WorldWideScience

Sample records for acoustic detection activities

  1. A Correlated Active Acoustic Leak Detection in a SFR Steam Generator

    International Nuclear Information System (INIS)

    Kim, Tae Joon; Jeong, Ji Young; Kim, Jong Man; Kim, Byung Ho; Kim, Yong Il

    2009-01-01

    The methods of acoustic leak detection are active acoustic leak detection and passive acoustic leak detection. The methods for passive acoustic leak detection are already established, but because our goal is development of passive acoustic leak detection for detecting a leakage range of small and micro leak rates, it is difficult detecting a leak in steam generator using this developed passive acoustic leak detection. Thus the acoustic leak detection system is required to be able to detect wide range of water leaks. From this view point we need to develop an active acoustic leak detection technology to be able to detect intermediate leak rates

  2. Active acoustic leak detection in steam generator units of fast reactors

    International Nuclear Information System (INIS)

    Oriol, L.; Journeau, Ch.

    1996-01-01

    Steam generators (SG) of Fast Reactors can be subject to water leakage into the sodium secondary circuit, causing an exothermic chemical reaction with potential serious damage to plant. Within the framework of the European Fast Reactor project, the CEA has developed an active acoustic detection technique which, when used in parallel with passive acoustic detection, will lead to effective leak detection results in terms of reliability and false alarm rates. Whilst the passive method is based on the increase in acoustic noise generated by the reaction, the active method takes advantage of the acoustic attenuation by the hydrogen bubbles produced. The method has been validated: in water, during laboratory testing at the Centre d'Etudes de Cadarache; in sodium, at the ASB loop at Bensberg (Germany) and at AEA Dounreay (Scotland). Full analysis of the tests carried out on the SG of the Prototype Fast Reactor in 1994 during end-of-life testing should lead to reactor validation on the method. (authors)

  3. Acoustic change detection algorithm using an FM radio

    Science.gov (United States)

    Goldman, Geoffrey H.; Wolfe, Owen

    2012-06-01

    The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.

  4. Active acoustic leak detection for LMFBR steam generators. Pt. 7. Potential for small leak detection

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Yoshida, Kazuo

    1998-01-01

    In order to prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, is being developed. Previous studies have revealed that the active acoustic method can detect bubbles of 10 l/s (equivalence water leak rate about 10 g/s) within 10 seconds in practical steam generators. In order to prevent the expansion of damage to neighboring tubes, however, it is necessary to detect smaller leakage of water from heat transfer tubes. In this study, in order to evaluate the detection sensitivity of the active method, the signal processing methods for emitter and receiver sound and the detection method for leakage within 1 g/s are investigated experimentally, using an SG full-sector model that simulates the actual SGs. A typical result shows that detection of 0.4 l/s air bubbles (equivalent water leak rate about 0.4 g/s) takes about 80 seconds, which is shorter than the propagation time of damage to neighboring tubes. (author)

  5. Acoustic leak detection of LMFBR steam generator

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Yoshida, Kazuo

    1993-01-01

    The development of a water leak detector with short response time for LMFBR steam generators is required to prevent the failure propagation caused by the sodium-water reaction and to maintain structural safety in steam generators. The development of an acoustic leak detector assuring short response time has attracted. The purpose of this paper is to confirm the basic detection feasibility of the active acoustic leak detector, and to investigate the leak detection method by erasing the background noise by spectrum analysis of the passive acoustic leak detector. From a comparison of the leak detection sensitivity of the active and the passive method, the active method is not influenced remarkably by the background noise, and it has possibility to detect microleakage with short response time. We anticipate a practical application of the active method in the future. (author)

  6. Active acoustic leak detection for LMFBR steam generator. Sound attenuation due to bubbles

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Sakuma, Toshio

    1995-01-01

    In the steam generators (SG) of LMFBR, it is necessary to detect the leakage of water from tubes of heat exchangers as soon as it occurs. The active acoustic detection method has drawn general interest owing to its short response time and reduction of the influence of background noise. In this paper, the application of the active acoustic detection method for SG is proposed, and sound attenuation by bubbles is investigated experimentally. Furthermore, using the SG sector model, sound field characteristics and sound attenuation characteristics due to injection of bubbles are studied. It is clarified that the sound attenuation depends upon bubble size as well as void fraction, that the distance attenuation of sound in the SG model containing heat transfer tubes is 6dB for each two-fold increase of distance, and that emitted sound attenuates immediately upon injection of bubbles. (author)

  7. The deep sea Acoustic Detection system AMADEUS

    International Nuclear Information System (INIS)

    Naumann, Christopher Lindsay

    2008-01-01

    As a part of the ANTARES neutrino telescope, the AMADEUS (ANTARES Modules for Acoustic Detection Under the Sea) system is an array of acoustical sensors designed to investigate the possibilities of acoustic detection of ultra-high energy neutrinos in the deep sea. The complete system will comprise a total of 36 acoustic sensors in six clusters on two of the ANTARES detector lines. With an inter-sensor spacing of about one metre inside the clusters and between 15 and 340 metres between the different clusters, it will cover a wide range of distances as will as provide a considerable lever arm for point source triangulation. Three of these clusters have already been deployed in 2007 and have been in operation since, currently yielding around 2GB of acoustic data per day. The remaining three clusters are scheduled to be deployed in May 2008 together with the final ANTARES detector line. Apart from proving the feasibility of operating an acoustic detection system in the deep sea, the main aim of this project is an in-depth survey of both the acoustic properties of the sea water and the acoustic background present at the detector site. It will also serve as a platform for the development and refinement of triggering, filtering and reconstruction algorithms for acoustic particle detection. In this presentation, a description of the acoustic sensor and read-out system is given, together with examples for the reconstruction and evaluation of the acoustic data.

  8. Acoustic Particle Detection with the ANTARES Detector

    Directory of Open Access Journals (Sweden)

    M. Neff

    2010-01-01

    Full Text Available The (Antares Modules for Acoustic Detection Under the Sea AMADEUS system within the (Astronomy with a Neutrino Telescope and Abyss environmental RESsearch ANTARES neutrino telescope is designed to investigate detection techniques for acoustic signals produced by particle cascades. While passing through a liquid a cascade deposits energy and produces a measurable pressure pulse. This can be used for the detection of neutrinos with energies exceeding 1018 eV. The AMADEUS setup consists of 36 hydrophones grouped in six local clusters measuring about one cubic meter each. This article focuses on acoustic particle detection, the hardware of the AMADEUS detector and techniques used for acoustic signal processing.

  9. Acoustic Particle Detection with the ANTARES Detector

    Directory of Open Access Journals (Sweden)

    Richardt C

    2010-01-01

    Full Text Available The (Antares Modules for Acoustic Detection Under the Sea AMADEUS system within the (Astronomy with a Neutrino Telescope and Abyss environmental RESsearch ANTARES neutrino telescope is designed to investigate detection techniques for acoustic signals produced by particle cascades. While passing through a liquid a cascade deposits energy and produces a measurable pressure pulse. This can be used for the detection of neutrinos with energies exceeding  eV. The AMADEUS setup consists of 36 hydrophones grouped in six local clusters measuring about one cubic meter each. This article focuses on acoustic particle detection, the hardware of the AMADEUS detector and techniques used for acoustic signal processing.

  10. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  11. Acoustic leak detection in nuclear power plants

    International Nuclear Information System (INIS)

    McElroy, J.W.

    1986-01-01

    For several years now, utilities have been utilizing acoustic leak detection methods as an operating tool in their nuclear power stations. The purpose for using the leak detection system at the various stations vary from safety, ALARA, improved operations, preventive maintenance, or increased plant availability. This paper describes the various acoustic techniques and their application. The techniques are divided into three categories: specific component leakage, intersystem leakage, and pipe through-wall crack leakage. The paper addresses each category in terms of motivation to monitor, method of application and operation, and benefits to be gained. Current requirements are reviewed and analyzed with respect to the acoustic techniques. The paper shows how acoustic leak detection is one of the most effective leak detection tools available. 9 figures, 1 table

  12. The acoustic detection of cavitation in pumps

    International Nuclear Information System (INIS)

    Macleod, I.D.; Gray, B.S.; Taylor, C.G.

    1978-01-01

    A programme was initiated to develop a reliable technique for detecting the onset of acoustic noise from cavitation in a pump and to relate this to cavitation inception data, since significant noise from collapse of vapour bubbles arising from such cavitation would reduce the sensitivity of a noise detection system for boiling of sodium in fast breeder reactors. Factors affecting the detection of cavitation are discussed. The instrumentation and techniques of frequency analysis and pulse detection are described. Two examples are then given of the application of acoustic detection techniques under controlled conditions. It is concluded that acoustic detection can be a reliable method for detecting inception of cavitation in a pump and the required conditions are stated. (U.K.)

  13. Development of active acoustic method for water leak detection of LMFBR steam generators

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Yoshida, Kazuo; Kinoshita, Izumi

    2001-01-01

    In order to prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBRs), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, is being developed. In this study, in order to evaluate the detection sensitivity of the active method, the signal processing methods for emitter and receiver and the detection method for leakage are investigated experimentally. In-water experiments performed by using an SG full-sector model that simulates the actual SGs. As an experimental result, the received sound attenuation for 10s was more than 10dB from air bubble injection when injected bubble of 10 l/s (equivalence water leak rate about 10 g/s.) The attenuation of sound are least affected by bubble injection position of heat transfer tubes bunch department. It is clarified that the background noise hardly influenced water leak detection performance as a result of having examined influence of background noise. (author)

  14. Passive acoustic monitoring to detect spawning in large-bodied catostomids

    Science.gov (United States)

    Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.

    2014-01-01

    Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.

  15. Golden Gate and Pt. Reyes Acoustic Detections

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...

  16. Detection method of internal leakage from valve using acoustic method

    International Nuclear Information System (INIS)

    Kumagai, Horomichi

    1990-01-01

    The purpose of this study is to estimate the availability of acoustic method for detecting the internal leakage of valves at power plants. Experiments have been carried out on the characteristics of acoustic noise caused by the leak simulated flow. From the experimental results, the mechanism of the acoustic noisegenerated from flow, the relation between acoustic intensity and leak flow velocity, and the characteristics of the acoustic frequency spectrum were clarified. The acoustic method was applied to valves at site, and the background noises were measured in abnormal plant conditions. When the background level is higher than the acoustic signal, the difference between the background noise frequency spectrum and the acoustic signal spectrum provide a very useful leak detection method. (author)

  17. Structural Acoustic UXO Detection and Identification in Marine Environments

    Science.gov (United States)

    2016-05-01

    a thick steel wall, is cylindrical, and has an aspect ratio of about 5:1. Further, the interior water can support acoustic waves as does the epoxy...FINAL REPORT Structural Acoustic UXO Detection and Identification in Marine Environments SERDP Project MR-2103 MAY 2016 B. H...NUMBER Structural Acoustic UXO Detection and Identification in Marine Environments- Final report for Follow-on Work- MR-2103 Sb. GRANT NUMBER Sc

  18. Robotic vehicle uses acoustic sensors for voice detection and diagnostics

    Science.gov (United States)

    Young, Stuart H.; Scanlon, Michael V.

    2000-07-01

    An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.

  19. PLASTIC PIPE DEFECT DETECTION USING NONLINEAR ACOUSTIC MODULATION

    Directory of Open Access Journals (Sweden)

    Gigih Priyandoko

    2015-02-01

    Full Text Available This project discuss about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. Nonlinaer acoustic modulations are investigated for fatigue crack detection. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. An actuator is used for frequencies generation while sensor is used for the frequencies detection. Besides that, a PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncrack specimen and cracked specimen can be distinguished.

  20. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  1. Laser-induced acoustic landmine detection with experimental results on buried landmines

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Putten, F.J.M. van; Koersel, A.C. van; Schleijpen, H.M.A.

    2004-01-01

    Acoustic landmine detection (ALD) is a technique for the detection of buried landmines including non-metal mines. Since it gives complementary results with GPR or metal detection, sensor fusion of these techniques with acoustic detection would give promising results. Two methods are used for the

  2. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System.

    Science.gov (United States)

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-02-20

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  3. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System

    Directory of Open Access Journals (Sweden)

    Anbang Zhao

    2017-02-01

    Full Text Available In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  4. Topography and biological noise determine acoustic detectability on coral reefs

    KAUST Repository

    Cagua, Edgar F.; Berumen, Michael L.; Tyler, Elizabeth

    2013-01-01

    Acoustic telemetry is an increasingly common tool for studying the movement patterns, behavior and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic

  5. Development of acoustic leak detection system in PNC

    International Nuclear Information System (INIS)

    Tanabe, H.; Kuroha, M.

    1990-01-01

    The development of an acoustic leak detector is under way at PNC as a detection system that has potential of quick response and high reliability for larger steam generators of future LMFBR plants. The studies have two aspects, i.e., an acoustic wave analysis in various sodium-water reactions and a background noise (BGN) analysis in a sodium-heated 50MWt steam generator (50MWGS). In the former analysis, wave profiles of the sodium-water reaction sound were analyzed and compared with those of inert gas injection sound. The comparison revealed that there were no wave profiles specific to a sodium-water reaction sound. The latter clarified that major acoustic sources in the steam generator were sodium flow and steam generation/flow and that the water leak rate at which a noise level was comparable with that of the background noise was about 0.5 g/sec. in the evaporator of 50MWSG. The estimation of acceleration levels of BGN and leak sounds in other plants reveals that an intermediate leak is detectable in the Monju evaporator with a present acoustic detection system. (author). 2 refs, 9 figs

  6. Signal classification for acoustic neutrino detection

    International Nuclear Information System (INIS)

    Neff, M.; Anton, G.; Enzenhöfer, A.; Graf, K.; Hößl, J.; Katz, U.; Lahmann, R.; Richardt, C.

    2012-01-01

    This article focuses on signal classification for deep-sea acoustic neutrino detection. In the deep sea, the background of transient signals is very diverse. Approaches like matched filtering are not sufficient to distinguish between neutrino-like signals and other transient signals with similar signature, which are forming the acoustic background for neutrino detection in the deep-sea environment. A classification system based on machine learning algorithms is analysed with the goal to find a robust and effective way to perform this task. For a well-trained model, a testing error on the level of 1% is achieved for strong classifiers like Random Forest and Boosting Trees using the extracted features of the signal as input and utilising dense clusters of sensors instead of single sensors.

  7. Acoustic detection of high energy neutrinos in sea water: status and prospects

    Directory of Open Access Journals (Sweden)

    Lahmann Robert

    2017-01-01

    Full Text Available The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of neutrinos at energies in the EeV-range and above. The technique is based on the thermo-acoustic model, which implies that the energy deposition by a particle cascade – resulting from a neutrino interaction in a medium with suitable thermal and acoustic properties – leads to a local heating and a subsequent characteristic pressure pulse that propagates in the surrounding medium. Current or recent test setups for acoustic neutrino detection have either been add-ons to optical neutrino telescopes or have been using acoustic arrays built for other purposes, typically for military use. While these arrays have been too small to derive competitive limits on neutrino fluxes, they allowed for detailed studies of the experimental technique. With the advent of the research infrastructure KM3NeT in the Mediterranean Sea, new possibilities will arise for acoustic neutrino detection. In this article, results from the “first generation” of acoustic arrays will be summarized and implications for the future of acoustic neutrino detection will be discussed.

  8. Acoustic holograms of active regions

    International Nuclear Information System (INIS)

    Chou, Dean-Yi

    2008-01-01

    We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.

  9. Acoustic holograms of active regions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Dean-Yi [Physics Department, National Tsing Hua University, Hsinchu, 30013, Taiwan (China)], E-mail: chou@phys.nthu.edu.tw

    2008-10-15

    We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.

  10. A Four-Quadrant PVDF Transducer for Surface Acoustic Wave Detection

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2012-08-01

    Full Text Available In this paper, a polyvinylidene fluoride (PVDF piezoelectric transducer was developed to detect laser-induced surface acoustic waves in a SiO2-thin film–Si-substrate structure. In order to solve the problems related to, firstly, the position of the probe, and secondly, the fact that signals at different points cannot be detected simultaneously during the detection process, a four-quadrant surface acoustic wave PVDF transducer was designed and constructed for the purpose of detecting surface acoustic waves excited by a pulse laser line source. The experimental results of the four-quadrant piezoelectric detection in comparison with the commercial nanoindentation technology were consistent, the relative error is 0.56%, and the system eliminates the piezoelectric surface wave detection direction deviation errors, improves the accuracy of the testing system by 1.30%, achieving the acquisition at the same time at different testing positions of the sample.

  11. Experimental results of passive vibro-acoustic leak detection in SFR steam generator mock-up

    International Nuclear Information System (INIS)

    Moriot, J.; Gastaldi, O.; Maxit, L.; Guyader, J-L.; Perisse, J.; Migot, B.

    2013-06-01

    Regarding to GEN 4 context, it is necessary to fulfil the high safety standards for sodium fast reactors (SFR), particularly against water-sodium reaction which may occur in the steam generator units (SGU) in case of leak. This reaction can cause severe damages in the component in a short time. Detecting such a leak by visual in-sodium inspection is impossible because of sodium opacity. Hydrogen detection is then used but the time response of this method can be high in certain operating conditions. Active and passive acoustic leak detection methods were studied before SUPERPHENIX plant shutdown in 1997 to detect a water-into-sodium leak with a short time response. In the context of the new R and D studies for SFR, an innovative passive vibro-acoustic method is developed in the framework of a Ph.D. thesis to match with GEN 4 safety requirements. The method consists in assuming that a small leak emits spherical acoustic waves in a broadband frequency domain, which propagate in the liquid sodium and excite the SGU cylindrical shell. These spatially coherent waves are supposed to be buried by a spatially incoherent background noise. The radial velocities of the shell is measured by an array of accelerometers positioned on the external envelop of the SGU and a beam forming treatment is applied to increase the signal-to-noise ratio (SNR) and to detect and localize the acoustic source. Previous numerical experiments were achieved and promising results were obtained. In this paper, experimental results of the proposed passive vibro-acoustic leak detection are presented. The experiment consists in a cylindrical water-filled steel pipe representing a model of SGU shell without tube bundle. A hydro-phone emitting an acoustic signal is used to simulate an acoustic monopole. Spatially uncorrelated noise or water-flow induced shell vibrations are considered as the background noise. The beam-forming method is applied to vibration signals measured by a linear array of

  12. Detection method of internal leakage from valve using acoustic method

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Kitajima, Akira; Suzuki, Akio.

    1990-01-01

    The objective of this study is to estimate the feasibility of the acoustic method for the internal leakage from the valves in power plants. From the experimental results, it was suggested that the acoustic method for the monitoring of leakage was feasible. When the background levels are higher than the acoustic signals from leakage, we can detect the leakage analyzing the spectrum of the remainders which take the background noise from the acoustic signals. (author)

  13. Diesel Engine Valve Clearance Detection Using Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Fathi Elamin

    2010-01-01

    Full Text Available This paper investigated, using experimental method, the suitability of acoustic emission (AE technique for the condition monitoring of diesel engine valve faults. The clearance fault was adjusted experimentally in an exhaust valve and successfully detected and diagnosed in a Ford FSD 425 four-cylinder, four-stroke, in-line OHV, direct injection diesel engine. The effect of faulty exhaust valve clearance on engine performance was monitored and the difference between the healthy and faulty engine was observed from the recorded AE signals. The measured results from this technique show that using only time domain and frequency domain analysis of acoustic emission signals can give a superior measure of engine condition. This concludes that acoustic emission is a powerful and reliable method of detection and diagnosis of the faults in diesel engines and this is considered to be a unique approach to condition monitoring of valve performance.

  14. Passive acoustic detection of deep-diving beaked whales

    DEFF Research Database (Denmark)

    Zimmer, W.M.X.; Harwood, J.; Tyack, P.L.

    2008-01-01

    Beaked whales can remain submerged for an hour or more and are difficult to sight when they come to the surface to breathe. Passive acoustic detection (PAD) not only complements traditional visual-based methods for detecting these species but also can be more effective because beaked whales produce...... clicks regularly to echolocate on prey during deep foraging dives. The effectiveness of PAD for beaked whales depends not only on the acoustic behavior and output of the animals but also on environmental conditions and the quality of the passive sonar implemented. A primary constraint on the range...... at which beaked whale clicks can be detected involves their high frequencies, which attenuate rapidly, resulting in limited ranges of detection, especially in adverse environmental conditions. Given current knowledge of source parameters and in good conditions, for example, with a wind speed of 2  m...

  15. Integrated immunoassay using tuneable surface acoustic waves and lensfree detection.

    Science.gov (United States)

    Bourquin, Yannyk; Reboud, Julien; Wilson, Rab; Zhang, Yi; Cooper, Jonathan M

    2011-08-21

    The diagnosis of infectious diseases in the Developing World is technologically challenging requiring complex biological assays with a high analytical performance, at minimal cost. By using an opto-acoustic immunoassay technology, integrating components commonly used in mobile phone technologies, including surface acoustic wave (SAW) transducers to provide pressure driven flow and a CMOS camera to enable lensfree detection technique, we demonstrate the potential to produce such an assay. To achieve this, antibody functionalised microparticles were manipulated on a low-cost disposable cartridge using the surface acoustic waves and were then detected optically. Our results show that the biomarker, interferon-γ, used for the diagnosis of diseases such as latent tuberculosis, can be detected at pM concentrations, within a few minutes (giving high sensitivity at a minimal cost). This journal is © The Royal Society of Chemistry 2011

  16. Basic principles of thermo-acoustic energy and temporal profile detection of microwave pulses

    CERN Document Server

    Andreev, V G; Vdovin, V A

    2001-01-01

    Basic principles of a thermo-acoustic method developed for the detection of powerful microwave pulses of nanosecond duration are discussed.A proposed method is based on the registration of acoustic pulse profile originated from the thermal expansion of the volume where microwave energy was absorbed.The amplitude of excited acoustic transient is proportional to absorbed microwave energy and its temporal profile resembles one of a microwave pulse when certain conditions are satisfied.The optimal regimes of microwave pulse energy detection and sensitivity of acoustic transient registration with piezo-transducer are discussed.It was demonstrated that profile of a microwave pulse could be detected with temporal resolution of 1 - 3 nanosecond.

  17. Theoretical detection threshold of the proton-acoustic range verification technique

    International Nuclear Information System (INIS)

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei; Xiang, Liangzhong

    2015-01-01

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10 6 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range

  18. Theoretical detection threshold of the proton-acoustic range verification technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305-5847 (United States); Xiang, Liangzhong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019-1101 (United States)

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic

  19. Particle Filter with Integrated Voice Activity Detection for Acoustic Source Tracking

    Directory of Open Access Journals (Sweden)

    Anders M. Johansson

    2007-01-01

    Full Text Available In noisy and reverberant environments, the problem of acoustic source localisation and tracking (ASLT using an array of microphones presents a number of challenging difficulties. One of the main issues when considering real-world situations involving human speakers is the temporally discontinuous nature of speech signals: the presence of silence gaps in the speech can easily misguide the tracking algorithm, even in practical environments with low to moderate noise and reverberation levels. A natural extension of currently available sound source tracking algorithms is the integration of a voice activity detection (VAD scheme. We describe a new ASLT algorithm based on a particle filtering (PF approach, where VAD measurements are fused within the statistical framework of the PF implementation. Tracking accuracy results for the proposed method is presented on the basis of synthetic audio samples generated with the image method, whereas performance results obtained with a real-time implementation of the algorithm, and using real audio data recorded in a reverberant room, are published elsewhere. Compared to a previously proposed PF algorithm, the experimental results demonstrate the improved robustness of the method described in this work when tracking sources emitting real-world speech signals, which typically involve significant silence gaps between utterances.

  20. Acoustic detection of UHE neutrinos in the Mediterranean sea: status and perspective

    Directory of Open Access Journals (Sweden)

    Simeone Francesco

    2017-01-01

    Full Text Available In recent years the astro-particle community is involved in the realization of experimental apparatuses for the detection of high energy neutrinos originated in cosmic sources or produced in the interaction of Cosmic Rays with the Cosmic Microwave Background. For neutrino energies in the TeV-PeV range, optical Cherenkov detectors, that have been so far positively exploited by Baikal[1], IceCube[2] and ANTARES[3], are considered optimal. For higher energies, three different experimental techniques are under study: the detection of radio pulses produced by showers induced by a neutrino interaction, the detection of air showers initiated by neutrinos interacting with rocks or deep Earth’s atmosphere and the detection of acoustic waves produced by deposition of energy following the interaction of neutrinos in an acoustically transparent medium. The potential of the acoustic detection technique, first proposed by Askaryan[4], to build very large neutrino detectors is appealing, thanks to the optimal properties of media such as water or ice as sound propagator. Though the studies on this technique are still in an early stage, acoustic positioning systems used to locate the optical modules in underwater Cherenkov neutrino detectors, give the possibility to study the ambient noise and provide important information for the future analysis of acoustic data.

  1. Acoustic emission

    International Nuclear Information System (INIS)

    Straus, A.; Lopez Pumarega, M.I.; Di Gaetano, J.O.; D'Atellis, C.E.; Ruzzante, J.E.

    1990-01-01

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  2. Device for acoustic detection in a nuclear reactor

    International Nuclear Information System (INIS)

    Hanff, M.; Lions, N.; Peronnet, J.

    1975-01-01

    A description is given of a device which comprises a first acoustic conductor placed vertically within the coolant liquid contained in a nuclear reactor vessel and a second coaxial acoustic conductor extending to the exterior of the reactor vessel. The device essentially comprises an accelerometer assembly for detecting signals delivered by the second conductor and an amplifier which applies the detected signals to measuring instruments located outside the reactor vessel. The accelerometer comprises an amplifying pressure needle carried by the upper end of the second conductor, a piezoelectric ceramic element, a block fitted with a spring for applying the ceramic element against the needle and a preamplifier connected in series with the amplifier

  3. Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection

    Directory of Open Access Journals (Sweden)

    Erik Marchi

    2017-01-01

    Full Text Available In the emerging field of acoustic novelty detection, most research efforts are devoted to probabilistic approaches such as mixture models or state-space models. Only recent studies introduced (pseudo-generative models for acoustic novelty detection with recurrent neural networks in the form of an autoencoder. In these approaches, auditory spectral features of the next short term frame are predicted from the previous frames by means of Long-Short Term Memory recurrent denoising autoencoders. The reconstruction error between the input and the output of the autoencoder is used as activation signal to detect novel events. There is no evidence of studies focused on comparing previous efforts to automatically recognize novel events from audio signals and giving a broad and in depth evaluation of recurrent neural network-based autoencoders. The present contribution aims to consistently evaluate our recent novel approaches to fill this white spot in the literature and provide insight by extensive evaluations carried out on three databases: A3Novelty, PASCAL CHiME, and PROMETHEUS. Besides providing an extensive analysis of novel and state-of-the-art methods, the article shows how RNN-based autoencoders outperform statistical approaches up to an absolute improvement of 16.4% average F-measure over the three databases.

  4. Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection.

    Science.gov (United States)

    Marchi, Erik; Vesperini, Fabio; Squartini, Stefano; Schuller, Björn

    2017-01-01

    In the emerging field of acoustic novelty detection, most research efforts are devoted to probabilistic approaches such as mixture models or state-space models. Only recent studies introduced (pseudo-)generative models for acoustic novelty detection with recurrent neural networks in the form of an autoencoder. In these approaches, auditory spectral features of the next short term frame are predicted from the previous frames by means of Long-Short Term Memory recurrent denoising autoencoders. The reconstruction error between the input and the output of the autoencoder is used as activation signal to detect novel events. There is no evidence of studies focused on comparing previous efforts to automatically recognize novel events from audio signals and giving a broad and in depth evaluation of recurrent neural network-based autoencoders. The present contribution aims to consistently evaluate our recent novel approaches to fill this white spot in the literature and provide insight by extensive evaluations carried out on three databases: A3Novelty, PASCAL CHiME, and PROMETHEUS. Besides providing an extensive analysis of novel and state-of-the-art methods, the article shows how RNN-based autoencoders outperform statistical approaches up to an absolute improvement of 16.4% average F -measure over the three databases.

  5. Sodium boiling detection in LMFBRs by acoustic-neutronic cross correlation

    International Nuclear Information System (INIS)

    Wright, S.A.

    1977-01-01

    The acoustic and neutronic noise signals caused by boiling are the signals primarily considered likely to detect sodium boiling in an LMFBR. Unfortunately, these signals may have serious signal-to-noise problems due to strong background noise sources. Neutronic-acoustic cross correlation techniques are expected to provide a means of improving the signal-to-noise ratio. This technique can improve the signal-to-noise ratio because the neutronic and acoustic signals due to boiling are highly correlated near the bubble repetition frequency, while the background noise sources are expected to be uncorrelated (or at most weakly correlated). An experiment was designed to show that the neutronic and acoustic noise signals are indeed highly correlated. The experiment consisted of simulating the void and pressure effects of local sodium boiling in the core of a zero-power reactor (ARK). The analysis showed that the neutronic and acoustic noise signals caused by boiling are almost perfectly correlated in a wide frequency band about the bubble repetition frequency. The results of the experiments were generalized to full-scale reactors to compare the inherent effectiveness of the methods which use the neutronic or acoustic signals alone with a hybrid method, which cross correlates the neutronic and acoustic signals. It was concluded that over a zone of the reactor where the void coefficient is sufficiently large (approximately 85 percent the core volume), the cross correlation method can provide a more rapid detection system for a given signal-to-noise ratio. However, where the void coefficient is small, one must probably rely on the acoustic method alone

  6. Acoustic detectability of Rhynchophorus cruentatus (Coleoptera: Dryophthoridae)

    Science.gov (United States)

    The palmetto weevil, Rhynchophorus cruentatus Fabricius, native to Florida, attacks palm trees. Like its economically destructive relatives, R. ferrugineus (Olivier) and R. palmarum L., it feeds internally and often is not detected until irreparable damage occurs. Acoustic methods previously used su...

  7. Preliminary Study of Feasibility of Acoustic Detection of Small Sodium-Water Reactions in Lmfbr Steam Generators.

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, H. V.

    1970-06-01

    An evaluation of acoustic techniques for the detection of sound resulting from water leaks into liquid sodium was conducted. Acoustic spectra over the range of 100Hz to 80kHz were detected. A leak as small as 0.00008 lb/ sec was detected by the acoustic instrumentation. The indicated leak rate was the smallest that was injected into the liquid sodium, and is not to be interpreted as the smallest leak rate that might be detected by the acoustic method. Detection time was found to be essentially instantaneous.

  8. Acoustic valve leak detection in nuclear plants

    International Nuclear Information System (INIS)

    Dimmick, J.G.; Dickey, J.W.

    1983-01-01

    Internal valve leakage is a hidden energy loss and can cause or prolong a forced outage. Recent advances in acoustic detection of internal valve leakage have reduced piping system maintenance costs, unnecessary downtime, and energy waste. Extremely short payback periods have been reported by plants applying this technology to preventive maintenance, troubleshooting, energy conservation and outage planning. Sensors temporarily attached to the outside of valves and connected to the instruments detect ultrasonic acoustic emissions which are characteristic of internal valve leakage. Since the sensors are attached to the outside of the valves, the time and expense of dismantling the valves or removing them from the systems are eliminated. This paper describes the instrumentation and specific applications to nuclear plant valves, including independent verification of initial findings. Guidelines for potential users, including instrumentation selection, training requirements, application planning, and the choice of in-house versus contract services are discussed

  9. Tadarida: A Toolbox for Animal Detection on Acoustic Recordings

    Directory of Open Access Journals (Sweden)

    Yves Bas

    2017-02-01

    Full Text Available Passive Acoustic Monitoring (PAM recently extended to a very wide range of animals, but no available open software has been sufficiently generic to automatically treat several taxonomic groups. Here we present Tadarida, a software toolbox allowing for the detection and labelling of recorded sound events, and to classify any new acoustic data into known classes. It is made up of three modules handling Detection, Labelling and Classification and running on either Linux or Windows. This development resulted in the first open software (1 allowing generic sound event detection (multi-taxa, (2 providing graphical sound labelling at a single-instance level and (3 covering the whole process from sound detection to classification. This generic and modular design opens numerous reuse opportunities among (bioacoustics researchers, especially for those managing and/or developing PAM schemes. The whole toolbox is openly developed in C++ (Detection and Labelling and R (Classification and stored at https://github.com/YvesBas.

  10. Acoustic Emission Beamforming for Detection and Localization of Damage

    Science.gov (United States)

    Rivey, Joshua Callen

    The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over

  11. The availability of the detection method of internal valve leakage using acoustic method

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Suzuki, Akio

    1989-01-01

    The purpose of this study is to estimate the availability of acoustic method to the internal leakage of the valves at power plants. The acoustic method was applied to the valves at the site, and the background noise was measured for the abnormal plantcondition. From the comparison of the background noise date with the experimental results as to relation between leakage flow and acoust signal, the minimum leakage flow rates that can be detected by the acoust signal was suggested. When the background levels are higher than the acoust signal, the method described below was considered that the analysis the remainder among the background noise frequency spectrum and the acoustic signal spectrum become a very useful leak detection method. A few experimental examples of the spectrum analysis that varied the background noise characteristic were given. (author)

  12. Development of the On-line Acoustic Leak Detection Tool for the SFR Steam Generator Protection

    International Nuclear Information System (INIS)

    Kim, Tae-Joon; Jeong, Ji-Young; Kim, Jong-Man; Kim, Byung-Ho; Kim, Seong-O

    2007-01-01

    The successful detection of a water/steam into a sodium leak in the SFR SG (steam generator) at an early phase of a leak origin depends on the fast response and sensitivity of a leak detection system. This intention of an acoustic leak detection system is stipulated by a key impossibility of a fast detecting of an intermediate leak by the present nominal systems such as the hydrogen meter. Subject of this study is to introduce the detection performance of an on-line acoustic leak detection tool discriminated by a back-propagation neural network with a preprocessing of the 1/m Octave band analysis, and to introduce the status of an on-line development being developed with the acoustic leak detection tool(S/W) in KAERI. For a performance test, it was used with the acoustic signals for a sodium-water reaction from the injected steam into water experiments in KAERI, the acoustic signals injected from the water into the sodium obtained in IPPE, and the background noise of the PFR superheater

  13. Acoustical Detection Of Leakage In A Combustor

    Science.gov (United States)

    Puster, Richard L.; Petty, Jeffrey L.

    1993-01-01

    Abnormal combustion excites characteristic standing wave. Acoustical leak-detection system gives early warning of failure, enabling operating personnel to stop combustion process and repair spray bar before leak grows large enough to cause damage. Applicable to engines, gas turbines, furnaces, and other machines in which acoustic emissions at known frequencies signify onset of damage. Bearings in rotating machines monitored for emergence of characteristic frequencies shown in previous tests associated with incipient failure. Also possible to monitor for signs of trouble at multiple frequencies by feeding output of transducer simultaneously to multiple band-pass filters and associated circuitry, including separate trigger circuit set to appropriate level for each frequency.

  14. Investigation of acoustic sensors to detect coconut rhinoceros beetle in Guam

    Science.gov (United States)

    The coconut rhinoceros beetle, Oryctes rhinoceros, was accidentally introduced into Guam last year and now threatens the Island’s forests and tourist industry. These large insects can be detected easily with acoustic sensors, and procedures are being developed to incorporate acoustic technology int...

  15. Acoustic manipulation: Bessel beams and active carriers

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2017-10-01

    In this paper, we address the interaction of zero-order acoustic Bessel beams as an acoustic manipulation tool, with an active spherical shell, as a carrier in drug, agent, or material delivery systems, in order to investigate the controllability of exerted acoustic radiation force as the driver. The active body is comprised of a spherical elastic shell stimulated in its monopole mode of vibrations with the same frequency as the incident wave field via an internally bonded and spatially uniformly excited piezoelectric actuator. The main aim of this work is to examine the performance of a nondiffracting and self-reconstructing zero-order Bessel beam to obtain the full manipulability condition of active carriers in comparison with the case of a plane wave field. The results unveil some unique potentials of the Bessel beams in the company of active carriers, with emphasis on the consumed power of the actuation system. This paper will widen the path toward the single-beam robust acoustic manipulation techniques and may lead to the prospect of combined tweezers and fields, with applications in delivery systems, microswimmers, and trapper designs.

  16. Active acoustic leak detection for LMFBR steam generator. Pt. 5. Experiment for detection of bubbles using the SG full sector model

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi

    1997-01-01

    In order to prevent the expansion of tube damages and to maintain structural safety in steam generators (SG) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, it being developed. In this paper, the attenuation characteristics of sound attenuated by bubbles and influence of background noise are investigated experimentally by using an SG full sector model (diameter ratio about 1/1, height ratio about 1/7) simulating the actual SG. As an experimental result, the received sound attenuation for ten seconds was more than 10 dB from air bubble injection when injected bubble of 10 l/s (equivalence water leak rate about 10 g/s). The attenuation of sound are least affected by bubble injection position of heat exchanger tube bunch department. And the time was about 25 seconds till the sound attenuation became 10 dB in case of quantity of air bubble 1 l/s (equivalent water leak rate about 1 g/s). It is clarified that the background noise hardly influenced water leak detection performance as a result of having examined influence of background noise. (author)

  17. On the Detectability of Acoustic Waves Induced Following Irradiation by a Radiotherapy Linear Accelerator.

    Science.gov (United States)

    Hickling, Susannah; Leger, Pierre; El Naqa, Issam

    2016-02-11

    Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.

  18. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  19. Acoustic detection of ultra-high energy cascades in ice

    Energy Technology Data Exchange (ETDEWEB)

    Boeser, S.

    2006-12-08

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km{sup 3} scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km{sup 3} will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and

  20. Acoustic detection of ultra-high energy cascades in ice

    International Nuclear Information System (INIS)

    Boeser, S.

    2006-01-01

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km 3 scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km 3 will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and transmitters was

  1. Factors Affecting Detection Probability of Acoustic Tags in Coral Reefs

    KAUST Repository

    Bermudez, Edgar F.

    2012-05-01

    Acoustic telemetry is an important tool for studying the movement patterns, behaviour, and site fidelity of marine organisms; however, its application is challenged in coral reef environments where complex topography and intense environmental noise interferes with acoustic signals, and there has been less study. Therefore, it is particularly critical in coral reef telemetry studies to first conduct a long-term range test, a tool that provides informa- tion on the variability and periodicity of the transmitter detection range and the detection probability. A one-month range test of a coded telemetric system was conducted prior to a large-scale tagging project investigating the movement of approximately 400 fishes from 30 species on offshore coral reefs in the central Red Sea. During this range test we determined the effect of the following factors on transmitter detection efficiency: distance from receiver, time of day, depth, wind, current, moon-phase and temperature. The experiment showed that biological noise is likely to be responsible for a diel pattern of -on average- twice as many detections during the day as during the night. Biological noise appears to be the most important noise source in coral reefs overwhelming the effect of wind-driven noise, which is important in other studies. Detection probability is also heavily influenced by the location of the acoustic sensor within the reef structure. Understanding the effect of environmental factors on transmitter detection probability allowed us to design a more effective receiver array for the large-scale tagging study.

  2. Imaging and detection of mines from acoustic measurements

    Science.gov (United States)

    Witten, Alan J.; DiMarzio, Charles A.; Li, Wen; McKnight, Stephen W.

    1999-08-01

    A laboratory-scale acoustic experiment is described where a buried target, a hockey puck cut in half, is shallowly buried in a sand box. To avoid the need for source and receiver coupling to the host sand, an acoustic wave is generated in the subsurface by a pulsed laser suspended above the air-sand interface. Similarly, an airborne microphone is suspended above this interface and moved in unison with the laser. After some pre-processing of the data, reflections for the target, although weak, could clearly be identified. While the existence and location of the target can be determined by inspection of the data, its unique shape can not. Since target discrimination is important in mine detection, a 3D imaging algorithm was applied to the acquired acoustic data. This algorithm yielded a reconstructed image where the shape of the target was resolved.

  3. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  4. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  5. All-optical in-depth detection of the acoustic wave emitted by a single gold nanorod

    Science.gov (United States)

    Xu, Feng; Guillet, Yannick; Ravaine, Serge; Audoin, Bertrand

    2018-04-01

    A single gold nanorod dropped on the surface of a silica substrate is used as a transient optoacoustic source of gigahertz hypersounds. We demonstrate the all-optical detection of the as-generated acoustic wave front propagating in the silica substrate. For this purpose, time-resolved femtosecond pump-probe experiments are performed in a reflection configuration. The fundamental breathing mode of the nanorod is detected at 23 GHz by interferometry, and the longitudinal acoustic wave radiated in the silica substrate is detected by time-resolved Brillouin scattering. By tuning the optical probe wavelength from 750 to 900 nm, hypersounds with wavelengths of 260-315 nm are detected in the silica substrate, with corresponding acoustic frequencies in the range of 19-23 GHz. To confirm the origin of these hypersounds, we theoretically analyze the influence of the acoustic excitation spectrum on the temporal envelope of the transient reflectivity. This analysis proves that the acoustic wave detected in the silica substrate results from the excitation of the breathing mode of the nanorod. These results pave the way for performing local in-depth elastic nanoscopy.

  6. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    International Nuclear Information System (INIS)

    Marchevsky, M; Wang, X; Sabbi, G; Prestemon, S

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01, we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed. (author)

  7. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    CERN Document Server

    Marchevsky, M.; Sabbi, G.; Prestemon, S.

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb$_{3}$Sn quadrupole HQ01 [1], we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed.

  8. Acoustic detection for water/steam leak from a tube of LMFBR steam generator

    International Nuclear Information System (INIS)

    Sonoda, Masataka; Shindo, Yoshihisa

    1989-01-01

    Acoustic leak detector is useful for detecting more quickly intermediate leak than the existing hydrogen detector and is available for identification of leak location on the accident of water/steam leak from a tube of LMFBR steam generator. This paper presents the overview of HALD (High frequency Acoustics Leak Detection) system, which is more sensitive for leak detection and lower cost of equipment for identification of leak location than a low frequency type detector. (author)

  9. Topography and biological noise determine acoustic detectability on coral reefs

    KAUST Repository

    Cagua, Edgar F.

    2013-08-19

    Acoustic telemetry is an increasingly common tool for studying the movement patterns, behavior and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic tags and receivers must be understood. The relative and interactive effects of topography with biological and environmental noise have not been quantified on coral reefs. We conduct two long-term range tests (1- and 4-month duration) on two different reef types in the central Red Sea to determine the relative effect of distance, depth, topography, time of day, wind, lunar phase, sea surface temperature and thermocline on detection probability. Detectability, as expected, declines with increasing distance between tags and receivers, and we find average detection ranges of 530 and 120 m, using V16 and V13 tags, respectively, but the topography of the reef can significantly modify this relationship, reducing the range by ~70 %, even when tags and receivers are in line-of-sight. Analyses that assume a relationship between distance and detections must therefore be used with care. Nighttime detection range was consistently reduced in both locations, and detections varied by lunar phase in the 4-month test, suggesting a strong influence of biological noise (reducing detection probability up to 30 %), notably more influential than other environmental noises, including wind-driven noise, which is normally considered important in open-water environments. Analysis of detections should be corrected in consideration of the diel patterns we find, and range tests or sentinel tags should be used for more than 1 month to quantify potential changes due to lunar phase. Some studies assume that the most usual factor limiting detection range is weather-related noise; this cannot be extrapolated to coral reefs. © 2013 Springer-Verlag Berlin Heidelberg.

  10. Detection of ductile crack initiation by acoustic emission testing

    International Nuclear Information System (INIS)

    Richter, H.; Boehmert, J.; Viehrig, H.W.

    1998-08-01

    A Charpy impact test equipment is described permitting simultaneous measurement of impact force, crack tip opening, acoustic emissions and magnetic emissions. The core of the equipment is an inverted pendulum ram impact testing machine and the tests have been performed with laterally notched, pre-fatigue ISO-V specimens made of steels of various strength and toughness properties. The tests are intended to ascertain whether the acoustic emission method is suitable for detecting steady crack initiation in highly ductile steels. (orig./CB) [de

  11. The current status of research and development concerning steam generator acoustic leak detection for the demonstration FBR plant

    International Nuclear Information System (INIS)

    Higuchi, Masahisa

    1990-01-01

    The Japan Atomic Power Co. (JAPC) started the research and development into Acoustic Leak Detection for the Demonstration FBR (D-FBR) plant in 1989. Acoustic Leak Detection is expected as a water leak detection system in the Steam Generator for the first D-FBR plant. JAPC is presently analyzing data on Acoustic Leak Detection in order to form some basic concepts and basic specifications about leak detection. Both low frequency types and high frequency types are selected as candidates for Acoustic Leak Detection. After a review of both types, either one will be selected for the D-FBT plant. A detailed Research and Development plan on Acoustic Leak Detection, which should be carried out prior to starting the construction of the D-FBR plant, is under review. (author). 3 figs, 2 tabs

  12. RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK

    International Nuclear Information System (INIS)

    MartInez, Vicent J.; Arnalte-Mur, Pablo; De la Cruz, Pablo; Saar, Enn; Tempel, Elmo; Pons-BorderIa, MarIa Jesus; Paredes, Silvestre; Fernandez-Soto, Alberto

    2009-01-01

    The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies of the Sloan Digital Sky Survey (SDSS). Recently, the final release (DR7) of the SDSS has been made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift-space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn from the Two-Degree Field Redshift Survey. We test the reliability of the detection of the acoustic peak at about 100 h -1 Mpc and the behavior of the correlation function at larger scales by means of careful estimation of errors. We confirm the presence of the peak in the latest data although broader than in previous detections.

  13. Probability of acoustic transmitter detections by receiver lines in Lake Huron: results of multi-year field tests and simulations

    Science.gov (United States)

    Hayden, Todd A.; Holbrook, Christopher M.; Binder, Thomas; Dettmers, John M.; Cooke, Steven J.; Vandergoot, Christopher S.; Krueger, Charles C.

    2016-01-01

    BackgroundAdvances in acoustic telemetry technology have led to an improved understanding of the spatial ecology of many freshwater and marine fish species. Understanding the performance of acoustic receivers is necessary to distinguish between tagged fish that may have been present but not detected and from those fish that were absent from the area. In this study, two stationary acoustic transmitters were deployed 250 m apart within each of four acoustic receiver lines each containing at least 10 receivers (i.e., eight acoustic transmitters) located in Saginaw Bay and central Lake Huron for nearly 2 years to determine whether the probability of detecting an acoustic transmission varied as a function of time (i.e., season), location, and distance between acoustic transmitter and receiver. Distances between acoustic transmitters and receivers ranged from 200 m to >10 km in each line. The daily observed probability of detecting an acoustic transmission was used in simulation models to estimate the probability of detecting a moving acoustic transmitter on a line of receivers.ResultsThe probability of detecting an acoustic transmitter on a receiver 1000 m away differed by month for different receiver lines in Lake Huron and Saginaw Bay but was similar for paired acoustic transmitters deployed 250 m apart within the same line. Mean probability of detecting an acoustic transmitter at 1000 m calculated over the study period varied among acoustic transmitters 250 m apart within a line and differed among receiver lines in Lake Huron and Saginaw Bay. The simulated probability of detecting a moving acoustic transmitter on a receiver line was characterized by short periods of time with decreased detection. Although increased receiver spacing and higher fish movement rates decreased simulated detection probability, the location of the simulated receiver line in Lake Huron had the strongest effect on simulated detection probability.ConclusionsPerformance of receiver

  14. Acoustic detection of intracranial aneurysms : A decision analysis

    NARCIS (Netherlands)

    vanBruggen, AC; Dippel, DWJ; Habbema, JDF; Mooij, JJA

    1996-01-01

    We present a further evaluation of an improved recording method for the acoustic detection of intracranial aneurysms (ADA). A sensor was applied to the patient's eyes. Two measures were derived to summarize the power spectral density functions of the sound frequencies that were obtained from each

  15. Detection and Classification of Whale Acoustic Signals

    Science.gov (United States)

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  16. Acoustic detection for small-leak sodium-water reaction

    International Nuclear Information System (INIS)

    Nei, Hiromichi; Ohshima, Iwao; Ujihara, Kozaburo; Hori, Masao

    1977-01-01

    Characteristics of acoustic signal produced by sodium-water reaction due to steam injection and by Ar gas injection into sodium were experimentally investigated. Acoustic signal was measured by using Kistler 808A and 815A5 accelerometers. Root mean square (RMS) measurements and frequency analysis of the signal were conducted. The RMS measurements could detect a small water leakage into sodium, as small as 0.07g/sec, in the present loop. The peaks in a frequency spectrum were caused by the natural vibration of a rod on which the acoustic transducer was mounted. The RMS was approximately proportional to the one-third power of the steam leak rate and increased to some extent with the ambient sodium temperature. RMS values, both for sodium-water reaction and Ar gas injection, were about the same order of magnitude, when the data were plotted against the volumetric flow rates of steam and Argas. (auth.)

  17. Critical heat flux acoustic detection: Methods and application to ITER divertor vertical target monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, X., E-mail: xavier.courtois@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Escourbiac, F. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint-Paul-Lez-Durance (France); Richou, M.; Cantone, V. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Constans, S. [AREVA-NP, Le Creusot (France)

    2013-10-15

    Actively cooled plasma facing components (PFCs) have to exhaust high heat fluxes from plasma radiation and plasma–wall interaction. Critical heat flux (CHF) event may occur in the cooling channel due to unexpected heat loading or operational conditions, and has to be detected as soon as possible. Therefore it is essential to develop means of monitoring based on precursory signals providing an early detection of this destructive phenomenon, in order to be able to stop operation before irremediable damages appear. Capabilities of CHF early detection based on acoustic techniques on PFC mock-ups cooled by pressurised water were already demonstrated. This paper addresses the problem of the detection in case of flow rate reduction and of flow dilution resulting from multiple plasma facing units (PFU) which are hydraulically connected in parallel, which is the case of ITER divertor. An experimental study is launched on a dedicated mock-up submitted to heat loads up to the CHF. It shows that the measurement of the acoustic waves, generated by the cooling phenomena, allows the CHF detection in conditions similar to that of the ITER divertor, with a reasonable number of sensors. The paper describes the mock-ups and the tests sequences, and comments the results.

  18. Theory, simulation and experimental results of the acoustic detection of magnetization changes in superparamagnetic iron oxide

    Directory of Open Access Journals (Sweden)

    Borgert Jörn

    2011-06-01

    Full Text Available Abstract Background Magnetic Particle Imaging is a novel method for medical imaging. It can be used to measure the local concentration of a tracer material based on iron oxide nanoparticles. While the resulting images show the distribution of the tracer material in phantoms or anatomic structures of subjects under examination, no information about the tissue is being acquired. To expand Magnetic Particle Imaging into the detection of soft tissue properties, a new method is proposed, which detects acoustic emissions caused by magnetization changes in superparamagnetic iron oxide. Methods Starting from an introduction to the theory of acoustically detected Magnetic Particle Imaging, a comparison to magnetically detected Magnetic Particle Imaging is presented. Furthermore, an experimental setup for the detection of acoustic emissions is described, which consists of the necessary field generating components, i.e. coils and permanent magnets, as well as a calibrated microphone to perform the detection. Results The estimated detection limit of acoustic Magnetic Particle Imaging is comparable to the detection limit of magnetic resonance imaging for iron oxide nanoparticles, whereas both are inferior to the theoretical detection limit for magnetically detected Magnetic Particle Imaging. Sufficient data was acquired to perform a comparison to the simulated data. The experimental results are in agreement with the simulations. The remaining differences can be well explained. Conclusions It was possible to demonstrate the detection of acoustic emissions of magnetic tracer materials in Magnetic Particle Imaging. The processing of acoustic emission in addition to the tracer distribution acquired by magnetic detection might allow for the extraction of mechanical tissue parameters. Such parameters, like for example the velocity of sound and the attenuation caused by the tissue, might also be used to support and improve ultrasound imaging. However, the method

  19. Multi-wavelength Observations of Solar Acoustic Waves Near Active Regions

    Science.gov (United States)

    Monsue, Teresa; Pesnell, Dean; Hill, Frank

    2018-01-01

    Active region areas on the Sun are abundant with a variety of waves that are both acoustically helioseismic and magnetohydrodynamic in nature. The occurrence of a solar flare can disrupt these waves, through MHD mode-mixing or scattering by the excitation of these waves. We take a multi-wavelength observational approach to understand the source of theses waves by studying active regions where flaring activity occurs. Our approach is to search for signals within a time series of images using a Fast Fourier Transform (FFT) algorithm, by producing multi-frequency power map movies. We study active regions both spatially and temporally and correlate this method over multiple wavelengths using data from NASA’s Solar Dynamics Observatory. By surveying the active regions on multiple wavelengths we are able to observe the behavior of these waves within the Solar atmosphere, from the photosphere up through the corona. We are able to detect enhancements of power around active regions, which could be acoustic power halos and of an MHD-wave propagating outward by the flaring event. We are in the initial stages of this study understanding the behaviors of these waves and could one day contribute to understanding the mechanism responsible for their formation; that has not yet been explained.

  20. System for detecting acoustic emissions in multianvil experiments: Application to deep seismicity in the Earth

    International Nuclear Information System (INIS)

    Jung, Haemyeong; Fei Yingwei; Silver, Paul G.; Green, Harry W.

    2006-01-01

    One of the major goals in the experimental study of deep earthquakes is to identify slip instabilities at high pressure and high temperature (HPHT) that might be responsible for the occurrence of earthquakes. Detecting acoustic emissions from a specimen during faulting provides unique constraints on the instability process. There are few experimental studies reporting acoustic emissions under HPHT conditions, due to technical challenges. And those studies have used only one or at most two acoustic sensors during the experiments. Such techniques preclude the accurate location of the acoustic emission source region and thus the ability to distinguish real signal from noise that may be coming from outside the sample. We have developed a system for detecting acoustic emissions at HPHT. Here we present a four-channel acoustic emission detecting system working in the HPHT octahedral multianvil apparatus. Each channel has high resolution (12 bits) and a sampling rate of 30 MHz. In experiments at the pressures up to 6 GPa and temperatures up to 770 deg. C, we have observed acoustic emissions under various conditions. Analyzing these signals, we are able to show that this system permits us to distinguish between signal and noise, locate the source of the acoustic emission, and obtain reliable data on the radiation pattern. This system has greatly improved our ability to study faulting instabilities under high pressure and high temperature

  1. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  2. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Directory of Open Access Journals (Sweden)

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini

    2011-01-01

    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  3. Acoustic leak detection development in the USA

    International Nuclear Information System (INIS)

    Greene, D.A.; Malovrh, J.W.; Magee, P.M.

    1984-01-01

    Acoustic monitoring systems that detect and locate a leak of water/steam from a defective tube in an LMFBR steam generator have been developed in the United States. A low frequency (approx. 10 KHz) system was developed by General Electric, and a high frequency (200 to 300 KHz) system by Rockwell International with support from Argonne National Laboratory. A comprehensive base technology program provided absolute signal amplitudes, background noise amplitudes, and signal source-to-detector transfer functions. Field tests of these systems demonstrated an ability to detect and locate simulated leaks under operating and quiescent conditions in an LMFBR steam generator. (author)

  4. NON-DESTRUCTIVE LEAK DETECTION IN GALVANIZED IRON PIPE USING NONLINEAR ACOUSTIC MODULATION METHOD

    Directory of Open Access Journals (Sweden)

    Gigih Priyandoko

    2018-02-01

    Full Text Available Non-destructive testing is a wide group of analysis techniques used in science and industry to evaluate the properties of a structure without causing damage to it. The main objective of this project is to carry out experiment to detect leakage in pipeline using nonlinear acoustic modulation method. The nonlinear acoustic modulation approach with low frequency excitation and high frequency acoustic wave is used to reveal modulations in the presence of leak. The pipe used in this experiment was galvanized iron pipe. The experiment is started with the experiment of undamaged specimen and followed by the experiment of damaged specimen with manually applied leak. The results obtained are being observed and the difference between the specimen without leak and with leak can be distinguished. The distance of the leak and the distance of the outlet detected is nearly accurate to the exact location which is leak at 4.0 m and outlet at 6.0 m. Therefore, the results demonstrate that leakage can be detected using nonlinear acoustic modulation, and proved the objective of distinguish the difference between the results of specimen without leak and with leak has succeeded. The damage detection process can be eased with the knowledge on the signal features.

  5. A comparison of passive and active acoustic sampling for a bat community impacted by White-nose syndrome

    Science.gov (United States)

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    In the summers of 2011 and 2012, we compared passive and active acoustic sampling for bats at 31 sites at Fort Drum Military Installation, New York. We defined active sampling as acoustic sampling that occurred in 30-min intervals between the hours of sunset and 0200 with a user present to manipulate the directionality of the microphone. We defined passive sampling as acoustic sampling that occurred over a 12-h period (1900–0700 hours) without a user present and with the microphone set in a predetermined direction. We detected seven of the nine possible species at Fort Drum, including the federally endangered Indiana bat Myotis sodalis, the proposed-for-listing northern bat M. septentrionalis, the little brown bat M. lucifugus, and the big brown bat Eptesicus fuscus, which are impacted by white-nose syndrome (WNS); and the eastern red bat Lasiurus borealis, the hoary bat L. cinereus, and the silver-haired bat Lasionycteris noctivagans, which are not known to be impacted by WNS. We did not detect two additional WNS-impacted species known to historically occur in the area: the eastern small-footed bat Myotis leibii and the tri-colored bat Perimyotis subflavus. Single-season occupancy models revealed lower detection probabilities of all detected species using active sampling versus passive sampling. Additionally, overall detection probabilities declined in detected WNS-impacted species between years. A paired t-test of simultaneous sampling on 21 occasions revealed that overall recorded foraging activity per hour was greater using active than passive sampling for big brown bats and greater using passive than active sampling for little brown bats. There was no significant difference in recorded activity between methods for other WNS-impacted species, presumably because these species have been so reduced in number that their “apparency” on the landscape is lower. Finally, a cost analysis of standard passive and active sampling protocols revealed that passive

  6. Signal processing for passive detection and classification of underwater acoustic signals

    Science.gov (United States)

    Chung, Kil Woo

    2011-12-01

    This dissertation examines signal processing for passive detection, classification and tracking of underwater acoustic signals for improving port security and the security of coastal and offshore operations. First, we consider the problem of passive acoustic detection of a diver in a shallow water environment. A frequency-domain multi-band matched-filter approach to swimmer detection is presented. The idea is to break the frequency contents of the hydrophone signals into multiple narrow frequency bands, followed by time averaged (about half of a second) energy calculation over each band. Then, spectra composed of such energy samples over the chosen frequency bands are correlated to form a decision variable. The frequency bands with highest Signal/Noise ratio are used for detection. The performance of the proposed approach is demonstrated for experimental data collected for a diver in the Hudson River. We also propose a new referenceless frequency-domain multi-band detector which, unlike other reference-based detectors, does not require a diver specific signature. Instead, our detector matches to a general feature of the diver spectrum in the high frequency range: the spectrum is roughly periodic in time and approximately flat when the diver exhales. The performance of the proposed approach is demonstrated by using experimental data collected from the Hudson River. Moreover, we present detection, classification and tracking of small vessel signals. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification and tracking. This dissertation presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise) acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship

  7. Evidence Integration in Natural Acoustic Textures during Active and Passive Listening.

    Science.gov (United States)

    Górska, Urszula; Rupp, Andre; Boubenec, Yves; Celikel, Tansu; Englitz, Bernhard

    2018-01-01

    Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration.

  8. Leak detection in gas pipeline by acoustic and signal processing - A review

    Science.gov (United States)

    Adnan, N. F.; Ghazali, M. F.; Amin, M. M.; Hamat, A. M. A.

    2015-12-01

    The pipeline system is the most important part in media transport in order to deliver fluid to another station. The weak maintenance and poor safety will contribute to financial losses in term of fluid waste and environmental impacts. There are many classifications of techniques to make it easier to show their specific method and application. This paper's discussion about gas leak detection in pipeline system using acoustic method will be presented in this paper. The wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs and the pressure balance of the pipe will generated by the friction between wall in the pipe. The signal processing is used to decompose the raw signal and show in time- frequency. Findings based on the acoustic method can be used for comparative study in the future. Acoustic signal and HHT is the best method to detect leak in gas pipelines. More experiments and simulation need to be carried out to get the fast result of leaking and estimation of their location.

  9. Toward wideband steerable acoustic metasurfaces with arrays of active electroacoustic resonators

    Science.gov (United States)

    Lissek, Hervé; Rivet, Etienne; Laurence, Thomas; Fleury, Romain

    2018-03-01

    We introduce an active concept for achieving acoustic metasurfaces with steerable reflection properties, effective over a wide frequency band. The proposed active acoustic metasurface consists of a surface array of subwavelength loudspeaker diaphragms, each with programmable individual active acoustic impedances allowing for local control over the different reflection phases over the metasurface. The active control framework used for controlling the reflection phase over the metasurface is derived from the Active Electroacoustic Resonator concept. Each unit-cell simply consists of a current-driven electrodynamic loudspeaker in a closed box, whose acoustic impedance at the diaphragm is judiciously adjusted by connecting an active electrical control circuit. The control is known to achieve a wide variety of acoustic impedances on a single loudspeaker diaphragm used as an acoustic resonator, with the possibility to shift its resonance frequency by more than one octave. This paper presents a methodology for designing such active metasurface elements. An experimental validation of the achieved individual reflection coefficients is presented, and full wave simulations present a few examples of achievable reflection properties, with a focus on the bandwidth of operation of the proposed control concept.

  10. Acoustic sodium-water reaction detection of the Phenix steam generators

    International Nuclear Information System (INIS)

    Carminati, M.; Martin, L.; Sauzaret, A.

    1990-01-01

    The systems for acoustic sodium-water reaction detection and hydrogen detection of the Phenix steam generators as well as systems for monitoring signals analysis and processing are described. It is reported that the results obtained during operation and calibration phases are very encouraging and that industrial equipment showing the same performance are being examined. 6 figs

  11. THE ACOUSTIC DETECTION OF INTRACRANIAL ANEURYSMS - A CLINICAL-STUDY

    NARCIS (Netherlands)

    VANBRUGGEN, AC; MOOIJ, JJA; JOURNEE, HL

    1991-01-01

    A new recording method for the acoustical detection of intracranial aneurysms is presented. A study examining the capability of the method to discriminate between patients with an aneurysm and control patients by a simple, objective parameter is reported. Sound signals were recorded over the eyes,

  12. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    International Nuclear Information System (INIS)

    Candel, I; Ioana, C; Bunea, F; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Dunca, G; Politehnica University of Bucharest (Romania))" data-affiliation=" (Power Engineering Faculty, Politehnica University of Bucharest (Romania))" >Bucur, D M; Division Technique Générale, Grenoble (France))" data-affiliation=" (Electricité de France, Division Technique Générale, Grenoble (France))" >Reeb, B; Ciocan, G D

    2014-01-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system

  13. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.; Whittaker, J.W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal

  14. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples.

    Science.gov (United States)

    Papadakis, George; Murasova, Pavla; Hamiot, Audrey; Tsougeni, Katerina; Kaprou, Georgia; Eck, Michael; Rabus, David; Bilkova, Zuzana; Dupuy, Bruno; Jobst, Gerhard; Tserepi, Angeliki; Gogolides, Evangelos; Gizeli, Electra

    2018-07-15

    The fast and efficient detection of foodborne pathogens is a societal priority, given the large number of food-poisoning outbreaks, and a scientific and technological challenge, given the need to detect as little as 1 viable cell in 25 gr of food. Here, we present the first approach that achieves the above goal, thanks to the use of a micro/nano-technology and the detection capability of acoustic wave sensors. Starting from 1 Salmonella cell in 25 ml of milk, we employ immuno-magnetic beads to capture cells after only 3 h of pre-enrichment and subsequently demonstrate efficient DNA amplification using the Loop Mediated Isothermal Amplification method (LAMP) and acoustic detection in an integrated platform, within an additional ½ h. The demonstrated 4 h sample-to-analysis time comes as a huge improvement to the current need of few days to obtain the same result. In addition, the work presents the first reported Lab-on-Chip platform that comprises an acoustic device as the sensing element, exhibiting impressive analytical features, namely, an acoustic limit of detection of 2 cells/μl or 3 aM of the DNA target and ability to detect in a label-free manner dsDNA amplicons in impure samples. The use of food samples together with the incorporation of the necessary pre-enrichment step and ability for multiple analysis with an internal control, make the proposed methodology highly relevant to real-world applications. Moreover, the work suggests that acoustic wave devices can be used as an attractive alternative to electrochemical sensors in integrated platforms for applications in food safety and the point-of-care diagnostics. Copyright © 2018. Published by Elsevier B.V.

  15. Micro-Electromechanical Acoustic Resonator Coated with Polyethyleneimine Nanofibers for the Detection of Formaldehyde Vapor

    Directory of Open Access Journals (Sweden)

    Da Chen

    2018-02-01

    Full Text Available We demonstrate a promising strategy to combine the micro-electromechanical film bulk acoustic resonator and the nanostructured sensitive fibers for the detection of low-concentration formaldehyde vapor. The polyethyleneimine nanofibers were directly deposited on the resonator surface by a simple electrospinning method. The film bulk acoustic resonator working at 4.4 GHz acted as a sensitive mass loading platform and the three-dimensional structure of nanofibers provided a large specific surface area for vapor adsorption and diffusion. The ultra-small mass change induced by the absorption of formaldehyde molecules onto the amine groups in polyethyleneimine was detected by measuring the frequency downshift of the film bulk acoustic resonator. The proposed sensor exhibits a fast, reversible and linear response towards formaldehyde vapor with an excellent selectivity. The gas sensitivity and the detection limit were 1.216 kHz/ppb and 37 ppb, respectively. The study offers a great potential for developing sensitive, fast-response and portable sensors for the detection of indoor air pollutions.

  16. Development of an incipient rotor crack detection method by acoustic emission techniques

    International Nuclear Information System (INIS)

    Le Reverend, D.; Massouri, M.H.

    1988-01-01

    The objective of the program presented is to develop a method of detection and monitoring of crack growth in machine rotor by application of acoustic emission techniques. This program is performed by R and D Division of Electricite de France, jointly with INSA de Lyon. The first task of the program is relative to the characterization of acoustic emission during a progressive tensile test performed on a NCT specimen. The second task of the program deals with the experimentation of acoustic emission techniques for the monitoring of a specimen during cycling bending tests. The last task of the program is relative to evaluation of application of acoustic emission techniques for a small rotor integrity monitoring during fatigue rotation tests [fr

  17. Acoustic leak detection and ultrasonic crack detection

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Claytor, T.N.; Groenwald, R.

    1983-10-01

    A program is under way to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. An ALD facility has been constructed and tests have begun on five laboratory-grown cracks (three fatigue and two thermal-fatigue and two field-induced IGSCC specimens. After ultrasonic testing revealed cracks in the Georgia Power Co. HATCH-1 BWR recirculation header, the utility installed an ALD system. Data from HATCH-1 have given an indication of the background noise level at a BWR recirculation header sweepolet weld. The HATCH leak detection system was tested to determine the sensitivity and dynamic range. Other background data have been acquired at the Watts Bar Nuclear Reactor in Tennessee. An ANL waveguide system, including transducer and electronics, was installed and tested on an accumulator safety injection pipe. The possibility of using ultrasonic wave scattering patterns to discriminate between IGSCCs and geometric reflectors has been explored. Thirteen reflectors (field IGSCCs, graphite wool IGSCCs, weld roots, and slits) were examined. Work with cast stainless steel (SS) included sound velocity and attenuation in isotropic and anisotropic cast SS. Reducing anisotropy does not help reduce attenuation in large-grained material. Large artificial flaws (e.g., a 1-cm-deep notch with a 4-cm path) could not be detected in isotropic centrifugally cast SS (1 to 2-mm grains) by longitudinal or shear waves at frequencies of 1 MHz or greater, but could be detected with 0.5-MHz shear waves. 13 figures

  18. Application of acoustic leak detection technology for the detection and location of leaks in light water reactors

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Prine, D.; Mathieson, T.

    1988-10-01

    This report presents the results of a study to evaluate the adequacy of leak detection systems in light water reactors. The sources of numerous reported leaks and methods of detection have been documented. Research to advance the state of the art of acoustic leak detection is presented, and procedures for implementation are discussed. 14 refs., 70 figs., 10 tabs

  19. Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection

    International Nuclear Information System (INIS)

    Wang Chi; Zhou Yu-Qiu; Shen Gao-Wei; Wu Wen-Wen; Ding Wei

    2013-01-01

    The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the ''soil-mine'' system could be equivalent to a damping ''mass-spring'' resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil—mine system could be investigated by changing the parameter setup in a flexible manner. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Oxygen Consumption and Acoustic Activity of Adult Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae) during Hermetic Storage.

    Science.gov (United States)

    Njoroge, Anastasia W; Mankin, Richard W; Smith, Bradley W; Baributsa, Dieudonne

    2018-04-20

    Acoustic monitoring was applied to consider hermetic exposure durations and oxygen levels required to stop adult Callosobruchus maculatus activity and economic damage on cowpea. A 15-d study was conducted with six treatments of 25, 50, and 100 C. maculatus adults in 500 and 1000 mL jars using acoustic probes inserted through stoppers sealing the jars. Acoustic activity as a result of locomotion, mating, and egg-laying was measured by identifying sound impulses with frequency spectra representative of known insect sounds, and counting trains (bursts) of impulses separated by intervals of <200 ms, that typically are produced only by insects. By the end of the first week of storage in all treatments, oxygen levels declined to levels below 4%, which has been demonstrated to cause mortality in previous studies. Concomitantly, insect sound burst rates dropped below an acoustic detection threshold of 0.02 bursts s −1 , indicating that the insects had ceased feeding. Statistically significant relationships were obtained between two different measures of the acoustic activity and the residual oxygen level. Based on the experimental results, a simple equation can be used to estimate the time needed for oxygen to decline to levels that limit insect feeding damage and thus grain losses in hermetic storage containers of different insect population levels and various volumes.

  1. Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics.

    Science.gov (United States)

    Papadakis, G; Friedt, J M; Eck, M; Rabus, D; Jobst, G; Gizeli, E

    2017-09-01

    The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical applications and molecular diagnostics. Based on a systematic study we optimized the mechanics of the flow cell attachment and the sealing material so that fluidic interfacing/encapsulation would impose minimal losses to the acoustic wave. We have also investigated combinations of operating frequencies with waveguide materials and thicknesses for maximum sensitivity during the detection of protein and DNA biomarkers. Within our investigations neutravidin was used as a model protein biomarker and unpurified PCR amplified Salmonella DNA as the model genetic target. Our results clearly indicate the need for experimental verification of the optimum engineering and analytical parameters, in order to develop commercially viable systems for integrated analysis. The good reproducibility of the signal together with the ability of the array biochip to detect multiple samples hold promise for the future use of the integrated system in a Lab-on-a-Chip platform for application to molecular diagnostics.

  2. Steam leak detection in advance reactors via acoustics method

    International Nuclear Information System (INIS)

    Singh, Raj Kumar; Rao, A. Rama

    2011-01-01

    Highlights: → Steam leak detection system is developed to detect any leak inside the reactor vault. → The technique uses leak noise frequency spectrum for leak detection. → Testing of system and method to locate the leak is also developed and discussed in present paper. - Abstract: Prediction of LOCA (loss of coolant activity) plays very important role in safety of nuclear reactor. Coolant is responsible for heat transfer from fuel bundles. Loss of coolant is an accidental situation which requires immediate shut down of reactor. Fall in system pressure during LOCA is the trip parameter used for initiating automatic reactor shut down. However, in primary heat transport system operating in two phase regimes, detection of small break LOCA is not simple. Due to very slow leak rates, time for the fall of pressure is significantly slow. From reactor safety point of view, it is extremely important to find reliable and effective alternative for detecting slow pressure drop in case of small break LOCA. One such technique is the acoustic signal caused by LOCA in small breaks. In boiling water reactors whose primary heat transport is to be driven by natural circulation, small break LOCA detection is important. For prompt action on post small break LOCA, steam leak detection system is developed to detect any leak inside the reactor vault. The detection technique is reliable and plays a very important role in ensuring safety of the reactor. Methodology developed for steam leak detection is discussed in present paper. The methods to locate the leak is also developed and discussed in present paper which is based on analysis of the signal.

  3. Impact damage detection in light composite sandwich panels using piezo-based nonlinear vibro-acoustic modulations

    International Nuclear Information System (INIS)

    Pieczonka, L; Ukowski, P; Klepka, A; Staszewski, W J; Uhl, T; Aymerich, F

    2014-01-01

    The nonlinear vibro-acoustic modulation technique is used for impact damage detection in light composite sandwich panels. The method utilizes piezo-based low-frequency vibration and high-frequency ultrasonic excitations. The work presented focuses on the analysis of modulation intensity. The results show that the method can be used for impact damage detection reliably separating damage-related from vibro-acoustic modulations from other intrinsic nonlinear modulations. (paper)

  4. Extinction cross-section suppression and active acoustic invisibility cloaking

    Science.gov (United States)

    Mitri, F. G.

    2017-10-01

    Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility.

  5. Extinction cross-section suppression and active acoustic invisibility cloaking

    International Nuclear Information System (INIS)

    Mitri, F G

    2017-01-01

    Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility. (letter)

  6. Results of investigations within the IWGFR benchmark test acoustic boiling noise detection

    International Nuclear Information System (INIS)

    Mauersberger, H.; Froehlich, K.J.

    1989-01-01

    The present paper deals with investigations of acoustic signals from a boiling experiment performed on the KNS I loop at KfK Karlsruhe. Signals have been analysed in frequency as well as in time domain. Signal characteristics successfully used to detect the boiling process have been found in time domain. A proposal for in-service boiling monitoring by acoustic means is briefly described. (author). 10 refs, 16 figs, 1 tab

  7. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  8. Development of an acoustic steam generator leak detection system using delay-and-sum beamformer

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka

    2009-01-01

    A new acoustic steam generator leak detection system using delay-and-sum beamformer is proposed. The major advantage of the delay-and-sum beamformer is it could provide information of acoustic source direction. An acoustic source of a sodium-water reaction is supposed to be localized while the background noise of the steam generator operation is uniformly distributed in the steam generator tube region. Therefore the delay-and-sum beamformer could distinguish the acoustic source of the sodium-water reaction from steam generator background noise. In this paper, results from numerical analyses are provided to show fundamental feasibility of the new method. (author)

  9. Acoustic particle detection - From early ideas to future benefits

    International Nuclear Information System (INIS)

    Nahnhauer, Rolf

    2012-01-01

    The history of acoustic neutrino detection technology is shortly reviewed from the first ideas 50 years ago to the detailed R and D programs of the last decade. The physics potential of ultra-high energy neutrino interaction studies is discussed for some examples. Ideas about the necessary detector size and suitable design are presented.

  10. Influence of depth, time and human activity on detection rate of acoustic tags: a case study on two fish farms.

    Science.gov (United States)

    Otterå, H; Skilbrei, O T

    2016-03-01

    The detection rates of stationary acoustic transmitters deployed at three depths on two Atlantic salmon Salmo salar cage farms for c. 2 months were investigated. Deployment depth, time of day, day of the year and specific incidences at the farm substantially affected the rate of signal detection by the receiver. © 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  11. Testing the effectiveness of automated acoustic sensors for monitoring vocal activity of Marbled Murrelets Brachyramphus marmoratus

    Science.gov (United States)

    Cragg, Jenna L.; Burger, Alan E.; Piatt, John F.

    2015-01-01

    Cryptic nest sites and secretive breeding behavior make population estimates and monitoring of Marbled Murrelets Brachyramphus marmoratus difficult and expensive. Standard audio-visual and radar protocols have been refined but require intensive field time by trained personnel. We examined the detection range of automated sound recorders (Song Meters; Wildlife Acoustics Inc.) and the reliability of automated recognition models (“recognizers”) for identifying and quantifying Marbled Murrelet vocalizations during the 2011 and 2012 breeding seasons at Kodiak Island, Alaska. The detection range of murrelet calls by Song Meters was estimated to be 60 m. Recognizers detected 20 632 murrelet calls (keer and keheer) from a sample of 268 h of recordings, yielding 5 870 call series, which compared favorably with human scanning of spectrograms (on average detecting 95% of the number of call series identified by a human observer, but not necessarily the same call series). The false-negative rate (percentage of murrelet call series that the recognizers failed to detect) was 32%, mainly involving weak calls and short call series. False-positives (other sounds included by recognizers as murrelet calls) were primarily due to complex songs of other bird species, wind and rain. False-positives were lower in forest nesting habitat (48%) and highest in shrubby vegetation where calls of other birds were common (97%–99%). Acoustic recorders tracked spatial and seasonal trends in vocal activity, with higher call detections in high-quality forested habitat and during late July/early August. Automated acoustic monitoring of Marbled Murrelet calls could provide cost-effective, valuable information for assessing habitat use and temporal and spatial trends in nesting activity; reliability is dependent on careful placement of sensors to minimize false-positives and on prudent application of digital recognizers with visual checking of spectrograms.

  12. Effect of passive acoustic sampling methodology on detecting bats after declines from white nose syndrome

    Science.gov (United States)

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    Concomitant with the emergence and spread of white-nose syndrome (WNS) and precipitous decline of many bat species in North America, natural resource managers need modified and/or new techniques for bat inventory and monitoring that provide robust occupancy estimates. We used Anabat acoustic detectors to determine the most efficient passive acoustic sampling design for optimizing detection probabilities of multiple bat species in a WNS-impacted environment in New York, USA. Our sampling protocol included: six acoustic stations deployed for the entire duration of monitoring as well as a 4 x 4 grid and five transects of 5-10 acoustic units that were deployed for 6-8 night sample durations surveyed during the summers of 2011-2012. We used Program PRESENCE to determine detection probability and site occupancy estimates. Overall, the grid produced the highest detection probabilities for most species because it contained the most detectors and intercepted the greatest spatial area. However, big brown bats (Eptesicus fuscus) and species not impacted by WNS were detected easily regardless of sampling array. Endangered Indiana (Myotis sodalis) and little brown (Myotis lucifugus) and tri-colored bats (Perimyotis subflavus) showed declines in detection probabilities over our study, potentially indicative of continued WNS-associated declines. Identification of species presence through efficient methodologies is vital for future conservation efforts as bat populations decline further due to WNS and other factors.   

  13. Automated acoustic analysis in detection of spontaneous swallows in Parkinson's disease.

    Science.gov (United States)

    Golabbakhsh, Marzieh; Rajaei, Ali; Derakhshan, Mahmoud; Sadri, Saeed; Taheri, Masoud; Adibi, Peyman

    2014-10-01

    Acoustic monitoring of swallow frequency has become important as the frequency of spontaneous swallowing can be an index for dysphagia and related complications. In addition, it can be employed as an objective quantification of ingestive behavior. Commonly, swallowing complications are manually detected using videofluoroscopy recordings, which require expensive equipment and exposure to radiation. In this study, a noninvasive automated technique is proposed that uses breath and swallowing recordings obtained via a microphone located over the laryngopharynx. Nonlinear diffusion filters were used in which a scale-space decomposition of recorded sound at different levels extract swallows from breath sounds and artifacts. This technique was compared to manual detection of swallows using acoustic signals on a sample of 34 subjects with Parkinson's disease. A speech language pathologist identified five subjects who showed aspiration during the videofluoroscopic swallowing study. The proposed automated method identified swallows with a sensitivity of 86.67 %, a specificity of 77.50 %, and an accuracy of 82.35 %. These results indicate the validity of automated acoustic recognition of swallowing as a fast and efficient approach to objectively estimate spontaneous swallow frequency.

  14. Machine Fault Detection Based on Filter Bank Similarity Features Using Acoustic and Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Mauricio Holguín-Londoño

    2016-01-01

    Full Text Available Vibration and acoustic analysis actively support the nondestructive and noninvasive fault diagnostics of rotating machines at early stages. Nonetheless, the acoustic signal is less used because of its vulnerability to external interferences, hindering an efficient and robust analysis for condition monitoring (CM. This paper presents a novel methodology to characterize different failure signatures from rotating machines using either acoustic or vibration signals. Firstly, the signal is decomposed into several narrow-band spectral components applying different filter bank methods such as empirical mode decomposition, wavelet packet transform, and Fourier-based filtering. Secondly, a feature set is built using a proposed similarity measure termed cumulative spectral density index and used to estimate the mutual statistical dependence between each bandwidth-limited component and the raw signal. Finally, a classification scheme is carried out to distinguish the different types of faults. The methodology is tested in two laboratory experiments, including turbine blade degradation and rolling element bearing faults. The robustness of our approach is validated contaminating the signal with several levels of additive white Gaussian noise, obtaining high-performance outcomes that make the usage of vibration, acoustic, and vibroacoustic measurements in different applications comparable. As a result, the proposed fault detection based on filter bank similarity features is a promising methodology to implement in CM of rotating machinery, even using measurements with low signal-to-noise ratio.

  15. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    International Nuclear Information System (INIS)

    Naumann, C.L.

    2007-01-01

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called ''equivalent circuit diagram (=ECD) model'' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/μPa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/√(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with exemplary results for

  16. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L.

    2007-09-17

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called 'equivalent circuit diagram (=ECD) model' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/{mu}Pa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/{radical}(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with

  17. Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models

    Energy Technology Data Exchange (ETDEWEB)

    Riber Marklund, A. [CEA, Cadarache, DEN/DTN/STCP/LIET, Batiment 202, 13108 St Paul-lez-Durance, (France); Kishore, S. [Fast Reactor Technology Group of IGCAR, (India); Prakash, V. [Vibrations Diagnostics Division, Fast Reactor Technology Group of IGCAR, (India); Rajan, K.K. [Fast Reactor Technology Group and Engineering Services Group of IGCAR, (India)

    2015-07-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)

  18. Acoustic firearm discharge detection and classification in an enclosed environment

    Energy Technology Data Exchange (ETDEWEB)

    Luzi, Lorenzo; Gonzalez, Eric; Bruillard, Paul; Prowant, Matthew; Skorpik, James; Hughes, Michael; Child, Scott; Kist, Duane; McCarthy, John E.

    2016-05-01

    Two different signal processing algorithms are described for detection and classification of acoustic signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm of the signal energy. The second is a joint entropy. The current study indicates that a system using both signal energy and joint entropy would be able to both detect weapon discharges and classify weapon type, in small spaces, with high statistical certainty.

  19. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent.

    Science.gov (United States)

    Unger, E C; McCreery, T P; Sweitzer, R H; Caldwell, V E; Wu, Y

    1998-12-01

    Paclitaxel-carrying lipospheres (MRX-552) were developed and evaluated as a new ultrasound contrast agent for chemotherapeutic drug delivery. Paclitaxel was suspended in soybean oil and added to an aqueous suspension of phospholipids in vials. The headspace of the vials was replaced with perfluorobutane gas; the vials were sealed, and they were agitated at 4200 rpm on a shaking device. The resulting lipospheres containing paclitaxel were studied for concentration, size, acute toxicity in mice, and acoustic activity and drug release with ultrasound. Lipospheres containing sudan black dye were produced to demonstrate the acoustically active liposphere (AAL)-ultrasound release concept. Acoustically active lipospheres containing paclitaxel had a mean particle count of approximately 1 x 10(9) particles per mL and a mean size of 2.9 microns. Acute toxicity studies in mice showed a 10-fold reduction in toxicity for paclitaxel in AALs compared with free paclitaxel. The AALs reflected ultrasound as a contrast agent. Increasing amounts of ultrasound energy selectively ruptured the AALs and released the paclitaxel. Acoustically active lipospheres represent a new class of acoustically active drug delivery vehicles. Future studies will assess efficacy of AALs for ultrasound-mediated drug delivery.

  20. Effect of a Background Noise on the Acoustic Leak Detection Methodology for a SFR Steam Generator

    International Nuclear Information System (INIS)

    Kim, Tae-Joon; Jeong, Ji-Young; Kim, Jong-Man

    2007-01-01

    The protection of a water/steam leak into a sodium in the SFR SG at an early phase of a leak origin depends on a fast response and sensitivity of a leak detection system not to a response against the several kinds of noises. The subject in this study is to introduce a detection performance by using our developed acoustic leak detection methodology discriminated by a backpropagation neural network according to a preprocessing of the 1/6 Octave band analysis or 1/12 Octave band analysis and the x n method defined by us. It was used for the acoustic signals generated from the simulation works which are the noises of an artificial background such as a scratching, a hammering on a steel structure and so on. In a previous study, we showed that the performance of a LabVIEW tool embedded with the developed acoustic leak detection methodology detected the SWR leak signals

  1. Translational illusion of acoustic sources by transformation acoustics.

    Science.gov (United States)

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  2. Acoustic tomography for decay detection in black cherry trees

    Science.gov (United States)

    Xiping Wang; Jan Wiedenbeck; Shanqing Liang

    2009-01-01

    This study investigated the potential of using acoustic tomography for detecting internal decay in high-value hardwood trees in the forest. Twelve black cherry (Prunus serotina) trees that had a wide range of physical characteristics were tested in a stand of second-growth hardwoods in Kane, PA, using a PiCUS Sonic Tomograph tool. The trees were felled after the field...

  3. Status of U.S. evaluations of acoustic detection of in-sodium water leaks

    International Nuclear Information System (INIS)

    Fletcher, F.L.; Neely, H.H.

    1990-01-01

    An overview of the United States testing program to evaluate acoustic leak detection and location systems on simulated water leaks in functional liquid sodium steam generators is provided. Testing was conducted on the modular hockey stick steam generator during the large leak test program in the LLTR, on the CRBR prototype hockey stick steam generators in SCTI, on a double wall tube steam generator installed in EBR-II and on the helical coil steam generator tested in SCTI. These test programs have demonstrated the acoustic leak detection system potential, however, additional development is required before the system can perform to its effective and required potential. (author). 6 figs

  4. Hydrogen and acoustic detection in steam generators of Super Phenix power plant

    International Nuclear Information System (INIS)

    Kong, N.; Le Bris, A.; Berthier, P.

    1986-05-01

    During the isothermal tests of Super-Phenix, two types of measurements were made on the steam generators with regard to the detection of water leaks into the sodium: - the first measurements enabled us to determine the characteristics (sensitivity, response time) of the hydrogen detectors that are already operational for the filling with water and the power operation of the steam generators. They also provided the basis for developing a prototype system for detecting very small water leaks (microleak phase). The other measurements concern the qualification tests of acoustic detectors which have been fitted for the first time to a major industrial installation. The results obtained are very satisfactory but final validation of the acoustic method will only occur after the full-power tests [fr

  5. An acoustic emission study of plastic deformation in polycrystalline aluminium

    Science.gov (United States)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  6. Recent experiments on acoustic leak detection

    International Nuclear Information System (INIS)

    Voss, J.; Arnaoutis, N.

    1984-01-01

    In the ASB-sodium loop a series of injection experiments with water, helium, argon and nitrogen was performed. The aim of these tests was to get: a comparison of the acoustic signals, generated by water and gas injections with regard to intensity and frequency content; an experimental basis for the design of an acoustic calibration source. The experimental set-up, the variation parameters and first results will be discussed. The principal design of an acoustic calibration source and its range of application will be given. (author)

  7. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  8. Vibro-acoustic model of an active aircraft cabin window

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2017-06-01

    This paper presents modeling and design of an active structural acoustic control (ASAC) system for controlling the low frequency sound field transmitted through an aircraft cabin window. The system uses stacked piezoelectric elements arranged in a manner to generate out-of-plane actuation point forces acting on the window panel boundaries. A theoretical vibro-acoustic model for an active quadruple-panel system is developed to characterize the dynamic behavior of the system and achieve a good understanding of the active control performance and the physical phenomena of the sound transmission loss (STL) characteristics. The quadruple-panel system represents the passenger window design used in some classes of modern aircraft with an exterior double pane of Plexiglas, an interior dust cover pane and a glazed dimmable pane, all separated by thin air cavities. The STL characteristics of identical pane window configurations with different piezoelectric actuator sets are analyzed. A parametric study describes the influence of important active parameters, such as the input voltage, number and location of the actuator elements, on the STL is investigated. In addition, a mathematical model for obtaining the optimal input voltage is developed to improve the acoustic attenuation capability of the control system. In general, the achieved results indicate that the proposed ASAC design offers a considerable improvement in the passive sound loss performance of cabin window design without significant effects, such as weight increase, on the original design. Also, the results show that the acoustic control of the active model with piezoelectric actuators bonded to the dust cover pane generates high structural vibrations in the radiating panel (dust cover) and an increase in sound power radiation. High active acoustic attenuation can be achieved by designing the ASAC system to apply active control forces on the inner Plexiglas panel or dimmable panel by installing the actuators on the

  9. Acoustic analysis assessment in speech pathology detection

    Directory of Open Access Journals (Sweden)

    Panek Daria

    2015-09-01

    Full Text Available Automatic detection of voice pathologies enables non-invasive, low cost and objective assessments of the presence of disorders, as well as accelerating and improving the process of diagnosis and clinical treatment given to patients. In this work, a vector made up of 28 acoustic parameters is evaluated using principal component analysis (PCA, kernel principal component analysis (kPCA and an auto-associative neural network (NLPCA in four kinds of pathology detection (hyperfunctional dysphonia, functional dysphonia, laryngitis, vocal cord paralysis using the a, i and u vowels, spoken at a high, low and normal pitch. The results indicate that the kPCA and NLPCA methods can be considered a step towards pathology detection of the vocal folds. The results show that such an approach provides acceptable results for this purpose, with the best efficiency levels of around 100%. The study brings the most commonly used approaches to speech signal processing together and leads to a comparison of the machine learning methods determining the health status of the patient

  10. Acoustic emission technique for characterisation of deformation, fatigue, fracture and phase transformation and for leak detection with high sensitivity- our experiences

    International Nuclear Information System (INIS)

    Jayakumar, T.; Mukhopadhyay, C.K.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used for studying tensile deformation, fracture behaviour, detection and assessment of fatigue crack growth and α-martensite phase transformation in austenitic alloys. A methodology for amplification of weak acoustic emission signals has been established. Acoustic emission technique with advanced spectral analysis has enabled detection with high sensitivity of minute leaks in noisy environments. (author)

  11. NEMO-SMO acoustic array: A deep-sea test of a novel acoustic positioning system for a km3-scale underwater neutrino telescope

    Science.gov (United States)

    Viola, S.; Ardid, M.; Bertin, V.; Enzenhöfer, A.; Keller, P.; Lahmann, R.; Larosa, G.; Llorens, C. D.; NEMO Collaboration; SMO Collaboration

    2013-10-01

    Within the activities of the NEMO project, the installation of a 8-floors tower (NEMO-Phase II) at a depth of 3500 m is foreseen in 2012. The tower will be installed about 80 km off-shore Capo Passero, in Sicily. On board the NEMO tower, an array of 18 acoustic sensors will be installed, permitting acoustic detection of biological sources, studies for acoustic neutrino detection and primarily acoustic positioning of the underwater structures. For the latter purpose, the sensors register acoustic signals emitted by five acoustic beacons anchored on the sea-floor. The data acquisition system of the acoustic sensors is fully integrated with the detector data transport system and is based on an “all data to shore” philosophy. Signals coming from hydrophones are continuously sampled underwater at 192 kHz/24 bit and transmitted to shore through an electro-optical cable for real-time analysis. A novel technology for underwater GPS time-stamping of data has been implemented and tested. The operation of the acoustic array will permit long-term test of sensors and electronics technologies that are proposed for the acoustic positioning system of KM3NeT.

  12. Apparatus for ultrasonic visualization in sodium (VISUS) and acoustic detection in the Phenix reactor

    International Nuclear Information System (INIS)

    Lions, M.; Berger, R.; Bret, A.; Buis, H.; Barton, J.

    A description is given of two acoustic monitoring systems studied at the Fast Neutron Reactor Department at CEN/Cadarache and used in the Phenix reactor. The first is the active type, and the second, passive. The active apparatus is based on the sonar principle and permits visualizing objects inside a reactor tank, especially the heads of assemblies during handling. The passive apparatus, the acoustic detector, observes the reactor core by analyzing the acoustic noise produced in the reactor core. The electroacoustic converters are in both cases located outside, and the acoustic vibrations are transmitted by wave guides. The two pieces of apparatus can operate in a hostile environment, such as liquid metal at high temperature in the presence of high neutron and gamma fluxes

  13. Acoustic Emission Technology and Application

    International Nuclear Information System (INIS)

    Joo, Y. S.; Lim, S. H.; Eom, H. S.; Kim, J. H.; Jung, H. K.

    2003-10-01

    Acoustic emission is the elastic wave that is generated by the rapid release of energy from the localized sources within a material. After the observation of acoustic emission phenomenon in 1950, the research and further investigation had been performed. Acoustic emission examination becomes a rapidly matured nondestructive testing method with demonstrated capabilities for characterizing material behavior and for detecting the defect. It is of interest as a possible passive monitoring technique for detecting, locating and characterizing the defects in component and structure. Acoustic emission technology has recently strengthened the on-line monitoring application for the detection of incipient failures and the assurance of structural integrity. The field of acoustic emission testing is still growing vigorously and presents many challenges. Especially, acoustic emission has been successfully applied in the leak detection of primary pressure boundary of nuclear power plants. In this state-of-art report, the principle, measurement and field applications of acoustic emission technique is reviewed and summarized. Acoustic emission technology will contribute to the assurance of nuclear safety as the on-line monitoring technique of structural integrity of NSSS components and structures

  14. Acoustic building infiltration measurement system

    Science.gov (United States)

    Muehleisen, Ralph T.; Raman, Ganesh

    2018-04-10

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  15. Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    E. Tsangouri

    2013-01-01

    Full Text Available Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.

  16. Optimizing surface acoustic wave sensors for trace chemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J. [and others

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  17. A hydrophone prototype for ultra high energy neutrino acoustic detection

    International Nuclear Information System (INIS)

    Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.

    2009-01-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  18. A hydrophone prototype for ultra high energy neutrino acoustic detection

    Energy Technology Data Exchange (ETDEWEB)

    Cotrufo, A. [University of Genoa, Department of Physics, Via Dodecaneso 33, I-16146 (Italy)], E-mail: cotrufo@ge.infn.it; Plotnikov, A.; Yershova, O. [GSI Helmholtz Centre for Heavy Ion Research, GmbH Planckstrasse1, 64291 Darmstadt (Germany); Anghinolfi, M.; Piombo, D. [INFN, University of Genoa, Department of Physics, Via Dodecaneso 33, I-16146 (Italy)

    2009-06-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  19. Brain Activation Patterns in Response to Conspecific and Heterospecific Social Acoustic Signals in Female Plainfin Midshipman Fish, Porichthys notatus.

    Science.gov (United States)

    Mohr, Robert A; Chang, Yiran; Bhandiwad, Ashwin A; Forlano, Paul M; Sisneros, Joseph A

    2018-01-01

    While the peripheral auditory system of fish has been well studied, less is known about how the fish's brain and central auditory system process complex social acoustic signals. The plainfin midshipman fish, Porichthys notatus, has become a good species for investigating the neural basis of acoustic communication because the production and reception of acoustic signals is paramount for this species' reproductive success. Nesting males produce long-duration advertisement calls that females detect and localize among the noise in the intertidal zone to successfully find mates and spawn. How female midshipman are able to discriminate male advertisement calls from environmental noise and other acoustic stimuli is unknown. Using the immediate early gene product cFos as a marker for neural activity, we quantified neural activation of the ascending auditory pathway in female midshipman exposed to conspecific advertisement calls, heterospecific white seabass calls, or ambient environment noise. We hypothesized that auditory hindbrain nuclei would be activated by general acoustic stimuli (ambient noise and other biotic acoustic stimuli) whereas auditory neurons in the midbrain and forebrain would be selectively activated by conspecific advertisement calls. We show that neural activation in two regions of the auditory hindbrain, i.e., the rostral intermediate division of the descending octaval nucleus and the ventral division of the secondary octaval nucleus, did not differ via cFos immunoreactive (cFos-ir) activity when exposed to different acoustic stimuli. In contrast, female midshipman exposed to conspecific advertisement calls showed greater cFos-ir in the nucleus centralis of the midbrain torus semicircularis compared to fish exposed only to ambient noise. No difference in cFos-ir was observed in the torus semicircularis of animals exposed to conspecific versus heterospecific calls. However, cFos-ir was greater in two forebrain structures that receive auditory input, i

  20. Aural localization of silent objects by active human biosonar: neural representations of virtual echo-acoustic space.

    Science.gov (United States)

    Wallmeier, Ludwig; Kish, Daniel; Wiegrebe, Lutz; Flanagin, Virginia L

    2015-03-01

    Some blind humans have developed the remarkable ability to detect and localize objects through the auditory analysis of self-generated tongue clicks. These echolocation experts show a corresponding increase in 'visual' cortex activity when listening to echo-acoustic sounds. Echolocation in real-life settings involves multiple reflections as well as active sound production, neither of which has been systematically addressed. We developed a virtualization technique that allows participants to actively perform such biosonar tasks in virtual echo-acoustic space during magnetic resonance imaging (MRI). Tongue clicks, emitted in the MRI scanner, are picked up by a microphone, convolved in real time with the binaural impulse responses of a virtual space, and presented via headphones as virtual echoes. In this manner, we investigated the brain activity during active echo-acoustic localization tasks. Our data show that, in blind echolocation experts, activations in the calcarine cortex are dramatically enhanced when a single reflector is introduced into otherwise anechoic virtual space. A pattern-classification analysis revealed that, in the blind, calcarine cortex activation patterns could discriminate left-side from right-side reflectors. This was found in both blind experts, but the effect was significant for only one of them. In sighted controls, 'visual' cortex activations were insignificant, but activation patterns in the planum temporale were sufficient to discriminate left-side from right-side reflectors. Our data suggest that blind and echolocation-trained, sighted subjects may recruit different neural substrates for the same active-echolocation task. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Bat detective-Deep learning tools for bat acoustic signal detection.

    Science.gov (United States)

    Mac Aodha, Oisin; Gibb, Rory; Barlow, Kate E; Browning, Ella; Firman, Michael; Freeman, Robin; Harder, Briana; Kinsey, Libby; Mead, Gary R; Newson, Stuart E; Pandourski, Ivan; Parsons, Stuart; Russ, Jon; Szodoray-Paradi, Abigel; Szodoray-Paradi, Farkas; Tilova, Elena; Girolami, Mark; Brostow, Gabriel; Jones, Kate E

    2018-03-01

    Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio.

  2. Detection of steam leaks into sodium in fast reactor steam generators by acoustic techniques - An overview of Indian programme

    International Nuclear Information System (INIS)

    Prabhakar, R.; Vyjayanthi, R.K.; Kale, R.D.

    1990-01-01

    Realising the potential of acoustic leak detection technique, an experimental programme was initiated a few years back at Indira Gandhi Centre for Atomic Research (IGCAR) to develop this technique. The first phase of this programme consists of experiments to measure background noise characteristics on the steam generator modules of the 40 MW (thermal) Fast Breeder Test Reactor (FBTR) at Kalpakkam and experiments to establish leak noise characteristics with the help of a leak simulation set up. By subjecting the measured data from these experiments to signal analysis techniques, a criterion for acoustic leak detection for FBTR steam generator will be evolved. Second phase of this programme will be devoted to developing an acoustic leak detection system suitable for installation in the 500 MWe Prototype Fast Breeder Reactor (PFBR). This paper discusses the first phase of the experimental programme, results obtained from measurements carried out on FBTR steam generators and results obtained from leak simulation experiments. Acoustic leak detection system being considered for PFBR is also briefly described. 4 refs, 8 figs, 1 tab

  3. Study on Leak Detection of the Pipeline System by Acoustic Emission

    International Nuclear Information System (INIS)

    Yoon, D. J.; Kim, C. J.

    1987-01-01

    Leak detection testing for the pipeline system was performed by the acoustic emission method. It was found that the detected signal spectrum was influenced by the frequency response of sensors and pressure changes. AE parameters and frequency spectrum distributions were used to analyze the leak signals. The slope rise time of AE parameters were the important factors for distinguishing leak signals. The amplitude of leak signal was more affected by the changes of leak, rate and pressure than those of leak type

  4. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    OpenAIRE

    Marchevsky, M.; Wang, X.; Sabbi, G.; Prestemon, S.

    2014-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01 [...

  5. Acoustic cloak/anti-cloak device with realizable passive/active metamaterials

    International Nuclear Information System (INIS)

    Shen Huijie; Wen Jihong; Yu Dianlong; Cai Li; Wen Xisen; Païdoussis, Michael P.

    2012-01-01

    Utilizing the coordinate transformation method, together with exchange of variables between Maxwell's equations and the acoustic equations with axial-invariance in cylindrical coordinates, the acoustic parameters (anisotropic density and scalar bulk modulus) for an ideal cloak and an ideal anti-cloak are obtained. An anti-cloak allows the inside object to ‘see’ outside, but to be invisible from outside; whereas a cloak is invisible from outside, but ‘blind’ from inside. Utilizing a scattering algorithm developed in this paper, the pressure field calculation of the cloak/anti-cloak is performed and the concepts and characteristics of the acoustic cloak/anti-cloak are revisited. To be more easily achievable experimentally, a multilayered cloak/anti-cloak model with homogeneous isotropic materials is introduced, and its corresponding pressure distributions are calculated. Also, the total scattering cross-section curves for the multilayered cloak and anti-cloak over a certain frequency range are presented and compared. Finally, an active acoustic metamaterial made up of piezo-diaphragm cavity arrays is designed for the cloak/anti-cloak. Taking into account the coupling between adjacent cavity cells, a multi-control strategy for piezo-diaphragm cavity arrays is exploited, rendering possible wide ranges of effective densities and effective bulk moduli (or acoustic speeds), or even double-negative transformation medium (i.e. both density and bulk modulus parameters are negative). With such sets of active acoustic metamaterials, the cloak and anti-cloak may become both theoretically and experimentally realizable. (paper)

  6. Development of acoustic particle detector

    International Nuclear Information System (INIS)

    Matsuyama, Tadayoshi; Hinode, Fujio; Konno, Osamu

    1999-01-01

    To detect acoustic sign from electron, determination of acoustic radiation from high energy electron and detector were studied. When charge particles pass through medium, energy loss generates local expansion and contraction of medium and pressure compression wave. We need caustic element with 10 -5 Pa the minimum acoustic receive sensitivity and from 10 to 100 kHz frequency sensitivity characteristic. Elements were made by Low-Q materials, piezoelectric materials (PZT). Various sharp of elements were constructed and measured. 50 mm spherical element showed 38 m V/Pa, the best sensitivity. Our developed acoustic element could detect acoustic radiation generated by electron beam from accelerator. The wave sharp detected proved the same as bipolar wave, which was given theoretically. The pressure generated by beam was proportional to the energy loss E. 200 MeV electron beam existed about 95% particles on the incident axis. So that acoustic detector on the axis proved to detect sound wave generated on the beam axis. (S.Y.)

  7. YIP Expansion: Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    Science.gov (United States)

    2015-09-30

    Marine Mammal Detectability, Distribution, and Acoustic Communication Jennifer L. Miksis-Olds Applied Research Laboratory The Pennsylvania State...relatively stereotyped calls, commonly considered types of automatic detection include spectrogram correlation and matched filtering. Spectrogram

  8. Acoustic occurrence detection of a newly recorded Indo-Pacific humpback dolphin population in waters southwest of Hainan Island, China.

    Science.gov (United States)

    Dong, Lijun; Liu, Mingming; Dong, Jianchen; Li, Songhai

    2017-11-01

    In 2014, Indo-Pacific humpback dolphins were recorded for the first time in waters southwest of Hainan Island, China. In this paper, the temporal occurrence of Indo-Pacific humpback dolphins in this region was detected by stationary passive acoustic monitoring. During the 130-day observation period (from January to July 2016), 1969 click trains produced by Indo-Pacific humpback dolphins were identified, and 262 ten-minute recording bins contained echolocation click trains of dolphins, of which 70.9% were at night and 29.1% were during the day. A diurnal rhythm with a nighttime peak in acoustic detections was found. Passive acoustic detections indicated that the Indo-Pacific humpback dolphins frequently occurred in this area and were detected mainly at night. This information may be relevant to conservation efforts for these dolphins in the near future.

  9. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DU), Girinagar, Pune 411 025, Maharashtra (India); Choubey, Ravi Kant [Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Noida 201 313 (India)

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  10. Acoustic Leak Detection Testing Using KAERI Sodium-Water Reaction Signals for a SFR Steam Generator

    International Nuclear Information System (INIS)

    Kim, Tae-Joon; Jeong, Ji-Young; Kim, Jong-Man; Kim, Byung-Ho; Hahn, Do-Hee; Yugay, Valeriy S.

    2009-01-01

    The results of an experimental study of water in a sodium leak noise spectrum formation at 0.004-0.54 g/sec, various rates of water into a sodium leak, smaller than 1.0 g/sec, are presented. We focused on studying a micro leak detection with an increasing rate of water into sodium. On the basis of the experimental leak noise data manufactured in KAERI the simple dependency of an acoustic signal level from the rate of a micro and small leak at different frequency bands is presented to understand the principal analysis for the development of an acoustic leak detection methodology used in a K- 600 steam generator

  11. Experimental study on the detection of free fluids and gases in waste packages by acoustic methods

    International Nuclear Information System (INIS)

    Eisenblaetter, J.; Schaefer, P.; Weib, R.

    1992-01-01

    The objective of the project was to evaluate the potential and the limits of various nondestructive methods for testing the contents of 200-litre drums filled with radioactive waste. The following test problems were to be studied: 1. Detection of free water on the surface of the waste matrix (concrete); 2. Determination of the waste matrix level; 3. Determination of internal gas pressure. The following methods were found to be suitable: For Test problem 1: Measurement of Lamb wave attenuation, Acoustic impedance measurement (AIM) and Analysis of swash sound; For Test problem 2: Acoustic impedance measurement (AIM) and Measurement of Lamb wave attenuation; For Test problem 3: A method of pressure compensation and Analysis of cover resonances after striking the cover. It was not possible, however, to detect the concrete level by localisation of friction points using acoustic emission methods. 53 figs

  12. Leak detection and localization system through acoustics; Sistema de deteccao e localizacao de vazamentos por acustica

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Julio [Aselco Automacao, Sao Paulo, SP (Brazil)

    2003-07-01

    Acoustic Leak Detection Systems (ALDS) are used on both liquid and gas pipelines as well as multi-phase flow pipelines to detect leaks quickly and provide a means of limiting product loss. The real-time acoustic signal is continuously compared against signature leak profiles for the particular operating and geometric conditions. These profiles were developed from a database established from over 20 years of experimental and field leak tests. This technique not only drastically reduces the false alarm rate, but also significantly improves the sensitivity and leak location accuracy. This system will also detect leaks with shut-in flow (zero flow rate in the pipeline). With the use of GPS (Global Positioning System) it not only improves leak location accuracy, but also allows for continuous leak detection during the loss of communications. (author)

  13. Radiation acoustics and its applications

    International Nuclear Information System (INIS)

    Lyamshev, L.M.

    1992-01-01

    Radiation acoustics is a new branch of acoustics, developing on the boundary of acoustics, nuclear physics, elementary particles and high-energy physics. Its fundamentals are laying in the research of acoustical effects due to the interaction of penetrating radiation with matter. The study of radiation-acoustical effects leads to the new opportunities in the penetration radiation research (acoustical detection, radiation-acoustical dosimetry), study of the physical parameters of matter, in a solution of some applied problems of nondestructive testing, and also for the radiation-acoustical influence on physical and chemical structure of the matter. Results of theoretical and experimental investigations are given. Different mechanisms of the sound generation by penetrating radiation of liquids and solids are considered. Some applications - the radiation acoustical microscopy and visualisation, the acoustical detection of high energy X-ray particles and possibility of using of high energy neutrino beams in geoacoustics - are discussed

  14. Plasticity in developing brain: active auditory exposure impacts prelinguistic acoustic mapping.

    Science.gov (United States)

    Benasich, April A; Choudhury, Naseem A; Realpe-Bonilla, Teresa; Roesler, Cynthia P

    2014-10-01

    A major task across infancy is the creation and tuning of the acoustic maps that allow efficient native language processing. This process crucially depends on ongoing neural plasticity and keen sensitivity to environmental cues. Development of sensory mapping has been widely studied in animal models, demonstrating that cortical representations of the sensory environment are continuously modified by experience. One critical period for optimizing human language mapping is early in the first year; however, the neural processes involved and the influence of passive compared with active experience are as yet incompletely understood. Here we demonstrate that, while both active and passive acoustic experience from 4 to 7 months of age, using temporally modulated nonspeech stimuli, impacts acoustic mapping, active experience confers a significant advantage. Using event-related potentials (ERPs), we show that active experience increases perceptual vigilance/attention to environmental acoustic stimuli (e.g., larger and faster P2 peaks) when compared with passive experience or maturation alone. Faster latencies are also seen for the change discrimination peak (N2*) that has been shown to be a robust infant predictor of later language through age 4 years. Sharpening is evident for both trained and untrained stimuli over and above that seen for maturation alone. Effects were also seen on ERP morphology for the active experience group with development of more complex waveforms more often seen in typically developing 12- to 24-month-old children. The promise of selectively "fine-tuning" acoustic mapping as it emerges has far-reaching implications for the amelioration and/or prevention of developmental language disorders. Copyright © 2014 the authors 0270-6474/14/3413349-15$15.00/0.

  15. Tube leak detection device and acoustic sensor support device for moisture separating heater

    International Nuclear Information System (INIS)

    Miyabe, Keisuke; Kobayashi, Takefumi.

    1995-01-01

    The device of the present invention comprises an acoustic sensor which detects leak sounds when leak occurs in a heating tube of a moisture separating heater incorporated into a plant, a threshold value memory and switching mechanism containing each of threshold values on every power of a plant, and a leak judging mechanism for judging presence or absence of leaks by comparing a selected threshold value and signals given from the acoustic sensor. Background noises changing currently during operation of a steam turbine plant are compared with a threshold value greater than the background noises in the leak judging mechanism, and they are judged as 'no leak' so as not to recognize them as 'presence of tube leak'. Output values from the acoustic sensor are obtained on every frequency component, and standard frequency spectra are selected by turbine load corresponding signals using a standard spectra memory and switching mechanism. They are sent to a leak judging mechanism to analyze the acoustic signals using a frequency analyzer and compare them with the frequency spectral thereby judging leaks. (N.H.)

  16. Automated valve fault detection based on acoustic emission parameters and support vector machine

    Directory of Open Access Journals (Sweden)

    Salah M. Ali

    2018-03-01

    Full Text Available Reciprocating compressors are one of the most used types of compressors with wide applications in industry. The most common failure in reciprocating compressors is always related to the valves. Therefore, a reliable condition monitoring method is required to avoid the unplanned shutdown in this category of machines. Acoustic emission (AE technique is one of the effective recent methods in the field of valve condition monitoring. However, a major challenge is related to the analysis of AE signal which perhaps only depends on the experience and knowledge of technicians. This paper proposes automated fault detection method using support vector machine (SVM and AE parameters in an attempt to reduce human intervention in the process. Experiments were conducted on a single stage reciprocating air compressor by combining healthy and faulty valve conditions to acquire the AE signals. Valve functioning was identified through AE waveform analysis. SVM faults detection model was subsequently devised and validated based on training and testing samples respectively. The results demonstrated automatic valve fault detection model with accuracy exceeding 98%. It is believed that valve faults can be detected efficiently without human intervention by employing the proposed model for a single stage reciprocating compressor. Keywords: Condition monitoring, Faults detection, Signal analysis, Acoustic emission, Support vector machine

  17. Comparison between air CT and MRI in the detection of small acoustic neurinomas

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Tetsuya; Nakashima, Aiko; Seto, Hikaru; Kakishita, Masao

    1989-02-01

    Air CT proved useful in yielding images of acoustic tumors as an air filling defect in 11 (24%) of 46 patients. Six of the 11 tumors were small ones of less than 1 cm in diameter. Air CT was also able to exclude an intracanalicular tumor in 29 patients (63%). MRI was performed for comparison in eight patients (nine tumors) already diagnosed by air CT as having an acoustic tumor. MRI detected eight (89%) of nine tumors. A false negative result on MRI was obtained only in one intracanalicular tumor (4.3 mm in size). This was considered to be attributable to limitations of spatial resolution including the wide slice thickness. A protocol for radiological investigation and management of patients whose clinical symptoms and/or audiovestibular examination are highly indicative of acoustic tumor is proposed and discussed. (author).

  18. Comparison between air CT and MRI in the detection of small acoustic neurinomas

    International Nuclear Information System (INIS)

    Kamei, Tetsuya; Nakashima, Aiko; Seto, Hikaru; Kakishita, Masao

    1989-01-01

    Air CT proved useful in yielding images of acoustic tumors as an air filling defect in 11 (24%) of 46 patients. Six of the 11 tumors were small ones of less than 1 cm in diameter. Air CT was also able to exclude an intracanalicular tumor in 29 patients (63%). MRI was performed for comparison in eight patients (nine tumors) already diagnosed by air CT as having an acoustic tumor. MRI detected eight (89%) of nine tumors. A false negative result on MRI was obtained only in one intracanalicular tumor (4.3 mm in size). This was considered to be attributable to limitations of spatial resolution including the wide slice thickness. A protocol for radiological investigation and management of patients whose clinical symptoms and/or audiovestibular examination are highly indicative of acoustic tumor is proposed and discussed. (author)

  19. Acoustic feedwater heater leak detection: Industry application of low ampersand high frequency detection increases response and reliability

    International Nuclear Information System (INIS)

    Woyshner, W.S.; Bryson, T.; Robertson, M.O.

    1993-01-01

    The Electric Power Research Institute has sponsored research associated with acoustic Feedwater Heater Leak Detection since the early 1980s. Results indicate that this technology is economically beneficial and dependable. Recent research work has employed acoustic sensors and signal conditioning with wider frequency range response and background noise elimination techniques to provide increased accuracy and dependability. Dual frequency sensors have been applied at a few facilities to provide information on this application of dual frequency response. Sensor mounting methods and attenuation due to various mounting configurations are more conclusively understood. These are depicted and discussed in detail. The significance of trending certain plant parameters such as heat cycle flows, heater vent and drain valve position, proper relief valve operation, etc. is also addressed. Test data were collected at various facilities to monitor the effect of varying several related operational parameters. A group of FWHLD Users have been involved from the inception of the project and reports on their latest successes and failures, along with various data depicting early detection of FWHLD tube leaks, will be included. 3 refs., 12 figs., 1 tab

  20. Surface acoustic wave sensors with Graphene/PANI nanocomposites for nitric oxide detection

    Science.gov (United States)

    Wang, Beibei; Zheng, Lei; Zhou, Lingling

    2017-12-01

    Surface acoustic wave sensors with grapheme/PANI nanocomposite sensitive films for detecting nitric oxide (NO) were fabricated and experimentally studied. Morphological characterization and functionalization of the sensing material were explored using SEM and FTIR, respectively. The study of sensor response compared film sensitivity, response time, reversibility, and limit of detection for nanocomposite films, pure grapheme and pure PANI to the detection of NO. The response and recovery times were 40s and 20s when detecting 4ppm NO, respectively. The frequency response was discovered to be linear in the NO concentration range 1-50 ppm. The nanocomposite sensors had improved sensitivities compared to the polymer devices, and better response times.

  1. Acoustic Leak Detection Requirements for a SFR Steam Generator Protection

    International Nuclear Information System (INIS)

    Kim, Tae-Joon; Jeong, Ji-Young; Oeh, Jae-Hyuk; Kim, Jong-Man; Kim, Byung-Ho; Yughay, Valery S.

    2008-01-01

    A large volume of fast reactor research has been executed in Russia, Japan, France, India and the United Kingdom. At present, an unique fast reactor named BN- 600 is operating in Russia. Also, the operation of research reactors such as Phenix (France), JOYO (Japan), BOR-60 (Russia) and FBTR (India) proceeds. The last project to be completed was the reactor Monju (Japan) which is now stopped. In addition activities for the development of fast reactors are being conducted in China, India, and South Korea. Fast reactors are a choice for the subsequent nuclear power generation in Korea, and their increased safety is one of the basic requirements. The basis for a tightening of the requirements on safety is the emergencies in NPPs in Russia, USA, France, Japan and other countries. These emergencies testify that the existing monitoring systems do not fully provide a well-timed detection of the distresses arising in a NPP, because of a poor sensitivity and response, thus the necessity for a better diagnostic system is obvious. In accordance with the USA GNEP initiative in Obninsk, Russia, 2007 the main efforts should be directed toward a sodium-water steam generator safety increase due to improvement of the hydrogen monitoring system and the acoustic leak detection system

  2. Guided acoustic wave inspection system

    Science.gov (United States)

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  3. Detecting temporal changes in acoustic scenes: The variable benefit of selective attention.

    Science.gov (United States)

    Demany, Laurent; Bayle, Yann; Puginier, Emilie; Semal, Catherine

    2017-09-01

    Four experiments investigated change detection in acoustic scenes consisting of a sum of five amplitude-modulated pure tones. As the tones were about 0.7 octave apart and were amplitude-modulated with different frequencies (in the range 2-32 Hz), they were perceived as separate streams. Listeners had to detect a change in the frequency (experiments 1 and 2) or the shape (experiments 3 and 4) of the modulation of one of the five tones, in the presence of an informative cue orienting selective attention either before the scene (pre-cue) or after it (post-cue). The changes left intensity unchanged and were not detectable in the spectral (tonotopic) domain. Performance was much better with pre-cues than with post-cues. Thus, change deafness was manifest in the absence of an appropriate focusing of attention when the change occurred, even though the streams and the changes to be detected were acoustically very simple (in contrast to the conditions used in previous demonstrations of change deafness). In one case, the results were consistent with a model based on the assumption that change detection was possible if and only if attention was endogenously focused on a single tone. However, it was also found that changes resulting in a steepening of amplitude rises were to some extent able to draw attention exogenously. Change detection was not markedly facilitated when the change produced a discontinuity in the modulation domain, contrary to what could be expected from the perspective of predictive coding. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.

    2008-10-01

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.

  5. The possibilities of the detection of boiling in the reactor core on the basis of acoustic emission method

    International Nuclear Information System (INIS)

    Liska, J.

    1978-01-01

    A method is described of detecting the crisis of boiling in the core of PWR type reactors which may lead to fuel element failure. The method can be applied both in reactor development and operation. It is based on boiling detection by acoustic emission testing. The acoustic signal is measured by means of a piezoelectric transducer immersed in water or attached to one end of a waveguide immersed in water. Signals may be measured in either a wide frequency range or in a band approaching the transducer resonance frequency. This is selected such as to be outside the noise band. Experiments in an open water tank and in a water loop showed that under favourable conditions, the acoustic emission testing method was very sensitive, the intensity of acoustic signals was proportional to boiling intensity, and information contained in the emission spectrum shape was primarily of a qualitative nature. The method remains to be tested in an actual reactor where many spurious noise sources exist. (O.K.)

  6. An Acoustic-Based Method to Detect and Quantify the Effect of Exhalation into a Dry Powder Inhaler.

    Science.gov (United States)

    Holmes, Martin S; Seheult, Jansen N; O'Connell, Peter; D'Arcy, Shona; Ehrhardt, Carsten; Healy, Anne Marie; Costello, Richard W; Reilly, Richard B

    2015-08-01

    Dry powder inhaler (DPI) users frequently exhale into their inhaler mouthpiece before the inhalation step. This error in technique compromises the integrity of the drug and results in poor bronchodilation. This study investigated the effect of four exhalation factors (exhalation flow rate, distance from mouth to inhaler, exhalation duration, and relative air humidity) on dry powder dose delivery. Given that acoustic energy can be related to the factors associated with exhalation sounds, we then aimed to develop a method of identifying and quantifying this critical inhaler technique error using acoustic based methods. An in vitro test rig was developed to simulate this critical error. The effect of the four factors on subsequent drug delivery were investigated using multivariate regression models. In a further study we then used an acoustic monitoring device to unobtrusively record the sounds 22 asthmatic patients made whilst using a Diskus(™) DPI. Acoustic energy was employed to automatically detect and analyze exhalation events in the audio files. All exhalation factors had a statistically significant effect on drug delivery (pacoustic method detected exhalations with an accuracy of 89.1%. We were able to classify exhalations occurring 5 cm or less in the direction of the inhaler mouthpiece or recording device with a sensitivity of 72.2% and specificity of 85.7%. Exhaling into a DPI has a significant detrimental effect. Acoustic based methods can be employed to objectively detect and analyze exhalations during inhaler use, thus providing a method of remotely monitoring inhaler technique and providing personalized inhaler technique feedback.

  7. Head Injury and Intracranial Pressure Monitor Using Ultrasonic and Low-Frequency Acoustic (ULFA) Detection

    National Research Council Canada - National Science Library

    Vo-Dinh, Tuan

    2001-01-01

    The main objective of this research project is the development of a non-invasive method and instrument for head injury detection and monitoring using a new approach based on ultrasonic and low-frequency acoustic (ULFA...

  8. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  9. Comparison of spatial frequency domain features for the detection of side attack explosive ballistics in synthetic aperture acoustics

    Science.gov (United States)

    Dowdy, Josh; Anderson, Derek T.; Luke, Robert H.; Ball, John E.; Keller, James M.; Havens, Timothy C.

    2016-05-01

    Explosive hazards in current and former conflict zones are a threat to both military and civilian personnel. As a result, much effort has been dedicated to identifying automated algorithms and systems to detect these threats. However, robust detection is complicated due to factors like the varied composition and anatomy of such hazards. In order to solve this challenge, a number of platforms (vehicle-based, handheld, etc.) and sensors (infrared, ground penetrating radar, acoustics, etc.) are being explored. In this article, we investigate the detection of side attack explosive ballistics via a vehicle-mounted acoustic sensor. In particular, we explore three acoustic features, one in the time domain and two on synthetic aperture acoustic (SAA) beamformed imagery. The idea is to exploit the varying acoustic frequency profile of a target due to its unique geometry and material composition with respect to different viewing angles. The first two features build their angle specific frequency information using a highly constrained subset of the signal data and the last feature builds its frequency profile using all available signal data for a given region of interest (centered on the candidate target location). Performance is assessed in the context of receiver operating characteristic (ROC) curves on cross-validation experiments for data collected at a U.S. Army test site on different days with multiple target types and clutter. Our preliminary results are encouraging and indicate that the top performing feature is the unrolled two dimensional discrete Fourier transform (DFT) of SAA beamformed imagery.

  10. Detection and localization of leak of pipelines of RBMK reactor. Methods of processing of acoustic noise

    International Nuclear Information System (INIS)

    Tcherkaschov, Y.M.; Strelkov, B.P.; Chimanski, S.B.; Lebedev, V.I.; Belyanin, L.A.

    1997-01-01

    For realization of leak detection of input pipelines and output pipelines of RBMK reactor the method, based on detection and control of acoustic leak signals, was designed. In this report the review of methods of processing and analysis of acoustic noise is submitted. These methods were included in the software of the leak detection system and are used for the decision of the following problems: leak detection by method of sound pressure level in conditions of powerful background noise and strong attenuation of a signal; detection of a small leak in early stage by high-sensitivity correlation method; determination of a point of a sound source in conditions of strong reflection of a signal by a correlation method and sound pressure method; evaluation of leak size by the analysis of a sound level and point of a sound source. The work of considered techniques is illustrated on an example of test results of a fragment of the leak detection system. This test was executed on a Leningrad NPP, operated at power levels of 460, 700, 890 and 1000 MWe. 16 figs

  11. Acoustic leak detection in piping systems, 4

    International Nuclear Information System (INIS)

    Kitajima, Akira; Naohara, Nobuyuki; Aihara, Akihiko

    1983-01-01

    To monitor a high-pressure piping of nuclear power plants, a possibility of acoustic leak detection method has been experimentally studied in practical field tests and laboratory tests. Characteristics of background noise in field test and the results of experiment are summarized as follows: (1) The level of background noise in primary loop (PWR) was almost constant under actual plant operation. But it is possible that it rises at the condition of the pressure in primary loop. (2) Based on many experience of laboratory tests and practical field tests. The leak monitoring system for practical field was designed and developed. To improve the reliability, a judgment of leak on this system is used three factors of noise level, duration time of phenomena and frequency spectrum of noise signal emitted from the leak point. (author)

  12. Out-of-pile experiments with an electrical boiler for Acoustic Boiling Detection

    International Nuclear Information System (INIS)

    Aberle, J.; Bartholomay, R.; Reimann, G.; Rohrbacher, H.A.; Schleisiek, K.

    1978-03-01

    This report contains the experimental results of boiling tests obtained during the first testing phase in spring 1977 with an electrically heated 18-rod boiling generator installed in the sodium tank facility (NABEA) of IRE. The layout and performance of the boiling facility together with its instrumentation and criteria of selection of acoustic sensors for the detection of sodium boiling are described and discussed. The report provides information about the thermodynamics, blockage design and thermal conduction within the range of installation of the electric connecting head. The evaluation of the acoustic signals shows that boiling is indicated promptly and with a sufficiently high signal-to-noise ratio both by solid-born sensors and by high temperature microphones placed in the sodium

  13. Acoustic leak detection at complicated geometrical structures using fuzzy logic and neural networks

    International Nuclear Information System (INIS)

    Hessel, G.; Schmitt, W.; Weiss, F.P.

    1993-10-01

    An acoustic method based on pattern recognition is being developed. During the learning phase, the localization classifier is trained with sound patterns that are generated with simulated leaks at all locations endangered by leak. The patterns are extracted from the signals of an appropriate sensor array. After training unknown leak positions can be recognized through comparison with the training patterns. The experimental part is performed at an acoustic 1:3 model of the reactor vessel and head and at an original VVER-440 reactor in the former NPP Greifswald. The leaks were simulated at the vessel head using mobile sound sources driven either by compressed air, a piezoelectric transmitter or by a thin metal blade excited through a jet of compressed air. The sound patterns of the simulated leaks are simultaneously detected with an AE-sensor array and with high frequency microphones measuring structure-borne sound and airborne sound, respectively. Pattern classifiers based on Fuzzy Pattern Classification (FPC) and Artificial Neural Networks (ANN) are currently tested for validation of the acoustic emission-sensor array (FPC), leak localization via structure-borne sound (FPC) and the leak localization using microphones (ANN). The initial results show the used classifiers principally to be capable of detecting and locating leaks, but they also show that further investigations are necessary to develop a reliable method applicable at NPPs. (orig./HP)

  14. STATISTICAL ANALYSIS OF ACOUSTIC WAVE PARAMETERS NEAR SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-01-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  15. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Science.gov (United States)

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  16. Using of acoustic technologies for detection of explosives in gas, liquid and solid medium

    International Nuclear Information System (INIS)

    Valyaev, A. N.; Yanushkevich, V.A.

    2004-01-01

    Full text: Some industrial nuclear power objects are very attractive for the realization of radiological and chemical terrorism acts with using of explosives. Although up today this type of terrorism is not revealed itself, but the problem of detection of explosives at these objects is becoming very actual one, for example, in connection with the implementation of the urgent decommissioning of nuclear powered vessels. Such decommissioning includes the utilization the dangerous radioactive and chemical elements, contained in submarines and vessels. This actual problem is existed not only in Russia, but also in abroad. It is noticed that catastrophes at these objects will have in addition the great negative mental effect on population of all over the world, as it was after the Chernobyl accident. The using of the modern nuclear physics methods for detection and analysis of explosives is connected with the following difficulties: (1) we have to have the unique and the expensive equipment; (2) the special preparation of sample probes; (3) a long time is often necessary for analysis; (4) the high qualification of service personal is needed. We proposed to use for these purposes the complex of acoustic techniques, that are based on the high sensitivity of acoustic characteristics of any matter to their physical and chemical properties.Any acoustic signal has the following main parameters: (1) frequency (ω); (2) amplitude of pressure (ρ); (3) wave and amplitude bands; (4) velocity of acoustic wave propagation (sound velocity) (C); (5) space and temporal signal evolution, that is determined by the values of coefficients of temporal attenuation (α), space adsorption (β) and sound dispersion on obstacles and impurities. Our acoustic analysis is included the determination of C, α and β values for solid and liquid explosives. The exact measurements of these parameters and their dependences from frequency and temperature are conducted in the special acoustic cells, that

  17. Detection and localisation of very high energy particles in underwater acoustic; Detection et localisation de particules de tres hautes energies en acoustique sous-marine

    Energy Technology Data Exchange (ETDEWEB)

    Juennard, N

    2007-12-15

    The theme of this thesis is included in the Antares international project whose object is to build a neutrino telescope located in a deep water environment in the Mediterranean sea. In deep water sea, a neutrino can interact with a water molecule. The collision generates a luminous flash and an acoustic wave. The goal of this work is to study this acoustic sound wave and develop a system able to detect the corresponding wave front and to estimate the initial direction of the particle. We first focus on the acoustic sound wave. Two different models are studied, and works made recently have led to a mathematical expression of both signal and wave front. Then, several detection methods are studied, from the most classical to the more recent ones. The experimental comparison in semi-real situation leads to the choice of a detection method: the Extended stochastic matched filter. Position and direction of the neutrino are now estimated with a Gauss-Newton inspired algorithm. This estimator is based on a wave front propagation model and on the time detection information given by the telescope hydro-phones. Performances of the system are then estimated. An antenna structure is then proposed and a global simulation finalizes this thesis. In this simulation, detection and estimation are based on the results found in the previous sections. Underwater sea noise is real and the results of the simulation valid our works. (author)

  18. Calibration of sensors for acoustic detection of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ardid, M; Bou-Cabo, M; Espinosa, V; Martinez-Mora, J; Camarena, F; Alba, J [Departament de Fisica Aplicada, E.P.S. Gandia, Universitat Politecnica de Valencia, Cra. Nazaret/Oliva S/N, E-46730 Gandia (Spain)

    2007-09-15

    Calibration of sensors is an important task for the acoustic detection of neutrinos. Different approaches have been tried and used (calibrated hydrophones, resistors, powerful lasers, light bulbs explosion, etc.) We propose some methods for calibration that can be used in both the lab and the telescope ('in situ'). In this paper, different studies following these methods and their results are reported. First, we describe the reciprocity calibration method for acoustic sensors. Since it is a simple method and calibrated hydrophones are not needed, this technique is accessible for any lab. Moreover, the technique could be used to calibrate the sensors of a neutrino telescope just by using themselves (reciprocally). A comparison of this technique using different kind of signals (MLS, TSP, tone bursts, white noise), and in different propagation conditions is presented. The limitations of the technique are shown, as well as some possibilities to overcome them. The second aspect treated is the obtaining of neutrinolike signals for calibration. Probably, the most convenient way to do it would be to generate these signals from transducers directly. Since transducers do not usually have a flat frequency response, distortion is produced, and neutrino-like signals could be difficult to achieve. We present some equalization techniques to offset this effect. In this sense, the use of inverse filter based in Mourjopoulos theory seems to be quite convenient.

  19. In process acoustic emission in multirun submerged arc welding

    International Nuclear Information System (INIS)

    Asty, M.; Birac, C.

    1980-01-01

    In order to avoid the formation of deep grooves when repairing defects in welded joints in heavy plates, an investigation was made aiming to detect and locate the defects by in-process acoustic emission in multirun submerged arc welding. Twelve defects (lack of penetration, cracks, inclusions, lack of fusion together with inclusions, blowholes) were intentionally introduced when the first plate was welded. A space-time method for processing the acoustic activity during welding allowed the detection and the location of the intentional defects as well as of the most important accidental defects evidenced by ultrasonic testing [fr

  20. Active acoustical impedance using distributed electrodynamical transducers.

    Science.gov (United States)

    Collet, M; David, P; Berthillier, M

    2009-02-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system's efficiency.

  1. Target detection and localization in shallow water: an experimental demonstration of the acoustic barrier problem at the laboratory scale.

    Science.gov (United States)

    Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme

    2011-01-01

    This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.

  2. Detection of cavitation inception by acoustic technique in centrifugal pumps for nuclear application

    International Nuclear Information System (INIS)

    Prakash, V.; Prabhakar, R.; Rao, A.S.L.K.; Kale, R.D.

    1994-01-01

    The primary centrifugal pumps in a pool type reactor like the proposed Prototype Fast Breeder Reactor (PFBR) are required to operate at low values of available net positive suction head due to the limited submergence available in the pool. Pump hydraulics are designed to ensure that there is no cavitation or only minimum cavitation in the pump impeller in order to minimise long term erosion damage. Rigorous cavitation tests are usually carried out during development and final testing phase and a promising cavitation detection technique lies in acoustic noise measurements on the pump. As part of PFBR pump development programme, cavitation noise measurements were initially carried out on an experimental sodium pump in a water rig to establish detection procedures. Recently cavitation noise measurements were carried out on a 1/3 scale model impeller of PFBR pump along with visual observation of impeller passages to establish a correlation between visual and acoustic technique. Accelerometer responding to structure borne noise seems to give the best result. (author). 4 refs., 6 figs

  3. Towards an Automated Acoustic Detection System for Free Ranging Elephants.

    Science.gov (United States)

    Zeppelzauer, Matthias; Hensman, Sean; Stoeger, Angela S

    The human-elephant conflict is one of the most serious conservation problems in Asia and Africa today. The involuntary confrontation of humans and elephants claims the lives of many animals and humans every year. A promising approach to alleviate this conflict is the development of an acoustic early warning system. Such a system requires the robust automated detection of elephant vocalizations under unconstrained field conditions. Today, no system exists that fulfills these requirements. In this paper, we present a method for the automated detection of elephant vocalizations that is robust to the diverse noise sources present in the field. We evaluate the method on a dataset recorded under natural field conditions to simulate a real-world scenario. The proposed method outperformed existing approaches and robustly and accurately detected elephants. It thus can form the basis for a future automated early warning system for elephants. Furthermore, the method may be a useful tool for scientists in bioacoustics for the study of wildlife recordings.

  4. DETECTION OF DRUGSTORE BEETLES IN 9975 PACKAGES USING ACOUSTIC EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Shull, D.

    2013-03-04

    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  5. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    International Nuclear Information System (INIS)

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-01-01

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water

  6. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  7. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    Directory of Open Access Journals (Sweden)

    Tongzhi Zhang

    2016-11-01

    Full Text Available We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  8. The R package EchoviewR for automated processing of active acoustic data using Echoview

    Directory of Open Access Journals (Sweden)

    Lisa-Marie Katarina Harrison

    2015-02-01

    Full Text Available Acoustic data is time consuming to process due to the large data size and the requirement to often undertake some data processing steps manually. Manual processing may introduce subjective, irreproducible decisions into the data processing work flow, reducing consistency in processing between surveys. We introduce the R package EchoviewR as an interface between R and Echoview, a commercially available acoustic processing software package. EchoviewR allows for automation of Echoview using scripting which can drastically reduce the manual work required when processing acoustic surveys. This package plays an important role in reducing subjectivity in acoustic data processing by allowing exactly the same process to be applied automatically to multiple surveys and documenting where subjective decisions have been made. Using data from a survey of Antarctic krill, we provide two examples of using EchoviewR: krill estimation and swarm detection.

  9. Acoustic Detection of Faults and Degradation in a High-Bypass Turbofan Engine during VIPR Phase III Testing

    Science.gov (United States)

    Boyle, Devin K.

    2017-01-01

    The Vehicle Integrated Propulsion Research (VIPR) Phase III project was executed at Edwards Air Force Base, California, by the National Aeronautics and Space Administration and several industry, academic, and government partners in the summer of 2015. One of the research objectives was to use external radial acoustic microphone arrays to detect changes in the noise characteristics produced by the research engine during volcanic ash ingestion and seeded fault insertion scenarios involving bleed air valves. Preliminary results indicate the successful acoustic detection of suspected degradation as a result of cumulative exposure to volcanic ash. This detection is shown through progressive changes, particularly in the high-frequency content, as a function of exposure to greater cumulative quantities of ash. Additionally, detection of the simulated failure of the 14th stage stability bleed valve and, to a lesser extent, the station 2.5 stability bleed valve, to their fully-open fail-safe positions was achieved by means of spectral comparisons between nominal (normal valve operation) and seeded fault scenarios.

  10. Acoustic surveillance techniques for SGU leak monitoring

    International Nuclear Information System (INIS)

    McKnight, J.A.; Rowley, R.; Beesley, M.J.

    1990-01-01

    The paper presents a brief review of the acoustic techniques applicable to the detection of steam generator unit leaks that have been studied in the UK. Before discussion of the acoustic detection methods a reference representation of the required performance as developed in the UK is given. The conclusion is made that preliminary specification for the acoustic leak detection of sodium/water leaks in steam generating units suggests that it will be necessary to detect better than a leak rate of 3 g/s within a few seconds. 10 refs, 12 figs

  11. Acoustic Emission Monitoring of Incipient in Journal Bearings - Part I : Detectability and measurement for bearing damages

    International Nuclear Information System (INIS)

    Yoon, Dong Jin; Kwon, Oh Yang; Chung, Min Hwa; Kim, Kyung Woong

    1994-01-01

    In contrast to the machinery using rolling element bearings, systems with journal bearings generally operate in large scale and under severe loading condition such as steam generator turbines and internal combustion engines. Failure of the bearings in these machinery can result in the system breakdown. To avoid the time consuming repair and considerable economic loss, the detection of incipient failure in journal bearings becomes very important. In this experimental approach, acoustic emission monitoring is applied to the detection of incipient failure caused by several types of abnormal operating condition most probable in the journal bearing systems. It has been known that the intervention of foreign materials, insufficient lubrication and misassembly etc. are principal factors to cause bearing failure and distress. The experiment was conducted under such designed conditions as hard particles in the lubrication layer, insufficient lubrication, and metallic contact in the simulated journal bearing system. The results showed that acoustic emission could be an effective tool to detect the incipient failure in journal bearings

  12. Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound.

    Science.gov (United States)

    Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Fink, Mathias; Tanter, Mickaël

    2011-03-01

    The activation of natural gas nuclei to induce larger bubbles is possible using short ultrasonic excitations of high amplitude, and is required for ultrasound cavitation therapies. However, little is known about the distribution of nuclei in tissues. Therefore, the acoustic pressure level necessary to generate bubbles in a targeted zone and their exact location are currently difficult to predict. To monitor the initiation of cavitation activity, a novel all-ultrasound technique sensitive to single nucleation events is presented here. It is based on combined passive detection and ultrafast active imaging over a large volume using the same multi-element probe. Bubble nucleation was induced using a focused transducer (660 kHz, f-number = 1) driven by a high-power electric burst (up to 300 W) of one to two cycles. Detection was performed with a linear array (4 to 7 MHz) aligned with the single-element focal point. In vitro experiments in gelatin gel and muscular tissue are presented. The synchronized passive detection enabled radio-frequency data to be recorded, comprising high-frequency coherent wave fronts as signatures of the acoustic emissions linked to the activation of the nuclei. Active change detection images were obtained by subtracting echoes collected in the unnucleated medium. These indicated the appearance of stable cavitating regions. Because of the ultrafast frame rate, active detection occurred as quickly as 330 μs after the high-amplitude excitation and the dynamics of the induced regions were studied individually.

  13. Acoustic Characterization of Mesoscale Objects

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  14. ISAT: The mega-fauna acoustic tracking system

    KAUST Repository

    De la Torre, Pedro; Smith, Egan Lloyd; Sancheti, Ajay; Salama, Khaled N.; Berumen, Michael L.

    2013-01-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic

  15. Study on acoustic emission signals of active defect in pressure piping under hydraulic pressure

    International Nuclear Information System (INIS)

    Ai Qiong; Liu Caixue; Wang Yao; He Pan; Song Jian

    2009-01-01

    Experimental investigations of acoustic emission (AE) of active defect in pressure piping with a prefabricated crack under hydraulic pressure tester were conducted. AE signals of fatigue-crack-growth in pressure piping were monitored incessantly in all processes, and all signals recorded were analyzed and processed. The result of signal processing show that the amplitude and energy of acoustic emission signals from defect in pressure pipeline increase gradually with the load time, and thus the active defects in pipeline can be identified; the amplitude, energy and count of acoustic emission signals increase sharply before the defect runs through, and we can forecast the penetrated leakage of pipeline. (authors)

  16. Phononic fluidics: acoustically activated droplet manipulations

    Science.gov (United States)

    Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.

    2011-02-01

    Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.

  17. A Miniaturized QEPAS Trace Gas Sensor with a 3D-Printed Acoustic Detection Module

    Directory of Open Access Journals (Sweden)

    Xiaotao Yang

    2017-07-01

    Full Text Available A 3D printing technique was introduced to a quartz-enhanced photoacoustic spectroscopy (QEPAS sensor and is reported for the first time. The acoustic detection module (ADM was designed and fabricated using the 3D printing technique and the ADM volume was compressed significantly. Furthermore, a small grin lens was used for laser focusing and facilitated the beam adjustment in the 3D-printed ADM. A quartz tuning fork (QTF with a low resonance frequency of 30.72 kHz was used as the acoustic wave transducer and acetylene (C2H2 was chosen as the analyte. The reported miniaturized QEPAS trace gas sensor is useful in actual sensor applications.

  18. Wideband excitation in nonlinear vibro-acoustic modulation for damage detection

    Science.gov (United States)

    Klepka, A.; Adamczyk, M.; Pieczonka, L.; Staszewski, W. J.

    2016-04-01

    The paper discusses the use of wideband excitation in nonlinear vibro-acoustic modulation technique (VAM) used for damage detection. In its original form, two mono-harmonic signals (low and high frequency) are used for excitation. The low frequency excitation is typically selected based on a modal analysis test and high frequency excitation is selected arbitrarily in the ultrasonic frequency range. This paper presents a different approach with use of wideband excitation signals. The proposed approach gives the possibility to simplify the testing procedure by omitting the modal test used to determine the value of low frequency excitation. Simultaneous use of wideband excitation for high frequency solves the ambiguity related to the selection of the frequency of acoustic wave. Broadband excitation signals require, however, more elaborate signal processing methods to determine the intensity of modulation for a given bandwidth. The paper discusses the proposed approach and the related signal processing procedure. Experimental validation of the proposed technique is performed on a laminated composite plate with a barely visible impact damage that was generated in an impact test. Piezoceramic actuators are used for vibration excitation and a scanning laser vibrometer is used for noncontact data acquisition.

  19. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Majid, E-mail: majid_rajabi@iust.ac.ir; Mojahed, Alireza

    2016-09-15

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.

  20. A New Acoustic Emission Sensor Based Gear Fault Detection Approach

    Directory of Open Access Journals (Sweden)

    Junda Zhu

    2013-01-01

    Full Text Available In order to reduce wind energy costs, prognostics and health management (PHM of wind turbine is needed to ensure the reliability and availability of wind turbines. A gearbox is an important component of a wind turbine. Therefore, developing effective gearbox fault detection tools is important to the PHM of wind turbine. In this paper, a new acoustic emission (AE sensor based gear fault detection approach is presented. This approach combines a heterodyne based frequency reduction technique with time synchronous average (TSA and spectrum kurtosis (SK to process AE sensor signals and extract features as condition indictors for gear fault detection. Heterodyne technique commonly used in communication is first employed to preprocess the AE signals before sampling. By heterodyning, the AE signal frequency is down shifted from several hundred kHz to below 50 kHz. This reduced AE signal sampling rate is comparable to that of vibration signals. The presented approach is validated using seeded gear tooth crack fault tests on a notational split torque gearbox. The approach presented in this paper is physics based and the validation results have showed that it could effectively detect the gear faults.

  1. Acoustic measurements of soil-pipeflow and internal erosion

    Science.gov (United States)

    Internal erosion of soil pipes can lead to embankment failures, landslides, and gully erosion. Therefore, non-intrusive methods are needed to detect and monitor soil pipeflow and the resulting internal erosion. This paper presents a laboratory study using both active and passive acoustic techniques ...

  2. Nondestructive Online Detection of Welding Defects in Track Crane Boom Using Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2014-04-01

    Full Text Available Nondestructive detection of structural component of track crane is a difficult and costly problem. In the present study, acoustic emission (AE was used to detect two kinds of typical welding defects, that is, welding porosity and incomplete penetration, in the truck crane boom. Firstly, a subsidiary test specimen with special preset welding defect was designed and added on the boom surface with the aid of steel plates to get the synchronous deformation of the main boom. Then, the AE feature information of the welding defect could be got without influencing normal operation of equipment. As a result, the rudimentary location analysis can be attained using the linear location method and the two kinds of welding defects can be distinguished clearly using AE characteristic parameters such as amplitude and centroid frequency. Also, through the comparison of two loading processes, we concluded that the signal produced during the first loading process was mainly caused by plastic deformation damage and during the second loading process the stress release and structure friction between sections in welding area are the main acoustic emission sources. Thus, the AE is an available tool for nondestructive online detection of latent welding defects of structural component of track crane.

  3. NW-MILO Acoustic Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, Shari; Myers, Joshua R.; Maxwell, Adam R.; Jones, Mark E.

    2010-02-17

    There is an enduring requirement to improve our ability to detect potential threats and discriminate these from the legitimate commercial and recreational activity ongoing in the nearshore/littoral portion of the maritime domain. The Northwest Maritime Information and Littoral Operations (NW-MILO) Program at PNNL’s Coastal Security Institute in Sequim, Washington is establishing a methodology to detect and classify these threats - in part through developing a better understanding of acoustic signatures in a near-shore environment. The purpose of the acoustic data collection described here is to investigate the acoustic signatures of small vessels. The data is being recorded continuously, 24 hours a day, along with radar track data and imagery. The recording began in August 2008, and to date the data contains tens of thousands of signals from small vessels recorded in a variety of environmental conditions. The quantity and variety of this data collection, with the supporting imagery and radar track data, makes it particularly useful for the development of robust acoustic signature models and advanced algorithms for signal classification and information extraction. The underwater acoustic sensing system is part of a multi-modal sensing system that is operating near the mouth of Sequim Bay. Sequim Bay opens onto the Straight of Juan de Fuca, which contains part of the border between the U.S. and Canada. Table 1 lists the specific components used for the NW-MILO system. The acoustic sensor is a hydrophone permanently deployed at a mean depth of about 3 meters. In addition to a hydrophone, the other sensors in the system are a marine radar, an electro-optical (EO) camera and an infra-red (IR) camera. The radar is integrated with a vessel tracking system (VTS) that provides position, speed and heading information. The data from all the sensors is recorded and saved to a central server. The data has been validated in terms of its usability for characterizing the

  4. FAULT DETECTION AND LOCALIZATION IN MOTORCYCLES BASED ON THE CHAIN CODE OF PSEUDOSPECTRA AND ACOUSTIC SIGNALS

    Directory of Open Access Journals (Sweden)

    B. S. Anami

    2013-06-01

    Full Text Available Vehicles produce sound signals with varying temporal and spectral properties under different working conditions. These sounds are indicative of the condition of the engine. Fault diagnosis is a significantly difficult task in geographically remote places where expertise is scarce. Automated fault diagnosis can assist riders to assess the health condition of their vehicles. This paper presents a method for fault detection and location in motorcycles based on the chain code of the pseudospectra and Mel-frequency cepstral coefficient (MFCC features of acoustic signals. The work comprises two stages: fault detection and fault location. The fault detection stage uses the chain code of the pseudospectrum as a feature vector. If the motorcycle is identified as faulty, the MFCCs of the same sample are computed and used as features for fault location. Both stages employ dynamic time warping for the classification of faults. Five types of faults in motorcycles are considered in this work. Observed classification rates are over 90% for the fault detection stage and over 94% for the fault location stage. The work identifies other interesting applications in the development of acoustic fingerprints for fault diagnosis of machinery, tuning of musical instruments, medical diagnosis, etc.

  5. Prototype steam generator test at SCTI/ETEC. Acoustic program test plan

    International Nuclear Information System (INIS)

    Greene, D.A.; Thiele, A.; Claytor, T.N.

    1981-10-01

    This document is an integrated test plan covering programs at General Electric (ARSD), Rockwell International (RI) and Argonne National Laboratory (CT). It provides an overview of the acoustic leak detection test program which will be completed in conjunction with the prototype LMFBR steam generator at the Energy Technology Engineering Laboratory. The steam generator is installed in the Sodium Components Test Installation (SCTI). Two acoustic detection systems will be used during the test program, a low frequency system developed by GE-ARSD (GAAD system) and a high frequency system developed by RI-AI (HALD system). These systems will be used to acquire data on background noise during the thermal-hydraulic test program. Injection devices were installed during fabrication of the prototype steam generator to provide localized noise sources in the active region of the tube bundle. These injectors will be operated during the steam generator test program, and it will be shown that they are detected by the acoustic systems

  6. Acoustic waves and the detectability of first-order phase transitions by eLISA

    Science.gov (United States)

    Weir, David J.

    2017-05-01

    In various extensions of the Standard Model it is possible that the electroweak phase transition was first order. This would have been a violent process, involving the formation of bubbles and associated shock waves. Not only would the collision of these bubbles and shock waves be a detectable source of gravitational waves, but persistent acoustic waves could enhance the signal and improve prospects of detection by eLISA. I summarise the results of a recent campaign to model such a phase transition based on large-scale hydrodynamical simulations, and its implications for the eLISA mission.

  7. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  8. A surface acoustic wave response detection method for passive wireless torque sensor

    Science.gov (United States)

    Fan, Yanping; Kong, Ping; Qi, Hongli; Liu, Hongye; Ji, Xiaojun

    2018-01-01

    This paper presents an effective surface acoustic wave (SAW) response detection method for the passive wireless SAW torque sensor to improve the measurement accuracy. An analysis was conducted on the relationship between the response energy-entropy and the bandwidth of SAW resonator (SAWR). A self-correlation method was modified to suppress the blurred white noise and highlight the attenuation characteristic of wireless SAW response. The SAW response was detected according to both the variation and the duration of energy-entropy ascension of an acquired RF signal. Numerical simulation results showed that the SAW response can be detected even when the signal-to-noise ratio (SNR) is 6dB. The proposed SAW response detection method was evaluated with several experiments at different conditions. The SAW response can be well distinguished from the sinusoidal signal and the noise. The performance of the SAW torque measurement system incorporating the detection method was tested. The obtained repeatability error was 0.23% and the linearity was 0.9934, indicating the validity of the detection method.

  9. Preliminary Study on Acoustic Detection of Faults Experienced by a High-Bypass Turbofan Engine

    Science.gov (United States)

    Boyle, Devin K.

    2014-01-01

    The vehicle integrated propulsion research (VIPR) effort conducted by NASA and several partners provided an unparalleled opportunity to test a relatively low TRL concept regarding the use of far field acoustics to identify faults occurring in a high bypass turbofan engine. Though VIPR Phase II ground based aircraft installed engine testing wherein a multitude of research sensors and methods were evaluated, an array of acoustic microphones was used to determine the viability of such an array to detect failures occurring in a commercially representative high bypass turbofan engine. The failures introduced during VIPR testing included commanding the engine's low pressure compressor (LPC) exit and high pressure compressor (HPC) 14th stage bleed values abruptly to their failsafe positions during steady state

  10. Broadband unidirectional acoustic cloak based on phase gradient metasurfaces with two flat acoustic lenses

    Science.gov (United States)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Song, Ai-Ling; Wang, Fang

    2016-07-01

    Narrow bandwidth and bulky configuration are the main obstacles for the realization and application of invisible cloaks. In this paper, we present an effective method to achieve broadband and thin acoustic cloak by using an acoustic metasurface (AMS). In order to realize this cloak, we use slitted unit cells to design the AMS due to the advantage of less energy loss, broad operation bandwidth, and subwavelength thickness. According to the hyperboloidal phase profile along the AMS, the incident plane waves can be focused at a designed focal spot by the flat lens. Furthermore, broadband acoustic cloak is obtained by combining two identical flat lenses. The incident plane waves are focused at the center point in between of the two lenses by passing through one lens, and then recovered by passing through the other one. However, they cannot reach the cloaked regions in between of the two lenses. The simulation results can verify the non-detectability effect of the acoustic cloak. Our study results provide an available and simple approach to experimentally achieve the acoustic cloak, which can be used in acoustic non-detectability for large objects.

  11. Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.

    Science.gov (United States)

    Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C

    2018-06-01

    Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.

  12. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  13. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    Science.gov (United States)

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  14. On-line low and high frequency acoustic leak detection and location for an automated steam generator protection system

    International Nuclear Information System (INIS)

    Gaubatz, D.C.; Gluekler, E.L.

    1990-01-01

    Two on-line acoustic leak detection systems were operated and installed on a 76 MW hockey stick steam generator in the Sodium Components Test Installation (SCTI) at the Energy Technology Engineering Center (ETEC) in Southern California. The low frequency system demonstrated the capability to detect and locate leaks, both intentional and unintentional. No false alarms were issued during the two year test program even with adjacent blasting activities, pneumatic drilling, shuttle rocket engine testing nearby, scrams of the SCTI facility, thermal/hydraulic transient testing, and pump/control valve operations. For the high frequency system the capability to detect water into sodium reactions was established utilizing frequencies as high as 300 kHz. The high frequency system appeared to be sensitive to noise generated by maintenance work and system valve operations. Subsequent development work which is incomplete as of this date showed much more promise for the high frequency system. (author). 13 figs

  15. Acoustic system for pipe rupture monitoring and leak detection

    International Nuclear Information System (INIS)

    Herzog, W.; Jonas, H.

    1982-06-01

    As a safety aspect pipe rupture and leakage effects are of particular interest in nuclear power plants where severe consequences for the reactor may result. Counter measures against postulated pipe breaks and leakages in nuclear power plants are necessary whenever the main safety goals: safe shut-down, safe afterheat removal and retention of radioactivity, are endangered. The requirements to be met by a leak detection system depend on the time available for counter actions. If this time is short so that automatic actions are necessary the German safety criteria for nuclear power plants (Criterion 6.1) require two physically diverse signals to be monitored. One fairly obvious possibility of leak detection is to monitor process parameters (pressure, flow). As a diverse signal physical parameters outside the process may be employed: pressure transients temperature, humidity are principally suitable. In practical application, however, it is difficult to predict these parameters by way of calculation in order to establish the required set-point of the monitoring system. Experimental determination is possible only in special cases. A study of several ways of diverse leak detection methods leads to the very promising acoustic method. We investigated experimentally the feasibility of monitoring the sound created by a leakage. Air borne sound as well as body borne sound was analyzed

  16. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    Science.gov (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  17. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom

    Directory of Open Access Journals (Sweden)

    Katsunori Mizuno

    2016-05-01

    Full Text Available Digging is necessary to detect plant roots under the water bottom. However, such detection is affected by the transparency of water and the working skills of divers, usually requires considerable time for high-resolution sampling, and always damages the survey site. We developed a new automatic non-destructive acoustic measurement system that visualizes the space under the water bottom, and tested the system in the in situ detection of natural plant roots. The system mainly comprises a two-dimensional waterproof stage controlling unit and acoustic measurement unit. The stage unit was electrically controlled through a notebook personal computer, and the space under the water bottom was scanned in a two-dimensional plane with the stage unit moving in steps of 0.01 m (±0.0001 m. We confirmed a natural plant root with diameter of 0.025–0.030 m in the reconstructed three-dimensional acoustic image. The plant root was at a depth of about 0.54 m and the propagation speed of the wave between the bottom surface and plant root was estimated to be 1574 m/s. This measurement system for plant root detection will be useful for the non-destructive assessment of the status of the space under the water bottom.

  18. Acoustic detection of melt particles

    International Nuclear Information System (INIS)

    Costley, R.D. Jr.

    1988-01-01

    The Reactor Safety Research Department at Sandia National Laboratories is investigating a type of Loss of Coolant Accident (LOCA). In this particular type of accident, core meltdown occurs while the pressure within the reactor pressure vessel (RPV) is high. If one of the instrument tube penetrations in the lower head fails, melt particles stream through the cavity and into the containment vessel. This experiment, which simulates this type accident, was performed in the Surtsev Direct Heating Test Facility which is approximately a 1:10 linear scaling of a large dry containment volume. A 1:10 linear scale model of the reactor cavity was placed near the bottom of the Surtsey vessel so that the exit of the cavity was at the vertical centerline of the vessel. A pressure vessel used to create the simulated molten core debris was located at the scaled height of the RPV. In order to better understand how the melt leaves the cavity and streams into the containment an array of five acoustic sensors was placed directly in the path of the melt particles about 30 feet from the exit of the sealed cavity. Highly damped, broadband sensors were chosen to minimize ringing so that individual particle hits could be detected. The goal was to count the signals produced by the individual particle hits to get some idea of how the melt particles left the cavity. This document presents some of the results of the experiment. 9 figs

  19. Analysis of acoustic cardiac signals for heart rate variability and murmur detection using nonnegative matrix factorization-based hierarchical decomposition

    DEFF Research Database (Denmark)

    Shah, Ghafoor; Koch, Peter; Papadias, Constantinos B.

    2014-01-01

    The detection of heart rate variability (HRV) via cardiac auscultation examination can be a useful and inexpensive tool which, however, is challenging in the presence of pathological signals and murmurs. The aim of this research is to analyze acoustic cardiac signals for HRV and murmur detection...

  20. Sci-Thur AM: YIS – 02: Imaging dose distributions through the detection of radiation-induced acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Hickling, Susannah; Lei, Hao; Hobson, Maritza; Leger, Pierre; Wang, Xueding; El Naqa, Issam [University of Michigan, McGill University, McGill University , University of Michigan, University of Michigan/McGill University (United States)

    2016-08-15

    Purpose: X-ray acoustic computed tomography (XACT) is an emerging technique that images the dose deposited within an object following linac irradiation by detecting acoustic waves induced via the photoacoustic effect. This work shows that XACT images can be formed in soft-tissue equivalent material and that dosimetric information can be extracted from such images. Methods: Acoustic waves induced in a water tank following irradiation by a 10 MV flattening filter free photon beam were detected with an immersion ultrasound transducer at 60 angles surrounding the radiation field. A back-projection algorithm was used to reconstruct an XACT image from the detected transducer signals. Profiles extracted from XACT images were compared to profiles measured with ion chambers as per the current clinical protocol. Results: XACT images were successfully formed of simple 4 cm × 4 cm and 6 cm × 3 cm fields, as well as of more complicated multi-leaf collimator defined fields. For the 6 cm × 3 cm field, 74% and 87% of the XACT profile points in the 6 cm and 3 cm dimensions, respectively, passed a 7% / 4 mm gamma test when compared to ion chamber measurements. In a complicated puzzle piece shaped field, 86% of the pixels in an extracted profile passed a 7% / 4 mm gamma test. Conclusions: XACT is capable of imaging the dose distribution delivered by a variety of field sizes and shapes in water, and is a viable technique for both water tank and in vivo dosimetry.

  1. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    Science.gov (United States)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  2. Artificial defects detection and location during welding

    International Nuclear Information System (INIS)

    Asty, M.

    1978-01-01

    Welding control by acoustic emission allows defects detection as soon as they are created. Acoustic testing saves time and gives better quality assurance in the case of multiple pass welding of plates. A welded joint was performed on A533B steel plates 250 mm thick by submerged arc welding. Artificial defects were implanted to determine significative parameters of acoustic reception. In operating conditions a significant acoustic activity takes place only during welding as shown by preliminary tests. At the same time an important noise is created by the arc, scories cooling and metal solidification and cooling. These problems are solved by an original processing in time-space detecting and locating defects with a good approximation [fr

  3. Marine bioacoustics and technology: The new world of marine acoustic ecology

    Science.gov (United States)

    Hastings, Mardi C.; Au, Whitlow W. L.

    2012-11-01

    Marine animals use sound for communication, navigation, predator avoidance, and prey detection. Thus the rise in acoustic energy associated with increasing human activity in the ocean has potential to impact the lives of marine animals. Thirty years ago marine bioacoustics primarily focused on evaluating effects of human-generated sound on hearing and behavior by testing captive animals and visually observing wild animals. Since that time rapidly changing electronic and computing technologies have yielded three tools that revolutionized how bioacousticians study marine animals. These tools are (1) portable systems for measuring electrophysiological auditory evoked potentials, (2) miniaturized tags equipped with positioning sensors and acoustic recording devices for continuous short-term acoustical observation rather than intermittent visual observation, and (3) passive acoustic monitoring (PAM) systems for remote long-term acoustic observations at specific locations. The beauty of these breakthroughs is their direct applicability to wild animals in natural habitats rather than only to animals held in captivity. Hearing capabilities of many wild species including polar bears, beaked whales, and reef fishes have now been assessed by measuring their auditory evoked potentials. Miniaturized acoustic tags temporarily attached to an animal to record its movements and acoustic environment have revealed the acoustic foraging behavior of sperm and beaked whales. Now tags are being adapted to fishes in effort to understand their behavior in the presence of noise. Moving and static PAM systems automatically detect and characterize biological and physical features of an ocean area without adding any acoustic energy to the environment. PAM is becoming a powerful technique for understanding and managing marine habitats. This paper will review the influence of these transformative tools on the knowledge base of marine bioacoustics and elucidation of relationships between marine

  4. The effects of two counterpropagating surface acoustic wave beams on single electron acoustic charge transport

    International Nuclear Information System (INIS)

    He Jianhong; Guo Huazhong; Song Li; Zhang Wei; Gao Jie; Lu Chuan

    2010-01-01

    We present a comprehensive study of the effects of two counterpropagating surface acoustic waves on the acoustoelectric current of single electron transport devices. A significant improvement in the accuracy of current quantization is achieved as a result of an additional surface acoustic wave beam. The experiments reveal the sinusoidally periodical modulation in the acoustoelectric current characteristic as a function of the relative phase of the two surface acoustic wave beams. Besides, by using standing surface acoustic waves, the acoustoelectric current is detected which we consider as the so-called anomalous acoustoelectric current produced by acoustic wave mechanical deformations. This kind current is contributed to one component of the acoustoelectric current in surface acoustic wave device, which could enable us to establish a more adequate description of acoustoelectric effects on single-electron acoustic charge transport.

  5. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    Science.gov (United States)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  6. Hot topics: Signal processing in acoustics

    Science.gov (United States)

    Gaumond, Charles F.

    2005-09-01

    Signal processing in acoustics is a multidisciplinary group of people that work in many areas of acoustics. We have chosen two areas that have shown exciting new applications of signal processing to acoustics or have shown exciting and important results from the use of signal processing. In this session, two hot topics are shown: the use of noiselike acoustic fields to determine sound propagation structure and the use of localization to determine animal behaviors. The first topic shows the application of correlation on geo-acoustic fields to determine the Greens function for propagation through the Earth. These results can then be further used to solve geo-acoustic inverse problems. The first topic also shows the application of correlation using oceanic noise fields to determine the Greens function through the ocean. These results also have utility for oceanic inverse problems. The second topic shows exciting results from the detection, localization, and tracking of marine mammals by two different groups. Results from detection and localization of bullfrogs are shown, too. Each of these studies contributed to the knowledge of animal behavior. [Work supported by ONR.

  7. Autoregressive techniques for acoustic detection of in-sodium water leaks

    International Nuclear Information System (INIS)

    Hayashi, K.

    1997-01-01

    We have been applied a background signal whitening filter built by univariate autoregressive model to the estimation problem of the leak start time and duration. In the 1995 present benchmark stage, we evaluated the method using acoustic signals from real hydrogen or water/steam injection experiments. The results show that the signal processing technique using this filter can detect reliability the leak signals with a sufficient signal-to-noise ratio. Even if the sensor signal contains non-boiling or non-leak high-amplitude pulses, they can be classified by spectral information. Especially, the feature signal made from the time-frequency spectrum of the filtered signal is very sensitive and useful. (author). 8 refs, 14 figs, 6 tabs

  8. Active structural acoustic control for reduction of radiated sound from structure

    International Nuclear Information System (INIS)

    Hong, Jin Seok; Oh, Jae Eung

    2001-01-01

    Active control of sound radiation from a vibrating rectangular plate by a steady-state harmonic point force disturbance is experimentally studied. Structural excitation is achieved by two piezoceramic actuators mounted on the panel. Two accelerometers are implemented as error sensors. Estimated radiated sound signals using vibro-acoustic path transfer function are used as error signals. The vibro-acoustic path transfer function represents system between accelerometers and microphones. The approach is based on a multi-channel filtered-x LMS algorithm. The results shows that attenuation of sound levels of 11dB, 10dB is achieved

  9. Novel Fiber-Optic Ring Acoustic Emission Sensor

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  10. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.

    1978-01-01

    In order to improve the security of handling special nuclear materials at the Oak Ridge Y-12 Plant, a sensitive acoustic emission detector has been developed that will detect forcible entry through block or tile walls, concrete floors, or concrete/steel vault walls. A small, low-powered processor was designed to convert the output from a sensitive, crystal-type acoustic transducer to an alarm relay signal for use with a supervised alarm loop. The unit may be used to detect forcible entry through concrete, steel, block, tile, and/or glass

  11. Spectrum of the seismic-electromagnetic and acoustic waves caused by seismic and volcano activity

    Directory of Open Access Journals (Sweden)

    S. Koshevaya

    2005-01-01

    Full Text Available Modeling of the spectrum of the seismo-electromagnetic and acoustic waves, caused by seismic and volcanic activity, has been done. This spectrum includes the Electromagnetic Emission (EME, due to fracturing piezoelectrics in rocks and the Acoustic Emission (AE, caused by the excitation and the nonlinear passage of acoustic waves through the Earth's crust, the atmosphere, and the ionosphere. The investigated mechanism of the EME uses the model of fracturing and the crack motion. For its analysis, we consider a piezoelectric crystal under mechanical stresses, which cause the uniform crack motion, and, consequently, in the vicinity of the moving crack also cause non-stationary polarization currents. A possible spectrum of EME has been estimated. The underground fractures produce Very Low (VLF and Extremely Low Frequency (ELF acoustic waves, while the acoustic waves at higher frequencies present high losses and, on the Earth's surface, they are quite small and are not registered. The VLF acoustic wave is subject to nonlinearity under passage through the lithosphere that leads to the generation of higher harmonics and also frequency down-conversion, namely, increasing the ELF acoustic component on the Earth's surface. In turn, a nonlinear propagation of ELF acoustic wave in the atmosphere and the ionosphere leads to emerging the ultra low frequency (ULF acousto-gravity waves in the ionosphere and possible local excitation of plasma waves.

  12. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  13. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    International Nuclear Information System (INIS)

    Schunck, Matthias

    2011-01-01

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264 +52 -37 m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample of

  14. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, Matthias

    2011-10-07

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264{sup +52} {sub -37} m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample

  15. Effects of entrained gas on the acoustic detection of sodium boiling in a simulated LMFBR fuel bundle

    International Nuclear Information System (INIS)

    Leavell, W.H.; Sides, W.H.

    1975-01-01

    The relationship between acoustic intensity of nucleate boiling and void fraction was studied in a simulated LMFBR fuel bundle. Results indicate that as the void fraction increases the detected intensity of nucleate boiling decreased until it was indistinguishable from background noise. (JWR)

  16. Acoustical conditions for speech communication in active elementary school classrooms

    Science.gov (United States)

    Sato, Hiroshi; Bradley, John

    2005-04-01

    Detailed acoustical measurements were made in 34 active elementary school classrooms with typical rectangular room shape in schools near Ottawa, Canada. There was an average of 21 students in classrooms. The measurements were made to obtain accurate indications of the acoustical quality of conditions for speech communication during actual teaching activities. Mean speech and noise levels were determined from the distribution of recorded sound levels and the average speech-to-noise ratio was 11 dBA. Measured mid-frequency reverberation times (RT) during the same occupied conditions varied from 0.3 to 0.6 s, and were a little less than for the unoccupied rooms. RT values were not related to noise levels. Octave band speech and noise levels, useful-to-detrimental ratios, and Speech Transmission Index values were also determined. Key results included: (1) The average vocal effort of teachers corresponded to louder than Pearsons Raised voice level; (2) teachers increase their voice level to overcome ambient noise; (3) effective speech levels can be enhanced by up to 5 dB by early reflection energy; and (4) student activity is seen to be the dominant noise source, increasing average noise levels by up to 10 dBA during teaching activities. [Work supported by CLLRnet.

  17. Acoustic leak detector in Monju steam generator

    International Nuclear Information System (INIS)

    Wachi, E.; Inoue, T.

    1990-01-01

    Acoustic leak detectors are equipped with the Monju steam generators for one of the R and D activities, which are the same type of the detectors developed in the PNC 50MW Steam Generator Test Facility. Although they are an additional leak detection system to the regular one in Monju SG, they would also detect the intermediate or large leaks of the SG tube failures. The extrapolation method of a background noise analysis is expected to be verified by Monju SG data. (author). 4 figs

  18. Damage Detection in Railway Prestressed Concrete Sleepers using Acoustic Emission

    Science.gov (United States)

    Clark, A.; Kaewunruen, S.; Janeliukstis, R.; Papaelias, M.

    2017-10-01

    Prestressed concrete sleepers (or railroad ties) are safety-critical elements in railway tracks that distribute the wheel loads from the rails to the track support system. Over a period of time, the concrete sleepers age and deteriorate in addition to experiencing various types of static and dynamic loading conditions, which are attributable to train operations. In many cases, structural cracks can develop within the sleepers due to high intensity impact loads or due to poor track maintenance. Often, cracks of sleepers develop and present at the midspan due to excessive negative bending. These cracks can cause broken sleepers and sometimes called ‘center bound’ problem in railway lines. This paper is the world first to present an application of non-destructive acoustic emission technology for damage detection in railway concrete sleepers. It presents experimental investigations in order to detect center-bound cracks in railway prestressed concrete sleepers. Experimental laboratory testing involves three-point bending tests of four concrete sleepers. Three-point bending tests correspond to a real failure mode, when the loads are not transferred uniformly to the ballast support. It is observed that AE sensing provides an accurate means for detecting the location and magnitude of cracks in sleepers. Sensor location criticality is also highlighted in the paper to demonstrate the reliability-based damage detection of the sleepers.

  19. Comparison of radio-telemetric home range analysis and acoustic detection for Little Brown Bat habitat evaluation

    Science.gov (United States)

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    With dramatic declines of bat populations due to mortality caused by Pseudogymnoascus destructans (White-nose Syndrome), assessing habitat preferences of bats in the northeastern US is now critical to guide the development of regional conservation efforts. In the summer of 2012, we conducted fixed-station simultaneous telemetry to determine nocturnal spatial use and fixed-kernel home-range estimates of available habitat of a Myotis lucifugus (Le Conte) (Little Brown Bat) maternity colony in an artificial bat house. In summers of 2011 and 2012, we also deployed a 52-ha grid of 4 × 4 Anabat acoustic detectors over five 6–8-day sampling periods in various riparian and non-riparian environments in close proximity to the same bat house. The mean telemetry home range of 143 ha for bats (n = 7) completely overlapped the acoustic grid. Rankings of habitats from telemetry data for these 7 bats and 5 additional bats not included in home-range calculations but added for habitat-use measures (n = 13) revealed a higher proportional use of forested riparian habitats than other types at the landscape scale. Pair-wise comparisons of habitats indicated that bats were found significantly closer to forested riparian habitats and forests than to open water, developed areas, fields, shrublands, or wetland habitats at the landscape scale. Acoustic sampling showed that naïve occupancy was 0.8 and 0.6 and mean nightly detection probabilities were 0.23 and 0.08 at riparian and non-riparian sites, respectively. Our findings suggest that Little Brown Bats select forested riparian and forested habitats for foraging at the landscape scale but may be most easily detected acoustically at riparian sites when a simple occupancy determination for an area is required.

  20. Acoustic communication in plant–animal interactions

    NARCIS (Netherlands)

    Schöner, M.G.; Simon, R.; Schöner, C.R.

    2016-01-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant–animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound

  1. Signal processing techniques for the acoustic detection of boiling in LMFBRs: preliminary results of an IAEA collaborative research programme

    International Nuclear Information System (INIS)

    Macleod, I.D.

    1988-01-01

    A specialist meeting organised by the International Working Group on Fast Reactors (IWGFR) of the International Atomic Energy Agency (IAEA) was held at Chester in the United Kingdom in 1981 to discuss techniques for the detection of acoustic noise from boiling. This meeting recommended that a benchmark test should be carried out to evaluate and compare signal processing methods for use in the detection of the acoustic noise produced by boiling sodium. In response to this recommendation the IAEA set up a collaborative research programme to examine and compare the processing techniques used in the laboratories of member countries. Eight laboratories in six countries have taken part in the programme which will be completed in 1988. This paper summarises the results obtained so far. (author)

  2. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  3. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    Science.gov (United States)

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  4. Bat detective—Deep learning tools for bat acoustic signal detection

    Science.gov (United States)

    Barlow, Kate E.; Firman, Michael; Freeman, Robin; Harder, Briana; Kinsey, Libby; Mead, Gary R.; Newson, Stuart E.; Pandourski, Ivan; Russ, Jon; Szodoray-Paradi, Abigel; Tilova, Elena; Girolami, Mark; Jones, Kate E.

    2018-01-01

    Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio. PMID:29518076

  5. Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback

    Directory of Open Access Journals (Sweden)

    Andrés Cela

    2012-12-01

    Full Text Available The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system.

  6. Quasi-static acoustic tweezing thromboelastometry.

    Science.gov (United States)

    Holt, R G; Luo, D; Gruver, N; Khismatullin, D B

    2017-07-01

    Essentials Blood coagulation measurement during contact with an artificial surface leads to unreliable data. Acoustic tweezing thromboelastometry is a novel non-contact method for coagulation monitoring. This method detects differences in the blood coagulation state within 10 min. Coagulation data were obtained using a much smaller sample volume (4 μL) than currently used. Background Thromboelastography is widely used as a tool to assess the coagulation status of critical care patients. It allows observation of changes in material properties of whole blood, beginning with early stages of clot formation and ending with clot lysis. However, the contact activation of the coagulation cascade at surfaces of thromboelastographic systems leads to inherent variability and unreliability in predicting bleeding or thrombosis risks. Objectives To develop acoustic tweezing thromboelastometry as a non-contact method for perioperative assessment of blood coagulation. Methods Acoustic tweezing is used to levitate microliter drops of biopolymer and human blood samples. By quasi-statically changing the acoustic pressure we control the sample drop location and deformation. Sample size, deformation and location are determined by digital imaging at each pressure. Results Simple Newtonian liquid solutions maintain a constant, reversible location vs. deformation curve. In contrast, the location/deformation curves for gelatin, alginate, whole blood and blood plasma uniquely change as the samples solidify. Increasing elasticity causes the sample to deform less, leading to steeper stress/strain curves. By extracting a linear regime slope, we show that whole blood or blood plasma exhibits a unique slope profile as it begins to clot. By exposing blood samples to pro- or antithrombotic agents, the slope profile changes, allowing detection of hyper- or hypocoagulable states. Conclusions We demonstrate that quasi-static acoustic tweezing can yield information about clotting onset, maturation

  7. Patterns of acoustical activity of bats prior to and following White-nose Syndrome occurrence

    Science.gov (United States)

    Ford, W. Mark; Britzke, Eric R.; Dobony, Christopher A.; Rodrigue, Jane L.; Johnson, Joshua B.

    2011-01-01

    White-nose Syndrome (WNS), a wildlife health concern that has decimated cave-hibernating bat populations in eastern North America since 2006, began affecting source-caves for summer bat populations at Fort Drum, a U.S. Army installation in New York in the winter of 2007–2008. As regional die-offs of bats became evident, and Fort Drum's known populations began showing declines, we examined whether WNS-induced change in abundance patterns and seasonal timing of bat activity could be quantified using acoustical surveys, 2003–2010, at structurally uncluttered riparian–water habitats (i.e., streams, ponds, and wet meadows). As predicted, we observed significant declines in overall summer activity between pre-WNS and post-WNS years for little brown bats Myotis lucifugus, northern bats M. septentrionalis, and Indiana bats M. sodalis. We did not observe any significant change in activity patterns between pre-WNS and post-WNS years for big brown bats Eptesicus fuscus, eastern red bats Lasiurus borealis, or the small number of tri-colored bats Perimyotis subflavus. Activity of silver-haired bats Lasionycteris noctivagans increased from pre-WNS to post-WNS years. Activity levels of hoary bats Lasiurus cinereus significantly declined between pre- and post-WNS years. As a nonhibernating, migratory species, hoary bat declines might be correlated with wind-energy development impacts occurring in the same time frame rather than WNS. Intraseason activity patterns also were affected by WNS, though the results were highly variable among species. Little brown bats showed an overall increase in activity from early to late summer pre-WNS, presumably due to detections of newly volant young added to the local population. However, the opposite occurred post-WNS, indicating that reproduction among surviving little brown bats may be declining. Our data suggest that acoustical monitoring during the summer season can provide insights into species' relative abundance on the

  8. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  9. Optimization strategy for actuator and sensor placement in active structural acoustic control

    NARCIS (Netherlands)

    Oude nijhuis, M.H.H.; de Boer, Andries

    2003-01-01

    In active structural acoustic control the goal is to reduce the sound radiation of a structure by means of changing the vibrational behaviour of that structure. The performance of such an active control system is to a large extent determined by the locations of the actuators and sensors. In this

  10. Streptavidin Modified ZnO Film Bulk Acoustic Resonator for Detection of Tumor Marker Mucin 1

    Science.gov (United States)

    Zheng, Dan; Guo, Peng; Xiong, Juan; Wang, Shengfu

    2016-09-01

    A ZnO-based film bulk acoustic resonator has been fabricated using a magnetron sputtering technology, which was employed as a biosensor for detection of mucin 1. The resonant frequency of the thin-film bulk acoustic resonator was located near at 1503.3 MHz. The average electromechanical coupling factor {K}_{eff}^2 and quality factor Q were 2.39 % and 224, respectively. Using the specific binding system of avidin-biotin, the streptavidin was self-assembled on the top gold electrode as the sensitive layer to indirectly test the MUC1 molecules. The resonant frequency of the biosensor decreases in response to the mass loading in range of 20-500 nM. The sensor modified with the streptavidin exhibits a high sensitivity of 4642.6 Hz/nM and a good selectivity.

  11. Theoretical analysis of leaky surface acoustic waves of point-focused acoustic lens and some experiments

    International Nuclear Information System (INIS)

    Ishikawa, Isao; Suzuki, Yoshiaki; Ogura, Yukio; Katakura, Kageyoshi

    1997-01-01

    When a point-focused acoustic lens in the scanning acoustic microscope (SAM) is faced to test specimen and defocused to some extent, two effective echoes can be obtained. One is the echo of longitudinal wave, which is normally incident upon the specimen of an on-axis beam in the central region of the lens and is reflected normal to the lens surface, hence detected by the transducer. The other is of leaky surface acoustic waves(LSAW), which are mode converted front a narrow beam of off-axis longitudinal wave, then propagate across the surface of the specimen and reradiate at angles normal to the lens surface, thus detected by the transducer. These two echoes are either interfered or separated with each other depending ell the defocused distance. It turned out theoretically that the LSAW have a narrow focal spot in the central region of the point-focused acoustic lens, whose size is approximately 40% of the LSAW wavelength. On top of that, a wavelength of LSAW is about 50% short as that of longitudinal wave. So, It is expected that high resolution images can be obtained provided LSAW are used in the scanning acoustic microscope.

  12. The detection of higher-order acoustic transitions is reflected in the N1 ERP.

    Science.gov (United States)

    Weise, Annekathrin; Schröger, Erich; Horváth, János

    2018-01-30

    The auditory system features various types of dedicated change detectors enabling the rapid parsing of auditory stimulation into distinct events. The activity of such detectors is reflected by the N1 ERP. Interestingly, certain acoustic transitions show an asymmetric N1 elicitation pattern: whereas first-order transitions (e.g., a change from a segment of constant frequency to a frequency glide [c-to-g change]) elicit N1, higher-order transitions (e.g., glide-to-constant [g-to-c] changes) do not. Consensus attributes this asymmetry to the absence of any available sensory mechanism that is able to rapidly detect higher-order changes. In contrast, our study provides compelling evidence for such a mechanism. We collected electrophysiological and behavioral data in a transient-detection paradigm. In each condition, a random (50%-50%) sequence of two types of tones occurred, which did or did not contain a transition (e.g., c-to-g and constant stimuli or g-to-c and glide tones). Additionally, the rate of pitch change of the glide varied (i.e., 10 vs. 40 semitones per second) in order to increase the number of responding neural assemblies. The rate manipulation modulated transient ERPs and behavioral detection performance for g-to-c transitions much stronger than for c-to-g transitions. The topographic and tomographic analyses suggest that the N1 response to c-to-g and also to g-to-c transitions emerged from the superior temporal gyrus. This strongly supports a sensory mechanism that allows the fast detection of higher-order changes. © 2018 Society for Psychophysiological Research.

  13. A new framework for analysing automated acoustic species-detection data: occupancy estimation and optimization of recordings post-processing

    Science.gov (United States)

    Chambert, Thierry A.; Waddle, J. Hardin; Miller, David A.W.; Walls, Susan; Nichols, James D.

    2018-01-01

    The development and use of automated species-detection technologies, such as acoustic recorders, for monitoring wildlife are rapidly expanding. Automated classification algorithms provide a cost- and time-effective means to process information-rich data, but often at the cost of additional detection errors. Appropriate methods are necessary to analyse such data while dealing with the different types of detection errors.We developed a hierarchical modelling framework for estimating species occupancy from automated species-detection data. We explore design and optimization of data post-processing procedures to account for detection errors and generate accurate estimates. Our proposed method accounts for both imperfect detection and false positive errors and utilizes information about both occurrence and abundance of detections to improve estimation.Using simulations, we show that our method provides much more accurate estimates than models ignoring the abundance of detections. The same findings are reached when we apply the methods to two real datasets on North American frogs surveyed with acoustic recorders.When false positives occur, estimator accuracy can be improved when a subset of detections produced by the classification algorithm is post-validated by a human observer. We use simulations to investigate the relationship between accuracy and effort spent on post-validation, and found that very accurate occupancy estimates can be obtained with as little as 1% of data being validated.Automated monitoring of wildlife provides opportunity and challenges. Our methods for analysing automated species-detection data help to meet key challenges unique to these data and will prove useful for many wildlife monitoring programs.

  14. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    Science.gov (United States)

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  15. Proposed frustrated-total-reflection acoustic sensing method

    International Nuclear Information System (INIS)

    Hull, J.R.

    1981-01-01

    Modulation of electromagnetic energy transmission through a frustrated-total-reflection device by pressure-induced changes in the index of refraction is proposed for use as an acoustic detector. Maximum sensitivity occurs for angles of incidence near the critical angle. The minimum detectable pressure in air is limited by Brownian noise. Acoustic propagation losses and diffraction of the optical beam by the acoustic signal limit the minimum acoustic wavelength to lengths of the order of the spatial extent of the optical beam. The response time of the method is fast enough to follow individual acoustic waves

  16. Bilinear Time-frequency Analysis for Lamb Wave Signal Detected by Electromagnetic Acoustic Transducer

    Science.gov (United States)

    Sun, Wenxiu; Liu, Guoqiang; Xia, Hui; Xia, Zhengwu

    2018-03-01

    Accurate acquisition of the detection signal travel time plays a very important role in cross-hole tomography. The experimental platform of aluminum plate under the perpendicular magnetic field is established and the bilinear time-frequency analysis methods, Wigner-Ville Distribution (WVD) and the pseudo-Wigner-Ville distribution (PWVD), are applied to analyse the Lamb wave signals detected by electromagnetic acoustic transducer (EMAT). By extracting the same frequency component of the time-frequency spectrum as the excitation frequency, the travel time information can be obtained. In comparison with traditional linear time-frequency analysis method such as short-time Fourier transform (STFT), the bilinear time-frequency analysis method PWVD is more appropriate in extracting travel time and recognizing patterns of Lamb wave.

  17. Real-time system for studies of the effects of acoustic feedback on animal vocalizations.

    Directory of Open Access Journals (Sweden)

    Mike eSkocik

    2013-01-01

    Full Text Available Studies of behavioral and neural responses to distorted auditory feedback can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds’ songs.

  18. Acoustic parametric pumping of spin waves

    Science.gov (United States)

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2014-11-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  19. Acoustic parametric pumping of spin waves

    OpenAIRE

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2013-01-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  20. Acoustic communication in plant-animal interactions.

    Science.gov (United States)

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Damage detection in wind turbine blades using acoustic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Juengert, A., E-mail: anne.juengert@mpa.uni-stuttgart.de [Univ. of Stuttgart, Materialpruefungsanstalt Stuttgart, Stuttgart (Germany)

    2013-05-15

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  2. Damage detection in wind turbine blades using acoustic techniques

    International Nuclear Information System (INIS)

    Juengert, A.

    2013-01-01

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  3. Dual fiber Bragg gratings configuration-based fiber acoustic sensor for low-frequency signal detection

    Science.gov (United States)

    Yang, Dong; Wang, Shun; Lu, Ping; Liu, Deming

    2014-11-01

    We propose and fabricate a new type fiber acoustic sensor based on dual fiber Bragg gratings (FBGs) configuration. The acoustic sensor head is constructed by putting the sensing cells enclosed in an aluminum cylinder space built by two Cband FBGs and a titanium diaphragm of 50 um thickness. One end of each FBG is longitudinally adhered to the diaphragm by UV glue. Both of the two FBGs are employed for reflecting light. The dual FBGs play roles not only as signal transmission system but also as sensing component, and they demodulate each other's optical signal mutually during the measurement. Both of the two FBGs are pre-strained and the output optical power experiences fluctuation in a linear relationship along with a variation of axial strain and surrounding acoustic interference. So a precise approach to measure the frequency and sound pressure of the acoustic disturbance is achieved. Experiments are performed and results show that a relatively flat frequency response in a range from 200 Hz to 1 kHz with the average signal-to-noise ratio (SNR) above 21 dB is obtained. The maximum sound pressure sensitivity of 11.35mV/Pa is achieved with the Rsquared value of 0.99131 when the sound pressure in the range of 87.7-106.6dB. It has potential applications in low frequency signal detection. Owing to its direct self-demodulation method, the sensing system reveals the advantages of easy to demodulate, good temperature stability and measurement reliability. Besides, performance of the proposed sensor could be improved by optimizing the parameters of the sensor, especially the diaphragm.

  4. Acoustic detection, tracking, and characterization of three tornadoes.

    Science.gov (United States)

    Frazier, William Garth; Talmadge, Carrick; Park, Joseph; Waxler, Roger; Assink, Jelle

    2014-04-01

    Acoustic data recorded at 1000 samples per second by two sensor arrays located at ranges of 1-113 km from three tornadoes that occurred on 24 May 2011 in Oklahoma are analyzed. Accurate bearings to the tornadoes have been obtained using beamforming methods applied to the data at infrasonic frequencies. Beamforming was not viable at audio frequencies, but the data demonstrate the ability to detect significant changes in the shape of the estimated power spectral density in the band encompassing 10 Hz to approximately 100 Hz at distances of practical value from the sensors. This suggests that arrays of more closely spaced sensors might provide better bearing accuracy at practically useful distances from a tornado. Additionally, a mathematical model, based on established relationships of aeroacoustic turbulence, is demonstrated to provide good agreement to the estimated power spectra produced by the tornadoes at different times and distances from the sensors. The results of this analysis indicate that, qualitatively, an inverse relationship appears to exist between the frequency of an observed peak of the power spectral density and the reported tornado intensity.

  5. Application of gas-coupled laser acoustic detection to gelatins and underwater sensing

    International Nuclear Information System (INIS)

    Caron, James N.; Kunapareddy, Pratima

    2014-01-01

    Gas-coupled Laser Acoustic Detection (GCLAD) has been used as a method to sense ultrasound waves in materials without contact of the material surface. To sense the waveform, a laser beam is directed parallel to the material surface and displaced or deflected when the radiated waveform traverses the beam. We present recent tests that demonstrate the potential of using this technique for detecting ultrasound in gelatin phantoms and in water. As opposed to interferometric detection, GCLAD operates independently of the optical surface properties of the material. This allows the technique to be used in cases where the material is transparent or semi-transparent. We present results on sensing ultrasound in gelatin phantoms that are used to mimic biological materials. As with air-coupled transducers, the frequency response of GCLAD at high frequencies is limited by the high attenuation of ultrasound in air. In contrast, water has a much lower attenuation. Here we demonstrate the use of a GCLAD-like system in water, measuring the directivity response at 1 MHz and sensing waveforms with higher frequency content

  6. Leak detection evaluation of boiler tube for power plant using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Nam, Ki Woo

    2001-01-01

    Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. And also the automatic control facilities controlling the main equipment are at the applying step of the localization. and many parts of BOP(Balance Of Plant) equipment are utilizing, localized. But because the special equipment monitoring the operation status of the main facilities such as boiler and turbine are still dependent upon foreign technology and especially boiler tube leak detection system is under the initial step of first application to newly-constructed plants and the manufacturing and application are done by foreign techniques mostly, fast localization development is required. Therefore, so as to study and develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, acoustic emission(AE) signal analysis and discrimination etc. As a result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power generation facilities.

  7. Mismatch negativity to acoustical illusion of beat: how and where the change detection takes place?

    Science.gov (United States)

    Chakalov, Ivan; Paraskevopoulos, Evangelos; Wollbrink, Andreas; Pantev, Christo

    2014-10-15

    In case of binaural presentation of two tones with slightly different frequencies the structures of brainstem can no longer follow the interaural time differences (ITD) resulting in an illusionary perception of beat corresponding to frequency difference between the two prime tones. Hence, the beat-frequency does not exist in the prime tones presented to either ear. This study used binaural beats to explore the nature of acoustic deviance detection in humans by means of magnetoencephalography (MEG). Recent research suggests that the auditory change detection is a multistage process. To test this, we employed 26 Hz-binaural beats in a classical oddball paradigm. However, the prime tones (250 Hz and 276 Hz) were switched between the ears in the case of the deviant-beat. Consequently, when the deviant is presented, the cochleae and auditory nerves receive a "new afferent", although the standards and the deviants are heard identical (26 Hz-beats). This allowed us to explore the contribution of auditory periphery to change detection process, and furthermore, to evaluate its influence on beats-related auditory steady-state responses (ASSRs). LORETA-source current density estimates of the evoked fields in a typical mismatch negativity time-window (MMN) and the subsequent difference-ASSRs were determined and compared. The results revealed an MMN generated by a complex neural network including the right parietal lobe and the left middle frontal gyrus. Furthermore, difference-ASSR was generated in the paracentral gyrus. Additionally, psychophysical measures showed no perceptual difference between the standard- and deviant-beats when isolated by noise. These results suggest that the auditory periphery has an important contribution to novelty detection already at sub-cortical level. Overall, the present findings support the notion of hierarchically organized acoustic novelty detection system. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. ISAT: The mega-fauna acoustic tracking system

    KAUST Repository

    De la Torre, Pedro

    2013-06-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic signal to each hydrophone in a triangular array. The characteristics of the hydrophones, the projector, and the target acoustic signal used for iSAT are described. Initially it is designed to study the movements of whale sharks (Rhincodon typus), but it could potentially be used to describe high resolution movements of other marine species. © 2013 IEEE.

  9. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    Science.gov (United States)

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  10. A signal amplification assay for HSV type 1 viral DNA detection using nanoparticles and direct acoustic profiling

    Directory of Open Access Journals (Sweden)

    Hammond Richard

    2010-02-01

    Full Text Available Abstract Background Nucleic acid based recognition of viral sequences can be used together with label-free biosensors to provide rapid, accurate confirmation of viral infection. To enhance detection sensitivity, gold nanoparticles can be employed with mass-sensitive acoustic biosensors (such as a quartz crystal microbalance by either hybridising nanoparticle-oligonucleotide conjugates to complimentary surface-immobilised ssDNA probes on the sensor, or by using biotin-tagged target oligonucleotides bound to avidin-modified nanoparticles on the sensor. We have evaluated and refined these signal amplification assays for the detection from specific DNA sequences of Herpes Simplex Virus (HSV type 1 and defined detection limits with a 16.5 MHz fundamental frequency thickness shear mode acoustic biosensor. Results In the study the performance of semi-homogeneous and homogeneous assay formats (suited to rapid, single step tests were evaluated utilising different diameter gold nanoparticles at varying DNA concentrations. Mathematical models were built to understand the effects of mass transport in the flow cell, the binding kinetics of targets to nanoparticles in solution, the packing geometries of targets on the nanoparticle, the packing of nanoparticles on the sensor surface and the effect of surface shear stiffness on the response of the acoustic sensor. This lead to the selection of optimised 15 nm nanoparticles that could be used with a 6 minute total assay time to achieve a limit of detection sensitivity of 5.2 × 10-12 M. Larger diameter nanoparticles gave poorer limits of detection than smaller particles. The limit of detection was three orders of magnitude lower than that observed using a hybridisation assay without nanoparticle signal amplification. Conclusions An analytical model was developed to determine optimal nanoparticle diameter, concentration and probe density, which allowed efficient and rapid optimisation of assay parameters

  11. Signal post-processing for acoustic velocimeters: detecting and replacing spikes

    International Nuclear Information System (INIS)

    Razaz, Mahdi; Kawanisi, Kiyosi

    2011-01-01

    Time series recorded by acoustic velocimeters are often affected by a combination of factors, including turbulent velocity fluctuations, Doppler noise and signal aliasing. Although it is not possible to find a comprehensive threshold for identifying spurious data, the present work attempts to describe an effective technique for detecting spikes. This technique is based on transforming data into wavelet space and thresholding the wavelet basis by a consistent threshold. The universal threshold modified by a robust scale estimator such as Q n is proven to work extremely well. The suggested methods for replacing identified spikes combine times series analyses (linear time series modelling or a Kalman predictor) with a straightforward method, polynomial interpolation, to generate substitutions retaining both the trends and the fluctuations in the surrounding clean data. Then, tests were performed to reveal the influence of replacing methods on the total number of detected spikes, required iterations and physical properties of the restored signal. From the overall results, it is inferred that using the wavelet-Q n as the detecting module and integrating it with linear time series modelling/Kalman filtering as the replacement module constitutes an effective despiking algorithm. This methodology is capable of restoring the contaminated signal in such a way that its statistical and physical properties correlate well with those of the original record

  12. Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy

    Science.gov (United States)

    Sugimoto, Kazuko; Akamatsu, Ryo; Sugimoto, Tsuneyoshi; Utagawa, Noriyuki; Kuroda, Chitose; Katakura, Kageyoshi

    2015-07-01

    In recent years, the detachment of concrete from bridges or tunnels and the degradation of concrete structures have become serious social problems. The importance of inspection, repair, and updating is recognized in measures against degradation. We have so far studied the noncontact acoustic inspection method using airborne sound and the laser Doppler vibrometer. In this method, depending on the surface state (reflectance, dirt, etc.), the quantity of the light of the returning laser decreases and optical noise resulting from the leakage of light reception arises. Some influencing factors are the stability of the output of the laser Doppler vibrometer, the low reflective characteristic of the measurement surface, the diffused reflection characteristic, measurement distance, and laser irradiation angle. If defect detection depends only on the vibration energy ratio since the frequency characteristic of the optical noise resembles white noise, the detection of optical noise resulting from the leakage of light reception may indicate a defective part. Therefore, in this work, the combination of the vibrational energy ratio and spectrum entropy is used to judge whether a measured point is healthy or defective or an abnormal measurement point. An algorithm that enables more vivid detection of a defective part is proposed. When our technique was applied in an experiment with real concrete structures, the defective part could be extracted more vividly and the validity of our proposed algorithm was confirmed.

  13. Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures

    International Nuclear Information System (INIS)

    Sheeran, Paul S; Dayton, Paul A; Matsunaga, Terry O

    2014-01-01

    Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques. (paper)

  14. Acoustic Research on the Damage Mechanism of Carbon Fiber Composite Materials

    Science.gov (United States)

    Wang, Bing; Liu, Yanlei; Sheng, Shuiping

    This thesis involves the study about different processes including the tensile fracture, inter-layer tear or avulsion, as well as the interlaminar shear or split regarding carbon fiber composite materials with the aid of acoustic emission technique. Also, various acoustic emission signals that are released by composite samples in the process of fracture are analyzed. As is indicated by the test results, different acoustic emissive signals that are released by carbon fiber layers in various stages of damage and fracture bear different characteristics. Acoustic detection can effectively monitor the whole stage of elastic deformation, the damage development, and even the accumulation process while figuring out in an efficient manner about the internal activities of the composites, plus the diverse types of damages. In addition, its fabulous application value lies in its relevant structural evaluation as well as the evaluation of integrity with regard to carbon fiber composite.

  15. The Contact State Monitoring for Seal End Faces Based on Acoustic Emission Detection

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2016-01-01

    Full Text Available Monitoring the contact state of seal end faces would help the early warning of the seal failure. In the acoustic emission (AE detection for mechanical seal, the main difficulty is to reduce the background noise and to classify the dispersed features. To solve these problems and achieve higher detection rates, a new approach based on genetic particle filter with autoregression (AR-GPF and hypersphere support vector machine (HSSVM is presented. First, AR model is used to build the dynamic state space (DSS of the AE signal, and GPF is used for signal filtering. Then, multiple features are extracted, and a classification model based on HSSVM is constructed for state recognition. In this approach, AR-GPF is an excellent time-domain method for noise reduction, and HSSVM has advantage on those dispersed features. Finally experimental data shows that the proposed method can effectively detect the contact state of the seal end faces and has higher accuracy rates than some other existing methods.

  16. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying

    2017-12-15

    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric

  17. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    Science.gov (United States)

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  19. The acoustic reflex threshold in aging ears.

    Science.gov (United States)

    Silverman, C A; Silman, S; Miller, M H

    1983-01-01

    This study investigates the controversy regarding the influence of age on the acoustic reflex threshold for broadband noise, 500-, 1000-, 2000-, and 4000-Hz activators between Jerger et al. [Mono. Contemp. Audiol. 1 (1978)] and Jerger [J. Acoust. Soc. Am. 66 (1979)] on the one hand and Silman [J. Acoust. Soc. Am. 66 (1979)] and others on the other. The acoustic reflex thresholds for broadband noise, 500-, 1000-, 2000-, and 4000-Hz activators were evaluated under two measurement conditions. Seventy-two normal-hearing ears were drawn from 72 subjects ranging in age from 20-69 years. The results revealed that age was correlated with the acoustic reflex threshold for BBN activator but not for any of the tonal activators; the correlation was stronger under the 1-dB than under the 5-dB measurement condition. Also, the mean acoustic reflex thresholds for broadband noise activator were essentially similar to those reported by Jerger et al. (1978) but differed from those obtained in this study under the 1-dB measurement condition.

  20. Leak Detection in Water-Filled Small-Diameter Polyethylene Pipes by Means of Acoustic Emission Measurements

    OpenAIRE

    Alberto Martini; Marco Troncossi; Alessandro Rivola

    2016-01-01

    The implementation of effective strategies to manage leaks represents an essential goal for all utilities involved with drinking water supply in order to reduce water losses affecting urban distribution networks. This study concerns the early detection of leaks occurring in small-diameter customers’ connections to water supply networks. An experimental campaign was carried out in a test bed to investigate the sensitivity of Acoustic Emission (AE) monitoring to water leaks. Damages were artifi...

  1. Pulsed-laser-activated impulse response encoder: Sensitive detection of surface elastic waves on biomimetic microsized gel spheres

    Science.gov (United States)

    Yasukuni, Ryohei; Fukushima, Ryosuke; Iino, Takanori; Hosokawa, Yoichiroh

    2017-11-01

    A femtosecond-laser-induced impulsive force was applied to microsized calcium alginate (CaAlg) gel spheres as an external force to excite elastic waves. To evaluate elasticity, atomic force microscopy (AFM) was applied to detect vibration propagation. The sphere size dependence of the vibration was well reproduced by finite element method (FEM) simulation for pressure waves and surface acoustic waves. The obtained results indicate that the pulsed-laser-activated impulse response encoder (PLAIRE) enables the sensitive detection of elasticities, not only on inside but also on the surface.

  2. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  3. Simulation-based design of a steerable acoustic warning device to increase (H)EV detectability while reducing urban noise pollution

    NARCIS (Netherlands)

    Van Genechten, B.; Berkhoff, Arthur P.

    2014-01-01

    This paper describes the simulation-based design methodology used in the eVADER project for the development of targeted acoustic warning devices for increased detectability of Hybrid and Electric Vehicles (HEVs) while, at the same time, reducing urban noise pollution compared to conventional

  4. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    Directory of Open Access Journals (Sweden)

    Aleš Hančič

    2013-05-01

    Full Text Available This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals’ peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  5. Biodiversity sampling using a global acoustic approach: contrasting sites with microendemics in New Caledonia.

    Directory of Open Access Journals (Sweden)

    Amandine Gasc

    Full Text Available New Caledonia is a Pacific island with a unique biodiversity showing an extreme microendemism. Many species distributions observed on this island are extremely restricted, localized to mountains or rivers making biodiversity evaluation and conservation a difficult task. A rapid biodiversity assessment method based on acoustics was recently proposed. This method could help to document the unique spatial structure observed in New Caledonia. Here, this method was applied in an attempt to reveal differences among three mountain sites (Mandjélia, Koghis and Aoupinié with similar ecological features and species richness level, but with high beta diversity according to different microendemic assemblages. In each site, several local acoustic communities were sampled with audio recorders. An automatic acoustic sampling was run on these three sites for a period of 82 successive days. Acoustic properties of animal communities were analysed without any species identification. A frequency spectral complexity index (NP was used as an estimate of the level of acoustic activity and a frequency spectral dissimilarity index (Df assessed acoustic differences between pairs of recordings. As expected, the index NP did not reveal significant differences in the acoustic activity level between the three sites. However, the acoustic variability estimated by the index Df , could first be explained by changes in the acoustic communities along the 24-hour cycle and second by acoustic dissimilarities between the three sites. The results support the hypothesis that global acoustic analyses can detect acoustic differences between sites with similar species richness and similar ecological context, but with different species assemblages. This study also demonstrates that global acoustic methods applied at broad spatial and temporal scales could help to assess local biodiversity in the challenging context of microendemism. The method could be deployed over large areas, and

  6. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Directory of Open Access Journals (Sweden)

    Y. G. Rapoport

    2017-01-01

    Full Text Available We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs, which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100–420 m s−1. Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical–numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1 of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 − f1 in the altitude ranges 0–0.1 km, in the strongly nonlinear regime, and (2 of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1–20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz and VLF (kHz ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere–ionosphere system

  7. Active structural acoustic control of noise transmission through double panel systems

    Science.gov (United States)

    Carneal, James P.; Fuller, Chris R.

    1995-04-01

    A preliminary parametric study of active control of sound transmission through double panel systems has been experimentally performed. The technique used is the active structural acoustic control (ASAC) approach where control inputs, in the form of piezoelectric actuators, were applied to the structure while the radiated pressure field was minimized. Results indicate the application of control inputs to the radiating panel resulted in greater transmission loss due to its direct effect on the nature of the structural-acoustic coupling between the radiating panel and the receiving chamber. Increased control performance was seen in a double panel system consisting of a stiffer radiating panel with a lower modal density. As expected, more effective control of a radiating panel excited on-resonance is achieved over one excited off-resonance. In general, the results validate the ASAC approach for double panel systems and demonstrate that it is possible to take advantage of double panel behavior to enhance control performance, although it is clear that further research must be done to understand the physics involved.

  8. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  9. Damage Detection Method of Wind Turbine Blade Using Acoustic Emission Signal Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byeong Hee; Yoon, Dong JIn [Korea Research Institute of Standards and Seience, Daejeon (Korea, Republic of)

    2011-02-15

    Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. Therefore, it is required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. In this study, a new damage location method has been proposed by using signal napping algorithm, and an experimental verification is conducted by using small wind turbine blade specimen: a part of 750 kW real blade. The results show that this new signal mapping method has high advantages such as a flexibility for sensor location, improved accuracy, high detectability. The newly proposed method was compared with traditional AE source location method based on arrival time difference

  10. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    Science.gov (United States)

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy.

  11. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  12. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P. [Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, building 7, Moscow, 125009 (Russian Federation)

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  13. Identification of acoustic wave propagation in a duct line and its application to detection of impact source location based on signal processing

    International Nuclear Information System (INIS)

    Shin, Yong Woo; Kim, Min Soo; Lee, Sang Kwon

    2010-01-01

    For the detection of the impact location in a pipeline system, the correlation method has been the conventional method. For the application of the correlation method, the diameter of a duct should be small so that the acoustic wave inside the duct can propagate with nondispersive characteristics, in the form of, for example, a plane wave. This correlation method calculates the cross-correlation between acoustic waves measured at two acceleration sensors attached to a buried duct. It also gives information about the arrival time delay of an acoustic wave between two sensors. These arrival time delays are used for the estimation of the impact location. However, when the diameter of the duct is large, the acoustic waves inside the duct propagate with dispersive characteristics owing to the reflection of the acoustic wave off of the wall of the duct. This dispersive characteristic is related to the acoustic modes inside a duct. Therefore, the correlation method does not work correctly for the detection of the impact location. This paper proposes new methods of accurately measuring the arrival time delay between two sensors attached to duct line system. This method is based on the time-frequency analyses of the short time Fourier transform (STFT) and continuous wavelet transform (CWT). These methods can discriminate direct waves (non-dispersive waves) and reflective waves (dispersive waves) from the measured wave signals through the time-frequency analysis. The direct wave or the reflective wave is used to estimate the arrival time delay. This delay is used for the identification of the impact location. This systematic method can predict the impact location due to the impact forces of construction equipment with more accuracy than the correlation method

  14. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    Science.gov (United States)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However

  15. Acoustic transmitter and receiver performance in freshwater and estuarine environments

    Science.gov (United States)

    We report on the performance of passive acoustic receivers intended to detect the passage of 281 acoustically tagged migratory salmonids in two Oregon coastal watersheds. We found that ambient acoustic noise can vary considerably with location, and that “sync” pulses thought to ...

  16. Acoustic--nuclear permeability logging system

    International Nuclear Information System (INIS)

    Dowling, D.J.; Arnold, D.M.

    1978-01-01

    A down hole logging tool featuring a neutron generator, an acoustic disturbance generator, and a radiation detection system is described. An array of acoustic magnetostriction transducers is arranged about the target of a neutron accelerator. Two gamma ray sensors are separated from the accelerator target by shielding. According to the method of the invention, the underground fluid at the level of a formation is bombarded by neutrons which react with oxygen in the fluid to produce unstable nitrogen 16 particles according to the reaction 16 O(n,p) 16 N. Acoustic pulses are communicated to the fluid, and are incident on the boundary of the borehole at the formation. The resulting net flow of fluid across the boundary is determined from radiation detection measurements of the decaying 16 N particles in the fluid. A measure of the permeability of the formation is obtained from the determination of net fluid flow across the boundary

  17. Acoustic Localization with Infrasonic Signals

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  18. Acoustic emission/flaw relationships for inservice monitoring of LWRs

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Friesel, M.A.; Skorpik, J.R.; Dawson, J.F.

    1991-10-01

    The program concerning Acoustic Emission/Flaw Relationships for Inservice Monitoring of LWRs was initiated in FY76 with the objective of validating the application of acoustic emission (AE) to monitor nuclear reactor pressure-containing components during operation to detect cracking. The program has been supported by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Research and development has been performed by Pacific Northwest Laboratory, operated for the Department of Energy by Battelle Memorial Institute. The program has shown the feasibility of continuous, on-line AE monitoring to detect crack growth and produced validated methods for applying the technology. Included are relationships for estimating flaw severity from AE data and field applications at Watts Bar Unit 1 Reactor, Limerick Unit 1 Reactor, and the High Flux Isotope Reactor. This report discusses the program scope and organization, the three program phases and the results obtained, standard and code activities, and instrumentation and software developed under this program

  19. Acoustical monitoring of diesel engines in reverberant environment

    International Nuclear Information System (INIS)

    Mein, M.

    1995-10-01

    The feed-back knowledge of emergency diesel generators in nuclear power plants shows that some malfunctions, mainly affecting fuel-injection or distribution system of the engine can be heard and detected by experienced maintenance agents. This study consists in the feasibility,v of acoustical monitoring of those diesel engines, taking into account the reverberant environment of the machine. The operating cycle of the diesel is composed of transient events (injection, combustion, valve closure...) which generate highly non stationary acoustical signals. The detection of a malfunction appearing on such transients requires the use of adapted signal processing techniques. Visual analysis of the phenomena is first proceeded using time-frequency and time-scale representations. The second step will be parametric modeling of acoustical signatures for the extraction of characteristic parameters, in order to characterize the fault and to use an automatic classification system. The lest part of the study will concern the evaluation of the robustness of the detection methods in regard to acoustical reverberation. (author). 10 refs., 6 figs

  20. PVT Degradation Studies: Acoustic Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tucker, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-01

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regions with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.

  1. Synthetic Aperture Acoustic Imaging for Roadside Detection of Solid Objects

    Science.gov (United States)

    2014-11-20

    Testing I I I I Cinderblock Foam block Isometric and translucent view of the weighted foam block . .-.-; Weighted foam block Figure 2.3... concrete block (CB, Fig. 2.4). Conven- tional methods for identifying targets in a radar or acoustic imaging system (also known as Automatic Target...and curb, or than the grass-covered hill beyond the sidewalk. However, there is a strong acoustic return from a seam in the sidewalk concrete that runs

  2. Extinction cross-section cancellation of a cylindrical radiating active source near a rigid corner and acoustic invisibility

    Science.gov (United States)

    Mitri, F. G.

    2017-11-01

    Active cloaking in its basic form requires that the extinction cross-section (or energy efficiency) from a radiating body vanishes. In this analysis, this physical effect is demonstrated for an active cylindrically radiating acoustic source in a non-viscous fluid, undergoing periodic axisymmetric harmonic vibrations near a rigid corner (i.e., quarter-space). The rigorous multipole expansion method in cylindrical coordinates, the method of images, and the addition theorem of cylindrical wave functions are used to derive closed-form mathematical expressions for the radiating, amplification, and extinction cross-sections of the active source. Numerical computations are performed assuming monopole and dipole modal oscillations of the circular source. The results reveal some of the situations where the extinction energy efficiency factor of the active source vanishes depending on its size and location with respect to the rigid corner, thus, achieving total invisibility. Moreover, the extinction energy efficiency factor varies between positive or negative values. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility in underwater acoustics or other areas.

  3. The effect of human activity noise on the acoustic quality in open plan office

    DEFF Research Database (Denmark)

    Dehlbæk, Tania Stenholt; Jeong, Cheol-Ho; Brunskog, Jonas

    2016-01-01

    A disadvantage of open plan offices is the noise annoyance. Noise problems in open plan offices have been dealt with in several studies, and standards have been set up. Still, what has not been taken into account is the effect of human activity noise on acoustic conditions. In this study......, measurements of the general office noise levels and the room acoustic conditions according to ISO 3382-3 have been carried out in five open plan offices. Probability density functions of the sound pressure level have been obtained, and the human activity noise has been identified. Results showed a decrease...... in STI-values including the human activity noise compared to STI-values including only technical background noise as the standard recommends. Furthermore, at 500 Hz a regression analysis showed that the density of people in an room, absorption area, reverberation time as well as the ISO 3382-3 parameter...

  4. Combined Opto-Acoustical sensor modules for KM3NeT

    International Nuclear Information System (INIS)

    Enzenhöfer, A.

    2013-01-01

    KM3NeT is a future multi-cubic-kilometre water Cherenkov neutrino telescope currently entering a first construction phase. It will be located in the Mediterranean Sea and comprise about 600 vertical structures called detection units. Each of these detection units has a length of several hundred metres and is anchored to the sea bed on one side and held taut by a buoy on the other side. The detection units are thus subject to permanent movement due to sea currents. Modules holding photosensors and additional equipment are equally distributed along the detection units. The relative positions of the photosensors has to be known with an uncertainty below 20 cm in order to achieve the necessary precision for neutrino astronomy. These positions can be determined with an acoustic positioning system: dedicated acoustic emitters located at known positions and acoustic receivers along each detection unit. This article describes the approach to combine an acoustic receiver with the photosensors inside one detection module using a common power supply and data readout. The advantage of this approach lies in a reduction of underwater connectors and module configurations as well as in the compactification of the detection units integrating the auxiliary devices necessary for their successful operation.

  5. Ion acoustic waves in the solar wind

    International Nuclear Information System (INIS)

    Gurnett, D.A.; Frank, L.A.

    1978-01-01

    Plasma wave measurements on the Helios I and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are short-wavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered

  6. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.

    Science.gov (United States)

    Chen, Cherry C; Sheeran, Paul S; Wu, Shih-Ying; Olumolade, Oluyemi O; Dayton, Paul A; Konofagou, Elisa E

    2013-12-28

    Focused ultrasound (FUS) in the presence of systemically administered microbubbles has been shown to locally, transiently and reversibly increase the permeability of the blood-brain barrier (BBB), thus allowing targeted delivery of therapeutic agents in the brain for the treatment of central nervous system diseases. Currently, microbubbles are the only agents that have been used to facilitate the FUS-induced BBB opening. However, they are constrained within the intravascular space due to their micron-size diameters, limiting the delivery effect at or near the microvessels. In the present study, acoustically-activated nanodroplets were used as a new class of contrast agents to mediate FUS-induced BBB opening in order to study the feasibility of utilizing these nanoscale phase-shift particles for targeted drug delivery in the brain. Significant dextran delivery was achieved in the mouse hippocampus using nanodroplets at clinically relevant pressures. Passive cavitation detection was used in the attempt to establish a correlation between the amount of dextran delivered in the brain and the acoustic emission recorded during sonication. Conventional microbubbles with the same lipid shell composition and perfluorobutane core as the nanodroplets were also used to compare the efficiency of an FUS-induced dextran delivery. It was found that nanodroplets had a higher BBB opening pressure threshold but a lower stable cavitation threshold than microbubbles, suggesting that contrast agent-dependent acoustic emission monitoring was needed. A more homogeneous dextran delivery within the targeted hippocampus was achieved using nanodroplets without inducing inertial cavitation or compromising safety. Our results offered a new means of developing the FUS-induced BBB opening technology for potential extravascular targeted drug delivery in the brain, extending the potential drug delivery region beyond the cerebral vasculature. © 2013.

  7. Enhanced sources of acoustic power surrounding AR 11429

    International Nuclear Information System (INIS)

    Donea, Alina; Hanson, Christopher

    2013-01-01

    Multi-frequency power maps of the local acoustic oscillations show acoustic enhancements (''acoustic-power halos'') at high frequencies surrounding large active region. Computational seismic holography reveals a high-frequency ''acoustic-emission halo'', or ''seismic glory'' surrounding large active regions. In this study, we have applied computational seismic holography to map the seismic seismic source density surrounding AR 11429. Studies of HMI/SDO Doppler data, shows that the ''acoustic halos'' and the ''seismic glories'' are prominent at high frequencies 5–8 mHz. We investigate morphological properties of acoustic-power and acoustic emission halos around an active region to see if they are spatially correlated. Details about the local magnetic field from vectormagnetograms of AR 11429 are included. We identify a 15'' region of seismic deficit power (dark moat) shielding the white-light boundary of the active region. The size of the seismic moat is related to region of intermediate magnetic field strength. The acoustic moat is circled by the halo of enhanced seismic amplitude as well as enhanced seismic emission. Overall, the results suggest that features are related. However, if we narrow the frequency band to 5.5 – 6.5 mHz, we find that the seismic source density dominates over the local acoustic power, suggesting the existence of sources that emit more energy downward into the solar interior than upward toward the solar surface.

  8. Observation of hydro-acoustic signal from the Balleny Islands, Ross Sea, Antarctic: Seasonal ice activities and earthquakes from Pacific-Antarctic ridge

    Science.gov (United States)

    Hong, J. K.; Kang, S. G.; Dziak, R. P.; Park, Y.; Lau, T. K. A.; Haxel, J.; Matsumoto, H.

    2017-12-01

    From January 2015 to March 2016, five hydrophone moorings were deployed near the Balleny Islands to obtain the long-term hydroacoustic record as a collaborative effort between the NOAA/Pacific Marine Environmental Laboratory and the Korea Polar Research Institute. The goal of this hydro-acoustic project is to understand seasonal sea-ice activities and identify potential underwater volcanic sources within the Balleny seamounts. All five of the hydrophone moorings were recovered in March 2016, however only three of them recorded 14 months of continuous, broadband (1 kHz sample rate) hydro-acoustic data successfully. In spite of coordinating problem by partial recovery, recorded data contain valuable information for seasonal sea-ice activities and earthquakes from Pacific-Antarctic Ridge. We analyzed events from ice-quakes and earthquakes statistically. The number of ice-quakes is maximum in the austral summer while minimum in the austral winter which shows a clear seasonal pattern consistent with freeze-thaw cycles. Comparing with global earthquakes catalogue, number of earthquake events are correlated well with the catalogue. Because the austral winter is more calm by ice-quakes, however, we can detect more earthquakes in this season.

  9. Doppler method leak detection for LMFBR steam generators. Pt. 1. Experimental results of bubble detection using small models

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi

    1999-01-01

    To prevent the expansion of the tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBRs), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method was developed. Previous studies have revealed that in practical steam generators the active acoustic method can detect bubbles of 10 l/s within 10 seconds. To prevent the expansion of damage to neighboring tubes, it is necessary to detect smaller leakages of water from the heat transfer tubes. The Doppler method is designed to detect small leakages and to find the source of the leak before damage spreads to neighboring tubes. To evaluate the relationship between the detection sensitivity of the Doppler method and the bubble volume and bubble size, the structural shapes and bubble flow conditions were investigated experimentally, using a small structural model. The results show that the Doppler method can detect the bubbles under bubble flow conditions, and it is sensitive enough to detect small leakages within a short time. The doppler method thus has strong potential for the detection of water leakage in SGs. (author)

  10. Optical and acoustical UAV detection

    Science.gov (United States)

    Christnacher, Frank; Hengy, Sébastien; Laurenzis, Martin; Matwyschuk, Alexis; Naz, Pierre; Schertzer, Stéphane; Schmitt, Gwenael

    2016-10-01

    Recent world events have highlighted that the proliferation of UAVs is bringing with it a new and rapidly increasing threat for national defense and security agencies. Whilst many of the reported UAV incidents seem to indicate that there was no terrorist intent behind them, it is not unreasonable to assume that it may not be long before UAV platforms are regularly employed by terrorists or other criminal organizations. The flight characteristics of many of these mini- and micro-platforms present challenges for current systems which have been optimized over time to defend against the traditional air-breathing airborne platforms. A lot of programs to identify cost-effective measures for the detection, classification, tracking and neutralization have begun in the recent past. In this paper, lSL shows how the performance of a UAV detection and tracking concept based on acousto-optical technology can be powerfully increased through active imaging.

  11. Acoustic damage detection in laser-cut CFRP composite materials

    Science.gov (United States)

    Nishino, Michiteru; Harada, Yoshihisa; Suzuki, Takayuki; Niino, Hiroyuki

    2012-03-01

    Carbon fiber reinforced plastics (CFRP) composite material, which is expected to reduce the weight of automotive, airplane and etc., was cut by laser irradiation with a pulsed-CO2 laser (TRUMPF TFL5000; P=800W, 20kHz, τ=8μs, λ=10.6μm, V=1m/min) and single-mode fiber lasers (IPG YLR-300-SM; P=300W, λ=1.07μm, V=1m/min)(IPG YLR- 2000-SM; P=2kW, λ=1.07μm, V=7m/min). To detect thermal damage at the laser cutting of CFRP materials consisting of thermoset resin matrix and PAN or PITCH-based carbon fiber, the cut quality was observed by X-ray CT. The effect of laser cutting process on the mechanical strength for CFRP tested at the tensile test. Acoustic emission (AE) monitoring, high-speed camera and scanning electron microscopy were used for the failure process analysis. AE signals and fractographic features characteristic of each laser-cut CFRP were identified.

  12. Evaluation of forced-convection nucleate boiling detection by acoustic emission

    International Nuclear Information System (INIS)

    Wells, R.P.; Paterson, J.A.

    1981-10-01

    Acoustic Emission techniques are being investigated for use as protection systems in neutral beam accelerators and water cooled beam dumps. For this purpose, the characteristics of the boiling curve for forced-convection surface boiling have been compared to the Acoustic Emission (AE) produced. Results indicate that AE, in the form of count-rate, is a sensitive indicator of nucleate boiling incipience and is relatively insensitive to flow velocity in the 0 to 12 m/s range

  13. Industrial installation surveillance acoustic device

    International Nuclear Information System (INIS)

    Marini, Jean; Audenard, Bernard.

    1981-01-01

    The purpose of this invention is the detection of possible impacts of bodies migrating inside the installation, using acoustic sensors of the waves emitted at the time of impact of the migrating bodies. This device makes it possible to take into account only those acoustic signals relating to the impacts of bodies migrating in the area under surveillance, to the exclusion of any other acoustic or electric perturbing phenomenon. The invention has a preferential use in the case of a linear shape installation in which a fluid flows at high rate, such as a section of the primary system of a pressurized water nuclear reactor [fr

  14. Calibration of acoustic sensors in ice using the reciprocity method

    Energy Technology Data Exchange (ETDEWEB)

    Meures, Thomas; Bissok, Martin; Laihem, Karim; Paul, Larissa; Wiebusch, Christopher; Zierke, Simon [III. Physikalisches Institut, RWTH Aachen (Germany); Semburg, Benjamin [Bergische Universitaet Wuppertal (Germany). Fachbereich C

    2010-07-01

    Within the IceCube experiment at the South Pole an R and D program investigates new ways of ultra high energy neutrino detection. In particular when aiming for detector volumes of the order of 100 km{sup 3} acoustic or radio detectors are promising approaches. The acoustic detection method relies on the thermo-acoustic effect occurring when high energetic particles interact and deposit heat within a detection medium. This effect is investigated in the Aachen Acoustic Laboratory (AAL). The high energy particle interaction is simulated by a powerful pulsed Nd:YAG LASER shooting into a 3m{sup 3} tank of clear ice (or water). Eighteen acoustic sensors are situated on three rings in different depths and record the generated signals. These sensors serve as reference for later measurements of other devices. The reciprocity method, used for the absolute calibration of these sensors, is independent of an absolutely calibrated reference. This method and its application to the calibration of the AAL sensors are presented and first results are shown.

  15. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  16. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  17. Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology

    Science.gov (United States)

    Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang

    Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).

  18. Targeted Acoustic Data Processing for Ocean Ecological Studies

    Science.gov (United States)

    Sidorovskaia, N.; Li, K.; Tiemann, C.; Ackleh, A. S.; Tang, T.; Ioup, G. E.; Ioup, J. W.

    2015-12-01

    The Gulf of Mexico is home to many species of deep diving marine mammals. In recent years several ecological studies have collected large volumes of Passive Acoustic Monitoring (PAM) data to investigate the effects of anthropogenic activities on protected and endangered marine mammal species. To utilize these data to their fullest potential for abundance estimates and habitat preference studies, automated detection and classification algorithms are needed to extract species acoustic encounters from a continuous stream of data. The species which phonate in overlapping frequency bands represent a particular challenge. This paper analyzes the performance of a newly developed automated detector for the classification of beaked whale clicks in the Northern Gulf of Mexico. Current used beaked whale classification algorithms rely heavily on experienced human operator involvement in manually associating potential events with a particular species of beaked whales. Our detection algorithm is two-stage: the detector is triggered when the species-representative phonation band energy exceeds the baseline detection threshold. Then multiple event attributes (temporal click duration, central frequency, frequency band, frequency sweep rate, Choi-Williams distribution shape indices) are measured. An attribute vector is then used to discriminate among different species of beaked whales present in the Gulf of Mexico and Risso's dolphins which were recognized to mask the detections of beaked whales in the case of widely used energy-band detectors. The detector is applied to the PAM data collected by the Littoral Acoustic Demonstration Center to estimate abundance trends of beaked whales in the vicinity of the 2010 oil spill before and after the disaster. This algorithm will allow automated processing with minimal operator involvement for new and archival PAM data. [The research is supported by a BP/GOMRI 2015-2017 consortium grant.

  19. An Evaluation of the Acoustic Signal processing Techniques for Sodium-Water Reaction Detection in KALIMER-600

    International Nuclear Information System (INIS)

    Hur, Seop; Seong, S. H.; Kim, T. J.; Kim, S. O.; Lee, M. K.

    2005-02-01

    KALIMER-600 is a pool type fast breeder reactor using liquid sodium as a coolant. Although it has the several advantages such as long-term fuel cycle and enhanced safety concepts, it is possible to leak the secondary side water/steam into sodium boundary. This event could make the plant abnormal condition. One of the major design issues in KALIMER-600 is, therefore, to develop the system which can early detect the sodium-water reaction to protect the sodium-water reaction event. After evaluating the various signal processing techniques for passive acoustic leak detection, we have proposed the early leak detection logics. the signal processing techniques for evaluation were the spectral estimation using the linear modeling, the estimation error of linear modeling, the system adaptation rate using an adaptive signal processing, and the background noise cancellation using adaptive and fixed filtering. As the analysis results regarding the stationary and the cross-correlation of leak signals and background noises, the two signal systems met a wide-dense stationary process and there was only the week cross correlation relationship between two signals. It is ,therefore, possible to use the linear/harmonic modeling of signal systems, and the leak signal in sensor outputs can be discriminated. As the results of the evaluation of the various spectral estimation methods, the spectral estimation method based on autoregressive modeling was more practical comparing with other methods in the sodium-water reaction detection. The passive acoustic leak detection logics were suggested based on above evaluations. the logics consist of 3 levels; transient identification, leak determination and leak symptom identification. The simulation results using sodium-water reaction signals showed that it was possible to determine the leak at above -3dB of SNR, while between -3 dB and -10 dB of SNR the logics determined the leak symptom identification. The detection sensitivity can be enhanced

  20. Acoustic Signature Monitoring and Management of Naval Platforms

    NARCIS (Netherlands)

    Basten, T.G.H.; Jong, C.A.F. de; Graafland, F.; Hof, J. van 't

    2015-01-01

    Acoustic signatures make naval platforms susceptible to detection by threat sensors. The variable operational conditions and lifespan of a platform cause variations in the acoustic signature. To deal with these variations, a real time signature monitoring capability is being developed, with advisory

  1. Developments in acoustic emission for application to nuclear reactor systems

    International Nuclear Information System (INIS)

    Bentley, P.G.

    1982-01-01

    Developments in acoustic emission are summarised as they relate to the principal applications to nuclear reactors, and light water reactor pressure vessels in particular. Improvement in the understanding of acoustic emission has come from materials tests and these confirm the problems in applying the technique for in-service or periodic proof test monitoring of growing fatique cracks. Applications in LMFBR have confirmed that acoustic emission can be applied in the nuclear environment and the detection of stress corrosion cracking in both BWR and LMFBR seems possible. Some information is included on the developing interest in applying the techniques of acoustic emission for leak detection during shop hydro and in-service monitoring. Acoustic emission is also being developed for weld fabrication monitoring and recently introduced pattern recognition techniques are having a significant impact in this application. (author)

  2. Feasibility of Acoustic Remote Sensing of Large Herring Shoals and Seafloor by Baleen Whales

    Directory of Open Access Journals (Sweden)

    Dong Hoon Yi

    2016-08-01

    Full Text Available Recent research has found a high spatial and temporal correlation between certain baleen whale vocalizations and peak herring spawning processes in the Gulf of Maine. These vocalizations are apparently related to feeding activities with suggested functions that include communication, prey manipulation, and echolocation. Here, the feasibility of the echolocation function is investigated. Physical limitations on the ability to detect large herring shoals and the seafloor by acoustic remote sensing are determined with ocean acoustic propagation, scattering, and statistical theories given baleen whale auditory parameters. Detection is found to be highly dependent on ambient noise conditions, herring shoal distributions, baleen whale time-frequency vocalization spectra, and geophysical parameters of the ocean waveguide. Detections of large herring shoals are found to be physically feasible in common Gulf of Maine herring spawning scenarios at up to 10 ± 6 km in range for humpback parameters and 1 ± 1 km for minke parameters but not for blue and fin parameters even at zero horizontal range. Detections of the seafloor are found to be feasible up to 2 ± 1 km for blue and humpback parameters and roughly 1 km for fin and minke parameters, suggesting that the whales share a common acoustic sensation of rudimentary features of the geophysical environment.

  3. Experimental study of advanced continuous acoustic-emission monitoring of BWR components. Final report

    International Nuclear Information System (INIS)

    McElroy, J.W.

    1982-01-01

    This report presents the results of a four year research program on the utilization of acoustic emission techniques on light water reactor component applications. Two techniques of the acoustic emission technology were applied to specific problems occurring within the light water reactor system. Crack detection AE monitoring was applied to thermal cycle fatigue cracking problems and stress corrosion cracking problems. Leak detection AE monitoring was applied to valve leakage in the main steam safety relief valves and incontainment packing gland valves. The report provides AE data showing how AE crack detection can be used as an on-line diagnostic monitoring tool. By having an active monitor on light water reactor components, the inservice inspection of the components is being performed during operation rather than refueling periods, thereby reducing critical path time during outages. The resultant benefit is increased plant availability and a reduction in accumulated radiation exposure

  4. Acoustic monitoring to support plant life extension at Sellafield

    International Nuclear Information System (INIS)

    Wit, M. de; Hovhanessian, G.

    2015-01-01

    Tensioned steel wires are widely used in civil engineering structures. They can, however, be vulnerable to corrosion. To reduce the probability of corrosion, sophisticated protection systems are used. Extensive inspection and maintenance regimes are also able to be implemented to confirm that the design strength is available over the lifetime of the wires. These regimes include tests to confirm the condition of post-tensioning cables or stay cables, which can verify the overall performance of the structure. This paper presents a technology to detect and locate wire failures in tensioned cables for use on a wide variety of pre-stressed or post tensioned structures, where they have increased confidence in the structures and reduced maintenance costs. This methodology is the continuous acoustic monitoring technology which uses distinctive acoustic characteristics of wire breaks to separate them from other acoustic activity on the structure. With a combination of instrumentation, data acquisition and data management, it is possible to identify a wire break event, as well as to locate the position and time of the failure. Over 10 years' experience of acoustic monitoring for this application with several independent and blind tests, shows that even in noisy environments the acoustic monitoring method is able to identify and locate wire breaks in fully grouted and partially grouted tendons, stay cables and suspension cables. The design (number of sensors and location) is very important to be sure to cover all wires in the structure. This paper explains the principles of the systems and shows them in practice on a case study of a project in a pre-stressed roof structure of an active tank farm at Sellafield site

  5. Perceptual thresholds for detecting modifications applied to the acoustical properties of a violin.

    Science.gov (United States)

    Fritz, Claudia; Cross, Ian; Moore, Brian C J; Woodhouse, Jim

    2007-12-01

    This study is the first step in the psychoacoustic exploration of perceptual differences between the sounds of different violins. A method was used which enabled the same performance to be replayed on different "virtual violins," so that the relationships between acoustical characteristics of violins and perceived qualities could be explored. Recordings of real performances were made using a bridge-mounted force transducer, giving an accurate representation of the signal from the violin string. These were then played through filters corresponding to the admittance curves of different violins. Initially, limits of listener performance in detecting changes in acoustical characteristics were characterized. These consisted of shifts in frequency or increases in amplitude of single modes or frequency bands that have been proposed previously to be significant in the perception of violin sound quality. Thresholds were significantly lower for musically trained than for nontrained subjects but were not significantly affected by the violin used as a baseline. Thresholds for the musicians typically ranged from 3 to 6 dB for amplitude changes and 1.5%-20% for frequency changes. Interpretation of the results using excitation patterns showed that thresholds for the best subjects were quite well predicted by a multichannel model based on optimal processing.

  6. Acoustic emission technique for leak detection in an end shield of a pressurized heavy water reactor

    International Nuclear Information System (INIS)

    Kalyanasundaram, P.; Jayakumar, T.; Raj, B.

    1989-01-01

    This paper discusses the successful application of the Acoustic Emission Technique (AET) for detection and location of leak paths present on the inaccessible side of an end shield of a Pressurized Heavy Water Reactor (PHWR). The methodology was based on the fact that air and water leak AE signals have different characteristic features. Baseline data was generated from a sound end-shield of a PHWR for characterizing the background noise. A mock up end-shield system with saw cut leak paths was used to verify the validity of the methodology. It was found that air leak signals under pressurisation (as low as 3 psi) could be detected by frequency domain analysis. Signals due to air leaks from various locations of a defective end-shield were acquired and analysed. It was possible to detect and locate leak paths. Presence of detected leak paths were further confirmed by alternate test. (orig.)

  7. Acoustic detection of a cavitation noise in the French breeder reactor Phenix

    International Nuclear Information System (INIS)

    Brunet, M.; Desprets, A.

    1981-06-01

    The French Phenix reactor is provided with an in-core multi-sensor acoustic surveillance system. But its efficiency with regard to early boiling detection is still to be proven. For lack of boiling events within the core, a cavitating dummy steel subassembly has been loaded into the reactor, as a simulation of boiling signal. Cavitation is controlled through a slow rise of the primary flow in various core conditions: isothermal situation and during a rise of power. Assuming that the signal to noise ratio is of the same order of magnitude for cavitation signals as for boiling ones, the response of several signal processing techniques is evaluated. Pulse connecting seems to be the most efficient conventional method while pattern recognition appears as a promising alternative solution

  8. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity.

    Science.gov (United States)

    Khokhlov, Nikolai; Knyazev, Grigoriy; Glavin, Boris; Shtykov, Yakov; Romanov, Oleg; Belotelov, Vladimir

    2017-09-15

    In this Letter, we introduce an approach for manipulation of active plasmon polaritons via acoustic waves at sub-terahertz frequency range. The acoustic structures considered are designed as phononic Fabry-Perot microresonators where mirrors are presented with an acoustic superlattice and the structure's surface, and a plasmonic grating is placed on top of the acoustic cavity so formed. It provides phonon localization in the vicinity of the plasmonic grating at frequencies within the phononic stop band enhancing phonon-light interaction. We consider phonon excitation by shining a femtosecond laser pulse on the plasmonic grating. Appropriate theoretical model was used to describe the acoustic process caused by the pump laser pulse in the GaAs/AlAs-based acoustic cavity with a gold grating on top. Strongest modulation is achieved upon excitation of propagating surface plasmon polaritons and hybridization of propagating and localized plasmons. The relative changes in the optical reflectivity of the structure are more than an order of magnitude higher than for the structure without the plasmonic film.

  9. Dual Mode Sensing with Low-Profile Piezoelectric Thin Wafer Sensors for Steel Bridge Crack Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Lingyu Yu

    2012-01-01

    Full Text Available Monitoring of fatigue cracking in steel bridges is of high interest to many bridge owners and agencies. Due to the variety of deterioration sources and locations of bridge defects, there is currently no single method that can detect and address the potential sources globally. In this paper, we presented a dual mode sensing methodology integrating acoustic emission and ultrasonic wave inspection based on the use of low-profile piezoelectric wafer active sensors (PWAS. After introducing the research background and piezoelectric sensing principles, PWAS crack detection in passive acoustic emission mode is first presented. Their acoustic emission detection capability has been validated through both static and compact tension fatigue tests. With the use of coaxial cable wiring, PWAS AE signal quality has been improved. The active ultrasonic inspection is conducted by the damage index and wave imaging approach. The results in the paper show that such an integration of passive acoustic emission detection with active ultrasonic sensing is a technological leap forward from the current practice of periodic and subjective visual inspection and bridge management based primarily on history of past performance.

  10. Verification of nuclear effect of acoustic cavitation using fast neutron activation method

    International Nuclear Information System (INIS)

    Li Xinnian; Feng Tao; Fang Xiaoming; Qian Menglu; Cheng Qian

    2014-01-01

    14 MeV neutrons originated in acoustic cavitation fusion were determined using copper threshold detector. According to the nuclear reaction of 14 MeV neutrons with copper, the characteristic γ peaks of some radioactive nuclides were measured and the activation parameters of Cu were optimized. With neutron irradiation time of 50 min, 511 keV characteristic γ peak counts of activated copper pieces with or without ultrasonic field after 30 min and 198 min were respectively determined by NaI detector. Measurement results show that the characteristic γ peak counts of "6"2Cu and "6"4Cu can be respectively determined after 30 min and 198 min. 511 keV characteristic γ peak net count increments are positive values and statistical significance, which indicates that 14 MeV and 2.45 MeV neutron generation rates originated in fusion with ultrasound are greater than that without ultrasound in nuclear reaction liquid. These results verify the nuclear effect of acoustic cavitation (NEAC). The mechanism of NEAC nucleated by neutrons was proposed initially. (authors)

  11. A programmable nonlinear acoustic metamaterial

    Directory of Open Access Journals (Sweden)

    Tianzhi Yang

    2017-09-01

    Full Text Available Acoustic metamaterials with specifically designed lattices can manipulate acoustic/elastic waves in unprecedented ways. Whereas there are many studies that focus on passive linear lattice, with non-reconfigurable structures. In this letter, we present the design, theory and experimental demonstration of an active nonlinear acoustic metamaterial, the dynamic properties of which can be modified instantaneously with reversibility. By incorporating active and nonlinear elements in a single unit cell, a real-time tunability and switchability of the band gap is achieved. In addition, we demonstrate a dynamic “editing” capability for shaping transmission spectra, which can be used to create the desired band gap and resonance. This feature is impossible to achieve in passive metamaterials. These advantages demonstrate the versatility of the proposed device, paving the way toward smart acoustic devices, such as logic elements, diode and transistor.

  12. Laser Generated Leaky Acoustic Waves for Needle Visualization.

    Science.gov (United States)

    Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi

    2018-04-01

    Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.

  13. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  14. Ambiguity of source location in acoustic emission technique

    International Nuclear Information System (INIS)

    Barat, P.; Mukherjee, P.; Kalyanasundaram, P.; Raj, B.

    1996-01-01

    Location of acoustic emission (AE) source in a plane is detected from the difference of the arrival times of the AE signal to at least three sensors placed on it. The detected location may not be unique in all cases. In this paper, the condition for the unambiguous solution for the location of the source has been deduced mathematically in terms of arrival times of the AE signal, the coordinate of the three sensors and the acoustic velocity. (author)

  15. Acoustic shadows help gleaning bats find prey, but may be defeated by prey acoustic camouflage on rough surfaces.

    Science.gov (United States)

    Clare, Elizabeth L; Holderied, Marc W

    2015-09-01

    Perceptual abilities of animals, like echolocating bats, are difficult to study because they challenge our understanding of non-visual senses. We used novel acoustic tomography to convert echoes into visual representations and compare these cues to traditional echo measurements. We provide a new hypothesis for the echo-acoustic basis of prey detection on surfaces. We propose that bats perceive a change in depth profile and an 'acoustic shadow' cast by prey. The shadow is more salient than prey echoes and particularly strong on smooth surfaces. This may explain why bats look for prey on flat surfaces like leaves using scanning behaviour. We propose that rather than forming search images for prey, whose characteristics are unpredictable, predators may look for disruptions to the resting surface (acoustic shadows). The fact that the acoustic shadow is much fainter on rougher resting surfaces provides the first empirical evidence for 'acoustic camouflage' as an anti-predator defence mechanism.

  16. World Conference on Acoustic Emission 2013

    CERN Document Server

    Wu, Zhanwen; Zhang, Junjiao

    2015-01-01

    This volume collects the papers from the 2013 World Conference on Acoustic Emission in Shanghai. The latest research and applications of Acoustic Emission (AE) are explored, with particular emphasis on detecting and processing of AE signals, development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques as well as experimental case studies.

  17. World Conference on Acoustic Emission 2015

    CERN Document Server

    Wu, Zhanwen; Zhang, Junjiao

    2017-01-01

    This volume collects the papers from the World Conference on Acoustic Emission 2015 (WCAE-2015) in Hawaii. The latest research and applications of Acoustic Emission (AE) are explored, with particular emphasis on detecting and processing of AE signals, development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques as well as experimental case studies.

  18. Acoustic Studies of the Effects of Environmental Stresses on Marine Mammals in Large Ocean Basins

    Science.gov (United States)

    Sidorovskaia, N.; Ma, B.; Ackleh, A. S.; Tiemann, C.; Ioup, G. E.; Ioup, J. W.

    2014-12-01

    Effects of environmental stresses on deep-diving marine mammal populations have not been studied systematically. Long-term regional passive acoustic monitoring of phonating marine mammals opens opportunities for such studies. This paper presents a unique multi-year study conducted by the Littoral Acoustic Demonstration Center (LADC) in the Northern Gulf of Mexico to understand short-term and long-term effects of anthropogenic stresses on resident populations of endangered sperm and elusive beaked whales. Both species spend many hours each day in deep dives which last about one hour each, so any visual observations for population estimates and behavioral responses are very limited. However, much more cost-efficient acoustic recordings of the phonations during dives on bottom-mounted hydrophones are not skewed by weather conditions or daylight requirements. Broadband passive acoustic data were collected by LADC in 2007 and 2010 at three ranges, 15, 40, and 80 km away from the 2010 Deep Water Horizon oil spill site. Pre-spill and post-spill data processing and comparison allow observing responses of both species to local short-term environmental condition changes and long-term responses to the spill. The short-term effects are studied by correlating daily activity cycles with anthropogenic noise curve daily and weekly cycles at different sites. The strong correlation between the decrease in overall daily activity and the increase in anthropogenic noise level associated with seismic exploration signals can be seen. After streaming raw acoustic data through detection algorithms and detailed assessment of false detection rates, the temporal densities of acoustic phonations are passed into statistical algorithms for resident population estimations. The statistically significant results have shown different regional abundance trends, associated with long-term responses to environmental stresses, for these two species.

  19. Prototype acoustic resonance spectroscopy monitor

    International Nuclear Information System (INIS)

    Sinha, D.N.; Olinger, C.T.

    1996-03-01

    This report reports on work performed for the International Atomic Energy Agency (IAEA) through the Program Office for Technical Assistance (POTAS). In this work, we investigate possible applications of nondestructive acoustics measurements to facilitate IAEA safeguards at bulk processing facilities. Two different acoustic techniques for verifying the internal structure of a processing tank were investigated. During this effort we also examined two acoustic techniques for assessing the fill level within a processing tank. The fill-level measurements could be made highly portable and have an added safeguards advantage that they can also detect stratification of fill material. This later application may be particularly useful in confirming the absence of stratification in plutonium processing tanks before accountability samples are withdrawn

  20. Study of green state ceramics damage by acoustic emission

    International Nuclear Information System (INIS)

    Kerboul, Genevieve

    1992-01-01

    Dry pressing is a delicate operation of the conventional process of elaboration of ceramic materials as most of the detected defects in sintered products are appearing during it, this research thesis reports the study of ceramic powder forming by using the non destructive technique of acoustic emission to detect defects in pressed samples as soon as they initiate. An original signal processing system has also been designed to analyse the effective value of acoustic signals emitted during pressing on industrial hydraulic presses, but comprising a single tooling. Three powders have been tested: UO_2, Al_2O_3 and a UO_2-PuO_2 mixture. In a first part, the author recalls some elements regarding the fabrication of nuclear fuel, knowledge on powder pressing, and general principles of acoustic emission. She reports a feasibility study and then defines experimental conditions. In the second part, she presents acoustic emission periods during a pressing cycle, and reports the study of the response of flawless and flawed pressed samples. She reports the examination of their evolution with respect to powder nature and to fabrication process parameters. She reports a detailed analysis of acoustic emission parameters as a basis to define the principle of operation of an in situ and real time detection of flawed pressed samples [fr

  1. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    Science.gov (United States)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  2. Immersed acoustical transducers and their potential uses in LMFBR

    International Nuclear Information System (INIS)

    Argous, J.P.; Brunet, M.; Baron, J.; Lhuillier, C.; Segui, J.L.

    1980-04-01

    Six years satisfactory operation in PHENIX has proved the reliability and effectivness of under-sodium viewing (VISUS) and Acoustic Detection. This fact has been strong incentive to maintain, on the future LMFBR the visus as well as the Acoustic Detection functions. These two functions are performed on SUPER PHENIX, by two sets of distinct systems using the well-known solution. Taking into account of recent improvements in sodium immersible acoustic transducers technology, CEA decided to undertake the development of a multi-functions instrument. This paper gives an outline of this new concept, which should be able to reduce the cost and the complexity of core instrumentation

  3. New methods for leaks detection and localisation using acoustic emission

    International Nuclear Information System (INIS)

    Boulanger, P.

    1993-01-01

    Real time monitoring of Pressurized Water nuclear Reactor secondary coolant system tends to integrate digital processing machines. In this context, the method of acoustic emission seems to exhibit good performances. Its principle is based on passive listening of noises emitted by local micro-displacements inside a material under stress which propagate as elastic waves. The lack of a priori knowledge on leak signals leads us to go deeper into understanding flow induced noise generation. Our studies are conducted using a simple leak model depending on the geometry and the king of flow inside the slit. Detection and localization problems are formulated according to the maximum likelihood principle. For detection, the methods using a indicator of similarity (correlation, higher order correlation) seems to give better results than classical ones (rms value, envelope, filter banks). For leaks location, a large panel of classical (generalized inter-correlation) and innovative (convolution, adaptative, higher order statistics) methods of time delay estimation are presented. The last part deals with the applications of higher order statistics. The analysis of higher order estimators of a non linear non Gaussian stochastic process family, the improvement of non linear prediction performances and the optimal-order choice problem are addressed in simple analytic cases. At last, possible applications to leak signals analysis are pointed out. (authors).264 refs., 7 annexes

  4. Application of acoustic-electric interaction for neuro-muscular activity mapping: A review

    Directory of Open Access Journals (Sweden)

    Thordur Helgason

    2014-11-01

    Full Text Available Acousto-electric interaction signal (AEI signal resulting from interaction of acoustic pressure wave and electrical current field has received recent attention in biomedical field for detection and registration of bioelectrical current. The signal is very of small value and brings about several challenges when detecting it. Several observations has been done in saline solution and on nerves and tissues under controlled condition that give optimistic indication about its utilization. Ultrasound Current Source Density Imaging (UCSDI has been introduced, that uses the AEI signal to image the current distribution. This review provides an overview of the investigations on the AEI signal and USCDI imaging that has been made, their results and several considerations on the limitations and future possibilities on using the acousto-electric interaction signal.

  5. Experimental studies of the acoustic detection of particle showers

    International Nuclear Information System (INIS)

    Sulak, L.R.; Bowen, T.; Pifer, B.

    1977-01-01

    The scale and characteristics required of a detector that will measure ultrahigh-energy cosmic ray neutrino interactions have been studied in detail. Results obtained to date in observing acoustic signals from hadronic showers both at Brookhaven National Laboratory (BNL) and Harvard University are reported. It is suggested that ultrasonic particle detection is possible, currently down to the level of 10 14 eV. This simple, inexpensive technique may be ideal for observing the secondaries produced in a massive (10 9 ton) neutrino detector. Three experimental tests were performed to determine if showers produce detectable sonic signals as recently predicted. One at the 200-MeV linac at BNL used heavily ionizing protons stopping in water (range = 30 cm) with total energy depositions between 10 19 and 20 21 eV and deposition times ranging from 3 μs to 200 μs. The diameter of the beam was fixed at 6 cm (a characteristic time of 30 μs). A similar test was done at the 160-MeV cyclotron at Harvard, where the energy deposition could be decreased to 10 15 eV. A third test was done with minimum ionizing protons from the 28-GeV fast extracted beam at BNL. As in the BNL linac test, the beam could not be tuned below energy depositions of 10 19 . Typically 3 x 10 11 protons traversed 30 cm of water during a deposition time of 2 μs with a beam diameter variable between 5 and 20 cm

  6. Tipping point analysis of ocean acoustic noise

    Science.gov (United States)

    Livina, Valerie N.; Brouwer, Albert; Harris, Peter; Wang, Lian; Sotirakopoulos, Kostas; Robinson, Stephen

    2018-02-01

    We apply tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system and study possible bifurcations and transitions of the system. The analysis is based on a statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the data using time-series techniques. We analyse long-term and seasonal trends, system states and acoustic fluctuations to reconstruct a one-dimensional stochastic equation to approximate the acoustic dynamical system. We apply potential analysis to acoustic fluctuations and detect several changes in the system states in the past 14 years. These are most likely caused by climatic phenomena. We analyse trends in sound pressure level within different frequency bands and hypothesize a possible anthropogenic impact on the acoustic environment. The tipping point analysis framework provides insight into the structure of the acoustic data and helps identify its dynamic phenomena, correctly reproducing the probability distribution and scaling properties (power-law correlations) of the time series.

  7. Tipping point analysis of ocean acoustic noise

    Directory of Open Access Journals (Sweden)

    V. N. Livina

    2018-02-01

    Full Text Available We apply tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system and study possible bifurcations and transitions of the system. The analysis is based on a statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the data using time-series techniques. We analyse long-term and seasonal trends, system states and acoustic fluctuations to reconstruct a one-dimensional stochastic equation to approximate the acoustic dynamical system. We apply potential analysis to acoustic fluctuations and detect several changes in the system states in the past 14 years. These are most likely caused by climatic phenomena. We analyse trends in sound pressure level within different frequency bands and hypothesize a possible anthropogenic impact on the acoustic environment. The tipping point analysis framework provides insight into the structure of the acoustic data and helps identify its dynamic phenomena, correctly reproducing the probability distribution and scaling properties (power-law correlations of the time series.

  8. Acoustic signal analysis in the creeping discharge

    International Nuclear Information System (INIS)

    Nakamiya, T; Sonoda, Y; Tsuda, R; Ebihara, K; Ikegami, T

    2008-01-01

    We have previously succeeded in measuring the acoustic signal due to the dielectric barrier discharge and discriminating the dominant frequency components of the acoustic signal. The dominant frequency components appear over 20kHz of acoustic signal by the dielectric barrier discharge. Recently surface discharge control technology has been focused from practical applications such as ozonizer, NO X reactors, light source or display. The fundamental experiments are carried to examine the creeping discharge using the acoustic signal. When the high voltage (6kV, f = 10kHz) is applied to the electrode, the discharge current flows and the acoustic sound is generated. The current, voltage waveforms of creeping discharge and the sound signal detected by the condenser microphone are stored in the digital memory scope. In this scheme, Continuous Wavelet Transform (CWT) is applied to discriminate the acoustic sound of the micro discharge and the dominant frequency components are studied. CWT results of sound signal show the frequency spectrum of wideband up to 100kHz. In addition, the energy distributions of acoustic signal are examined by CWT

  9. Acoustic Predictors of Pediatric Dysarthria in Cerebral Palsy

    Science.gov (United States)

    Allison, Kristen M.; Hustad, Katherine C.

    2018-01-01

    Purpose: The objectives of this study were to identify acoustic characteristics of connected speech that differentiate children with dysarthria secondary to cerebral palsy (CP) from typically developing children and to identify acoustic measures that best detect dysarthria in children with CP. Method: Twenty 5-year-old children with dysarthria…

  10. Acoustic waves in the atmosphere and ground generated by volcanic activity

    International Nuclear Information System (INIS)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-01-01

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  11. Acoustic waves in the atmosphere and ground generated by volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  12. Continental-shelf Scale Passive Ocean AcousticWaveguide Remote Sensing of Marine Mammals and other Submerged Objects including Detection, Localization, and Classification

    Science.gov (United States)

    Wang, Delin

    In this thesis, we develop the basics of the Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS) technique for the instantaneous continental-shelf scale detection, localization and species classification of marine mammal vocalizations. POAWRS uses a large-aperture, densely sampled coherent hydrophone array system with orders of magnitude higher array gain to enhance signal-to-noise ratios (SNR) by coherent beamforming, enabling detection of underwater acoustic signals either two orders of magnitude more distant in range or lower in SNR than a single hydrophone. The ability to employ coherent spatial processing of signals with the POAWRS technology significantly improves areal coverage, enabling detection of oceanic sound sources over instantaneous wide areas spanning 100 km or more in diameter. The POAWRS approach was applied to analyze marine mammal vocalizations from diverse species received on a 160-element Office Naval Research Five Octave Research Array (ONR-FORA) deployed during their feeding season in Fall 2006 in the Gulf of Maine. The species-dependent temporal-spatial distribution of marine mammal vocalizations and correlation to the prey fish distributions have been determined. Furthermore, the probability of detection regions, source level distributions and pulse compression gains of the vocalization signals from diverse marine mammal species have been estimated. We also develop an approach for enhancing the angular resolution and improving bearing estimates of acoustic signals received on a coherent hydrophone array with multiple-nested uniformly-spaced subapertures, such as the ONR-FORA, by nonuniform array beamforming. Finally we develop a low-cost non-oil-filled towable prototype hydrophone array that consists of eight hydrophone elements with real-time data acquisition and 100 m tow cable. The approach demonstrated here will be applied in the development of a full 160 element POAWRS-type low-cost coherent hydrophone array system in the future.

  13. Applied acoustics concepts, absorbers, and silencers for acoustical comfort and noise control alternative solutions, innovative tools, practical examples

    CERN Document Server

    Fuchs, Helmut V

    2013-01-01

    The author gives a comprehensive overview of materials and components for noise control and acoustical comfort. Sound absorbers must meet acoustical and architectural requirements, which fibrous or porous material alone can meet. Basics and applications are demonstrated, with representative examples for spatial acoustics, free-field test facilities and canal linings. Acoustic engineers and construction professionals will find some new basic concepts and tools for developments in order to improve acoustical comfort. Interference absorbers, active resonators and micro-perforated absorbers of different materials and designs complete the list of applications.

  14. Progress for on-line acoustic emission monitoring of cracks in reactor systems

    International Nuclear Information System (INIS)

    Hutton, P.H.; Friesel, M.A.; Kurtz, R.J.

    1985-10-01

    This paper reviews FY1985 accomplishments and FY1986 plans for the NRC sponsored research program concerned with ''Acoustic Emission/Flaw Relationships for Inservice Monitoring of Nuclear Reactor Pressure Boundaries''. The objective of the acoustic emission (AE) monitoring program is to develop and validate the use of AE methods for continuous surveillance of reactor pressure boundaries to detect flaw growth. Topics discussed include testing AE monitoring on reactors, refinement of an AE signal identification relationship, study of slow crack growth rate effects on AE generation, and activity to produce an ASTM standard for AE monitoring and to gain ASME code acceptance of AE monitoring

  15. Exposure to advertisement calls of reproductive competitors activates vocal-acoustic and catecholaminergic neurons in the plainfin midshipman fish, Porichthys notatus.

    Science.gov (United States)

    Petersen, Christopher L; Timothy, Miky; Kim, D Spencer; Bhandiwad, Ashwin A; Mohr, Robert A; Sisneros, Joseph A; Forlano, Paul M

    2013-01-01

    While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate's nest. As multiple courting males establish nests in close proximity to one another, the perception of another male's call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups in

  16. Development of acoustic flow instruments for solid/gas pipe flows

    International Nuclear Information System (INIS)

    Sheen, S.H.; Raptis, A.C.

    1986-05-01

    Two nonintrusive acoustic flow sensing techniques are reported. One technique, passive in nature, simply measures the bandpassed acoustic noise level produced by particle/particle and particle/wall collisions. The noise levels, given in true RMS voltages or in autocorrelations, show a linear relationship to particle velocity but increase with solid concentration. Therefore, the passive technique requires calibration and a separate measure of solid concentration before it can be used to monitor the particle velocity. The second technique is based on the active cross-correlation principle. It measures particle velocity directly by correlating flow-related signatures at two sensing stations. The velocity data obtained by this technique are compared with measurements by a radioactive-particle time-of-flight (TOF) method. A multiplier of 1.53 is required to bring the acoustic data into agreement with the radioactive TOF result. The difference may originate from the difference in flow fields where particles are detected. The radioactive method senses particles mainly in the turbulent region and essentially measures average particle velocity across the pipe, while the acoustic technique detects particles near the pipe wall, and so measures the particle velocity in the viscous sublayer. Both techniques were tested in flows of limestone and air and 1-mm glass beads and air at the Argonne National Laboratory Solid/Gas Test Facility (SGFTF). The test matrix covered solid velocities of 20 to 30 m/s in a 2-in. pipe and solid-to-gas loading ratios of 6 to 22. 37 refs., 19 figs., 4 tabs

  17. Dual output acoustic wave sensor for molecular identification

    International Nuclear Information System (INIS)

    Frye, G.C.; Martin, S.J.

    1991-01-01

    This patent describes an apparatus for detecting and identifying at least one unknown chemical species. It comprises: an acoustic wave device capable of generating, transmitting and receiving an acoustic wave, means for measuring the velocity of an acoustic wave travelling through the material; means for simultaneously measuring the attenuation of the acoustic wave traveling through the coating material; sampling means to contact the acoustic wave device to the unknown chemical species; means for determining the changes in both the attenuation and velocity values of the acoustic wave upon sorption of the unknown chemical species into the coating material; and means for correlating the magnitudes of the changes of velocity with respect to the changes of the attenuations of the acoustic wave; and means for comparing the values of the velocity and attenuation changes to known values of velocity and attenuation of known chemical species in order to identify the unknown sorbed chemical species

  18. Acoustic lenses

    International Nuclear Information System (INIS)

    Kittmer, C.A.

    1983-03-01

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  19. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    Science.gov (United States)

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  20. Bearing Fault Detection Based on Empirical Wavelet Transform and Correlated Kurtosis by Acoustic Emission.

    Science.gov (United States)

    Gao, Zheyu; Lin, Jing; Wang, Xiufeng; Xu, Xiaoqiang

    2017-05-24

    Rolling bearings are widely used in rotating equipment. Detection of bearing faults is of great importance to guarantee safe operation of mechanical systems. Acoustic emission (AE), as one of the bearing monitoring technologies, is sensitive to weak signals and performs well in detecting incipient faults. Therefore, AE is widely used in monitoring the operating status of rolling bearing. This paper utilizes Empirical Wavelet Transform (EWT) to decompose AE signals into mono-components adaptively followed by calculation of the correlated kurtosis (CK) at certain time intervals of these components. By comparing these CK values, the resonant frequency of the rolling bearing can be determined. Then the fault characteristic frequencies are found by spectrum envelope. Both simulation signal and rolling bearing AE signals are used to verify the effectiveness of the proposed method. The results show that the new method performs well in identifying bearing fault frequency under strong background noise.

  1. Adaptive piezoelectric sensoriactuators for active structural acoustic control

    Science.gov (United States)

    Vipperman, Jeffrey Stuart

    1997-09-01

    piezostructures were used to demonstrate and verify the adaptive piezoelectric sensoriactuator, a cantilevered beam and a simply-supported plate. The experimental open- loop results compare well with theory. A preliminary closed-loop rate controller applied to the cantilevered beam demonstrates simultaneous control and adaptation of the piezoelectric sensoriactuator. Lastly, [/cal H]2 optimal feedback Active Structural Acoustic Control (ASAC) is demonstrated using the adaptive piezoelectric sensoriactuators and the simply- supported plate test bed. A cost function is formulated based upon control effort and predicted radiated acoustic power. Radiation filters are created to predict acoustic power based on the self and mutual radiation efficiencies of the plate modes to be controlled. Both static output feedback and state-feedback compensation as well as dynamic (Linear Quadratic Gaussian) compensation are investigated and compared analytically. The importance of choosing an appropriate spatial aperture for the piezoceramic transducer for static compensation is discussed. Finally, multivariable Active Vibration Control (AVC) and ASAC are implemented experimentally on a simply-supported plate test bed using an array of four Adaptive Piezoelectric Sensoriactuators as the control sensors and actuators. Unfavorable high-frequency response from the given piezoceramic transducers required that dynamic, Linear Quadratic Gaussian (LQG) compensation be used to achieve good control performance.

  2. Acoustic emission during hydrogen absorption and desorption in palladium

    International Nuclear Information System (INIS)

    Ramesh, R.; Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used to study charging and discharging of hydrogen in palladium. During charging, breaking of oxide film due to surface activation and saturation of hydrogen absorption have been identified by acoustic emission. In the discharging cycle, the desorption of hydrogen from the specimen leads to high AE activity immediately after initiation of discharging, followed by gradual decrease in the acoustic activity, which reaches a minimum upon completion of the desorption. The potential of the acoustic emission technique for studying the kinetics of hydrogen absorption and desorption in metals has been shown. (author)

  3. Acoustic emission monitoring during hydrotest of a thin wall pressure vessel

    International Nuclear Information System (INIS)

    Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.

    1976-01-01

    Results are presented of the acoustic emission monitoring during hydrotests of a thin wall steel pressure vessel. Location of acoustic sources was based on longitudinal wave front detection. The careful calibration of the three sensors used for acoustic source location was found to be very useful, and allowed an accurate location error analysis. Acoustic emission in the hydrotests was found to be due mainly to stress release in weld seams

  4. Extraction of Overt Verbal Response from the Acoustic Noise in a Functional Magnetic Resonance Imaging Scan by Use of Segmented Active Noise Cancellation

    Science.gov (United States)

    Jung, Kwan-Jin; Prasad, Parikshit; Qin, Yulin; Anderson, John R.

    2013-01-01

    A method to extract the subject's overt verbal response from the obscuring acoustic noise in an fMRI scan is developed by applying active noise cancellation with a conventional MRI microphone. Since the EPI scanning and its accompanying acoustic noise in fMRI are repetitive, the acoustic noise in one time segment was used as a reference noise in suppressing the acoustic noise in subsequent segments. However, the acoustic noise from the scanner was affected by the subject's movements, so the reference noise was adaptively adjusted as the scanner's acoustic properties varied in time. This method was successfully applied to a cognitive fMRI experiment with overt verbal responses. PMID:15723385

  5. Activating molecules, ions, and solid particles with acoustic cavitation

    International Nuclear Information System (INIS)

    Pflieger, Rachel; Chave, Tony; Virot, Matthieu; Nikitenko, Sergey I.

    2014-01-01

    The chemical and physical effects of ultrasound arise not from a direct interaction of molecules with sound waves, but rather from the acoustic cavitation: the nucleation, growth, and implosive collapse of micro-bubbles in liquids submitted to power ultrasound. The violent implosion of bubbles leads to the formation of chemically reactive species and to the emission of light, named sono-luminescence. In this manuscript, we describe the techniques allowing study of extreme intra-bubble conditions and chemical reactivity of acoustic cavitation in solutions. The analysis of sono-luminescence spectra of water sparged with noble gases provides evidence for nonequilibrium plasma formation. The photons and the 'hot' particles generated by cavitation bubbles enable to excite the non-volatile species in solutions increasing their chemical reactivity. For example the mechanism of ultra-bright sono-luminescence of uranyl ions in acidic solutions varies with uranium concentration: sono-photoluminescence dominates in diluted solutions, and collisional excitation contributes at higher uranium concentration. Secondary sono-chemical products may arise from chemically active species that are formed inside the bubble, but then diffuse into the liquid phase and react with solution precursors to form a variety of products. For instance, the sono-chemical reduction of Pt(IV) in pure water provides an innovative synthetic route for monodispersed nanoparticles of metallic platinum without any templates or capping agents. Many studies reveal the advantages of ultrasound to activate the divided solids. In general, the mechanical effects of ultrasound strongly contribute in heterogeneous systems in addition to chemical effects. In particular, the sono-lysis of PuO 2 powder in pure water yields stable colloids of plutonium due to both effects. (authors)

  6. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  7. Acoustic resonance in MEMS scale cylindrical tubes with side branches

    Science.gov (United States)

    Schill, John F.; Holthoff, Ellen L.; Pellegrino, Paul M.; Marcus, Logan S.

    2014-05-01

    Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace gas detection. This method routinely exhibits detection limits at the parts-per-million (ppm) or parts-per-billion (ppb) level for gaseous samples. PAS also possesses favorable detection characteristics when the system dimensions are scaled to a microelectromechanical system (MEMS) design. One of the central issues related to sensor miniaturization is optimization of the photoacoustic cell geometry, especially in relationship to high acoustical amplification and reduced system noise. Previous work relied on a multiphysics approach to analyze the resonance structures of the MEMS scale photo acoustic cell. This technique was unable to provide an accurate model of the acoustic structure. In this paper we describe a method that relies on techniques developed from musical instrument theory and electronic transmission line matrix methods to describe cylindrical acoustic resonant cells with side branches of various configurations. Experimental results are presented that demonstrate the ease and accuracy of this method. All experimental results were within 2% of those predicted by this theory.

  8. Acoustic Measurement Of Periodic Motion Of Levitated Object

    Science.gov (United States)

    Watkins, John L.; Barmatz, Martin B.

    1992-01-01

    Some internal vibrations, oscillations in position, and rotations of acoustically levitated object measured by use of microphone already installed in typical levitation chamber for tuning chamber to resonance and monitoring operation. Levitating acoustic signal modulated by object motion of lower frequency. Amplitude modulation detected and analyzed spectrally to determine amplitudes and frequencies of motions.

  9. Acoustic noise and pattern recognition studies at ORNL

    International Nuclear Information System (INIS)

    Sides, W.H.

    1976-01-01

    Experiments in acoustic detection of boiling in sodium were performed in the Fuel Failure Mockup (FFM) Facility at ORNL under the Liquid-Metal Fast Breeder Reactor (LMFBR) Safety and Core Systems Program. The FFM is a sodium flow facility that has the capability of simulating LMFBR fuel subassemblies using 19 electric cartridge heaters having prototypic configuration, power density, pressure, specific flow, and temperature. The sodium boiling experiments were performed to measure the transient temperatures throughout the bundle to the start of boiling and to generate an acoustic signal for tests of the boiling detection system

  10. Results of acoustic measurements with an electric boiling generator at KNK II

    International Nuclear Information System (INIS)

    Aberle, J.

    1987-08-01

    With regard to an integral core surveillance in sodium-cooled breeder reactors acoustic measurement techniques are under development. To determine experimentally the acoustic transfer function of a reactor core and to demonstrate the detectability of local sodium boiling, experiments with a so-called Boiling Generator were carried out in the KNK II reactor. The main part of this Boiling Generator was an electrically heated pin bundle which was equipped with a local blockage to obtain cooling disturbances. In this report the results of the acoustic measurements carried out with the Boiling Generator are presented. Main topic of the evaluation is the determination of the acoustic transfer function between the core and the upper sodium plenum. The signal conditioning necessary prior to this investigation is also explained. Great effort was required to suppress electrical disturbances which superimposed the acoustic signals and could not be eliminated by the hardware during the experiments. Finally, the detectability of local boiling using acoustic measurements is considered

  11. Music-induced emotions can be predicted from a combination of brain activity and acoustic features.

    Science.gov (United States)

    Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J

    2015-12-01

    It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,pmusic induced emotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01). Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Acoustic emission during low temperature phase transformations in plutonium

    International Nuclear Information System (INIS)

    Khejpl, K.; Karpenter, S.

    1988-01-01

    To study the nature of phase transformations in plutonium and plutonium-gallium alloys (0.3 and 0.57% Ga) the measurement of acoustic emission is conducted. The presence of acoustic emission testifies to martensitic character of transformation, related to sharp local changes in the volume, which cause elastic waves. It is detected that during α reversible β transformations in non-alloyed plutonium acoustic emission is absent, and that testifies to nonmartensitic nature of the transformations. σ reversible α transformation in plutonium-gallium alloys is accompanied by the appearance of acoustic emission, i.e. it is of martensitic origin

  13. Vehicle recognition by using acoustic signature and classic DSP techniques

    Directory of Open Access Journals (Sweden)

    María Fernanda Díaz Velásquez

    2016-06-01

    Full Text Available This paper shows the application of the classic technique of digital signal processing (DSP, the cross-correlation, used for the detection of acoustic signatures of road traffic in Cali city, Colombia. Future goal is to build a detection software that through real time measures allows us estimate the levels of acoustic pollution in the city by using simulation models of road traffic, in the framework of environmentally-friendly smart cities. Final results of the experimental tests showed an accuracy of 71.43% for specific vehicle detection.

  14. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    International Nuclear Information System (INIS)

    Torres-Arredondo, M-A; Fritzen, C-P; Tibaduiza, D-A; Mujica, L E; Rodellar, J; McGugan, M; Toftegaard, H; Borum, K-K

    2013-01-01

    Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures. (paper)

  15. Systems and methods for biometric identification using the acoustic properties of the ear canal

    International Nuclear Information System (INIS)

    Bouchard, A.M.; Osbourn, G.C.

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications. 5 figs

  16. Systems and methods for biometric identification using the acoustic properties of the ear canal

    Science.gov (United States)

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.

  17. Application of a laser Doppler vibrometer for air-water to subsurface signature detection

    Science.gov (United States)

    Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun

    2015-05-01

    There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.

  18. Continental Shelf-Scale Passive Acoustic Detection and Characterization of Diesel-Electric Ships Using a Coherent Hydrophone Array

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2017-07-01

    Full Text Available The passive ocean acoustic waveguide remote sensing (POAWRS technique is employed to detect and characterize the underwater sound radiated from three scientific research and fishing vessels received at long ranges on a large-aperture densely-sampled horizontal coherent hydrophone array. The sounds radiated from the research vessel (RV Delaware II in the Gulf of Maine, and the RV Johan Hjort and the fishing vessel (FV Artus in the Norwegian Sea are found to be dominated by distinct narrowband tonals and cyclostationary signals in the 150 Hz to 2000 Hz frequency range. The source levels of these signals are estimated by correcting the received pressure levels for transmission losses modeled using a calibrated parabolic equation-based acoustic propagation model for random range-dependent ocean waveguides. The probability of the detection region for the most prominent signal radiated by each ship is estimated and shown to extend over areas spanning roughly 200 km in diameter when employing a coherent hydrophone array. The current standard procedure for quantifying ship-radiated sound source levels via one-third octave bandwidth intensity averaging smoothes over the prominent tonals radiated by a ship that can stand 10 to 30 dB above the local broadband level, which may lead to inaccurate or incorrect assessments of the impact of ship-radiated sound.

  19. A study of acoustic halos in active region NOAA 11330 using multi-height SDO observations

    Science.gov (United States)

    Tripathy, S. C.; Jain, K.; Kholikov, S.; Hill, F.; Rajaguru, S. P.; Cally, P. S.

    2018-01-01

    We analyze data from the Helioseismic Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory (SDO) to characterize the spatio-temporal acoustic power distribution in active regions as a function of the height in the solar atmosphere. For this, we use Doppler velocity and continuum intensity observed using the magnetically sensitive line at 6173 Å as well as intensity at 1600 Å and 1700 Å. We focus on the power enhancements seen around AR 11330 as a function of wave frequency, magnetic field strength, field inclination and observation height. We find that acoustic halos occur above the acoustic cutoff frequency and extends up to 10 mHz in HMI Doppler and AIA 1700 Å observations. Halos are also found to be strong functions of magnetic field and their inclination angle. We further calculate and examine the spatially averaged relative phases and cross-coherence spectra and find different wave characteristics at different heights.

  20. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves.

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-01-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  1. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  2. An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems

    Science.gov (United States)

    Carneal, James P.; Fuller, Chris R.

    2004-05-01

    An analytical and experimental investigation of active control of sound transmission through double panel systems has been performed. The technique used was active structural acoustic control (ASAC) where the control inputs, in the form of piezoelectric actuators, were applied to the structure while the radiating pressure field was minimized. Results verify earlier experimental investigations and indicate the application of control inputs to the radiating panel of the double panel system resulted in greater transmission loss (TL) due to its direct effect on the nature of the structural-acoustic (or radiation) coupling between the radiating panel and the receiving acoustic space. Increased control performance was seen in a double panel system consisting of a stiffer radiating panel due to its lower modal density and also as a result of better impedance matching between the piezoelectric actuator and the radiating plate. In general the results validate the ASAC approach for double panel systems, demonstrating that it is possible to take advantage of double panel system passive behavior to enhance control performance, and provide design guidelines.

  3. Detecting and identifying damage in sandwich polymer composite by using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    McGugan, M.; Soerensen, Bent F.; Oestergaard, R.; Bech, T.

    2006-12-15

    Acoustic emission is a useful monitoring tool for extracting extra information during mechanical testing of polymer composite sandwich materials. The study of fracture mechanics within test specimens extracted from wind turbine blade material is presented. The contribution of the acoustic emission monitoring technique in defining different failure modes identified during the testing is discussed. The development of in-situ structural monitoring and control systems is considered. (au)

  4. Active control of acoustic field-of-view in a biosonar system.

    Directory of Open Access Journals (Sweden)

    Yossi Yovel

    2011-09-01

    Full Text Available Active-sensing systems abound in nature, but little is known about systematic strategies that are used by these systems to scan the environment. Here, we addressed this question by studying echolocating bats, animals that have the ability to point their biosonar beam to a confined region of space. We trained Egyptian fruit bats to land on a target, under conditions of varying levels of environmental complexity, and measured their echolocation and flight behavior. The bats modulated the intensity of their biosonar emissions, and the spatial region they sampled, in a task-dependant manner. We report here that Egyptian fruit bats selectively change the emission intensity and the angle between the beam axes of sequentially emitted clicks, according to the distance to the target, and depending on the level of environmental complexity. In so doing, they effectively adjusted the spatial sector sampled by a pair of clicks-the "field-of-view." We suggest that the exact point within the beam that is directed towards an object (e.g., the beam's peak, maximal slope, etc. is influenced by three competing task demands: detection, localization, and angular scanning-where the third factor is modulated by field-of-view. Our results suggest that lingual echolocation (based on tongue clicks is in fact much more sophisticated than previously believed. They also reveal a new parameter under active control in animal sonar-the angle between consecutive beams. Our findings suggest that acoustic scanning of space by mammals is highly flexible and modulated much more selectively than previously recognized.

  5. Acoustic emission by self-organising effects of micro-hollow cathode discharges

    Science.gov (United States)

    Kotschate, Daniel; Gaal, Mate; Kersten, Holger

    2018-04-01

    We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.

  6. Levitation of objects using acoustic energy

    Science.gov (United States)

    Whymark, R. R.

    1975-01-01

    Activated sound source establishes standing-wave pattern in gap between source and acoustic reflector. Solid or liquid material introduced in region will move to one of the low pressure areas produced at antinodes and remain suspended as long as acoustic signal is present.

  7. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    Science.gov (United States)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  8. Material Property Measurement in Hostile Environments using Laser Acoustics

    International Nuclear Information System (INIS)

    Ken L. Telschow

    2004-01-01

    Acoustic methods are well known and have been used to measure various intrinsic material properties, such as, elastic coefficients, density, crystal axis orientation, microstructural texture, and residual stress. Extrinsic properties, such as, dimensions, motion variables or temperature are also readily determined from acoustic methods. Laser acoustics, employing optical generation and detection of elastic waves, has a unique advantage over other acoustic methods-it is noncontacting, uses the sample surface itself for transduction, requires no couplant or invasive sample surface preparation and can be utilized in any hostile environment allowing optical access to the sample surface. In addition, optical generation and detection probe beams can be focused to the micron scale and/or shaped to alter the transduction process with a degree of control not possible using contact transduction methods. Laser methods are amenable to both continuous wave and pulse-echo measurements and have been used from Hz to 100's of GHz (time scales from sec to psec) and with amplitudes sufficient to fracture materials. This paper shall review recent applications of laser acoustic methods to determining material properties in hostile environments that preclude the use of contacting transduction techniques. Example environments include high temperature (>1000C) sintering and molten metal processing, thin film deposition by plasma techniques, materials moving at high velocity during the fabrication process and nuclear high radiation regions. Recent technological advances in solid-state lasers and telecommunications have greatly aided the development and implementation of laser acoustic methods, particularly at ultra high frequencies. Consequently, laser acoustic material property measurements exhibit high precision and reproducibility today. In addition, optical techniques provide methods of imaging acoustic motion that is both quantitative and rapid. Possible future directions for laser

  9. Doppler method leak detection for LMFBR steam generators. Pt. 2. Detection characteristics of bubble in-water using large scale SG model

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi

    2000-01-01

    To prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of a fast breeder reactor (FBR), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method was developed. Previous studies have revealed that, in practical steam generators, the active acoustic method can detect bubbles of 10 l/s within 10 seconds. However to prevent the expansion of damage to neighboring tubes, it is necessary to detect smaller leakages of water from the heat transfer tubes. The Doppler method is designed to detect small leakages and to find the source of a leak before damage spreads to neighboring tubes. The detection sensitivity of the Doppler method and the influence of background noise were investigated experimentally. In-water experiments were performed using an SG full-sector model that simulates actual SGs. The results show that the Doppler method can detect bubbles of 0.1 l/s (equivalent to a water leak rate of about 0.1 g/s) within a few seconds and that the background noise has little effect on water leak detection performance. The Doppler method thus has great potential for the detection of water leakage in SGs. (author)

  10. Coherent acoustic excitation of cavity polaritons

    DEFF Research Database (Denmark)

    Poel, Mike van der; de Lima, M. M.; Hey, R.

    The study of acoustic excitation of semiconductor based photonic structures is anemerging field with great potential for new types of photonic manipulation1. In this paperwe present results of using a surface acoustic wave (SAW) to modulate a microcavitywith embedded quantum-well (QW) active layer...

  11. TH-CD-201-06: Experimental Characterization of Acoustic Signals Generated in Water Following Clinical Photon and Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Hickling, S; El Naqa, I

    2016-01-01

    Purpose: Previous work has demonstrated the detectability of acoustic waves induced following the irradiation of high density metals with radiotherapy linac photon beams. This work demonstrates the ability to experimentally detect such acoustic signals following both photon and electron irradiation in a more radiotherapy relevant material. The relationship between induced acoustic signal properties in water and the deposited dose distribution is explored, and the feasibility of exploiting such signals for radiotherapy dosimetry is demonstrated. Methods: Acoustic waves were experimentally induced in a water tank via the thermoacoustic effect following a single pulse of photon or electron irradiation produced by a clinical linac. An immersion ultrasound transducer was used to detect these acoustic waves in water and signals were read out on an oscilloscope. Results: Peaks and troughs in the detected acoustic signals were found to correspond to the location of gradients in the deposited dose distribution following both photon and electron irradiation. Signal amplitude was linearly related to the dose per pulse deposited by photon or electron beams at the depth of detection. Flattening filter free beams induced large acoustic signals, and signal amplitude decreased with depth after the depth of maximum dose. Varying the field size resulted in a temporal shift of the acoustic signal peaks and a change in the detected signal frequency. Conclusion: Acoustic waves can be detected in a water tank following irradiation by linac photon and electron beams with basic electronics, and have characteristics related to the deposited dose distribution. The physical location of dose gradients and the amount of dose deposited can be inferred from the location and magnitude of acoustic signal peaks. Thus, the detection of induced acoustic waves could be applied to photon and electron water tank and in vivo dosimetry. This work was supported in part by CIHR grants MOP-114910 and MOP

  12. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  13. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  14. Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.

    Science.gov (United States)

    Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin

    2016-02-01

    High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry. © 2015 Society for Laboratory Automation and Screening.

  15. Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Congli Liu

    2018-01-01

    Full Text Available Acoustic trauma is being reported to damage the auditory periphery and central system, and the compromised cortical inhibition is involved in auditory disorders, such as hyperacusis and tinnitus. Parvalbumin-containing neurons (PV neurons, a subset of GABAergic neurons, greatly shape and synchronize neural network activities. However, the change of PV neurons following acoustic trauma remains to be elucidated. The present study investigated how auditory cortical PV neurons change following unilateral 1 hour noise exposure (left ear, one octave band noise centered at 16 kHz, 116 dB SPL. Noise exposure elevated the auditory brainstem response threshold of the exposed ear when examined 7 days later. More detectable PV neurons were observed in both sides of the auditory cortex of noise-exposed rats when compared to control. The detectable PV neurons of the left auditory cortex (ipsilateral to the exposed ear to noise exposure outnumbered those of the right auditory cortex (contralateral to the exposed ear. Quantification of Western blotted bands revealed higher expression level of PV protein in the left cortex. These findings of more active PV neurons in noise-exposed rats suggested that a compensatory mechanism might be initiated to maintain a stable state of the brain.

  16. Acoustic emission sensor radiation damage threshold experiment

    International Nuclear Information System (INIS)

    Beeson, K.M.; Pepper, C.E.

    1994-01-01

    Determination of the threshold for damage to acoustic emission sensors exposed to radiation is important in their application to leak detection in radioactive waste transport and storage. Proper response to system leaks is necessary to ensure the safe operation of these systems. A radiation impaired sensor could provide ''false negative or false positive'' indication of acoustic signals from leaks within the system. Research was carried out in the Radiochemical Technology Division at Oak Ridge National Laboratory to determine the beta/gamma radiation damage threshold for acoustic emission sensor systems. The individual system consisted of an acoustic sensor mounted with a two part epoxy onto a stainless steel waveguide. The systems were placed in an irradiation fixture and exposed to a Cobalt-60 source. After each irradiation, the sensors were recalibrated by Physical Acoustics Corporation. The results were compared to the initial calibrations performed prior to irradiation and a control group, not exposed to radiation, was used to validate the results. This experiment determines the radiation damage threshold of each acoustic sensor system and verifies its life expectancy, usefulness and reliability for many applications in radioactive environments

  17. Application of acoustic emission to hydride cracking

    International Nuclear Information System (INIS)

    Sagat, S.; Ambler, J.F.R.; Coleman, C.E.

    1986-07-01

    Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking

  18. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    Energy Technology Data Exchange (ETDEWEB)

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  19. Acoustic emission monitoring during hydrotests of a thin wall pressure vessel

    International Nuclear Information System (INIS)

    Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.

    1975-01-01

    The results are presented of an acoustic emission monitoring performed during hydrotests of a thin wall steel pressure vessel. The location of acoustic sources was based on longitudinal wave front detection. The careful calibration of the three sensors instrumentation system used for acoustic source location was found to be useful, and alllowed an accurate location error analysis. Acoustic emission in the hydrotests was found to be mainly due to stress release in weld seams. (Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.)

  20. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  1. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    International Nuclear Information System (INIS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-01-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation. (paper)

  2. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  3. Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of Electromagnetic Waves

    Science.gov (United States)

    2017-07-01

    by Acoustic Modulation of Electromagnetic Waves 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory J... Program 13 List of Symbols, Abbreviations, and Acronyms 18 Distribution List 19 Approved for public release; distribution is...4 Fig. 4 Flowchart of wireless experiment to receive acoustically modulated radar waveforms

  4. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  5. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    International Nuclear Information System (INIS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-01-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  6. Acoustical Properties of Contemporary Mosques

    OpenAIRE

    Karaman Özgül Yılmaz; Güzel Neslihan Onat

    2017-01-01

    Religious buildings are important for many communities because of their representation of different beliefs. In such structures, the sense of individuality or unity & togetherness are created according to variable worship activities; these different uses have also different acoustical requirements. In order to create the desired feeling in the space at the required time, rooms should be evaluated in terms of acoustical conditions.

  7. Acoustic of monolithic dome structures

    Directory of Open Access Journals (Sweden)

    Mostafa Refat Ismail

    2018-03-01

    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  8. Holographic and acoustic emission evaluation of pressure vessels

    International Nuclear Information System (INIS)

    Boyd, D.M.

    1980-01-01

    Optical holographic interfereometry and acoustic emission monitoring were simultaneously used to evaluate two small, high pressure vessels during pressurization. The techniques provide pressure vessel designers with both quantitative information such as displacement/strain measurements and qualitative information such as flaw detection. The data from the holographic interferograms were analyzed for strain profiles. The acoustic emission signals were monitored for crack growth and vessel quality

  9. Detecting vocal fatigue in student singers using acoustic measures of mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio

    Science.gov (United States)

    Sisakun, Siphan

    2000-12-01

    The purpose of this study is to explore the ability of four acoustic parameters, mean fundamental frequency, jitter, shimmer, and harmonics-to-noise ratio, to detect vocal fatigue in student singers. The participants are 15 voice students, who perform two distinct tasks, data collection task and vocal fatiguing task. The data collection task includes the sustained vowel /a/, reading a standard passage, and self-rate on a vocal fatigue form. The vocal fatiguing task is the vocal practice of musical scores for a total of 45 minutes. The four acoustic parameters are extracted using the software EZVoicePlus. The data analyses are performed to answer eight research questions. The first four questions relate to correlations of the self-rating scale and each of the four parameters. The next four research questions relate to differences in the parameters over time using one-factor repeated measures analysis of variance (ANOVA). The result yields a proposed acoustic profile of vocal fatigue in student singers. This profile is characterized by increased fundamental frequency; slightly decreased jitter; slightly decreased shimmer; and slightly increased harmonics-to-noise ratio. The proposed profile requires further investigation.

  10. Development of acoustic leak detection and localization methods for inlet piping of fugen nuclear power plant

    International Nuclear Information System (INIS)

    Shimanskiy, Sergey; Iijima, Takashi; Naoi, Yosuke

    2004-01-01

    The development work carried out on Fugen NPP is focused on detection of a small leakage on the reactor's inlet feeder pipes at an early stage by an acoustic leak detection method with usage of high-temperature resistant microphones. Specifically, the leak rate of 0.046m 3 /h has been chosen as a target detection capability for this system. A cross-correlation technique has been studied for leak detection under low signal-noise ratios. The study shows that the sound diffusion on piping causes distortion of leak signals that results in their low correlation. A leak-location estimator and multi-channel correlation value, associated with estimated leak position, have been employed to detect such low-correlated leak signals. A method based on cross-correlation of signal spectral components has been proposed to deal with non-stationary leak signals. Joint-Time-Frequency-Analysis has been applied to analyze such signals, whilst a Wavelet decomposition technique has been used to extract their short-term spectral fluctuations. Since the spectral components are less affected by signal distortion, they provide higher correlation value and can be applied for leak detection under lower signal-noise ratios. The possibility of detecting and locating a small leakage by the methods proposed has been demonstrated by a number of simulation tests conducted on the Fugen NPP site. (author)

  11. Acoustic Reflex Screening of Conductive Hearing Loss for Third Window Disorders.

    Science.gov (United States)

    Hong, Robert S; Metz, Christopher M; Bojrab, Dennis I; Babu, Seilesh C; Zappia, John; Sargent, Eric W; Chan, Eleanor Y; Naumann, Ilka C; LaRouere, Michael J

    2016-02-01

    This study examines the effectiveness of acoustic reflexes in screening for third window disorders (eg, superior semicircular canal dehiscence) prior to middle ear exploration for conductive hearing loss. Case series with chart review. Outpatient tertiary otology center. A review was performed of 212 ears with acoustic reflexes, performed as part of the evaluation of conductive hearing loss in patients without evidence of chronic otitis media. The etiology of hearing loss was determined from intraoperative findings and computed tomography imaging. The relationship between acoustic reflexes and conductive hearing loss etiology was assessed. Eighty-eight percent of ears (166 of 189) demonstrating absence of all acoustic reflexes had an ossicular etiology of conductive hearing loss. Fifty-two percent of ears (12 of 23) with at least 1 detectable acoustic reflex had a nonossicular etiology. The positive and negative predictive values for an ossicular etiology were 89% and 57% when acoustic reflexes were used alone for screening, 89% and 39% when third window symptoms were used alone, and 94% and 71% when reflexes and symptoms were used together, respectively. Acoustic reflex testing is an effective means of screening for third window disorders in patients with a conductive hearing loss. Questioning for third window symptoms should complement screening. The detection of even 1 acoustic reflex or third window symptom (regardless of reflex status) should prompt further workup prior to middle ear exploration. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  12. Examples and applications in long-range ocean acoustics

    International Nuclear Information System (INIS)

    Vera, M D

    2007-01-01

    Acoustic energy propagates effectively to long ranges in the ocean interior because of the physical properties of the marine environment. Sound propagation in the ocean is relevant to a variety of studies in communication, climatology and marine biology. Examples drawn from ocean acoustics, therefore, are compelling to students with a variety of interests. The dependence of sound speed on depth results in a waveguide that permits the detection of acoustic energy at ranges, in some experiments, of thousands of kilometres. This effect serves as an illustration of Snell's law with a continuously variable index of refraction. Acoustic tomography also offers a means for imaging the ocean's thermal structure, because of the dependence of sound speed on temperature. The ability to perform acoustic thermometry for large transects of the ocean provides an effective means of studying climate change. This application in an area of substantial popular attention allows for an effective introduction to concepts in ray propagation. Aspects of computational ocean acoustics can be productive classroom examples in courses ranging from introductory physics to upper-division mathematical methods courses

  13. Acoustic emission monitoring of HFIR vessel during hydrostatic testing

    International Nuclear Information System (INIS)

    Friesel, M.A.; Dawson, J.F.

    1992-08-01

    This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results

  14. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-04-01

    The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.

  15. Acoustic input and efferent activity regulate the expression of molecules involved in cochlear micromechanics

    Science.gov (United States)

    Lamas, Veronica; Arévalo, Juan C.; Juiz, José M.; Merchán, Miguel A.

    2015-01-01

    Electromotile activity in auditory outer hair cells (OHCs) is essential for sound amplification. It relies on the highly specialized membrane motor protein prestin, and its interactions with the cytoskeleton. It is believed that the expression of prestin and related molecules involved in OHC electromotility may be dynamically regulated by signals from the acoustic environment. However little is known about the nature of such signals and how they affect the expression of molecules involved in electromotility in OHCs. We show evidence that prestin oligomerization is regulated, both at short and relatively long term, by acoustic input and descending efferent activity originating in the cortex, likely acting in concert. Unilateral removal of the middle ear ossicular chain reduces levels of trimeric prestin, particularly in the cochlea from the side of the lesion, whereas monomeric and dimeric forms are maintained or even increased in particular in the contralateral side, as shown in Western blots. Unilateral removal of the auditory cortex (AC), which likely causes an imbalance in descending efferent activity on the cochlea, also reduces levels of trimeric and tetrameric forms of prestin in the side ipsilateral to the lesion, whereas in the contralateral side prestin remains unaffected, or even increased in the case of trimeric and tetrameric forms. As far as efferent inputs are concerned, unilateral ablation of the AC up-regulates the expression of α10 nicotinic Ach receptor (nAChR) transcripts in the cochlea, as shown by RT-Quantitative real-time PCR (qPCR). This suggests that homeostatic synaptic scaling mechanisms may be involved in dynamically regulating OHC electromotility by medial olivocochlear efferents. Limited, unbalanced efferent activity after unilateral AC removal, also affects prestin and β-actin mRNA levels. These findings support that the concerted action of acoustic and efferent inputs to the cochlea is needed to regulate the expression of major

  16. Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiji [Univ. of California, Berkeley, CA (United States)

    1998-08-01

    In recent years, acoustic resonance has drawn great attention as a quantitative tool for characterizing properties of materials and detecting defects in both engineering and geological materials. In quasi-brittle materials such as rock and concrete, inherent fractures have a significant influence on their mechanical and hydraulic properties. Most of these fractures are partially open, providing internal boundaries that are visible to propagating seismic waves. Acoustic resonance occurs as a result of constructive and destructive interferences of propagating waves. Therefore the geometrical and mechanical properties of the fracture are also interrogated by the acoustic resonance characteristics of materials. The objective of this dissertation is to understand the acoustic resonance characteristics of fractured rock and concrete.

  17. Nondestructive online testing method for friction stir welding using acoustic emission

    Science.gov (United States)

    Levikhina, Anastasiya

    2017-12-01

    The paper reviews the possibility of applying the method of acoustic emission for online monitoring of the friction stir welding process. It is shown that acoustic emission allows the detection of weld defects and their location in real time. The energy of an acoustic signal and the median frequency are suggested to be used as informative parameters. The method of calculating the median frequency with the use of a short time Fourier transform is applied for the identification of correlations between the defective weld structure and properties of the acoustic emission signals received during welding.

  18. Zeptomole Detection Scheme Based on Levitation Coordinate Measurements of a Single Microparticle in a Coupled Acoustic-Gravitational Field.

    Science.gov (United States)

    Miyagawa, Akihisa; Harada, Makoto; Okada, Tetsuo

    2018-02-06

    We present a novel analytical principle in which an analyte (according to its concentration) induces a change in the density of a microparticle, which is measured as a vertical coordinate in a coupled acoustic-gravitational (CAG) field. The density change is caused by the binding of gold nanoparticles (AuNP's) on a polystyrene (PS) microparticle through avidin-biotin association. The density of a 10-μm PS particle increases by 2% when 500 100-nm AuNP's are bound to the PS. The CAG can detect this density change as a 5-10 μm shift of the levitation coordinate of the PS. This approach, which allows us to detect 700 AuNP's bound to a PS particle, is utilized to detect biotin in solution. Biotin is detectable at a picomolar level. The reaction kinetics plays a significant role in the entire process. The kinetic aspects are also quantitatively discussed based on the levitation behavior of the PS particles in the CAG field.

  19. Detection of simulated pitting corrosion and noises in crude oil storage tank by acoustic emission

    International Nuclear Information System (INIS)

    Shukri Mohd; Latif, N.A.; Azhar Mohd Sinin; Mohamad Daud; Abd Nasir Ibrahim

    2008-01-01

    The damage mechanisms associated with crude oil storage tanks can be complex and varied and include pitting corrosion due to presence of species such as sulphate reducing bacteria. Acoustic Emission (AE) could be used to characterise the pitting corrosion signal in crude oil storage tanks but it is extremely difficult to simulate the pitting corrosion in the laboratory using crude oil as electrolyte because crude oil is considered as non corrosive medium. In this study, induced current have been introduced onto a surface ASTM 516 steel as an electrical source to simulate the electrical noise produced during pitting corrosion process and AE sensor have been used to detect this current. It is found that AE system could detect AE signal release during current induction this current and is expected that if the exact simulation of the current magnitude produced during pitting corrosion process is made available, AE characterisation of pitting corrosion in such tank could be made possible. (Author)

  20. The electromagnetic and acoustic properties of smoke particulates

    International Nuclear Information System (INIS)

    Churches, D.K.

    1999-10-01

    The research work explores the Electromagnetic and Acoustic Properties of Smoke Particulates from real fires, and the initial development of an alternative method of smoke detection based on the study work. The research was entirely self-funded including the purchase of the experimental apparatus, test equipment and calibration to international standards. The study includes the properties of solid and liquid post combustion particulates in air suspension forming smoke plumes, and the associated fluid flow dynamics. As part of the study the electromagnetic and acoustic properties of smoke particulates, a somewhat unique detection method described as the ''Double Matrix Board System'' was developed and used. It was initially developed to assist in the electromagnetic study work, and was later modified to examine the acoustic properties. The published results of the research on the ''Double Matrix Board System'' and the details of the patent application for the device are included in the Appendices to the Thesis document. (author)

  1. An acoustical bubble counter for superheated drop detectors

    International Nuclear Information System (INIS)

    Taylor, C.; Montvila, D.; Flynn, D.; Brennan, C.; D'Errico, F.

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons. (authors)

  2. An acoustical bubble counter for superheated drop detectors.

    Science.gov (United States)

    Taylor, Chris; Montvila, Darius; Flynn, David; Brennan, Christopher; d'Errico, Francesco

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons.

  3. Acoustic Transient Source Localization From an Aerostat

    National Research Council Canada - National Science Library

    Scanlon, Michael; Reiff, Christian; Noble, John

    2006-01-01

    The Army Research Laboratory (ARL) has conducted experiments using acoustic sensor arrays suspended below tethered aerostats to detect and localize transient signals from mortars, artillery and small arms fire...

  4. Coherent scattering of CO2 light from ion-acoustic waves

    International Nuclear Information System (INIS)

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  5. Acoustic Green's function extraction in the ocean

    Science.gov (United States)

    Zang, Xiaoqin

    that can result in coherence loss and undermine the utility of coherent stacking. The third one is the downward refracting sound speed profile, which impedes strong coupling between near surface noise sources and the near-bottom instruments. The active method of inverse filter processing was tested in a long-range deep-ocean environment. The high-power sound source, which was located near the sound channel axis, transmitted a pre-designed signal that was composed of a precursor signal and a communication signal. After traveling 1428.5 km distance in the north Pacific Ocean, the transmitted signal was detected by the receiver and was processed using the inverse filter. The probe signal, which was composed of M sequences and was known at the receiver, was utilized for the GF extraction in the inverse filter; the communication signal was then interpreted with the extracted GF. With a glitch in the length of communication signal, the inverse filter processing method was shown to be effective for long-range low-frequency deep ocean acoustic communication. (Abstract shortened by ProQuest.).

  6. Acoustical Properties of Contemporary Mosques

    Directory of Open Access Journals (Sweden)

    Karaman Özgül Yılmaz

    2017-04-01

    Full Text Available Religious buildings are important for many communities because of their representation of different beliefs. In such structures, the sense of individuality or unity & togetherness are created according to variable worship activities; these different uses have also different acoustical requirements. In order to create the desired feeling in the space at the required time, rooms should be evaluated in terms of acoustical conditions.

  7. Acoustic fMRI noise : Linear time-invariant system model

    NARCIS (Netherlands)

    Sierra, Carlos V. Rizzo; Versluis, Maarten J.; Hoogduin, Johannes M.; Duifhuis, Hendrikus (Diek)

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For auditory system studies, however, the acoustic noise generated by the scanner tends to interfere with the assessments of this activation. Understanding and modeling fMRI acoustic

  8. Modelling of a thermally activated building system (TABS) combined with free-hanging acoustic ceiling units using computational fluid dynamics (CFD)

    DEFF Research Database (Denmark)

    Lacarte, Luis Marcos Domínguez; Fan, Jianhua

    2017-01-01

    . The active surfaces of TABS need to be as exposed as possible, but exposing bare concrete surfaces has a negative impact on the acoustic quality in the premises. Acoustic solutions capable of providing optimal acoustic comfort while allowing the heat exchange between the TABS and the room are desirable...... of the heat exchange between the TABS and the room and the occupants. The simulations are validated by comparison with full scale measurements in laboratory conditions. The study shows that for equivalent sound absorption levels, free-hanging vertical sound absorbers have a lower impact on the heat exchange......Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to achieve optimal indoor thermal environment in buildings. This solution uses the building mass to store heat and by means of water pipes embedded in the concrete slabs adjust the temperature in the premises...

  9. Acoustic detection of boiling in the Sodium Loop Safety Facility in-reactor experiment P1

    International Nuclear Information System (INIS)

    Carey, W.M.; Anderson, T.T.; Bobis, J.P.

    1976-06-01

    Acoustic data were obtained from two high-temperature lithium niobate microphones on the loop background noise and transient pressure pulses during the Sodium Loop Safety Facility (SLSF) P1 in-reactor experiment. This experiment simulated an LMFBR loss-of-piping-integrity (LOPI) transient on a nineteen element, end-of-life, enriched-UO 2 fuel assembly. The microphones were exposed to liquid sodium at a distance 4.85 meters above the reactor core at temperatures between 315 0 and 590 0 C. The distance and location of the microphones in the P1 Test Train provided an attenuative transmission path which was undesirable for optimum acoustic detection of sodium boiling and fuel failure. The data gathered on the loop background noise was observed to be dominated by pump and electrical noise at frequencies below 1.5 KHz and appeared to be dominated by flow induced local turbulence noise at higher frequencies. During the period of time that the sodium in the fuel assembly was at its saturation temperature 943 0 C (1730 0 F), as indicated by the wire wrap thermocouples, several discrete pulses were observed with peak-to-peak pressure between 3.3 kPa and 7.9 kPa and center frequencies between 360 and 550 Hz. The pulses occurred at two separate gradually increasing repetition rates. These observations appear to be consistent with the result of an impulsive forcing function interacting with a band passed Helmholtz resonator. These data are consistent with the hypothesis that sodium boiling occurred in the P1 fuel assembly, resulting in the formation of individual voids that collapsed upon reaching the subcooled sodium. These data provide pertinent information regarding the feasibility of sodium boiling detection and may provide additional insight into the dynamics of the void behavior

  10. Use of Acoustic Emission and Pattern Recognition for Crack Detection of a Large Carbide Anvil.

    Science.gov (United States)

    Chen, Bin; Wang, Yanan; Yan, Zhaoli

    2018-01-29

    Large-volume cubic high-pressure apparatus is commonly used to produce synthetic diamond. Due to the high pressure, high temperature and alternative stresses in practical production, cracks often occur in the carbide anvil, thereby resulting in significant economic losses or even casualties. Conventional methods are unsuitable for crack detection of the carbide anvil. This paper is concerned with acoustic emission-based crack detection of carbide anvils, regarded as a pattern recognition problem; this is achieved using a microphone, with methods including sound pulse detection, feature extraction, feature optimization and classifier design. Through analyzing the characteristics of background noise, the cracked sound pulses are separated accurately from the originally continuous signal. Subsequently, three different kinds of features including a zero-crossing rate, sound pressure levels, and linear prediction cepstrum coefficients are presented for characterizing the cracked sound pulses. The original high-dimensional features are adaptively optimized using principal component analysis. A hybrid framework of a support vector machine with k nearest neighbors is designed to recognize the cracked sound pulses. Finally, experiments are conducted in a practical diamond workshop to validate the feasibility and efficiency of the proposed method.

  11. Dynamic and Acoustic Characterisation of Automotive Wheels

    Directory of Open Access Journals (Sweden)

    Francesca Curà

    2004-01-01

    Full Text Available The subject of this paper is the dynamic and acoustic characterisation of an automotive wheel. In particular, an experimental research activity previously performed by the authors about the dynamic behaviour of automotive wheels has been extended to the acoustic field.

  12. Acoustic metamaterials: From local resonances to broad horizons

    Science.gov (United States)

    Ma, Guancong; Sheng, Ping

    2016-01-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. PMID:26933692

  13. Acoustic metamaterials: From local resonances to broad horizons.

    Science.gov (United States)

    Ma, Guancong; Sheng, Ping

    2016-02-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature.

  14. Contribution of in situ acoustic emission analysis coupled with thermogravimetry to study zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Al Haj, O.; Peres, V.; Serris, E.; Cournil, M.; Grosjean, F.; Kittel, J.; Ropital, F.

    2015-01-01

    Zirconium alloy (zircaloy-4) corrosion behavior under oxidizing atmosphere at high temperature was studied using thermogravimetric experiment associated with acoustic emission analysis. Under a mixture of oxygen and air in helium, an acceleration of the corrosion is observed due to the detrimental effect of nitrogen which produces zirconium nitride. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration is accompanied by an acoustic emission (AE) activity. Most of the acoustic emission bursts were recorded after the kinetic transition or during the cooling of the sample. Acoustic emission signals analysis allows us to distinguish different populations of cracks in the ZrO 2 layer. These cracks have also been observed by SEM on post mortem cross section of oxidized samples and by in-situ microscopy observations on the top surface of the sample during oxidation. The numerous small convoluted thin cracks observed deeper in the zirconia scale are not detected by the AE technique. From these studies we can conclude that mechanisms as irreversible mechanisms, as cracks initiation and propagation, generate AE signals

  15. Acoustic emission characterization of the tetragonal-monoclinic phase transformation in zirconia

    International Nuclear Information System (INIS)

    Clarke, D.R.; Arora, A.

    1983-01-01

    The processes accompanying the tetragonal-monoclinic phase transformation in zirconia (ZrO 2 ) have been studied using acoustic emission and electron microscopy in an attempt to characterize the different mechanisms by which the transformation can be accommodated in bulk materials. Experiments in which the acoustic emission is detected as specimens are cooled through the transformation, following densification by sintering, are described. For comparison, the acoustic emission from free, nominally unconstrained powders similarly cooled through the transformation is reported. The existence of distinct processes accompanying the phase transformation is established on the basis of postexperiment multiparametric correlation analysis of the acoustic emission

  16. Resonant surface acoustic wave chemical detector

    Science.gov (United States)

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    2017-08-08

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.

  17. Time-warp invariant pattern detection with bursting neurons

    International Nuclear Information System (INIS)

    Gollisch, Tim

    2008-01-01

    Sound patterns are defined by the temporal relations of their constituents, individual acoustic cues. Auditory systems need to extract these temporal relations to detect or classify sounds. In various cases, ranging from human speech to communication signals of grasshoppers, this pattern detection has been found to display invariance to temporal stretching or compression of the sound signal ('linear time-warp invariance'). In this work, a four-neuron network model is introduced, designed to solve such a detection task for the example of grasshopper courtship songs. As an essential ingredient, the network contains neurons with intrinsic bursting dynamics, which allow them to encode durations between acoustic events in short, rapid sequences of spikes. As shown by analytical calculations and computer simulations, these neuronal dynamics result in a powerful mechanism for temporal integration. Finally, the network reads out the encoded temporal information by detecting equal activity of two such bursting neurons. This leads to the recognition of rhythmic patterns independent of temporal stretching or compression

  18. An acoustic system for autonomous navigation and tracking of marine fauna

    KAUST Repository

    De la Torre, Pedro

    2014-08-01

    A marine acoustic system for underwater target tracking is described. This system is part of the Integrated Satellite and Acoustic Telemetry (iSAT) project to study marine fauna. It is a microcontroller-based underwater projector and receiver. A narrow-band, passive sonar detection architecture is described from signal generation, through transduction, reception, signal processing and up to tone extraction. Its circuit and operation principles are described. Finally, a comparison between the current energy detection method versus an alternative matched filter approach is included.

  19. Southwest U.S. Seismo-Acoustic Network: An Autonomous Data Aggregation, Detection, Localization and Ground-Truth Bulletin for the Infrasound Community

    Science.gov (United States)

    Jones, K. R.; Arrowsmith, S.

    2013-12-01

    The Southwest U.S. Seismo-Acoustic Network (SUSSAN) is a collaborative project designed to produce infrasound event detection bulletins for the infrasound community for research purposes. We are aggregating a large, unique, near real-time data set with available ground truth information from seismo-acoustic arrays across New Mexico, Utah, Nevada, California, Texas and Hawaii. The data are processed in near real-time (~ every 20 minutes) with detections being made on individual arrays and locations determined for networks of arrays. The detection and location data are then combined with any available ground truth information and compiled into a bulletin that will be released to the general public directly and eventually through the IRIS infrasound event bulletin. We use the open source Earthworm seismic data aggregation software to acquire waveform data either directly from the station operator or via the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC), if available. The data are processed using InfraMonitor, a powerful infrasound event detection and localization software program developed by Stephen Arrowsmith at Los Alamos National Laboratory (LANL). Our goal with this program is to provide the infrasound community with an event database that can be used collaboratively to study various natural and man-made sources. We encourage participation in this program directly or by making infrasound array data available through the IRIS DMC or other means. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. R&A 5317326

  20. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    International Nuclear Information System (INIS)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel; Kittel, Jean; Grosjean, Francois; Ropital, Francois

    2014-01-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C 4 H 10 + H 2 + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  1. Acoustic calibration for the KM3NeT pre-production module

    Energy Technology Data Exchange (ETDEWEB)

    Enzenhöfer, A., E-mail: alexander.enzenhoefer@physik.uni-erlangen.de [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany)

    2013-10-11

    The proposed large scale Cherenkov neutrino telescope KM3NeT will carry photo-sensors on flexible structures, the detection units. The Mediterranean Sea, where KM3NeT will be installed, constitutes a highly dynamic environment in which the detection units are constantly in motion. Thus it is necessary to monitor the exact sensor positions continuously to achieve the desired resolution for the neutrino telescope. A common way to perform this monitoring is the use of acoustic positioning systems with emitters and receivers based on the piezoelectric effect. The acoustic receivers are attached to detection units whereas the emitters are located at known positions on the sea floor. There are complete commercial systems for this application with sufficient precision. But these systems are limited in the use of their data and inefficient as they were designed to perform only this single task. Several working groups in the KM3NeT consortium are cooperating to custom-design a positioning system for the specific requirements of KM3NeT. Most of the studied solutions hold the possibility to extend the application area from positioning to additional tasks like acoustic particle detection or monitoring of the deep-sea acoustic environment. The KM3NeT Pre-Production Module (PPM) is a test system to verify the correct operation and interoperability of the major involved hardware and software components developed for KM3NeT. In the context of the PPM, alternative designs of acoustic sensors including small piezoelectric elements equipped with preamplifiers inside the same housing as the optical sensors will be tested. These will be described in this article.

  2. Structural Acoustic Characteristics of Aircraft and Active Control of Interior Noise

    Science.gov (United States)

    Fuller, C. R.

    1998-01-01

    The reduction of aircraft cabin sound levels to acceptable values still remains a topic of much research. The use of conventional passive approaches has been extensively studied and implemented. However performance limits of these techniques have been reached. In this project, new techniques for understanding the structural acoustic behavior of aircraft fuselages and the use of this knowledge in developing advanced new control approaches are investigated. A central feature of the project is the Aircraft Fuselage Test Facility at Va Tech which is based around a full scale Cessna Citation III fuselage. The work is divided into two main parts; the first part investigates the use of an inverse technique for identifying dominant fuselage vibrations. The second part studies the development and implementation of active and active-passive techniques for controlling aircraft interior noise.

  3. A new, simple electrostatic-acoustic hybrid levitator

    Science.gov (United States)

    Lierke, E. G.; Loeb, H.; Gross, D.

    1990-01-01

    Battelle has developed a hybrid levitator by combining the known single-axis acoustic standing wave levitator with a coaxial DC electric field. The resulting Coulomb forces on the charged liquid or solid sample support its weight and, together with the acoustic force, center the sample. Liquid samples with volumes approximately less than 100 micro-liters are deployed from a syringe reservoir into the acoustic pressure node. The sample is charged using a miniature high voltage power supply (approximately less than 20 kV) connected to the syringe needle. As the electric field, generated by a second miniature power supply, is increased, the acoustic intensity is reduced. The combination of both fields allows stable levitation of samples larger than either single technique could position on the ground. Decreasing the acoustic intensity reduces acoustic convection and sample deformation. Neither the electrostatic nor the acoustic field requires sample position sensing or active control. The levitator, now used for static and dynamic fluid physics investigations on the ground, can be easily modified for space operations.

  4. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    Science.gov (United States)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  5. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  6. Acoustic detection of the collapse of a sodium vapor bubble in an infinite sea of sodium

    International Nuclear Information System (INIS)

    Carey, W.M.

    1975-12-01

    A discussion of the problem of sodium vapor bubble collapse is presented. The physics of vapor collapse is presented in light of the work by Peppler et al. Theoretical estimates of the sound source level based on the work by Rayleigh and Judd are compared to an approximate pressure-volume work approach and recent experimental observations. Reactor ambient noise and transmission loss considerations are presented in regard to their impact on this detection problem. A methodology is proposed which considers the importance of the sound source level, ambient noise, transmission loss and a detection threshold and provides a means by which the feasibility of sodium vapor bubble collapse detection in an operating LMFBR may be assessed. The interrelationships between the detection threshold and the probability of detection and false alarm are discussed and applied to a standard acoustic square law detection system. This analysis clearly illustrates that the feasibility of such a detection system is strongly dependent on the knowledge of sound source levels, ambient noise levels and the transmission loss between the source and receiver. Furthermore, requirements of a high degree of probability of detection and a low probability of false alarm were found to require a high signal to noise ratio for a single sensor system but that the probability of false alarm requirement could be relaxed for systems multiple independent sensors. Finally, the need for additional experimental and theoretical information is presented in terms of sound source levels, ambient noise and a means for determining transmission loss

  7. Potential of acoustic monitoring for safety assessment of primary system

    International Nuclear Information System (INIS)

    Olma, B.J.

    1997-01-01

    Safety assessment of the primary system and its components with respect to their mechanical integrity is increasingly supported by acoustic signature analysis during power operation of the plants. Acoustic signals of Loose Parts Monitoring System sensors are continuously monitored by dedicated digital systems for signal bursts associated with metallic impacts. Several years of ISTec/GRS experience and the practical use of its digital systems MEDEA and RAMSES have shown that acoustic monitoring is very successful for detecting component failures at an early stage. Advanced powerful tools for classification and acoustic evaluation of burst signals have recently been realized. The paper presents diagnosis experiences of BWR's and PWR's safety assessment. (author). 7 refs, 8 figs

  8. Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™

    Science.gov (United States)

    Klinck, Holger; Mellinger, David K.; Klinck, Karolin; Bogue, Neil M.; Luby, James C.; Jump, William A.; Shilling, Geoffrey B.; Litchendorf, Trina; Wood, Angela S.; Schorr, Gregory S.; Baird, Robin W.

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  9. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™.

    Directory of Open Access Journals (Sweden)

    Holger Klinck

    Full Text Available In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle--a glider--equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical

  10. Acoustic source for generating an acoustic beam

    Science.gov (United States)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  11. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  12. WE-EF-303-09: Proton-Acoustic Range Verification in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Xiang, L [University of Oklahoma (OK), Norman, OK (United States)

    2015-06-15

    Purpose: We investigated proton-acoustic signals detection for range verification with current ultrasound instruments in typical clinical scenarios. Using simulations that included a realistic noise model, we determined the theoretical minimum dose required to generate detectable proton-acoustic signals. Methods: An analytical model was used to calculate the dose distributions and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. The acoustic waves propagating from the Bragg peak were modeled by the general 3D pressure wave equation and convolved with Gaussian kernels to simulate various proton pulse widths (0.1 – 10 ms). A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth band-pass filter, and ii) randomly generated noise based on a model of thermal noise in the transducer. The signal-to-noise ratio was calculated, determining the minimum number of protons and dose required per pulse. The maximum spatial resolution was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer center frequency (70–380 kHz). The minimum number of protons were on the order of 0.6–6 million per pulse, leading to 3–110 mGy dose per pulse at the Bragg peak, depending on the spot size. The acoustic signal consisted of lower frequencies for wider pulses, leading to lower noise levels, but also worse spatial resolution. The resolution was 1-mm for a 0.1-µs pulse width, but increased to 5-mm for a 10-µs pulse width. Conclusion: We have established minimum dose detection limits for proton-acoustic range validation. These limits correspond to a best case scenario with a large detector with no losses and only detector thermal noise. Feasible proton-acoustic range detection will require at least 10{sup 7} protons per pulse and pulse widths ≤ 1-µs.

  13. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    Science.gov (United States)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

  14. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    International Nuclear Information System (INIS)

    Schmidt, H; Kirschner, O; Riedelbauch, S; Necker, J; Kopf, E; Rieg, M; Arantes, G; Wessiak, M; Mayrhuber, J

    2014-01-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation

  15. The dynamic behavior of microbubbles during long ultrasound tone-burst excitation: mechanistic insights into ultrasound-microbubble mediated therapeutics using high-speed imaging and cavitation detection

    Science.gov (United States)

    Pacella, John J.; Villanueva, Flordeliza S.

    2015-01-01

    Ultrasound (US)-microbubble (MB) mediated therapies have been shown to restore perfusion and enhance drug/gene delivery. Due to the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes utilize short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure, and then formed gas-filled clusters that continued to oscillate, break up, and form new clusters. Cavitation detection confirmed continued, albeit diminishing acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone-bursts may confer additional therapeutic effects. PMID:26603628

  16. Classification of acoustic emission signals for drive systems coupling crack detection in semi-real time

    International Nuclear Information System (INIS)

    Godinez, V.; Shu, F.; Finlayson, R.; O'Donnell, B.; Anastasopoulos, A.; Tsimogiannis, A.

    2004-01-01

    Early detection of mechanical failure in helicopter drive train components is a key safety and economical issue with both military and civil sectors of aviation. Of these components, couplings are particularly critical. The objective of this work is to demonstrate the feasibility of designing and developing a reliable, real time monitoring methodology based on Supervised Pattern Recognition (SPR) for early detection of cracks in couplings used in helicopter and engine drive systems. Within this framework, a portable Acoustic Emission (AE) system was used, equipped with a semi-real time SPR software package. Results from AE tests performed in a gearbox-testing bench at different speeds and different torque values are presented. These results indicate that the energy content of different frequency bands in the AE signals power spectra is strongly correlated with the introduction of EDM notches in the main gear. Further tests indicate that a strong shift in the frequency of the AE signals is observed after spalling occurred in the pinion gear. The variation of displacement and velocity between signal classes are discussed as a potential feature in characterizing crack severity. Finally, a scope of the work for optimizing the methodology in detecting and evaluating coupling cracking in real time will be presented. (author)

  17. Acoustic richness modulates the neural networks supporting intelligible speech processing.

    Science.gov (United States)

    Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E

    2016-03-01

    The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier

  18. Prospects of Frequency-Time Correlation Analysis for Detecting Pipeline Leaks by Acoustic Emission Method

    International Nuclear Information System (INIS)

    Faerman, V A; Cheremnov, A G; Avramchuk, V V; Luneva, E E

    2014-01-01

    In the current work the relevance of nondestructive test method development applied for pipeline leak detection is considered. It was shown that acoustic emission testing is currently one of the most widely spread leak detection methods. The main disadvantage of this method is that it cannot be applied in monitoring long pipeline sections, which in its turn complicates and slows down the inspection of the line pipe sections of main pipelines. The prospects of developing alternative techniques and methods based on the use of the spectral analysis of signals were considered and their possible application in leak detection on the basis of the correlation method was outlined. As an alternative, the time-frequency correlation function calculation is proposed. This function represents the correlation between the spectral components of the analyzed signals. In this work, the technique of time-frequency correlation function calculation is described. The experimental data that demonstrate obvious advantage of the time-frequency correlation function compared to the simple correlation function are presented. The application of the time-frequency correlation function is more effective in suppressing the noise components in the frequency range of the useful signal, which makes maximum of the function more pronounced. The main drawback of application of the time- frequency correlation function analysis in solving leak detection problems is a great number of calculations that may result in a further increase in pipeline time inspection. However, this drawback can be partially reduced by the development and implementation of efficient algorithms (including parallel) of computing the fast Fourier transform using computer central processing unit and graphic processing unit

  19. PsyAcoustX: A flexible MATLAB® package for psychoacoustics research

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2015-10-01

    Full Text Available The demands of modern psychophysical studies require precise stimulus delivery and flexible platforms for experimental control. Here, we describe PsyAcoustX, a new, freely available suite of software tools written in the MATLAB® environment to conduct psychoacoustics research on a standard PC. PsyAcoustX provides a flexible platform to generate and present auditory stimuli in real time and record users’ behavioral responses. Data are automatically logged by stimulus condition and aggregated in an exported spreadsheet for offline analysis. Detection thresholds can be measured adaptively under basic and complex auditory masking tasks and other paradigms (e.g., amplitude modulation detection within minutes. The flexibility of the module offers experimenters access to nearly every conceivable combination of stimulus parameters (e.g., probe-masker relations. Example behavioral applications are highlighted including the measurement of audiometric thresholds, basic simultaneous and non-simultaneous (i.e., forward and backward masking paradigms, gap detection, and amplitude modulation detection. Examples of these measurements are provided including the psychoacoustic phenomena of temporal overshoot, psychophysical tuning curves and temporal modulation transfer functions. Importantly, the core design of PsyAcoustX is easily modifiable, allowing users the ability to easily adapt its basic structure and create additional modules for measuring discrimination/detection thresholds for other auditory attributes (e.g., pitch, intensity, etc. or binaural paradigms.

  20. Interior acoustic cloak

    Directory of Open Access Journals (Sweden)

    Wael Akl

    2014-12-01

    Full Text Available Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which are invariably heavy and bulky. The transformation acoustics relationships that govern the operation of this class of interior acoustic cloaks are presented. Physical insights are given to relate these relationships to the reasons behind the effectiveness of the proposed interior acoustic cloaks. Finite element models are presented to demonstrate the characteristics of interior acoustic cloaks used in treating the interior walls of circular and square cavities both in the time and frequency domains. The obtained results emphasize the effectiveness of the proposed interior cloaks in eliminating the reflections of the acoustic waves from the walls of the treated cavities and thereby rendering these cavities acoustically quiet. It is important to note here that the proposed interior acoustic cloaks can find applications in acoustic cavities such as aircraft cabins and auditoriums as well as many other critical applications.

  1. Design and first tests of an acoustic positioning and detection system for KM3NeT

    Science.gov (United States)

    Simeone, F.; Ameli, F.; Ardid, M.; Bertin, V.; Bonori, M.; Bou-Cabo, M.; Calì, C.; D'Amico, A.; Giovanetti, G.; Imbesi, M.; Keller, P.; Larosa, G.; Llorens, C. D.; Masullo, R.; Randazzo, N.; Riccobene, G.; Speziale, F.; Viola, S.; KM3NeT Consortium

    2012-01-01

    In a deep-sea neutrino telescope it is mandatory to locate the position of the optical sensors with a precision of about 10 cm. To achieve this requirement, an innovative Acoustic Positioning System (APS) has been designed in the frame work of the KM3NeT neutrino telescope. The system will also be able to provide an acoustic guide during the deployment of the telescope’s components and seafloor infrastructures (junction boxes, cables, etc.). A prototype of the system based on the successful acoustic systems of ANTARES and NEMO is being developed. It will consist of an array of hydrophones and a network of acoustic transceivers forming the Long Baseline. All sensors are connected to the telescope data acquisition system and are in phase and synchronised with the telescope master clock. Data from the acoustic sensors, continuously sampled at 192 kHz, will be sent to shore where signal recognition and analysis will be carried out. The design and first tests of the system elements will be presented. This new APS is expected to have better precision compared to the systems used in ANTARES and NEMO, and can also be used as a real-time monitor of acoustic sources and environmental noise in deep sea.

  2. Evaluation of voice acoustic parameters related to the vocal-loading test in professionally active teachers with dysphonia.

    Science.gov (United States)

    Niebudek-Bogusz, Ewa; Kotyło, Piotr; Sliwińska-Kowalska, Mariola

    2007-01-01

    Teachers are at risk of developing voice disorders. A clinical battery of vocal function tests should include non-invasive and accurate measurements. The quantitative methods (e.g., voice acoustic analysis) make it possible to objectively evaluate voice efficiency and outcomes of dysphonia treatment. To identify possible signs of vocal fatigue, acoustic waveform perturbations during sustained phonation were measured before and after the vocal-loading test in 51 professionally active female teachers with functional voice disorders, using IRIS software. All the participants were also subjected to laryngological/phoniatric examination involving videostroboscopy combined with self-estimation by voice handicap index (VHI)-based scale. The phoniatric examination revealed glottal insufficiency with bowed vocal folds in 35.2%, soft vocal nodules in 31.4%, and hyperfunctional dysphonia with a tendency towards vestibular phonation in 19.6% of the patients. In the VHI scale, 66% of the female teachers estimated their own voice problems as moderate disability. An acoustic analysis performed after the vocal-loading test showed an increased rate of abnormal frequency perturbation parameters (pitch perturbation quotient (Jitter), relative average perturbation (RAP), and pitch period perturbation quotient (PPQ)) compared to the pre-test outcomes. The same was true of pitch-intensity contour of vowel /a:/, an indication of voice instability during sustained phonation. The recorded impairments of voice acoustic parameters related to vocal loading provide further evidence of dysphonia. The voice acoustic analysis performed before and after the vocal-loading test can significantly contribute to objective voice examinations useful in diagnosis of dysphonia among teachers.

  3. Magnetic resonance imaging in 38 cases of acoustic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Masafumi; Ohtsuka, Takashi; Seiki, Yoshikatsu; Matsumoto, Mikiro; Shibata, Iekado; Terao, Hideo [Toho Univ., Tokyo (Japan). School of Medicine; Kohno, Takeshi; Sanpei, Kenji; Mano, Isamu

    1989-08-01

    The value of magnetic resonance imaging (MRI) in the diagnosis of acoustic tumors was retrospectively assessed in 38 cases. A 0.15 Tesla permanent magnet and a 1.5 Tesla superconducting magnet were employed in 24 and 14 cases, respectively. Gadolinium diethlene triamine pentaacetic acid (Gd-DTPA), a paramagnetic contrast agent, was used in 10 cases. Acoustic tumors were identified in all cases. Small, medium, and large tumors were depicted with equal clarity by MRI and computed tomography (CT). However, tumor contour and extension, accompanying cysts, and brainstem displacement were more clarly visualized on MRI. The use of Gd-DTPA improved the quality of the MR images by markedly enhancing the acoustic tumors in all cases. In particular, detection of small acoustic tumors and intra- or paratumoral cysts was facilitated by the use of Gd-DTPA. The possibility of a correlation between acoustic tumor histology and MRI features was studied by calculation of the contrast to noise (C/N) ratio in 10 cases of acoustic tumor and 7 cases of meningioma. No definite correlation was demonstrated, but there appeared to be some difference in the C/N ratio between acoustic tumors and meningiomas. In three volunteers, MRI demonstrated intracanalicular nerves, separately. Because of its higher resolution, MRI can be expected to replace CT and air CT in the diagnosis of acoustic tumors. (author).

  4. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    Science.gov (United States)

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-couples airwaves

    Science.gov (United States)

    De Angelis, Slivio; Fee, David; Haney, Matthew; Schneider, David

    2012-01-01

    In Alaska, where many active volcanoes exist without ground-based instrumentation, the use of techniques suitable for distant monitoring is pivotal. In this study we report regional-scale seismic and infrasound observations of volcanic activity at Mt. Cleveland between December 2011 and August 2012. During this period, twenty explosions were detected by infrasound sensors as far away as 1827 km from the active vent, and ground-coupled acoustic waves were recorded at seismic stations across the Aleutian Arc. Several events resulting from the explosive disruption of small lava domes within the summit crater were confirmed by analysis of satellite remote sensing data. However, many explosions eluded initial, automated, analyses of satellite data due to poor weather conditions. Infrasound and seismic monitoring provided effective means for detecting these hidden events. We present results from the implementation of automatic infrasound and seismo-acoustic eruption detection algorithms, and review the challenges of real-time volcano monitoring operations in remote regions. We also model acoustic propagation in the Northern Pacific, showing how tropospheric ducting effects allow infrasound to travel long distances across the Aleutian Arc. The successful results of our investigation provide motivation for expanded efforts in infrasound monitoring across the Aleutians and contributes to our knowledge of the number and style of vulcanian eruptions at Mt. Cleveland.

  6. The Influence of PZT Actuators Positioning in Active Structural Acoustic Control

    Directory of Open Access Journals (Sweden)

    P. Švec

    2007-01-01

    Full Text Available This paper deals with the effect of secondary actuator positioning in an active structural acoustics control (ASAC experiment. The ASAC approach is based on minimizing the sound radiation from structures to the far field by controlling the structural vibrations. In this article a rectangular steel plate structure was assumed with one secondary actuator attached to it. As a secondary actuator, a specially designed piezoelectric stripe actuator was used. We studied the effect of the position of the actuator on the pattern and on the radiated sound field of the structural vibration, with and without active control. The total radiated power was also measured. The experimental data was confronted with the results obtained by a numerical solution of the mathematical model used. For the solution, the finite element method in the ANSYS software package was used. 

  7. Photo-acoustic sensor for detection of oil contamination in compressed air systems.

    Science.gov (United States)

    Lassen, Mikael; Harder, David Baslev; Brusch, Anders; Nielsen, Ole Stender; Heikens, Dita; Persijn, Stefan; Petersen, Jan C

    2017-02-06

    We demonstrate an online (in-situ) sensor for continuous detection of oil contamination in compressed air systems complying with the ISO-8573 standard. The sensor is based on the photo-acoustic (PA) effect. The online and real-time PA sensor system has the potential to benefit a wide range of users that require high purity compressed air. Among these are hospitals, pharmaceutical industries, electronics manufacturers, and clean room facilities. The sensor was tested for sensitivity, repeatability, robustness to molecular cross-interference, and stability of calibration. Explicit measurements of hexane (C6H14) and decane (C10H22) vapors via excitation of molecular C-H vibrations at approx. 2950 cm-1 (3.38 μm) were conducted with a custom made interband cascade laser (ICL). For the decane measurements a (1 σ) standard deviation (STD) of 0.3 ppb was demonstrated, which corresponds to a normalized noise equivalent absorption (NNEA) coefficient for the prototype PA sensor of 2.8×10-9 W cm-1 Hz1/2.

  8. Correlation between microbubble-induced acoustic cavitation and hemolysis in vitro

    International Nuclear Information System (INIS)

    Zhang Chun-Bing; Liu Zheng; Guo Xia-Sheng; Zhang Dong

    2011-01-01

    Microbubbles promise to enhance the efficiency of ultrasound-mediated drug delivery and gene therapy by taking advantage of artificial cavitation nuclei. The purpose of this study is to examine the ultrasound-induced hemolysis in the application of drug delivery in the presence of microbubbles. To achieve this goal, human red blood cells mixed with microbubbles were exposed to 1-MHz pulsed ultrasound. The hemolysis level was measured by a flow cytometry, and the cavitation dose was detected by a passive cavitation detecting system. The results demonstrate that larger cavitation dose would be generated with the increase of acoustic pressure, which might give rise to the enhancement of hemolysis. Besides the experimental observations, the acoustic pressure dependence of the radial oscillation of microbubble was theoretically estimated. The comparison between the experimental and calculation results indicates that the hemolysis should be highly correlated to the acoustic cavitation. (classical areas of phenomenology)

  9. Acoustic Techniques for Structural Health Monitoring

    Science.gov (United States)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  10. A large fiber sensor network for an acoustic neutrino telescope

    Directory of Open Access Journals (Sweden)

    Buis Ernst-Jan

    2017-01-01

    Full Text Available The scientific prospects of detecting neutrinos with an energy close or even higher than the GKZ cut-off energy has been discussed extensively in literature. It is clear that due to their expected low flux, the detection of these ultra-high energy neutrinos (Ev > 1018 eV requires a telescope larger than 100 km3. Acoustic detection may provide a way to observe these ultra-high energy cosmic neutrinos, as sound that they induce in the deep sea when neutrinos lose their energy travels undisturbed for many kilometers. To realize a large scale acoustic neutrino telescope, dedicated technology must be developed that allows for a deep sea sensor network. Fiber optic hydrophone technology provides a promising means to establish a large scale sensor network [1] with the proper sensitivity to detect the small signals from the neutrino interactions.

  11. Airborne chemistry: acoustic levitation in chemical analysis.

    Science.gov (United States)

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  12. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  13. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  14. Evaluation of potential bias in observing fish by a DIDSON acoustic camera

    Czech Academy of Sciences Publication Activity Database

    Tušer, Michal; Frouzová, Jaroslava; Balk, Helge; Muška, Milan; Mrkvička, Tomáš; Kubečka, Jan

    2014-01-01

    Roč. 155, July (2014), s. 114-121 ISSN 0165-7836 R&D Projects: GA MŠk(CZ) EE2.3.20.0204 Institutional support: RVO:60077344 Keywords : DIDSON * fish detection * length measurement * horizontal body orientation * acoustic data processing Subject RIV: BI - Acoustics Impact factor: 1.903, year: 2014

  15. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  16. Acoustic Measurement of the Length of Air-plasma Filament Induced by an Intense Femtosecond Laser Pulse

    Directory of Open Access Journals (Sweden)

    Wu Si-Qing

    2017-01-01

    Full Text Available The paper studies acoustic emission from air-plasma filament induced by a strong femtosecond laser pulse. Acoustic signal is detected with a sensitive directional microphone. Acoustic measurement provides a new method to determine the length of a filament. Compared with other methods, acoustic measurement is simpler, more sensitive, and with higher spatial resolution. Information of filament length is experimentally acquired through measuring acoustic pressure at different position of filament. On the basis of the relationship between acoustic signal and free-electron density in filament, profile of free-electron density is demonstrated

  17. Beyond auscultation: acoustic cardiography in clinical practice.

    Science.gov (United States)

    Wen, Yong-Na; Lee, Alex Pui-Wai; Fang, Fang; Jin, Chun-Na; Yu, Cheuk-Man

    2014-04-01

    Cardiac auscultation by stethoscope is widely used but limited by low sensitivity and accuracy. Phonocardiogram was developed in an attempt to provide quantitative and qualitative information of heart sounds and murmurs by transforming acoustic signal into visual wavelet. Although phonocardiogram provides objective heart sound information and holds diagnostic potentials of different heart problems, its examination procedure is time-consuming and it requires specially trained technicians to operate the device. Acoustic cardiography (AUDICOR, Inovise Medical, Inc., Portland, OR, USA) is a major recent advance in the evolution of cardiac auscultation technology. The technique is more efficient and less operator-dependent. It synchronizes cardiac auscultation with ECG recording and provides a comprehensive assessment of both mechanical and electronic function of the heart. The application of acoustic cardiography is far beyond auscultation only. It generates various parameters which have been proven to correlate with gold standards in heart failure diagnosis and ischemic heart disease detection. Its application can be extended to other diseases, including LV hypertrophy, constrictive pericarditis, sleep apnea and ventricular fibrillation. The newly developed ambulatory acoustic cardiography is potentially used in heart failure follow-up in both home and hospital setting. This review comprehensively summarizes acoustic cardiographic research, including the most recent development. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Acoustic Response and Detection of Marine Mammals Using an Advanced Digital Acoustic Recording Tag(Rev 3)

    Science.gov (United States)

    2007-03-13

    the SERDP program. With the reduced size and weight of the new tag as compared to the original design, less flotation was required resulting in a...Plenary Meeting of Marine Mammal Commission Federal Advisory Committee on Acoustic Impacts on Marine Mammals, Silver Spring Maryland, April 19-21...2002. Mass stranding of beaked whales in the Galapagos Islands, April 2000. National Marine Fisheries Service, Silver Spring. Harwood, J. 2000 Risk

  19. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Bum [RECTUSON, Co., LTD, Masan (Korea, Republic of); Roh, Seon Man [Samcheonpo Division, Korea South-East Power Co., Samcheonpo (Korea, Republic of)

    2016-06-15

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB.

  20. Developing an early laekage detection system for thermal power plant boiler tubes by using acoustic emission technology

    International Nuclear Information System (INIS)

    Lee, Sang Bum; Roh, Seon Man

    2016-01-01

    A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB

  1. Experience with digital acoustic monitoring systems for PWRs and BWRs

    International Nuclear Information System (INIS)

    Olma, B.J.

    1998-01-01

    Substantial progress could be reached both in system technics and in application of digital acoustic monitoring systems for assessing mechanical integrity of reactor primary systems. For the surveillance of PWRs and BWRs during power operation of the plants, acoustic signals of Loose Parts Monitoring System sensors are continuously monitored for signal bursts associated with metallic impacts. ISTec/GRS experience with its digital systems MEDEA and RAMSES has shown that acoustic signature analysis is very successful for detecting component failures at an early stage. Methods for trending and classification of digital burst signals are shown, experience with their practical use will be presented. (author)

  2. Picosecond ultrasonic study of surface acoustic waves on periodically patterned layered nanostructures.

    Science.gov (United States)

    Colletta, Michael; Gachuhi, Wanjiru; Gartenstein, Samuel A; James, Molly M; Szwed, Erik A; Daly, Brian C; Cui, Weili; Antonelli, George A

    2018-07-01

    We have used the ultrafast pump-probe technique known as picosecond ultrasonics to generate and detect surface acoustic waves on a structure consisting of nanoscale Al lines on SiO 2 on Si. We report results from ten samples with varying pitch (1000-140 nm) and SiO 2 film thickness (112 nm or 60 nm), and compare our results to an isotropic elastic calculation and a coarse-grained molecular dynamics simulation. In all cases we are able to detect and identify a Rayleigh-like surface acoustic wave with wavelength equal to the pitch of the lines and frequency in the range of 5-24 GHz. In some samples, we are able to detect additional, higher frequency surface acoustic waves or independent modes of the Al lines with frequencies close to 50 GHz. We also describe the effects of probe beam polarization on the measurement's sensitivity to the different surface modes. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Analysis of acoustic data from the PFR SGU condition monitor

    International Nuclear Information System (INIS)

    Rowley, R.; Airey, J.

    1990-01-01

    This paper gives an outline description of an acoustic monitoring system which has been installed on the SGU of the Prototype Fast Reactor (PFR) at Dounreay with the objective of giving early warning of any change in noise output which could be related to potentially damaging vibrations within the units. Data obtained from this PFR monitoring system is playing an important part in the development of acoustic instrumentation for leak detection although this had not been the primary objective of this particular installation. The PFR has three secondary circuits each containing an evaporator, a superheater and a reheater giving a total of nine SGUs. Although the design of the units is different from that intended for EFR, the measurements provide a valuable source of information on the character and amplitude of acoustic background noise in operational steam generator units. The vibration monitoring system uses the waveguides originally installed during reactor commissioning for leak detection studies. Twelve acoustic waveguides are fitted to the shell of each of the units. The superheaters and reheaters have three waveguides at each of four axial levels, while the evaporators have four waveguides at each of three axial levels. In addition the evaporators have a small number of waveguides attached to the top flange of the unit. Each waveguide is fitted with an accelerometer to record the acoustic signal from the SGU. Tape recordings of the acoustic noise from each unit are made on a regular basis and the tapes analysed on an automated analysis system which has been developed to extract and store in a database about 20 characteristic features from the data. The paper gives examples of the background noise from the SGU. The data demonstrates the use of location techniques to identify prominent acoustic source. 8 figs

  4. Acoustic sensors for the control of liquid-solid interface evolution and chemical reactivity

    International Nuclear Information System (INIS)

    Ferrandis, J.Y.; Tingry, S.; Attal, J.; Seta, P.

    2006-01-01

    Less classical than far-field acoustic investigations of solid materials and/or solid-liquid interfaces, near-field acoustic properties of an acoustic solid wave guide (tip), thin enough at its termination to present an external diameter smaller than the excitation acoustic wave wavelength, is shown to be able to probe interface properties. As a result of that, these near-field acoustic probes can play the role of chemical sensors, if chemical modifications or chemical reactions are concerned at their surface. In that context, a chemical sensor was realized by electrochemical deposition of an electron-conducting polymer (polypyrrole-biotin) on a metal tip, followed by enzyme attachment by molecular recognition process involving the biotin-avidin-specific interaction. Results from near-field acoustic showed that the enzyme modification of the polymer layer can be detected by this new acoustic sensor

  5. Active Control of Fan Noise-Feasibility Study. Volume 2: Canceling Noise Source-Design of an Acoustic Plate Radiator Using Piezoceramic Actuators

    Science.gov (United States)

    Pla, F. G.; Rajiyah, H.

    1995-01-01

    The feasibility of using acoustic plate radiators powered by piezoceramic thin sheets as canceling sources for active control of aircraft engine fan noise is demonstrated. Analytical and numerical models of actuated beams and plates are developed and validated. An optimization study is performed to identify the optimum combination of design parameters that maximizes the plate volume velocity for a given resonance frequency. Fifteen plates with various plate and actuator sizes, thicknesses, and bonding layers were fabricated and tested using results from the optimization study. A maximum equivalent piston displacement of 0.39 mm was achieved with the optimized plate samples tested with only one actuator powered, corresponding to a plate deflection at the center of over 1 millimeter. This is very close to the deflection required for a full size engine application and represents a 160-fold improvement over previous work. Experimental results further show that performance is limited by the critical stress of the piezoceramic actuator and bonding layer rather than by the maximum moment available from the actuator. Design enhancements are described in detail that will lead to a flight-worthy acoustic plate radiator by minimizing actuator tensile stresses and reducing nonlinear effects. Finally, several adaptive tuning methods designed to increase the bandwidth of acoustic plate radiators are analyzed including passive, active, and semi-active approaches. The back chamber pressurization and volume variation methods are investigated experimentally and shown to be simple and effective ways to obtain substantial control over the resonance frequency of a plate radiator. This study shows that piezoceramic-based plate radiators can be a viable acoustic source for active control of aircraft engine fan noise.

  6. A micro-Doppler sonar for acoustic surveillance in sensor networks

    Science.gov (United States)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  7. An introduction to acoustic emission technology for in-process inspection of welds

    International Nuclear Information System (INIS)

    Goswami, G.L.

    1983-01-01

    Weld quality monitoring, as it stands today, is primarily done by X-ray radiography and ultrasonic testing which is applied after welding is complete. Acoustic Emission Technique (AET) also presents a possible substitute for weld quality monitoring which can be used during welding. Acoustic signals are generated during welding and the sound waves of weld defects are picked up by using AE sensors. With the introduction of sophisticated instrumentation in AET, it is possible to carry out the test even in noisy shop floor environments. Large number of reports on the subject of acoustic emission in recent years is a clear indication that it is gaining importance in welding industry. The present day status of the acoustic emission technology as an on-line weld quality monitoring technique has been reviewed. This report discusses the technique and system along with the acoustic emission parameters important for weld quality analysis. This also deals with the application of this technique in different welding processes like TIG, resistance, electro slag and submerged arc. It has been reported that monitoring of emission during welding can detect crack formation, crack growth and lack of fusion precisely. Static defects like porosity and inclusion do not generate very strong acoustic signals and are therefore difficult to intercept, but, however, lately they have detected successfully. (author)

  8. Pipeline integrity evaluation of oil pipelines using free-swimming acoustic technology

    Energy Technology Data Exchange (ETDEWEB)

    Ariaratnam, Samuel T. [Arizona State University, Tempe, Arizona (United States); Chandrasekaran, Muthu [Pure Technologies Limited, Calgary, AB (Canada)

    2010-07-01

    In the United States, the Pipeline and Hazardous Materials Safety Administration (PHMSA) funded a joint academy-industry research project, which developed and refined a free-swimming tool called SmartBall. The tool swims through the pipeline and gives results at a much lower cost than current leak detection methods, and it can detect leaks as small as 0.03 gpm of oil. GPS-synchronized above-ground loggers capture acoustic signals and record the passage of the tool through the pipeline. The tool is spherical and smaller than the pipe, through which it rolls silently; it can overcome obstacles that could otherwise make a pipeline unpiggable. SmartBall uses the great potential of acoustic detection, because when a pressurized product leaks from a pipe, it produces a distinctive acoustic signal that travels through the product; at the same time, it overcomes the problem caused by the very limited range of this signal. This technology can prevent enormous economic consequences such as a 50,000-gallon gasoline spill that happened in 2003 between Tucson and Phoenix.

  9. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    Science.gov (United States)

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  10. Controllable asymmetric transmission via gap-tunable acoustic metasurface

    Science.gov (United States)

    Liu, Bingyi; Jiang, Yongyuan

    2018-04-01

    In this work, we utilize the acoustic gradient metasurface (AGM) of a bilayer configuration to realize the controllable asymmetric transmission. Relying on the adjustable gap between the two composing layers, the metasurface could switch from symmetric transmission to asymmetric transmission at a certain gap value. The underlying mechanism is attributed to the interference between the forward diffracted waves scattered by the surface bound waves at two air-AGM interfaces, which is apparently influenced by the interlayer distance. We further utilize the hybrid acoustic elements to construct the desired gradient metasurface with a tunable gap and validate the controllable asymmetric transmission with full-wave simulations. Our work provides the solution for actively controlling the transmission property of an acoustic element, which shows potential application in acoustic communication as a dynamic tunable acoustic diode.

  11. A study on the spectrum analyzing of internal leak in valve for power plant using acoustic emission method

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Lee, Sun Ki; Lee, Jun Shin; Sohn, Seok Man

    2004-01-01

    The purpose of this study is to estimate the availability of acoustic emission method to the internal leak of the valves at nuclear power plants. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. From the comparison of the background noise data with the experimental results as to relation between leak flow and acoustic signal, the minimum leak flow rates that can be detected by acoustic signal was suggested. When the background levels are higher than the acoustic signal, the method described below was considered that the analysis the remainder among the background noise frequency spectrum and the acoustic signal spectrum become a very useful leak detection method. A few experimental examples of the spectrum analysis that varied the background noise characteristic were given

  12. Leak Detection in Water-Filled Small-Diameter Polyethylene Pipes by Means of Acoustic Emission Measurements

    Directory of Open Access Journals (Sweden)

    Alberto Martini

    2016-12-01

    Full Text Available The implementation of effective strategies to manage leaks represents an essential goal for all utilities involved with drinking water supply in order to reduce water losses affecting urban distribution networks. This study concerns the early detection of leaks occurring in small-diameter customers’ connections to water supply networks. An experimental campaign was carried out in a test bed to investigate the sensitivity of Acoustic Emission (AE monitoring to water leaks. Damages were artificially induced on a polyethylene pipe (length 28 m, outer diameter 32 mm at different distances from an AE transducer. Measurements were performed in both unburied and buried pipe conditions. The analysis permitted the identification of a clear correlation between three monitored parameters (namely total Hits, Cumulative Counts and Cumulative Amplitude and the characteristics of the examined leaks.

  13. A numerical study on acoustic behavior in gas turbine combustor with acoustic resonator

    International Nuclear Information System (INIS)

    Park, I Sun; Sohn, Chae Hoon

    2005-01-01

    Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes

  14. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    Science.gov (United States)

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials

    Science.gov (United States)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping

    2015-08-01

    The acoustic cloak, which can make an object hard to detect acoustically in a homogeneous background, has attracted great attention from researchers in recent years. The inhomogeneous background media were considered in this paper. The relative constitutive parameters were derived for acoustic cloaks working in multilayered media. And a unidirectional acoustic cloak for layered background media was proposed, designed and implemented successfully in a wide frequency range. In water and NaCl aqueous solution, the acoustic cloak was designed and realized with homogeneous metamaterials which were composed of steel and porous materials. The effective parameters of the unit cells of the cloak were determined by using the effective medium theory. Numerical results demonstrated excellent cloaking performance and showed that such a device could be physically realized with natural materials which will greatly promote the real applications of an invisibility cloak in inhomogeneous backgrounds.

  16. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  17. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    Energy Technology Data Exchange (ETDEWEB)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonid Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7

  18. Online monitoring of Accessories for Underground Electrical Installations through Acoustics Emissions

    Directory of Open Access Journals (Sweden)

    Casals-Torrens P.

    2012-04-01

    Full Text Available The acoustic waves caused by Partial Discharges inside the dielectric materials, can be detected by acoustic emission (AE sensors and analyzed in the time domain. The experimental results presented, show the online detection capability of these sensors in the environment near a cable accessory, such as a splice or terminal. The AE sensors are immune to electromagnetic interference and constitute a detection method non-intrusive and non-destructive, which ensures a galvanic decoupling with respect to electric networks, this technique of partial discharge detection can be applied as a test method for preventive or predictive maintenance (condition-based maintenance to equipments or facilities of medium and high voltage in service and represents an alternative method to electrical detection systems, conventional or not, that continue to rely on the detection of current pulses. This paper presents characterization tests of the sensors AE through comparative tests of partial discharge on accessories for underground power cables.

  19. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat

    Science.gov (United States)

    Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.

    2016-01-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef

  20. Parallel feedback active noise control of MRI acoustic noise with signal decomposition using hybrid RLS-NLMS adaptive algorithms.

    Science.gov (United States)

    Ganguly, Anshuman; Krishna Vemuri, Sri Hari; Panahi, Issa

    2014-01-01

    This paper presents a cost-effective adaptive feedback Active Noise Control (FANC) method for controlling functional Magnetic Resonance Imaging (fMRI) acoustic noise by decomposing it into dominant periodic components and residual random components. Periodicity of fMRI acoustic noise is exploited by using linear prediction (LP) filtering to achieve signal decomposition. A hybrid combination of adaptive filters-Recursive Least Squares (RLS) and Normalized Least Mean Squares (NLMS) are then used to effectively control each component separately. Performance of the proposed FANC system is analyzed and Noise attenuation levels (NAL) up to 32.27 dB obtained by simulation are presented which confirm the effectiveness of the proposed FANC method.