transparency (EIT) and absorption (EIA) and are sub-Doppler due to the compensation of Doppler shifts with AC Stark shifts. We demonstrate the effect using a three-photon cascade system to Rydberg states in Cs vapor, however, the results apply to any four-level cascade or N-type system.

  5. Analysis on rotational Doppler Effect based on modal expansion method

    CERN Document Server

    Zhou, Hailong; Zhang, Pei; Zhang, Xinliang

    2015-01-01

    We theoretically investigate the optical rotational Doppler Effect using modal expansion method. We find that the frequency shift content is only determined by the surface of spinning object and the reduced Doppler shift is linear to the change of mode index. The theoretical model makes us better understand the physical processes of rotational Doppler Effect. It can provide theoretical guidance for many related applications, such as detection of rotating bodies, detection of OAM and frequency shift.

  6. New insights from inside-out Doppler tomography

    CERN Document Server

    Kotze, Enrico J

    2015-01-01

    We present preliminary results from our investigation into using an 'inside-out' velocity space for creating a Doppler tomogram. The aim is to transpose the inverted appearance of the Cartesian velocity space used in normal Doppler tomography. In a comparison between normal and inside-out Doppler tomograms of cataclysmic variables, we show that the inside-out velocity space has the potential to produce new insights into the accretion dynamics in these systems.

  7. Influence of Doppler Bin Width on GNSS Detection Probabilities

    CERN Document Server

    Geiger, Bernhard C

    2011-01-01

    The acquisition stage in GNSS receivers determines Doppler shifts and code phases of visible satellites. Acquisition is thus a search in two continuous dimensions, where the digital algorithms require a partitioning of the search space into cells. We present analytic expressions for the acquisition performance depending on the partitioning of the Doppler frequency domain. In particular, the impact of the number and width of Doppler bins is analyzed. The presented results are verified by simulations.

  8. Multi-carrier Communications over Time-varying Acoustic Channels

    Science.gov (United States)

    Aval, Yashar M.

    Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple

  9. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...

  10. Thermal convection driven by acoustic field under microgravity

    OpenAIRE

    Tanabe, Mitsuaki; 田辺 光昭

    2007-01-01

    Natural convection is suppressed in space environment due to the weightlessness. Only centrifugal force is utilized currently to drive gas-phase thermal convection in space. This paper presents an alternative way to drive thermal convection. From the investigation of combustion oscillation in rocket motors, a new thermal convection had been found in stationary acoustic fields. Analyzing the phenomena, acoustic radiation force is found to be the candidate driving force. With a simplified syste...

  11. Acoustic Seaglider: PhilSea10 Data Analysis

    Science.gov (United States)

    2016-06-13

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES ...ABSTRACT Broadband acoustic source transmissions recorded on Seagliders at ranges up to 700 km are used to estimate subsurface glider position...error by up to 1000 m. 6 Figure 4: Circles indicate acoustically derived ranges from sources T1 (red, 275.6 km), T2 (orange, 115.4 km), T3 (green

  12. Blue and fin whale acoustics and ecology off Antarctic Peninsula

    OpenAIRE

    2006-01-01

    Blue (Balaenoptera musculus) and fin whales (B. physalus) in the Southern Ocean were subjects of extensive whaling industry during the twentieth century. Their current population numbers remain low, making population monitoring using traditional visual surveys difficult. Both blue and fin whales produce low frequency, regularly repeated calls and are suitable for acoustic monitoring. Eight, continuously recording acoustic recorders were deployed off the Western Antarctic Peninsula (WAP) betwe...

  13. Reexamination of the Doppler effect through Maxwell's equations.

    Science.gov (United States)

    Guo, Wei; Aktas, Yildirim

    2012-08-01

    In this work, the electric field emitted from a moving source, an electric point dipole, is analyzed for the purpose of illustrating the physics behind the Doppler effect. It is found that if the (translational) motion of the source is nonrelativistic, the Doppler effect is realized in two steps: the motion of the source first causes the dyadic Green function associated with the electric field to acquire an oscillation frequency in the far-field region of the source, and then the frequency leads to the Doppler effect. It is also demonstrated that the Doppler effect is observable only in the far-field region of the source.

  14. EUV Doppler Imaging for CubeSat Platforms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mature the design and fabricate the Flare Initiation Doppler Imager (FIDI) instrument to demonstrate low-spacecraft-resource EUV technology (most notably,...

  15. Evaluating Peripheral Vascular Injuries: Is Color Doppler Enough for Diagnosis?

    Directory of Open Access Journals (Sweden)

    Mohd Lateef Wani

    2014-03-01

    Full Text Available Background:: Vascular injury poses a serious threat to limb and life. Thus, diagnosis should be made immediately with minimally invasive methods. Doppler is a good aid in diagnosis of vascular injury. Methods:: The present prospective study was conducted on 150 patients who presented with soft signs (the signs which are suggestive but not confirmatory of vascular injury. They were subjected to color Doppler examination before exploration. The patients with the features of vascular injury on color Doppler were subjected to exploration. On the other hand, those who had normal Doppler were subjected to CT- angiography. Then, the findings of the exploration were matched with those of color Doppler. The data were analyzed using the SPSS statistical software. Results:: Out of the 150 Doppler examinations, 110 (73.33% were reported as positive, while 40 were reported as negative for vascular injury. These were subjected to CT-angiography and seven of them had the features of vascular injury on CT-angiography. All the patients with positive Doppler or CT angiography findings were subjected to exploration. Doppler had a sensitivity of 94% and specificity of 82.5% in diagnosis of vascular injury using Binary classification test. Conclusions:: Color Doppler is an easily available, reliable, and handy method of diagnosing a vascular injury. It has a very high sensitivity and specificity in diagnosis of vascular injuries.

  16. Burst Format Design for Optimum Joint Estimation of Doppler-Shift and Doppler-Rate in Packet Satellite Communications

    Directory of Open Access Journals (Sweden)

    Luca Giugno

    2007-05-01

    Full Text Available This paper considers the problem of optimizing the burst format of packet transmission to perform enhanced-accuracy estimation of Doppler-shift and Doppler-rate of the carrier of the received signal, due to relative motion between the transmitter and the receiver. Two novel burst formats that minimize the Doppler-shift and the Doppler-rate Cramér-Rao bounds (CRBs for the joint estimation of carrier phase/Doppler-shift and of the Doppler-rate are derived, and a data-aided (DA estimation algorithm suitable for each optimal burst format is presented. Performance of the newly derived estimators is evaluated by analysis and by simulation, showing that such algorithms attain their relevant CRBs with very low complexity, so that they can be directly embedded into new-generation digital modems for satellite communications at low SNR.

  17. Acoustic Intervention in a Cultural Heritage: The Chapel of the Royal Palace in Caserta, Italy

    Directory of Open Access Journals (Sweden)

    Umberto Berardi

    2015-12-01

    Full Text Available The modern use of ancient heritage sites can be, to say the least, challenging from an acoustical perspective. In fact, modern needs may require acoustical interventions in contrast with the preservation issues of the cultural heritage. This paper deals with this topic in an UNESCO designated world heritage site, the Palatine Chapel of the Royal Palace in Caserta, Italy. Since this chapel is currently being used for meetings and music chamber concerts, the acoustical characteristics of the chapel, originally used for religious purposes, are investigated. Field measurements were undertaken to evaluate the acoustical performance of the empty chapel. The measurements were then used to calibrate and validate a computer simulation model. Different acoustical treatments are then considered and simulations are used to determine the related acoustical improvements. Finally, the benefits of different acoustical treatments which are respectful of the aesthetic and historical value of this cultural heritage are discussed.

  18. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...

  19. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  20. Indigenous Acoustic Detection.

    Science.gov (United States)

    1982-01-26

    considerable distances, and they act as good sensors of human presence. Though singing insects are ubiquitous in warm areas, even in the desert ( Nevo and...methodology. DTIC. CD-58-PL. Lloyd, J. E. 1981. Personnel communication. Nevo , E. and S. A. Blondheim. 1972. Acoustic isolation in the speciation of