WorldWideScience

Sample records for acoustic detection

  1. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  2. Indigenous Acoustic Detection.

    Science.gov (United States)

    1982-01-26

    considerable distances, and they act as good sensors of human presence. Though singing insects are ubiquitous in warm areas, even in the desert ( Nevo and...methodology. DTIC. CD-58-PL. Lloyd, J. E. 1981. Personnel communication. Nevo , E. and S. A. Blondheim. 1972. Acoustic isolation in the speciation of

  3. Golden Gate and Pt. Reyes Acoustic Detections

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...

  4. Acoustic resonance for nonmetallic mine detection

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.

    1998-04-01

    The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

  5. Integration of Acoustic Detection Equipment into ANTARES

    CERN Document Server

    Lahmann, R; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Naumann, C; Salomon, K

    2005-01-01

    The ANTARES group at the University of Erlangen is working towards the integration of a set of acoustic sensors into the ANTARES Neutrino Telescope. With this setup, tests of acoustic particle detection methods and background studies shall be performed. The ANTARES Neutrino Telescope, which is currently being constructed in the Mediterranean Sea, will be equipped with the infrastructure to accommodate a 3-dimensional array of photomultipliers for the detection of Cherenkov light. Within this infrastructure, the required resources for acoustic sensors are available: Bandwidth for the transmission of the acoustic data to the shore, electrical power for the off-shore electronics and physical space to install the acoustic sensors and to route the connecting cables (transmitting signals and power) into the electronics containers. It will be explained how the integration will be performed with minimal modifications of the existing ANTARES design and which setup is foreseen for the acquisition of the acoustic data.

  6. Fiber optic hydrophones for acoustic neutrino detection

    NARCIS (Netherlands)

    Buis, E.J.; Doppenberg, E.J.J.; Lahmann, R.; Toet, P.M.; Vreugd, J. de

    2016-01-01

    Cosmic neutrinos with ultra high energies can be detected acoustically using hydrophones. The detection of these neutrinos may provide crucial information about then GZK mechanism. The flux of these neutrinos, however, is expected to be low, so that a detection volume is required more than a order o

  7. Software for neutrino acoustic detection and localization

    Energy Technology Data Exchange (ETDEWEB)

    Bouhadef, B. [INFN Sezione Pisa, Polo Fibonacci, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, ' E. Fermi' University of Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)], E-mail: bouhadef@df.unipi.it

    2009-06-01

    The evidence of the existing of UHE (E>10{sup 19}eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  8. Humanitarian mine detection by acoustic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.

    1998-03-01

    The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL additional insight into the problems of developing practical

  9. Acoustic enhancement for photo detecting devices

    Science.gov (United States)

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  10. Mobile platform for acoustic mine detection applications

    Science.gov (United States)

    Libbey, Brad; Fenneman, Douglas; Burns, Brian

    2005-06-01

    Researchers in academia have successfully demonstrated acoustic landmine detection techniques. These typically employ acoustic or seismic sources to induce vibration in the mine/soil system, and use vibration sensors such as laser vibrometers or geophones to measure the resultant surface motion. These techniques exploit the unique mechanical properties of landmines to discriminate the vibration response of a buried mine from an off-target measurement. The Army requires the ability to rapidly and reliably scan an area for landmines and is developing a mobile platform at NVESD to meet this requirement. The platform represents an initial step toward the implementation of acoustic mine detection technology on a representative field vehicle. The effort relies heavily on the acoustic mine detection cart system developed by researchers at the University of Mississippi and Planning Systems, Inc. The NVESD platform consists of a John Deere E-gator configured with a robotic control system to accurately position the vehicle. In its present design, the E-gator has been outfitted with an array of laser vibrometers and a bank of loudspeakers. Care has been taken to ensure that the vehicle"s mounting hardware and data acquisition algorithms are sufficiently robust to accommodate the implementation of other sensor modalities. A thorough discussion of the mobile platform from its inception to its present configuration will be provided. Specific topics to be addressed include the vehicle"s control and data acquisition systems. Preliminary results from acoustic mine detection experiments will also be presented.

  11. Acoustic detection of coronary artery disease.

    Science.gov (United States)

    Semmlow, John; Rahalkar, Ketaki

    2007-01-01

    Coronary artery disease (CAD) occurs when the arteries to the heart (the coronary arteries) become blocked by deposition of plaque, depriving the heart of oxygen-bearing blood. This disease is arguably the most important fatal disease in industrialized countries, causing one-third to one-half of all deaths in persons between the ages of 35 and 64 in the United States. Despite the fact that early detection of CAD allows for successful and cost-effective treatment of the disease, only 20% of CAD cases are diagnosed prior to a heart attack. The development of a definitive, noninvasive test for detection of coronary blockages is one of the holy grails of diagnostic cardiology. One promising approach to detecting coronary blockages noninvasively is based on identifying acoustic signatures generated by turbulent blood flow through partially occluded coronary arteries. In fact, no other approach to the detection of CAD promises to be as inexpensive, simple to perform, and risk free as the acoustic-based approach. Although sounds associated with partially blocked arteries are easy to identify in more superficial vessels such as the carotids, sounds from coronary arteries are very faint and surrounded by noise such as the very loud valve sounds. To detect these very weak signals requires sophisticated signal processing techniques. This review describes the work that has been done in this area since the 1980s and discusses future directions that may fulfill the promise of the acoustic approach to detecting coronary artery disease.

  12. Optical and acoustical UAV detection

    Science.gov (United States)

    Christnacher, Frank; Hengy, Sébastien; Laurenzis, Martin; Matwyschuk, Alexis; Naz, Pierre; Schertzer, Stéphane; Schmitt, Gwenael

    2016-10-01

    Recent world events have highlighted that the proliferation of UAVs is bringing with it a new and rapidly increasing threat for national defense and security agencies. Whilst many of the reported UAV incidents seem to indicate that there was no terrorist intent behind them, it is not unreasonable to assume that it may not be long before UAV platforms are regularly employed by terrorists or other criminal organizations. The flight characteristics of many of these mini- and micro-platforms present challenges for current systems which have been optimized over time to defend against the traditional air-breathing airborne platforms. A lot of programs to identify cost-effective measures for the detection, classification, tracking and neutralization have begun in the recent past. In this paper, lSL shows how the performance of a UAV detection and tracking concept based on acousto-optical technology can be powerfully increased through active imaging.

  13. Signal Classification for Acoustic Neutrino Detection

    CERN Document Server

    Neff, M; Enzenhöfer, A; Graf, K; Hößl, J; Katz, U; Lahmann, R; Richardt, C

    2011-01-01

    This article focuses on signal classification for deep-sea acoustic neutrino detection. In the deep sea, the background of transient signals is very diverse. Approaches like matched filtering are not sufficient to distinguish between neutrino-like signals and other transient signals with similar signature, which are forming the acoustic background for neutrino detection in the deep-sea environment. A classification system based on machine learning algorithms is analysed with the goal to find a robust and effective way to perform this task. For a well-trained model, a testing error on the level of one percent is achieved for strong classifiers like Random Forest and Boosting Trees using the extracted features of the signal as input and utilising dense clusters of sensors instead of single sensors.

  14. Signal classification for acoustic neutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Neff, M., E-mail: max.neff@physik.uni-erlangen.de [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anton, G.; Enzenhoefer, A.; Graf, K.; Hoessl, J.; Katz, U.; Lahmann, R.; Richardt, C. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2012-01-11

    This article focuses on signal classification for deep-sea acoustic neutrino detection. In the deep sea, the background of transient signals is very diverse. Approaches like matched filtering are not sufficient to distinguish between neutrino-like signals and other transient signals with similar signature, which are forming the acoustic background for neutrino detection in the deep-sea environment. A classification system based on machine learning algorithms is analysed with the goal to find a robust and effective way to perform this task. For a well-trained model, a testing error on the level of 1% is achieved for strong classifiers like Random Forest and Boosting Trees using the extracted features of the signal as input and utilising dense clusters of sensors instead of single sensors.

  15. Detection and Classification of Whale Acoustic Signals

    Science.gov (United States)

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  16. Nonlinear acoustic techniques for landmine detection.

    Science.gov (United States)

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.

  17. Soldier/robot team acoustic detection

    Science.gov (United States)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated, autonomous, and semi-autonomous ground, air, and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  18. Acoustic analysis assessment in speech pathology detection

    Directory of Open Access Journals (Sweden)

    Panek Daria

    2015-09-01

    Full Text Available Automatic detection of voice pathologies enables non-invasive, low cost and objective assessments of the presence of disorders, as well as accelerating and improving the process of diagnosis and clinical treatment given to patients. In this work, a vector made up of 28 acoustic parameters is evaluated using principal component analysis (PCA, kernel principal component analysis (kPCA and an auto-associative neural network (NLPCA in four kinds of pathology detection (hyperfunctional dysphonia, functional dysphonia, laryngitis, vocal cord paralysis using the a, i and u vowels, spoken at a high, low and normal pitch. The results indicate that the kPCA and NLPCA methods can be considered a step towards pathology detection of the vocal folds. The results show that such an approach provides acceptable results for this purpose, with the best efficiency levels of around 100%. The study brings the most commonly used approaches to speech signal processing together and leads to a comparison of the machine learning methods determining the health status of the patient

  19. Acoustic change detection algorithm using an FM radio

    Science.gov (United States)

    Goldman, Geoffrey H.; Wolfe, Owen

    2012-06-01

    The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.

  20. Detecting the Nonlinearity of Fish Acoustic Signals

    Institute of Scientific and Technical Information of China (English)

    REN Xinmin; YIN Li

    2006-01-01

    This paper discusses the nonlinearity of fish acoustic signals by using the surrogate data method.We compare the difference of three test statistics - time-irreversibility Trey, correlation dimension D2 and auto mutual information function Ⅰbetween the original data and the surrogate data.We come to the conclusion that there exists nonlinearity in the fish acoustic signals and there exist deterministic nonlinear components; therefore nonlinear dynamic theory can be used to analyze fish acoustic signals.

  1. Integration of Acoustic Neutrino Detection Methods into ANTARES

    CERN Document Server

    Graf, K; Hoessl, J; Kappes, A; Katz, U F; Lahmann, R; Naumann, C; Salomon, K

    2007-01-01

    The ANTARES Neutrino Telescope is a water Cherenkov detector currently under construction in the Mediterranean Sea. It is also designed to serve as a platform for investigations of the deep-sea environment. In this context, the ANTARES group at the University of Erlangen will integrate acoustic sensors within the infrastructure of the experiment. With this dedicated setup, tests of acoustic particle detection methods and deep-sea acoustic background studies shall be performed. The aim of this project is to evaluate the feasibility of a future acoustic neutrino telescope in the deep sea operating in the ultra-high energy regime. In these proceedings, the implementation of the project is described in the context of the premises and challenges set by the physics of acoustic particle detection and the integration into an existing infrastructure.

  2. Passive Acoustic Radar for Detecting Supersonic Cruise Missile

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; XIAO Hui

    2005-01-01

    A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.

  3. Improvement of acoustic fall detection using Kinect depth sensing.

    Science.gov (United States)

    Li, Yun; Banerjee, Tanvi; Popescu, Mihail; Skubic, Marjorie

    2013-01-01

    The latest acoustic fall detection system (acoustic FADE) has achieved encouraging results on real-world dataset. However, the acoustic FADE device is difficult to be deployed in real environment due to its large size. In addition, the estimation accuracy of sound source localization (SSL) and direction of arrival (DOA) becomes much lower in multi-interference environment, which will potentially result in the distortion of the source signal using beamforming (BF). Microsoft Kinect is used in this paper to address these issues by measuring source position using the depth sensor. We employ robust minimum variance distortionless response (MVDR) adaptive BF (ABF) to take advantage of well-estimated source position for acoustic FADE. A significant reduction of false alarms and improvement of detection rate are both achieved using the proposed fusion strategy on real-world data.

  4. Acoustic Helicopter and FW Aircraft Detection and Classification

    NARCIS (Netherlands)

    Koersel, A.C. van

    2001-01-01

    The possibility to detect the passage of aircraft (either propeller or jet) with one or more mechanical wave sensors (acoustic or seismic) is investigated. An existing algorithm-sensor demonstator can detect and classify helicopter targets. In its current form it is developed to reject other targets

  5. All-Optical Detection of Acoustic Pressure Waves with applications in Photo-Acoustic Spectroscopy

    CERN Document Server

    Westergaard, Philip G

    2016-01-01

    An all-optical detection method for the detection of acoustic pressure waves is demonstrated. The detection system is based on a stripped (bare) single-mode fiber. The fiber vibrates as a standard cantilever and the optical output from the fiber is imaged to a displacement-sensitive optical detector. The absence of a conventional microphone makes the demonstrated system less susceptible to the effects that a hazardous environment might have on the sensor. The sensor is also useful for measurements in high temperature (above $200^{\\circ}$C) environments where conventional microphones will not operate. The proof-of-concept of the all-optical detection method is demonstrated by detecting sound waves generated by the photo-acoustic effect of NO$_2$ excited by a 455 nm LED, where a detection sensitivity of approximately 50 ppm was achieved.

  6. Sensor development and calibration for acoustic neutrino detection in ice

    CERN Document Server

    Karg, Timo; Laihem, Karim; Semburg, Benjamin; Tosi, Delia

    2009-01-01

    A promising approach to measure the expected low flux of cosmic neutrinos at the highest energies (E > 1 EeV) is acoustic detection. There are different in-situ test installations worldwide in water and ice to measure the acoustic properties of the medium with regard to the feasibility of acoustic neutrino detection. The parameters of interest include attenuation length, sound speed profile, background noise level and transient backgrounds. The South Pole Acoustic Test Setup (SPATS) has been deployed in the upper 500 m of drill holes for the IceCube neutrino observatory at the geographic South Pole. In-situ calibration of sensors under the combined influence of low temperature, high ambient pressure, and ice-sensor acoustic coupling is difficult. We discuss laboratory calibrations in water and ice. Two new laboratory facilities, the Aachen Acoustic Laboratory (AAL) and the Wuppertal Water Tank Test Facility, have been set up. They offer large volumes of bubble free ice (3 m^3) and water (11 m^3) for the devel...

  7. Sparse Reconstruction for Micro Defect Detection in Acoustic Micro Imaging

    Directory of Open Access Journals (Sweden)

    Yichun Zhang

    2016-10-01

    Full Text Available Acoustic micro imaging has been proven to be sufficiently sensitive for micro defect detection. In this study, we propose a sparse reconstruction method for acoustic micro imaging. A finite element model with a micro defect is developed to emulate the physical scanning. Then we obtain the point spread function, a blur kernel for sparse reconstruction. We reconstruct deblurred images from the oversampled C-scan images based on l1-norm regularization, which can enhance the signal-to-noise ratio and improve the accuracy of micro defect detection. The method is further verified by experimental data. The results demonstrate that the sparse reconstruction is effective for micro defect detection in acoustic micro imaging.

  8. Soldier detection using unattended acoustic and seismic sensors

    Science.gov (United States)

    Naz, P.; Hengy, S.; Hamery, P.

    2012-06-01

    During recent military conflicts, as well as for security interventions, the urban zone has taken a preponderant place. Studies have been initiated in national and in international programs to stimulate the technical innovations for these specific scenarios. For example joint field experiments have been organized by the NATO group SET-142 to evaluate the capability for the detection and localization of snipers, mortars or artillery guns using acoustic devices. Another important operational need corresponds to the protection of military sites or buildings. In this context, unattended acoustic and seismic sensors are envisaged to contribute to the survey of specific points by the detection of approaching enemy soldiers. This paper describes some measurements done in an anechoic chamber and in free field to characterize typical sounds generated by the soldier activities (walking, crawling, weapon handling, radio communication, clothing noises...). Footstep, speech and some specific impulsive sounds are detectable at various distances from the source. Such detection algorithms may be easily merged with the existing weapon firing detection algorithms to provide a more generic "battlefield acoustic" early warning system. Results obtained in various conditions (grassy terrain, gravel path, road, forest) will be presented. A method to extrapolate the distances of detection has been developed, based on an acoustic propagation model and applied to the laboratory measurements.

  9. Acoustic solitons: A robust tool to investigate the generation and detection of ultrafast acoustic waves

    Science.gov (United States)

    Péronne, Emmanuel; Chuecos, Nicolas; Thevenard, Laura; Perrin, Bernard

    2017-02-01

    Solitons are self-preserving traveling waves of great interest in nonlinear physics but hard to observe experimentally. In this report an experimental setup is designed to observe and characterize acoustic solitons in a GaAs(001) substrate. It is based on careful temperature control of the sample and an interferometric detection scheme. Ultrashort acoustic solitons, such as the one predicted by the Korteweg-de Vries equation, are observed and fully characterized. Their particlelike nature is clearly evidenced and their unique properties are thoroughly checked. The spatial averaging of the soliton wave front is shown to account for the differences between the theoretical and experimental soliton profile. It appears that ultrafast acoustic experiments provide a precise measurement of the soliton velocity. It allows for absolute calibration of the setup as well as the response function analysis of the detection layer. Moreover, the temporal distribution of the solitons is also analyzed with the help of the inverse scattering method. It shows how the initial acoustic pulse profile which gives birth to solitons after nonlinear propagation can be retrieved. Such investigations provide a new tool to probe transient properties of highly excited matter through the study of the emitted acoustic pulse after laser excitation.

  10. Background studies for acoustic neutrino detection at the South Pole

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdrmann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Denger, T; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schönwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stössl, A; Stoyanov, S; Strahler, E A; Straszheim, T; Stür, M; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-01-01

    The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the tiny flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in-situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10 to 50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic pulse-like events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to localize acoustic e...

  11. Numerical simulation of a laser-acoustic landmine detection system

    Science.gov (United States)

    Lancranjan, Ion I.; Miclos, Sorin; Savastru, Dan; Savastru, Roxana; Opran, Constantin

    2012-06-01

    The preliminary numerical simulation results obtained in the analysis of a landmine detection system based on laser excitation of acoustic - seismic waves in the soil and observing its surface vibration above the embedded landmine are presented. The presented numerical simulations comprise three main parts: 1) Laser oscillator and laser beam propagation and absorption in soil; a laser oscillator operated in Q-switched regime is considered; different laser wavelengths are investigated. 2) Acoustic - seismic wave generation by absorption in soil of laser pulse energy; 3) Evaluation of acoustic - seismic wave generation by the buried in soil landmine; 4) Comparison of Distributed Feed- Back Fiber Laser (DFB-FL) and Laser Doppler Vibrometer (LDV) detector used for soil vibrations evaluation. The above mentioned numerical simulation is dedicated for evaluation of an integrated portable detection system.

  12. Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    CERN Document Server

    Salomon, K; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Naumann, C

    2005-01-01

    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.

  13. THE ACOUSTIC DETECTION OF INTRACRANIAL ANEURYSMS - A CLINICAL-STUDY

    NARCIS (Netherlands)

    VANBRUGGEN, AC; MOOIJ, JJA; JOURNEE, HL

    1991-01-01

    A new recording method for the acoustical detection of intracranial aneurysms is presented. A study examining the capability of the method to discriminate between patients with an aneurysm and control patients by a simple, objective parameter is reported. Sound signals were recorded over the eyes, a

  14. Acoustic detection of intracranial aneurysms : A decision analysis

    NARCIS (Netherlands)

    vanBruggen, AC; Dippel, DWJ; Habbema, JDF; Mooij, JJA

    1996-01-01

    We present a further evaluation of an improved recording method for the acoustic detection of intracranial aneurysms (ADA). A sensor was applied to the patient's eyes. Two measures were derived to summarize the power spectral density functions of the sound frequencies that were obtained from each pa

  15. Acoustic vibration test detects intermittent electrical discontinuities

    Science.gov (United States)

    Grieve, S. M.; Roberts, D. E.

    1970-01-01

    Nondestructive test method detects faulty electrical connections in inaccessible or hidden portions of electronic harness assemblies and connectors. Method employs readily available commercial equipment.

  16. Passive acoustic detection of deep-diving beaked whales

    DEFF Research Database (Denmark)

    Zimmer, W.M.X.; Harwood, J.; Tyack, P.L.

    2008-01-01

    Beaked whales can remain submerged for an hour or more and are difficult to sight when they come to the surface to breathe. Passive acoustic detection (PAD) not only complements traditional visual-based methods for detecting these species but also can be more effective because beaked whales produce...... clicks regularly to echolocate on prey during deep foraging dives. The effectiveness of PAD for beaked whales depends not only on the acoustic behavior and output of the animals but also on environmental conditions and the quality of the passive sonar implemented. A primary constraint on the range...... at which beaked whale clicks can be detected involves their high frequencies, which attenuate rapidly, resulting in limited ranges of detection, especially in adverse environmental conditions. Given current knowledge of source parameters and in good conditions, for example, with a wind speed of 2  m...

  17. Acoustic firearm discharge detection and classification in an enclosed environment

    Energy Technology Data Exchange (ETDEWEB)

    Luzi, Lorenzo; Gonzalez, Eric; Bruillard, Paul; Prowant, Matthew; Skorpik, James; Hughes, Michael; Child, Scott; Kist, Duane; McCarthy, John E.

    2016-05-01

    Two different signal processing algorithms are described for detection and classification of acoustic signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm of the signal energy. The second is a joint entropy. The current study indicates that a system using both signal energy and joint entropy would be able to both detect weapon discharges and classify weapon type, in small spaces, with high statistical certainty.

  18. Factors Affecting Detection Probability of Acoustic Tags in Coral Reefs

    KAUST Repository

    Bermudez, Edgar F.

    2012-05-01

    Acoustic telemetry is an important tool for studying the movement patterns, behaviour, and site fidelity of marine organisms; however, its application is challenged in coral reef environments where complex topography and intense environmental noise interferes with acoustic signals, and there has been less study. Therefore, it is particularly critical in coral reef telemetry studies to first conduct a long-term range test, a tool that provides informa- tion on the variability and periodicity of the transmitter detection range and the detection probability. A one-month range test of a coded telemetric system was conducted prior to a large-scale tagging project investigating the movement of approximately 400 fishes from 30 species on offshore coral reefs in the central Red Sea. During this range test we determined the effect of the following factors on transmitter detection efficiency: distance from receiver, time of day, depth, wind, current, moon-phase and temperature. The experiment showed that biological noise is likely to be responsible for a diel pattern of -on average- twice as many detections during the day as during the night. Biological noise appears to be the most important noise source in coral reefs overwhelming the effect of wind-driven noise, which is important in other studies. Detection probability is also heavily influenced by the location of the acoustic sensor within the reef structure. Understanding the effect of environmental factors on transmitter detection probability allowed us to design a more effective receiver array for the large-scale tagging study.

  19. On Marine Mammal Acoustic Detection Performance Bounds

    CERN Document Server

    Xian, Yin; Tantum, Stacy; Liao, Xuejun; Zhang, Yuan

    2015-01-01

    Since the spectrogram does not preserve phase information contained in the original data, any algorithm based on the spectrogram is not likely to be optimum for detection. In this paper, we present the Short Time Fourier Transform detector to detect marine mammals in the time-frequency plane. The detector uses phase information for detection. We evaluate this detector by comparing it to the existing spectrogram based detectors for different SNRs and various environments including a known ocean, uncertain ocean, and mean ocean. The results show that this detector outperforms the spectrogram based detector. Simulations are presented using the polynomial phase signal model of the North Atlantic Right Whale (NARW), along with the bellhop ray tracing model.

  20. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  1. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  2. Topography and biological noise determine acoustic detectability on coral reefs

    KAUST Repository

    Cagua, Edgar F.

    2013-08-19

    Acoustic telemetry is an increasingly common tool for studying the movement patterns, behavior and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic tags and receivers must be understood. The relative and interactive effects of topography with biological and environmental noise have not been quantified on coral reefs. We conduct two long-term range tests (1- and 4-month duration) on two different reef types in the central Red Sea to determine the relative effect of distance, depth, topography, time of day, wind, lunar phase, sea surface temperature and thermocline on detection probability. Detectability, as expected, declines with increasing distance between tags and receivers, and we find average detection ranges of 530 and 120 m, using V16 and V13 tags, respectively, but the topography of the reef can significantly modify this relationship, reducing the range by ~70 %, even when tags and receivers are in line-of-sight. Analyses that assume a relationship between distance and detections must therefore be used with care. Nighttime detection range was consistently reduced in both locations, and detections varied by lunar phase in the 4-month test, suggesting a strong influence of biological noise (reducing detection probability up to 30 %), notably more influential than other environmental noises, including wind-driven noise, which is normally considered important in open-water environments. Analysis of detections should be corrected in consideration of the diel patterns we find, and range tests or sentinel tags should be used for more than 1 month to quantify potential changes due to lunar phase. Some studies assume that the most usual factor limiting detection range is weather-related noise; this cannot be extrapolated to coral reefs. © 2013 Springer-Verlag Berlin Heidelberg.

  3. Topography and biological noise determine acoustic detectability on coral reefs

    Science.gov (United States)

    Cagua, E. F.; Berumen, M. L.; Tyler, E. H. M.

    2013-12-01

    Acoustic telemetry is an increasingly common tool for studying the movement patterns, behavior and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic tags and receivers must be understood. The relative and interactive effects of topography with biological and environmental noise have not been quantified on coral reefs. We conduct two long-term range tests (1- and 4-month duration) on two different reef types in the central Red Sea to determine the relative effect of distance, depth, topography, time of day, wind, lunar phase, sea surface temperature and thermocline on detection probability. Detectability, as expected, declines with increasing distance between tags and receivers, and we find average detection ranges of 530 and 120 m, using V16 and V13 tags, respectively, but the topography of the reef can significantly modify this relationship, reducing the range by ~70 %, even when tags and receivers are in line-of-sight. Analyses that assume a relationship between distance and detections must therefore be used with care. Nighttime detection range was consistently reduced in both locations, and detections varied by lunar phase in the 4-month test, suggesting a strong influence of biological noise (reducing detection probability up to 30 %), notably more influential than other environmental noises, including wind-driven noise, which is normally considered important in open-water environments. Analysis of detections should be corrected in consideration of the diel patterns we find, and range tests or sentinel tags should be used for more than 1 month to quantify potential changes due to lunar phase. Some studies assume that the most usual factor limiting detection range is weather-related noise; this cannot be extrapolated to coral reefs.

  4. Acoustic detection of ultra-high energy cascades in ice

    Energy Technology Data Exchange (ETDEWEB)

    Boeser, S.

    2006-12-08

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km{sup 3} scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km{sup 3} will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and

  5. Analysis of short circuit transfer behavior using acoustic signal detection

    Directory of Open Access Journals (Sweden)

    Eakkachai Warinsiriruk

    2013-06-01

    Full Text Available The stability of a short circuiting period is important to obtain the desired weld quality. The objective of this research is to analyze the uniformity of liquid bridge disruption period during short circuit mode affected by various shielding gas compositions. The shielding gas compositions of 100% CO2 and 84%Ar+2%O2+14%CO2 were used in this study. Short circuiting period was detected by using acoustic signals emitting from the arc. Acoustic data were recorded by using multimedia function of XP windows audio card through a high sensitivity microphone. The results of short circuit acoustic data were analyzed by using continuous wavelet transformation for classifying the difference of acoustic emitting mechanism of electrode tip touching with base metal and pinching cut-off. For 84%Ar+2%O2+14%CO2 shielding gas, it clearly showed smoothershort circuit transfer than that of CO2 shielding gas. CO2 shielding gas gave large variation in disruption period comparing with that of 84%Ar+2%O2+14%CO2 gas mixture.

  6. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter.

  7. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D.; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with “pancake” directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  8. Neurobiology of acoustically mediated predator detection.

    Science.gov (United States)

    Pollack, Gerald S

    2015-01-01

    Ultrasound-driven avoidance responses have evolved repeatedly throughout the insecta as defenses against predation by echolocating bats. Although the auditory mechanics of ears and the properties of auditory receptor neurons have been studied in a number of groups, central neural processing of ultrasound stimuli has been examined in only a few cases. In this review, I summarize the neuronal basis for ultrasound detection and predator avoidance in crickets, tettigoniids, moths, and mantises, where central circuits have been studied most thoroughly. Several neuronal attributes, including steep intensity-response functions, high firing rates, and rapid spike conduction emerge as common themes of avoidance circuits. I discuss the functional consequences of these attributes, as well as the increasing complexity with which ultrasound stimuli are represented at successive levels of processing.

  9. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    NARCIS (Netherlands)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Sen, N. Chon; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J. -P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J. -L.; Gay, P.; Giacomelli, G.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchneri, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefevre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Pavalas, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schoeck, F.; Schuller, J. -P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic se

  10. Acoustic Emission Beamforming for Detection and Localization of Damage

    Science.gov (United States)

    Rivey, Joshua Callen

    The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over

  11. Cavitating vortex characterization based on acoustic signal detection

    Science.gov (United States)

    Digulescu, A.; Murgan, I.; Candel, I.; Bunea, F.; Ciocan, G.; Bucur, D. M.; Dunca, G.; Ioana, C.; Vasile, G.; Serbanescu, A.

    2016-11-01

    In hydraulic turbines operating at part loads, a cavitating vortex structure appears at runner outlet. This helical vortex, called vortex rope, can be cavitating in its core if the local pressure is lower that the vaporization pressure. An actual concern is the detection of the cavitation apparition and the characterization of its level. This paper presents a potentially innovative method for the detection of the cavitating vortex presence based on acoustic methods. The method is tested on a reduced scale facility using two acoustic transceivers positioned in ”V” configuration. The received signals were continuously recorded and their frequency content was chosen to fit the flow and the cavitating vortex. Experimental results showed that due to the increasing flow rate, the signal - vortex interaction is observed as modifications on the received signal's high order statistics and bandwidth. Also, the signal processing results were correlated with the data measured with a pressure sensor mounted in the cavitating vortex section. Finally it is shown that this non-intrusive acoustic approach can indicate the apparition, development and the damping of the cavitating vortex. For real scale facilities, applying this method is a work in progress.

  12. Detection and tracking of drones using advanced acoustic cameras

    Science.gov (United States)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  13. Laser-induced acoustic landmine detection with experimental results on buried landmines

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Putten, F.J.M. van; Koersel, A.C. van; Schleijpen, H.M.A.

    2004-01-01

    Acoustic landmine detection (ALD) is a technique for the detection of buried landmines including non-metal mines. Since it gives complementary results with GPR or metal detection, sensor fusion of these techniques with acoustic detection would give promising results. Two methods are used for the aco

  14. Clinical Study of Acoustic Densitometry Technique in Detecting Atherosclerotic Plaque

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To investigate the effect of Quyu Xiaoban Capsule (祛瘀消斑, QYXB) on the regressive treatment of atherosclerosis (AS) with acoustic densitometry (AD) technique. Methods: Eighty patients with AS were randomly divided into two groups, trial group was treated with QYXB and conventional medicine, and control group was treated with conventional medicine alone. Normal arterial wall and different types of atherosclerotic plaques were detected with AD technique before treatment and 10 months later. Resuits: The corrected averages in intimal echo intensity (AIIc%) were elevated in both groups but without significant difference, AIIc% of fatty plaques were increased in both groups and the value after treatment was significantly higher than that of pre-treatment in the trial group (68.12±5.54 vs 61.43±5.37, P<0.05).The increment rate of AIIc% in trial group was significantly higher than that in control group (10.9±5.1% vs2.5±5.5%, P<0.05). Conclusion: QYXB can stabilize the atherosclerotic plaque by increasing its acoustic density. Acoustic densitometry technique can differentiate the different histological plaques and monitor the histological changes of plaques during treatment.

  15. DETECTION OF DRUGSTORE BEETLES IN 9975 PACKAGES USING ACOUSTIC EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Shull, D.

    2013-03-04

    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  16. Towards Acoustic Detection of UHE Neutrinos in the Mediterranean Sea - The AMADEUS Project in ANTARES

    CERN Document Server

    Graf, K; Hoessl, J; Kappes, A; Katz, U F; Lahmann, R; Naumann, C; Salomon, K

    2007-01-01

    The acoustic detection method is a promising option for future neutrino telescopes operating in the ultra-high energy regime. It utilises the effect that a cascade evolving from a neutrino interaction generates a sound wave, and is applicable in different target materials like water, ice and salt. Described here are the developments in and the plans for the research on acoustic particle detection in water performed by the ANTARES group at the University of Erlangen within the framework of the ANTARES experiment in the Mediterranean Sea. A set of acoustic sensors will be integrated into this optical neutrino telescope to test acoustic particle detection methods and perform background studies.

  17. A New Acoustic Emission Sensor Based Gear Fault Detection Approach

    Directory of Open Access Journals (Sweden)

    Junda Zhu

    2013-01-01

    Full Text Available In order to reduce wind energy costs, prognostics and health management (PHM of wind turbine is needed to ensure the reliability and availability of wind turbines. A gearbox is an important component of a wind turbine. Therefore, developing effective gearbox fault detection tools is important to the PHM of wind turbine. In this paper, a new acoustic emission (AE sensor based gear fault detection approach is presented. This approach combines a heterodyne based frequency reduction technique with time synchronous average (TSA and spectrum kurtosis (SK to process AE sensor signals and extract features as condition indictors for gear fault detection. Heterodyne technique commonly used in communication is first employed to preprocess the AE signals before sampling. By heterodyning, the AE signal frequency is down shifted from several hundred kHz to below 50 kHz. This reduced AE signal sampling rate is comparable to that of vibration signals. The presented approach is validated using seeded gear tooth crack fault tests on a notational split torque gearbox. The approach presented in this paper is physics based and the validation results have showed that it could effectively detect the gear faults.

  18. Detecting changes in dynamic and complex acoustic environments

    Science.gov (United States)

    Boubenec, Yves; Lawlor, Jennifer; Górska, Urszula; Shamma, Shihab; Englitz, Bernhard

    2017-01-01

    Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments. DOI: http://dx.doi.org/10.7554/eLife.24910.001 PMID:28262095

  19. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    Science.gov (United States)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  20. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    Science.gov (United States)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time

  1. Active acoustic leak detection for LMFBR steam generators. Pt. 7. Potential for small leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Yoshida, Kazuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-05-01

    In order to prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, is being developed. Previous studies have revealed that the active acoustic method can detect bubbles of 10 l/s (equivalence water leak rate about 10 g/s) within 10 seconds in practical steam generators. In order to prevent the expansion of damage to neighboring tubes, however, it is necessary to detect smaller leakage of water from heat transfer tubes. In this study, in order to evaluate the detection sensitivity of the active method, the signal processing methods for emitter and receiver sound and the detection method for leakage within 1 g/s are investigated experimentally, using an SG full-sector model that simulates the actual SGs. A typical result shows that detection of 0.4 l/s air bubbles (equivalent water leak rate about 0.4 g/s) takes about 80 seconds, which is shorter than the propagation time of damage to neighboring tubes. (author)

  2. Explosive hazard detection using synthetic aperture acoustic sensing

    Science.gov (United States)

    Brewster, E.; Keller, J. M.; Stone, K.; Popescu, M.

    2016-05-01

    In this paper, we develop an approach to detect explosive hazards designed to attack vehicles from the side of a road, using a side looking synthetic aperture acoustic (SAA) sensor. This is done by first processing the raw data using a back-projection algorithm to form images. Next, an RX prescreener creates a list of possible targets, each with a designated confidence. Initial experiments are performed on libraries of the highest confidence hits for both target and false alarm classes generated by the prescreener. Image chips are extracted using pixel locations derived from the target's easting and northing. Several feature types are calculated from each image chip, including: histogram of oriented gradients (HOG), and generalized column projection features where the column aggregator takes the form of the minimum, maximum, mean, median, mode, standard deviation, variance, and the one-dimensional fast Fourier transform (FFT). A support vector machine (SVM) classifier is then utilized to evaluate feature type performance during training and testing in order to determine whether the two classes are separable. This will be used to build an online detection system for road-side explosive hazards.

  3. Seismic wave detection system based on fully distributed acoustic sensing

    Science.gov (United States)

    Jiang, Yue; Xu, Tuanwei; Feng, Shengwen; Huang, Jianfen; Yang, Yang; Guo, Gaoran; Li, Fang

    2016-11-01

    This paper presents a seismic wave detection system based on fully distributed acoustic sensing. Combined with Φ- OTDR and PGC demodulation technology, the system can detect and acquire seismic wave in real time. The system has a frequency response of 3.05 dB from 5 Hz to 1 kHz, whose sampling interval of each channel of 1 meter on total sensing distance up to 10 km. By comparing with the geophone in laboratory, the data show that in the time domain and frequency domain, two waveforms coincide consistently, and the correlation coefficient could be larger than 0.98. Through the analysis of the data of the array experiment and the oil well experiment, DAS system shows a consistent time domain and frequency domain response and a clearer trail of seismic wave signal as well as a higher signal-noise rate which indicate that the system we proposed is expected to become the next generation of seismic exploration equipment.

  4. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ziminsky, Willy Steve (Simpsonville, SC); Krull, Anthony Wayne (Anderson, SC); Healy, Timothy Andrew (Simpsonville, SC), Yilmaz, Ertan (Glenville, NY)

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  5. Investigation of acoustic sensors to detect coconut rhinoceros beetle in Guam

    Science.gov (United States)

    The coconut rhinoceros beetle, Oryctes rhinoceros, was accidentally introduced into Guam last year and now threatens the Island’s forests and tourist industry. These large insects can be detected easily with acoustic sensors, and procedures are being developed to incorporate acoustic technology int...

  6. Acoustic detection of high energy neutrinos in sea water: status and prospects

    Science.gov (United States)

    Lahmann, Robert

    2017-03-01

    The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of neutrinos at energies in the EeV-range and above. The technique is based on the thermo-acoustic model, which implies that the energy deposition by a particle cascade - resulting from a neutrino interaction in a medium with suitable thermal and acoustic properties - leads to a local heating and a subsequent characteristic pressure pulse that propagates in the surrounding medium. Current or recent test setups for acoustic neutrino detection have either been add-ons to optical neutrino telescopes or have been using acoustic arrays built for other purposes, typically for military use. While these arrays have been too small to derive competitive limits on neutrino fluxes, they allowed for detailed studies of the experimental technique. With the advent of the research infrastructure KM3NeT in the Mediterranean Sea, new possibilities will arise for acoustic neutrino detection. In this article, results from the "first generation" of acoustic arrays will be summarized and implications for the future of acoustic neutrino detection will be discussed.

  7. [INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids

    Science.gov (United States)

    Pezeril, Thomas

    2016-09-01

    The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.

  8. Active acoustic leak detection for LMFBR steam generators. Pt. 6. Applicability to practical steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Kumagai, Hiromichi; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    It is necessary to develop a reliable water leak detection system for steam generators of liquid metal reactors in order to prevent the expansion of damage and to maintain the structural integrity of the steam generators. The concept of the active acoustic method is to detect the change of the ultrasonic field due to the hydrogen gas bubbles generated by a sodium-water reaction. This method has the potential for improved detection performance compared with conventional passive methods, from the viewpoint of sensitivity, response time and tolerance against the background noise. A feasibility study of the active acoustic leak detection system is being carried out. This report predicts the performance of the active acoustic method in the practical steam generators from the results of the large scale in-water experiments. The results shows that the active acoustic system can detect a 10 g/s leak within a few seconds in large-scale steam generators. (author)

  9. Acoustic neutrino detection investigations within ANTARES and prospects for KM3NeT

    Directory of Open Access Journals (Sweden)

    Lahmann Robert

    2016-01-01

    Full Text Available The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of cosmogenic neutrinos at energies exceeding 1 EeV. It suggests itself to investigate this technique in the context of underwater Cherenkov neutrino telescopes, in particular KM3NeT, because acoustic sensors are present by design to allow for the calibration of the positions of the optical sensors. For the future, the KM3NeT detector in the Mediterranean Sea will provide an ideal infrastructure for a dedicated array of acoustic sensors. In this presentation results from the acoustic array AMADEUS of the ANTARES detector will be discussed with respect to the potential and implications for acoustic neutrino detection with KM3NeT and beyond.

  10. Application of acoustic emission to flaw detection in engineering materials

    Science.gov (United States)

    Moslehy, F. A.

    1990-01-01

    Monitoring of structures under operating loads to provide an early warning of possible failure to locate flaws in test specimens subjected to uniaxial tensile loading is presented. Test specimens used are mild steel prismatic bars with small holes at different locations. When the test specimen is loaded, acoustic emission data are automatically collected by two acoustic transducers located at opposite sides of the hole and processed by an acoustic emission analyzer. The processed information yields the difference in arrival times at the transducers, which uniquely determines the flaw location. By using this technique, flaws were located to within 8 percent of their true location. The use of acoustic emission in linear location to locate a flaw in a material is demonstrated. It is concluded that this one-dimensional application could be extended to the general flaw location problem through triangulation.

  11. Basic principles of thermo-acoustic energy and temporal profile detection of microwave pulses

    CERN Document Server

    Andreev, V G; Vdovin, V A

    2001-01-01

    Basic principles of a thermo-acoustic method developed for the detection of powerful microwave pulses of nanosecond duration are discussed.A proposed method is based on the registration of acoustic pulse profile originated from the thermal expansion of the volume where microwave energy was absorbed.The amplitude of excited acoustic transient is proportional to absorbed microwave energy and its temporal profile resembles one of a microwave pulse when certain conditions are satisfied.The optimal regimes of microwave pulse energy detection and sensitivity of acoustic transient registration with piezo-transducer are discussed.It was demonstrated that profile of a microwave pulse could be detected with temporal resolution of 1 - 3 nanosecond.

  12. A Four-Quadrant PVDF Transducer for Surface Acoustic Wave Detection

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2012-08-01

    Full Text Available In this paper, a polyvinylidene fluoride (PVDF piezoelectric transducer was developed to detect laser-induced surface acoustic waves in a SiO2-thin film–Si-substrate structure. In order to solve the problems related to, firstly, the position of the probe, and secondly, the fact that signals at different points cannot be detected simultaneously during the detection process, a four-quadrant surface acoustic wave PVDF transducer was designed and constructed for the purpose of detecting surface acoustic waves excited by a pulse laser line source. The experimental results of the four-quadrant piezoelectric detection in comparison with the commercial nanoindentation technology were consistent, the relative error is 0.56%, and the system eliminates the piezoelectric surface wave detection direction deviation errors, improves the accuracy of the testing system by 1.30%, achieving the acquisition at the same time at different testing positions of the sample.

  13. Feasibility of acoustic neutrino detection in ice: Design and performance of the South Pole Acoustic Test Setup (SPATS)

    CERN Document Server

    Boeser, S; Descamps, F; Fischer, J; Hallgren, A; Heller, R; Hundertmark, S; Krieger, K; Nahnhauer, R; Pohl, M; Price, P B; Sulanke, K -H; Tosi, D; Vandenbroucke, J

    2008-01-01

    The South Pole Acoustic Test Setup (SPATS) has been built to evaluate the acoustic characteristics of the South Pole ice in the 10 to 100 kHz frequency range so that the feasibility and specific design of an acoustic neutrino detection array at South Pole can be evaluated. SPATS consists of three vertical strings that were deployed in the upper 400 meters of the South Pole ice cap in January 2007, using the upper part of IceCube holes. The strings form a triangular array with the longest baseline 421 meters. Each of them has 7 stages with one transmitter and one sensor module. Both are equipped with piezoelectric ceramic elements in order to produce or detect sound. Analog signals are brought to the surface on electric cables where they are digitized by a PC-based data acquisition system. The data from all three strings are collected on a master-PC in a central facility, from which they are sent to the northern hemisphere via a satellite link or locally stored on tape. A technical overview of the SPATS detect...

  14. Beaked whale (Mesoplodon densirostris) passive acoustic detection in increasing ambient noise.

    Science.gov (United States)

    Ward, Jessica; Jarvis, Susan; Moretti, David; Morrissey, Ronald; Dimarzio, Nancy; Johnson, Mark; Tyack, Peter; Thomas, Len; Marques, Tiago

    2011-02-01

    Passive acoustic detection is being increasingly used to monitor visually cryptic cetaceans such as Blainville's beaked whales (Mesoplodon densirostris) that may be especially sensitive to underwater sound. The efficacy of passive acoustic detection is traditionally characterized by the probability of detecting the animal's sound emissions as a function of signal-to-noise ratio. The probability of detection can be predicted using accepted, but not necessarily accurate, models of the underwater acoustic environment. Recent field studies combining far-field hydrophone arrays with on-animal acoustic recording tags have yielded the location and time of each sound emission from tagged animals, enabling in-situ measurements of the probability of detection. However, tagging studies can only take place in calm seas and so do not reflect the full range of ambient noise conditions under which passive acoustic detection may be used. Increased surface-generated noise from wind and wave interaction degrades the signal-to-noise ratio of animal sound receptions at a given distance leading to a reduction in probability of detection. This paper presents a case study simulating the effect of increasing ambient noise on detection of M. densirostris foraging clicks recorded from a tagged whale swimming in the vicinity of a deep-water, bottom-mounted hydrophone array.

  15. A compact acoustic calibrator for ultra-high energy neutrino detection

    CERN Document Server

    Adrián-Martínez, S; Bou-Cabo, M; Larosa, G; Llorens, C D; Martínez-Mora, J A

    2012-01-01

    With the aim to optimize and test the method of acoustic detection of ultra-high energy neutrinos in underwater telescopes a compact acoustic transmitter array has been developed. The acoustic parametric effect is used to reproduce the acoustic signature of an ultra-high-energy neutrino interaction. Different reseach and development studies are presented in order to show the viability of the parametric sources technique to deal with the difficulties of the acoustic signal generation: a very directive transient bipolar signal with pancake directivity. The design, construction and characterization of the prototype are described, including simulation of the propagation of an experimental signal, measured in a pool, over a distance of 1 km. Following these studies, next steps will be testing the device in situ, in underwater neutrino telescope, or from a vessel in a sea campaign.

  16. Theory, simulation and experimental results of the acoustic detection of magnetization changes in superparamagnetic iron oxide

    Directory of Open Access Journals (Sweden)

    Borgert Jörn

    2011-06-01

    Full Text Available Abstract Background Magnetic Particle Imaging is a novel method for medical imaging. It can be used to measure the local concentration of a tracer material based on iron oxide nanoparticles. While the resulting images show the distribution of the tracer material in phantoms or anatomic structures of subjects under examination, no information about the tissue is being acquired. To expand Magnetic Particle Imaging into the detection of soft tissue properties, a new method is proposed, which detects acoustic emissions caused by magnetization changes in superparamagnetic iron oxide. Methods Starting from an introduction to the theory of acoustically detected Magnetic Particle Imaging, a comparison to magnetically detected Magnetic Particle Imaging is presented. Furthermore, an experimental setup for the detection of acoustic emissions is described, which consists of the necessary field generating components, i.e. coils and permanent magnets, as well as a calibrated microphone to perform the detection. Results The estimated detection limit of acoustic Magnetic Particle Imaging is comparable to the detection limit of magnetic resonance imaging for iron oxide nanoparticles, whereas both are inferior to the theoretical detection limit for magnetically detected Magnetic Particle Imaging. Sufficient data was acquired to perform a comparison to the simulated data. The experimental results are in agreement with the simulations. The remaining differences can be well explained. Conclusions It was possible to demonstrate the detection of acoustic emissions of magnetic tracer materials in Magnetic Particle Imaging. The processing of acoustic emission in addition to the tracer distribution acquired by magnetic detection might allow for the extraction of mechanical tissue parameters. Such parameters, like for example the velocity of sound and the attenuation caused by the tissue, might also be used to support and improve ultrasound imaging. However, the method

  17. Neutrino Detection, Position Calibration and Marine Science with Acoustic Arrays in the Deep Sea

    CERN Document Server

    Lahmann, Robert

    2013-01-01

    Arrays of acoustic receivers are an integral part of present and potential future Cherenkov neutrino telescopes in the deep sea. They measure the positions of individual detector elements which vary with time as an effect of undersea currents. At the same time, the acoustic receivers can be employed for marine science purposes, in particular for monitoring the ambient noise environment and the signals emitted by the fauna of the sea. And last but not least, they can be used for studies towards acoustic detection of ultra-high-energy neutrinos. Measuring acoustic pressure pulses in huge underwater acoustic arrays with an instrumented volume of the order of 100 km^3 is a promising approach for the detection of cosmic neutrinos with energies exceeding 1 EeV. Pressure signals are produced by the particle cascades that evolve when neutrinos interact with nuclei in water, and can be detected over large distances in the kilometre range. In this article, the status of acoustic detection will be reviewed and plans for...

  18. AMADEUS - The Acoustic Neutrino Detection Test System of the ANTARES Deep-Sea Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Albert, A; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Auer, R; Barbarito, E; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cassano, B; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, Ph; Chiarusi, T; Sen, N Chon; Circella, M; Coniglione, R; Costantini, H; Cottini, N; Coyle, P; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J-P; Escoffier, S; Fehr, F; Fiorello, C; Flaminio, V; Fritsch, U; Fuda, J-L; Gay, P; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Heine, E; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; de Jong, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Keller, P; Kooijman, P; Kopper, C; Kouchner, A; Kretschmer, W; Lahmann, R; Lamare, P; Lambard, G; Larosa, G; Laschinsky, H; Le Provost, H; Lefèvre, D; Lelaizant, G; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Ostasch, R; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Radu, A; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Ruppi, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Shanidze, R; Simeone, F; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J; 10.1016/j.nima.2010.09.053

    2010-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1V/muPa (including preamplifier). Completed in May 2008, AMADEUS consists of six "acoustic clusters", each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on...

  19. Rapid Salmonella detection using an acoustic wave device combined with the RCA isothermal DNA amplification method

    Directory of Open Access Journals (Sweden)

    Antonis Kordas

    2016-12-01

    Full Text Available Salmonella enterica serovar Typhimurium is a major foodborne pathogen that causes Salmonellosis, posing a serious threat for public health and economy; thus, the development of fast and sensitive methods is of paramount importance for food quality control and safety management. In the current work, we are presenting a new approach where an isothermal amplification method is combined with an acoustic wave device for the development of a label free assay for bacteria detection. Specifically, our method utilizes a Love wave biosensor based on a Surface Acoustic Wave (SAW device combined with the isothermal Rolling Circle Amplification (RCA method; various protocols were tested regarding the DNA amplification and detection, including off-chip amplification at two different temperatures (30 °C and room temperature followed by acoustic detection and on-chip amplification and detection at room temperature, with the current detection limit being as little as 100 Bacteria Cell Equivalents (BCE/sample. Our acoustic results showed that the acoustic ratio, i.e., the amplitude over phase change observed during DNA binding, provided the only sensitive means for product detection while the measurement of amplitude or phase alone could not discriminate positive from negative samples. The method's fast analysis time together with other inherent advantages i.e., portability, potential for multi-analysis, lower sample volumes and reduced power consumption, hold great promise for employing the developed assay in a Lab on Chip (LoC platform for the integrated analysis of Salmonella in food samples.

  20. Detection of the deterministic component in acoustic emission signals from mechanically loaded rock samples

    Science.gov (United States)

    Hilarov, V. L.

    2015-11-01

    Using the Takens theorem, the attractor was reconstructed for amplitudes of acoustic emission signals measured during fracture of granite samples. Systematic features of the temporal behavior of system dynamic characteristics, such as the embedding dimension, fractal dimensions, recurrence plots, and their numerical parameters, were determined. For a preliminarily water-saturated sample, an order-disorder phase transition was detected in the structure of acoustic emission signals.

  1. A novel fiber optic geophone with high sensitivity for geo-acoustic detection

    Science.gov (United States)

    Zhang, Zhenhui; Yang, Huayong; Xiong, Shuidong; Luo, Hong; Cao, Chunyan; Ma, Shuqing

    2014-12-01

    A novel interferometric fiber optic geophone is introduced in this paper. This geophone is mainly used for geo-acoustic signal detection. The geophone use one of the three orthogonal components of mandrel type push-pull structure in mechanically and single-mode fiber optic Michelson interferometer structure with Faraday Rotation Mirror (FRM) elements in optically. The resonance frequency of the geophone is larger than 1000Hz. The acceleration sensitivity is as high as 56.6 dB (0dB re 1rad/g) with a slight sensitivity fluctuation of +/-0. 2dB within the frequency band from 20Hz to 200Hz. The geo-acoustic signals generated by underwater blasting are detected successfully. All the channels show good uniformity in the detected wave shape and the amplitudes exhibit very slight differences. The geo-acoustic signal excitated by the engine of surface vehicles was also detected successfully.

  2. High frequency surface acoustic wave resonator-based sensor for particulate matter detection

    OpenAIRE

    Thomas, Sanju; Cole, Marina; Villa-López, Farah Helue; Gardner, J. W.

    2016-01-01

    This paper describes the characterization of high frequency Surface Acoustic Wave Resonator-based (SAWR) sensors, for the detection of micron and sub-micron sized particles. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh wave SAWRs where one is used for particle detection and the other as a reference. Electro-acoustic detection of different sized particles shows a strong relationship between mass sensitivity (Δf/Δm) and particle diameter (Dp). This enables frequency-dependent S...

  3. Experiment Observation on Acoustic Forward Scattering for Underwater Moving Object Detection

    Institute of Scientific and Technical Information of China (English)

    LEI Bo; MA Yuan-Liang; YANG Kun-De

    2011-01-01

    The problem of detecting an object in shallow water by observing changes in the acoustic field as the object passes between an acoustic source and receiver is addressed. A signal processing scheme based on forward scattering is proposed to detect the perturbed field in the presence of the moving object. The periodic LFM wideband signal is transmitted and a sudden change of field is acquired using a normalized median filter. The experimental results on the lake show that the proposed scheme is successful for the detection of a slowly moving object in the bistatic blind zone.

  4. Synthetic Aperture Acoustic Imaging for Roadside Detection of Solid Objects

    Science.gov (United States)

    2014-11-20

    Conference on Mechanical Vibration and Noise (VIB) . 13-AUG-12, . : , TOTAL: 3 Number of Peer-Reviewed Conference Proceeding publications (other than...targets 6 Laboratory SAA System   Figure 2.1: An illustration of acoustic wavefront reconstruction of a 0.2 m square aluminum plate located at...Equivalent: Total Number: Discipline Chelsea Good 0.25 Mechanical Engineering Nicole Bull 0.05 Mechanical Engineering 0.30 2 Sub Contractors (DD882) Names

  5. Sodium boiling detection in LMFBRs by acoustic-neutronic cross correlation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, S.A.

    1977-01-01

    The acoustic and neutronic noise signals caused by boiling are the signals primarily considered likely to detect sodium boiling in an LMFBR. Unfortunately, these signals may have serious signal-to-noise problems due to strong background noise sources. Neutronic-acoustic cross correlation techniques are expected to provide a means of improving the signal-to-noise ratio. This technique can improve the signal-to-noise ratio because the neutronic and acoustic signals due to boiling are highly correlated near the bubble repetition frequency, while the background noise sources are expected to be uncorrelated (or at most weakly correlated). An experiment was designed to show that the neutronic and acoustic noise signals are indeed highly correlated. The experiment consisted of simulating the void and pressure effects of local sodium boiling in the core of a zero-power reactor (ARK). The analysis showed that the neutronic and acoustic noise signals caused by boiling are almost perfectly correlated in a wide frequency band about the bubble repetition frequency. The results of the experiments were generalized to full-scale reactors to compare the inherent effectiveness of the methods which use the neutronic or acoustic signals alone with a hybrid method, which cross correlates the neutronic and acoustic signals. It was concluded that over a zone of the reactor where the void coefficient is sufficiently large (approximately 85 percent the core volume), the cross correlation method can provide a more rapid detection system for a given signal-to-noise ratio. However, where the void coefficient is small, one must probably rely on the acoustic method alone.

  6. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  7. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    Science.gov (United States)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  8. Based on optical fiber Michelson interferometer for acoustic emission detection experimental research

    Science.gov (United States)

    Liang, Yijun; Qu, Dandan; Deng, Hu

    2013-08-01

    A type of Michelson interferometer with two optical fiber loop reflectors acoustic emission sensor is proposed in the article to detect the vibrations produced by ultrasonic waves propagating in a solid body. Two optical fiber loop reflectors are equivalent to the sensing arm and the reference arm instead of traditional Michelson interferometer end reflecter Theoretical analyses indicate that the sensitivity of the system has been remarkably increased because of the decrease of the losses of light energy. The best operating point of optical fiber sensor is fixed by theoretical derivation and simulation of computer, and the signal frequency which is detected by the sensor is the frequency of input signal. PZT (Piezoelectric Ceramic) is powered by signal generator as known ultrasonic source, The Polarization controller is used to make the reflected light interference,The fiber length is changed by adjusting the DC voltage on the PZT with the fiber loop to make the sensor system response that ΔΦ is closed to π/2. the signal basis frequency detected by the sensor is the frequency of the input signal. Then impacts the surface of the marble slab with home-made mechanical acoustic emission source. And detect it. and then the frequency characteristic of acoustic emission signal is obtained by Fourier technique. The experimental results indicate that the system can identify the frequency characteristic of acoustic emission signal, and it can be also used to detect the surface feeble vibration which is generated by ultrasonic waves propagating in material structure.

  9. Effect of passive acoustic sampling methodology on detecting bats after declines from white nose syndrome

    Science.gov (United States)

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    Concomitant with the emergence and spread of white-nose syndrome (WNS) and precipitous decline of many bat species in North America, natural resource managers need modified and/or new techniques for bat inventory and monitoring that provide robust occupancy estimates. We used Anabat acoustic detectors to determine the most efficient passive acoustic sampling design for optimizing detection probabilities of multiple bat species in a WNS-impacted environment in New York, USA. Our sampling protocol included: six acoustic stations deployed for the entire duration of monitoring as well as a 4 x 4 grid and five transects of 5-10 acoustic units that were deployed for 6-8 night sample durations surveyed during the summers of 2011-2012. We used Program PRESENCE to determine detection probability and site occupancy estimates. Overall, the grid produced the highest detection probabilities for most species because it contained the most detectors and intercepted the greatest spatial area. However, big brown bats (Eptesicus fuscus) and species not impacted by WNS were detected easily regardless of sampling array. Endangered Indiana (Myotis sodalis) and little brown (Myotis lucifugus) and tri-colored bats (Perimyotis subflavus) showed declines in detection probabilities over our study, potentially indicative of continued WNS-associated declines. Identification of species presence through efficient methodologies is vital for future conservation efforts as bat populations decline further due to WNS and other factors.   

  10. Acoustic emission partial discharge detection technique applied to fault diagnosis: Case studies of generator transformers

    Directory of Open Access Journals (Sweden)

    Shanker Tangella Bhavani

    2016-01-01

    Full Text Available In power transformers, locating the partial discharge (PD source is as important as identifying it. Acoustic Emission (AE sensing offers a good solution for both PD detection and PD source location identification. In this paper the principle of the AE technique, along with in-situ findings of the online acoustic emission signals captured from partial discharges on a number of Generator Transformers (GT, is discussed. Of the two cases discussed, the first deals with Acoustic Emission Partial Discharge (AEPD tests on two identical transformers, and the second deals with the AEPD measurement of a transformer carried out on different occasions (years. These transformers are from a hydropower station and a thermal power station in India. Tests conducted in identical transformers give the provision for comparing AE signal amplitudes from the two transformers. These case studies also help in comprehending the efficacy of integrating Dissolved Gas is (DGA data with AEPD test results in detecting and locating the PD source.

  11. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    Science.gov (United States)

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  12. Robotic vehicle uses acoustic array for detection and localization in urban environments

    Science.gov (United States)

    Young, Stuart H.; Scanlon, Michael V.

    2001-09-01

    Sophisticated robotic platforms with diverse sensor suites are quickly replacing the eyes and ears of soldiers on the complex battlefield. The Army Research Laboratory (ARL) in Adelphi, Maryland has developed a robot-based acoustic detection system that will detect an impulsive noise event, such as a sniper's weapon firing or door slam, and activate a pan-tilt to orient a visible and infrared camera toward the detected sound. Once the cameras are cued to the target, onboard image processing can then track the target and/or transmit the imagery to a remote operator for navigation, situational awareness, and target detection. Such a vehicle can provide reconnaissance, surveillance, and target acquisition for soldiers, law enforcement, and rescue personnel, and remove these people from hazardous environments. ARL's primary robotic platforms contain 16-in. diameter, eight-element acoustic arrays. Additionally, a 9- in. array is being developed in support of DARPA's Tactical Mobile Robot program. The robots have been tested in both urban and open terrain. The current acoustic processing algorithm has been optimized to detect the muzzle blast from a sniper's weapon, and reject many interfering noise sources such as wind gusts, generators, and self-noise. However, other detection algorithms for speech and vehicle detection/tracking are being developed for implementation on this and smaller robotic platforms. The collaboration between two robots, both with known positions and orientations, can provide useful triangulation information for more precise localization of the acoustic events. These robots can be mobile sensor nodes in a larger, more expansive, sensor network that may include stationary ground sensors, UAVs, and other command and control assets. This report will document the performance of the robot's acoustic localization, describe the algorithm, and outline future work.

  13. Detecting unilateral phrenic paralysis by acoustic respiratory analysis.

    Directory of Open Access Journals (Sweden)

    José Antonio Fiz

    Full Text Available The consequences of phrenic nerve paralysis vary from a considerable reduction in respiratory function to an apparently normal state. Acoustic analysis of lung sound intensity (LSI could be an indirect non-invasive measurement of respiratory muscle function, comparing activity on the two sides of the thoracic cage. Lung sounds and airflow were recorded in ten males with unilateral phrenic paralysis and ten healthy subjects (5 men/5 women, during progressive increasing airflow maneuvers. Subjects were in sitting position and two acoustic sensors were placed on their back, on the left and right sides. LSI was determined from 1.2 to 2.4 L/s between 70 and 2000 Hz. LSI was significantly greater on the normal (19.3±4.0 dB than the affected (5.7±3.5 dB side in all patients (p = 0.0002, differences ranging from 9.9 to 21.3 dB (13.5±3.5 dB. In the healthy subjects, the LSI was similar on both left (15.1±6.3 dB and right (17.4±5.7 dB sides (p = 0.2730, differences ranging from 0.4 to 4.6 dB (2.3±1.6 dB. There was a positive linear relationship between the LSI and the airflow, with clear differences between the slope of patients (about 5 dB/L/s and healthy subjects (about 10 dB/L/s. Furthermore, the LSI from the affected side of patients was close to the background noise level, at low airflows. As the airflow increases, the LSI from the affected side did also increase, but never reached the levels seen in healthy subjects. Moreover, the difference in LSI between healthy and paralyzed sides was higher in patients with lower FEV1 (%. The acoustic analysis of LSI is a relevant non-invasive technique to assess respiratory function. This method could reinforce the reliability of the diagnosis of unilateral phrenic paralysis, as well as the monitoring of these patients.

  14. RAP: acoustic detection of particles in ultracryogenic resonant antenna

    Energy Technology Data Exchange (ETDEWEB)

    Bertolucci, S.; Coccia, E.; D' Antonio, S.; Waard, A. de; Delle Monache, G.; Di Gioacchino, D.; Fafone, V.; Fauth, A.; Frossati, G.; Ligi, C. E-mail: carlo.ligi@inf.infn.it; Marini, A.; Mazzitelli, G.; Modestino, G.; Pizzella, G.; Quintieri, L.; Raffone, G.; Ronga, F.; Tripodi, P.; Valente, P

    2004-03-11

    The resonant-mass gravitational wave detector NAUTILUS has recently recorded signals due to cosmic rays crossing. Very large signals have been observed in the superconductive state of the antenna. In order to investigate this anomalous response at low temperatures, the Rivelazione Acustica di Particelle experiment has been approved. Its purpose is the measurement of the mechanical vibrations in a superconducting (T{approx}100 mK) cylindrical aluminium bar when hit by 10{sup 5} electrons at 510 MeV from the DAPHINE Beam Test Facility, corresponding to the energies released by extensive air showers in the NAUTILUS antenna. The results of this measurement are crucial to understand the interaction of ionizing particles with bulk superconductors and to confirm the results on the thermo-acoustic model of the past experiments.

  15. Object Detection and Tracking Method of AUV Based on Acoustic Vision

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tie-dong; WAN Lei; ZENG Wen-jing; XU Yu-ru

    2012-01-01

    This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation,underwater acoustic images segmentation and underwater objects tracking.This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor.First,the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image,and the relevant position information of objects is extracted and determined.An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method.Second,a representation of region information is created in light of the Gaussian particle filter.The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness.Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed.They show that the proposed method can detect and track the moving objects underwater online,and it is effective and robust.

  16. Object detection and tracking method of AUV based on acoustic vision

    Science.gov (United States)

    Zhang, Tie-dong; Wan, Lei; Zeng, Wen-jing; Xu, Yu-ru

    2012-12-01

    This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust.

  17. Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.

    Science.gov (United States)

    Li, Yun; Ho, K C; Popescu, Mihail

    2014-03-01

    Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.

  18. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection.

    Directory of Open Access Journals (Sweden)

    George Papadakis

    Full Text Available A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics.

  19. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection.

    Science.gov (United States)

    Papadakis, George; Skandalis, Nicholas; Dimopoulou, Anastasia; Glynos, Paraskevas; Gizeli, Electra

    2015-01-01

    A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics.

  20. Leak detection and localization system through acoustics; Sistema de deteccao e localizacao de vazamentos por acustica

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Julio [Aselco Automacao, Sao Paulo, SP (Brazil)

    2003-07-01

    Acoustic Leak Detection Systems (ALDS) are used on both liquid and gas pipelines as well as multi-phase flow pipelines to detect leaks quickly and provide a means of limiting product loss. The real-time acoustic signal is continuously compared against signature leak profiles for the particular operating and geometric conditions. These profiles were developed from a database established from over 20 years of experimental and field leak tests. This technique not only drastically reduces the false alarm rate, but also significantly improves the sensitivity and leak location accuracy. This system will also detect leaks with shut-in flow (zero flow rate in the pipeline). With the use of GPS (Global Positioning System) it not only improves leak location accuracy, but also allows for continuous leak detection during the loss of communications. (author)

  1. Theoretical detection threshold of the proton-acoustic range verification technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305-5847 (United States); Xiang, Liangzhong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019-1101 (United States)

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic

  2. Passive acoustic monitoring to detect spawning in large-bodied catostomids

    Science.gov (United States)

    Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.

    2014-01-01

    Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.

  3. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L.

    2007-09-17

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called 'equivalent circuit diagram (=ECD) model' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/{mu}Pa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/{radical}(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with

  4. Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae

    CERN Document Server

    Maksymov, Ivan S

    2015-01-01

    Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...

  5. Waveform Based Acoustic Emission Detection and Location of Matrix Cracking in Composites

    Science.gov (United States)

    Prosser, W. H.

    1995-01-01

    The operation of damage mechanisms in a material or structure under load produces transient acoustic waves. These acoustic waves are known as acoustic emission (AE). In composites they can be caused by a variety of sources including matrix cracking, fiber breakage, and delamination. AE signals can be detected and analyzed to determine the location of the acoustic source by triangulation. Attempts are also made to analyze the signals to determine the type and severity of the damage mechanism. AE monitoring has been widely used for both laboratory studies of materials, and for testing the integrity of structures in the field. In this work, an advanced, waveform based AE system was used in a study of transverse matrix cracking in cross-ply graphite/epoxy laminates. This AE system featured broad band, high fidelity sensors, and high capture rate digital acquisition and storage of acoustic signals. In addition, analysis techniques based on plate wave propagation models were employed. These features provided superior source location and noise rejection capabilities.

  6. Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS

    CERN Document Server

    ,

    2011-01-01

    The AMADEUS system is an integral part of the ANTARES neutrino telescope in the Mediterranean Sea. The project aims at the investigation of techniques for acoustic neutrino detection in the deep sea. Installed at a depth of more than 2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for the broad-band recording of signals with frequencies ranging up to 125kHz. AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each one holding six acoustic sensors that are arranged at distances of roughly 1m from each other. The clusters are installed with inter-spacings ranging from 15m to 340m. Acoustic data are continuously acquired and processed at a computer cluster where online filter algorithms are applied to select a high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in 2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like signals in the deep sea, the characteristics of ambient noise and transient signals have been investigate...

  7. Passive acoustic detection of a rebreather using a random array

    NARCIS (Netherlands)

    Fillinger, L.; Hunter, A.J.; Zampolli, M.; Clarijs, M.C.

    2013-01-01

    Divers, including closed circuit (rebreather) divers constitute a potential threat to waterside infrastructures. Active diver detection sonars are available commercially but present some shortcomings, particularly in highly reverberant environments. This has led to research on passive sonar for dive

  8. Active acoustic leak detection for LMFBR steam generator. Sound attenuation due to bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Sakuma, Toshio [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1995-06-01

    In the steam generators (SG) of LMFBR, it is necessary to detect the leakage of water from tubes of heat exchangers as soon as it occurs. The active acoustic detection method has drawn general interest owing to its short response time and reduction of the influence of background noise. In this paper, the application of the active acoustic detection method for SG is proposed, and sound attenuation by bubbles is investigated experimentally. Furthermore, using the SG sector model, sound field characteristics and sound attenuation characteristics due to injection of bubbles are studied. It is clarified that the sound attenuation depends upon bubble size as well as void fraction, that the distance attenuation of sound in the SG model containing heat transfer tubes is 6dB for each two-fold increase of distance, and that emitted sound attenuates immediately upon injection of bubbles. (author).

  9. A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals

    Institute of Scientific and Technical Information of China (English)

    Jing-jing WANG; Wei-hui LIU; Da CHEN; Yan XU; Lu-yin ZHANG

    2014-01-01

    Increasing awareness concerning food safety problems has been driving the search for simple and efficient bio-chemical analytical methods. In this paper, we develop a portable electro-acoustic biosensor based on a film bulk acoustic reso-nator for the detection of pesticide residues in agricultural products. A shear mode ZnO film bulk acoustic resonator with a mi-cro-machining structure was fabricated as a mass-sensitive transducer for the real-time detection of antibody-antigen reactions in liquids. In order to obtain an ultra-low detection level, the artificial antigens were immobilized on the sensing surface of the resonator to employ a competitive format for the immunoassays. The competitive immunoreactions can be observed clearly through monitoring the frequency changes. The presence of pesticides was detected through the diminution of the frequency shift compared with the level without pesticides. The limit of detection for carbaryl (a widely used pesticide for vegetables and crops) is 2´10-10 M. The proposed device represents a potential alternative to the complex optical systems and electrochemical methods that are currently being used, and represents a significant opportunity in terms of simplicity of use and portability for on-site food safety testing.

  10. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    Directory of Open Access Journals (Sweden)

    Antonio Arnau-Vives

    2009-07-01

    Full Text Available This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW, Surface Transverse Wave (STW, Love Wave (LW, Flexural Plate Wave (FPW, Shear Horizontal Acoustic Plate Mode (SH-APM and Layered Guided Acoustic Plate Mode (LG-APM - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications.

  11. Trackline and point detection probabilities for acoustic surveys of Cuvier's and Blainville's beaked whales.

    Science.gov (United States)

    Barlow, Jay; Tyack, Peter L; Johnson, Mark P; Baird, Robin W; Schorr, Gregory S; Andrews, Russel D; Aguilar de Soto, Natacha

    2013-09-01

    Acoustic survey methods can be used to estimate density and abundance using sounds produced by cetaceans and detected using hydrophones if the probability of detection can be estimated. For passive acoustic surveys, probability of detection at zero horizontal distance from a sensor, commonly called g(0), depends on the temporal patterns of vocalizations. Methods to estimate g(0) are developed based on the assumption that a beaked whale will be detected if it is producing regular echolocation clicks directly under or above a hydrophone. Data from acoustic recording tags placed on two species of beaked whales (Cuvier's beaked whale-Ziphius cavirostris and Blainville's beaked whale-Mesoplodon densirostris) are used to directly estimate the percentage of time they produce echolocation clicks. A model of vocal behavior for these species as a function of their diving behavior is applied to other types of dive data (from time-depth recorders and time-depth-transmitting satellite tags) to indirectly determine g(0) in other locations for low ambient noise conditions. Estimates of g(0) for a single instant in time are 0.28 [standard deviation (s.d.) = 0.05] for Cuvier's beaked whale and 0.19 (s.d. = 0.01) for Blainville's beaked whale.

  12. Hypernasal Speech Detection by Acoustic Analysis of Unvoiced Plosive Consonants

    Directory of Open Access Journals (Sweden)

    Alexander Sepúlveda-Sepúlveda

    2009-12-01

    Full Text Available People with a defective velopharyngeal mechanism speak with abnormal nasal resonance (hypernasal speech. Voice analysis methods for hypernasality detection commonly use vowels and nasalized vowels. However to obtain a more general assessment of this abnormality it is necessary to analyze stops and fricatives. This study describes a method with high generalization capability for hypernasality detection analyzing unvoiced Spanish stop consonants. The importance of phoneme-by-phoneme analysis is shown, in contrast with whole word parametrization which includes irrelevant segments from the classification point of view. Parameters that correlate the imprints of Velopharyngeal Incompetence (VPI over voiceless stop consonants were used in the feature estimation stage. Classification was carried out using a Support Vector Machine (SVM, including the Rademacher complexity model with the aim of increasing the generalization capability. Performances of 95.2% and 92.7% were obtained in the processing and verification stages for a repeated cross-validation classifier evaluation.

  13. Analysis of acoustic to seismic coupling technique for buried landmines detection

    Institute of Scientific and Technical Information of China (English)

    WANG Chi; XIE Yulai; LI Xingfei; SUN Fei; ZHANG Guoxiong

    2009-01-01

    The mechanical interaction between the induced seismic waves and landmines was analyzed according to acoustic-to-seismic coupling theory. And a geophone array based exper-imental system for landmine detection was developed. By modeling a compliant mine and the soil on top of the mine as a mass-spring system, analytic method was adopted to study the resonance mechanism of the system. A loudspeaker was employed as energy source to excite a swept sine tone over the soil. We also used a geophone array to measure the vibration velocity of the ground surface. In order to analysis the landmine effect on the surface vibration, the magnitude spectra curves of the measured velocity values on-and-off mine were plotted. The results showed that the data measured on mine is much bigger than that off target and the proposed system can be applied to further investigation of acoustic landmines detection.

  14. Acoustic detection and localization from a tethered aerostat during the NATO TG-53 test

    Science.gov (United States)

    Reiff, C.; Scanlon, M.; Noble, J.

    2006-05-01

    Acoustic sensors mounted to a tethered aerostat detect and localize transient signals from mortars, artillery, C-4, propane cannon, and small arms fire. Significant enhancements to soldier lethality and survivability can be gained when using the aerostat array to detect, localize, and cue an aerial imager to a weapon's launch site, or use the aerostat's instantaneous position and orientation to calculate a vector solution to the ground coordinates of the launch site for threat neutralization. The prototype aerostat-mounted array was tested at Yuma Proving Grounds (YPG) as part of the NATO TG-53 signature collection exercise. Acoustic wave form data was collected simultaneously with aerostat and ground-based sensor arrays for comparing wind noise, signal to noise related parameters, and atmospheric effects on propagation to an elevated array. A test description and summary of localization accuracy will be presented for various altitudes, ranges to target, and under differing meteorological conditions.

  15. Marine mammal acoustic detections in the northeastern Chukchi Sea, September 2007-July 2011

    Science.gov (United States)

    Hannay, David E.; Delarue, Julien; Mouy, Xavier; Martin, Bruce S.; Leary, Del; Oswald, Julie N.; Vallarta, Jonathan

    2013-09-01

    Several cetacean and pinniped species use the northeastern Chukchi Sea as seasonal or year-round habitat. This area has experienced pronounced reduction in the extent of summer sea ice over the last decade, as well as increased anthropogenic activity, particularly in the form of oil and gas exploration. The effects of these changes on marine mammal species are presently unknown. Autonomous passive acoustic recorders were deployed over a wide area of the northeastern Chukchi Sea off the coast of Alaska from Cape Lisburne to Barrow, at distances from 8 km to 200 km from shore: up to 44 each summer and up to 8 each winter. Acoustic data were acquired at 16 kHz continuously during summer and on a duty cycle of 40 or 48 min within each 4-h period during winter. Recordings were analyzed manually and using automated detection and classification systems to identify calls. Bowhead (Balaena mysticetus) and beluga (Delphinapterus leucas) whale calls were detected primarily from April through June and from September to December during their migrations between the Bering and Beaufort seas. Summer detections were rare and usually concentrated off Wainwright and Barrow, Alaska. Gray (Eschrichtius robustus) whale calls were detected between July and October, their occurrence decreasing with increasing distance from shore. Fin (Balaenoptera physalus), killer (Orcinus orca), minke (Balaenoptera acutorostrata), and humpback (Megaptera novaeangliae) whales were detected sporadically in summer and early fall. Walrus (Odobenus rosmarus) was the most commonly detected species between June and October, primarily occupying the southern edge of Hanna Shoal and haul-outs near coastal recording stations off Wainwright and Point Lay. Ringed (Pusa hispida) and bearded (Erignathus barbatus) seals occur year-round in the Chukchi Sea. Ringed seal acoustic detections occurred throughout the year but detection numbers were low, likely due to low vocalization rates. Bearded seal acoustic detections

  16. Ultrasound contrast agents for bleeding detection and acoustic hemostasis

    Science.gov (United States)

    Zderic, Vesna; Luo, Wenbo; Brayman, Andrew; Crum, Lawrence; Vaezy, Shahram

    2005-04-01

    Objective: To investigate the application of ultrasound contrast agents (UCA) in improving both therapeutic and diagnostic aspects of ultrasound-guided High Intensity Focused Ultrasound (HIFU) therapy. Methods: Incisions (3 cm long, 0.5 cm deep) were made in rabbit livers (in anterior surface for HIFU treatment, or posterior surface for bleeding detection). UCA Optison (~0.1 ml/kg) was injected into mesenteric vein or ear vein. A HIFU applicator (5.5 MHz, 6400 W/cm2) was scanned manually over the incision until hemostasis was achieved. Occult bleeding was monitored with Doppler ultrasound. Results: The presence of Optison produced 37% reduction in hemostasis times normalized to initial bleeding rates. Gross and histological observations showed similar appearance of HIFU lesions produced in the presence of Optison and control HIFU lesions. The temperature reached 100°C in both HIFU only and HIFU+UCA treatments. Tension strength of hemostatic liver incisions was 0.9+/-0.5 N. Almost no bleeding could be detected before Optison injection. First appearance of contrast enhancement localized at the bleeding site was 15 s after Optison injection, and lasted for ~50 s. Conclusion: The presence of UCA during HIFU treatment of liver incisions resulted in shortening of HIFU application times and better visualization of bleeding sites.

  17. Monitoring the Ocean Acoustic Environment: A Model-Based Detection Approach

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Sullivan, E.J.

    2000-03-13

    A model-based approach is applied in the development of a processor designed to passively monitor an ocean acoustic environment along with its associated variations. The technique employs an adaptive, model-based processor embedded in a sequential likelihood detection scheme. The trade-off between state-based and innovations-based monitor designs is discussed, conceptually. The underlying theory for the innovations-based design is briefly developed and applied to a simulated data set.

  18. Acoustic properties of glacial ice for neutrino detection and the Enceladus Explorer

    CERN Document Server

    Helbing, K; Naumann, U; Eliseev, D; Heinen, D; Scholz, F; Wiebusch, C; Zierke, S

    2016-01-01

    Ultra high energy neutrinos may be observed in ice by the emission of acoustic signals. The SPATS detector has investigated the possibility of observing GZK-neutrinos in the clear ice near the South Pole at the IceCube detector site. To explore other potential detection sites glacial ice in the Alps and in Antarctica has been surveyed for its acoustical properties. The purpose of the Enceladus Explorer (EnEx), on the other hand, is the search for extraterrestrial life on the Saturn moon Enceladus. Here acoustics is used to maneuver a subsurface probe inside the ice by trilateration of signals. A system of acoustic transducers has been developed to study both applications. In the south polar region of the moon Enceladus there are secluded crevasses. These are filled with liquid water, probably heated by tidal forces due to the short distance to Saturn. We intend to take a sample of water from these crevasses by using a combination of a melt down and steering probe called IceMole (IM). Maneuvering IM requires a...

  19. An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling.

    Science.gov (United States)

    Xiang, Ning; Sabatier, James M

    2003-03-01

    An acoustic-to-seismic system to detect buried antipersonnel mines exploits airborne acoustic waves penetrating the surface of the ground. Acoustic waves radiating from a sound source above the ground excite Biot type I and II compressional waves in the porous soil. The type I wave and type II waves refract toward the normal and cause air and soil particle motion. If a landmine is buried below the surface of the insonified area, these waves are scattered or reflected by the target, resulting in distinct changes to the acoustically coupled ground motion. A scanning laser Doppler vibrometer measures the motion of the ground surface. In the past, this technique has been employed with remarkable success in locating antitank mines during blind field tests [Sabatier and Xiang, IEEE Trans. Geosci. Remote Sens. 39, 1146-1154 (2001)]. The humanitarian demining mission requires an ability to locate antipersonnel mines, requiring a surmounting of additional challenges due to a plethora of shapes and smaller sizes. This paper describes an experimental study on the methods used to locate antipersonnel landmines in recent field measurements.

  20. A compact array calibrator to study the feasibility of acoustic neutrino detection

    Directory of Open Access Journals (Sweden)

    Ardid M.

    2016-01-01

    Full Text Available Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino “signature” that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  1. Fiber-optic photo-acoustic spectroscopy sensor for harsh environment gas detection

    Science.gov (United States)

    Wu, Juntao; Deng, Kung-Li; Guida, Renato; Lee, Boon

    2007-09-01

    Photo-acoustic spectroscopy (PAS) has been successfully applied to detect various gases and chemicals due to its high selectivity and sensitivity. However, the performance of the conventional acoustic sensors prohibits the application of PAS for harsh environment gas species real-time monitoring. By replacing conventional acoustic sensors, such as microphone and piezo-transducers, with a high-temperature Fiber Bragg Grating (FBG) vibration sensor, we developed a fiber-optic PAS sensing system that can be used in high-temperature and high-pressure harsh environments for gas species identification and concentration measurement. A resonant acoustic chamber is designed, and FBG vibration sensor is embedded in the molybdenum membrane. An OPO laser is used for spectrum scanning. Preliminary test on water vapor has been conducted, and the result is analyzed. This sensing technology can be adapted into harsh environments, such as Integrated Gasification Combined Cycle (IGCC) power plant, and provide on-line real-time monitoring of gases species, such as CO, H IIO, and O II. Presently, our FBG-based vibration sensor can withstand the high temperature up to 800°C.

  2. Machine Fault Detection Based on Filter Bank Similarity Features Using Acoustic and Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Mauricio Holguín-Londoño

    2016-01-01

    Full Text Available Vibration and acoustic analysis actively support the nondestructive and noninvasive fault diagnostics of rotating machines at early stages. Nonetheless, the acoustic signal is less used because of its vulnerability to external interferences, hindering an efficient and robust analysis for condition monitoring (CM. This paper presents a novel methodology to characterize different failure signatures from rotating machines using either acoustic or vibration signals. Firstly, the signal is decomposed into several narrow-band spectral components applying different filter bank methods such as empirical mode decomposition, wavelet packet transform, and Fourier-based filtering. Secondly, a feature set is built using a proposed similarity measure termed cumulative spectral density index and used to estimate the mutual statistical dependence between each bandwidth-limited component and the raw signal. Finally, a classification scheme is carried out to distinguish the different types of faults. The methodology is tested in two laboratory experiments, including turbine blade degradation and rolling element bearing faults. The robustness of our approach is validated contaminating the signal with several levels of additive white Gaussian noise, obtaining high-performance outcomes that make the usage of vibration, acoustic, and vibroacoustic measurements in different applications comparable. As a result, the proposed fault detection based on filter bank similarity features is a promising methodology to implement in CM of rotating machinery, even using measurements with low signal-to-noise ratio.

  3. A compact array calibrator to study the feasibility of acoustic neutrino detection

    Science.gov (United States)

    Ardid, M.; Camarena, F.; Felis, I.; Herrero, A.; Llorens, C. D.; Martínez-Mora, J.; Saldaña, M.

    2016-04-01

    Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino "signature" that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  4. A Correlated Microwave-Acoustic Imaging method for early-stage cancer detection.

    Science.gov (United States)

    Gao, Fei; Zheng, Yuanjin

    2012-01-01

    Microwave-based imaging technique shows large potential in detecting early-stage cancer due to significant dielectric contrast between tumor and surrounding healthy tissue. In this paper, we present a new way named Correlated Microwave-Acoustic Imaging (CMAI) of combining two microwave-based imaging modalities: confocal microwave imaging(CMI) by detecting scattered microwave signal, and microwave-induced thermo-acoustic imaging (TAI) by detecting induced acoustic signal arising from microwave energy absorption and thermal expansion. Necessity of combining CMI and TAI is analyzed theoretically, and by applying simple algorithm to CMI and TAI separately, we propose an image correlation approach merging CMI and TAI together to achieve better performance in terms of resolution and contrast. Preliminary numerical simulation shows promising results in case of low contrast and large variation scenarios. A UWB transmitter is designed and tested for future complete system implementation. This preliminary study inspires us to develop a new medical imaging modality CMAI to achieve real-time, high resolution and high contrast simultaneously.

  5. Acoustic harmonic generation measurement applications: Detection of tight cracks in powder metallurgy compacts

    Science.gov (United States)

    Barnard, D. J.; Foley, J. C.

    2000-05-01

    Standard linear ultrasonic testing techniques have long been employed for locating and characterizing relatively open cracks in a wide variety of materials, from metallic alloys and ceramics to composites. In all these materials, the detection of open cracks easily accomplished because the void between the two crack surfaces provides sufficient acoustic impedance mismatch to reflect the incident energy. Closed or partially closed cracks, however, may often go undetected because contacting interfaces allow transmission of ultrasound. In the green (unsintered) state, powder metallurgy compacts typically contain high residual stresses that have the ability to close cracks formed during the compaction process, a result of oxide films, improper powder lubricant, mold design, etc. After sintering, the reduction of residual stresses may no longer be sufficient to close the crack. Although the crack may be more easily detected, it is obvious most desirable to discover defects prior to sintering. It has been shown that the displacements of an interface may be highly nonlinear if a stress wave of sufficient intensity propagates across it, a result of the stress wave either opening or closing the interface. Current efforts involve the application of nonlinear acoustic techniques, in particular acoustic harmonic generation measurements, for the detection and characterization of tightly closed cracks in powder metallurgy parts. A description of the equipment and the measurement technique will be discussed and initial experimental results on sintered and green compacts will be presented.—This work was performed at the Ames Laboratory, Iowa State University under USDOE Contract No. W-7405-ENG-82.

  6. Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics.

    Science.gov (United States)

    Papadakis, G; Friedt, J M; Eck, M; Rabus, D; Jobst, G; Gizeli, E

    2017-09-01

    The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical applications and molecular diagnostics. Based on a systematic study we optimized the mechanics of the flow cell attachment and the sealing material so that fluidic interfacing/encapsulation would impose minimal losses to the acoustic wave. We have also investigated combinations of operating frequencies with waveguide materials and thicknesses for maximum sensitivity during the detection of protein and DNA biomarkers. Within our investigations neutravidin was used as a model protein biomarker and unpurified PCR amplified Salmonella DNA as the model genetic target. Our results clearly indicate the need for experimental verification of the optimum engineering and analytical parameters, in order to develop commercially viable systems for integrated analysis. The good reproducibility of the signal together with the ability of the array biochip to detect multiple samples hold promise for the future use of the integrated system in a Lab-on-a-Chip platform for application to molecular diagnostics.

  7. Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs

    Science.gov (United States)

    2015-05-26

    inversion testing. Due to time limitations and to facilitate the deployments of both sonars, the 7125s were deployed using a pole mount on the...FINAL REPORT Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs SERDP...2015 Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXO’s W912HQ-12-C-0049 MR

  8. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    Science.gov (United States)

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  9. Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models

    Energy Technology Data Exchange (ETDEWEB)

    Riber Marklund, A. [CEA, Cadarache, DEN/DTN/STCP/LIET, Batiment 202, 13108 St Paul-lez-Durance, (France); Kishore, S. [Fast Reactor Technology Group of IGCAR, (India); Prakash, V. [Vibrations Diagnostics Division, Fast Reactor Technology Group of IGCAR, (India); Rajan, K.K. [Fast Reactor Technology Group and Engineering Services Group of IGCAR, (India)

    2015-07-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)

  10. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DU), Girinagar, Pune 411 025, Maharashtra (India); Choubey, Ravi Kant [Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Noida 201 313 (India)

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  11. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Science.gov (United States)

    Pawar, Dnyandeo; Rao, Ch. N.; Choubey, Ravi Kant; Kale, S. N.

    2016-01-01

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  12. Detection of ultra high energy neutrinos with an underwater very large volume array of acoustic sensors: A simulation study

    CERN Document Server

    Karg, T

    2006-01-01

    This thesis investigates the detection of ultra high energy (E > 1 EeV) cosmic neutrinos using acoustic sensors immersed in water. The method is based on the thermoacoustic model describing the production of microsecond bipolar acoustic pulses by neutrino-induced particle cascades. These cascades locally heat the medium which leads to rapid expansion and a short sonic pulse detectable in water with hydrophones over distances of several kilometres. This makes acoustic detection an approach complementary to todays optical Cerenkov and radio Cerenkov detectors, and could help to reduce the respective systematic uncertainties. In this work a complete simulation / reconstruction chain for a submarine acoustic neutrino telescope is developed, and the sensitivity of such a detector to a diffuse flux of ultra highenergy cosmic neutrinos is estimated.

  13. Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean.

    Science.gov (United States)

    Stafford, K M; Fox, C G; Clark, D S

    1998-12-01

    Analysis of acoustic signals recorded from the U.S. Navy's SOund SUrveillance System (SOSUS) was used to detect and locate blue whale (Balaenoptera musculus) calls offshore in the northeast Pacific. The long, low-frequency components of these calls are characteristic of calls recorded in the presence of blue whales elsewhere in the world. Mean values for frequency and time characteristics from field-recorded blue whale calls were used to develop a simple matched filter for detecting such calls in noisy time series. The matched filter was applied to signals from three different SOSUS arrays off the coast of the Pacific Northwest to detect and associate individual calls from the same animal on the different arrays. A U.S. Navy maritime patrol aircraft was directed to an area where blue whale calls had been detected on SOSUS using these methods, and the presence of vocalizing blue whale was confirmed at the site with field recordings from sonobuoys.

  14. FAULT DETECTION AND LOCALIZATION IN MOTORCYCLES BASED ON THE CHAIN CODE OF PSEUDOSPECTRA AND ACOUSTIC SIGNALS

    Directory of Open Access Journals (Sweden)

    B. S. Anami

    2013-06-01

    Full Text Available Vehicles produce sound signals with varying temporal and spectral properties under different working conditions. These sounds are indicative of the condition of the engine. Fault diagnosis is a significantly difficult task in geographically remote places where expertise is scarce. Automated fault diagnosis can assist riders to assess the health condition of their vehicles. This paper presents a method for fault detection and location in motorcycles based on the chain code of the pseudospectra and Mel-frequency cepstral coefficient (MFCC features of acoustic signals. The work comprises two stages: fault detection and fault location. The fault detection stage uses the chain code of the pseudospectrum as a feature vector. If the motorcycle is identified as faulty, the MFCCs of the same sample are computed and used as features for fault location. Both stages employ dynamic time warping for the classification of faults. Five types of faults in motorcycles are considered in this work. Observed classification rates are over 90% for the fault detection stage and over 94% for the fault location stage. The work identifies other interesting applications in the development of acoustic fingerprints for fault diagnosis of machinery, tuning of musical instruments, medical diagnosis, etc.

  15. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  16. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.

    2008-10-01

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.

  17. Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection

    Directory of Open Access Journals (Sweden)

    Erik Marchi

    2017-01-01

    Full Text Available In the emerging field of acoustic novelty detection, most research efforts are devoted to probabilistic approaches such as mixture models or state-space models. Only recent studies introduced (pseudo-generative models for acoustic novelty detection with recurrent neural networks in the form of an autoencoder. In these approaches, auditory spectral features of the next short term frame are predicted from the previous frames by means of Long-Short Term Memory recurrent denoising autoencoders. The reconstruction error between the input and the output of the autoencoder is used as activation signal to detect novel events. There is no evidence of studies focused on comparing previous efforts to automatically recognize novel events from audio signals and giving a broad and in depth evaluation of recurrent neural network-based autoencoders. The present contribution aims to consistently evaluate our recent novel approaches to fill this white spot in the literature and provide insight by extensive evaluations carried out on three databases: A3Novelty, PASCAL CHiME, and PROMETHEUS. Besides providing an extensive analysis of novel and state-of-the-art methods, the article shows how RNN-based autoencoders outperform statistical approaches up to an absolute improvement of 16.4% average F-measure over the three databases.

  18. A real-time method for autonomous passive acoustic detection-classification of humpback whales.

    Science.gov (United States)

    Abbot, Ted A; Premus, Vincent E; Abbot, Philip A

    2010-05-01

    This paper describes a method for real-time, autonomous, joint detection-classification of humpback whale vocalizations. The approach adapts the spectrogram correlation method used by Mellinger and Clark [J. Acoust. Soc. Am. 107, 3518-3529 (2000)] for bowhead whale endnote detection to the humpback whale problem. The objective is the implementation of a system to determine the presence or absence of humpback whales with passive acoustic methods and to perform this classification with low false alarm rate in real time. Multiple correlation kernels are used due to the diversity of humpback song. The approach also takes advantage of the fact that humpbacks tend to vocalize repeatedly for extended periods of time, and identification is declared only when multiple song units are detected within a fixed time interval. Humpback whale vocalizations from Alaska, Hawaii, and Stellwagen Bank were used to train the algorithm. It was then tested on independent data obtained off Kaena Point, Hawaii in February and March of 2009. Results show that the algorithm successfully classified humpback whales autonomously in real time, with a measured probability of correct classification in excess of 74% and a measured probability of false alarm below 1%.

  19. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System.

    Science.gov (United States)

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-11-30

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa ) . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  20. Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection

    Science.gov (United States)

    Vesperini, Fabio; Schuller, Björn

    2017-01-01

    In the emerging field of acoustic novelty detection, most research efforts are devoted to probabilistic approaches such as mixture models or state-space models. Only recent studies introduced (pseudo-)generative models for acoustic novelty detection with recurrent neural networks in the form of an autoencoder. In these approaches, auditory spectral features of the next short term frame are predicted from the previous frames by means of Long-Short Term Memory recurrent denoising autoencoders. The reconstruction error between the input and the output of the autoencoder is used as activation signal to detect novel events. There is no evidence of studies focused on comparing previous efforts to automatically recognize novel events from audio signals and giving a broad and in depth evaluation of recurrent neural network-based autoencoders. The present contribution aims to consistently evaluate our recent novel approaches to fill this white spot in the literature and provide insight by extensive evaluations carried out on three databases: A3Novelty, PASCAL CHiME, and PROMETHEUS. Besides providing an extensive analysis of novel and state-of-the-art methods, the article shows how RNN-based autoencoders outperform statistical approaches up to an absolute improvement of 16.4% average F-measure over the three databases. PMID:28182121

  1. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Directory of Open Access Journals (Sweden)

    Tongzhi Zhang

    2016-11-01

    Full Text Available We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  2. Combined optical fiber interferometric sensors for the detection of acoustic emission

    Institute of Scientific and Technical Information of China (English)

    LIANG Yi-jun; MU Lin-lin; LIU Jun-feng; YU Xiao-tao

    2008-01-01

    A type of combined optical fiber interferometric acoustic emission sensor is proposed.The sensor can be independent on the laser source and make light interference by matching the lengths of two arms,so it can be used to monitor the health of large structure.Theoretical analyses indicate that the system can be equivalent to the Michelson interferometer with two optical fiber loop reflectors,and its sensitivity has been remarkably increased because of the decrease of the losses of light energy.PZT is powered by DC regulator to control the operating point of the system,so the system can accurately detect feeble vibration which is generated by ultrasonic waves propagating on the surface of solid.The amplitude and the frequency of feeble vibration signal are obtained by detecting the output light intensity of intefferometer and using Fourier transform technique.The results indicate that the system can be used to detect the acoustic emission signals by the frequency characteristics.

  3. Low power underwater acoustic DPSK detection: Theoretical prediction and experimental results

    Science.gov (United States)

    Dunne, Andrew

    This thesis presents two methods of analyzing the effectiveness of a prototype differential phase-shift keying (DPSK) detection circuit. The first method is to make modifications to the existing hardware to reliably output and record the cross-correlation values of the DPSK detection process. The second method is to write a MATLAB detection algorithm which accurately simulates the detection results of the hardware system without the need of any electronics. These two systems were tested and verified with a bench test using computer generated DPSK signals. The hardware system was tested using real acoustic data from shallow and deep water at-sea tests to determine the effectiveness of the DPSK detection circuit in different ocean environments. The hydrophone signals from the tests were recorded so that the cross-correlation values could be verified using the MATLAB detector. As a result of this study, these two systems provided more insight into how well the DPSK detection prototype works and helped to identify ways of improving the detection reliability and overall performance of the prototype DPSK detection circuit.

  4. To see or not to see: investigating detectability of Ganges River dolphins using a combined visual-acoustic survey.

    Directory of Open Access Journals (Sweden)

    Nadia I Richman

    Full Text Available Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring.

  5. To see or not to see: investigating detectability of Ganges River dolphins using a combined visual-acoustic survey.

    Science.gov (United States)

    Richman, Nadia I; Gibbons, James M; Turvey, Samuel T; Akamatsu, Tomonari; Ahmed, Benazir; Mahabub, Emile; Smith, Brian D; Jones, Julia P G

    2014-01-01

    Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring.

  6. Acoustic signal detection through the cross-correlation method in experiments with different signal to noise ratio and reverberation conditions

    CERN Document Server

    Adrián-Martínez, S; Bou-Cabo, M; Felis, I; Llorens, C; Martínez-Mora, J A; Saldaña, M

    2015-01-01

    The study and application of signal detection techniques based on cross-correlation method for acoustic transient signals in noisy and reverberant environments are presented. These techniques are shown to provide high signal to noise ratio, good signal discernment from very close echoes and accurate detection of signal arrival time. The proposed methodology has been tested on real data collected in environments and conditions where its benefits can be shown. This work focuses on the acoustic detection applied to tasks of positioning in underwater structures and calibration such those as ANTARES and KM3NeT deep-sea neutrino telescopes, as well as, in particle detection through acoustic events for the COUPP/PICO detectors. Moreover, a method for obtaining the real amplitude of the signal in time (voltage) by using cross correlation has been developed and tested and is described in this work.

  7. Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids.

    Science.gov (United States)

    Josse, F; Bender, F; Cernose, R W

    2001-12-15

    The design and performance of guided shear horizontal surface acoustic wave (guided SH-SAW) devices on LiTaO3 substrates are investigated for high-sensitivity chemical and biochemical sensors in liquids. Despite their structural similarity to Rayleigh SAW, SH-SAWs often propagate slightly deeper within the substrate, hence preventing the implementation of high-sensitivity detectors. The device sensitivity to mass and viscoelastic loading is increased using a thin guiding layer on the device surface. Because of their relatively low shear wave velocity, various polymers including poly(methyl methacrylate) (PMMA) and cyanoethyl cellulose (cured or cross-linked) are investigated as the guiding layers to trap the acoustic energy near the sensing surface. The devices have been tested in biosensing and chemical sensing experiments. Suitable design principles for these applications are discussed with regard to wave guidance, electrical passivation of the interdigital transducers from the liquid environments, acoustic loss, and sensor signal distortion. In biosensing experiments, using near-optimal PMMA thickness of approximately 2 microm, mass sensitivity greater than 1500 Hz/(ng/mm2) is demonstrated, resulting in a minimum detection limit less than 20 pg/mm2. For chemical sensor experiments, it is found that optimal waveguide thickness must be modified to account for the chemically sensitive layer which also acts to guide the SH-SAW. A detection limit of 780 (3 x peak-to-peak noise) or 180 ppb (3 x rms noise) is estimated from the present measurements for some organic compounds in water.

  8. Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J P; Rock, D R; Shaeffer, D L; Warshaw, S I

    1999-10-07

    The Black Thunder Coal Mine (BTCM) near Gillette, Wyoming was used as a test bed to determine the feasibility of detecting explosion-induced geomagnetic disturbances with ground-based induction magnetometers. Two magnetic observatories were fielded at distances of 50 km and 64 km geomagnetically north from the northernmost edge of BTCM. Each observatory consisted of three separate but mutually orthogonal magnetometers, Global Positioning System (GPS) timing, battery and solar power, a data acquisition and storage system, and a three-axis seismometer. Explosions with yields of 1 to 3 kT of TNT equivalent occur approximately every three weeks at BTCM. We hypothesize that explosion-induced acoustic waves propagate upward and interact collisionally with the ionosphere to produce ionospheric electron density (and concomitant current density) perturbations which act as sources for geomagnetic disturbances. These disturbances propagate through an ionospheric Alfven waveguide that we postulate to be leaky (due to the imperfectly conducting lower ionospheric boundary). Consequently, wave energy may be observed on the ground. We observed transient pulses, known as Q-bursts, with pulse widths about 0.5 s and with spectral energy dominated by the Schumann resonances. These resonances appear to be excited in the earth-ionosphere cavity by Alfven solitons that may have been generated by the explosion-induced acoustic waves reaching the ionospheric E and F regions and that subsequently propagate down through the ionosphere to the atmosphere. In addition, we observe late time (> 800 s) ultra low frequency (ULF) geomagnetic perturbations that appear to originate in the upper F region ({approximately}300 km) and appear to be caused by the explosion-induced acoustic wave interacting with that part of the ionosphere. We suggest that explosion-induced Q-bursts may be discriminated from naturally occurring Q-bursts by association of the former with the late time explosion-induced ULF

  9. Electromagnetic and acoustic bimodality for the detection and localization of electrical arc faults

    Science.gov (United States)

    Vasile, C.; Ioana, C.; Digulescu, A.; Candel, I.

    2016-12-01

    Electrical arc faults pose an important problem to electrical installations worldwide, be it production facilities or distribution systems. In this context, it is easy to assess the economic repercussions of such a fault, when power supply is cut off downstream of its location, while also realizing that an early detection of the on-site smaller scale faults would be of great benefit. This articles serves as a review of the current state-of-the-art work that has been carried out on the subject of detection and localization of electrical arc faults, by exploiting the bimodality of this phenomenon, which generates simultaneously electromagnetic and acoustic waves, propagating in a free space path. En experimental setup has been defined, to demonstrate principles stated in previous works by the authors, and signal processing methods have been used in order to determine the DTOA (difference-of-time-of-arrival) of the acoustic signals, which allows localization of the transient fault. In the end there is a discussion regarding the results and further works, which aims to validate this approach in more real-life applications.

  10. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    Science.gov (United States)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  11. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  12. Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection

    Institute of Scientific and Technical Information of China (English)

    Lizhi Yi[1; Weihong Jiao[1; Ke Wu[1; Lihua Qian[1; Xunxing Yu[2; Qi Xia[2; Kuanmin Mao[2; Songliu Yuan[1; Shuai Wang[3; Yingtao Jiang[4

    2015-01-01

    The relatively poor dynamic response of current flexible strain gauges has prevented their wide adoption in portable electronics. In this work, we present a greatly improved flexible strain gauge, where one strip of Au nanoparticle (NP) monolayer assembled on a polyethylene terephthalate film is utilized as the active unit. The proposed flexible gauge is capable of responding to applied stimuli without detectable hysteresis via electron tunneling between adjacent nanoparticles within the Au NP monolayer. Based on experimental quantification of the time and frequency domain dependence of the electrical resistance of the proposed strain gauge, acoustic vibrations in the frequency range of 1 to 20,000 Hz could be reliably detected. In addition to being used to measure musical tone, audible speech, and creature vocalization, as demonstrated in this study, the ultrafast dynamic response of this flexible strain gauge can be used in a wide range of applications, including miniaturized vibratory sensors, safe entrance guard management systems, and ultrasensitive pressure sensors.

  13. Rayleigh and acoustic gravity waves detection on magnetograms during the Japanese Tsunami, 2011

    CERN Document Server

    Klausner, Virginia; Muella, Marcio T A H; Mendes, Odim; Domingues, Margarete O; Papa, Andres R R

    2015-01-01

    The continuous geomagnetic field survey holds an important potential in future prevention of tsunami damages, and also, it could be used in tsunami forecast. In this work, we were able to detected for the first time Rayleigh and ionospheric acoustic gravity wave propagation in the Z-component of the geomagnetic field due to the Japanese tsunami, 2011 prior to the tsunami arrival. The geomagnetic measurements were obtained in the epicentral near and far-field. Also, these waves were detected within minutes to few hours of the tsunami arrival. For these reasons, these results are very encouraging, and confirmed that the geomagnetic field monitoring could play an important role in the tsunami warning systems, and also, it could provide additional information in the induced ionospheric wave propagation models due to tsunamis.

  14. Early shell crack detection technique using acoustic emission energy parameter blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Lee, Sang Bum [RECTUSON Co.,Ltd., Changwon (Korea, Republic of); Bae, Dong Myung; Yang, Bo Suk [Pukyong National University, Busan (Korea, Republic of)

    2016-02-15

    Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.

  15. Temporal window system: A new approach for dynamic detection application to surface acoustic wave gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bordieu, C.; Rebiere, D.; Pistre, J. [and others

    1996-12-31

    Pattern recognition techniques based on artificial neural networks are now frequently used with good results for gas sensor signal processing (this includes the detection, the identification and the quantification of gases). In the literature, data sets needed for neural networks are practically always built with steady state sensor responses. This situation prevents these techniques from being used in real time applications. Nevertheless, for example in the case of surface acoustic wave (SAW) gas sensors, because of quite long response times due to kinetic factors concerning the gas adsorption and because gases are sometimes extremely dangerous and/or toxic (NO{sub x}, SO{sub 2}, organophosphorus compounds,...), the detection speed is an essential parameter and hence must be monitored in a real time mode. The purpose of this paper is to propose a new dynamic approach and to illustrate it with SAW sensor responses.

  16. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S

    2005-10-04

    This report reviews progress made on NA22 project LL251DP to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. We have met all milestones and deliverables for FY05, as shown in Table 1. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begin to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. The results obtained in FY05 further support the feasibility of successful demonstration of an NAR experiment for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs.

  17. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    Science.gov (United States)

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  18. Development of an acoustic sensor for the future IceCube-Gen2 detector for neutrino detection and position calibration

    Science.gov (United States)

    Wickmann, Stefan; Eliseev, Dmitry; Heinen, Dirk; Linder, Peter; Rongen, Martin; Scholz, Franziska; Weinstock, Lars Steffen; Wiebusch, Christopher; Zierke, Simon

    2017-03-01

    For the planned high-energy extension of the IceCube Neutrino Observatory in the glacial ice at the South Pole the spacing of detector modules will be increased with respect to IceCube. Because of these larger distances the quality of the geometry calibration based on pulsed light sources is expected to deteriorate. To counter this an independent acoustic geometry calibration system based on trilateration is introduced. Such an acoustic positioning system (APS) has already been developed for the Enceladus Explorer Project (EnEx), initiated by the DLR Space Administration. In order to integrate such APS-sensors into the IceCube detector the power consumption needs to be minimized. In addition, the frequency response of the front end electronics is optimized for positioning as well as the acoustic detection of neutrinos. The new design of the acoustic sensor and results of test measurements with an IceCube detector module will be presented.

  19. Detection of Delamination in Composite Beams Using Broadband Acoustic Emission Signatures

    Science.gov (United States)

    Okafor, A. C.; Chandrashekhara, K.; Jiang, Y. P.

    1996-01-01

    Delamination in composite structure may be caused by imperfections introduced during the manufacturing process or by impact loads by foreign objects during the operational life. There are some nondestructive evaluation methods to detect delamination in composite structures such as x-radiography, ultrasonic testing, and thermal/infrared inspection. These methods are expensive and hard to use for on line detection. Acoustic emission testing can monitor the material under test even under the presence of noise generated under load. It has been used extensively in proof-testing of fiberglass pressure vessels and beams. In the present work, experimental studies are conducted to investigate the use of broadband acoustic emission signatures to detect delaminations in composite beams. Glass/epoxy beam specimens with full width, prescribed delamination sizes of 2 inches and 4 inches are investigated. The prescribed delamination is produced by inserting Teflon film between laminae during the fabrication of composite laminate. The objectives of this research is to develop a method for predicting delamination size and location in laminated composite beams by combining smart materials concept and broadband AE analysis techniques. More specifically, a piezoceramic (PZT) patch is bonded on the surface of composite beams and used as a pulser. The piezoceramic patch simulates the AE wave source as a 3 cycles, 50KHz, burst sine wave. One broadband AE sensor is fixed near the PZT patch to measure the AE wave near the AE source. A second broadband AE sensor, which is used as a receiver, is scanned along the composite beams at 0.25 inch step to measure propagation of AE wave along the composite beams. The acquired AE waveform is digitized and processed. Signal strength, signal energy, cross-correlation of AE waveforms, and tracking of specific cycle of AE waveforms are used to detect delamination size and location.

  20. Detection and localization using an acoustic array on a small robotic platform

    Science.gov (United States)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated autonomous and semi-autonomous ground, air and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  1. Shifting Gravel and the Acoustic Detection Range of Killer Whale Calls

    Science.gov (United States)

    Bassett, C.; Thomson, J. M.; Polagye, B. L.; Wood, J.

    2012-12-01

    In environments suitable for tidal energy development, strong currents result in large bed stresses that mobilize sediments, producing sediment-generated noise. Sediment-generated noise caused by mobilization events can exceed noise levels attributed to other ambient noise sources at frequencies related to the diameters of the mobilized grains. At a site in Admiralty Inlet, Puget Sound, Washington, one year of ambient noise data (0.02 - 30 kHz) and current velocity data are combined. Peak currents at the site exceed 3.5 m/s. During slack currents, vessel traffic is the dominant noise source. When currents exceed 0.85 m/s noise level increases between 2 kHz and 30 kHz are correlated with near-bed currents and bed stress estimates. Acoustic spectrum levels during strong currents exceed quiescent slack tide conditions by 20 dB or more between 2 and 30 kHz. These frequencies are consistent with sound generated by the mobilization of gravel and pebbles. To investigate the implications of sediment-generated noise for post-installation passive acoustic monitoring of a planned tidal energy project, ambient noise conditions during slack currents and strong currents are combined with the characteristics of Southern Resident killer whale (Orcinus orca) vocalizations and sound propagation modeling. The reduction in detection range is estimated for common vocalizations under different ambient noise conditions. The importance of sediment-generated noise for passive acoustic monitoring at tidal energy sites for different marine mammal functional hearing groups and other sediment compositions are considered.

  2. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    Science.gov (United States)

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features.

  3. Development of active acoustic method for water leak detection of LMFBR steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Yoshida, Kazuo; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-06-01

    In order to prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBRs), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, is being developed. In this study, in order to evaluate the detection sensitivity of the active method, the signal processing methods for emitter and receiver and the detection method for leakage are investigated experimentally. In-water experiments performed by using an SG full-sector model that simulates the actual SGs. As an experimental result, the received sound attenuation for 10s was more than 10dB from air bubble injection when injected bubble of 10 l/s (equivalence water leak rate about 10 g/s.) The attenuation of sound are least affected by bubble injection position of heat transfer tubes bunch department. It is clarified that the background noise hardly influenced water leak detection performance as a result of having examined influence of background noise. (author)

  4. Comparison of spatial frequency domain features for the detection of side attack explosive ballistics in synthetic aperture acoustics

    Science.gov (United States)

    Dowdy, Josh; Anderson, Derek T.; Luke, Robert H.; Ball, John E.; Keller, James M.; Havens, Timothy C.

    2016-05-01

    Explosive hazards in current and former conflict zones are a threat to both military and civilian personnel. As a result, much effort has been dedicated to identifying automated algorithms and systems to detect these threats. However, robust detection is complicated due to factors like the varied composition and anatomy of such hazards. In order to solve this challenge, a number of platforms (vehicle-based, handheld, etc.) and sensors (infrared, ground penetrating radar, acoustics, etc.) are being explored. In this article, we investigate the detection of side attack explosive ballistics via a vehicle-mounted acoustic sensor. In particular, we explore three acoustic features, one in the time domain and two on synthetic aperture acoustic (SAA) beamformed imagery. The idea is to exploit the varying acoustic frequency profile of a target due to its unique geometry and material composition with respect to different viewing angles. The first two features build their angle specific frequency information using a highly constrained subset of the signal data and the last feature builds its frequency profile using all available signal data for a given region of interest (centered on the candidate target location). Performance is assessed in the context of receiver operating characteristic (ROC) curves on cross-validation experiments for data collected at a U.S. Army test site on different days with multiple target types and clutter. Our preliminary results are encouraging and indicate that the top performing feature is the unrolled two dimensional discrete Fourier transform (DFT) of SAA beamformed imagery.

  5. Damage detection on polymeric matrix composite materials by using acoustic emission technique

    Directory of Open Access Journals (Sweden)

    J. Cauich–Cupul

    2008-04-01

    Full Text Available In order to predict the mechanical behaviour of a composite during its service life, it is important to study the initiation and development of cracks and its effects induced by degradation. The onset of damage is related to the structural integrity of the component and its fatigue life. For this, among other reasons, non–destructive techniques have been widely used nowadays in composite materials characterization such as acoustic emission (AE. This method has demonstrated excellent results on detecting and identifying initiations sites, cracking propagation and fracture mechanisms of polymer matrix composite materials. At the same time, mechanical behaviour has been related intimately to the reinforcement architecture. The goal of this paper is to remark the importance of acoustic emission technique as a unique tool for characterising mechanical parameters in response to external stresses and degradation processes. Some results obtained from different analysis are discussed to support the significance of using AE, technique that will be increased continuously in the composite materials field due to its several alternatives for understanding the mechanical behaviour, therefore the objective of this manuscript is to involve the benefits and advantages of AE in the materials characterization.

  6. Acoustic Response and Detection of Marine Mammals Using an Advanced Digital Acoustic Recording Tag(Rev 3)

    Science.gov (United States)

    2007-03-13

    extended to Mr. Bradley Smith, Executive Director and Drs. Robert Holst and John Hall, past and present Sustainable Infrastructure Program Managers...scaled to RL. 24 5. Results and Accomplishments 5.1 Site Selection In consultation with Robert Gisiner of ONR and Frank V. Stone of...Miller). Miksis J. L., M. D. Grund, D. P. Nowacek, A. R. Solow , R. C. Connor & Tyack P.L. 2001. Cardiac Responses to Acoustic Playback Experiments

  7. Detecting and identifying damage in sandwich polymer composite by using acoustic emission

    DEFF Research Database (Denmark)

    McGugan, M.; Sørensen, Bent F.; Østergaard, R.;

    2006-01-01

    Acoustic emission is a useful monitoring tool for extracting extra information during mechanical testing of polymer composite sandwich materials. The study of fracture mechanics within test specimens extracted from wind turbine blade material ispresented. The contribution of the acoustic emission...

  8. FBG-based ultrasonic wave detection and acoustic emission linear location system

    Science.gov (United States)

    Jiang, Ming-shun; Sui, Qing-mei; Jia, Lei; Peng, Peng; Cao, Yuqiang

    2012-05-01

    The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed, which employ fiber Bragg gratings (FBGs) as US wave sensors. In the theoretical analysis, the FBG sensor response to longitudinal US wave is investigated. The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength. The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal. Further research using two FBGs for realizing linear location is also achieved. The maximum linear location error is obtained as less than 5 mm. FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.

  9. FBG-based ultrasonic wave detection and acoustic emission linear location system

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-shun; SUI Qing-mei; JIA Lei; PENG Peng; CAO Yu-qiang

    2012-01-01

    The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed,which employ fiber Bragg gratings (FBGs) as US wave sensors.In the theoretical analysis,the FBG sensor response to longitudinal US wave is investigated.The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength.The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal.Further research using two FBGs for realizing linear location is also achieved.The maximumlinear location error is obtained as less than 5 mm.FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.

  10. Detection of cells captured with antigens on shear horizontal surface-acoustic-wave sensors.

    Science.gov (United States)

    Hao, Hsu-Chao; Chang, Hwan-You; Wang, Tsung-Pao; Yao, Da-Jeng

    2013-02-01

    Techniques to separate cells are widely applied in immunology. The technique to separate a specific antigen on a microfluidic platform involves the use of a shear horizontal surface-acoustic-wave (SH-SAW) sensor. With specific antibodies conjugated onto the surface of the SH-SAW sensors, this technique can serve to identify specific cells in bodily fluids. Jurkat cells, used as a target in this work, provide a model of cells in small abundance (1:1000) for isolation and purification with the ultimate goal of targeting even more dilute cells. T cells were separated from a mixed-cell medium on a chip (Jurkat cells/K562 cells, 1/1000). A novel microchamber was developed to capture cells during the purification, which required a large biosample. Cell detection was demonstrated through the performance of genetic identification on the chip.

  11. A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Zhigang Sun

    2013-01-01

    Full Text Available Piezoelectric transducers have a long history of applications in nondestructive evaluation of material and structure integrity owing to their ability of transforming mechanical energy to electrical energy and vice versa. As condition based maintenance has emerged as a valuable approach to enhancing continued aircraft airworthiness while reducing the life cycle cost, its enabling structural health monitoring (SHM technologies capable of providing on-demand diagnosis of the structure without interrupting the aircraft operation are attracting increasing R&D efforts. Piezoelectric transducers play an essential role in these endeavors. This paper is set forth to review a variety of ingenious ways in which piezoelectric transducers are used in today’s SHM technologies as a means of generation and/or detection of diagnostic acoustic waves.

  12. Acoustic emission noise from sodium vapour bubble collapsing: detection, interpretation, modelling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dentico, G.; Pacilio, V.; Papalia, B.; Taglienti, S.; Tosi, V.

    1982-01-01

    Sodium vapour bubble collapsing is detected by means of piezoelectric accelorometers coupled to the test section via short waveguides. The output analog signal is processed by transforming it into a time series of pulses through the setting of an amplitude threshold and the shaping of a standard pulse (denominated 'event') every time the signal crosses that border. The number of events is counted in adjacent and equal time duration samples and the waiting time distribution between contiguous events is measured. Up to the moment, six kinetic properties have been found for the mentioned time series. They help in setting a stochastic model in which the subministration of energy into a liquid sodium medium induces the formation of vapour bubbles and their consequent collapsing delivers acoustic pulses. Finally, a simulation procedure is carried out: a Polya's urn model is adopted for simulating event sequences with a priori established requisites.

  13. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S B

    2006-11-02

    This is final report on NA-22 project LL251DP, where the goal was to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begun to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. Since our funding was cut in FY06, I will discuss where this project can go in the future with this technology.

  14. Acoustic emission detection of 316L stainless steel welded joints during intergranular corrosion

    Institute of Scientific and Technical Information of China (English)

    Meng-yu Chai; Quan Duan; Wen-jie Bai; Zao-xiao Zhang; Xu-meng Xie

    2015-01-01

    This study analyzes acoustic emission (AE) signals during the intergranular corrosion (IGC) process of 316L stainless steel welded joints under different welding currents in boiling nitric acid. IGC generates several AE signals with high AE activity. The AE tech-nique could hardly distinguish IGC in stainless steel welded joints with different welding heat inputs. However, AE signals can effectively distinguish IGC characteristics in different corrosion stages. The IGC resistance of a heat-affected zone is lower than that of a weld zone. The initiation and rapid corrosion stages can be distinguished using AE results and microstructural analysis. Moreover, energy count rate and am-plitude are considered to be ideal parameters for characterizing different IGC processes. Two types of signals are detected in the rapid corro-sion stage. It can be concluded that grain boundary corrosion and grain separation are the AE sources of type 1 and type 2, respectively.

  15. Phage-based magnetostrictive-acoustic microbiosensors for detecting bacillus anthracis spores

    Science.gov (United States)

    Wan, J.; Yang, H.; Lakshmanan, R. S.; Guntupalli, R.; Huang, S.; Hu, J.; Petrenko, V. A.; Chin, B. A.

    2006-05-01

    Magnetostrictive particles (MSPs) as biosensor platform have been developed recently. The principle of MSPs as sensor platform is the same as that of other acoustic wave devices, such as quartz crystal microbalance. In this paper, the fabrication, characterization and performance of phage-based MSP biosensors for detecting Bacillus anthracis spores are reported. A commercially available magnetostrictive alloy was utilized to fabricate the sensor platform. The phage was immobilized onto the MSPs using physical adsorption technology. The following performance of the phage-based MSP sensors will be presented: sensitivity, response time, longevity, specificity and binding efficacy. The performance of the sensors at static and dynamic conditions was characterized. The experimental results are confirmed by microscopy photographs. The excellent performance including high sensitivity and rapid response is demonstrated. More importantly, it is experimentally found that the phage-based MSP sensors have a much better longevity than antibody-based sensors.

  16. Evaluation of PTCa/PEKK composite sensors for acoustic emission detection

    CERN Document Server

    Marin-Franch, P

    2002-01-01

    This thesis reports for the first time the fabrication and characterisation of novel electroactive ceramic/polymer composite films of calcium modified lead titanate (PTCa) and poly (ether ketone ketone). Composite sensors with different concentrations of ceramic were fabricated using a hot pressing technique. The PTCa ceramic was treated using titanate coupling agent in order to improve sample quality. Dielectric measurements have been performed to study sample characteristics. Piezoelectric and pyroelectric properties of the composites have been measured and the mixed connectivity cube model used to determine the relative amounts of 0-3 and 1-3 connectivity. The advantages and limitations of the model have been discussed. Additionally, some mechanical properties of the composites have been assessed to study their potential ability to detect acoustic emission (AE) in carbon fibre reinforced composites (CFRC). The composite sensors were placed on and inserted into different panels in order to compare their abi...

  17. Precursory Acoustic Signals Detection in Rockfall Events by Means of Optical Fiber Sensors

    Science.gov (United States)

    Schenato, L.; Marcato, G.; Gruca, G.; Iannuzzi, D.; Palmieri, L.; Galtarossa, A.; Pasuto, A.

    2012-12-01

    Rockfalls represent a major source of hazard in mountain areas: they occur at the apex of a process of stress accumulation in the unstable slope, during which part of the accumulated energy is released in small internal cracks. These cracks and the related acoustic emissions (AE) can, therefore, be used as precursory signals, through which the unstable rock could be monitored. In particular, according to previous scientific literature AE can be monitored in the range 20÷100 kHz. With respect to traditional AE sensors, such as accelerometers and piezoelectric transducers, fiber optic sensors (FOSs) may provide a reliable solution, potentially offering more robustness to electromagnetic interference, smaller form factor, multiplexing ability and increased distance range and higher sensitivity. To explore this possibility, in this work we have experimentally analyzed two interferometric fiber optical sensors for AE detection in rock masses. In particular, the first sensor is made of 100 m of G.657 optical fiber, tightly wound on an aluminum flanged hollow mandrel (inner diameter 30 mm, height 42 mm) that is isolated from the environment with acoustic absorbing material. A 4-cm-long M10 screw, which acts also as the main mean of acoustic coupling between the rock and the sensor, is used to fasten the sensor to the rock. This fiber coil sensor (FCS) is inserted in the sensing arm of a fiber Mach-Zehnder interferometer. The second sensor consists in a micro cantilever carved on the top of a cylindrical silica ferrule, with a marked mechanical resonance at about 12.5 kHz (Q-factor of about 400). A standard single mode fiber is housed in the same ferrule and the gap between the cantilever and the fiber end face acts as a vibration-sensitive Fabry-Perot cavity, interrogated with a low-coherence laser, tuned at the quadrature point of the cavity. The sensor is housed in a 2-cm-long M10 bored bolt. Performance have been compared with those from a standard piezo

  18. Acoustic detections of singing humpback whales (Megaptera novaeangliae) in the eastern North Pacific during their northbound migration.

    Science.gov (United States)

    Norris, T F; McDonald, M; Barlow, J

    1999-07-01

    Numerous (84) acoustic detections of singing humpback whales were made during a spring (08 March-09 June 1997) research cruise to study sperm whales in the central and eastern North Pacific. Over 15,000 km of track-line was surveyed acoustically using a towed hydrophone array. Additionally, 83 sonobuoys were deployed throughout the study area. Detection rates were greatest in late March, near the Hawaiian Islands, and in early April, northeast of the islands. Only one detection was made after April. Detection rates for sonobuoys were unequal in three equally divided longitudinal regions of the study area. Two high density clusters of detections occurred approximately 1200-2000 km northeast of the Hawaiian Islands and were attributed to a large aggregation of migrating animals. The distribution of these detections corroborates findings of previous studies. It is possible that these animals were maintaining acoustic contact during migration. Two unexpected clusters of singing whales were detected approximately 900 to 1000 km west of central and southern California. The location of these detections may indicate a previously undocumented migration route between an offshore breeding area, such as the Revillagigedo Islands, Mexico, and possible feeding areas in the western North Pacific or Bering Sea.

  19. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California

    Science.gov (United States)

    Helble, Tyler Adam

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. Automated methods are needed to aid in the analyses of the recorded data. When a mammal vocalizes in the marine environment, the received signal is a filtered version of the original waveform emitted by the marine mammal. The waveform is reduced in amplitude and distorted due to propagation effects that are influenced by the bathymetry and environment. It is important to account for these effects to determine a site-specific probability of detection for marine mammal calls in a given study area. A knowledge of that probability function over a range of environmental and ocean noise conditions allows vocalization statistics from recordings of single, fixed, omnidirectional sensors to be compared across sensors and at the same sensor over time with less bias and uncertainty in the results than direct comparison of the raw statistics. This dissertation focuses on both the development of new tools needed to automatically detect humpback whale vocalizations from single-fixed omnidirectional sensors as well as the determination of the site-specific probability of detection for monitoring sites off the coast of California. Using these tools, detected humpback calls are "calibrated" for environmental properties using the site-specific probability of detection values, and presented as call densities (calls per square kilometer per time). A two-year monitoring effort using these calibrated call densities reveals important biological and ecological information on migrating humpback whales off the coast of California. Call density trends are compared between the monitoring sites and at the same monitoring site over time. Call densities also are compared to several natural and human-influenced variables including season, time of day, lunar illumination, and ocean noise. The results reveal substantial differences in call densities

  20. Acoustic detection of Oryctes rhinoceros (Coleoptera: Scarabaeidae: Dynastinae) and Nasutitermes luzonicus (Isoptera: Termitidae) in palm trees of urban Guam

    Science.gov (United States)

    Adult and larval Oryctes rhinoceros (L) (Coleoptera: Scarabaeidae: Dynastinae) were acoustically detected in live and dead palm trees and logs in recently invaded areas of Guam, along with Nasutitermes (Isoptera: Termitidae), and other small, sound-producing invertebrates and invertebrates. The sou...

  1. Development and Evaluation of Real-time Acoustic Detection System of Harmful Red-tide Using Ultrasonic Sound

    Directory of Open Access Journals (Sweden)

    Donhyug Kang

    2013-03-01

    Full Text Available The toxic, Harmful Algal Blooms (HABs caused by the Cochlodinium polykrikoides have a serious impact on the coastal waters of Korea. In this study, the acoustic detection system was developed for rapid HABs detection, based on the acoustic backscattering properties of the C. polykrikoides. The developed system was mainly composed of a pulser-receiver board, a signal processor board, a control board, a network board, a power board, ultrasonic sensors (3.5 and 5.0 MHz, an environmental sensor, GPS, and a land-based control unit. To evaluate the performance of the system, a trail was done at a laboratory, and two in situ trials were conducted: (1 when there was no red tide, and (2 when there was red tide. In the laboratory evaluation, the system performed well in accordance with the number of C. polykrikoides in the received level. Second, under the condition when there was no red tide in the field, there was a good correlation between the acoustic data and sampling data. Finally, under the condition when there was red tide in the field, the system successfully worked at various densities in accordance with the number of C. polykrikoides, and the results corresponded with the sampling data and monitoring result of NFRDI (National Fisheries Research & Development Institute. From the laboratory and field evaluations, the developed acoustic detection system for early detecting HABs has demonstrated that it could be a significant system to monitor the occurrence of HABs in coastal regions.

  2. AE (Acoustic Emission) for Flip-Chip CGA/FCBGA Defect Detection

    Science.gov (United States)

    Ghaffarian, Reza

    2014-01-01

    C-mode scanning acoustic microscopy (C-SAM) is a nondestructive inspection technique that uses ultrasound to show the internal feature of a specimen. A very high or ultra-high-frequency ultrasound passes through a specimen to produce a visible acoustic microimage (AMI) of its inner features. As ultrasound travels into a specimen, the wave is absorbed, scattered or reflected. The response is highly sensitive to the elastic properties of the materials and is especially sensitive to air gaps. This specific characteristic makes AMI the preferred method for finding "air gaps" such as delamination, cracks, voids, and porosity. C-SAM analysis, which is a type of AMI, was widely used in the past for evaluation of plastic microelectronic circuits, especially for detecting delamination of direct die bonding. With the introduction of the flip-chip die attachment in a package; its use has been expanded to nondestructive characterization of the flip-chip solder bumps and underfill. Figure 1.1 compares visual and C-SAM inspection approaches for defect detection, especially for solder joint interconnections and hidden defects. C-SAM is specifically useful for package features like internal cracks and delamination. C-SAM not only allows for the visualization of the interior features, it has the ability to produce images on layer-by-layer basis. Visual inspection; however, is only superior to C-SAM for the exposed features including solder dewetting, microcracks, and contamination. Ideally, a combination of various inspection techniques - visual, optical and SEM microscopy, C-SAM, and X-ray - need to be performed in order to assure quality at part, package, and system levels. This reports presents evaluations performed on various advanced packages/assemblies, especially the flip-chip die version of ball grid array/column grid array (BGA/CGA) using C-SAM equipment. Both external and internal equipment was used for evaluation. The outside facility provided images of the key features

  3. Application of gas-coupled laser acoustic detection to gelatins and underwater sensing

    Energy Technology Data Exchange (ETDEWEB)

    Caron, James N. [Research Support Instruments, Lanham, MD 20706, USA and Quarktet, Silver Spring, MD 20901 (United States); Kunapareddy, Pratima [Research Support Instruments, Lanham, MD 20706 (United States)

    2014-02-18

    Gas-coupled Laser Acoustic Detection (GCLAD) has been used as a method to sense ultrasound waves in materials without contact of the material surface. To sense the waveform, a laser beam is directed parallel to the material surface and displaced or deflected when the radiated waveform traverses the beam. We present recent tests that demonstrate the potential of using this technique for detecting ultrasound in gelatin phantoms and in water. As opposed to interferometric detection, GCLAD operates independently of the optical surface properties of the material. This allows the technique to be used in cases where the material is transparent or semi-transparent. We present results on sensing ultrasound in gelatin phantoms that are used to mimic biological materials. As with air-coupled transducers, the frequency response of GCLAD at high frequencies is limited by the high attenuation of ultrasound in air. In contrast, water has a much lower attenuation. Here we demonstrate the use of a GCLAD-like system in water, measuring the directivity response at 1 MHz and sensing waveforms with higher frequency content.

  4. The Contact State Monitoring for Seal End Faces Based on Acoustic Emission Detection

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2016-01-01

    Full Text Available Monitoring the contact state of seal end faces would help the early warning of the seal failure. In the acoustic emission (AE detection for mechanical seal, the main difficulty is to reduce the background noise and to classify the dispersed features. To solve these problems and achieve higher detection rates, a new approach based on genetic particle filter with autoregression (AR-GPF and hypersphere support vector machine (HSSVM is presented. First, AR model is used to build the dynamic state space (DSS of the AE signal, and GPF is used for signal filtering. Then, multiple features are extracted, and a classification model based on HSSVM is constructed for state recognition. In this approach, AR-GPF is an excellent time-domain method for noise reduction, and HSSVM has advantage on those dispersed features. Finally experimental data shows that the proposed method can effectively detect the contact state of the seal end faces and has higher accuracy rates than some other existing methods.

  5. Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy

    Science.gov (United States)

    Sugimoto, Kazuko; Akamatsu, Ryo; Sugimoto, Tsuneyoshi; Utagawa, Noriyuki; Kuroda, Chitose; Katakura, Kageyoshi

    2015-07-01

    In recent years, the detachment of concrete from bridges or tunnels and the degradation of concrete structures have become serious social problems. The importance of inspection, repair, and updating is recognized in measures against degradation. We have so far studied the noncontact acoustic inspection method using airborne sound and the laser Doppler vibrometer. In this method, depending on the surface state (reflectance, dirt, etc.), the quantity of the light of the returning laser decreases and optical noise resulting from the leakage of light reception arises. Some influencing factors are the stability of the output of the laser Doppler vibrometer, the low reflective characteristic of the measurement surface, the diffused reflection characteristic, measurement distance, and laser irradiation angle. If defect detection depends only on the vibration energy ratio since the frequency characteristic of the optical noise resembles white noise, the detection of optical noise resulting from the leakage of light reception may indicate a defective part. Therefore, in this work, the combination of the vibrational energy ratio and spectrum entropy is used to judge whether a measured point is healthy or defective or an abnormal measurement point. An algorithm that enables more vivid detection of a defective part is proposed. When our technique was applied in an experiment with real concrete structures, the defective part could be extracted more vividly and the validity of our proposed algorithm was confirmed.

  6. A Urinary Bcl-2 Surface Acoustic Wave Biosensor for Early Ovarian Cancer Detection

    Directory of Open Access Journals (Sweden)

    Nathan D. Gallant

    2012-05-01

    Full Text Available In this study, the design, fabrication, surface functionalization and experimental characterization of an ultrasonic MEMS biosensor for urinary anti-apoptotic protein B-cell lymphoma 2 (Bcl-2 detection with sub ng/mL sensitivity is presented. It was previously shown that urinary Bcl-2 levels are reliably elevated during early and late stages of ovarian cancer. Our biosensor uses shear horizontal (SH surface acoustic waves (SAWs on surface functionalized ST-cut Quartz to quantify the mass loading change by protein adhesion to the delay path. SH-SAWs were generated and received by a pair of micro-fabricated interdigital transducers (IDTs separated by a judiciously designed delay path. The delay path was surface-functionalized with monoclonal antibodies, ODMS, Protein A/G and Pluronic F127 for optimal Bcl-2 capture with minimal non-specific adsorption. Bcl-2 concentrations were quantified by the resulting resonance frequency shift detected by a custom designed resonator circuit. The target sensitivity for diagnosis and identifying the stage of ovarian cancer was successfully achieved with demonstrated Bcl-2 detection capability of 500 pg/mL. It was also shown that resonance frequency shift increases linearly with increasing Bcl-2 concentration.

  7. Standoff photoacoustic detections with high-sensitivity microphones and acoustic arrays

    Science.gov (United States)

    Choa, Fow-Sen; Wang, Chen-Chia; Khurgin, Jacob; Samuels, Alan; Trivedi, Sudhir; Gupta, Deepa

    2016-05-01

    Standoff detection of dangerous chemicals like explosives, nerve gases, and harmful aerosols has continuously been an important subject due to the serious concern about terrorist threats to both overseas and homeland lives and facility. Compared with other currently available standoff optical detection techniques, like Raman, photo-thermal, laser induced breakdown spectroscopy,...etc., photoacoustic (PA) sensing has the advantages of background free and very high detection sensitivity, no need of back reflection surfaces, and 1/R instead of 1/R2 signal decay distance dependence. Furthermore, there is still a great room for PA sensitivity improvement by using different PA techniques, including lockin amplifier, employing new microphones, and microphone array techniques. Recently, we have demonstrated standoff PA detection of isopropanol vapor, solid phase TNT and RDX at a standoff distance. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated signal enhancement and noise reduction using an array of 4 microphone/4 reflector system as well as an array of 16-microphone/1 reflector. In this work we will review and compare different standoff techniques and discuss the advantages of using different photoacoustic techniques. We will also discuss new advancement of using new types of microphone and the performance comparison of using different structure of microphone arrays and combining lock-in amplifier with acoustic arrays. Demonstration of out-door real-time operations with high power mid-IR laser and microphone array will be presented.

  8. PREFACE: ARENA 2006—Acoustic and Radio EeV Neutrino detection Activities

    Science.gov (United States)

    Thompson, Lee

    2007-06-01

    The International Conference on Acoustic and Radio EeV Neutrino Activities, ARENA 2006 was jointly hosted by the Universities of Northumbria and Sheffield at the City of Newcastle Campus of the University of Northumbria in June 2006. ARENA 2006 was the latest in a series of meetings which have addressed, either separately or jointly, the use of radio and acoustic sensors for the detection of highly relativistic particles. Previous successful meetings have taken place in Los Angeles (RADHEP, 2000), Stanford (2003) and DESY Zeuthen (ARENA 2005). A total of 50 scientists from across Europe, the US and Japan attended the conference presenting status reports and results from a number of projects and initiatives spread as far afield as the Sweden and the South Pole. The talks presented at the meeting and the proceedings contained herein represent a `snapshot' of the status of the fields of acoustic and radio detection at the time of the conference. The three day meeting also included two invited talks by Dr Paula Chadwick and Dr Johannes Knapp who gave excellent summaries of the related astroparticle physics fields of high energy gamma ray detection and high energy cosmic ray detection respectively. As well as a full academic agenda there were social events including a Medieval themed conference banquet at Lumley Castle and a civic reception kindly provided by the Lord Mayor of Newcastle and hosted at the Mansion House. Thanks must go to the International Advisory Board members for their input and guidance, the Local Organising Committee for their hard work in bringing everything together and finally the delegates for the stimulating, enthusiastic and enjoyable spirit in which ARENA 2006 took place. Lee Thompson International Advisory Board G. Anton, ErlangenD. Besson, Kansas J. Blümer, KarlsruheA. Capone, Rome H. Falcke, BonnP. Gorham, Hawaii G. Gratta, StanfordF. Halzen, Madison J. Learned, HawaiiR. Nahnhauer, Zeuthen A. Rostovtzev, MoscowD. Saltzberg, Los Angeles L

  9. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

    Science.gov (United States)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

    2016-03-01

    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  10. Acoustic emission detection of early stages of cracks in rotating gearbox components

    Science.gov (United States)

    Xiang, Dan

    2017-02-01

    Many critical, highly loaded rotating gearbox components have fast crack propagation rates. Early detection of cracks in gearbox is critical to mitigating the risk of catastrophic failure. Acoustic Emission (AE) techniques have proven to be capable of continuously monitoring the crack initiation and propagation. Due to the long distance of AE signal propagation from the AE sources to the sensors installed in the housing, the AE signal suffers from severe attenuation and noises. Accurate AE signal classification technology that is capable of extracting the true AE signal out of background noises generated by the surrounding environment of a gearbox is desired. In this paper, an innovative feature extraction and analysis based AE signal classification technology is developed to address this issue. Potential AE signals are first pulled out of the noisy background in real-time through a set of automated AE detection algorithms. Then features including count, energy, duration, amplitude, rise time, amplitude rise time ratio, etc. are extracted and analyzed. Through the comparison and correlation of features extracted from signals recorded by multiple AE sensors, respective feature thresholds are determined to distinguish noises from real AE signal. The classification results are experimentally validated through fatigue tests.

  11. Detecting leaks in gas-filled pressure vessels using acoustic resonances

    Science.gov (United States)

    Gillis, K. A.; Moldover, M. R.; Mehl, J. B.

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f2 than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f2, we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10-5 h-1 = - 0.11 yr-1 from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10-2 h-1 using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.)

  12. Comprehensive bearing condition monitoring algorithm for incipient fault detection using acoustic emission

    Directory of Open Access Journals (Sweden)

    Amit R. Bhende

    2014-09-01

    Full Text Available The bearing reliability plays major role in obtaining the desired performance of any machine. A continuous condition monitoring of machine is required in certain applications where failure of machine leads to loss of production, human safety and precision. Machine faults are often linked to the bearing faults. Condition monitoring of machine involves continuous watch on the performance of bearings and predicting the faults of bearing before it cause any adversity. This paper investigates an experimental study to diagnose the fault while bearing is in operation. An acoustic emission technique is used in the experimentation. An algorithm is developed to process various types of signals generated from different bearing defects. The algorithm uses time domain analysis along with combination low frequency analysis technique such as fast Fourier transform and high frequency envelope detection. Two methods have adopted for envelope detection which are Hilbert transform and order analysis. Experimental study is carried out for deep groove ball bearing cage defect. Results show the potential effectiveness of the proposed algorithm to determine presence of fault, exact location and severity of fault.

  13. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    Science.gov (United States)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

  14. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    Science.gov (United States)

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection.

  15. The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyun; Kim, Jae Seong; Lee, Bo Young [Korea Aerospace University, Goyang (Korea, Republic of); Lee, Jung; Kwag, No Gwon [SAEAN, Seoul (Korea, Republic of)

    2009-10-15

    The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection

  16. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

    Science.gov (United States)

    Xie, Qing; Cheng, Shuyi; Lü, Fangcheng; Li, Yanqing

    2014-03-01

    The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application.

  17. Acoustically detected year-round presence of right whales in an urbanized migration corridor.

    Science.gov (United States)

    Morano, Janelle L; Rice, Aaron N; Tielens, Jamey T; Estabrook, Bobbi J; Murray, Anita; Roberts, Bethany L; Clark, Christopher W

    2012-08-01

    Species' conservation relies on understanding their seasonal habitats and migration routes. North Atlantic right whales (Eubalaena glacialis), listed as endangered under the U.S. Endangered Species Act, migrate from the southeastern U.S. coast to Cape Cod Bay, Massachusetts, a federally designated critical habitat, from February through May to feed. The whales then continue north across the Gulf of Maine to northern waters (e.g., Bay of Fundy). To enter Cape Cod Bay, right whales must traverse an area of dense shipping and fishing activity in Massachusetts Bay, where there are no mandatory regulations for the protection of right whales or management of their habitat. We used passive acoustic recordings of right whales collected in Massachusetts Bay from May 2007 through October 2010 to determine the annual spatial and temporal distribution of the whales and their calling activity. We detected right whales in the bay throughout the year, in contrast to results from visual surveys. Right whales were detected on at least 24% of days in each month, with the exception of June 2007, in which there were no detections. Averaged over all years, right whale calls were most abundant from February through May. During this period, calls were most frequent between 17:00 and 20:00 local time; no diel pattern was apparent in other months. The spatial distribution of the approximate locations of calling whales suggests they may use Massachusetts Bay as a conduit to Cape Cod Bay in the spring and as they move between the Gulf of Maine and waters to the south in September through December. Although it is unclear how dependent right whales are on the bay, the discovery of their widespread presence in Massachusetts Bay throughout the year suggests this region may need to be managed to reduce the probability of collisions with ships and entanglement in fishing gear.

  18. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  19. Detection and localisation of very high energy particles in underwater acoustic; Detection et localisation de particules de tres hautes energies en acoustique sous-marine

    Energy Technology Data Exchange (ETDEWEB)

    Juennard, N

    2007-12-15

    The theme of this thesis is included in the Antares international project whose object is to build a neutrino telescope located in a deep water environment in the Mediterranean sea. In deep water sea, a neutrino can interact with a water molecule. The collision generates a luminous flash and an acoustic wave. The goal of this work is to study this acoustic sound wave and develop a system able to detect the corresponding wave front and to estimate the initial direction of the particle. We first focus on the acoustic sound wave. Two different models are studied, and works made recently have led to a mathematical expression of both signal and wave front. Then, several detection methods are studied, from the most classical to the more recent ones. The experimental comparison in semi-real situation leads to the choice of a detection method: the Extended stochastic matched filter. Position and direction of the neutrino are now estimated with a Gauss-Newton inspired algorithm. This estimator is based on a wave front propagation model and on the time detection information given by the telescope hydro-phones. Performances of the system are then estimated. An antenna structure is then proposed and a global simulation finalizes this thesis. In this simulation, detection and estimation are based on the results found in the previous sections. Underwater sea noise is real and the results of the simulation valid our works. (author)

  20. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals

    Science.gov (United States)

    Bai, F.; Gagar, D.; Foote, P.; Zhao, Y.

    2017-02-01

    Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors in an array is essential in performing localisation. Currently, this is determined using a fixed threshold which is particularly prone to errors when not set to optimal values. This paper presents three new methods for determining the onset of AE signals without the need for a predetermined threshold. The performance of the techniques is evaluated using AE signals generated during fatigue crack growth and compared to the established Akaike Information Criterion (AIC) and fixed threshold methods. It was found that the 1D location accuracy of the new methods was within the range of < 1 - 7.1 % of the monitored region compared to 2.7% for the AIC method and a range of 1.8-9.4% for the conventional Fixed Threshold method at different threshold levels.

  1. A detection of Baryon Acoustic Oscillations from the distribution of galaxy clusters

    CERN Document Server

    Hong, Tao; Wen, Z L

    2015-01-01

    We calculate the correlation function of 79,091 galaxy clusters in the redshift region of $0.05 \\leq z \\leq 0.5$ selected from the WH15 cluster catalog. With a weight of cluster mass, a significant baryon acoustic oscillation (BAO) peak is detected on the correlation function with a significance of $3.9 \\sigma$. By fitting the correlation function with a $\\Lambda$CDM model curve, we find $D_v(z = 0.331) r_d^{fid}/r_d = 1269.4 \\pm 58$ Mpc which is consistent with the Planck 2015 cosmology. We find that the correlation functions of the higher mass sub-samples show a higher amplitude at small scales of $r < 80~h^{-1}{\\rm Mpc}$, which is consistent with our precious result. We find a clear signal of the `Finger-of-God' effect on the 2D correlation function of the whole sample, which indicates the random peculiar motion of central bright galaxies in the gravitation potential well of clusters.

  2. Finite element method analysis of surface acoustic wave devices with microcavities for detection of liquids

    Science.gov (United States)

    Senveli, Sukru U.; Tigli, Onur

    2013-12-01

    This paper introduces the use of finite element method analysis tools to investigate the use of a Rayleigh type surface acoustic wave (SAW) sensor to interrogate minute amounts of liquids trapped in microcavities placed on the delay line. Launched surface waves in the ST-X quartz substrate couple to the liquid and emit compressional waves. These waves form a resonant cavity condition and interfere with the surface waves in the substrate. Simulations show that the platform operates in a different mechanism than the conventional mass loading of SAW devices. Based on the proposed detection mechanism, it is able to distinguish between variations of 40% and 90% glycerin based on phase relations while using liquid volumes smaller than 10 pl. Results from shallow microcavities show high correlation with sound velocity parameter of the liquid whereas deeper microcavities display high sensitivities with respect to glycerin concentration. Simulated devices yield a maximum sensitivity of -0.77°/(% glycerin) for 16 μm wavelength operation with 8 μm deep, 24 μm wide, and 24 μm long microcavities.

  3. Slew Bearings Damage Detection using Hilbert Huang Transformation and Acoustic Methods

    Directory of Open Access Journals (Sweden)

    P. Nikolakopoulos

    2015-06-01

    Full Text Available Slow speed slew bearings are widely used in many applications such us radar, aviation and aerospace units, bogie bearings for vehicles, harbor and shipyard cranes. Slew bearings are design to carry out high axial and radial loads, they have high titling rigidity and they lubricated with grease. Slew bearings consist of the rollers, the inner and the outer ring and the gear in general. One of the most common problems arising in such equipments is the vibration levels due to wear of either regarding the rollers or the other components. Actually, it is very critical for his safe operation and reliability to know from where the vibrations come from, and how much severe are. In this article, the acoustic emission method is used in order to excite slew bearings either for laboratory tests or real naval application receiving the sound waves in the time domain. The Hilbert Huang Transformation (HHT with the empirical mode decomposition (EMD is used in order to detect the possible defect and to estimate the healthy state from the measured sound signals of the bearing, through to investigation of the statistical index kurtosis.

  4. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    Science.gov (United States)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  5. Online Damage Detection on Metal and Composite Space Structures by Active and Passive Acoustic Methods

    Science.gov (United States)

    Scheerer, M.; Cardone, T.; Rapisarda, A.; Ottaviano, S.; Ftancesconi, D.

    2012-07-01

    In the frame of ESA funded programme Future Launcher Preparatory Programme Period 1 “Preparatory Activities on M&S”, Aerospace & Advanced Composites and Thales Alenia Space-Italia, have conceived and tested a structural health monitoring approach based on integrated Acoustic Emission - Active Ultrasound Damage Identification. The monitoring methods implemented in the study are both passive and active methods and the purpose is to cover large areas with a sufficient damage size detection capability. Two representative space sub-structures have been built and tested: a composite overwrapped pressure vessel (COPV) and a curved, stiffened Al-Li panel. In each structure, typical critical damages have been introduced: delaminations caused by impacts in the COPV and a crack in the stiffener of the Al-Li panel which was grown during a fatigue test campaign. The location and severity of both types of damages have been successfully assessed online using two commercially available systems: one 6 channel AE system from Vallen and one 64 channel AU system from Acellent.

  6. Partial-differential-equation-constrained amplitude-based shape detection in inverse acoustic scattering

    Science.gov (United States)

    Na, Seong-Won; Kallivokas, Loukas F.

    2008-03-01

    In this article we discuss a formal framework for casting the inverse problem of detecting the location and shape of an insonified scatterer embedded within a two-dimensional homogeneous acoustic host, in terms of a partial-differential-equation-constrained optimization approach. We seek to satisfy the ensuing Karush-Kuhn-Tucker first-order optimality conditions using boundary integral equations. The treatment of evolving boundary shapes, which arise naturally during the search for the true shape, resides on the use of total derivatives, borrowing from recent work by Bonnet and Guzina [1-4] in elastodynamics. We consider incomplete information collected at stations sparsely spaced at the assumed obstacle’s backscattered region. To improve on the ability of the optimizer to arrive at the global optimum we: (a) favor an amplitude-based misfit functional; and (b) iterate over both the frequency- and wave-direction spaces through a sequence of problems. We report numerical results for sound-hard objects with shapes ranging from circles, to penny- and kite-shaped, including obstacles with arbitrarily shaped non-convex boundaries.

  7. Acoustic detection of Oryctes rhinoceros (Coleoptera: Scarabaeidae: Dynastinae) and Nasutitermes luzonicus (Isoptera: Termitidae) in palm trees in urban Guam.

    Science.gov (United States)

    Mankin, R W; Moore, A

    2010-08-01

    Adult and larval Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae: Dynastinae) were acoustically detected in live and dead palm trees and logs in recently invaded areas of Guam, along with Nasutitermes luzonicus Oshima (Isoptera: Termitidae), and other small, sound-producing invertebrates and invertebrates. The low-frequency, long-duration sound-impulse trains produced by large, active O. rhinoceros and the higher frequency, shorter impulse trains produced by feeding N. luzonicus had distinctive spectral and temporal patterns that facilitated their identification and discrimination from background noise, as well as from roaches, earwigs, and other small sound-producing organisms present in the trees and logs. The distinctiveness of the O. rhinoceros sounds enables current usage of acoustic detection as a tactic in Guam's ongoing O. rhinoceros eradication program.

  8. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    Directory of Open Access Journals (Sweden)

    Aleš Hančič

    2013-05-01

    Full Text Available This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals’ peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  9. Real-time detection of undersea mines: a complete screening and acoustic fusion processing system

    Science.gov (United States)

    Sacramone, Anthony; Desai, Mukund N.

    1999-08-01

    A complete mine detection/classification (D/C) system has been specified and implemented, which runs in real-time, and has been exercised on the latest available dual-frequency side-scan sonar acoustic image sets. The compete DC system is comprised of a collection of algorithms that has been developed and evolved at Draper Laboratory over the past decade. The detection process consists of image normalization, enhancement, segmentation, and feature extraction algorithms. The enhancement algorithm is a variant of a Markov Random Field based anomaly screener developed in FY-94. The feature that were extracted were those derived in FY-93. A distance constrained matching algorithm, which was developed in FY-95, is used to generate a list of high and low frequency fused tokens. The classification process involves the evaluation of a hierarchy of three multi-layer perceptron neural networks: HF, LF, and HF/LF fused. Research performed in FY-95 also concentrated on the development of several variants of information fusion with hierarchical neural networks. The 'discriminant-combining' variant of fusion was selected as part of this DC system. In addition, a classification post- processing and decision node statistic modification step, which was developed in FY-96, was included. This paper will describe the algorithm that were implemented. However, the emphasis will be on the performance results of processing the latest available side-scan imagery, comparison of single sensor vs dual-frequency sensor results, and the issues that were encountered while exercising the DC system on the new data set.

  10. Detection of bond failure in the anchorage zone of reinforced concrete beams via acoustic emission monitoring

    Science.gov (United States)

    Abouhussien, Ahmed A.; Hassan, Assem A. A.

    2016-07-01

    In this study, acoustic emission (AE) monitoring was utilised to identify the onset of bond failure in reinforced concrete beams. Beam anchorage specimens were designed and tested to fail in bond in the anchorage zone. The specimens included four 250 × 250 × 1500 mm beams with four variable bonded lengths (100, 200, 300, and 400 mm). Meanwhile, an additional 250 × 250 × 2440 mm beam, with 200 mm bonded length, was tested to investigate the influence of sensor location on the identification of bond damage. All beams were tested under four-point loading setup and continuously monitored using three distributed AE sensors. These attached sensors were exploited to record AE signals resulting from both cracking and bond deterioration until failure. The variations in the number of AE hits and cumulative signal strength (CSS) versus test time were evaluated to achieve early detection of crack growth and bar slippage. In addition, AE intensity analysis was performed on signal strength of collected AE signals to develop two additional parameters: historic index (H (t)) and severity (S r). The analysis of these AE parameters enabled an early detection of both first cracks (at almost the mid-span of the beam) and bar slip in either of the anchorage zones at the beams’ end before their visual observation, regardless of sensor location. The results also demonstrated a clear correlation between the damage level in terms of crack development/measured free end bar slip and AE parameters (number of hits, CSS, H(t), and S r).

  11. Reconstruction methods for acoustic particle detection in the deep sea using clusters of hydrophones

    CERN Document Server

    Richardt, C; Graf, K; Hoessl, J; Kappes, A; Katz, U; Lahmann, R; Naumann, Ch; Neff, M; Schoeck, F; 10.1016/j.astropartphys.2008.11.003

    2009-01-01

    This article focuses on techniques for acoustic noise reduction, signal filters and source reconstruction. For noise reduction, bandpass filters and cross correlations are found to be efficient and fast ways to improve the signal to noise ratio and identify a possible neutrino-induced acoustic signal. The reconstruction of the position of an acoustic point source in the sea is performed by using small-volume clusters of hydrophones (about 1 cubic meter) for direction reconstruction by a beamforming algorithm. The directional information from a number of such clusters allows for position reconstruction. The algorithms for data filtering, direction and position reconstruction are explained and demonstrated using simulated data.

  12. Multi-bearing defect detection with trackside acoustic signal based on a pseudo time-frequency analysis and Dopplerlet filter

    Science.gov (United States)

    Zhang, Haibin; Lu, Siliang; He, Qingbo; Kong, Fanrang

    2016-03-01

    The diagnosis of train bearing defects based on the acoustic signal acquired by a trackside microphone plays a significant role in the transport system. However, the wayside acoustic signal suffers from the Doppler distortion due to the high moving speed and also contains the multi-source signals from different train bearings. This paper proposes a novel solution to overcome the two difficulties in trackside acoustic diagnosis. In the method a pseudo time-frequency analysis (PTFA) based on an improved Dopplerlet transform (IDT) is presented to acquire the time centers for different bearings. With the time centers, we design a series of Dopplerlet filters (DF) in time-frequency domain to work on the signal's time-frequency distribution (TFD) gained by the short time Fourier transform (STFT). Then an inverse STFT (ISTFT) is utilized to get the separated signals for each sound source which means bearing here. Later the resampling method based on certain motion parameters eliminates the Doppler Effect and finally the diagnosis can be made effectively according to the envelope spectrum of each separated signal. With the effectiveness of the technique validated by both simulated and experimental cases, the proposed wayside acoustic diagnostic scheme is expected to be available in wayside defective bearing detection.

  13. Use of beamforming for detecting an acoustic source inside a cylindrical shell filled with a heavy fluid

    Science.gov (United States)

    Moriot, J.; Maxit, L.; Guyader, J. L.; Gastaldi, O.; Périsse, J.

    2015-02-01

    The acoustic detection of defects or leaks inside a cylindrical shell containing a fluid is of prime importance in the industry, particularly in the nuclear field. This paper examines the beamforming technique which is used to detect and locate the presence of an acoustic monopole inside a cylindrical elastic shell by measuring the external shell vibrations. In order to study the effect of fluid-structure interactions and the distance of the source from the array of sensors, a vibro-acoustic model of the fluid-loaded shell is first considered for numerical experiments. The beamforming technique is then applied to radial velocities of the shell calculated with the model. Different parameters such as the distance between sensors, the radial position of the source, the damping loss factor of the shell, or of the fluid, and modifications of fluid properties can be considered without difficulty. Analysis of these different results highlight how the behaviour of the fluid-loaded shell influences the detection. Finally, a test in a water-filled steel pipe is achieved for confirming experimentally the interest of the presented approach.

  14. Detecting and identifying damage in sandwich polymer composite by using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    McGugan, M.; Soerensen, Bent F.; Oestergaard, R.; Bech, T.

    2006-12-15

    Acoustic emission is a useful monitoring tool for extracting extra information during mechanical testing of polymer composite sandwich materials. The study of fracture mechanics within test specimens extracted from wind turbine blade material is presented. The contribution of the acoustic emission monitoring technique in defining different failure modes identified during the testing is discussed. The development of in-situ structural monitoring and control systems is considered. (au)

  15. Acoustic Detection, Behavior, and Habitat Use of Deep-Diving Odontocetes

    Science.gov (United States)

    2011-09-22

    Final Report Page 2 of 12 130991.00 this work in 2011. Two week-long photo-identification and acoustic monitoring surveys of beaked whales in La Palma ...extended to nearby La Palma island and, with funding from the Canary Is. Government, to most of the Canary Island archipelago via a large-scale acoustic...from ship traffic and oil exploration. An improved understanding of the abundance and habitat of marine mammals and their use of sound will help to

  16. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.

    Science.gov (United States)

    Chiu, Chi-Shun; Gwo, Shangjr

    2008-05-01

    The immobilization scheme of monodispersed gold nanoparticles (10-nm diameter) on piezoelectric substrate surfaces using organosilane molecules as cross-linkers has been developed for lithium niobate (LiNbO3) and silicon oxide (SiO2)/gold-covered lithium tantalate (LiTaO3) of Rayleigh and guided shear horizontal- (guided SH) surface acoustic wave (SAW) sensors. In this study, comparative measurements of gold nanoparticle adsorption kinetics using high-resolution field-emission scanning electron microscopy and SAW sensors allow the frequency responses of SAW sensors to be quantitatively correlated with surface densities of adsorbed nanoparticles. Using this approach, gold nanoparticles are used as the "nanosized mass standards" to scale the mass loading in a wide dynamical range. Rayleigh-SAW and guided SH-SAW sensors are employed here to monitor the surface mass changes on the device surfaces in gas and liquid phases, respectively. The mass sensitivity ( approximately 20 Hz.cm2/ng) of Rayleigh-SAW device (fundamental oscillation frequency of 113.3 MHz in air) is more than 2 orders of magnitude higher than that of conventional 9-MHz quartz crystal microbalance sensors. Furthermore, in situ (aqueous solutions), real-time measurements of adsorption kinetics for both citrate-stabilized gold nanoparticles and DNA-gold nanoparticle conjugates are also demonstrated by guided SH-SAW (fundamental oscillation frequency of 121.3 MHz). By comparing frequency shifts between the adsorption cases of gold nanoparticles and DNA-gold nanoparticle conjugates, the average number of bound oligonucleotides per gold nanoparticle can also be determined. The high mass sensitivity ( approximately 6 Hz.cm2/ng) of guided SH-SAW sensors and successful detection of DNA-gold nanoparticle conjugates paves the way for real-time biosensing in liquids using nanoparticle-enhanced SAW devices.

  17. Detecting Acoustic Emissions With/Without Dehydration of Serpentine Outside P-T Field of Conventional Brittle Failure

    Science.gov (United States)

    Jung, H.; Fei, Y.; Silver, P. G.; Green, H. W.

    2005-12-01

    It is currently thought that earthquakes cannot be triggered at depths greater than ~60 km by unassisted brittle failure or frictional sliding, but could be triggered by dehydration embrittlement of hydrous minerals (Raleigh and Paterson, 1965; Green and Houston, 1995; Kirby, 1995; Jung et al., 2004). Using a new multianvil-based system for detecting acoustic emissions with four channels at high pressure and high temperature that was recently developed (Jung et al., 2005), we tested this hypothesis by deforming samples of serpentine. We found that acoustic emissions were detected not only during/after the dehydration of serpentine, but even in the absence of dehydration. These emissions occurred at high pressure and high temperature, and thus outside pressure-temperature field of conventional brittle failure. Backscattered-electron images of microstructures of the post-run specimen revealed fault slip at elevated pressure, with offsets of up to ~500 μm, even without dehydration. Analysis of P-wave travel times from the four sensors confirmed that the acoustic emissions originated from within the specimen during fault slip. These observations suggest that earthquakes can be triggered by slip along a fault containing serpentine at significantly higher pressure and temperature conditions than that previously thought, even without dehydration. They are thus consistent with faulting mechanisms that appeal to dehydration embrittlement, as well as those that rely solely on the rheology of non-dehydrated serpentine.

  18. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System.

    Science.gov (United States)

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-02-20

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  19. Co-detection of acoustic emissions during failure of heterogeneous media: new perspectives for natural hazard early warning

    CERN Document Server

    Faillettaz, J; Reiweger, I

    2015-01-01

    A promising method for real time early warning of gravity driven rupture that considers both the heterogeneity of natural media and characteristics of acoustic emissions attenuation is proposed. The method capitalizes on co-detection of elastic waves emanating from micro-cracks by multiple and spatially separated sensors. Event co-detection is considered as surrogate for large event size with more frequent co-detected events marking imminence of catastrophic failure. Using a spatially explicit fiber bundle numerical model with spatially correlated mechanical strength and two load redistribution rules, we constructed a range of mechanical failure scenarios and associated failure events (mapped into AE) in space and time. Analysis considering hypothetical arrays of sensors and consideration of signal attenuation demonstrate the potential of the co-detection principles even for insensitive sensors to provide early warning for imminent global failure.

  20. Detection and Resolvability of Pulsed Acoustic Signals Through the South China Sea Basin: A Modeling Analysis

    Science.gov (United States)

    2005-09-01

    of the internal wave distribution developed by Hsu and Liu (2000) compiled from hundreds of Synthetic Aperture Radar (SAR) images from the First...Hamiltonian Acoustic Raytracing Program for the Ocean (Jones et al., 1986). HARPO traces rays by numerically integrating Hamilton’s equations of motion

  1. Accounting for false-positive acoustic detections of bats using occupancy models

    Science.gov (United States)

    Clement, Matthew J.; Rodhouse, Thomas J.; Ormsbee, Patricia C.; Szewczak, Joseph M.; Nichols, James D.

    2014-01-01

    1. Acoustic surveys have become a common survey method for bats and other vocal taxa. Previous work shows that bat echolocation may be misidentified, but common analytic methods, such as occupancy models, assume that misidentifications do not occur. Unless rare, such misidentifications could lead to incorrect inferences with significant management implications.

  2. Detection of acoustic, electro-optical and RADAR signatures of small unmanned aerial vehicles

    Science.gov (United States)

    Hommes, Alexander; Shoykhetbrod, Alex; Noetel, Denis; Stanko, Stephan; Laurenzis, Martin; Hengy, Sebastien; Christnacher, Frank

    2016-10-01

    We investigated signatures of small unmanned aerial vehicles (UAV) with different sensor technologies ranging from acoustical antennas, passive and active optical imaging devices to small-size FMCW RADAR systems. These sensor technologies have different advantages and drawbacks and can be applied in a complementary sensor network to benefit from their different strengths.

  3. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, Matthias

    2011-10-07

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264{sup +52} {sub -37} m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample

  4. A signal amplification assay for HSV type 1 viral DNA detection using nanoparticles and direct acoustic profiling

    Directory of Open Access Journals (Sweden)

    Hammond Richard

    2010-02-01

    Full Text Available Abstract Background Nucleic acid based recognition of viral sequences can be used together with label-free biosensors to provide rapid, accurate confirmation of viral infection. To enhance detection sensitivity, gold nanoparticles can be employed with mass-sensitive acoustic biosensors (such as a quartz crystal microbalance by either hybridising nanoparticle-oligonucleotide conjugates to complimentary surface-immobilised ssDNA probes on the sensor, or by using biotin-tagged target oligonucleotides bound to avidin-modified nanoparticles on the sensor. We have evaluated and refined these signal amplification assays for the detection from specific DNA sequences of Herpes Simplex Virus (HSV type 1 and defined detection limits with a 16.5 MHz fundamental frequency thickness shear mode acoustic biosensor. Results In the study the performance of semi-homogeneous and homogeneous assay formats (suited to rapid, single step tests were evaluated utilising different diameter gold nanoparticles at varying DNA concentrations. Mathematical models were built to understand the effects of mass transport in the flow cell, the binding kinetics of targets to nanoparticles in solution, the packing geometries of targets on the nanoparticle, the packing of nanoparticles on the sensor surface and the effect of surface shear stiffness on the response of the acoustic sensor. This lead to the selection of optimised 15 nm nanoparticles that could be used with a 6 minute total assay time to achieve a limit of detection sensitivity of 5.2 × 10-12 M. Larger diameter nanoparticles gave poorer limits of detection than smaller particles. The limit of detection was three orders of magnitude lower than that observed using a hybridisation assay without nanoparticle signal amplification. Conclusions An analytical model was developed to determine optimal nanoparticle diameter, concentration and probe density, which allowed efficient and rapid optimisation of assay parameters

  5. Simulation and measurement of different hydrophone components for acoustic particle detection; Simulation und Messung verschiedener Hydrophonkomponenten zur akustischen Teilchendetektion

    Energy Technology Data Exchange (ETDEWEB)

    Salomon, K.S.

    2007-01-26

    A study of piezoceramics as sensitive elements for the use in acoustical astroparticle physics is presented in this work. This study aims to develop underwater microphones (hydrophones) in order to detect thermoacoustic sound pulses, which are produced in neutrino interactions. The sensitive elements of the acoustical detectors, the piezo ceramics, are under investigation in this work. Therefore the equations of a piezo are solved in simulations to derive its macroscopic properties. Especially the impedance and the displacement of the piezo as response to applied voltage are of interest. This is correlated with the electrical and mechanical answer of a piezo when sending. For receiving the resulting voltage or the electrical charge due to applied stress are of interest. In the present studies cylinder and hollow cylinder were analyzed. Insight of the interrelationship between the displacement and the impedance is given. The impedance is fitted with an equivalent circuit, to derive the mechanical analog properties. Furthermore the effect of the piezo geometry to the resonance frequencies is explored. Further calculations were made to reveal the sound field produced by a piezo. Measurements of the impedance with a phase-gain-analyser are made. On the other side the displacement is measured using optical interferometry. Beside the simulation and measurements of the piezosensitive elements a study for a trigger-algorithm using the crosscorrelation is introduced. In this study in situ measurements with low signal amplitudes are used to describe noise. To this noise data signals were added and it was examined how well the signals can be reconstructed. Based on the result of this work and taking commercial available piezoceramic materials into account, the optimal sensitive element of an acoustic neutrino detector is a PZT-5A disc with a diameter of 5 mm and a height of 10 mm. A single detector of this kind is able to detect neutrinos with energies more then one PeV as it

  6. Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection

    Science.gov (United States)

    Schneider von Deimling, Jens; Held, Philipp; Feldens, Peter; Wilken, Dennis

    2016-04-01

    This study reports an adaptation of a parametric echosounder system using 15 kHz as secondary frequency to investigate the angular response of sub-bottom backscatter strength of layered mud, providing a new method for enhanced acoustic detection of buried targets. Adaptions to achieve both vertical (0°) and non-vertical inclination (1-15°, 30°, 45° and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. Data were acquired at 18 m water depth at a study site characterized by a flat, muddy seafloor where a 0.1 m diameter power cable lies 1-2 m below the seafloor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud decreases strongly at >3±0.5° incidence and the layered mud echo pattern vanishes beyond 5°. As a consequence, the backscatter pattern of the buried cable is very pronounced in acoustic images gathered at 15°, 30°, 45° and 60° incidence. The size of the cable echo pattern increases linearly with incidence. These effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Data analyses support the visual impression of superior detection of the cable with an up to 2.6-fold increase of the signal-to-noise ratio at 40° incidence compared to the vertical incidence case.

  7. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Bum [RECTUSON, Co., LTD, Masan (Korea, Republic of); Roh, Seon Man [Samcheonpo Division, Korea South-East Power Co., Samcheonpo (Korea, Republic of)

    2016-06-15

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB.

  8. Surface acoustic wave based analytical system for the detection of liquid detergents

    OpenAIRE

    2012-01-01

    A novel analytical sensing system has been designed for the characterization and discrimination of different detergents in water. This micro-sensor system could play a key role in the development of more efficient and environmentally-friendly washing machines by enabling the measurement of residual detergents. The sensing system comprises a dual shear-horizontal surface acoustic wave (SH-SAW) resonator sensor housed within a poly-dimethylsiloxane (PDMS) microfluidic chamber. Free and electric...

  9. Acoustic biosensors

    Science.gov (United States)

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  10. Magnetic nanoparticles-based acoustical detection and hyperthermic treatment of cancer, in vitro and in vivo studies

    Science.gov (United States)

    Shoval, Asaf; Tepper, Michal; Tikochkiy, Jenny; Gur, Leah Ben; Markovich, Gil; Keisari, Yona; Gannot, Israel

    2016-07-01

    This paper describes a minimally invasive method for detection and growth inhibition of tumors that utilizes the unique properties of super paramagnetic nanoparticles. To demonstrate the feasibility of this method, dimercaptosuccinic acid-coated magnetite nanoparticles were successfully fabricated and used. Those nanoparticles were simultaneously used for magnetoacoustic detection of tumors and for specific hyperthermia treatment in C57BL/J mice injected with Lewis lung carcinoma cells. The in vivo acoustic signal attributed to the nanoparticles was 4.4 dB, while the single session hyperthermia treatment caused a reduction of 50% in tumor growing rate. In addition, a thermography-based method was applied to monitor the efficacy of the hyperthermia treatment. The presented method has the potential to revolutionize current cancer treatment by enabling diagnosis and treatment under real-time feedback in one session.

  11. International Workshop on Detection, Classification and Localization of Marine Mammals Using Passive Acoustics (4th). International Workshop on Density Estimation of Marine Mammals Using Passive Acoustics (1st)

    Science.gov (United States)

    2009-09-13

    PRESENTATION 11 WORKSHOPS PROGRAM 13 ORAL COMMUNICATIONS DCL WORKSHOP 19 Lazzaro Spallanzani: a hero of pre-animal welfare experimental biology...Filho 62 Using Passive Acoustic Monitoring to Evaluate the Impact of Anthropogenic Noise on Cetacean Vocal Activity Cholewiak Danielle, Vu Elizabeth...La Manna 69 ORAL COMMUNICATIONS DE WORKSHOP 71 Review of methods for estimating cetacean density from passive acoustics Len Thomas and Tiago A.Marques

  12. Acoustic wave biosensor for the detection of the breast and prostate cancer metastasis biomarker protein PTHrP.

    Science.gov (United States)

    Crivianu-Gaita, Victor; Aamer, Mohamed; Posaratnanathan, Roy T; Romaschin, Alexander; Thompson, Michael

    2016-04-15

    There are currently no biosensors that are able to reliably detect the process of cancer metastasis. We describe the first label-free real-time ultra-high frequency acoustic wave biosensor prototype capable of detecting the breast and prostate cancer metastasis biomarker, parathyroid hormone-related peptide (PTHrP). Two different linkers - 11-trichlorosilyl-undecanoic acid pentafluorophenyl ester (PFP) and S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) - were used to immobilize whole anti-PTHrP antibodies and Fab' fragments to surfaces as biorecognition elements. The biosensor surfaces were optimized using X-ray photoelectron spectroscopy (XPS) and the ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS). One optimized whole antibody-based surface (PFP/protein G'/whole antibodies/ethanolamine) and one optimized Fab' fragment-based surface (TUBTS/Fab' fragments) were tested as biosensors. It was determined that an in-line injection of bovine serum albumin prior to analyte injection yielded the most minimally fouling surfaces. Each surface was tested with no mass amplification and with sandwich-type secondary antibody mass amplification. The whole antibody-based mass-amplified biosensor yielded the lowest limit of detection (61 ng/mL), highest sensitivity, and a linear range from 61 ng/mL to 100 μg/mL. However, the Fab' fragment-based biosensor displayed better regenerability as a loss of ~20% of the initial analyte signal intensity was observed with each subsequent injection. The whole antibody-based biosensor was only capable of producing an analyte signal in the first injection.

  13. Nonlinear Acoustic Experiments Involving Landmine Detection: Connections with Mesoscopic Elasticity and Slow Dynamics in Geomaterials

    Science.gov (United States)

    Korman, Murray S.; Sabatier, James M.

    2006-05-01

    The vibration interaction between the top-plate of a buried VS 2.2 plastic, anti-tank landmine and the soil above it appears to exhibit similar characteristics to the nonlinear mesoscopic/nanoscale effects that are observed in geomaterials like rocks or granular materials. [J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. When airborne sound at two primary frequencies f1 and f2 (closely spaced near resonance) undergo acoustic-to-seismic coupling, (A/S), interactions with the mine and soil generate combination frequencies | n f1 ± m f2 | which affect the surface vibration velocity. Profiles at f1, f2, f1 -(f2 - f1) and f2 +(f2 - f1) exhibit single peaks whereas other combination frequencies may involve higher order modes. A family of increasing amplitude tuning curves, involving the surface vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding resonant frequency. Subsequent decreasing amplitude tuning curves exhibit hysteresis effects. New experiments for a buried VS 1.6 anti-tank landmine and a "plastic drum head" mine simulant behave similarly. Slow dynamics explains the amplitude difference in tuning curves for first sweeping upward and then downward through resonance, provided the soil modulus drops after periods of high strain. [Support by U.S. Army RDECOM CERDEC, NVESD, Fort Belvoir, VA.

  14. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System.

    Science.gov (United States)

    Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-27

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy.

  15. Numerical and experimental analysis of high frequency acoustic microscopy and infrared reflectance system for early detection of melanoma

    Science.gov (United States)

    Karagiannis, Georgios; Apostolidis, Georgios; Georgoulias, Panagiotis

    2016-03-01

    Melanoma is a very malicious type of cancer as it metastasizes early and hence its late diagnosis leads to death. Consequently, early diagnosis of melanoma and its removal is considered the most effective way of treatment. We present a design of a high frequency acoustic microscopy and infrared reflectance system for the early detection of melanoma. Specifically, the identification of morphological changes related to carcinogenesis is required. In this work, we simulate of the propagation of the ultrasonic waves of the order of 100 MHz as well as of electromagnetic waves of the order of 100 THz in melanoma structures targeting to the estimation and optimization of the basic characteristics of the systems. The simulation results of the acoustic microscopy subsystem aim to provide information such as the geometry of the transducer, the center frequency of operation, the focal length where the power transmittance is optimum and the spot size in focal length. As far as the infrared is concerned the optimal frequency range and the spot illumination size of the external probe is provided. This information is next used to assemble a properly designed system which is applied to melanoma phantoms as well as real skin lesions. Finally, the measurement data are visualized to reveal the information of the experimented structures, proving noteworthy accuracy.

  16. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System

    Directory of Open Access Journals (Sweden)

    Kesai Ouyang

    2015-08-01

    Full Text Available The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS. Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy.

  17. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    Science.gov (United States)

    Yack, Tina M.

    The objectives of this research were to test available automated detection methods for passive acoustic monitoring and integrate the best available method into standard marine mammal monitoring protocols for ship based surveys. The goal of the first chapter was to evaluate the performance and utility of PAMGUARD 1.0 Core software for use in automated detection of marine mammal acoustic signals during towed array surveys. Three different detector configurations of PAMGUARD were compared. These automated detection algorithms were evaluated by comparing them to the results of manual detections made by an experienced bio-acoustician (author TMY). This study provides the first detailed comparisons of PAMGUARD automated detection algorithms to manual detection methods. The results of these comparisons clearly illustrate the utility of automated detection methods for odontocete species. Results of this work showed that the majority of whistles and click events can be reliably detected using PAMGUARD software. The second chapter moves beyond automated detection to examine and test automated classification algorithms for beaked whale species. Beaked whales are notoriously elusive and difficult to study, especially using visual survey methods. The purpose of the second chapter was to test, validate, and compare algorithms for detection of beaked whales in acoustic line-transect survey data. Using data collected at sea from the PAMGUARD classifier developed in Chapter 2 it was possible to measure the clicks from visually verified Baird's beaked whale encounters and use this data to develop classifiers that could discriminate Baird's beaked whales from other beaked whale species in future work. Echolocation clicks from Baird's beaked whales, Berardius bairdii, were recorded during combined visual and acoustic shipboard surveys of cetacean populations in the California Current Ecosystem (CCE) and with autonomous, long-term recorders at four different sites in the Southern

  18. Proceedings of a seminar on the potential for LMFBR boiling detection by acoustic/neutronic monitoring, Argonne, Illinois, April 8--9, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Carey, W.M.; Albrecht, R.W.

    1976-06-01

    A seminar involving ten technical presentations by principal investigators was held to assess the current scope of ERDA-sponsored programs to determine the feasibility of sodium-boiling detection in LMFBRs and to establish areas in need of additional research and development. The consensus was that (1) feasibility of boiling detection by acoustic, neutronic, and acoustic/neutronic monitors has been demonstrated in U.S. and European programs; (2) additional research and development is needed in areas of reactor noise, cavitation, and the effects of noncondensible gases on sound source levels and transmission; (3) the role of acoustic/neutronic monitors from the standpoint of reactor surveillance rather than reactor safety is a viable approach to be adapted; and, in particular (4) a need exists for an operational LMFBR demonstration system. Each paper has been separately abstracted and indexed. (DG)

  19. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

    Science.gov (United States)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

    2009-07-01

    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  20. Label-free detection of protein-ligand interactions in real time using micromachined bulk acoustic resonators

    Science.gov (United States)

    Zhang, Hao; Pang, Wei; Marma, Mong S.; Lee, Chuang-Yuan; Kamal-Bahl, Sanat; Kim, Eun Sok; McKenna, Charles E.

    2010-03-01

    In this paper, we present a micromachined film bulk acoustic resonator (FBAR) to detect protein-ligand interactions in real-time. The surface of the FBAR device has a thin layer of gold deposited on it to immobilize thiol-modified biotin. The resonant frequency of the biotin modified FBAR was measured to decrease by 170 ppm when exposed to streptavidin solution with a concentration of 5×10-7 M, corresponding to an added mass of 120 pg on the FBAR surface due to the biotin-streptavidin interaction. Consequently, the biotin modified FBAR can be used to observe in real time the biotin-streptavidin interaction without the use of labeling or molecular tags. The FBAR can be used in a variety of protein-ligand systems, and be designed for testing in array formats to give high throughput screening for drug discovery.

  1. Wideband nonlinear time reversal seismo-acoustic method for landmine detection.

    Science.gov (United States)

    Sutin, Alexander; Libbey, Brad; Fillinger, Laurent; Sarvazyan, Armen

    2009-04-01

    Acoustic and seismic waves provide a method to localize compliant mines by vibrating the top plate and a thin soil layer above the mine. This vibration is mostly linear, but also includes a small nonlinear deviation. The main goal of this paper is to introduce a method of processing that uses phase-inversion to observe nonlinear effects in a wide frequency band. The method extracts a nonlinear part of surface velocity from two similar broadcast signals of opposite sign by summing and cancelling the linear components and leaving the nonlinear components. This phase-inversion method is combined with time reversal focusing to provide increased seismic vibration and enhance the nonlinear effect. The experiments used six loudspeakers in a wood box placed over sand in which inert landmines were buried. The nonlinear surface velocity of the sand with a mine compared to the sand without a mine was greater as compared to a linear technique.

  2. Passive acoustic detection of closed-circuit underwater breathing apparatus in an operational port environment

    NARCIS (Netherlands)

    Fillinger, L.; Hunter, A.J.; Zampolli, M.; Clarijs, M.C.

    2012-01-01

    Divers constitute a potential threat to waterside infrastructures. Active diver detection sonars are available commercially but present some shortcomings, particularly in highly reverberant environments. This has led to research on passive sonar for diver detection. Passive detection of open-circuit

  3. Acoustic vector sensor signal processing

    Institute of Scientific and Technical Information of China (English)

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  4. Developments in Analytical Chemistry: Acoustically Levitated Drop Reactors for Enzyme Reaction Kinetics and Single-Walled Carbon Nanotube-Based Sensors for Detection of Toxic Organic Phosphonates

    Science.gov (United States)

    Field, Christopher Ryan

    2009-01-01

    Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…

  5. A comparison of acoustic cavitation detection thresholds measured with piezo-electric and fiber-optic hydrophone sensors.

    Science.gov (United States)

    Bull, Victoria; Civale, John; Rivens, Ian; Ter Haar, Gail

    2013-12-01

    A Fabry-Perot interferometer fiber-optic hydrophone (FOH) was investigated for use as an acoustic cavitation detector and compared with a piezo-ceramic passive cavitation detector (PCD). Both detectors were used to measure negative pressure thresholds for broadband emissions in 3% agar and ex vivo bovine liver simultaneously. FOH-detected half- and fourth-harmonic emissions were also studied. Three thresholds were defined and investigated: (i) onset of cavitation; (ii) 100% probability of cavitation; and (iii) a time-integrated threshold where broadband signals integrated over a 3-s exposure duration, averaged over 5-10 repeat exposures, become statistically significantly greater than noise. The statistical sensitiviy of FOH broadband detection was low compared with that of the PCD (0.43/0.31 in agar/liver). FOH-detected fourth-harmonic data agreed best with PCD broadband (sensitivity: 0.95/0.94, specificity: 0.89/0.76 in agar/liver). The FOH has potential as a cavitation detector, particularly in applications where space is limited or during magnetic resonance-guided studies.

  6. Enhanced channel estimation and symbol detection for high speed multi-input multi-output underwater acoustic communications.

    Science.gov (United States)

    Ling, Jun; Yardibi, Tarik; Su, Xiang; He, Hao; Li, Jian

    2009-05-01

    The need for achieving higher data rates in underwater acoustic communications leverages the use of multi-input multi-output (MIMO) schemes. In this paper two key issues regarding the design of a MIMO communications system, namely, channel estimation and symbol detection, are addressed. To enhance channel estimation performance, a cyclic approach for designing training sequences and a channel estimation algorithm called the iterative adaptive approach (IAA) are presented. Sparse channel estimates can be obtained by combining IAA with the Bayesian information criterion (BIC). Moreover, the RELAX algorithm can be used to improve the IAA with BIC estimates further. Regarding symbol detection, a minimum mean-squared error based detection scheme, called RELAX-BLAST, which is a combination of vertical Bell Labs layered space-time (V-BLAST) algorithm and the cyclic principle of the RELAX algorithm, is presented and it is shown that RELAX-BLAST outperforms V-BLAST. Both simulated and experimental results are provided to validate the proposed MIMO scheme. RACE'08 experimental results employing a 4 x 24 MIMO system show that the proposed scheme enjoys an average uncoded bit error rate of 0.38% at a payload data rate of 31.25 kbps and an average coded bit error rate of 0% at a payload data rate of 15.63 kbps.

  7. Detection of multiple AE signal by triaxial hodogram analysis; Sanjiku hodogram ho ni yoru taju acoustic emission no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, K.; Yamashita, T. [Muroran Institute of Technology, Hokkaido (Japan)

    1997-05-27

    In order to evaluate dynamic behavior of underground cracks, analysis and detection were attempted on multiple acoustic emission (AE) events. The multiple AE is a phenomenon in which multiple AE signals generated by underground cracks developed in an extremely short time interval are superimposed, and observed as one AE event. The multiple AE signal consists of two AE signals, whereas the second P-wave is supposed to have been inputted before the first S-wave is inputted. The first P-wave is inputted first, where linear three-dimensional particle movements are observed, but the movements are made random due to scattering and sensor characteristics. When the second P-wave is inputted, the linear particle movements are observed again, but are superimposed with the existing input signals and become multiple AE, which creates poor S/N ratio. The multiple AE detection determines it a multiple AE event when three conditions are met, i. e. a condition of equivalent time interval of a maximum value in a scalogram analysis, a condition of P-wave vibrating direction, and a condition of the linear particle movement. Seventy AE signals observed in the Kakkonda geothermal field were analyzed and AE signals that satisfy the multiple AE were detected. However, further development is required on an analysis method with high resolution for the time. 4 refs., 4 figs.

  8. Fissile and Non-Fissile Material Detection Using Nuclear Acoustic Resonance Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard R. Tittmann; P.M. Lenahan; David Spears; Rhys Williams

    2008-11-25

    The objective of this project is to develop anovel technique for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs. We propse the development of a detection system based on magnetic resonance principles (NAR), which would work where radiation detection is not possible. The approach would be non-intrusive, penetrating, applicable to many materials of interest for Nonproliferation, and be able to identify the nuclear samples under investigation.

  9. Detecting sensitization in aluminum alloys using acoustic resonance and EMAT ultrasound

    Science.gov (United States)

    Cobb, Adam; Macha, Erica; Bartlett, Jonathan; Xia, Yanquan

    2017-02-01

    Sensitization of 5xxx series aluminum alloys is characterized by the gradual precipitation of the alloying element magnesium as a beta phase (Al3Mg2) along the grain boundaries after prolonged exposure to the environment. While the 5xxx alloy is corrosion resistant, these beta phases are corrosive and thus their formation increases the susceptibility of the alloy to intergranular corrosion and stress corrosion cracking. The standardized approach for measuring the degree of sensitization (DoS) is the ASTM G67 test standard. This test, however, is time consuming, difficult to perform, and destructive, as it involves measurement of a mass loss after exposing the alloy to a nitric acid solution. Given the limitations of this test standard, there is a need to develop a nondestructive evaluation (NDE) solution that is easy-to-use, non-intrusive, and faster than current inspection methods while suitable for use outside a laboratory. This paper describes the development of an NDE method for quantifying the DoS value in an alloy using ultrasonic measurements. The work builds upon prior efforts described in the literature that use electromagnetic acoustic transducers (EMATs) to quantify DoS based on velocity measurements. The prior approaches used conventional ultrasonic inspection techniques with short-duration excitation signals (less than 3 cycles) to allow identification of the echo time-of-flight and amplitude decay pattern, but their success was limited by EMAT transducer inefficiency in general, especially at higher frequencies. To overcome these challenges, this paper presents a modified ultrasonic measurement strategy using long-duration excitation signals (greater than 100 cycles), where multiple reverberations in the material overlap. By sweeping through test frequencies, it is possible to establish an acoustic resonance when the wavelength is an integer multiple of twice the material thickness. This approach allows for greatly improved signal to noise ratios as

  10. Detecting crack profile in concrete using digital image correlation and acoustic emission

    Directory of Open Access Journals (Sweden)

    Loukili A.

    2010-06-01

    Full Text Available Failure process in concrete structures is usually accompanied by cracking of concrete. Understanding the cracking pattern is very important while studying the failure governing criteria of concrete. The cracking phenomenon in concrete structures is usually complex and involves many microscopic mechanisms caused by material heterogeneity. Since last many years, fracture or damage analysis by experimental examinations of the cement based composites has shown importance to evaluate the cracking and damage behavior of those heterogeneous materials with damage accumulation due to microcracks development ahead of the propagating crack tip; and energy dissipation resulted during the evolution of damage in the structure. The techniques used in those experiments may be the holographic interferometry, the dye penetration, the scanning electron microscopy, the acoustic emission etc. Those methods offer either the images of the material surface to observe micro-features of the concrete with qualitative analysis, or the black-white fringe patterns of the deformation on the specimen surface, from which it is difficult to observe profiles of the damaged materials.

  11. 粮仓中小麦的声学检测方法研究进展%A Review of Acoustic Detection Technology for the Stored Wheat

    Institute of Scientific and Technical Information of China (English)

    罗松明; 周展明

    2012-01-01

    小麦的贮藏品质关系到粮食的数量安全和质量安全,对小麦品质的声学检测技术的应用研究进行了综述,首先对农产品的声学特性的概念进行了简述,然后从以下几个方面综述了声学检测技术的研究进展:通过采集并分析小麦粉调制面团过程中的声学特性测定不同小麦粉的品质;或采集并分析小麦籽粒在特定装置中的声音信号来达到测定小麦品质的目的;或通过声学方法测定粮食的密度或采集分析粮仓中害虫的声信号来监测粮仓中小麦的贮藏状态.%Quality properties during wheat storage period is vital to food security and safety. In this paper a review of acoustic detection technology for the stored wheat is presented. The definition of acoustic characteristic of agricultural products is reviewed, and then the researches on the acoustic detection technology from several subsequent aspects are summarized: the quality of wheat flour was determined by acquiring and analysising the acoustic signal during dough processing; the quality of wheat was measured by acquiring and analysising the acoustic signal of kernels in a special device; the storage properties of wheat in the granary was predicted by analysising the grain density, or by acquiring and analysising the acoustic signal of pests.

  12. Identification of acoustic wave propagation in a duct line and its application to detection of impact source location based on signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong Woo; Kim, Min Soo; Lee, Sang Kwon [Inha University, Seoul (Korea, Republic of)

    2010-12-15

    For the detection of the impact location in a pipeline system, the correlation method has been the conventional method. For the application of the correlation method, the diameter of a duct should be small so that the acoustic wave inside the duct can propagate with nondispersive characteristics, in the form of, for example, a plane wave. This correlation method calculates the cross-correlation between acoustic waves measured at two acceleration sensors attached to a buried duct. It also gives information about the arrival time delay of an acoustic wave between two sensors. These arrival time delays are used for the estimation of the impact location. However, when the diameter of the duct is large, the acoustic waves inside the duct propagate with dispersive characteristics owing to the reflection of the acoustic wave off of the wall of the duct. This dispersive characteristic is related to the acoustic modes inside a duct. Therefore, the correlation method does not work correctly for the detection of the impact location. This paper proposes new methods of accurately measuring the arrival time delay between two sensors attached to duct line system. This method is based on the time-frequency analyses of the short time Fourier transform (STFT) and continuous wavelet transform (CWT). These methods can discriminate direct waves (non-dispersive waves) and reflective waves (dispersive waves) from the measured wave signals through the time-frequency analysis. The direct wave or the reflective wave is used to estimate the arrival time delay. This delay is used for the identification of the impact location. This systematic method can predict the impact location due to the impact forces of construction equipment with more accuracy than the correlation method

  13. Active acoustic leak detection for LMFBR steam generator. Pt. 5. Experiment for detection of bubbles using the SG full sector model

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1997-05-01

    In order to prevent the expansion of tube damages and to maintain structural safety in steam generators (SG) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, it being developed. In this paper, the attenuation characteristics of sound attenuated by bubbles and influence of background noise are investigated experimentally by using an SG full sector model (diameter ratio about 1/1, height ratio about 1/7) simulating the actual SG. As an experimental result, the received sound attenuation for ten seconds was more than 10 dB from air bubble injection when injected bubble of 10 l/s (equivalence water leak rate about 10 g/s). The attenuation of sound are least affected by bubble injection position of heat exchanger tube bunch department. And the time was about 25 seconds till the sound attenuation became 10 dB in case of quantity of air bubble 1 l/s (equivalent water leak rate about 1 g/s). It is clarified that the background noise hardly influenced water leak detection performance as a result of having examined influence of background noise. (author)

  14. Active acoustic leak detection for LMFBR steam generators. Pt. 4. Experimental results for detection of bubble using the SG full sector model

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1996-06-01

    In order to prevent the expansion of tube damages and to maintain structural safety in steam generators (SG) of fast breeder reactor (FBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. The active acoustic method, which detects the sound attenuation due to bubbles generated at the sodium-water reactions, is being developed. In this paper, the attenuation characteristics of sound attenuated by bubbles are investigated experimentally by using the SG full sector model simulating the actual SG. An emitter and a receiver sensor are attached to the SG shell, and the attenuation of sounds due to passing of bubbles through the sound field is detected and measured. As a experimental result, it is clarified that the received sound attenuates immediately upon injection of bubbles, and the attenuation of sound are 2-5 dB at after 10 seconds from bubble injection of 10 l/s. The attenuation of sound are least affected by bubble injection location. (author)

  15. A novel data adaptive detection scheme for distributed fiber optic acoustic sensing

    Science.gov (United States)

    Ölçer, Íbrahim; Öncü, Ahmet

    2016-05-01

    We introduce a new approach for distributed fiber optic sensing based on adaptive processing of phase sensitive optical time domain reflectometry (Φ-OTDR) signals. Instead of conventional methods which utilizes frame averaging of detected signal traces, our adaptive algorithm senses a set of noise parameters to enhance the signal-to-noise ratio (SNR) for improved detection performance. This data set is called the secondary data set from which a weight vector for the detection of a signal is computed. The signal presence is sought in the primary data set. This adaptive technique can be used for vibration detection of health monitoring of various civil structures as well as any other dynamic monitoring requirements such as pipeline and perimeter security applications.

  16. Design of an Acoustic Target Intrusion Detection System Based on Small-Aperture Microphone Array

    Science.gov (United States)

    Zu, Xingshui; Guo, Feng; Huang, Jingchang; Zhao, Qin; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2017-01-01

    Automated surveillance of remote locations in a wireless sensor network is dominated by the detection algorithm because actual intrusions in such locations are a rare event. Therefore, a detection method with low power consumption is crucial for persistent surveillance to ensure longevity of the sensor networks. A simple and effective two-stage algorithm composed of energy detector (ED) and delay detector (DD) with all its operations in time-domain using small-aperture microphone array (SAMA) is proposed. The algorithm analyzes the quite different velocities between wind noise and sound waves to improve the detection capability of ED in the surveillance area. Experiments in four different fields with three types of vehicles show that the algorithm is robust to wind noise and the probability of detection and false alarm are 96.67% and 2.857%, respectively. PMID:28273838

  17. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    Science.gov (United States)

    2015-09-30

    Signal Process. IEEE , Albuquerque, NM: 381-384. Kandia, V., Y. Stylianou. 2006. Detection of sperm whale clicks based on the Teager-Kaiser energy ...introduction to hidden Markov models. IEEE ASSP Magazine : 4-16. Rankin, S. and Barlow, J. 2005. Source of the North Pacific ‘boing’ sound attributed to...humpback song units detected via Generalized Power Law processing cross-correlated between hydrophone pairs. Both model-based baleen whale localization

  18. Acoustic analysis of the unvoiced stop consonants for detecting hypernasal speech

    OpenAIRE

    Castellanos Domínguez, César Germán; Sepúlveda Sepúlveda, Franklin Alexander; Godino Llorente, Juan Ignacio

    2008-01-01

    Speakers having evidence of a defective velopharyngeal mechanism produce speech with inappropriate nasal resonance (hypernasal speech). Voice analysis methods for the detection of hypernasality commonly use vowels and nasalized vowels. However, to obtain a more general assessment of this abnormality it is necessary to analyze stops and fricatives. This study describes a method for hipernasality detection analyzing the unvoiced Spanish stop consonants /k/ and /p/, as well. The importance of ph...

  19. Detection of acoustic cavitation in the heart with microbubble contrast agents in vivo: a mechanism for ultrasound-induced arrhythmias.

    Science.gov (United States)

    Rota, Claudio; Raeman, Carol H; Child, Sally Z; Dalecki, Diane

    2006-11-01

    Ultrasound fields can produce premature cardiac contractions under appropriate exposure conditions. The pressure threshold for ultrasound-induced premature contractions is significantly lowered when microbubble contrast agents are present in the vasculature. The objective of this study was to measure directly ultrasound-induced cavitation in the murine heart in vivo and correlate the occurrence of cavitation with the production of premature cardiac contractions. A passive cavitation detection technique was used to quantify cavitation activity in the heart. Experiments were performed with anesthetized, adult mice given intravenous injections of either a contrast agent (Optison) or saline. Murine hearts were exposed to ultrasound pulses (200 kHz, 1 ms, 0.1-0.25 MPa). Premature beats were produced in mice injected with Optison and the likelihood of producing a premature beat increased with increasing pressure amplitude. Similarly, cavitation was detected in mice injected with Optison and the amplitude of the passive cavitation detector signal increased with increasing exposure amplitude. Furthermore, there was a direct correlation between the extent of cavitation and the likelihood of ultrasound producing a premature beat. Neither premature beats nor cavitation activity were observed in animals injected with saline and exposed to ultrasound. These results are consistent with acoustic cavitation as a mechanism for this bioeffect.

  20. Clustering of Luminous Red Galaxies III: Detection of the Baryon Acoustic Peak in the 3-point Correlation Function

    CERN Document Server

    Gaztañaga, E; Castander, F; Crocce, M; Fosalba, P

    2008-01-01

    We present the 3-point function $\\xi_3$ and $Q_3=\\xi_3/\\xi_2^2$ for a spectroscopic volume limited sample of 40,000 luminous red galaxies (LRG) from the Sloan Digital Sky Survey DR6. We find a strong (S/N>6) detection of Q_3 on scales of 55-125 Mpc/h, with a well defined peak around 105 Mpc/h in all $\\xi_2$, $\\xi_3$ and Q_3, in excellent agreement with the predicted shape and location of the imprint of the baryon acoustic oscillations (BAO). We use very large simulations (from a cubic box of L=7680 Mpc/h) to asses and test the significance of our measurement. This detection demonstrates the non-linear growth of structure by gravitational instability between z=1000 and the present. Our measurements show the expected shape for Q_3 as a function of the triangular configuration. This provides a first direct measurement of the non-linear mode coupling coefficients of density and velocity fluctuations which, on these large scales, are independent of cosmic time, the amplitude of fluctuations or cosmological paramet...

  1. A Sensitivity-Enhanced Film Bulk Acoustic Resonator Gas Sensor with an Oscillator Circuit and Its Detection Application

    Directory of Open Access Journals (Sweden)

    Mengying Zhang

    2017-01-01

    Full Text Available This paper presents a sensitivity-enhanced gas sensor based on a film bulk acoustic resonator (FBAR. It was designed and fabricated with micro through-holes in its top electrode for sensitivity enhancement. The sensor was driven by a Colpitts oscillator circuit, and the output signal had characteristics of a power of −2.6 dBm@3 V and a phase noise of −90 dBc/Hz@100 kHz. In order to test the performance of the sensor, it was used for the detection of relative humidity (RH and ethanol. When the relative humidity ranged from 25% to 88%, the frequency shift of the sensor was 733 kHz, which was 3.2 times higher than that of the existing FBAR sensor with a complete top electrode. Fitting results of the frequency shift and the relative humidity indicated that the measurement error was within ±0.8% RH. When the ethanol concentration ranged from 0 to 0.2355 g/L, the frequency shift of the sensor was 365 kHz. The effect of the oscillator circuit on the adsorption reaction and temperature response of the FBAR sensor device was analyzed to optimize its detection application.

  2. Detection and modeling of the acoustic perturbation produced by the launch of the Space Shuttle using the Global Positioning System

    Science.gov (United States)

    Bowling, T. J.; Calais, E.; Dautermann, T.

    2010-12-01

    Rocket launches are known to produce infrasonic pressure waves that propagate into the ionosphere where coupling between electrons and neutral particles induces fluctuations in ionospheric electron density observable in GPS measurements. We have detected ionospheric perturbations following the launch of space shuttle Atlantis on 11 May 2009 using an array of continually operating GPS stations across the Southeastern coast of the United States and in the Caribbean. Detections are prominent to the south of the westward shuttle trajectory in the area of maximum coupling between the acoustic wave and Earth’s magnetic field, move at speeds consistent with the speed of sound, and show coherency between stations covering a large geographic range. We model the perturbation as an explosive source located at the point of closest approach between the shuttle path and each sub-ionospheric point. The neutral pressure wave is propagated using ray tracing, resultant changes in electron density are calculated at points of intersection between rays and satellite-to-reciever line-of-sight, and synthetic integrated electron content values are derived. Arrival times of the observed and synthesized waveforms match closely, with discrepancies related to errors in the apriori sound speed model used for ray tracing. Current work includes the estimation of source location and energy.

  3. Detection of dead regions in the cochlea: relevance for combined electric and acoustic stimulation.

    Science.gov (United States)

    Moore, Brian C J; Glasberg, Brian; Schlueter, Anne

    2010-01-01

    A dead region is a region in the cochlea where the inner hair cells and/or the auditory neurones are functioning very poorly, if at all. People who are being considered for a combination of a cochlear implant and a hearing aid typically have a dead region in the parts of the cochlea that normally respond to medium and high frequencies, but have some functional hearing at lower frequencies. For such people, it may be useful to determine the edge frequency, f(e), of any dead region. This may be relevant to choosing the most appropriate insertion depth of the electrode array, and to the way that frequencies in the input signal are mapped to acoustic and electric stimulation. It may also be helpful in interpreting the results of research studies. This paper reviews methods for diagnosing dead regions and defining the value of f(e). It is argued that the value of f(e) cannot be determined reliably from the audiogram, although a dead region is likely to be present at a given frequency when the hearing loss at that frequency is 70 dB or more. When a sinusoidal signal is reported as sounding highly distorted or noise-like, a dead region may be present at the signal frequency, but again this is not a reliable indicator. The TEN test is a simple clinical method for diagnosis of dead regions. Where this test gives a positive diagnosis, it is recommended that psychophysical tuning curves be measured to define the value of f(e) more precisely.

  4. Heterogeneous interplate coupling along the Nankai Trough, Japan, detected by GPS-acoustic seafloor geodetic observation

    Science.gov (United States)

    Yokota, Yusuke; Ishikawa, Tadashi; Sato, Mariko; Watanabe, Shun-ichi; Saito, Hiroaki; Ujihara, Naoto; Matsumoto, Yoshihiro; Toyama, Shin-ichi; Fujita, Masayuki; Yabuki, Tetsuichiro; Mochizuki, Masashi; Asada, Akira

    2015-12-01

    The recurring devastating earthquake that occurs in the Nankai Trough subduction zone between the Philippine Sea plate and the Eurasian plate has the potential to cause an extremely dangerous natural disaster in the foreseeable future. Many previous studies have assumed interplate-coupling ratios for this region along the trench axis using onshore geodetic data in order to understand this recursive event. However, the offshore region that has the potential to drive a devastating tsunami cannot be resolved sufficiently because the observation network is biased to the land area. Therefore, the Hydrographic and Oceanographic Department of Japan constructed a geodetic observation network on the seafloor along the Nankai Trough using a GPS-acoustic combination technique and has used it to observe seafloor crustal movements directly above the Nankai Trough subduction zone. We have set six seafloor sites and cumulated enough data to determine the displacement rate from 2006 to January 2011. Our seafloor geodetic observations at these sites revealed a heterogeneous interplate coupling that has three particular features. The fast displacement rates observed in the easternmost area indicate strong interplate coupling (>75%) around not only the future Tokai earthquake source region but also the Paleo-Zenisu ridge. The slow displacement rates near the trench axis in the Kumano-nada Sea, a shallow part of the 1944 Tonankai earthquake source region, show a lower coupling ratio (50% to 75%). The slow displacement rate observed in the area shallower than the 1946 Nankaido earthquake source region off Cape Muroto-zaki reflects weakening interplate coupling (about 50%) probably due to a subducting seamount. Our observations above the subducting ridge and seamount indicate that the effect of a subducting seamount on an interplate-coupling region depends on various conditions such as the geometry of the seamount and the friction parameters on the plate boundary.

  5. Detection of Acoustic Change-Points in Audio Streams and Signal Segmentation

    Directory of Open Access Journals (Sweden)

    J. Zdansky

    2005-04-01

    Full Text Available This contribution proposes an efficient method for the detection ofrelevant changes in continuous stream of sound. The detectedchange-points can then serve for the segmentation of long audiorecordings into shorter and more or less homogenous sections. First, wediscuss the task of a single change-point detection using the Bayesdecision theory. We show that it leads to a quite simple andcomputationally efficient solution based on the Bayesian InformationCriterion. Next, we extend this approach to formulate the algorithm forthe detection of multiple change-points. Finally, the proposedalgorithm is applied for the segmentation of broadcast newsaudio-streams into parts belonging to different speakers or differentacoustic conditions. Such segmentation is necessary as the first stepin the automatic speech-to-text transcription of TV or radio news.

  6. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

  7. Acoustic-wave detection via a piezoelectric field-effect transducer.

    Science.gov (United States)

    Greeneich, E. W.; Miller, R. S.

    1972-01-01

    An oriented piezoelectric film has been incorporated in the insulator region of a silicon insulated-gate field-effect transistor to provide a sensitive high-frequency strain transducer. With this device, strains as low as 10 to the -8th power have been detected, and gauge factors of roughly 7000 have been attained for applied ac strains at 5.6 MHz.

  8. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus

    Science.gov (United States)

    Yan, Zhaoli; Chen, Bin; Tian, Hao; Cheng, Xiaobin; Yang, Jun

    2015-12-01

    A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10-4 during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.

  9. Acoustic detection of cracks in the anvil of a large-volume cubic high-pressure apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhaoli, E-mail: zl-yan@mail.ioa.ac.cn; Tian, Hao; Cheng, Xiaobin; Yang, Jun [Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Bin [School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2015-12-15

    A large-volume cubic high-pressure apparatus with three pairs of tungsten carbide anvils is the most popular device for synthetic diamond production. Currently, the consumption of anvils is one of the important costs for the diamond production industry. If one of the anvils is fractured during the production process, the other five anvils in the apparatus may be endangered as a result of a sudden loss of pressure. It is of critical importance to detect and replace cracked anvils before they fracture for reduction of the cost of diamond production and safety. An acoustic detection method is studied in this paper. Two new features, nested power spectrum centroid and modified power spectrum variance, are proposed and combined with linear prediction coefficients to construct a feature vector. A support vector machine model is trained for classification. A sliding time window is proposed for decision-level information fusion. The experiments and analysis show that the recognition rate of anvil cracks is 95%, while the false-alarm rate is as low as 5.8 × 10{sup −4} during a time window; this false-alarm rate indicates that at most one false alarm occurs every 2 months at a confidence level of 90%. An instrument to monitor anvil cracking was designed based on a digital signal processor and has been running for more than eight months in a diamond production field. In this time, two anvil-crack incidents occurred and were detected by the instrument correctly. In addition, no false alarms occurred.

  10. New methods for leaks detection and localisation using acoustic emission; Nouvelles methodes de detection et de localisation de fuites par emission acoustique

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, P.

    1993-12-08

    Real time monitoring of Pressurized Water nuclear Reactor secondary coolant system tends to integrate digital processing machines. In this context, the method of acoustic emission seems to exhibit good performances. Its principle is based on passive listening of noises emitted by local micro-displacements inside a material under stress which propagate as elastic waves. The lack of a priori knowledge on leak signals leads us to go deeper into understanding flow induced noise generation. Our studies are conducted using a simple leak model depending on the geometry and the king of flow inside the slit. Detection and localization problems are formulated according to the maximum likelihood principle. For detection, the methods using a indicator of similarity (correlation, higher order correlation) seems to give better results than classical ones (rms value, envelope, filter banks). For leaks location, a large panel of classical (generalized inter-correlation) and innovative (convolution, adaptative, higher order statistics) methods of time delay estimation are presented. The last part deals with the applications of higher order statistics. The analysis of higher order estimators of a non linear non Gaussian stochastic process family, the improvement of non linear prediction performances and the optimal-order choice problem are addressed in simple analytic cases. At last, possible applications to leak signals analysis are pointed out. (authors).264 refs., 7 annexes.

  11. Frequency-Modulated Magneto-Acoustic Detection and Imaging: Challenges, Experimental Procedures, and B-Scan Images

    CERN Document Server

    Aliroteh, Miaad S; Arbabian, Amin

    2016-01-01

    Magneto-acoustic tomography combines near-field radio-frequency (RF) and ultrasound with the aim of creating a safe, high resolution, high contrast hybrid imaging technique. We present continuous-wave magneto-acoustic imaging techniques, which improve SNR and/or reduce the required peak-to-average excitation power ratio, to make further integration and larger fields of view feasible. This method relies on the coherency between RF excitation and the resulting ultrasound generated through Lorentz force interactions, which was confirmed by our previous work. We provide detailed methodology, clarify the details of experiments, and explain how the presence of magneto-acoustic phenomenon was verified. An example magneto-acoustic B-scan image is acquired in order to illustrate the capability of magneto-acoustic tomography in highlighting boundaries where electrical conductivity alters, such as between different tissues.

  12. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    Science.gov (United States)

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  13. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom

    Directory of Open Access Journals (Sweden)

    Katsunori Mizuno

    2016-05-01

    Full Text Available Digging is necessary to detect plant roots under the water bottom. However, such detection is affected by the transparency of water and the working skills of divers, usually requires considerable time for high-resolution sampling, and always damages the survey site. We developed a new automatic non-destructive acoustic measurement system that visualizes the space under the water bottom, and tested the system in the in situ detection of natural plant roots. The system mainly comprises a two-dimensional waterproof stage controlling unit and acoustic measurement unit. The stage unit was electrically controlled through a notebook personal computer, and the space under the water bottom was scanned in a two-dimensional plane with the stage unit moving in steps of 0.01 m (±0.0001 m. We confirmed a natural plant root with diameter of 0.025–0.030 m in the reconstructed three-dimensional acoustic image. The plant root was at a depth of about 0.54 m and the propagation speed of the wave between the bottom surface and plant root was estimated to be 1574 m/s. This measurement system for plant root detection will be useful for the non-destructive assessment of the status of the space under the water bottom.

  14. Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S K

    2006-02-09

    We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated data with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.

  15. Far-Field Voice Activity Detection and Its Applications in Adverse Acoustic Environments

    DEFF Research Database (Denmark)

    Petsatodis, Theodoros

    2012-01-01

    Voice Activity Detection (VAD), being in the focus of speech processing research for many years, is nowadays a mature technology with application in several sectors. Embedded VAD components in telecommunications systems (like in cellular telephony) attempt to reduce power consumption of transmitt......Voice Activity Detection (VAD), being in the focus of speech processing research for many years, is nowadays a mature technology with application in several sectors. Embedded VAD components in telecommunications systems (like in cellular telephony) attempt to reduce power consumption...... of transmitters and bandwidth utilization. VAD technology is also integrated in speech-processing systems, such as Speaker Identification, Automatic Event Detection, and Automatic Speech Recognition, to prevent their operation in the absence of speech, and thus reduce the error rates of each of these systems....... The performance of VAD systems depends strongly on various factors, including the discriminative ability of the classification criterion employed, the dynamics of the additive noise and the signal to noise ratio. Speech signals transmitted within reverberant enclosures and captured using far-field microphones...

  16. Real-Time Characterization of Electrospun PVP Nanofibers as Sensitive Layer of a Surface Acoustic Wave Device for Gas Detection

    Directory of Open Access Journals (Sweden)

    D. Matatagui

    2014-01-01

    Full Text Available The goal of this work has been to study the polyvinylpyrrolidone (PVP fibers deposited by means of the electrospinning technique for using as sensitive layer in surface acoustic wave (SAW sensors to detect volatile organic compounds (VOCs. The electrospinning process of the fibers has been monitored and RF characterized in real time, and it has been shown that the diameters of the fibers depend mainly on two variables: the applied voltage and the distance between the needle and the collector, since all the electrospun fibers have been characterized by a scanning electron microscopy (SEM. Real-time measurement during the fiber coating process has shown that the depth of penetration of mechanical perturbation in the fiber layer has a limit. It has been demonstrated that once this saturation has been reached, the increase of the thickness of the fibers coating does not improve the sensitivity of the sensor. Finally, the parameters used to deposit the electrospun fibers of smaller diameters have been used to deposit fibers on a SAW device to obtain a sensor to measure different concentrations of toluene at room temperature. The present sensor exhibited excellent sensitivity, good linearity and repeatability, and high and fast response to toluene at room temperature.

  17. Acoustic imaging system

    Science.gov (United States)

    Kendall, J. M., Jr.

    1977-01-01

    Tool detects noise sources by scanning sound "scene" and displaying relative location of noise-producing elements in area. System consists of ellipsoidal acoustic mirror and microphone and a display device.

  18. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    ReVelle, D.O.

    1995-05-01

    During the period from about 1960 to the early 1980`s a number of large bolides (meteor-fireballs) entered the atmosphere which were sufficiently large to generate blast waves during their drag interaction with the air. For example, the remnant of the blast wave from a single kiloton class event was subsequently detected by up to six ground arrays of microbarographs which were operated by the U.S. Air Force during this pre-satellite period. Data have also been obtained from other sources during this period as well and are also discussed in this summary of the historical data. The Air Force data have been analyzed in terms of their observable properties in order to infer the influx rate of NEO`s (near-Earth objects) in the energy range from 0.2 to 1100 kt. The determined influx is in reasonable agreement with that determined by other methods currently available such as Rabinowitz (1992), Ceplecha, (1992; 1994b) and by Chapman and Morrison (1994) despite the fact that due to sampling deficiencies only a portion of the {open_quotes}true{close_quotes} flux of large bodies has been obtained by this method, i.e., only sources at relatively low elevations have been detected. Thus the weak, fragile cometary bodies which do not penetrate the atmosphere as deeply are less likely to have been sampled by this type of detection system. Future work using the proposed C.T.B.T. (Comprehensive Test Ban Treaty) global scale infrasonic network will be likely to improve upon this early estimate of the global influx of NEO`s considerably.

  19. Development of a water leak detection system for LMFBR steam generators. Pt. 2; General planning of sensor arrangement for active acoustic method

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Kumagai, Hiromichi (Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.)

    1994-04-01

    Development of a water leak detection system with short response time and high sensitivity for LMFBR steam generators is required to prevent failure propagation and to maintain structural integrity of steam generators. A new type of leak detection method, active acoustic method, which observes gas bubbles accompanying the leak using sonic waves is being developed. In this study, some series of experiments are carried out to investigate; (1) attenuation of sonic wave in a typical SG structure, (2) suitable method to attach waveguides to the SG shell, and (3) possibility of reflex method. Furthermore, a reference sensor arrangement for active acoustic method is selected based on the experimental results as the basis of future studies. (author).

  20. Cavitation in Ricinus by acoustic detection: Induction in excised leaves by various factors.

    Science.gov (United States)

    Milburn, J A

    1973-09-01

    Xylem cavitation has been studied in Ricinus plants using vibration detection to examine its induction by different factors. These observations provide considerable circumstantial evidence in justification of the new technique as already described and further developed. In general cavitation is induced only when the tissue water balance is reduced hydrostatically. Thus cavitation is promoted by intense radiation which enhances transpiration, or alternatively by the blockage of xylem conduits by suspended particles carried in the transpiration stream. In contrast a reduction in radiation, or prevention of transpiration tends to restrict cavitation. Thus cavitation can be prevented by immersing a leaf in liquid paraffin. This technique has been used to see if radioactive bombardment would trigger its induction but no detectable effect has been observed even when exposed to intense radiation.An excised leaf, losing water in air, produces a "click total". On restoration to full turgor by standing the petiole in water it recovers very slowly and subsequently its "click total" is much reduced. If however the newly wilted leaf is allowed to recover in water following gas evacuation treatment the "cavitation total" often approaches the original and the rate of recovery is extremely rapid. Apparently gas emboli develop rapidly in conduits which have cavitated, but they can be removed by vacuum injection: the conduits refill and conduction is restored.

  1. Detection and Analysis of Electro-acoustic Performance of Hearing Aids%助听器电声性能的检测分析

    Institute of Scientific and Technical Information of China (English)

    张志清

    2014-01-01

    对助听器检测通常采用的国家标准为GB/T 14199-2010电声学助听器通用规范和GB/T 25102.100-2010电声学助听器第0部分:电声特性的测量,检测中需要关注的量值有频率范围、频率点、声压级、最大声压级、声压级均值、声压增益均值、谐波失真值、电流值,本文对此进行了分析总结,理顺了检测中相关量值的关系。%National standards for the detection of hearing aids commonly used to GB / T 14199-2010 General speciifcation electric acoustic hearing aids and GB / T 25102.100-2010 electric acoustic hearing aids - Part 0: Measurement, Detection need to focus on the magnitude of the electro-acoustic characteristics have frequency range, frequency, SPL, maximum SPL, SPL mean, mean sound pressure gain, harmonic distortion value, the current value of this were analyzed and summarized in this article, to rationalize the magnitude of the correlation detection relationships.

  2. Evaluation of annealing and double ion beam irradiation by a laser-induced and laser-detected surface acoustic wave diagnostic system

    Science.gov (United States)

    Kitazawa, Sin-iti; Wakai, Eiichi; Aoto, Kazumi

    2016-10-01

    The effects of annealing and double ion irradiation on nuclear structural materials were investigated using a novel, non-destructive, non-contact diagnostic method. A laser-induced and laser-detected surface acoustic wave (SAW) was adopted as a diagnostic system. The SAWs propagation velocity and the SAWs vibration velocity along the normal direction of the surface were measured to investigate mechanical properties of the substrates. Change of the shear modulus was detected in the annealed substrates. Non-linear effect on amplitude of the excited SAW was observed on the double ion irradiated materials. The potential of the SAW diagnostic system for assessing nuclear structural materials was demonstrated.

  3. 髓鞘结构在听神经瘤组织中的检测%Detect myelin structure in acoustic tumor

    Institute of Scientific and Technical Information of China (English)

    王琰; 姜海洋; 于何; 关超; 姜学钧

    2011-01-01

    目的:探讨来源于施万细胞的人类听神经细胞瘤组织中是否存在髓鞘结构及其细胞学特点.方法:应用免疫荧光标记、Western blotting及电镜等方法检测听神经瘤组织中的髓鞘结构及重要髓鞘蛋白.结果:电镜结果发现:听神经瘤组织中虽然缺失成熟的轴索结构但可以检测到早期的髓鞘样结构.免疫荧光研究和Western blotting研究结果显示:听神经瘤组织中检测不到轴索的标志性抗体--神经丝200的表达.并且启动髓鞘化的前哨信号及髓鞘致密化的重要组成蛋白--髓鞘碱性蛋白在听神经瘤组织中也无法检测到.而一种非成熟施万细胞的标志抗体--神经生长因子受体p75,在听神经瘤组织中可以检测到其表达.结论:在听神经瘤组织中的施万细胞失去了完成髓鞘化进程和重新形成致密的髓鞘并包绕轴索的能力,处于前髓鞘化施万细胞阶段.%Objective:By detecting the myelin structure in acoustic tumor tissues, the cell origin and state of acoustic tumor tissues were investigated. Method: Immunofluorescence labeling, immunoblot analysis and electron microscopic study were performed to identify myelin structure and myelin protein in acoustic tumor tissues. Result:In this work, we found some early stage of myelin forming in acoustic tumor tissues, but there were no axon nor compact myelin formed and the myelin basic protein whose expression indicates the beginning of myelination was negative detected. We also found that the cell of acoustic tumor express p75,a marker for immature Schwann cells and mature non-myelin-forming Schwann cells. Conclusion:The date shown in this experiment indicates that the cell of acoustic tumor is in a premyelinating state.

  4. Binding affinity and inhibitory potency of neomycin and streptomycin on the Tat peptide interaction with HIV-1 TAR RNA detected by on-line acoustic wave sensor.

    Science.gov (United States)

    Tassew, Nardos; Thompson, Michael

    2003-10-07

    The binding of two aminoglycoside antibiotics, neomycin and streptomycin, to a segment of the transactivation responsive region (TAR) RNA of the human immunodeficiency virus, and their inhibitory potency to disrupt the interaction of the RNA with a regulatory Tat protein-derived peptide, have been studied using a flow-through acoustic wave detector system. Binding affinity is directly correlated with the inhibitory potency of these molecules and the acoustic wave detection system shows that neomycin exhibits at least a ten-fold greater affinity for TAR RNA and that it is also a more potent inhibitor than streptomycin. These results are in agreement with previous studies. However, unlike the time-consuming batch-based assays, use of the flow-through format offers considerable potential for the rapid screening of the chemistry of relatively small-molecule-nucleic acid binding events.

  5. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  6. Acoustic telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  7. Acoustic Detection of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) and Oryctes elegans (Coleoptera: Scarabaeidae) in Phoenix dactylifera (Arecales: Arecacae) Trees and Offshoots in Saudi Arabian Orchards.

    Science.gov (United States)

    Mankin, R W; Al-Ayedh, H Y; Aldryhim, Y; Rohde, B

    2016-04-01

    Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) larvae are cryptic, internal tissue-feeding pests of palm trees that are difficult to detect; consequently, infestations may remain hidden until they are widespread in an orchard. Infested trees and propagable offshoots that develop from axillary buds on the trunk frequently are transported inadvertently to previously uninfested areas. Acoustic methods can be used for scouting and early detection of R. ferrugineus, but until now have not been tested on multiple trees and offshoots in commercial date palm orchard environments. For this report, the acoustic detectability of R. ferrugineus was assessed in Saudi Arabian date palm orchards in the presence of commonly occurring wind, bird noise, machinery noise, and nontarget insects. Signal analyses were developed to detect R. ferrugineus and another insect pest, Oryctes elegans Prell (Coleoptera: Scarabaeidae), frequently co-occurring in the orchards, and discriminate both from background noise. In addition, it was possible to distinguish R. ferrugineus from O. elegans in offshoots by differences in the temporal patterns of their sound impulses. As has been observed often with other insect pests, populations of the two species appeared clumped rather than uniform or random. The results are discussed in relation to development of automated methods that could assist orchard managers in quickly identifying infested trees and offshoots so that R. ferrugineus infestations can be targeted and the likelihood of transferring infested offshoots to uninfested areas can be reduced.

  8. 声学事件检测技术的发展历程与研究进展%History and State of Art of Acoustic Event Detection

    Institute of Scientific and Technical Information of China (English)

    韩纪庆

    2016-01-01

    Acoustic event detection refers to the task of detecting each semantic segment in an audio stream and associating it with a classification label .Acoustic event detection is a fundamental technique for sound scene recognition and semantic understanding ,and it is very promising in many application fields ,such as the semantic understanding of the environmental sounds for a human‐like robot ,the con‐text aware of sounds in the travelling environment for an unmanned vehicle .In this paper ,the history of acoustic event detection is reviewed from the point of view of related fields and application requirements , meanwhile ,the typical works of acoustic event detection is introduced ,and the future research of acoustic event detection is analyzed .In the analysis of related fields ,we focus on the researches of speech recogni‐tion ,music processing based on computation ,and sound processing based on auditory .In the application requirements ,we introduce the works of context aware of sounds and multimedia information retrieval . Finally ,the state of the art in acoustic event detection is analyzed ,and its future research fields is predic‐ted .%声学事件检测是指对连续音频信号流中具有明确语义的片段进行检测与标定的过程。它是机器对环境声音场景进行识别和语义理解的重要基础,并将在未来类人机器人声音环境的语义理解、无人车行车周边环境的声音感知等方面发挥重要的作用。本文分别从与声学事件检测相关领域的发展历程以及应用需求出发,对声学事件检测的历史进行了回顾,介绍了典型的研究工作,并分析了未来的发展方向。在相关领域的分析中,重点介绍语音识别、基于计算的音乐处理及基于听觉特性的声音处理等方面的工作;在应用需求方面,介绍机器的环境声音感知与多媒体信息检索方面的工作;最后分析本领域的研究现状,并展望其未来的发展趋势。

  9. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  10. Underwater acoustic detection of ultra high energy neutrinos in Antares; Detection acoustique sous-marine de neutrinos de ultra haute energie dans le cadre de l'experience ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Niess, V

    2005-09-15

    We investigate the possibility to detect ultra high energy neutrinos (UHE, 1018+ eV) by the mean of underwater acoustic methods. This study is based on experimental measurements and, when none of those are available, on numerical simulations. The sea water acts as a target for neutrinos of cosmic origin. The electroweak interaction of high energy neutrinos with water molecules leads to a cascade of secondary particles resulting in the emission of an ultra-sonic impulse by a thermo-acoustic coupling mechanism. This mechanism is little efficient, however the generated signal has good propagation properties. Ambient sea noise, as well as the self noise of the ceramic transducers used for the detection, restrict the method to UHE. In addition, the strong directivity of the signal implies that location methods, by the detection in coincidence on multiple detectors, are little efficient. At extremely high energies (10{sup 20}+ eV) and for a single detector we estimate the sensitivity limit of this acoustic method to be of the order of E{sup 2}*{phi} 10{sup 6} GeV cm{sup -2} sr{sup -1}*s{sup -1}, for an astrophysical flux 0 falling as 1/E{sup 2}. (author)

  11. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-07

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  12. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  13. An acoustic invisible gateway

    CERN Document Server

    Zhu, Yi-Fan; Liang, Bin; Kan, Wei-Wei; Yang, Jun; Cheng, Jian-Chun

    2015-01-01

    The recently-emerged concept of "invisible gateway" with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of "restoring" a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the "gate" to mimic a rigid "wall" and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet ef...

  14. Spatial and Temporal Variability of Zooplankton Thin Layers: The Effects of Composition and Orientation on Acoustic Detection of Layers

    Science.gov (United States)

    2010-09-30

    influencing the frequency dependent backscatter from the organisms. In particular, the orientations of the plankton relative to the acoustic source...zooplankton. We saw many images that contained multiple copepods and delicate gelatinous taxa such as larvaceans and medusae (Figures 7 and 8). Images of...WHOI) and “Finescale planktonic vertical structure: horizontal extent and the controlling physical processes” (N00014-04-10277), awarded to Tim

  15. In-flight fiber optic acoustic emission sensor (FAESense) system for the real time detection, localization, and classification of damage in composite aircraft structures

    Science.gov (United States)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    Acoustic emission sensing is a leading structural health monitoring technique use for the early warning detection of structural damage associated with impacts, cracks, fracture, and delaminations in advanced materials. Current AE systems based on electronic PZT transducers suffer from various limitations that prevent its wide dynamic use in practical avionics and aerospace applications where weight, size and power are critical for operation. This paper describes progress towards the development of a wireless in-flight distributed fiber optic acoustic emission monitoring system (FAESense™) suitable for the onboard-unattended detection, localization, and classification of damage in avionics and aerospace structures. Fiber optic AE sensors offer significant advantages over its counterpart electronic AE sensors by using a high-density array of micron-size AE transducers distributed and multiplex over long lengths of a standard single mode optical fiber. Immediate SHM applications are found in commercial and military aircraft, helicopters, spacecraft, wind mil turbine blades, and in next generation weapon systems, as well as in the petrochemical and aerospace industries, civil structures, power utilities, and a wide spectrum of other applications.

  16. Detection of number of sources and DOA stimation based on the combined information processing of pressure and particle velocity using acoustic vector sensor array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to solve the problem of DOA (direction of arrival) estimation of underwater remote targets, a novel subspace-decomposition method based on the cross covariance matrix of the pressure and the particle velocity of acoustic vector sensor arrays (AVSA) was proposed.Whereafter, using spatio-temporal virtual tapped-delay-line, a new eigenvector-based criteria of detection of number of sources and of subspace partition is also presented. The theoretical analysis shows that the new source detection and direction finding method is different from existing AVSA based DOA estimation methods using particle velocity information of acoustic vector sensor (AVS) as an independent array element. It is entirely based on the combined information processing of pressure and particle velocity, has better estimation performance than existing methods in isotropic noise field. Computer simulations with data from lake trials demonstrate, the proposed method is effective and obviously outperforms existing methods in resolution and accuracy in the case of low signal-to-noise ratio (SNR).

  17. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  18. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  19. Acoustic biosensors

    OpenAIRE

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...

  20. Reflective echo tomographic imaging using acoustic beams

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  1. Structural Acoustic UXO Detection and Identification in Marine Environments - Interim Report for SERDP MR-2103 Follow-On

    Science.gov (United States)

    2015-07-30

    bottom bounce (and everything arriving prior to it) and the surface reflection (with everything arriving after it). Next, using the measured acoustic...view indicates a 60cm by 30cm size versus 64cm by 16cm. However, depth images indicate near vertical burial and slightly off the x and y directions. N4...60cm by 40cm; however, this is not at all clear. The z,x and z,y images indicate burial with a large vertical angle. Both of these depth images

  2. Detection of bit location by acoustic emission technique in horizontal directional drilling. Kojo sakushin koho ni okeru bit ichi no AE ho ni yoru hyotei

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M.; Niitsuma, H. (Tohoku Univ., Sendai (Japan). Faculty of Engineering); Sugimori, S. (Tohoku Univ., Sendai (Japan). Grauduate School); Nakajima, T. (NKK Corp., Tokyo (Japan))

    1991-09-20

    The accuracy of the bit location in the excavation of pilot holes with horizontal drilling technique must be kept less than several tens of centimeters. Such an accuracy is hard to be achieved by the existing controlling technology. The depth of the bit tip can be measured comparatively accurately using a clinometer and the like. The azimuth meter, gyroscope, underground radar, locator, etc. are used for the detection of azimuth of the bit, but every one of them has its own problem. Therefore, new measuring methods to be used in combination with the conventional methods are required which can cover up the shortcomings of the conventional methods. Acoustic emission (AE) technique is employed for the detection of the bit location, and the accompanying problems as well as detecting performance are investigated. It is used for the measurement in the drilling test performed at the reclaimed land on the premises of Keihin ironworks of NKK Corp. In connection with the detection of the bit location in horizontal pilot drilling, a study is made on the zone detection technique for AE signals generated by the bit when striking ground and those generated during drilling. 7 refs., 17 figs., 1 tab.

  3. Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation.

    Science.gov (United States)

    Tsangouri, E; Aggelis, D G; Van Tittelboom, K; De Belie, N; Van Hemelrijck, D

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.

  4. Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    E. Tsangouri

    2013-01-01

    Full Text Available Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.

  5. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  6. Detection of Baryon Acoustic Oscillation Features in the Large-Scale 3-Point Correlation Function of SDSS BOSS DR12 CMASS Galaxies

    CERN Document Server

    Slepian, Zachary; Brownstein, Joel R; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J; Ross, Ashley J; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana

    2016-01-01

    We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of $777,202$ Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance ($4.5\\sigma$) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to $z=0.57$ to $1.7\\%$ precision (statistical plus systematic). We find $D_{\\rm V}= 2024\\pm29\\;{\\rm Mpc\\;(stat)}\\pm20\\;{\\rm Mpc\\;(sys)}$ for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing ...

  7. Detection of segmentation cracks in top coat of thermal barrier coatings during plasma spraying by non-contact acoustic emission method.

    Science.gov (United States)

    Ito, Kaita; Kuriki, Hitoshi; Araki, Hiroshi; Kuroda, Seiji; Enoki, Manabu

    2014-06-01

    Numerous cracks can be observed in the top coat of thermal barrier coatings (TBCs) deposited by the atmospheric plasma spraying (APS) method. These cracks can be classified into vertical and horizontal ones and they have opposite impact on the properties of TBCs. Vertical cracks reduce the residual stress in the top coat and provide strain tolerance. On the contrary, horizontal cracks trigger delamination of the top coat. However, monitoring methods of cracks generation during APS are rare even though they are strongly desired. Therefore, an in situ, non-contact and non-destructive evaluation method for this objective was developed in this study with the laser acoustic emission (AE) technique by using laser interferometers as a sensor. More AE events could be detected by introducing an improved noise reduction filter and AE event detection procedures with multiple thresholds. Generation of vertical cracks was successfully separated from horizontal cracks by a newly introduced scanning pattern of a plasma torch. Thus, generation of vertical cracks was detected with certainty by this monitoring method because AE events were detected only during spraying and a positive correlation was observed between the development degree of vertical cracks and the total AE energy in one experiment.

  8. Digital image correlation, acoustic emission and ultrasonic pulse velocity for the detection of cracks in the concrete buffer of the Belgian nuclear supercontainer

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, Sokratis; Tsangouri, Eleni; Aggelis, Dimitrios G.; Pyl, Lincy [Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions; Vantomme, John [Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions; Royal Military Academy, Brussels (Belgium). Civil and Material Engineering Dept.; Marcke, Philippe van [ONDRAF/NIRAS (Belgium); Areias, Lou [EURIDICE GIE/SCK.CEN, Mol (Belgium); Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions

    2014-11-01

    The long term management of high-level and heat emitting radioactive waste is a worldwide concern, as it directly influences the environment and future generations. To address this issue, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the conceptual design of a massive concrete structure called Supercontainer. The feasibility to construct these structures is being evaluated through a number of scaled models that are tested using classical as well as state of the art measurement techniques. In the current paper, the results obtained from the simultaneous application of the Digital Image Correlation (DIC), the Acoustic Emission (AE) and the Ultrasonic Pulse Velocity (UPV) nondestructive testing techniques on the second scaled model for the detection and monitoring of cracks will be presented.

  9. Temperature-stabilized silicon-based surface-acoustic-wave gas sensors for the detection of solvent vapors

    Science.gov (United States)

    Bender, Stefan; Mokwa, W.

    1998-12-01

    In the current paper a dual-delay-line- and a resonator- device based on CMOS-silicon-technology is presented. As a piezoelectric layer ZnO is used. The layer was deposited at room temperature in a RF magnetron sputter process. Using x- ray diffraction it could be shown that the crystals are mostly oriented with the c-axis (hexagonal structure) perpendicular to the surface which is necessary to conduct surface acoustic waves. Pt electrodes were designed for frequencies between 140 and 600 MHz and were deposited on top using a lift-off-process. A poly-silicon heating resistor was integrated as a sublayer for controlling and changing of the temperature of the SAW-device for studying the influence of temperature on the mass sensitive layer. A Pt thin film resistance served for temperature measurement. The performance of the devices were compared to standard quartz based SAWs.

  10. Acoustic network event classification using swarm optimization

    Science.gov (United States)

    Burman, Jerry

    2013-05-01

    Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

  11. High-overtone Bulk-Acoustic Resonator gravimetric sensitivity: towards wideband acoustic spectroscopy

    CERN Document Server

    Rabus, D; Ballandras, S; Baron, T; Lebrasseur, E; Carry, E

    2015-01-01

    In the context of direct detection sensors with compact dimensions, we investigate the gravimetric sensitivity of High-overtone Bulk Acoustic Resonators, through modeling of their acoustic characteristics and experiment. The high frequency characterizing such devices is expected to induce a significant effect when the acoustic field boundary conditions are modified by a thin adlayer. Furthermore, the multimode spectral characteristics is considered for wideband acoustic spectroscopy of the adlayer, once the gravimetric sensitivity dependence of the various overtones is established. Finally, means of improving the gravimetric sensitivity by confining the acoustic field in a low acoustic-impedance layer is theoretically established.

  12. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  13. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  14. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  15. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  16. Fundamental study on leak detection of underground gas pipeline using passive acoustic method; Judogata onkyo keisoku ni yoru maisetsu gas dokan hason kasho no kenshutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Jinguji, M.; Imaizumi, H.; Kunimatsu, S.; Isei, T. [National Institute for Resources and Environment, Tsukuba (Japan)

    1997-05-27

    With an objective to detect gas leaking from an underground gas pipeline, discussions have been given on a method which utilizes acoustic characteristics of leakage. On leaking sound generated from damaged portions, the form of damaging was hypothesized as pinholes, and spectra of leaking sounds from holes with different diameters were measured. The dominant frequency decreases as the hole diameter increases, while it is in a region of relatively high frequency of 1 kHz or higher. However, detection from the ground surface was impossible when cover soil has thickness from 0.5 to 1.5 m. In an experiment to measure leaking sound inside the pipe, pressure in the pipe was adjusted to 0.02 atm which is a standard pressure for a low-pressure pipe, and the sound was measured when the hole diameters were varied. In any of the results obtained by varying the hole diameter, spectra having the dominant frequency in the region of 1 kHz or higher were measured. In addition, it was found that sound pressure difference of as much as 50 dB at maximum is generated as compared with a case of no sound leakage. The above results verified that monitoring the high frequency of 1 kHz or higher is effective in detecting leakage from small damages. 2 refs., 4 figs.

  17. Outdoor Synthetic Aperture Acoustic Ground Target Measurements

    Science.gov (United States)

    2010-04-19

    1341 (2003). [11] C. A. Dimarzio, T. Shi, F. J. Blonigen et al., “ Laser -Induced Acoustic Landmine Detection,” The Journal Of The Acoustical Society...High Frequency A/S Coupling For Ap Buried Landmine Detection Using Laser Doppler Vibrometers,” Proc. SPIE 5415(1), 35-41 (2004). [16] Bishop, S... Dolphin Echolocation Clicks For Target Discrimination,” The Journal Of The Acoustical Society Of America 124(1), 657-666 (2008). [20] Y. Nakamura

  18. Acoustic resonance phase locked photoacoustic spectrometer

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  19. On the Acoustic Filtering of the Pipe and Sensor in a Buried Plastic Water Pipe and its Effect on Leak Detection: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Fabrício Almeida

    2014-03-01

    Full Text Available Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors.

  20. 利用声测报技术检测农产品害虫的新方法%A new method detection pests in agricultural products by acoustical signals detection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    介绍了一种检测农产品害虫的新方法——害虫声检测法 .与传统的农产品害虫检测方法相比,此方法具有快速、准确、灵敏度高、价廉等优点.近 年来,在微电子设备及计算机技术的推动下,害虫声检测技术得到了迅速发展,进入实用阶 段,已建立了水果害虫和储粮害虫声信号微机实时监测系统.综述了声检测技术的发展历程 、最新进展及存在问题.%This paper introduces a new method to detect the pes ts in agricultural post-harvest commodities?——?acoustical signal detection method. Compared with traditional inspection method, this method has the advantage of rapid, accurate, high-sensitivity and low-price. In recent years, with microelectronics equipm ent and computer technique much progress in this field has been made. An automat ed computer-based system has been developed to provide continuous monitoring th e acoustical signal of pests in fruit and stored grain. This paper reviews the d evelopment history and unsolved problems in detection sound signal of pests in a gricultural products.

  1. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    DEFF Research Database (Denmark)

    Torres-Arredondo, M.A.; Tibaduiza, D.-A.; McGugan, Malcolm

    2013-01-01

    and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction...

  2. Validity of acoustic quantification colour kinesis for detection of left ventricular regional wall motion abnormalities: a transoesophageal echocardiographic study.

    Science.gov (United States)

    Hartmann, T; Kolev, N; Blaicher, A; Spiss, C; Zimpfer, M

    1997-10-01

    Transoesophageal echocardiography is a sensitive monitor for intraoperative myocardial ischaemia. Colour kinesis is a new technology for echocardiographic assessment of regional wall motion based on acoustic quantification. We have examined the feasibility and accuracy of quantitative segmental analysis of colour kinesis images to provide objective evaluation of systolic regional wall motion during the perioperative period using transoesophageal echocardiography (TOE). Two-dimensional echocardiograms were obtained in the transgastric short-axis and long-axis views in 60 patients with coronary artery disease undergoing noncardiac surgery. End-systolic colour overlays superimposed on the grey scale images were obtained with colour kinesis to colour encode left ventricular endocardial motion throughout systole. These colour-encoded images were divided into segments and compared with corresponding conventional two-dimensional images. Six hundred of a potential 720 left ventricular wall segments were of sufficient resolution for grading by experts; they diagnosed wall motion abnormalities in 61 of these segments by a conventional method. In comparing the conventional TOE method with colour kinesis, there were 60 true positives, 482 true negatives, 57 false positives and 1 false negative result. This yielded a sensitivity of 98%, specificity of 89%, positive predictive value of 51% and negative predictive value of 100%. Translational and rotational movement of the heart and papillary muscle interference were common problems accounting for false positive diagnoses. We conclude that colour kinesis provides a basis for objective and on-line evaluation of left ventricular regional wall motion which is a sensitive but non-specific method. It may be a useful aid for the less experienced because it can potentially direct the anaesthetist's attention towards specific segments.

  3. Nonlinear acoustic landmine detection: comparison of off-target soil background and on-target soil-mine nonlinear effects

    Science.gov (United States)

    Korman, Murray S.; Sabatier, James M.; Pauls, Kathleen E.; Genis, Sean A.

    2006-05-01

    When airborne sound at two primary tones, f I, f II (closely spaced near a resonance) excites the soil surface over a buried landmine, soil wave motion interacts with the landmine generating a scattered surface profile which can be measured over the "target." Profiles at the primaries f I, f II, and nonlinearly generated combination frequencies f I-(f II-f I) and f II+(f II-f I) , 2f I-(f II-f I), f I+f II and 2f II+(f II-f I) (among others) have been measured for a VS 2.2 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil and in a gravel road bed. [M.S. Korman and J.M. Sabatier, J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. It is observed that the "on target" to "off target" contrast ratio for the sum frequency component can be ~20 dB higher than for either primary. The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like sandstone. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Tuning curve experiments are performed both on and off the mine in an effort to understand the nonlinearities in each case.

  4. Research on cooperative detection efficiency for binary-detection acoustic sensor networks%二进制检测声音传感器网络协作检测效能研究

    Institute of Scientific and Technical Information of China (English)

    刘忠; 罗浩; 薛锋; 任雄伟

    2012-01-01

    In order to study the influence of the voting fusion regulation on detection efficiency of acoustic sensor network,sensor field is discretized into multiple grids,and two metrics are defined to evaluate the detection capability of the sensor network.Calculation methods for the metrics are given with theorem descriptions.Simulations indicate that the proposed metrics can evaluate the detection efficiency of the system in a quantitative style,and they can provide theoretic evidence for the parameter selection of the detection regulation and the optimization of the sensor deployment scheme.%为研究表决融合检测准则对声音传感器网络系统探测效能的影响,先将监测区域进行网格化,然后定义两个用于评价传感器网络检测效能的指标,并以定理的形式给出了其计算方法.仿真分析表明,所提出的效能指标可用于定量评价系统的检测效能,为检测准则中参数的选取和网络部署方案的优化提供了理论依据.

  5. Droplets Acoustics

    CERN Document Server

    Dahan, Raphael; Carmon, Tal

    2015-01-01

    Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.

  6. Pre-failure indicators detected by Acoustic Emission: Alfas stone, cement-mortar and cement-paste specimens under 3-point bending

    Directory of Open Access Journals (Sweden)

    Stavros K. Kourkoulis

    2017-04-01

    Full Text Available Acoustic Emission (AE is the technique most wide¬ly used now¬adays for Structural Health Monitor¬ing (SHM. Application of this technique for continuous SHM of restored elements of stone monuments is a challeng¬ing task. The co-existence of different materials creates interfaces rendering “identi¬fication” of the signals recorded very complicated. To overcome this difficulty one should have a clear overview of the nature of AE signals recorded when each one of the constituent materials is loaded mechanically. In this direction, an attempt is here described to enlighten the signals recorded, in case a series of structural materials (natural and artificial, ex-tensively used for restoration projects of classic monuments in Greece, are subjected to 3-point bending. It is hoped that obtaining a clear understanding of the nature of AE signals re¬corded during these element¬ary tests will provide a valuable tool permitting “identification” and “classification” of signals emitted in case of structural tests. The results appear encouraging. In addition, it is concluded that for all materials tested (in spite their differences in micro¬structure and composition clear pre-failure indicators are detected, in good accordance to similar indicators pro-vided by other techniques like the Pressure Stimulated Currents (PSC one.

  7. The Development of a Plan for the Assessment, Improvement and Deployment of a Radar Acoustic Sounding System (RASS) for Wake Vortex Detection

    Science.gov (United States)

    Morris, Philip J.; McLaughlin, Dennis K.; Gabrielson, Thomas B.; Boluriaan, Said

    2004-01-01

    This report describes the activities completed under a grant from the NASA Langley Research Center to develop a plan for the assessment, improvement, and deployment of a Radar Acoustic Sounding System (RASS) for the detection of wake vortices. A brief review is provided of existing alternative instruments for wake vortex detection. This is followed by a review of previous implementations and assessment of a RASS. As a result of this review, it is concluded that the basic features of a RASS have several advantages over other commonly used wake vortex detection and measurement systems. Most important of these features are the good fidelity of the measurements and the potential for all weather operation. To realize the full potential of this remote sensing instrument, a plan for the development of a RASS designed specifically for wake vortex detection and measurement has been prepared. To keep costs to a minimum, this program would start with the development an inexpensive laboratory-scale version of a RASS system. The new instrument would be developed in several stages, each allowing for a critical assessment of the instrument s potential and limitations. The instrument, in its initial stages of development, would be tested in a controlled laboratory environment. A jet vortex simulator, a prototype version of which has already been fabricated, would be interrogated by the RASS system. The details of the laboratory vortex would be measured using a Particle Image Velocimetry (PIV) system. In the early development stages, the scattered radar signal would be digitized and the signal post-processed to determine how extensively and accurately the RASS could measure properties of the wake vortex. If the initial tests prove to be successful, a real-time, digital signal processing system would be developed as a component of the RASS system. At each stage of the instrument development and testing, the implications of the scaling required for a full-scale instrument would be

  8. Food intake monitoring: an acoustical approach to automated food intake activity detection and classification of consumed food.

    Science.gov (United States)

    Päßler, Sebastian; Wolff, Matthias; Fischer, Wolf-Joachim

    2012-06-01

    Obesity and nutrition-related diseases are currently growing challenges for medicine. A precise and timesaving method for food intake monitoring is needed. For this purpose, an approach based on the classification of sounds produced during food intake is presented. Sounds are recorded non-invasively by miniature microphones in the outer ear canal. A database of 51 participants eating seven types of food and consuming one drink has been developed for algorithm development and model training. The database is labeled manually using a protocol with introductions for annotation. The annotation procedure is evaluated using Cohen's kappa coefficient. The food intake activity is detected by the comparison of the signal energy of in-ear sounds to environmental sounds recorded by a reference microphone. Hidden Markov models are used for the recognition of single chew or swallowing events. Intake cycles are modeled as event sequences in finite-state grammars. Classification of consumed food is realized by a finite-state grammar decoder based on the Viterbi algorithm. We achieved a detection accuracy of 83% and a food classification accuracy of 79% on a test set of 10% of all records. Our approach faces the need of monitoring the time and occurrence of eating. With differentiation of consumed food, a first step toward the goal of meal weight estimation is taken.

  9. Detection of Acoustic/Infrasonic/Seismic Waves Generated by Hypersonic Re-Entry of the HAYABUSA Capsule and Fragmented Parts of the Spacecraft

    Science.gov (United States)

    Yamamoto, Masa-Yuki; Ishihara, Yoshiaki; Hiramatsu, Yoshihiro; Kitamura, Kazuki; Ueda, Masayoshi; Shiba, Yasuo; Furumoto, Muneyoshi; Fujita, Kazuhisa

    2011-10-01

    Acoustic/infrasonic/seismic waves were observed during the re-entry of the Japanese asteroid explorer ``HAYABUSA'' at 6 ground sites in Woomera, Australia, on 2010 June 13. Overpressure values of infrasound waves were detected at 3 ground sites in a range from 1.3 Pa, 1.0 Pa, and 0.7 Pa with each distance of 36.9 km, 54.9 km, and 67.8 km, respectively, apart from the SRC trajectory. Seismic waveforms through air-to-ground coupling processes were also detected at 6 sites, showing a one-to-one correspondence to infrasound waves at all simultaneous observation sites. Audible sound up to 1 kHz was recorded at one site with a distance of 67.8 km. The mother spacecraft was fragmented from 75 km down to 38 km with a few explosive enhancements of emissions. A persistent train of HAYABUSA re-entry was confirmed at an altitude range of between 92 km down to 82 km for about 3 minutes. Light curves of 136 fragmented parts of the spacecraft were analyzed in detail based on video observations taken at multiple ground sites, being classified into three types of fragmentations, i.e., melting, explosive, and re-fragmented types. In a comparison between infrasonic waves and video-image analyses, regarding the generation of sonic-boom type shock waves by hypersonically moving artificial meteors, both the sample return capsule and fragmented parts of the mother spacecraft, at an altitude of 40 ± 1 km were confirmed with a one-to-one correspondence with each other.

  10. 一种基于声-地震耦合的室内声波探雷实验系统%An Acoustic-to-Seismic Coupling Based Landmines Detection System in Lab-Scale Experimental Environment

    Institute of Scientific and Technical Information of China (English)

    王驰; 于瀛洁; 李醒飞

    2011-01-01

    In order to investigate the mechanism of acoustic landmines detection, an acoustic-to-seismic coupling based lab-scale experimental system for mines detection was developed.Firstly, the principle of acoustic mines detection technology was reviewed.Then the equipment and experimental design of the proposed system were described in detail.Finally, experiments were conducted with an antitank plastic coach mine and the system's repeatability was especially discussed.Experimental results show that the three measured curves of surface vibration appear identical under the same experimental conditions, which proves that the system has good repeatability and meets the test requirements, and can be used to further lab-scale study of the acoustic iandmines detection mechanism.%为了研究声波探雷机理,设计了一个基于声-地震耦合原理的室内声波探雷实验系统.首先,简述声波探雷技术的基本原理;然后,详细介绍室内声波探雷实验系统的硬件组成及实验方案;最后,用一种反坦克塑料教练地雷进行实验,重点讨论实验系统的可重复性.实验结果显示,在相同实验条件下,测得的3条地表振动曲线基本重合,表明所设计的实验系统的可重复性良好,满足测试要求,可用于实验室条件下声波探雷机理的研究.

  11. Application of equivalent circuit analysis method in investigation of acoustic resonance mines detection model%等效电路分析法在声波探雷谐振模型研究中的应用

    Institute of Scientific and Technical Information of China (English)

    陈诚; 刘丁; 张宏儒; 王驰

    2015-01-01

    利用等效电路的分析方法,定量研究声共振探雷模型的谐振机理。在论述声-地震耦合以及声共振探雷集中参数系统模型的基础上,根据机械振动与电路分析的等效原理,建立声共振探雷模型的等效电路系统模型,并用Multisim软件进行仿真分析。结果显示:在给定的参数条件下,仿真得到的共振频率和反共振频率分别为157 Hz和503 Hz,与实验测得的共振频率150 Hz和反共振频率513 Hz基本吻合。表明等效电路分析方法是定量研究声共振探雷模型谐振机理的一个有效手段,Multisim软件为研究地雷和土壤参数条件复杂变化情况下的声波探雷技术提供了一种灵活的工具。%The equivalent circuit analysis method is used to quantitatively research the principle of the acoustic res-onance model for buried mines detection.Based on the acoustic-to-seismic coupling and the acoustic resonance pa-rameter lumped model, the equivalent circuit system of acoustic resonance landmine detection model is developed. The software, Multisim, is used to analyze the equivalent circuit.The results show that the simulated resonance and anti-resonance frequency is 157 Hz and 503 Hz respectively, which is agreement with the experimentally measured resonance frequency 150 Hz and anti-resonance frequency 513 Hz.Therefore, the equivalent circuit analysis meth-od is proved to be an effective approach to quantitatively research the resonance principle of the acoustic resonance landmine detection model.And the software, Multisim, is a flexible tool to study the acoustic resonance landmine detection model.

  12. Based on the acoustic emission technology Boiler "Four Tubes" leakage detection system%基于声发射技术的锅炉“四管”泄漏检测系统

    Institute of Scientific and Technical Information of China (English)

    张里阳

    2014-01-01

    针对电厂中锅炉“四管”泄漏时产生的广义声发射现象,对空间声场分布和声发射信号进行了分析研究。通过采集这种声发射信号并分析处理,建立了检测锅炉“四管”泄漏的检测系统,即锅炉炉管泄漏自动报警系统,给出了检测系统的软、硬件设计。该系统能够实现对锅炉炉管泄漏的早期测报,并判断出泄露的区域位置及泄漏程度,防止事故扩大,减少经济损失。%According to the power plant boiler "four tube" leakage in the generalized acoustic emission phenomenon, On the space sound field distribution and acoustic emission signal is studied. Through collecting and analyze the acoustic emission signal processing, detection is established boiler "four tube" leakage detection system, The boiler furnace tube leakage automatic alarm system, Detection system hardware and software design are also given in this paper. The system can realize early telemetry of boiler tube leakage, can realize early telemetry of boiler tube leakage, to prevent accidents, reduce economic loss.

  13. Acoustic absorption by sunspots

    Science.gov (United States)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  14. Electromagnetic acoustic imaging.

    Science.gov (United States)

    Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A

    2013-02-01

    Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.

  15. Acoustic dose and acoustic dose-rate.

    Science.gov (United States)

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  16. Automatic detection of wheezes by evaluation of multiple acoustic feature extraction methods and C-weighted SVM

    Science.gov (United States)

    Sosa, Germán. D.; Cruz-Roa, Angel; González, Fabio A.

    2015-01-01

    This work addresses the problem of lung sound classification, in particular, the problem of distinguishing between wheeze and normal sounds. Wheezing sound detection is an important step to associate lung sounds with an abnormal state of the respiratory system, usually associated with tuberculosis or another chronic obstructive pulmonary diseases (COPD). The paper presents an approach for automatic lung sound classification, which uses different state-of-the-art sound features in combination with a C-weighted support vector machine (SVM) classifier that works better for unbalanced data. Feature extraction methods used here are commonly applied in speech recognition and related problems thanks to the fact that they capture the most informative spectral content from the original signals. The evaluated methods were: Fourier transform (FT), wavelet decomposition using Wavelet Packet Transform bank of filters (WPT) and Mel Frequency Cepstral Coefficients (MFCC). For comparison, we evaluated and contrasted the proposed approach against previous works using different combination of features and/or classifiers. The different methods were evaluated on a set of lung sounds including normal and wheezing sounds. A leave-two-out per-case cross-validation approach was used, which, in each fold, chooses as validation set a couple of cases, one including normal sounds and the other including wheezing sounds. Experimental results were reported in terms of traditional classification performance measures: sensitivity, specificity and balanced accuracy. Our best results using the suggested approach, C-weighted SVM and MFCC, achieve a 82.1% of balanced accuracy obtaining the best result for this problem until now. These results suggest that supervised classifiers based on kernel methods are able to learn better models for this challenging classification problem even using the same feature extraction methods.

  17. Enhanced Acoustic Emission in Relation to the Acoustic Halo Surrounding Active Region 11429

    CERN Document Server

    Hanson, Chris S; Leka, K D

    2015-01-01

    The use of acoustic holography in the high-frequency $p$-mode spectrum can resolve the source distributions of enhanced acoustic emissions within halo structures surrounding active regions. In doing so, statistical methods can then be applied to ascertain relationships with the magnetic field. This is the focus of this study. The mechanism responsible for the detected enhancement of acoustic sources around solar active regions has not yet been explained. Furthermore the relationship between the magnetic field and enhanced acoustic emission has not yet been comprehensively examined. We have used vector magnetograms from the \\Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamics Observatory (SDO) to image the magnetic-field properties in the halo. We have studied the acoustic morphology of an active region, with a complex halo and "glories," and we have linked some acoustic properties to the magnetic-field configuration. In particular, we find that acoustic sources are significantly enhanced in reg...

  18. Third International Conference on Acoustic Communication by Animals

    Science.gov (United States)

    2011-09-30

    predominant aim of this conference is to consider acoustic communication, its mechanisms, and the detection of acoustic signals, particularly in noisy ...frogs (6). Topics covered included cognition/language; song and call classification; rule learning; acoustic ecology; communication in noisy ...at the Statler Hotel and Conference Center on the Cornell University campus. Evening programs included a networking dinner (“Bioacoustics and Pizza

  19. Acoustic Localization with Infrasonic Signals

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  20. Design Report for Low Power Acoustic Detector

    Science.gov (United States)

    2013-08-01

    the hardware design, target detection algorithm design in both MATLAB and VHDL , and typical performance results. 15. SUBJECT TERMS Acoustic low...diagram. .......................................................................................................3 Figure 4. HED VHDL block diagram...6 Figure 5. DCD VHDL block diagram

  1. [The acoustic indicator of saliva under stress].

    Science.gov (United States)

    Shalenkova, M A; Mikhaĭlova, Z D; Klemin, V A; Korkotashvili, L V; Abanin, A M; Klemina, A V; Dolgov, V V

    2014-03-01

    The situation of stress affects various organs and systems that results in development of functional disorders and/or somatic diseases. As a result, different noninvasive, including salivary, techniques of diagnostic of stress conditions are in the process of development. The dynamics of acoustic indicator of saliva is studied during the period of passing the exams. The relationship of indicator with levels of potassium, sodium, glucose and protein of saliva was analyzed. The sampling consisted of 102 students of 5 and 6 academic years of medical university. To detect the acoustic indicator of saliva acoustic analyzer AKBa-01- "BIOM" was applied. The level of potassium and sodium in saliva was detected using method of flame photometry. The level of glucose in saliva was detected by glucose oxydase technique using analyzer "EXAN-G". The protein in saliva was detected by biuretic technique. The correlation between acoustic indicator of saliva and analyzed indicators of saliva was established.

  2. Underwater Acoustic Sensing with Optical Fibres

    Directory of Open Access Journals (Sweden)

    V. V. Rampal

    1982-01-01

    Full Text Available The use of optical fibres for the detection of acoustic pressure underwater has been discussed with particular reference to the recent literature on the development of fibre optic hydrophones.

  3. Blue Whale Visual and Acoustic Encounter Rates in the Southern California Bight

    Science.gov (United States)

    2007-07-01

    encounter rates. Dual-mode shipboard surveys of blue (Balaenoptera musculus) and humpback ( Megaptera novaeangliae ) whales reported higher acoustic than...2003. Acoustic and visual survey of humpback whale ( Megaptera novaeangliae ) distribution in the eastern and southern Caribbean Sea. Caribbean Journal...Comparison between visual and pas- sive acoustic detection of finless porpoises in the Yangtze River . Journal of the Acoustical Society of America

  4. Optical and opto-acoustic interventional imaging.

    Science.gov (United States)

    Sarantopoulos, Athanasios; Beziere, Nicolas; Ntziachristos, Vasilis

    2012-02-01

    Many clinical interventional procedures, such as surgery or endoscopy, are today still guided by human vision and perception. Human vision however is not sensitive or accurate in detecting a large range of disease biomarkers, for example cellular or molecular processes characteristic of disease. For this reason advanced optical and opto-acoustic (photo-acoustic) methods are considered for enabling a more versatile, sensitive and accurate detection of disease biomarkers and complement human vision in clinical decision making during interventions. Herein, we outline developments in emerging fluorescence and opto-acoustic sensing and imaging techniques that can lead to practical implementations toward improving interventional vision.

  5. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  6. Acoustic cryocooler

    Science.gov (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  7. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  8. Dry acoustic microscope for visualizing the defects in eletronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Tohmyoh, Hironori; Saka, Masumi [Dept. of Nanomechanics, Tohoku University, Tohoku (Japan)

    2006-05-15

    Acoustic microscopy/imaging has been widely used in electronics industry for the non-destructive detection and evaluation of defects in electronic devices. However, the conventional acoustic microscope requires the immersion of the samples in water, which puts a limitation on the samples that can be analyzed. To realize the high-resolution acoustic inspection of electronic devices without immersing them in water, the dry acoustic microscope, where a polymer film is inserted between water and the devices, has been developed, In this paper, we demonstrate the high-resolution acoustic imaging of two types of electronic devices under the dry environment by the present dry acoustic microscope. One is the silicon chip package with high acoustic impedance, and the other is the plastic package with low acoustic impedance.

  9. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  10. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  11. Detección de cavitación en una bomba centrífuga usando emisiones acústicas Cavitation detection in a centrifugal pump using acoustic emissions

    Directory of Open Access Journals (Sweden)

    Jabid Quiroga M.

    2012-12-01

    Full Text Available En el presente artículo se propone el uso de las emisiones acústicas para el monitoreo de la cavitación en una bomba centrífuga. Este monitoreo se ejecuta a través del seguimiento a unos indicadores de falla obtenidos a partir del valor RMS de la señal de emisiones acústicas en dominio tiempo y el valor RMS de los coeficientes de la Transformada Discreta Wavelet (TDW usando la onda madre db6 de la misma señal acústica. La experimentación se realiza en un banco dedicado que permite cavitar a una bomba de ½ hp en distintos niveles de severidad y bajo diferentes condiciones de bombeo. Resultados experimentales mostraron que los indicadores propuestos permiten detectar y evaluar cualitativamente los niveles de severidad de la cavitación en una bomba centrífuga.In this paper an acoustic emission based cavitation fault detection system is proposed for a centrifugal pump. The monitoring is performed tracking a fault indicator obtained using the RMS value of the acoustic emission signal in time domain and the RMS value of the coefficients obtained by applying discrete wavelet transform on the acoustic signal using db6 mother wavelet. Experiments in different cavitation levels and under different operation conditions are carried out in a ½ hp centrifugal pump dedicated test bed. Results showed that the proposed fault indicators are suitable for detecting and evaluating cavitation severities in a centrifugal pump.

  12. Underwater acoustic weak signal detection based on Hilbert transform and intermittent chaos%基于Hilb ert变换及间歇混沌的水声微弱信号检测方法研究∗

    Institute of Scientific and Technical Information of China (English)

    陈志光; 李亚安; 陈晓

    2015-01-01

    In the paper, we analyse the basic dynamical model of the chaotic oscillator by using the theory of intermittent chaos to construct the column of the intermittent chaos, and present an effective method to detect the weak underwater acoustic signal with an unknown frequency. Duffng oscillator is sensitive to phase transformation from chaos to intermittent chaos, whose frequency difference is slightly different from that between the driving force signal and the signal to be detected. By employing this theory, we detect the frequency of the ship signal in ocean background noise. For the detection by using the intermittent chaos, there exists no effective way to estimate the frequency of the signal to be detected, which can only be judged by empirical methods and therefore the man-made error will exist. All of these will affect the consequence of the intermittent chaos and make the practical application diffcult. To solve this problem, in this paper, we first study the basic theory of the chaotic system, then construct the simulated signal to examine the system, and finally detect the ship signal. To make the detection feasible, a chaotic oscillator column is considered to sweep through the unknown frequency of the signal. By using this method, we can obtain the frequency range. Finally Hilbert transform is used to detect the envelope of the intermittent chaos followed by measuring the frequency of the envelope through using Fourier spectrum. Thus the frequency of the signal can be calculated by using the function describing the relationship among the driving force signal, ship signal and the envelope. The simulations and the detection processing of the measured acoustic signal are carried out by using the proposed method, which can effectively detect the frequency of the ship signal embedded within strong background noise and also the frequency of the signal to be detected can be calculated, which is conducive to solving the presently existing problem about frequency

  13. Acoustic mapping as an environmental management tool: I. detection of barrels of low-level radioactive waste, Gulf of the Farallones National Marine Sanctuary, California

    Science.gov (United States)

    Karl, Herman A.; Schwab, William C.; Wright, A. St. C.; Drake, David E.; Chin, John L.; Danforth, William W.; Ueber, Edward

    1994-01-01

    The oceans have been and will continue to be disposal sites for a wide variety of waste products. Often these wastes are not dumped at the designated sites or transport occurs during or after dumping, and, subsequent attempts to monitor the effects the waste products have on the environment are inadequate because the actual location of the waste is not known. Acoustic mapping of the seafloor with sidescan sonar is a very effective technique for locating and monitoring dredge-spoil material and other debris. Sidescan sonar provides an acoustic image or sonograph of the sea floor that is similar to a satellite image of the Earth's land surface. In effect sidescan sonar allows the water column to be stripped from the sea floor, thereby providing a clear, unobstructed view of the sea bed.

  14. ISAT: The mega-fauna acoustic tracking system

    KAUST Repository

    De la Torre, Pedro

    2013-06-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic signal to each hydrophone in a triangular array. The characteristics of the hydrophones, the projector, and the target acoustic signal used for iSAT are described. Initially it is designed to study the movements of whale sharks (Rhincodon typus), but it could potentially be used to describe high resolution movements of other marine species. © 2013 IEEE.

  15. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  16. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  17. Progress in Research of Electromagnetic Acoustic Transducer Technique for the Plate-Like Structure Defect Detection%板状结构缺陷电磁超声导波检测技术研究进展

    Institute of Scientific and Technical Information of China (English)

    刘燕; 王悦民; 孙丰瑞; 申传俊

    2012-01-01

    The recent research advances in Electromagnetic Acoustic Transducer technique for the plate-ike structure defect detection were reviewed. An important introduction about progresses in Electromagnetic Acoustic Transducer Technique for the plate-like structure defect detection was given including lamb wave generation with EMAT, design and optimization of EMAT, ultrasonic guided wave focusing technique and imaging technique. Some direction or issues which should be further researched and its benefit for this technique to be popularized and applied were put out also.%概述了国内外板状结构缺陷电磁超声导波检测技术的研究进展。从激发兰姆波的电磁超声换能器(EMAT)技术、EMAT的优化设计、超声导波聚焦、EMAT接收信号超声波成像技术等方面,对板状结构缺陷无损检测技术取得的突破进行了评述。提出了有待进一步解决的问题。

  18. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  19. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  20. CT findings of acoustic neuroma

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Do Choul; Lee, Jae Mun; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic Univ., Seoul (Korea, Republic of)

    1987-10-15

    Computed Tomography (CT) is very accurate in evaluating the location, size, shape and extension of acoustic neuroma. We analysed CT findings of 23 acoustic neuromas seen at Department of Radiology, Kangnam St. Mary's Hospital, Catholic University Medical College during the period of from January 1981 to June 1987. 1. Five (22%) were men and 18 (78%) were women with the high incidence occurring in the 4th and 5th decades. 2. Twenty two cases were diagnosed satisfactorily by CT examinations which included axial, coronal and reconstruction images. One with the smallest dimension of 8 mm in diameter could not be detected by the conventional CT scan. But is could be seen after metrizamide cisternography. mean size of the tumor masses was estimated 3.6 cm in diameter. 3. The shape of the tumor was oval in 50%, round in 27% and lobulated in 23%. The masses were presented as hypodense in 50%, isodense in 32% and hyperdense in 18%. All tumors were extended from the internal acoustic and toward the cerebellopontine angle. The internal acoustic canal was widened in 77%. Hydrocephalus was associated in 45%. Widening of cerebellopontine angle cistern was noted in 50%. 4. After contrast infusion the tumors were enhanced markedly in 45%, moderately in 32% and mildly in 23%. The enhanced pattern was homogeneous in 41%, mixed in 41% and rim in 18%. The margin of the tumors was sharply defined in 82%. The tumors were attached to the petrous bone with acute angle in 73%. Cystic change within the tumor was found in 27%. The peritumoral edema was noted in 45%. In conclusion, CT is of most effective modalities to evaluate size, shape, extent and internal architecture of acoustic neuroma as well as relationship with adjacent anatomic structures including the internal acoustic canal.

  1. Acoustic data transmission method

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, A.

    1991-09-17

    This patent describes a method for transmitting time line data through a drillstring having drill pipe sections connected end-to-end by joints from a first location below the surface of the earth to a second location at or near the surface of the earth, the length and cross-sectional area of the drill pipe sections being different from the length and cross-sectional area of the joints. It comprises generating acoustic data signals having a single frequency content in at least one passband of the drillstring; transmitting the data signals through the drillstring from either the first location to the second location or from the second location to the first location during a time period prior to the onset of reflective interference caused by the data signals reflecting from along the length of the drillstring, the time period being equal to or less than the time for the data signals to travel three lengths of the drillstring; stopping the transmission of data signals at the onset of the reflective interference and allowing the acoustic signals to substantially attenuate; and detecting the data signals at the respective first or second location.

  2. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  3. Image processing techniques for acoustic images

    Science.gov (United States)

    Murphy, Brian P.

    1991-06-01

    The primary goal of this research is to test the effectiveness of various image processing techniques applied to acoustic images generated in MATLAB. The simulated acoustic images have the same characteristics as those generated by a computer model of a high resolution imaging sonar. Edge detection and segmentation are the two image processing techniques discussed in this study. The two methods tested are a modified version of the Kalman filtering and median filtering.

  4. GOATS 2008: Autonomous, Adaptive Multistatic Acoustic Sensing

    Science.gov (United States)

    2010-09-30

    the concept of a network of AUVs as an array of Virtual Sensors, based on fully integrated sensing, modeling and control , reducing the inter- platform...acoustic modeling , platform dynamics and network communication and control . In regard to the environmental acoustic modeling , MIT continues to...adaptive, bi- and multi-static, passive and active sonar configurations for concurrent detection, classification and localization of subsea and bottom

  5. World Conference on Acoustic Emission 2013

    CERN Document Server

    Wu, Zhanwen; Zhang, Junjiao

    2015-01-01

    This volume collects the papers from the 2013 World Conference on Acoustic Emission in Shanghai. The latest research and applications of Acoustic Emission (AE) are explored, with particular emphasis on detecting and processing of AE signals, development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques as well as experimental case studies.

  6. Acoustic Communications (ACOMMS) ATD

    Science.gov (United States)

    2016-06-14

    develop and demonstrate emerging undersea acoustic communication technologies at operationally useful ranges and data rates. The secondary objective...Technology Demonstration program (ACOMMS ATD) was to demonstrate long range and moderate data rate underwater acoustic communications between a submarine...moderate data rate acoustic communications capability for tactical use between submarines, surface combatants, unmanned undersea vehicles (UUVs), and other

  7. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  8. Seafloor displacement at Kumano-nada caused by the 2004 off Kii Peninsula earthquakes, detected through repeated GPS/Acoustic surveys

    Science.gov (United States)

    Kido, M.; Fujimoto, H.; Miura, S.; Osada, Y.; Tsuka, K.; Tabei, T.

    2006-07-01

    In 2004, we started monitoring crustal deformation at Kumano-nada in the Nankai trough using the GPS/Acoustic technique. We observed a large southward seafloor displacement of ˜30 cm associated with the off Kii Peninsula earthquake, which occurred in September 2004, between our two survey campaigns in August and November 2004. The observed seafloor displacement is larger than that predicted from a slip model derived solely from GPS measurements on land. This may indicate the earthquake fault is slightly shallower and extends move to the NW than previously estimated.

  9. An acoustic emission study of plastic deformation in polycrystalline aluminium

    Science.gov (United States)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  10. Localization of a continuous CO2 leak from an isotropic flat-surface structure using acoustic emission detection and near-field beamforming techniques

    Science.gov (United States)

    Yan, Yong; Cui, Xiwang; Guo, Miao; Han, Xiaojuan

    2016-11-01

    Seal capacity is of great importance for the safety operation of pressurized vessels. It is crucial to locate the leak hole timely and accurately for reasons of safety and maintenance. This paper presents the principle and application of a linear acoustic emission sensor array and a near-field beamforming technique to identify the location of a continuous CO2 leak from an isotropic flat-surface structure on a pressurized vessel in the carbon capture and storage system. Acoustic signals generated by the leak hole are collected using a linear high-frequency sensor array. Time-frequency analysis and a narrow-band filtering technique are deployed to extract effective information about the leak. The impacts of various factors on the performance of the localization technique are simulated, compared and discussed, including the number of sensors, distance between the leak hole and sensor array and spacing between adjacent sensors. Experiments were carried out on a laboratory-scale test rig to assess the effectiveness and operability of the proposed method. The results obtained suggest that the proposed method is capable of providing accurate and reliable localization of a continuous CO2 leak.

  11. Acoustic elliptical cylindrical cloaks

    Institute of Scientific and Technical Information of China (English)

    Ma Hua; Qu Shao-Bo; Xu Zhuo; Wang Jia-Fu

    2009-01-01

    By making a comparison between the acoustic equations and the 2-dimensional (2D) Maxwell equations, we obtain the material parameter equations (MPE) for acoustic elliptical cylindrical cloaks. Both the theoretical results and the numerical results indicate that an elliptical cylindrical cloak can realize perfect acoustic invisibility when the spatial distributions of mass density and bulk modulus are exactly configured according to the proposed equations. The present work is the meaningful exploration of designing acoustic cloaks that are neither sphere nor circular cylinder in shape, and opens up possibilities for making complex and multiplex acoustic cloaks with simple models such as spheres, circular or elliptic cylinders.

  12. Indoor acoustic gain design

    Science.gov (United States)

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  13. Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates

    Science.gov (United States)

    Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.

    2016-06-01

    There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.

  14. Real-time system for studies of the effects of acoustic feedback on animal vocalizations.

    Directory of Open Access Journals (Sweden)

    Mike eSkocik

    2013-01-01

    Full Text Available Studies of behavioral and neural responses to distorted auditory feedback can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds’ songs.

  15. Imaging of Acoustic Waves in Sand

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  16. 基于EMD与三阶累积量的水声瞬态信号检测%Detection of underwater acoustic transient signal based on EMD and third-order cumulant

    Institute of Scientific and Technical Information of China (English)

    何光进; 程锦房; 许杰; 李楠; 张炜

    2012-01-01

    提出了基于经验模态分解(EMD)与三阶累积量的水声瞬态信号检测方法.首先根据EMD方法的滤波器特性将待检信号在频域内分成一系列的本征模态函数(IMF)分量,并根据能量法选择信号占主导地位的IMF;然后运用高阶累积量抑制高斯信号的特性,计算IMF分量三阶累积量对角切片的短时估计,并构造检测函数,对检测函数时行包络检波,作为检测标准;最后用仿真数据对该方法进行了验证,结果表明能在较低信噪比下检测出目标信号的出现时刻和大致频率,具有一定的工程应用价值.%A detection method of underwater acoustic transient signals based on EMD and third order cumulant was presented in the paper. First, EMD method was employed to decompose the signal into a group of IMFs according to their frequencies. The IMF with bigger energy power was chosen as the useful component. Then third-order cumulant was used to depress the white Gaussian noise and the short-time estimation of third-order cumulant diagonal slice can be received during the process. A detection function which is based on short-time estimation and its envelope were recognized as the detection statistic to determine whether there are transient signals. At last, simulated data were used to test the effect of the method. The results illustrate that the detection method based on EMD and third-order cumulant can detect the underwater acoustic transient signals at lower SNRs, which is very valuable in the engineering application.

  17. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  18. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  19. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-04-30

    OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-043016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to...improve our understanding. During the past few years, the physics effects studied have been three-dimensional propagation on global scales, deep water

  20. Nearfield Acoustical Holography

    Science.gov (United States)

    Hayek, Sabih I.

    Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.

  1. Covert underwater acoustic communications.

    Science.gov (United States)

    Ling, Jun; He, Hao; Li, Jian; Roberts, William; Stoica, Petre

    2010-11-01

    Low probability of detection (LPD) communications are conducted at a low received signal-to-noise ratio (SNR) to deter eavesdroppers to sense the presence of the transmitted signal. Successful detection at intended receiver heavily relies on the processing gain achieved by employing the direct-sequence spread-spectrum (DSSS) technique. For scenarios that lack a sufficiently low SNR to maintain LPD, another metric, referred to as low probability of interception (LPI), is of interest to protect the privacy of the transmitted information. If covert communications take place in underwater acoustic (UWA) environments, then additional challenges are present. The time-varying nature of the UWA channel prevents the employment of a long spreading waveform. Furthermore, UWA environments are frequency-selective channels with long memory, which imposes challenges to the design of the spreading waveform. In this paper, a covert UWA communication system that adopts the DSSS technique and a coherent RAKE receiver is investigated. Emphasis is placed on the design of a spreading waveform that not only accounts for the transceiver structure and frequency-selective nature of the UWA channel, but also possesses a superior LPI. The proposed techniques are evaluated using both simulated and SPACE'08 in-water experimental data.

  2. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  3. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  4. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  5. Localized acoustic surface modes

    Science.gov (United States)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  6. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  7. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  8. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  9. Detection of non-alcoholic steatohepatitis in patients with morbid obesity before bariatric surgery: preliminary evaluation with acoustic radiation force impulse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guzman-Aroca, F.; Reus, M.; Dios Berna-Serna, Juan de [Virgen de la Arrixaca University Hospital, Department of of Radiology, El Palmar, Murcia (Spain); Frutos-Bernal, M.D.; Lujan-Mompean, J.A.; Parrilla, P. [Virgen de la Arrixaca University Hospital, Department of Surgery, El Palmar, Murcia (Spain); Bas, A. [Virgen de la Arrixaca University Hospital, Department of Pathology, El Palmar, Murcia (Spain)

    2012-11-15

    To investigate the utility of acoustic radiation force impulse (ARFI) imaging, with the determination of shear wave velocity (SWV), to differentiate non-alcoholic fatty liver disease (NAFLD) from non-alcoholic steatohepatitis (NASH) in patients with morbid obesity before bariatric surgery. Thirty-two patients with morbid obesity were evaluated with ARFI and conventional ultrasound before bariatric surgery. The ARFI and ultrasound results were compared with liver biopsy findings, which is the reference standard. The patients were classed according to their histological findings into three groups: group A, simple steatosis; group B, inflammation; and group C, fibrosis. The median SWV was 1.57 {+-} 0.79 m/s. Hepatic alterations were observed in the histopathological findings for all the patients in the study (100 %), with the results of the laboratory tests proving normal. Differences in SWV were also observed between groups A, B and C: 1.34 {+-} 0.90 m/s, 1.55 {+-} 0.79 m/s and 1.86 {+-} 0.75 m/s (P < 0.001), respectively. The Az for differentiating NAFLD from NASH or fibrosis was 0.899 (optimal cut-off value 1.3 m/s; sensitivity 85 %; specificity 83.3 %). The ARFI technique is a useful diagnostic tool for differentiating NAFLD from NASH in asymptomatic patients with morbid obesity. (orig.)

  10. Identification of rocket-induced acoustic waves in the ionosphere

    Science.gov (United States)

    Mabie, Justin; Bullett, Terence; Moore, Prentiss; Vieira, Gerald

    2016-10-01

    Acoustic waves can create plasma disturbances in the ionosphere, but the number of observations is limited. Large-amplitude acoustic waves generated by energetic sources like large earthquakes and tsunamis are more readily observed than acoustic waves generated by weaker sources. New observations of plasma displacements caused by rocket-generated acoustic waves were made using the Vertically Incident Pulsed Ionospheric Radar (VIPIR), an advanced high-frequency radar. Rocket-induced acoustic waves which are characterized by low amplitudes relative to those induced by more energetic sources can be detected in the ionosphere using the phase data from fixed frequency radar observations of a plasma layer. This work is important for increasing the number and quality of observations of acoustic waves in the ionosphere and could help improve the understanding of energy transport from the lower atmosphere to the thermosphere.

  11. Sensitive acoustic vibration sensor using single-mode fiber tapers.

    Science.gov (United States)

    Li, Yi; Wang, Xiaozhen; Bao, Xiaoyi

    2011-05-01

    Optical fiber sensors are a good alternative to piezoelectric devices in electromagnetic sensitive environments. In this study, we reported a fiber acoustic sensor based on single-mode fiber (SMF) tapers. The fiber taper is used as the sensing arm in a Mach-Zehnder interferometer. Benefiting from their micrometer dimensions, fiber tapers have shown higher sensitivities to the acoustic vibrations than SMFs. Under the same conditions, the thinnest fiber taper in this report, with a diameter of 1.7 µm, shows a 20 dB improvement in the signal to noise ratio as compared to that of an SMF. This acoustic vibration sensor can detect the acoustic waves over the frequencies of 30 Hz-40 kHz, which is limited by the acoustic wave generator in experiments. We also discussed the phase changes of fiber tapers with different diameters under acoustic vibrations.

  12. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime

    OpenAIRE

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Lihong V. Wang

    2012-01-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method...

  13. 航天电子设备多余物检测信号特性的影响因素分析%Factors affecting characteristics of acoustic signals in particle impact noise detection for aerospace devices

    Institute of Scientific and Technical Information of China (English)

    陈金豹; 翟国富; 王淑娟; 刘泳; 王洪元

    2013-01-01

    According to the mechanism of sound generation and the method of spectral analysis, the influences of the operation variables and particle physical parameters on acoustic spectrum are investigated systematically in the particle impact noise detection (PIND) for aerospace devices. The particle size, physical property, acceleration and frequency of vibration conditions are considered as four factors affecting acoustic signals, and the effect laws of them are presented. The physical property is determined as the key factor, and the feasibility of particle size and material identification is confirmed using the orthogonal test method. The results are of great value for identification of particles.%依据微粒碰撞产生声波的机理,运用频谱分析法,系统地研究航天电子设备多余物噪声检测过程中各操作变量和微粒物理参数对声波频谱的影响.通过单因素试验,详细分析了微粒粒径、微粒材质属性、振动力学条件中加速度和频率等4个因素对声音信号频谱分布的影响规律.同时,采用正交试验法确定了关键影响因素为微粒材质属性,并提出了微粒材质和粒径识别的可行性.该结果为进一步识别多余物微粒的参数提供了指导依据.

  14. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  15. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.

    Science.gov (United States)

    Sayago, Isabel; Matatagui, Daniel; Fernández, María Jesús; Fontecha, José Luis; Jurewicz, Izabela; Garriga, Rosa; Muñoz, Edgar

    2016-02-01

    A Love-wave device with graphene oxide (GO) as sensitive layer has been developed for the detection of chemical warfare agent (CWA) simulants. Sensitive films were fabricated by airbrushing GO dispersions onto Love-wave devices. The resulting Love-wave sensors detected very low CWA simulant concentrations in synthetic air at room temperature (as low as 0.2 ppm for dimethyl-methylphosphonate, DMMP, a simulant of sarin nerve gas, and 0.75 ppm for dipropylene glycol monomethyl ether, DPGME, a simulant of nitrogen mustard). High responses to DMMP and DPGME were obtained with sensitivities of 3087 and 760 Hz/ppm respectively. Very low limit of detection (LOD) values (9 and 40 ppb for DMMP and DPGME, respectively) were calculated from the achieved experimental data. The sensor exhibited outstanding sensitivity, good linearity and repeatability to all simulants tested. The detection mechanism is here explained in terms of hydrogen bonding formation between the tested CWA simulants and GO.

  16. Using Principal Component and Tidal Analysis as a Quality Metric for Detecting Systematic Heading Uncertainty in Long-Term Acoustic Doppler Current Profiler Data

    Science.gov (United States)

    Morley, M. G.; Mihaly, S. F.; Dewey, R. K.; Jeffries, M. A.

    2015-12-01

    Ocean Networks Canada (ONC) operates the NEPTUNE and VENUS cabled ocean observatories to collect data on physical, chemical, biological, and geological ocean conditions over multi-year time periods. Researchers can download real-time and historical data from a large variety of instruments to study complex earth and ocean processes from their home laboratories. Ensuring that the users are receiving the most accurate data is a high priority at ONC, requiring quality assurance and quality control (QAQC) procedures to be developed for all data types. While some data types have relatively straightforward QAQC tests, such as scalar data range limits that are based on expected observed values or measurement limits of the instrument, for other data types the QAQC tests are more comprehensive. Long time series of ocean currents from Acoustic Doppler Current Profilers (ADCP), stitched together from multiple deployments over many years is one such data type where systematic data biases are more difficult to identify and correct. Data specialists at ONC are working to quantify systematic compass heading uncertainty in long-term ADCP records at each of the major study sites using the internal compass, remotely operated vehicle bearings, and more analytical tools such as principal component analysis (PCA) to estimate the optimal instrument alignments. In addition to using PCA, some work has been done to estimate the main components of the current at each site using tidal harmonic analysis. This paper describes the key challenges and presents preliminary PCA and tidal analysis approaches used by ONC to improve long-term observatory current measurements.

  17. Acoustic fluidization for earthquakes?

    OpenAIRE

    Sornette, D.; Sornette, A.

    2000-01-01

    Melosh [1996] has suggested that acoustic fluidization could provide an alternative to theories that are invoked as explanations for why some crustal faults appear to be weak. We show that there is a subtle but profound inconsistency in the theory that unfortunately invalidates the results. We propose possible remedies but must acknowledge that the relevance of acoustic fluidization remains an open question.

  18. Acoustic ground impedance meter

    Science.gov (United States)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  19. Cochlear bionic acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  20. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  1. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  2. Magnetic resonance acoustic radiation force imaging.

    Science.gov (United States)

    McDannold, Nathan; Maier, Stephan E

    2008-08-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are "stiffness weighted" and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery.

  3. Design considerations and sensitivity estimates for an acoustic neutrino detector

    CERN Document Server

    Karg, T; Graf, K; Hoessl, J; Kappes, A; Katz, U; Lahmann, R; Naumann, C; Salomon, K; Karg, Timo; Anton, Gisela; Graf, Kay; Hoessl, Juergen; Kappes, Alexander; Katz, Uli; Lahmann, Robert; Naumann, Christopher; Salomon, Karsten

    2005-01-01

    We present a Monte Carlo study of an underwater neutrino telescope based on the detection of acoustic signals generated by neutrino induced cascades. This provides a promising approach to instrument large detector volumes needed to detect the small flux of cosmic neutrinos at ultra-high energies (E > 1 EeV). Acoustic signals are calculated based on the thermo-acoustic model. The signal is propagated to the sensors taking frequency dependent attenuation into account, and detected using a threshold trigger, where acoustic background is included as an effective detection threshold. A simple reconstruction algorithm allows for the determination of the cascade direction and energy. Various detector setups are compared regarding their effective volumes. Sensitivity estimates for the diffuse neutrino flux are presented.

  4. Scattering of Acoustic Waves from Ocean Boundaries

    Science.gov (United States)

    2015-09-30

    from the interface roughness and volume heterogeneities and propagation within the sediment. The model will aid in the detection and classification ...of buried mines and improve SONAR performance in shallow water. OBJECTIVES 1) Determination of the correct physical model of acoustic propagation... algorithms for AUV sonars based on the measurements and models previously developed by this program. Additionally, the models developed in this research

  5. Acoustic Evidence for Phonologically Mismatched Speech Errors

    Science.gov (United States)

    Gormley, Andrea

    2015-01-01

    Speech errors are generally said to accommodate to their new phonological context. This accommodation has been validated by several transcription studies. The transcription methodology is not the best choice for detecting errors at this level, however, as this type of error can be difficult to perceive. This paper presents an acoustic analysis of…

  6. 敲击锤参数对风力机叶片声振法检测深度的影响%Influence of Impact Hammer on Parameter Acoustic Vibration Detecting Depth inside Wind Turbine Blade

    Institute of Scientific and Technical Information of China (English)

    刘荣梅; 孙梁; 周克印

    2016-01-01

    为提高风力机叶片声振法的检测深度,利用有限元软件,对风力机叶片声振法检测过程进行动力学模拟,选取冲击过程中应力波能量辐射系数为参数,分析敲击锤参数对应力波能量辐射系数的影响,以期得到更高的应力波能量辐射系数,从而达到提高声振法检测缺陷深度的目的.有限元模拟结果表明,除了敲击锤材料的泊松比外,其直径、锤身长度、锤头材料弹性模量以及冲击速度均对应力波能量辐射系数产生影响.在模拟分析结果的基础上,通过比较不同敲击锤尺寸下的应力持续时间,得出适当选取敲击锤参数可提高结构声振法缺陷的检测深度的结论.%Acoustic vibration has been applied in nondestructive examination of wind turbine blade because of its simplicity and applicability.In order to detect the deep defect,the dynamic procedure during the acoustic vibration of the wind turbine blade was simulated by finite element method (FEM).The influence of the hammer size and impact velocity on the stress wave energy radiation coefficient (SWERC)during the vibration was studied.The larger the radiation coefficient was,the deeper delamination could be recognized experimentally.The FEM analysis indicated that the parameters,such as the diameter and the length of the hammer,elastic modulus of the hammerhead and original impact velocity,had obvious influence on the SWERC.Based on the simulated results,two examples considering different hammering parameters were studied.The study indicates that an appropriate hammer could be designed to expand the detection depth.

  7. Flat acoustic lens by acoustic grating with curled slits

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  8. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  9. Magneto-acoustic imaging by continuous-wave excitation.

    Science.gov (United States)

    Shunqi, Zhang; Zhou, Xiaoqing; Tao, Yin; Zhipeng, Liu

    2016-07-01

    The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10(-7) Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.

  10. Development of Acoustic Sensors for the ANTARES Experiment

    CERN Document Server

    Naumann, C L; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Salomon, K; Naumann, Christopher Lindsay; Anton, Gisela; Graf, Kay; Hoessl, Juergen; Kappes, Alexander; Karg, Timo; Katz, Uli; Lahmann, Robert; Salomon, Karsten

    2005-01-01

    In order to study the possibility of acoustic detection of ultra-high energy neutrinos in water, our group is planning to deploy and operate an array of acoustic sensors using the ANTARES Neutrino telescope in the Mediterranean Sea. Therefore, acoustic sensor hardware has to be developed which is both capable of operation under the hostile conditions of the deep sea and at the same time provides the high sensitivity necessary to detect the weak pressure signals resulting from the neutrino's interaction in water. In this paper, two different approaches to building such sensors, as well as performance studies in the laboratory and in situ, are presented.

  11. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...

  12. Underwater Applications of Acoustical Holography

    Directory of Open Access Journals (Sweden)

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  13. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  14. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    Science.gov (United States)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  15. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    Science.gov (United States)

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  16. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  17. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  18. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  19. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  20. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  1. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  2. Symptoms of Acoustic Neuroma

    Science.gov (United States)

    ... Programs & Services Search ANAUSA.org Connect with us! Symptoms of Acoustic Neuroma Each heading slides to reveal more information. Early Symptoms Early Symptoms Early symptoms are easily overlooked, thus making diagnosis ...

  3. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  4. Shape-adaptable hyperlens for acoustic magnifying imaging

    Science.gov (United States)

    Zhang, Hongkuan; Zhou, Xiaoming; Hu, Gengkai

    2016-11-01

    Previous prototypes of acoustic hyperlens consist of rigid channels, which are unable to adapt in shape to the object under detection. We propose to overcome this limitation by employing soft plastic tubes that could guide acoustics with robustness against bending deformation. Based on the idea of soft-tube acoustics, acoustic magnifying hyperlens with planar input and output surfaces has been fabricated and validated experimentally. The shape-adaption capability of the soft-tube hyperlens is demonstrated by a controlled experiment, in which the magnifying super-resolution images remain stable when the lens input surface is curved. Our study suggests a feasible route toward constructing the flexible channel-structured acoustic metamaterials with the shape-adaption capability, opening then an additional degree of freedom for full control of sound.

  5. Intertial Frame Dragging in an Acoustic Analogue spacetime

    CERN Document Server

    Chakraborty, Chandrachur; Majumdar, Parthasarathi

    2015-01-01

    We report an incipient exploration of the Lense-Thirring precession effect in a rotating {\\it acoustic analogue black hole} spacetime. An exact formula is deduced for the precession frequency of a gyroscope due to inertial frame dragging, close to the ergosphere of a `Draining Bathtub' acoustic spacetime which has been studied extensively for acoustic Hawking radiation of phonons and also for `superresonance'. The formula is verified by embedding the two dimensional spatial (acoustic) geometry into a three dimensional one where the similarity with standard Lense-Thirring precession results within a strong gravity framework is well known. Prospects of experimental detection of this new `fixed-metric' effect in acoustic geometries, are briefly discussed.

  6. A numerical study of effects on detection height of a radio acoustic sounding system influenced by atmospheric wind and temp erature%大气风场和温度对无线电声波探测系统探测高度影响的数值研究

    Institute of Scientific and Technical Information of China (English)

    王盼盼; 周晨; 宋杨; 张援农; 赵正予

    2015-01-01

    Radio acoustic sounding system (RASS) is a detection technique using the interaction between radio wave and acoustic wave to remotely measure vertical profiles of the atmospheric temperature, and usually composed of a Doppler radar with fixed beam (monostatic or bistatic) and an acoustic source with high power. By combining acoustic propaga-tion equation and radio wave propagation equation in a disturbance medium and using a finite-difference time-domain method, a numerical model describing the interaction between acoustic wave and electric wave is constructed, and the model is used to analyze the effects of wind and temperature on detection height of RASS. In the atmospheric tem-perature background, the propagations of a single frequency acoustic wave packet under different wind conditions are simulated, and the scattering propagation of electric wave packets corresponding to the acoustic scatterer are analyzed and compared. Besides, the entire physical process are described from the angle of energy density. The numerical simulation results show that the propagation trajectories of both acoustic wave and radio wave backscattering echo are changed due to the existence of wind field and temperature profile. The presence of wind field results in an offset of acoustic wave front, reducing the strength and changing the trajectory of radio wave backscattering echo, so that the detection height is limited due to the reduction of receiving data. The simulation results of the acoustic wave reveal that the temperature profile mainly affects the propagation velocity of acoustic wave, while the presence of wind field may result in shifts of propagation trajectory and acoustic wave front, and the greater the wind speed, the more the horizontal shift of acoustic wave front is. The numerical analyses of scattering propagations of radio wave with the acoustic scatterer at the same height under different background atmospheric conditions manifest that the stronger the wind speed

  7. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  8. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  9. Interactions in an acoustic world

    CERN Document Server

    Simaciu, Ion; Borsos, Zoltan; Bradac, Mariana

    2016-01-01

    The present paper aims to complete an earlier paper where the acoustic world was introduced. This is accomplished by analyzing the interactions which occur between the inhomogeneities of the acoustic medium, which are induced by the acoustic vibrations traveling in the medium. When a wave packet travels in a medium, the medium becomes inhomogeneous. The spherical wave packet behaves like an acoustic spherical lens for the acoustic plane waves. According to the principle of causality, there is an interaction between the wave and plane wave packet. In specific conditions the wave packet behaves as an acoustic black hole.

  10. Study of low frequency acoustic signals from superheated droplet detector

    CERN Document Server

    Mondal, P K; Das, M; Bhattacharjee, P

    2013-01-01

    The bubble nucleation process in superheated droplet detector (SDD) is associated with the emission of an acoustic pulse that can be detected by an acoustic sensor. We have studied the neutron and gamma-ray induced nucleation events in a SDD with the active liquid R-12 (CCl2F2, b.p. -29.8oC) using a condenser microphone sensor. A comparative study in the low frequency region (~ 0-10kHz) for the neutron and gamma-ray induced nucleation is presented here. From the analysis of the waveforms we observe a significant difference between the neutron and gamma-ray induced acoustic events.

  11. Interpreting underwater acoustic images of the upper ocean boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ulloa, Marco J [Departamento de Fisica, Centro Universitario de Ciencias Exactas e IngenierIas, Universidad de Guadalajara, Avenida Revolucion 1500, Sector Reforma, 44420 Guadalajara, Jal. (Mexico)

    2007-03-15

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of physical processes occurring simultaneously beneath the surface of the sea. Sonars are so sensitive that they detected a new acoustic signature at the breaking of surface gravity waves in deep water, which resembles oblique motion-like vortices.

  12. Acoustic radiation force analysis using finite difference time domain method.

    Science.gov (United States)

    Grinenko, A; Wilcox, P D; Courtney, C R P; Drinkwater, B W

    2012-05-01

    Acoustic radiation force exerted by standing waves on particles is analyzed using a finite difference time domain Lagrangian method. This method allows the acoustic radiation force to be obtained directly from the solution of nonlinear fluid equations, without any assumptions on size or geometry of the particles, boundary conditions, or acoustic field amplitude. The model converges to analytical results in the limit of small particle radii and low field amplitudes, where assumptions within the analytical models apply. Good agreement with analytical and numerical models based on solutions of linear scattering problems is observed for compressible particles, whereas some disagreement is detected when the compressibility of the particles decreases.

  13. 基于电磁声发射的金属板裂纹检测实验研究%Experiment of crack detection of metal plate based on electromagnetically induced acoustic emission

    Institute of Scientific and Technical Information of China (English)

    张闯; 刘素贞; 杨庆新; 金亮; 李娜

    2011-01-01

    通过对金属部件进行电磁加载会在金属裂纹处激发出声发射信号,利用这一现象可以实现对金属结构件的无损检测.本文对电磁声发射技术的原理与实现进行了深入分析,设计了相应的电磁加载实验装置,并针对铝质薄板试件进行了电磁声发射试验,通过对实验采集信号进行时频分析,研究了电磁声发射信号随加载条件和试件类型的变化规律,验证了带裂纹金属上能够产生电磁声发射现象,为该技术的工程应用打下了良好的基础.%Nondestructive detection can be realized with the effect that the dynamic electromagnetic loading on the sheet metal can generate a stress field stimulating stress waves from the defects. The principle and implementation procedure of the electromagnetically induced acoustic emission (EMAE) is thoroughly analyzed in this paper. The high-current pulse generator which is used in the EMAE experiment is designed. The simple time-frequency analysis to the experimental signal is achieved by using fast Fourier transform (FFT). It researches the change patterns of EMAE signal with the different specimens and electromagnetic loading conditions. It verifies that it could excite the phenomenon of EMAE in the metal plate with the crack. The experimental results lay a good foundation for the engineering application of EMAE.

  14. An introduction to acoustic emission

    Science.gov (United States)

    Scruby, C. B.

    1987-08-01

    The technique of acoustic emission (AE) uses one or more sensors to 'listen' to a wide range of events that may take place inside a solid material. Depending on the source of this high frequency sound, there are broadly three application areas: structural testing and surveillance, process monitoring and control, and materials characterization. In the first case the source is probably a defect which radiates elastic waves as it grows. Provided these waves are detectable, AE can be used in conjunction with other NDT techniques to assess structural integrity. Advances in deterministic and statistical analysis methods now enable data to be interpreted in greater detail and with more confidence than before. In the second area the acoustic signature of processes is monitored, ranging from for instance the machining of metallic components to the mixing of foodstuffs, and changes correlated with variations in the process, with the potential for feedback and process control. In the third area, AE is used as an additional diagnostic technique for the study of, for instance, fracture, because it gives unique dynamic information on defect growth.

  15. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  16. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  17. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  18. Acoustics of courtyard theatres

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing

    2008-01-01

    The traditional Chinese theatre was often built with a courtyard. In such open-top space, the absence of a roof would mean little reverberation and non-diffused sound field.Acoustically the situation is quite different from that of any enclosed space. The refore, theclassic room acoustics, such as Sabine reverberation formula, would no longer be applicable due to the lack of sound reflections from the ceiling. As the parameter of reverberation time T30 shows the decay rate only, it would not properly characterize the prominent change in the fine structure of the echogram, particularly in case of a large reduction of reflections during the decay process. The sense of reverbrance in a courtyard space would differ noticeably from that of the equivalent 3D-T30 in an enclosed space. Based upon the characteristic analysis of the sound field in an open-top space, this paper presents a preliminary study on the acoustics of the courtyard theatres.

  19. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  20. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  1. Acoustic black holes

    CERN Document Server

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  2. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...

  3. ACOUSTIC MEASUREMENTS BUBBLES IN BIOLOGICAL TIESSURE

    Institute of Scientific and Technical Information of China (English)

    CHAHINE Georges L.; TANGUAY Michel; LORAINE Greg

    2009-01-01

    An acoustic based instrument,the ABS Acoustic Bubble Spectrometer(R)(C)(ABS),was investigated for the detection and quantification of bubbles in biological media.These include viscoelastic media(blood),materials of varying density(bone in tissue),non-homogenous distribution of bubbles(intravenous bubbly flow),and bubbles migrating in tissue(decompression sickness,DCS).The performance of the ABS was demonstrated in a series of laboratory experiments.Validation of the code was performed using a viscoelastic polymer solution,Polyox,in which the bubble size distribution and void fraction were determined by ABS measurements and with image analysis of high speed videos.These tests showed that the accuracy of the ABS was not significantly affected by viscoelasticity for bubbles smaller than 200 microns.The ABS detection and measurement of non-homogenous bubble distributions was demonstrated using a bubbly flow through a simulated vein surrounded by tissue.The scatter of acoustic signals due to bones in the acoustic pathway was also investigated.These in-vitro experiments were done using meat(beef)as a tissue simulant.Decompression experiments were done using beef meat which was held underwater at high pressure(9.9 atm)then rapidly decompressed.Bubble size distributions and void fraction calculations in these experiments were then validated using image analysis of high speed video.In addition,preliminary experiments were performed with the US Navy Medical Research Center,demonstrating the utility of the modified ABS system in detecting the evolution of bubbles in swine undergoing decompression sickness(DCS).These results indicate that the ABS may be used to detect and quantify the evolution of bubbles in-vivo and aid in the monitoring of DCS.

  4. A synthetic aperture acoustic prototype system

    Science.gov (United States)

    Luke, Robert H.; Bishop, Steven S.; Chan, Aaron M.; Gugino, Peter M.; Donzelli, Thomas P.; Soumekh, Mehrdad

    2015-05-01

    A novel quasi-monostatic system operating in a side-scan synthetic aperture acoustic (SAA) imaging mode is presented. This research project's objectives are to explore the military utility of outdoor continuous sound imaging of roadside foliage and target detection. The acoustic imaging method has several military relevant advantages such as being immune to RF jamming, superior spatial resolution as compared to 0.8-2.4 GHz ground penetrating radar (GPR), capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to GPR technologies. The prototype system's broadband 2-17 kHz LFM chirp transceiver is mounted on a manned all-terrain vehicle. Targets are positioned within the acoustic main beam at slant ranges of two to seven meters and on surfaces such as dirt, grass, gravel and weathered asphalt and with an intervening metallic chain link fence. Acoustic image reconstructions and signature plots result in means for literal interpretation and quantifiable analyses.

  5. Broadband acoustic properties of a murine skull.

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-07

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  6. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...

  7. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  8. Deep Water Ocean Acoustics

    Science.gov (United States)

    2015-04-15

    sound speed profile is range-independent; since there is little expectation there will be significant mesoscale phenomenon given the lack of solar ...34 Journal of the Acoustical Society of America 93 (4), 1736-1742 (1993). 2 Chris H. Harrison and Martin Siderius, "Effective Parameters for Matched

  9. Acoustic emission monitoring of wind turbine blades

    Science.gov (United States)

    Van Dam, Jeremy; Bond, Leonard J.

    2015-03-01

    Damage to wind turbine blades can, if left uncorrected, evolve into catastrophic failures resulting in high costs and significant losses for the operator. Detection of damage, especially in real time, has the potential to mitigate the losses associated with such catastrophic failure. To address this need various forms of online monitoring are being investigated, including acoustic emission detection. In this paper, pencil lead breaks are used as a standard reference source and tests are performed on unidirectional glass-fiber-reinforced-polymer plates. The mechanical pencil break is used to simulate an acoustic emission (AE) that generates elastic waves in the plate. Piezoelectric sensors and a data acquisition system are used to detect and record the signals. The expected dispersion curves generated for Lamb waves in plates are calculated, and the Gabor wavelet transform is used to provide dispersion curves based on experimental data. AE sources using an aluminum plate are used as a reference case for the experimental system and data processing validation. The analysis of the composite material provides information concerning the wave speed, modes, and attenuation of the waveform, which can be used to estimate maximum AE event - receiver separation, in a particular geometry and materials combination. The foundational data provided in this paper help to guide improvements in online structural health monitoring of wind turbine blades using acoustic emission.

  10. Development of acoustic devices for ultra-high energy neutrino detectors

    CERN Document Server

    Karg, T; Graf, K; Hoessl, J; Kappes, A; Katz, U; Lahmann, R; Naumann, C; Salomon, K; Schwemmer, S

    2005-01-01

    Acoustic neutrino detection is a promising approach to instrument the large detector volumes needed for the detection of the small neutrino fluxes expected at ultra-high energies (E > 1 EeV). We report on several studies investigating the feasibility of such an acoustic detector. High-precision lab measurements using laser and proton beams aiming at the verification of the thermo-acoustic model have been performed. Different types of acoustic sensors have been developed and characterized. An autonomous acoustic system, attached to the ANTARES prototype string "Line0", has been deployed and operated successfully at 2400 m depth, allowing for in-situ studies of the acoustic background in the Mediterranean Sea.

  11. Acoustic Change Detection Using Sources of Opportunity

    Science.gov (United States)

    2011-09-01

    Principles of SAR Interferometry , last modified August 9, 1995. http://southport.jpl.nasa.gov/scienceapps/dixon/report2.html (accessed 10 August 2011). 5...References 1. Silex, Sound Attenuation. http://www.silex.com/pdfs/Sound%20Attenuation.pdf (accessed 10 August 2011). 2. Tan, D.K.P. et al. Passive radar ...using Global System for Mobile communication signal: theory, implementation and measurements. IEE Proceedings - Radar , Sonar and Navigation June

  12. Detection and Identification of Acoustic Signatures

    Science.gov (United States)

    2011-08-01

    equal. The third general feature of sound, often used in music , is timbre . Timbre is loosely defined as the third component of music that is...to build a PD model. One approach is to start by describing all sounds with three general features including amplitude, pitch and timbre . So the...independent of amplitude or pitch. An example often used in music is the ability of a musician to distinguish between the sound from two instruments

  13. An Overview of Acoustic Detection Analysis.

    Science.gov (United States)

    1983-01-01

    PL(r) and NL are typically determined from publica - tions that give geographic and seasonal values for these parameters. The left-hand side of the...In Seguridad hence) 14 p., Oct 1980, AD A092 733 wiorthwstern University, Evanston, IL PP 297 - Classified PP 3o9 Bowes, Marianne, Brchling, Frank P

  14. Holograms for acoustics

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  15. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  16. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  17. Current state of the radiological diagnosis of acoustic neuroma

    Energy Technology Data Exchange (ETDEWEB)

    Valavanis, A.; Dabir, K.; Hamdi, R.; Oguz, M.; Wellauer, J.

    1982-03-01

    Thin, overlapping section, contrast-enhanced, axial and coronal CT, with additional high-resulution (HR) treatment of the sections through the internal auditory canal, was performed on 31 patients clinically suspected of acoustic neuroma. With this technique 13 acoustic neuromas protruding more than 10 mm and eight acoustic neuromas protruding between 2 and 10 mm outside the internal auditory canal were unequivocally diagnosed. O/sub 2/CT cisternography was performed on ten patients. An intracanalicular neuroma was diagnosed in three cases with this technique, also a small extracanalicular neuroma in one case, and an acoustic neuroma was definitely excluded in six cases. It is concluded that O/sub 2/CT cisternography is the diagnostic procedure of choice for the detection of purely intracanalicular neuromas and the definite exclusion of acoustic neuroma. HR CT proved superior to polytomography for the evaluation of the internal auditory canal and should be performed in every case suspected of acoustic neuroma. A protocol for the radiological investigation of patients suspected of acoustic neuroma is given.

  18. NW-MILO Acoustic Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, Shari; Myers, Joshua R.; Maxwell, Adam R.; Jones, Mark E.

    2010-02-17

    There is an enduring requirement to improve our ability to detect potential threats and discriminate these from the legitimate commercial and recreational activity ongoing in the nearshore/littoral portion of the maritime domain. The Northwest Maritime Information and Littoral Operations (NW-MILO) Program at PNNL’s Coastal Security Institute in Sequim, Washington is establishing a methodology to detect and classify these threats - in part through developing a better understanding of acoustic signatures in a near-shore environment. The purpose of the acoustic data collection described here is to investigate the acoustic signatures of small vessels. The data is being recorded continuously, 24 hours a day, along with radar track data and imagery. The recording began in August 2008, and to date the data contains tens of thousands of signals from small vessels recorded in a variety of environmental conditions. The quantity and variety of this data collection, with the supporting imagery and radar track data, makes it particularly useful for the development of robust acoustic signature models and advanced algorithms for signal classification and information extraction. The underwater acoustic sensing system is part of a multi-modal sensing system that is operating near the mouth of Sequim Bay. Sequim Bay opens onto the Straight of Juan de Fuca, which contains part of the border between the U.S. and Canada. Table 1 lists the specific components used for the NW-MILO system. The acoustic sensor is a hydrophone permanently deployed at a mean depth of about 3 meters. In addition to a hydrophone, the other sensors in the system are a marine radar, an electro-optical (EO) camera and an infra-red (IR) camera. The radar is integrated with a vessel tracking system (VTS) that provides position, speed and heading information. The data from all the sensors is recorded and saved to a central server. The data has been validated in terms of its usability for characterizing the

  19. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  20. The Identification of Nanoscale Structures According to a Parameters of Acoustic Structuroscopy Method

    Science.gov (United States)

    Ababkov, N. V.; Smirnov, A. N.; Bykova, N. V.

    2016-04-01

    The fracture surface of a destroyed steam turbine rotor is studied by acoustic structuroscopy method. The structural-phase state of the metal of the destroyed rotor of a steam turbine is studied using the methods of electron microscopy. It was established that in the areas of control, where the values of the acoustic characteristics have significant differences from the rest of the metal, detected nanocrystalline structure. The possibility of determining the structure of the nanoscale metal by acoustic structuroscopy is shown.

  1. Finite Element Analysis of Steel Thinning Defect Detection of Electromagnetic Acoustic Transducer Shear Wave%电磁超声横波检测钢板减薄缺陷的有限元分析

    Institute of Scientific and Technical Information of China (English)

    徐文峰; 赵建平

    2016-01-01

    The shear waves in measured specimen excitated by EMAT(electromagnetic acoustic transduc-er)can be applied to detect thickness and internal defect of specimen.Finite element analysis was applied to simulate the mechanism of electromagnetic ultrasonic excitation of shear wave.Through the es-tablishment of three-dimensional model of EMAT and electromagnetism coupling calculation,the distribu-tion of the surface magnetic field,eddy current and Lorenz force were obtained,the results show the mech-anism of EMAT wave excitation,which provides reference for the design of the electromagnetic ultrasonic transducer.With the coupling of electromagnetics and structural dynamics calculation,the propagation of shear waves in the specimen thickness direction was obtained,results show that the shear wave propagates in the specimen along the thickness direction,and the energy is attenuated trend.In addition,the structure dynamics analysis of the defective plate provides that the wave fluctuations occur obvious change and decay when they encounter the defect.It proves the wave excitation of EMAT can effectively detect the de-fects inside the specimen.According to the results of simulation and experiments,the method of quantitati-ving defect by shear wave detection was put forward.%电磁超声换能器(EMAT)在试件中激发的横波(剪切波)能够应用于试件厚度和内部缺陷检测,为了研究电磁超声激发横波的机理,采用有限元分析的方法,对其进行仿真分析。通过建立EMAT三维模型,进行电磁学耦合计算,获得被测试件表面磁场、涡流、洛伦兹力的分布规律,显示了EMAT激发横波的机理过程,为电磁超声换能器的设计提供参考;通过电磁学与动力学的耦合计算,获得横波在试件厚度方向的传播规律,结果表明,横波在试件中沿厚度方向传播,并且能量呈衰减趋势;对含缺陷钢板进行结构动力学分析,发现当波传播遇到缺

  2. Development of combined Opto-Acoustical sensor Modules

    Energy Technology Data Exchange (ETDEWEB)

    Enzenhoefer, A., E-mail: alexander.enzenhoefer@physik.uni-erlangen.de [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anton, G.; Graf, K.; Hoessl, J.; Katz, U.; Lahmann, R.; Neff, M.; Richardt, C. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany)

    2012-01-11

    The faint fluxes of cosmic neutrinos expected at very high energies require large instrumented detector volumes. The necessary volumes in combination with a sufficient shielding against background constitute forbidding and complex environments (e.g. the deep sea) as sites for neutrino telescopes. To withstand these environments and to assure the data quality, the sensors have to be reliable and their operation has to be as simple as possible. A compact sensor module design including all necessary components for data acquisition and module calibration would simplify the detector mechanics and ensures the long term operability of the detector. The compact design discussed here combines optical and acoustical sensors inside one module, therefore reducing electronics and additional external instruments for calibration purposes. In this design the acoustical sensor is primary used for acoustic positioning of the module. The module may also be used for acoustic particle detection and marine science if an appropriate acoustical sensor is chosen. First tests of this design are promising concerning the task of calibration. To expand the field of application also towards acoustic particle detection further improvements concerning electromagnetic shielding and adaptation of the single components are necessary.

  3. Acoustic emission monitoring using a multimode optical fiber sensor

    Science.gov (United States)

    Vandenplas, Steve; Papy, Jean-Michel; Wevers, Martine; Van Huffel, Sabine

    2004-07-01

    Permanent damage in various materials and constructions often causes high-energy high-frequency acoustic waves. To detect those so called `acoustic emission (AE) events', in most cases ultrasonic transducers are embedded in the structure or attached to its surface. However, for many applications where event localization is less important, an embedded low-cost multimode optical fiber sensor configured for event counting may be a better alternative due to its corrosion resistance, immunity to electromagnetic interference and light-weight. The sensing part of this intensity-modulated sensor consists of a multimode optical fiber. The sensing principle now relies on refractive index variations, microbending and mode-mode interferences by the action of the acoustic pressure wave. A photodiode is used to monitor the intensity of the optical signal and transient signal detection techniques (filtering, frame-to-frame analysis, recursive noise estimation, power detector estimator) on the photodiode output are applied to detect the events. In this work, the acoustic emission monitoring capabilities of the multimode optical fiber sensor are demonstrated with the fiber sensor embedded in the liner of a Power Data Transmission (PDT) coil to detect damage (delamination, matrix cracking and fiber breaking) while bending the coil. With the Hankel Total Least Square (HTLS) technique, it is shown that both the acoustic emission signal and optical signal can be modeled with a sum of exponentially damped complex sinusoids with common poles.

  4. An underwater acoustic data compression method based on compressed sensing

    Institute of Scientific and Technical Information of China (English)

    郭晓乐; 杨坤德; 史阳; 段睿

    2016-01-01

    The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit (IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit (OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.

  5. High frequency acoustic microscopy with Fresnel zoom lens

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The acoustic field distributions and the convergent beams generated by the planar-structure Fresnel zone transducers on solid surface are investigated. Because only 0 and 180 degree phase transducers are used, an imaging system with the Fresnel zoom lens could work at very high frequency, which overcomes the frequency limit of the traditional phased array acoustic imaging system. Simulation results are given to illustrate the acoustic field distributions along the focal axis and the whole plane as well. Based on the principle of scanning of the focus with the change of frequency for the excited signal, an experimental imaging system is also built. Acoustic Fresnel zone transducers are fabricated at center frequency of 400 MHz. Measurements and detections of the known hole flaws at different depths of the fused quartz sample are presented to show that the imaging system with Fresnel zoom lens could move its focus by only changing the frequency of the excited signal.

  6. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    Science.gov (United States)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  7. Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiji [Univ. of California, Berkeley, CA (United States)

    1998-08-01

    In recent years, acoustic resonance has drawn great attention as a quantitative tool for characterizing properties of materials and detecting defects in both engineering and geological materials. In quasi-brittle materials such as rock and concrete, inherent fractures have a significant influence on their mechanical and hydraulic properties. Most of these fractures are partially open, providing internal boundaries that are visible to propagating seismic waves. Acoustic resonance occurs as a result of constructive and destructive interferences of propagating waves. Therefore the geometrical and mechanical properties of the fracture are also interrogated by the acoustic resonance characteristics of materials. The objective of this dissertation is to understand the acoustic resonance characteristics of fractured rock and concrete.

  8. Ion-Acoustic Instabilities in a Multi-Ion Plasma

    Directory of Open Access Journals (Sweden)

    Noble P. Abraham

    2013-01-01

    Full Text Available We have, in this paper, studied the stability of the ion-acoustic wave in a plasma composed of hydrogen, positively and negatively charged oxygen ions, and electrons, which approximates very well the plasma environment around a comet. Modelling each cometary component (H+, O+, and O− by a ring distribution, we find that ion-acoustic waves can be generated at frequencies comparable to the hydrogen ion plasma frequency. The dispersion relation has been solved both analytically and numerically. We find that the ratio of the ring speed (u⊥s to the thermal spread (vts modifies the dispersion characteristics of the ion-acoustic wave. The contrasting behaviour of the phase velocity of the ion-acoustic wave in the presence of O− ions for u⊥s>vts (and vice versa can be used to detect the presence of negatively charged oxygen ions and also their thermalization.

  9. Photoacoustic imaging using acoustic reflectors to enhance planar arrays.

    Science.gov (United States)

    Ellwood, Robert; Zhang, Edward; Beard, Paul; Cox, Ben

    2014-12-01

    Planar sensor arrays have advantages when used for photoacoustic imaging: they do not require the imaging target to be enclosed, and they are easier to manufacture than curved arrays. However, planar arrays have a limited view of the acoustic field due to their finite size; therefore, not all of the acoustic waves emitted from a photoacoustic source can be recorded. This loss of data results in artifacts in the reconstructed photoacoustic image. A detection array configuration which combines a planar Fabry–Pérot sensor with perpendicular acoustic reflectors is described and experimentally implemented. This retains the detection advantages of the planar sensor while increasing the effective detection aperture in order to improve the reconstructed photoacoustic image.

  10. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  11. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    Science.gov (United States)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  12. Determination of hydrocarbon levels in water via laser-induced acoustics wave

    Science.gov (United States)

    Bidin, Noriah; Hossenian, Raheleh; Duralim, Maisarah; Krishnan, Ganesan; Marsin, Faridah Mohd; Nughro, Waskito; Zainal, Jasman

    2016-04-01

    Hydrocarbon contamination in water is a major environmental concern in terms of foreseen collapse of the natural ecosystem. Hydrocarbon level in water was determined by generating acoustic wave via an innovative laser-induced breakdown in conjunction with high-speed photographic coupling with piezoelectric transducer to trace acoustic wave propagation. A Q-switched Nd:YAG (40 mJ) was focused in cuvette-filled hydrocarbon solution at various concentrations (0-2000 ppm) to induce optical breakdown, shock wave generation and later acoustic wave propagation. A nitro-dye (ND) laser (10 mJ) was used as a flash to illuminate and frozen the acoustic wave propagation. Lasers were synchronised using a digital delay generator. The image of acoustic waves was grabbed and recorded via charged couple device (CCD) video camera at the speed of 30 frames/second with the aid of Matrox software version 9. The optical delay (0.8-10.0 μs) between the acoustic wave formation and its frozen time is recorded through photodetectors. A piezo-electric transducer (PZT) was used to trace the acoustic wave (sound signal), which cascades to a digital oscilloscope. The acoustic speed is calculated from the ratio of acoustic wave radius (1-8 mm) and optical time delay. Acoustic wave speed is found to linearly increase with hydrocarbon concentrations. The acoustic signal generation at higher hydrocarbon levels in water is attributed to supplementary mass transfer and impact on the probe. Integrated high-speed photography with transducer detection system authenticated that the signals indeed emerged from the laser-induced acoustic wave instead of photothermal processes. It is established that the acoustic wave speed in water is used as a fingerprint to detect the hydrocarbon levels.

  13. A Martian acoustic anemometer.

    Science.gov (United States)

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions.

  14. ACOUSTIC EMISSION ANALYZER

    Directory of Open Access Journals (Sweden)

    J. J. Almeida-Pérez

    2004-12-01

    Full Text Available In this paper appears a solution for acoustic emission analysis commonly known as noise. For the accomplishmentof this work a personal computer is used, besides sensors (microphones and boards designed and built for signalconditioning. These components are part of a virtual instrument used for monitoring the acoustical emission. Themain goal of this work is to develop a virtual instrument that supplies many important data as the result of ananalysis allowing to have information in an easy and friendly way. Moreover this information is very useful forstudying and resolving several situations in planning, production and testing areas.The main characteristics of the virtual instrument are: signal analysis in time, effective power measurement inDecibels (dB, average intensity taken from the principle of paired microphones, as well as the data analysis infrequency. These characteristics are included to handle two information channels.

  15. Non-invasive photo acoustic approach for human bone diagnosis.

    Science.gov (United States)

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via

  16. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.

    2010-07-01

    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  17. Acoustic Characterization of Soil

    Science.gov (United States)

    2007-11-02

    ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Dept. of Electrical & Computer Enginnering Dept Natural Resources...same transduction device is used for transmit and receive, and the broad-band mechanical matching between the transduction device and the acoustic...has a direct influence over the imaging depth for a given dynamic range. Figure 10 demonstrated the influence of the roundtrip propagation loss as a

  18. Acoustic Communications for UUVs

    Science.gov (United States)

    2016-06-07

    through use of high-gain, error-control coding coupled with a modified decision feedback equalizer (DFE) which allows the gain to be exploited prior to...finished it wait for feedback from the receiver. At the host each packet is decoded and displayed if it is correct, or added to a list of bad packets if it...Systems Laboratory, Florida Alantic University, July 1998. L. Freitag el al: ‘A Bidriectional Coherent Acoustic Communications Systems for Underwater

  19. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  20. Acoustics, computers and measurements

    Science.gov (United States)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  1. Acoustically enhanced heat transport

    Science.gov (United States)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  2. Nanoscale Characterization with Laser Picosecond Acoustics

    Science.gov (United States)

    Wright, Oliver B.

    2007-11-01

    Nanophotonics—the manipulation of light with nanomaterials—is a booming subject, its success owing to the host of nanoscale fabrication techniques now at our disposal. However, for the characterization of such nanomaterials it is expedient to turn to other types of waves with a wavelength commensurate with the nanostructure in question. One such choice is acoustic waves of nanometre wavelength. The aim of this article is to provide an introduction to laser picosecond acoustics, a means by which gigahertz-terahertz ultrasonic waves can be generated and detected by ultrashort light pulses. This method can therefore be used to characterize materials with nanometre spatial resolution. In this article we review the theoretical background for opaque single-layer thin film isotropic samples with reference to key experiments. Solids including metals and semiconductors are discussed, although liquids and, conceivably, gases, are not excluded.

  3. Study of Acoustic Emissions from Composites

    Science.gov (United States)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  4. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  5. Latest Trends in Acoustic Sensing

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  6. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  7. Surface Modification on Acoustic Wave Biosensors for Enhanced Specificity

    Directory of Open Access Journals (Sweden)

    Nathan D. Gallant

    2012-09-01

    Full Text Available Changes in mass loading on the surface of acoustic biosensors result in output frequency shifts which provide precise measurements of analytes. Therefore, to detect a particular biomarker, the sensor delay path must be judiciously designed to maximize sensitivity and specificity. B-cell lymphoma 2 protein (Bcl-2 found in urine is under investigation as a biomarker for non-invasive early detection of ovarian cancer. In this study, surface chemistry and biofunctionalization approaches were evaluated for their effectiveness in presenting antibodies for Bcl-2 capture while minimizing non-specific protein adsorption. The optimal combination of sequentially adsorbing protein A/G, anti-Bcl-2 IgG and Pluronic F127 onto a hydrophobic surface provided the greatest signal-to-noise ratio and enabled the reliable detection of Bcl-2 concentrations below that previously identified for early stage ovarian cancer as characterized by a modified ELISA method. Finally, the optimal surface modification was applied to a prototype acoustic device and the frequency shift for a range of Bcl-2 concentration was quantified to demonstrate the effectiveness in surface acoustic wave (SAW-based detection applications. The surface functionalization approaches demonstrated here to specifically and sensitively detect Bcl-2 in a working ultrasonic MEMS biosensor prototype can easily be modified to detect additional biomarkers and enhance other acoustic biosensors.

  8. Sound wave and laser excitation for acousto-optical landmine detection

    NARCIS (Netherlands)

    Lutzmann, P.; Heuvel, J.C. van den; Klien, V.; Schleijpen, H.M.A.; Hebel, M.; Putten, F.J.M. van

    2003-01-01

    Acoustic landmine detection (ALD) is a technique for the detection of buried landmines including non-metal mines. An important issue in ALD is the acoustic excitation of the soil. Laser excitation is promising for complete standoff detection using lasers for excitation and monitoring. Acoustic excit

  9. Spacecraft Internal Acoustic Environment Modeling

    Science.gov (United States)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  10. Acoustic Imaging of Combustion Noise

    Science.gov (United States)

    Ramohalli, K. N.; Seshan, P. K.

    1984-01-01

    Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.

  11. Acoustic streaming with heat exchange

    Science.gov (United States)

    Gubaidullin, A. A.; Pyatkova, A. V.

    2016-10-01

    Acoustic streaming in a cylindrical cavity with heat exchange is numerically investigated. The cavity is filled with air. The boundaries of the cavity are maintained at constant temperature. The features of acoustic streaming manifesting with the decrease in the frequency of vibration in comparison with the resonant frequency are determined. The influence of the nonlinearity of process on acoustic streaming is shown. The nonlinearity is caused by the increase of the vibration amplitude.

  12. Acoustic emission analysis as a non-destructive test procedure for fiber compound structures

    Science.gov (United States)

    Block, J.

    1983-01-01

    The concept of acoustic emission analysis is explained in scientific terms. The detection of acoustic events, their localization, damage discrimination, and event summation curves are discussed. A block diagram of the concept of damage-free testing of fiber-reinforced synthetic materials is depicted. Prospects for application of the concept are assessed.

  13. GOATS 2011 Adaptive and Collaborative Exploitation of 3-Dimensional Environmental Acoustics in Distributed Undersea Networks

    Science.gov (United States)

    2013-09-30

    concept of a network of AUVs as an array of Virtual Sensors, based on fully integrated sensing, modeling and control , reducing the inter- platform...integrating high-fidelity acoustic modeling , platform dynamics and network communication and control . In regard to the environmental acoustic modeling ...static, passive and active sonar configurations for concurrent detection, classification and localization of subsea and bottom objects

  14. Combined Environment Acoustic Chamber (CEAC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  15. Acoustic Communications Measurement Systems (ACOMMS)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Design and develop adaptive signal processing techniques to improve underwater acoustic communications and networking. Phase coherent and incoherent signal...

  16. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  17. Biodiversity sampling using a global acoustic approach: contrasting sites with microendemics in New Caledonia.

    Directory of Open Access Journals (Sweden)

    Amandine Gasc

    Full Text Available New Caledonia is a Pacific island with a unique biodiversity showing an extreme microendemism. Many species distributions observed on this island are extremely restricted, localized to mountains or rivers making biodiversity evaluation and conservation a difficult task. A rapid biodiversity assessment method based on acoustics was recently proposed. This method could help to document the unique spatial structure observed in New Caledonia. Here, this method was applied in an attempt to reveal differences among three mountain sites (Mandjélia, Koghis and Aoupinié with similar ecological features and species richness level, but with high beta diversity according to different microendemic assemblages. In each site, several local acoustic communities were sampled with audio recorders. An automatic acoustic sampling was run on these three sites for a period of 82 successive days. Acoustic properties of animal communities were analysed without any species identification. A frequency spectral complexity index (NP was used as an estimate of the level of acoustic activity and a frequency spectral dissimilarity index (Df assessed acoustic differences between pairs of recordings. As expected, the index NP did not reveal significant differences in the acoustic activity level between the three sites. However, the acoustic variability estimated by the index Df , could first be explained by changes in the acoustic communities along the 24-hour cycle and second by acoustic dissimilarities between the three sites. The results support the hypothesis that global acoustic analyses can detect acoustic differences between sites with similar species richness and similar ecological context, but with different species assemblages. This study also demonstrates that global acoustic methods applied at broad spatial and temporal scales could help to assess local biodiversity in the challenging context of microendemism. The method could be deployed over large areas, and

  18. Frequency steerable acoustic transducers

    Science.gov (United States)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  19. Acoustic Mechanical Feedthroughs

    Science.gov (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  20. Taming Acoustic Cavitation

    CERN Document Server

    Rivas, David Fernandez; Enriquez, Oscar R; Versluis, Michel; Prosperetti, Andrea; Gardeniers, Han; Lohse, Detlef

    2012-01-01

    In this fluid dynamics video we show acoustic cavitation occurring from pits etched on a silicon surface. By immersing the surface in a liquid, gas pockets are entrapped in the pits which upon ultrasonic insonation, are observed to shed cavitation bubbles. Modulating the driving pressure it is possible to induce different behaviours based on the force balance that determines the interaction among bubbles and the silicon surface. This system can be used for several applications like sonochemical water treatment, cleaning of surfaces with deposited materials such as biofilms.