WorldWideScience

Sample records for acoustic desorption liad

  1. Laser-induced acoustic desorption (LIAD) mass spectrometry.

    Science.gov (United States)

    Dow, Alex M; Wittrig, Ashley R; Kenttämaa, Hilkka I

    2012-01-01

    Large thermally labile molecules were not amenable to mass spectrometric analysis until the development of atmospheric pressure evaporation/ionization methods, such as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), since attempts to evaporate these molecules by heating induces degradation of the sample. While ESI and MALDI are relatively soft desorption/ionization techniques, they are both limited to preferential ionization of acidic and basic analytes. This limitation has been the driving force for the development of other soft desorption/ionization techniques. One such method employs laser-induced acoustic desorption (LIAD) to evaporate neutral sample molecules into mass spectrometers. LIAD utilizes acoustic waves generated by a laser pulse in a thin metal foil. The acoustic waves travel through the foil and cause desorption of neutral molecules that have been deposited on the opposite side of the foil. One of the advantages of LIAD is that it desorbs low-energy molecules that can be ionized by a variety of methods, thus allowing the analysis of large molecules that are not amenable to ESI and MALDI. This review covers the generation of acoustic waves in foils via a laser pulse, the parameters affecting the generation of acoustic waves, possible mechanisms for desorption of neutral molecules, as well as the various uses of LIAD by mass spectrometrists. The conditions used to generate acoustic or stress waves in solid materials consist of three regimes: thermal, ablative, and constrained. Each regime is discussed, in addition to the mechanisms that lead to the ablation of the metal from the foil and generation of acoustic waves for two of the regimes. Previously proposed desorption mechanisms for LIAD are presented along with the flaws associated with some of them. Various experimental parameters, such as the exact characteristics of the laser pulse and foil used, are discussed. The internal and kinetic energy of the neutral

  2. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas.

    Science.gov (United States)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M; Orlando, Thomas M

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation. Graphical Abstract ᅟ.

  3. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    Science.gov (United States)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  4. Laser-induced acoustic desorption coupled with a linear quadrupole ion trap mass spectrometer.

    Science.gov (United States)

    Habicht, Steven C; Amundson, Lucas M; Duan, Penggao; Vinueza, Nelson R; Kenttämaa, Hilkka I

    2010-01-15

    In recent years, laser-induced acoustic desorption (LIAD) coupled with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer has been demonstrated to provide a valuable technique for the analysis of a wide variety of nonvolatile, thermally labile compounds, including analytes that could not previously be analyzed by mass spectrometry. Although FT-ICR instruments are very powerful, they are also large and expensive and, hence, mainly used as research instruments. In contrast, linear quadrupole ion trap (LQIT) mass spectrometers are common due to several qualities that make these instruments attractive for both academic and industrial settings, such as high sensitivity, large dynamic range, and experimental versatility. Further, the relatively small size of the instruments, comparatively low cost, and the lack of a magnetic field provide some distinct advantages over FT-ICR instruments. Hence, we have coupled the LIAD technique with a commercial LQIT, the Thermo Fischer Scientific LTQ mass spectrometer. The LQIT was modified for a LIAD probe by outfitting the removable back plate of the instrument with a 6 in. ConFlat flange (CFF) port, gate valve, and sample lock. Reagent ions were created using the LQIT's atmospheric pressure ionization source and trapped in the mass analyzer for up to 10 s to allow chemical ionization reactions with the neutral molecules desorbed via LIAD. These initial experiments focused on demonstrating the feasibility of performing LIAD in the LQIT. Hence, the results are compared to those obtained using an FT-ICR mass spectrometer. Despite the lower efficiency in the transfer of desorbed neutral molecules into the ion trap, and the smaller maximum number of available laser pulses, the intrinsically higher sensitivity of the LQIT resulted in a higher sensitivity relative to the FT-ICR.

  5. Atmospheric pressure laser-induced acoustic desorption chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for the analysis of complex mixtures.

    Science.gov (United States)

    Nyadong, Leonard; McKenna, Amy M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2011-03-01

    We present a novel nonresonant laser-based matrix-free atmospheric pressure ionization technique, atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI). The technique decouples analyte desorption from subsequent ionization by reagent ions generated from a corona discharge initiated in ambient air or in the presence of vaporized toluene as a CI dopant at room temperature. Analyte desorption is initiated by a shock wave induced in a titanium foil coated with electrosprayed sample, irradiated from the rear side by high-energy laser pulses. The technique enables facile and independent optimization of the analyte desorption, ionization, and sampling events, for coupling to any mass analyzer with an AP interface. Moreover, the generated analyte ions are efficiently thermalized by collisions with atmospheric gases, thereby reducing fragmentation. We have coupled AP/LIAD-CI to ultrahigh-resolution FT-ICR MS to generate predominantly [M + H](+) or M(+•) ions to resolve and identify thousands of elemental compositions from organic mixtures as complex as petroleum crude oil distillates. Finally, we have optimized the AP/LIAD CI process and investigated ionization mechanisms by systematic variation of placement of the sample, placement of the corona discharge needle, discharge current, gas flow rate, and inclusion of toluene as a dopant.

  6. Characterization of nonpolar lipids and steroids by using laser-induced acoustic desorption/chemical ionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z; Daiya, S; Kenttämaa, Hilkka I

    Laser-induced acoustic desorption (LIAD) combined with ClMn(H{sub 2}O){sup +} chemical ionization (CI) was tested for the analysis of nonpolar lipids and selected steroids in a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR). The nonpolar lipids studied, cholesterol, 5α-cholestane, cholesta-3,5-diene, squalene, and β-carotene, were found to solely form the desired water replacement product (adduct-H{sub 2}O) upon reaction with the ClMn(H{sub 2}O){sup +} ions. The steroids, androsterone, dehydroepiandrosterone (DHEA), estrone, estradiol, and estriol, also form abundant adduct-H{sub 2}O ions, but less abundant adduct-2H{sub 2}O ions were also observed. Neither (+)APCI nor (+)ESI can ionize the saturated hydrocarbon lipid, cholestane. APCI successfully ionizes the unsaturated hydrocarbon lipids to form exclusively the intact protonated analytes. However, it causes extensive fragmentation for cholesterol and the steroids. The worst case is cholesterol that does not produce any stable protonated molecules. On the other hand, ESI cannot ionize any of the hydrocarbon analytes, saturated or unsaturated. However, ESI can be used to protonate the oxygen-containing analytes with substantially less fragmentation than for APCI in all cases except for cholesterol and estrone. In conclusion, LIAD/ClMn(H{sub 2}O){sup +} chemical ionization is superior over APCI and ESI for the mass spectrometric characterization of underivatized nonpolar lipids and steroids.

  7. Coupling Laser Diode Thermal Desorption with Acoustic Sample Deposition to Improve Throughput of Mass Spectrometry-Based Screening.

    Science.gov (United States)

    Haarhoff, Zuzana; Wagner, Andrew; Picard, Pierre; Drexler, Dieter M; Zvyaga, Tatyana; Shou, Wilson

    2016-02-01

    The move toward label-free screening in drug discovery has increased the demand for mass spectrometry (MS)-based analysis. Here we investigated the approach of coupling acoustic sample deposition (ASD) with laser diode thermal desorption (LDTD)-tandem mass spectrometry (MS/MS). We assessed its use in a cytochrome P450 (CYP) inhibition assay, where a decrease in metabolite formation signifies CYP inhibition. Metabolite levels for 3 CYP isoforms were measured as CYP3A4-1'-OH-midazolam, CYP2D6-dextrorphan, and CYP2C9-4'-OH-diclofenac. After incubation, samples (100 nL) were acoustically deposited onto a stainless steel 384-LazWell plate, then desorbed by an infrared laser directly from the plate surface into the gas phase, ionized by atmospheric pressure chemical ionization (APCI), and analyzed by MS/MS. Using this method, we achieved a sample analysis speed of 2.14 s/well, with bioanalytical performance comparable to the current online solid-phase extraction (SPE)-based MS method. An even faster readout speed was achieved when postreaction sample multiplexing was applied, where three reaction samples, one for each CYP, were transferred into the same well of the LazWell plate. In summary, LDTD coupled with acoustic sample deposition and multiplexing significantly decreased analysis time to 0.7 s/sample, making this MS-based approach feasible to support high-throughput screening (HTS) assays.

  8. Light-induced atom desorption from glass surfaces characterized by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Kumagai, Ryo; Hatakeyama, Atsushi

    2016-07-01

    We analyzed the surfaces of vitreous silica (quartz) and borosilicate glass (Pyrex) substrates exposed to rubidium (Rb) vapor by X-ray photoelectron spectroscopy (XPS) to understand the surface conditions of alkali metal vapor cells. XPS spectra indicated that Rb atoms adopted different bonding states in quartz and Pyrex. Furthermore, Rb atoms in quartz remained in the near-surface region, while they diffused into the bulk in Pyrex. For these characterized surfaces, we measured light-induced atom desorption (LIAD) of Rb atoms. Clear differences in time evolution, photon energy dependence, and substrate temperature dependence were found; the decay of LIAD by continuous ultraviolet irradiation for quartz was faster than that for Pyrex, a monotonic increase in LIAD with increasing photon energy from 1.8 to 4.3 eV was more prominent for quartz, and LIAD from quartz was more efficient at higher temperatures in the range from 300 to 580 K, while that from Pyrex was almost independent of temperature.

  9. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.

    Science.gov (United States)

    Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-04

    Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM

  10. Moisture adsorption desorption characteristics of stainless steel tubing measured by ball surface acoustic wave trace moisture analyzer

    Science.gov (United States)

    Tsuji, Toshishiro; Akao, Shingo; Oizumi, Toru; Takeda, Nobuo; Tsukahara, Yusuke; Yamanaka, Kazushi

    2017-07-01

    A ball surface acoustic wave (SAW) trace moisture analyzer (TMA) was applied to measuring the adsorption and desorption (AD) characteristics of a stainless steel tube. For the first time, two-frequency measurement for precise temperature compensation was attempted at intervals of 3 s using a burst waveform undersampling circuit. We succeeded in measuring the variations of moisture transit time and dry-down dynamics caused by inner surface treatments such as bright annealing (BA), electropolishing (EP), and electrochemical buffing (ECB) using a sample-tube length of only 100 mm at a flow rate of 0.1 L/min. Net moisture adsorption was evaluated from the measured adsorption subtracted by the background adsorption. As a result, it was found that the adsorption on the ECB tube was smaller than those on EP and BA tubes by 1/3 and 1/4, respectively, at a baseline concentration of 13 ppbv. From these results, it was demonstrated that the ball SAW TMA could be used for measuring the AD characteristics of stainless steel tubes with various surface treatments.

  11. Beryllium Desorption from Sediments

    Science.gov (United States)

    Boschi, V.; Willenbring, J. K.

    2015-12-01

    Beryllium isotopes have provided a useful tool in the field of geochronology and geomorphology over the last 25 years. The amount of cosmogenic meteoric 10Be and native 9Be absorbed to soils often scales with the residence time and chemical weathering of sediments in a landscape, respectively. Thus, the concentrations in river sediment may be used to quantify the denudation of specific watersheds. When deposited in ocean sediment, these concentrations are thought to record the history of denudation on Earth over the last ~10 Ma. The use of both isotopes often relies on the premise of beryllium retention to sediment surfaces in order to preserve a landscape's erosion and weathering signature. Changes in setting, en route from the soil to fluvial system to the ocean, can cause beryllium desorption and may preclude some applications of the 10Be/9Be system. Four mechanisms were tested to determine the desorption potential of beryllium including a reduction in pH, an increase in ionic strength and complexation with soluble organic and inorganic species. These processes have the potential to mobilize beryllium into solution. For example, by both reducing the pH and increasing the ionic strength, competition for adsorption sites increases, potentially liberating beryllium from the sediment surface. In addition, organic and inorganic ligands can complex beryllium causing it to become mobilized. To determine which of these alterations influence beryllium desorption and to quantify the effect, we prepared separate solutions of beryllium bound to minerals and organic compounds and measured beryllium concentrations in solution before and after adjusting the pH, ionic strength, and changing inorganic and organic ligand concentrations. We conclude from our observations that overall, beryllium sorbed to organic compounds was more resistant to desorption relative to mineral-associated beryllium. Among the methods tested, a reduction in pH resulted in the greatest amount of

  12. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall

    2014-01-01

    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  13. Virtual Acoustics

    Science.gov (United States)

    Lokki, Tapio; Savioja, Lauri

    The term virtual acoustics is often applied when sound signal is processed to contain features of a simulated acoustical space and sound is spatially reproduced either with binaural or with multichannel techniques. Therefore, virtual acoustics consists of spatial sound reproduction and room acoustics modeling.

  14. Monomer Adsorption-Desorption Processes

    Institute of Scientific and Technical Information of China (English)

    KE Jian-Hong; LIN Zhen-Quan; CHEN Xiao-Shuang

    2009-01-01

    We propose an adsorption-desorption model for a deposit growth system, in which the adsorption and desorption of particles coexist. By means of the generalized rate equation we investigate the cluster (island) size distribution in the dynamic equilibrium state. The results show that the evolution behaviour of the system depends crucially on the details of the rate kernels. The cluster size distribution can take the ecale-frse power-law form in some cases, while it grows exponentially with size in other cases.

  15. Investigations into ultraviolet matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Heise, Theodore W. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm2. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  16. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  17. Acoustic telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  18. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  19. Effect of Ultrasound on Desorption Equilibrium

    Institute of Scientific and Technical Information of China (English)

    秦炜; 原永辉; 戴猷元

    2001-01-01

    Effects of ultrasound on intensification of separation process were investigated through the experiment of desorption equilibrium behavior. Tri-butyl phosphate (TBP) on NKA-X resin and phenol on a solvent impregnated resin, CL-TBP resin, were used for desorption processes. The desorption rate was measured with and without ultrasound. Desorption equilibrium was studied under various ultrasonic power densities or thermal infusion. Results showed that the desorption rate with ultrasound was much higher than that with normal thermal infusion. Both ultrasound and thermal infusion broke the desorption equilibrium existed at room temperature. However, after the systems were cooled down, the amount of solute desorbed in the liquid phase in the presence of ultrasound was much higher than that at the temperature corresponding to the same ultrasound power. It is proved that the initial desorption equilibrium was broken as a result of the spot energy effect of ultrasound.

  20. Hydrogen desorption from nanostructured magnesium hydride composites

    Directory of Open Access Journals (Sweden)

    Brdarić Tanja P.

    2007-01-01

    Full Text Available The influence of 3d transition metal addition (Fe, Co and Ni on the desorption properties of magnesium hydride were studied. The ball milling of MgH2-3d metal blends was performed under Ar. Microstructural and morphological characterization were performed by XRD and SEM analysis, while the hydrogen desorption properties were investigated by DSC. The results show a strong correlation between the morphology and thermal stability of the composites. The complex desorption behavior (the existence of more than one desorption peak was correlated with the dispersion of the metal additive particles that appear to play the main role in the desorption. The desorption temperature can be reduced by more than 100 degrees if Fe is added as additive. The activation energy for H2 desorption from the MgH2-Fe composite is 120 kJ/mol, implying that diffusion controls the dehydration process.

  1. Acoustic cloaking and transformation acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  2. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  3. Acoustic biosensors

    OpenAIRE

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...

  4. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  5. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... chapters represent review articles covering the most relevant areas of the field. They are written with the goal of providing students with comprehensive introductions. Further they offer a supply of numerous references to the relevant literature. Besides its usefulness as a textbook, this will make...

  6. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  7. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  8. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  9. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  10. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  11. Acoustic biosensors

    Science.gov (United States)

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  12. Magic-angle thermal desorption mass spectroscopy

    Science.gov (United States)

    Pauls, Steven W.; Campbell, Charles T.

    1990-02-01

    Accurate quantitative measurements of desorption rates or adsorbate coverages in thermal desorption mass spectroscopy (TDS) using line-of-sight mass spectrometers are hindered by the fact that the angular distributions of desorption flux can vary widely from desorbate to desorbate, ranging from cos 1ø to cos 9 ø for most species studied to date (ø = polar angle from surface normal). These differences can easily lead to errors exceeding 400% in measuring the relative desorption rates of different species. We show here that, by placing the mass spectrometer's ion source or entrance aperture at a "magic-angle" ø mthese errors can be reduced to less than 26% maximum deviation (or ± 7% standard deviation). Depending upon the sample-to-detector distance, ø m varies from ~ 42° to 34°. It is recommended that TDS experiments be performed at this "magic-angle" for improvement in the quantitative accuracy of coverage or rate measurements.

  13. Infrared laser desorption/ionization on silicon.

    Science.gov (United States)

    Bhattacharya, Sucharita H; Raiford, Timothy J; Murray, Kermit K

    2002-05-01

    Laser desorption/ionization from a single-crystal silicon surface was performed using a laser operating in the 3-microm region of the mid-infrared. Analyte molecules up to 6 kDa were ionized with no added matrix. As with ultraviolet desorption/ionization from porous silicon (DIOS), IR laser desorption from silicon does not produce matrix ions that can interfere with analysis of low-mass analytes. However, in contrast to UV DIOS, silicon porosity or roughness is not required for ionization using an IR laser. Mass spectra were obtained in the wavelength range between 2.8 and 3.5 microm, which is consistent with energy absorption by a hydrogen-bonded OH group. A mechanism based on desorption of adsorbed solvent molecules is postulated.

  14. Droplets Acoustics

    CERN Document Server

    Dahan, Raphael; Carmon, Tal

    2015-01-01

    Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.

  15. Acoustic transducer for acoustic microscopy

    Science.gov (United States)

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  16. Acoustic dose and acoustic dose-rate.

    Science.gov (United States)

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  17. Desorption of 137Cs+ from mosses

    Directory of Open Access Journals (Sweden)

    OLGICA NEDIC

    2002-09-01

    Full Text Available Mosses are biomonitors that accumulate large amounts of various pollutants, including radionuclides. In this work we investigated the possibility of 137Cs extraction from mosses, as well as the significance of species specificity on the efficiency of 137Cs desorption. Salt and acid solutions were used as extraction media. It was shown that a 5 % solution of both ammonium oxalate and phosphoric acid was able to desorb 81.8 % of 137Cs+ from Homalothecium sericeum, which was 39.9 % more than desorption from water. At the same time, most of the desorbed 137Cs+ was incorporated in crystals that precipitated from the solution. An interspecies difference in respect to 137Cs+ desorption was noticed.

  18. Adsorption and Desorption of Methiopyrsulfuron in Soils

    Institute of Scientific and Technical Information of China (English)

    WU Chun-Xian; WANG Jin-Jun; ZHANG Su-Zhi; ZHANG Zhong-Ming

    2011-01-01

    Methiopyrsulfuron is a new low-rate sulfonylurea herbicide for weed control in wheat; however, there is a lack of published information on its behavior in soils. In this study, methiopyrsulfuron adsorption and desorption were measured in seven soils sampled from Heilongjiang, Shandong, Jiangxi, Sichuan, Anhui, and Chongqing provinces of China using a batch equilibrium method. The Freundlich equation was used to described its adsorption and desorption. Adsorption isotherms were nonlinear with the values of Kf-ads, the Freundlich empirical constant indicative of the adsorption capacity,ranging from 0.75 to 2.46, suggesting that little of this herbicide was adsorbed by any of the seven soils. Soil pH and organic matter content (OM) were the main factors influencing adsorption; adsorption was negatively correlated with pH and positively correlated with OM. Methiopyrsulfuron desorption was hysteretic on the soils with high OM content and low pH.

  19. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  20. Water desorption from nanostructured graphite surfaces.

    Science.gov (United States)

    Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule.

  1. Electronic Desorption of gas from metals

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bender, M; Bieniosek, F M; Kramer, A; Kwan, J; Prost, L; Seidl, P A; Westenskow, G

    2006-11-02

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  2. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  3. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions ... kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To ...

  4. Quantum theory of laser-stimulated desorption

    Science.gov (United States)

    Slutsky, M. S.; George, T. F.

    1978-01-01

    A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.

  5. A microsystems enabled field desorption source.

    Energy Technology Data Exchange (ETDEWEB)

    Hertz, Kristin L.; Resnick, Paul James; Schwoebel, Paul R. (University of New Mexico, Albuquerque, NM); Holland, Christopher E. (SRI International, Menlo Park, CA); Chichester, David L. (Idaho National Laboratory, Idaho Falls, ID)

    2010-07-01

    Technologies that have been developed for microelectromechanical systems (MEMS) have been applied to the fabrication of field desorption arrays. These techniques include the use of thick films for enhanced dielectric stand-off, as well as an integrated gate electrode. The increased complexity of MEMS fabrication provides enhanced design flexibility over traditional methods.

  6. Product desorption limitations in selective photocatalytic oxidation

    NARCIS (Netherlands)

    Renckens, T.J.A.; Almeida, A.R.; Damen, M.R.; Kreutzer, M.T.; Mul, G.

    2010-01-01

    The rate of photocatalytic processes can be significantly improved if strongly bound products rapidly desorb to free up active sites. This paper deals with the rate of desorption of cyclohexanone, the product of the liquid-phase photo-oxidation of cyclohexane. Dynamic step-response and pulse-respons

  7. Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata

    NARCIS (Netherlands)

    Boks, Niels P.; Kaper, Hans J.; Norde, Willem; Busscher, Henk J.; van der Mei, Henny C.

    2008-01-01

    Adhesion and desorption are simultaneous events during bacterial adhesion to surfaces. although desorption is far less studied than adhesion. Here, desorption of Staphylococcus epidermidis from substratum surfaces is demonstrated to be residence time dependent. Initial desorption rate coefficients

  8. Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata

    NARCIS (Netherlands)

    Boks, Niels P.; Kaper, Hans J.; Norde, Willem; Busscher, Henk J.; van der Mei, Henny C.

    2008-01-01

    Adhesion and desorption are simultaneous events during bacterial adhesion to surfaces. although desorption is far less studied than adhesion. Here, desorption of Staphylococcus epidermidis from substratum surfaces is demonstrated to be residence time dependent. Initial desorption rate coefficients w

  9. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  10. Acoustic cryocooler

    Science.gov (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  11. Acoustic transducer

    Science.gov (United States)

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  12. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  13. Plutonium sorption and desorption behavior on bentonite.

    Science.gov (United States)

    Begg, James D; Zavarin, Mavrik; Tumey, Scott J; Kersting, Annie B

    2015-03-01

    Understanding plutonium (Pu) sorption to, and desorption from, mineral phases is key to understanding its subsurface transport. In this work we study Pu(IV) sorption to industrial grade FEBEX bentonite over the concentration range 10(-7)-10(-16) M to determine if sorption at typical environmental concentrations (≤10(-12) M) is the same as sorption at Pu concentrations used in most laboratory experiments (10(-7)-10(-11) M). Pu(IV) sorption was broadly linear over the 10(-7)-10(-16) M concentration range during the 120 d experimental period; however, it took up to 100 d to reach sorption equilibrium. At concentrations ≥10(-8) M, sorption was likely affected by additional Pu(IV) precipitation/polymerization reactions. The extent of sorption was similar to that previously reported for Pu(IV) sorption to SWy-1 Na-montmorillonite over a narrower range of Pu concentrations (10(-11)-10(-7) M). Sorption experiments with FEBEX bentonite and Pu(V) were also performed across a concentration range of 10(-11)-10(-7) M and over a 10 month period which allowed us to estimate the slow apparent rates of Pu(V) reduction on a smectite-rich clay. Finally, a flow cell experiment with Pu(IV) loaded on FEBEX bentonite demonstrated continued desorption of Pu over a 12 day flow period. Comparison with a desorption experiment performed with SWy-1 montmorillonite showed a strong similarity and suggested the importance of montorillonite phases in controlling Pu sorption/desorption reactions on FEBEX bentonite.

  14. Thermal desorption of deuterium implanted into beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Markin, A.V.; Chernikov, V.N.; Zakharov, A.P. [Institute of Physical Chemistry, Moscow (Russian Federation)] [and others

    1995-09-01

    By means of TDS measurements it is shown that the desorption of deuterium from Be implanted with 5 keV D ions to fluences, {Phi}, from 1x10{sup 20} D/m{sup 2} to 1x10{sup 21} D/m{sup 2} proceeds in one high temperature stage B, while at {Phi} {ge} 1.2x10{sup 21}D/m{sup 2} one more stage A is added. The desorption maximum A is narrow and consists of two peaks A{sub 1} and A{sub 2} at about 460 K and 490 K, respectively. Peak A{sub 1} is attributed to the desorption of deuterium from the walls of opened channels formed under D ion implantation. Peak {sub A}2 is a consequence of the opening of a part of closed bubbles/channels to the outer surface. The position of maximum B shifts noticeably and nonsteadily on the fluence in a range from 850 to 1050 K. The origin of this maximum is the liberation of D atoms bound at vacancy complexes discussed previously by Wampler. The dependence of Tm(B) on the fluence is governed by the interaction of freely migrating D atoms with partly opened or fully closed gas cavity arrangements which are created under temperature ramping, but differently in specimens implanted with D ions to different fluences.

  15. Lead sorption-desorption from organic residues.

    Science.gov (United States)

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  16. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  17. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  18. Acoustic Aspects of Photoacoustic Signal Generation and Detection in Gases

    Science.gov (United States)

    Miklós, A.

    2015-09-01

    In this paper photoacoustic signal generation and detection in gases is investigated and discussed from the standpoint of acoustics. Four topics are considered: the effect of the absorption-desorption process of modulated and pulsed light on the heat power density released in the gas; the generation of the primary sound by the released heat in an unbounded medium; the excitation of an acoustic resonator by the primary sound; and finally, the generation of the measurable PA signal by a microphone. When light is absorbed by a molecule and the excess energy is relaxed by collisions with the surrounding molecules, the average kinetic energy, thus also the temperature of an ensemble of molecules (called "particle" in acoustics) will increase. In other words heat energy is added to the energy of the particle. The rate of the energy transfer is characterized by the heat power density. A simple two-level model of absorption-desorption is applied for describing the heat power generation process for modulated and pulsed illumination. Sound generation by a laser beam in an unbounded medium is discussed by means of the Green's function technique. It is shown that the duration of the generated sound pulse depends mostly on beam geometry. A photoacoustic signal is mostly detected in a photoacoustic cell composed of acoustic resonators, buffers, filters, etc. It is not easy to interpret the measured PA signal in such a complicated acoustic system. The acoustic response of a PA detector to different kinds of excitations (modulated cw, pulsed, periodic pulse train) is discussed. It is shown that acoustic resonators respond very differently to modulated cw excitation and to excitation by a pulse train. The microphone for detecting the PA signal is also a part of the acoustic system; its properties have to be taken into account by the design of a PA detector. The moving membrane of the microphone absorbs acoustic energy; thus, it may influence the resonance frequency and

  19. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  20. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  1. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  2. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  3. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  4. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  5. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... acoustic neuroma resource Click to learn more... LOGIN EVENTS DONATE Home Learn Back Learn about acoustic neuroma ... support group for me? Find a Group Upcoming Events Video Library Photo Gallery One-on-One Support ...

  6. Experimental study on effects of CBM temperature-rising desorption

    Institute of Scientific and Technical Information of China (English)

    MA Dong-min; LIN Ya-bing

    2012-01-01

    To study the effects of CBM (coal bed methane) temperature-rising desorption,isothermal adsorption/desorption experiments on three ranks (anthracite,coking coal and lignite) of coal at different temperatures were designed based on the traditional CBM decompression desorption.The experimental results indicate that temperature-rising desorption is more effective in high-rank coal,and ever-increasing temperature of high-rank coal reservoir can reduce the negative effects of coal matrix shrinkage in the process of production and improve the permeability of the coal reservoir as well.It is also revealed that the technique of temperature-rising desorption applied in higher-rank coal reservoir can enhance CBM recovery ratio.This study provided theoretical support for the application of temperature-rising desorption technique in practical discharging and mining projects,which can effectively tackle the gas production bottleneck problem.

  7. The effect of selective desorption mechanisms during interstellar ice formation

    CERN Document Server

    Kalvans, Juris

    2015-01-01

    Major components of ices on interstellar grains in molecular clouds - water and carbon oxides - occur at various optical depths. This implies that selective desorption mechanisms are at work. An astrochemical model of a contracting low-mass molecular cloud core is presented. Ice was treated as consisting of the surface and three subsurface layers (sublayers). Photodesorption, reactive desorption, and indirect reactive desorption were investigated. The latter manifests itself through desorption from H+H reaction on grains. Desorption of shallow subsurface species was included. Modeling results suggest the existence of a "photon-dominated ice" during the early phases of core contraction. Subsurface ice is chemically processed by interstellar photons, which produces complex organic molecules. Desorption from the subsurface layer results in high COM gas-phase abundances at Av = 2.4...10mag. This may contribute towards an explanation for COM observations in dark cores. It was found that photodesorption mostly gove...

  8. Nonisothermal desorption of droplets of complex compositions

    Directory of Open Access Journals (Sweden)

    Nakoryakov Vladimir E.

    2012-01-01

    Full Text Available This paper presents the process of nonstationary evaporation of aqueous solutions of LiBr-H2O, CaCl2-H2O, NaCl-H2O droplets on a horizontal heating surface. The following typical stages of heat and mass transfer depending on wall temperature have been considered: evaporation below boiling temperature and nucleate boiling. The significant decrease in desorption intensity with a rise of initial mass concentration of salt has been observed. Formation of a surface crystallization front at evaporation of a droplet has been detected. We have developed the experimental method for direct measurements of the mass of evaporating droplet.

  9. Displacement desorption test of coalbed methane and its mechanism exploring

    Institute of Scientific and Technical Information of China (English)

    ZHANG Suian; HUO Yongzhong; YE Jianping; TANG Shuheng; MA Dongmin

    2005-01-01

    Through the test of CH4 displaced by CO2 using the coal sample as the adsorbent, this paper has found the coalbed methane (CBM) displacement desorption phenomenon under the natural conditions and CBM mining conditions. With the help of the adsorption theory of the modern physical chemistry and interfacial chemistry, the CBM competitive adsorption and displacement desorption mechanism are intensively discussed, and a new path for studying the CBM desorption mechanism in the CBM exploitation process is explored.

  10. Protective coatings preventing hydrogen desorption from titanium during ion irradiation

    Science.gov (United States)

    Evsin, A. E.; Begrambekov, L. B.; Dovganyuk, S. S.; Kaplevsky, A. S.; Shutikova, M. I.

    2017-05-01

    Effect of yttria and titanium nitride coatings on features of deuterium desorption from titanium layer is investigated. It is shown that both coatings significantly raise the temperature of maximum of deuterium thermal desorption from titanium under linear heating and prevent desorption under prolonged keeping at the operating temperature of a neutron tube target. However, under irradiation with ions of H2 + O2 plasma the barrier properties of titanium nitride appear to degrade.

  11. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will pr...

  12. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  13. Substrate-Enhanced Micro Laser Desorption Ionization Mass Spectrometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodyne Research, Inc. and the University of Massachusetts at Amherst will collaborate to develop laser desorption ionization (LDI) mass spectrometric analysis of...

  14. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  15. Indoor acoustic gain design

    Science.gov (United States)

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  16. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  17. CO and N$_2$ desorption energies from water ice

    CERN Document Server

    Fayolle, Edith C; Loomis, Ryan; Bergner, Jennifer; Graninger, Dawn M; Rajappan, Mahesh; Öberg, Karin I

    2015-01-01

    The relative desorption energies of CO and N$_2$ are key to interpretations of observed interstellar CO and N$_2$ abundance patterns, including the well-documented CO and N$_2$H$^+$ anti-correlations in disks, protostars and molecular cloud cores. Based on laboratory experiments on pure CO and N$_2$ ice desorption, the difference between CO and N$_2$ desorption energies is small; the N$_2$-to-CO desorption energy ratio is 0.93$\\pm$0.03. Interstellar ices are not pure, however, and in this study we explore the effect of water ice on the desorption energy ratio of the two molecules. We present temperature programmed desorption experiments of different coverages of $^{13}$CO and $^{15}$N$_2$ on porous and compact amorphous water ices and, for reference, of pure ices. In all experiments, $^{15}$N$_2$ desorption begins a few degrees before the onset of $^{13}$CO desorption. The $^{15}$N$_2$ and $^{13}$CO energy barriers are 770 and 866 K for the pure ices, 1034-1143 K and 1155-1298 K for different sub-monolayer co...

  18. Desorption process of deuterium from zircaloys and their oxides

    Energy Technology Data Exchange (ETDEWEB)

    Nakamichi, Haruo; Kinoshita, Chiken; Hara, Masahiro [Kyushu Univ., Fukuoka (Japan)

    1997-11-01

    It is well known that hydrogen behavior plays an important role on the oxidation process of zircaloys. We have investigated the desorption process of deuterium from three kinds of zircaloys (Zry-2, Zry-4 and high-Fe and Ni-Zry-2) and their oxides using thermal desorption spectrometry (TDS). The purpose of the present paper is to get insight into the effect of alloying elements on the desorption behavior of deuterium from the zircaloys and their oxides. We have also performed in-situ observations through TEM for getting the relation between the desorption process and microstructural evolution. The desorption of D{sub 2} implanted by an ion accelerator occurs in two stages; the first and the second stages appear at around 350 K and around 700 K for the metallic zircaloys, respectively. For their oxide films, on the other hand, the desorption rate of D{sub 2} is much higher than that for the metallic zircaloys. It is found that the desorption rate depends strongly on the kind of zircaloys, especially on the concentration of Fe and Ni. From TEM result, it is found that the first desorption stage for the metallic specimens is correlated to the dissolution of the hydrides. (author)

  19. Integrated field emission array for ion desorption

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David

    2016-08-23

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  20. Methane desorption from a coal-bed

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Alexeev; E.P. Feldman; T.A. Vasilenko [National Academy of Sciences of Ukraine, Donetsk (Ukraine). Donetsk Institute for Physics of Mining Processes

    2007-11-15

    We study the desorption of methane from a coal-bed. A model taking into account both methane diffusion in coal-blocks and its filtration through the system of open pores and cracks is developed. Methane pressure in the coal-bed is found for an arbitrary instant of time. Dependency of the rate of methane release upon the block size, open and closed porosity, viscosity, solubility, bed pressure and temperature is established. We derive the effective coefficient of diffusion of methane in blocks containing closed pores filled with gaseous methane. It is shown that at a hindered diffusion methane is distinctly divided into the 'quick' and the 'slow' one. 25 refs., 5 figs.

  1. Integrated field emission array for ion desorption

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  2. Integrated field emission array for ion desorption

    Science.gov (United States)

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  3. Copper desorption from Gelidium algal biomass.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  4. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  5. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  6. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-04-30

    OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-043016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to...improve our understanding. During the past few years, the physics effects studied have been three-dimensional propagation on global scales, deep water

  7. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-10-07

    Res., 114, C07021. Evers, L. G. & Snellen , M., 2015. Passive probing of the sound fixing and ranging channel with hydro-acoustic observations from...ridge earthquakes, J. Acoust. Soc. Am., 137, 2124–2136. Evers, L. G., Green, D. N., Young, N. W., & Snellen , M., 2013. Remote hydroacoustic sensing...Heaney, K. D., Assink, J. D., Smets, P. S. M., & Snellen , M., 2014. Evanescent wave coupling in a geophysical system: Airborne acoustic signals from

  8. Nearfield Acoustical Holography

    Science.gov (United States)

    Hayek, Sabih I.

    Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.

  9. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  10. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  11. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  12. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  13. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  14. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  15. Laser desorption of NO from a thick C 60 film

    Science.gov (United States)

    Hoger, T.; Marzok, C.; Jongma, R. T.; Zacharias, H.

    2006-09-01

    The desorption of NO molecules from a thick C 60 film is reported. A thermal desorption spectrum indicates two adsorption sites with binding energies of Eb = 0.30 eV and 0.55 eV. For laser desorption the fullerene surface is exposed to NO and excited by 7 ns UV laser pulses. Desorbing NO molecules are recorded state selectively as well as time resolved. The time-of-flight measurement indicates three different desorption pathways. A fast channel shows rovibronic temperatures of Trot( v″ = 0) = 370 K, Trot( v″ = 1) = 390 K and Tvib = 610 K as well as strong rotational-translational coupling. The desorption yield for the fast channel increases linearly with pulse energy with a desorption cross section of σ = (5.1 ± 0.9) × 10 -17 cm 2. Dominating the signal for small J″ values is a slow channel with low rotational and translational temperatures of about 110 K. We assign this peak to a laser-induced thermal desorption. For large pump-probe delays the data deviate from the Maxwellian flux distribution and a third channel appears with extremely late arrival times.

  16. Adsorption-Desorption Characteristics of Chlorimuron-Ethyl in Soils

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The adsorption-desorption characteristics of chlorimuron-ethyl in soils were investigated to provide the basic data for evaluating the safety in field and the risk to water resource. The adsorption-desorption experiment was conducted by the batch equilibration and HPLC techniques; furthermore, data were analyzed with 5 mathematic models to describe the characteristics and mechanism of adsorption-desorption and translocation of the herbicide in soils. The results showed that the adsorption-desorption isotherms of chlorimuron-ethyl fitted for the Freundlich model well, and the physical reaction presents the main contribution during the adsorption-desorption process. The adsorption values (Kads-f) of chlorimuron-ethyl in 8 types of soil ranged from 0.798 to 6.891. The isotherms of 2# (Jiangxi clay) and 3# (Jiangxi sand loam)soils belong to the S-type curve, while the isotherms of another 6 type soils belong to the L-type isotherm. The results of desorption indicated that the hysteresis phenomena appeared during the desorption process, and the hysteresis coefficients(H) of the herbicides in 8 soils varied from 0.259-0.980. Furthermore, Kads-f and desorption values (Kdes-f) increased with the OM (%) and the clay content increasing, while the values decreased with the soils pH increasing. The H values decreased with the OM and the clay content increasing, and increased with the soils pH increasing. It can be concluded that the low adsorption abilities of chlorimuron-ethyl in test soils and un-reversible adsorption existed in the process, which will induce the great translocation of the herbicide after application in field. It can be transported to ground or groundwater causing risk to environments. The physical and chemical properties of soils, including the OM, the clay content, and the pH of soil were the dominating factors during the adsorption-desorption.

  17. Temperature programmed desorption of weakly bound adsorbates on Au(111)

    Science.gov (United States)

    Engelhart, Daniel P.; Wagner, Roman J. V.; Meling, Artur; Wodtke, Alec M.; Schäfer, Tim

    2016-08-01

    We have performed temperature programmed desorption (TPD) experiments to analyze the desorption kinetics of Ar, Kr, Xe, C2H2, SF6, N2, NO and CO on Au(111). We report desorption activation energies (Edes), which are an excellent proxy for the binding energies. The derived binding energies scale with the polarizability of the molecules, consistent with the conclusion that the surface-adsorbate bonds arise due to dispersion forces. The reported results serve as a benchmark for theories of dispersion force interactions of molecules at metal surfaces.

  18. Hydrogen Desorption from Mg Hydride: An Ab Initio Study

    Directory of Open Access Journals (Sweden)

    Simone Giusepponi

    2012-07-01

    Full Text Available Hydrogen desorption from hydride matrix is still an open field of research. By means of accurate first-principle molecular dynamics (MD simulations an Mg–MgH2 interface is selected, studied and characterized. Electronic structure calculations are used to determine the equilibrium properties and the behavior of the surfaces in terms of structural deformations and total energy considerations. Furthermore, extensive ab-initio molecular dynamics simulations are performed at several temperatures to characterize the desorption process at the interface. The numerical model successfully reproduces the experimental desorption temperature for the hydride.

  19. Desorption kinetics of benzene in a sandy soil in the presence of powdered activated carbon.

    Science.gov (United States)

    Choi, J-W; Kim, S-B; Kim, D-J

    2007-02-01

    Desorption kinetics of benzene was investigated with a modified biphasic desorption model in a sandy soil with five different powdered activated carbon (PAC) contents (0, 1, 2, 5, 10% w/w) as sorbents. Sorption experiments followed by series dilution desorption were conducted for each sorbent. Desorption of benzene was successively performed at two stages using deionized water and hexane. Modeling was performed on both desorption isotherm and desorption rate for water-induced desorption to elucidate the presence of sorption-desorption hysteresis and biphasic desorption and if present to quantify the desorption-resistant fraction (q (irr)) and labile fraction (F) of desorption site responsible for rapid process. Desorption isotherms revealed that sorption-desorption exhibited a severe hysteresis with a significant fraction of benzene being irreversibly adsorbed onto both pure sand and PAC, and that desorption-resistant fraction (q (irr)) increased with PAC content. Desorption kinetic modeling showed that desorption of benzene was biphasic with much higher (4-40 times) rate constant for rapid process (k (1)) than that for slow process (k (2)), and that the difference in the rate constant increased with PAC content. The labile fraction (F) of desorption site showed a decreasing tendency with PAC. The experimental results would provide valuable information on remediation methods for soils and groundwater contaminated with BTEX.

  20. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Ayanna U. [Purdue University; Talaty, Nari [Purdue University; Cooks, R G [Purdue University; Van Berkel, Gary J [ORNL

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  1. Acoustic fluidization for earthquakes?

    OpenAIRE

    Sornette, D.; Sornette, A.

    2000-01-01

    Melosh [1996] has suggested that acoustic fluidization could provide an alternative to theories that are invoked as explanations for why some crustal faults appear to be weak. We show that there is a subtle but profound inconsistency in the theory that unfortunately invalidates the results. We propose possible remedies but must acknowledge that the relevance of acoustic fluidization remains an open question.

  2. Acoustic diffusers III

    Science.gov (United States)

    Bidondo, Alejandro

    2002-11-01

    This acoustic diffusion research presents a pragmatic view, based more on effects than causes and 15 very useful in the project advance control process, where the sound field's diffusion coefficient, sound field diffusivity (SFD), for its evaluation. Further research suggestions are presented to obtain an octave frequency resolution of the SFD for precise design or acoustical corrections.

  3. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed and ...

  4. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  5. Acoustic ground impedance meter

    Science.gov (United States)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  6. Cochlear bionic acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  7. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Directory of Open Access Journals (Sweden)

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini

    2011-01-01

    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  8. Adsorption and desorption kinetics of carbofuran in acid soils.

    Science.gov (United States)

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Pateiro-Moure, Miriam; Nóvoa-Muñoz, Juan Carlos; Simal-Gándara, Jesús; Arias-Estévez, Manuel

    2011-06-15

    Carbofuran adsorption and desorption were investigated in batch and stirred flow chamber (SFC) tests. The carbofuran adsorption capacity of the soils was found to be low and strongly dependent on their clay and organic carbon contents. Carbofuran sorption was due mainly (>80%) to fast adsorption processes governed by intraparticle diffusion. The adsorption kinetic constant for the pesticide ranged from 0.047 to 0.195 min(-1) and was highly correlated with constant n in the Freundlich equation (r=0.965, Pcarbofuran desorption to be highly variable and negatively correlated with eCEC and the clay content. The SFC tests showed that soil organic carbon (C) plays a key role in the irreversibility of carbofuran adsorption. Carbofuran desorption increased rapidly at C contents below 4%. The desorption kinetic constant for the compound (0.086-0.195 min(-1)) was generally higher than its adsorption kinetic constant; therefore, carbofuran is more rapidly desorbed than it is adsorbed in soil.

  9. ACTIVATION ENERGY OF DESORPTION OF DIBENZOFURAN ON ACTIVATED CARBONS

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; LI Zhong; XI Hongxia; LUO Lingai

    2004-01-01

    Three kinds of commercial activated carbons, such as Norit RB1, Monolith and Chemviron activated carbons, were used as adsorbents for adsorption of dibenzofuran. The average pore size and specific surface area of these activated carbons were measured. Temperature Programmed Desorption (TPD) experiments were conducted to measure the TPD curves of dibenzofuran on the activated carbons, and then the activation energy for desorption of dibenzofuran on the activated carbons was estimated. The results showed that the Chemviron and the Norit RB1 activated carbon maintained higher specific surface area and larger micropore pore volume in comparison with the Monolith activated carbon, and the activation energy for the desorption of dibenzofuran on these two activated carbons was higher than that on the Monolith activated carbon. The smaller the pore of the activated carbon was, the higher the activated energy of dibenzofuran desorption was.

  10. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Augustsson, Per; Bruus, Henrik

    2016-01-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems...

  11. Sorption, Desorption and Diffusion of Tc Under Anaerobic Conditions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The sorption and diffusion of Tc on granite under anaerobic conditions were investigated. Influencesof pH values, ferrous minerals(reduced iron powder or magnetite), bentonite, concentration of cations andanion (Fe3+, Fe2+ and CO32-) on the distribution coefficient, Kd, were studied. The sorption mechanism of99Tc on granite was analyzed by the desorption method of adding H2O2 into desorption solvent. Based on

  12. Sorption and desorption of 1,4-dichlorobenzene on peat

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Sorption and desorption of 1,4-dichlorobenzene (DCB) on peat (>92% organic matter)display large-scale hysteresis and nonlinearity. The magnitude of desorption hysteresis decreases in the order: untreated Pahokee peat (P)>acid treated peat (FP)>humin (TP). The desorption percentages are lower than 28% of the sorbed 1, 4-DCB after desorbing for 6 days. The sorption and desorption isotherms are well fitted to Freundlich equation, whose parameter 1/n ranges from 0.055 to 0.527. Moreover, the parameter 1/n of the desorption isotherm is significantly lower than that of the sorption isotherm, but the parameter IogK increases on contrary to 1/n. The desorption isotherms are very well fitted to Langmuir equation, whose Qm decreases in the order: TP>FP>P.The apparent partition coefficients (Kp) increase with increasing sorption time or decreasing aqueous equilibrium concentration of DCB. And Kp of P is significantly higher than that of FP or TP.

  13. Laser-induced thermal desorption of aniline from silica surfaces

    Science.gov (United States)

    Voumard, Pierre; Zenobi, Renato

    1995-10-01

    A complete study on the energy partitioning upon laser-induced thermal desorption of aniline from silica surfaces was undertaken. The measurements include characterization of the aniline-quartz adsorption system using temperature-programmed desorption, the extrapolation of quasiequilibrium desorption temperatures to the regime of laser heating rates on the order of 109-1010 K/s by computational means, measurement of the kinetic energy distributions of desorbing aniline using a pump-probe method, and the determination of internal energies with resonance-enhanced multiphoton ionization spectroscopy. The measurements are compared to calculations of the surface temperature rise and the resulting desorption rates, based on a finite-difference mathematical description of pulsed laser heating. While the surface temperature of laser-heated silica reaches about 600-700 K at the time of desorption, the translational temperature of laser-desorbed aniline was measured to be Tkin=420±60 K, Tvib was 360±60 K, and Trot was 350±100 K. These results are discussed using different models for laser-induced thermal desorption from surfaces.

  14. Calcium lignosulfonate adsorption and desorption on Berea sandstone.

    Science.gov (United States)

    Grigg, Reid B; Bai, Baojun

    2004-11-01

    This paper describes adsorption and desorption studies carried out with calcium lignosulfonate (CLS) on Berea sandstone. Circulation experiments were performed to determine CLS adsorption isotherms and the effects of CLS concentration, temperature, salinity, brine hardness, and injection rate on adsorption density. Flow-through experiments were performed to assess the reversibility of CLS adsorption and the influence of postflush rate, brine concentration, brine hardness, brine pH, and temperature on the desorption process. Results indicate that CLS adsorption isotherms on Berea sandstone follow the Freundlich isotherm law. The results presented in this paper on the effects of CLS adsorption and desorption on Berea sandstone show that: (1) increasing CLS concentration and salinity increases CLS adsorption density; (2) increasing temperature will decrease adsorption density; (3) increasing injection rate of CLS solution will slightly decrease CLS adsorption density; (4) postflush rate and salinity of brine have a large impact on the CLS desorption process; (5) the adsorption and desorption process are not completely reversible; and (5) temperature and pH of the postflush brine have little effect on desorption.

  15. Flat acoustic lens by acoustic grating with curled slits

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  16. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  17. Underwater Applications of Acoustical Holography

    Directory of Open Access Journals (Sweden)

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  18. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...

  19. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  20. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side ... Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a patient ...

  1. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  2. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... resource Click to learn more... LOGIN EVENTS DONATE Home Learn Back Learn about acoustic neuroma AN Facts ... Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video OrangeTheory AN Warriors Laurie of ...

  3. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  4. An acoustic invisible gateway

    CERN Document Server

    Zhu, Yi-Fan; Liang, Bin; Kan, Wei-Wei; Yang, Jun; Cheng, Jian-Chun

    2015-01-01

    The recently-emerged concept of "invisible gateway" with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of "restoring" a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the "gate" to mimic a rigid "wall" and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet ef...

  5. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  6. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  7. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  8. Acoustic MIMO signal processing

    CERN Document Server

    Huang, Yiteng; Chen, Jingdong

    2006-01-01

    A timely and important book addressing a variety of acoustic signal processing problems under multiple-input multiple-output (MIMO) scenarios. It uniquely investigates these problems within a unified framework offering a novel and penetrating analysis.

  9. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree ... info@ANAUSA.org About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational ...

  10. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  11. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Choosing a healthcare provider Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a ...

  12. Acoustic imaging system

    Science.gov (United States)

    Kendall, J. M., Jr.

    1977-01-01

    Tool detects noise sources by scanning sound "scene" and displaying relative location of noise-producing elements in area. System consists of ellipsoidal acoustic mirror and microphone and a display device.

  13. Symptoms of Acoustic Neuroma

    Science.gov (United States)

    ... Programs & Services Search ANAUSA.org Connect with us! Symptoms of Acoustic Neuroma Each heading slides to reveal more information. Early Symptoms Early Symptoms Early symptoms are easily overlooked, thus making diagnosis ...

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects ... To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a patient kit ...

  15. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  16. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... provider Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms ... effects Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a ...

  17. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  18. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    Science.gov (United States)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  19. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  20. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  1. Acoustic Communications (ACOMMS) ATD

    Science.gov (United States)

    2016-06-14

    Communications , Computers , Intelligence, Surveillance, and Reconnaissance (C4ISR) systems that "capture, synthesize and distribute near-real time information to...Acoustic Communications (ACOMMS) ATD Tam Nguyen 2531 Jefferson Davis Hwy Arlington, VA 22242 phone: (703) 604-6013 ext 520 fax: (703) 604-6056...email: NguyenTL@navsea.navy.mil Award # N0001499PD30007 LONG-TERM GOALS The goal of the recently completed Acoustic Communications Advanced

  2. Sorption-desorption behavior of polybrominated diphenyl ethers in soils

    Energy Technology Data Exchange (ETDEWEB)

    Olshansky, Yaniv; Polubesova, Tamara [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Vetter, Walter [Institute of Food Chemistry (170b), University of Hohenheim, Garbenstr. 28, D-70599 Stuttgart (Germany); Chefetz, Benny, E-mail: chefetz@agri.huji.ac.il [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel)

    2011-10-15

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4'-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (K{sub OC}) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration. - Highlights: > BDE-15 exhibited pronounced desorption hysteresis. > BDE-15 sowed higher sorption affinity to humin as compared to the bulk soils. > Sequestration of PBDEs depends on soil organic matter constitutes other than humin. - Pronounced desorption hysteresis was observed for BDE-15 in natural soils.

  3. Acoustic vector sensor signal processing

    Institute of Scientific and Technical Information of China (English)

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  4. The study of 'microsurfaces' using thermal desorption spectroscopy

    Science.gov (United States)

    Thomas, M. E.; Poppa, H.; Pound, G. M.

    1979-01-01

    The use of a newly combined ultrahigh vacuum technique for studying continuous and particulate evaporated thin films using thermal desorption spectroscopy (TDS), transmission electron microscopy (TEM), and transmission electron diffraction (TED) is discussed. It is shown that (1) CO thermal desorption energies of epitaxially deposited (111) Ni and (111) Pd surfaces agree perfectly with previously published data on bulk (111) single crystal, (2) contamination and surface structural differences can be detected using TDS as a surface probe and TEM as a complementary technique, and (3) CO desorption signals from deposited metal coverages of one-thousandth of a monolayer should be detectable. These results indicate that the chemisorption properties of supported 'microsurfaces' of metals can now be investigated with very high sensitivity. The combined use of TDS and TEM-TED experimental methods is a very powerful technique for fundamental studies in basic thin film physics and in catalysis.

  5. Femtosecond laser pulse induced desorption: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lončarić, Ivor, E-mail: ivor.loncaric@gmail.com [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Alducin, Maite [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Juaristi, J. Iñaki [Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain)

    2016-09-01

    In recent simulations of femtosecond laser induced desorption of molecular oxygen from the Ag(110) surface, it has been shown that depending on the properties (depth and electronic environment) of the well in which O{sub 2} is adsorbed, the desorption can be either induced dominantly by hot electrons or via excitations of phonons. In this work we explore whether the ratios between the desorption yields from different adsorption wells can be tuned by changing initial surface temperature and laser pulse properties. We show that the initial surface temperature is an important parameter, and that by using low initial surface temperatures the electronically mediated process can be favored. In contrast, laser properties seem to have only a modest influence on the results.

  6. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim

    2003-09-01

    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  7. Direct scattering, trapping, and desorption in atom-surface collisions.

    Science.gov (United States)

    Fan, Guoqing; Manson, J R

    2008-08-08

    Maxwell is credited as the first to invoke the assumption that an impinging gas beam scatters from a surface with a direct contribution exhibiting little change in state and a trapping-desorption fraction that desorbs in equilibrium [J. C. Maxwell, Phil. Trans. R. Soc. London 170, 231 (1879)]. Here a classical mechanical scattering theory is developed to describe direct scattering, trapping, and subsequent desorption of the incident beam. This theory allows a rigorous test of the Maxwell assumption and determines the conditions under which it is valid. The theory also gives quantitative explanations of important new experimental measurements [K. D. Gibson, N. Isa, and S. J. Sibener, J. Chem. Phys. 119, 13 083 (2003)] for direct and trapping-desorption scattering of Ar atoms by a self-assembled layer of 1-decanethiol on Au(111).

  8. Desorption Dynamics, Internal Energies and Imaging of Organic Molecules from Surfaces with Laser Desorption and Vacuum Ultraviolet (VUV) Photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Takahashi, Lynelle K.; Ahmed, Musahid

    2011-04-05

    There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures, as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer, using laser desorption VUV postionization shows 5 mu m feature details while using a 30 mu m laser spot size and 7 ns duration. Applications of laser desorption postionization to the analysis of cellulose, lignin and humic acids are briefly discussed.

  9. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  10. Interactions in an acoustic world

    CERN Document Server

    Simaciu, Ion; Borsos, Zoltan; Bradac, Mariana

    2016-01-01

    The present paper aims to complete an earlier paper where the acoustic world was introduced. This is accomplished by analyzing the interactions which occur between the inhomogeneities of the acoustic medium, which are induced by the acoustic vibrations traveling in the medium. When a wave packet travels in a medium, the medium becomes inhomogeneous. The spherical wave packet behaves like an acoustic spherical lens for the acoustic plane waves. According to the principle of causality, there is an interaction between the wave and plane wave packet. In specific conditions the wave packet behaves as an acoustic black hole.

  11. Leaf water absorption and desorption functions for three turfgrasses

    Science.gov (United States)

    Liang, Xi; Su, Derong; Yin, Shuxia; Wang, Zhi

    2009-09-01

    SummaryPlant leaf can absorb water when the leaf is in contact with water. This happens when the rainfall is intercepted by plant leaves, where the intercepted part of rain remains on the leaf surface. When the intercepted water is either absorbed or subsequently evaporated into the atmosphere, the plant leaves can dissipate water through the desorption process until the plant is dry or rewatered. In this paper, two symptomatic models in the form of exponential functions for leaf water absorption and leaf water desorption were derived and validated by experimental data using leaves of three turfgrasses (Tall fescue, Perennial ryegrass and Kentucky bluegrass). Both the models and measured data showed that the rate of leaf water absorption was high at the low initial leaf water content and then gradually leveled off toward the saturated leaf water content. The rate of leaf water desorption was high at the high initial leaf water content then decreased drastically over time toward zero. The different plant leaves showed different exponents and other parameters of the functions which indicate the difference of plant species. Both the absorption and desorption rates were relatively higher for the Kentucky bluegrass and lower for the Tall fescue and Perennial ryegrass. The concept of specific leaf area ( SLA) was used to understand the saturated leaf water content ( C s) of the three turfgrasses. Linear relationships were found between C s and SLA. The leaf water absorption and desorption functions are useful for deriving physiological parameters of the plant such as permanent wilting leaf water content, naturally irreducible leaf water content, exponential leaf water absorption coefficient, and exponential leaf desorption coefficient, as well as for evaluating the effects of rainfall interception on plant growth and water use efficiency.

  12. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  13. Desorption of toluene from modified clays using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Carneiro D. G. P.

    2004-01-01

    Full Text Available The main objective of this work is to study the regeneration capacity of modified clays using supercritical fluid. These modified clays are used as organic compound adsorvents. The experimental step was done using a packed column with the clay contaminated by toluene. The results obtained showed the influence of the density of the supercritical CO2 and of the organic modifier in the desorption process. These data were modeled with first- and second-order models. Better results were obtained using the second-order model. This study makes possible the scale-up of the desorption process for regeneration of solid matrices using supercritical fluids.

  14. Heavy-ion induced electronic desorption of gas from metals

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Kramer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2006-12-19

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  15. PAH desorption from river floodplain soils using supercritical fluid extraction.

    Science.gov (United States)

    Yang, Yi; Cajthaml, Tomás; Hofmann, Thilo

    2008-12-01

    Sequential supercritical fluid extraction (SFE) was performed in order to estimate desorption of PAHs from river floodplain soils which contain coal and coal-derived particles. Original soils, soils' light fractions (rhoextractable contaminants ranged from decades for 2-4-ring PAHs and hundreds of years for 5-6-ring PAHs. We demonstrate that, despite high soil PAH concentrations which are due to coal and coal-derived particles, the general environmental risk is reduced by the very slow and extremely slow desorption rates.

  16. Nonthermal current-stimulated desorption of gases from carbon nanotubes.

    Science.gov (United States)

    Salehi-Khojin, Amin; Lin, Kevin Y; Field, Christopher R; Masel, Richard I

    2010-09-10

    The desorption of gases from carbon nanotubes is usually a slow process that limits the nanotubes' utility as sensors or as memristors. Here, we demonstrate that flow in the nanotube above the Poole-Frenkel conduction threshold can stimulate adsorbates to desorb without heating the sensor substantially. The method is general: alcohols, aromatics, amines, and phosphonates were all found to desorb. We postulate that the process is analogous to electron-stimulated desorption, but with an internally conducted rather than externally applied source of electrons.

  17. High-frequency seafloor acoustics

    National Research Council Canada - National Science Library

    Jackson, D. R; Richardson, M. D

    2007-01-01

    This title provides access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics...

  18. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  19. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  20. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  1. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  2. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  3. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  4. Acoustics of courtyard theatres

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing

    2008-01-01

    The traditional Chinese theatre was often built with a courtyard. In such open-top space, the absence of a roof would mean little reverberation and non-diffused sound field.Acoustically the situation is quite different from that of any enclosed space. The refore, theclassic room acoustics, such as Sabine reverberation formula, would no longer be applicable due to the lack of sound reflections from the ceiling. As the parameter of reverberation time T30 shows the decay rate only, it would not properly characterize the prominent change in the fine structure of the echogram, particularly in case of a large reduction of reflections during the decay process. The sense of reverbrance in a courtyard space would differ noticeably from that of the equivalent 3D-T30 in an enclosed space. Based upon the characteristic analysis of the sound field in an open-top space, this paper presents a preliminary study on the acoustics of the courtyard theatres.

  5. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  6. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... of descriptors, number of classes, and class intervals occurred between national schemes. However, a proposal “acoustic classification scheme for dwellings” has been developed recently in the European COST Action TU0901 with 32 member countries. This proposal has been accepted as an ISO work item. This paper...

  7. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  8. Acoustic black holes

    CERN Document Server

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  9. Electron Stimulated Desorption of Condensed Gases on Cryogenic Surfaces

    CERN Document Server

    Tratnik, H; Hilleret, Noël

    2005-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption from surface adsorbates are usually the factors which in°uence pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchro- tron radiation and bombardment by energetic ions and electrons, properties like the molecular desorption yield or secondary electron yield can strongly in°uence the performance of the accelerator. In high-energy particle accelerators operating at liquid helium temperature, cold surfaces are exposed to the bombardment of energetic photons, electrons and ions. The gases released by the subsequent desorption are re-condensed on the cold surfaces and can be re-desorbed by the impinging electrons and ions. The equilibrium coverage reached on the surfaces exposed to the impact of energetic particles depends on the desorption yield of the condensed gases and can a®ect the operation of the accelerator by modifying th...

  10. Gold ion beams induced desorption studies for Booster Nuclotron

    Science.gov (United States)

    Kuznetsov, A. B.; Tuzikov, A. V.; Philippov, A. V.

    2016-12-01

    Heavy ions induced pressure rise is one of the machine limits. The calculation results of the gold ion beam 197Au31+ losses due to residual gas interaction in view of desorption of adsorbed particles on the Booster Nuclotron vacuum chamber surface are discussed.

  11. Synthesis and Hydrogen Desorption Properties of Aluminum Hydrides.

    Science.gov (United States)

    Jeong, Wanseop; Lee, Sang-Hwa; Kim, Jaeyong

    2016-03-01

    Aluminum hydride (AlH3 or alane) is known to store maximum 10.1 wt.% of hydrogen at relatively low temperature (hydrogen desorption are still not clear. To understand the desorption properties of hydrogen in alane, thermodynamically stable α-AlH3 was synthesized by employing an ethereal reaction method. The dependence of pathways on phase formation and the properties of hydrogen evolution were investigated, and the results were compared with the ones for γ-AlH3. It was found that γ-AlH3 requires 10 degrees C higher than that of γ-AlH3 to form, and its decomposition rate demonstrated enhanced endothermic stabilities. For desorption, all hydrogen atoms of alane evolved under an isothermal condition at 138 degrees C in less than 1 hour, and the sample completely transformed to pure aluminum. Our results show that the total amount of desorbed hydrogen from α-AlH3 exceeded 9.05 wt.%, with a possibility of further increase. Easy synthesis, thermal stability, and a large amount of hydrogen desorption of alane fulfill the requirements for light-weight hydrogen storage materials once the pathway of hydrogen cycling is provided.

  12. Organic contaminants in soil, desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the soil matri

  13. Linking desorption kinetics to phenanthrene biodegradation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Angela H.; McAllister, Laura E. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.u [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2010-05-15

    The desorption of polycyclic aromatic hydrocarbons (PAHs) often exhibits a biphasic profile similar to that observed for biodegradation whereby an initial rapid phase of degradation or desorption is followed by a phase of much slower transformation or release. Most investigations to-date have utilised a polymeric sorbent, such as Tenax, to characterise desorption, which is methodologically unsuitable for the analysis of soil. In this study, desorption kinetics of {sup 14}C-phenanthrene were measured by consecutive extraction using aqueous solutions of hydroxypropyl-beta-cyclodextrin (HPCD). The data indicate that the fraction extracted after 24 h generally approximated the linearly sorbed, rapidly desorbing fraction (F{sub rap}), calculated using a three-compartment model. A good linear correlation between phenanthrene mineralised and F{sub rap} was observed (r{sup 2} = 0.89; gradient = 0.85; intercept = 8.20). Hence HPCD extraction (24 h) and first-order three-compartment modelling appear to provide an operationally straightforward tool for estimating mass-transfer limited biodegradation in soil. - Aqueous hydroxypropyl-beta-cyclodextrin (HPCD) solutions can predict the rapidly desorbing and microbially degradable fractions of phenanthrene in soils.

  14. Development of the positron-induced ion-desorption apparatus

    CERN Document Server

    Kanazawa, I

    2002-01-01

    The principle of the positron-induced ion-desorption, which is developed recently, and experimental apparatus are explained and study of desorption of positron-induced hydrogen ion from surface of Ni is reported as an example. The slow positron beam system in the positron-induced ion-desorption spectroscopy is consisted of two stages, moderator and transformation from magnetic transport type to electrostatic transport type. Positron is antiparticle of electron and localized both outside and monolayer of surface, which is special futures and used to analyze the surface. The number of emission positive charge particles from the clean Ni surface was changed by coil current at 1.9 keV and 2.9 keV incident positron energy. The number of re-emission positron at 1.9 keV was larger than at 2.9 keV. The number of emission positive charge particles from the clean Ni surface adsorbed monolayer hydrogen atom were decreased with coil current at 1.9 keV and 2.9 keV. The number of desorption hydrogen particle at 1.9 keV was...

  15. Permeability changes in coal resulting from gas desorption

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.M.

    1992-01-01

    Research continued on the study of coal permeability and gas desorption. This quarter, most of the effort involved identifying problems with the microbalance and then getting it repaired. Measurement of the amount of gas adsorbed with the microbalance involved corrections for the buoyancy change with pressure and several experiments with helium were made to determine this correction.

  16. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  17. Analytical theory of finite-size effects in mechanical desorption

    NARCIS (Netherlands)

    Skvortsov, A.M.; Klushin, L.I.; Fleer, G.J.; Leermakers, F.A.M.

    2010-01-01

    We discuss a unique system that allows exact analytical investigation of first- and second-order transitions with finite-size effects: mechanical desorption of an ideal lattice polymer chain grafted with one end to a solid substrate with a pulling force applied to the other end. We exploit the analo

  18. Thermal Desorption of Helium Implanted in Tungsten at RT

    Institute of Scientific and Technical Information of China (English)

    ZHANGFu; XUZengyu; LIUXiang; CHENJiming; XUYing; N.Yoshida; H.Iwakiri

    2002-01-01

    Tungsten is envisaged as one of the main candidate materials for divertor plate of ITER and future fusion reactors. Due to D-T reaction, PFMs would suffer helium irradiation from plasma additional to the high heat loads. Helium retention and thermal desorption behavior are largely concerned.

  19. Influence of surface coverage on the chemical desorption process

    CERN Document Server

    Marco, Minissale

    2014-01-01

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O$_2$) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80 $\\%$ at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-...

  20. Desorption of plutonium from montmorillonite: An experimental and modeling study

    Science.gov (United States)

    Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.

    2017-01-01

    Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. We evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with Kd values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in Kd, indicating that true sorption equilibrium was not achieved within the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. A conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50-100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.

  1. Sorption and desorption of carbamazepine from water by smectite clays.

    Science.gov (United States)

    Zhang, Weihao; Ding, Yunjie; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2010-11-01

    Carbamazepine is a prescription anticonvulsant and mood stabilizing pharmaceutical administered to humans. Carbamazepine is persistent in the environment and frequently detected in water systems. In this study, sorption and desorption of carbamazepine from water was measured for smectite clays with the surface negative charges compensated with K+, Ca2+, NH4+, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) cations. The magnitude of sorption followed the order: TMPA-smectite≥HDTMA-smectite>NH4-smectite>K-smectite>Ca-smectite⩾TMA-smectite. The greatest sorption of carbamazepine by TMPA-smectite is attributed to the interaction of conjugate aromatic moiety in carbamazepine with the phenyl ring in TMPA through π-π interaction. Partitioning process is the primary mechanism for carbamazepine uptake by HDTMA-smectite. For NH4-smectite the urea moiety in carbamazepine interacts with exchanged cation NH4+ by H-bonding hence demonstrating relatively higher adsorption. Sorption by K-, Ca- and TMA-smectites from water occurs on aluminosilicate mineral surfaces. These results implicate that carbamazepine sorption by soils occurs primarily in soil organic matter, and soil mineral fractions play a secondary role. Desorption of carbamazepine from the sorbents manifested an apparent hysteresis. Increasing irreversibility of desorption vs. sorption was observed for K-, Ca-, TMA-, TMPA- and HDTMA-clays as aqueous carbamazepine concentrations increased. Desorption hysteresis of carbamazepine from K-, Ca-, NH4-smectites was greater than that from TMPA- and HDTMA-clays, suggesting that the sequestrated carbamazepine molecules in smectite interlayers are more resistant to desorption compared to those sorbed by organic phases in smectite clays.

  2. Adsorption/desorption of phenanthrene on contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Saada, A.; Gaboriau, H.; Amalric, L.; Crouzet, C. [BRGM, Orleans (France)

    2003-07-01

    Polycyclic Aromatic Hydrocarbons (PAH) are persistent environmental contaminants whose behaviour has been thoroughly studies because of their genotoxicity. One of the main processes governing PAH evolution is adsorption onto soil matrices due to the marked hydrophobic properties of this group of pollutants. In this study, pehnanthrene adsorption and desorption were measured for: - an untreated polluted soil (S) from a former coking plant - the same soil washed with toluene in a soxhlet extractor (S{sub w}), which enables the pollutants (PAH and tar) to be extracted from the soil - the fine fraction (<50 {mu}m) of the washed soil (S{sub f}), - a mineral (kaolinite) representative of the polluted soil (K), - the mineral coated with the tar extracted from the polluted soil (K-T). Isotherms of phenanthrene adsorption/desorption on K, K-T and S shows that the hysteresis between the adsorption and desorption isotherms increases 1) with the organic matter content, and 2) for the untreated soil S containing endogenic bacteria, in addition to organic matter. This indicates that tar-type organic matter is capable of reducing the release of phenanthrene by forming bonded residue. For the untreated soil S, endogenic bacteria consume phenanthrene as it is desorbed. Consequently, the desorption isotherm for S is almost horizontal, as if no desorption had taken place. This study has demonstrated the effect that the type of organic matter has on PAH fate, and thus the need to take this into account, particularly where tar is concerned, when assessing the adsorption capacity of soils. (orig.)

  3. Broadband asymmetric acoustic transmission through an acoustic prism

    Science.gov (United States)

    Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Xi, Yanhui

    2017-08-01

    Narrow bandwidth and complex structure are the main shortcomings of the existing asymmetric acoustic transmission devices. In this letter, a simple broadband asymmetric acoustic transmission device is proposed by using an acoustic prism filled with xenon gas. The sound pressure field distributions, the transmission spectra, and the prism angle effect are numerically investigated by using finite element method. The proposed device can always realize asymmetric acoustic transmission for the wave frequency larger than 480 Hz because the wave paths are not influenced by the wave frequencies. The asymmetric acoustic transmission is attributed to normal refraction and total reflection occur at different interfaces. Besides, relatively high transmission efficiency is realized due to the similar impedance between the acoustic prism and background. And the transmitted wave direction can be controlled freely by changing the prism angle. Our design provides a simple method to obtain broadband asymmetric acoustic transmission device and has potentials in many applications, such as noise control and medical ultrasound.

  4. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...

  5. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-08-03

    Award No.: N00014-14-C-0172 Report No. QSR-14C0172-Ocean Acoustics-063016 Prepared for: Office of Naval Research For the period: April 1...The source level in this overlay is a free parameter (but is estimated to be ~215 dB) re 1uPa2/m2). This agreement is exceptional. It shows the dip

  6. Indigenous Acoustic Detection.

    Science.gov (United States)

    1982-01-26

    considerable distances, and they act as good sensors of human presence. Though singing insects are ubiquitous in warm areas, even in the desert ( Nevo and...methodology. DTIC. CD-58-PL. Lloyd, J. E. 1981. Personnel communication. Nevo , E. and S. A. Blondheim. 1972. Acoustic isolation in the speciation of

  7. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  8. Deep Water Ocean Acoustics

    Science.gov (United States)

    2015-04-15

    sound speed profile is range-independent; since there is little expectation there will be significant mesoscale phenomenon given the lack of solar ...34 Journal of the Acoustical Society of America 93 (4), 1736-1742 (1993). 2 Chris H. Harrison and Martin Siderius, "Effective Parameters for Matched

  9. Underwater Acoustic Networking Techniques

    CERN Document Server

    Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele

    2012-01-01

    This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.

  10. Holograms for acoustics

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  11. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  12. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  13. Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, J. D.; Abdulgalil, A. G. M.; Collings, M. P.; McCoustra, M. R. S.; Burke, D. J.; Brown, W. A.; Dawes, A.; Holtom, P. J.; Kendall, P.; Mason, N. J.; Jamme, F.; Fraser, H. J.; Rutten, F. J. M. [School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH 14 4AS (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London W1CH 0AJ (United Kingdom); Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); SOLEIL Synchrotron, BP 48, L' Orme des Merisiers, F-91192 Gif surf Yvette Cedex (France); Department of Physics, Scottish Universities Physics Alliance (SUPA), University of Strathclyde, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG (United Kingdom); School of Pharmacy and iEPSAM, Keele University, Keele ST5 5BG (United Kingdom)

    2010-07-15

    The nonthermal desorption of water from ice films induced by photon and low energy electron irradiation has been studied under conditions mimicking those found in dense interstellar clouds. Water desorption following photon irradiation at 250 nm relies on the presence of an absorbing species within the H{sub 2}O ice, in this case benzene. Desorption cross sections are obtained and used to derive first order rate coefficients for the desorption processes. Kinetic modeling has been used to compare the efficiencies of these desorption mechanisms with others known to be in operation in dense clouds.

  14. Dust as interstellar catalyst I. Quantifying the chemical desorption process

    CERN Document Server

    Minissale, M; Cazaux, S; Hocuk, S

    2015-01-01

    Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV and CR induced photons do not account for such processes. Aims. The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included into astrochemical models. Methods. We present a collection of experimental results of more than 10 reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice are used. We derive a formula to reproduce the efficiencies of the chemical desorption process, which considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II we extend these resul...

  15. Unconventional resource's production under desorption-induced effects

    Directory of Open Access Journals (Sweden)

    S. Sina Hosseini Boosari

    2016-06-01

    We have developed a numerical model to study the effect of changes in porosity, permeability and compaction on four major U.S. shale formations considering their Langmuir isotherm desorption behavior. These resources include; Marcellus, New Albany, Barnett and Haynesville Shales. First, we introduced a model that is a physical transport of single-phase gas flow in shale porous rock. Later, the governing equations are implemented into a one-dimensional numerical model and solved using a fully implicit solution method. It is found that the natural gas production is substantially affected by desorption-induced porosity/permeability changes and geomechancis. This paper provides valuable insights into accurate modeling of unconventional reservoirs that is more significant when an even small correction to the future production prediction can enormously contribute to the U.S. economy.

  16. Thermal desorption of helium from homogeneously implanted graphite

    Science.gov (United States)

    Jung, P.; Schroeder, H.

    1991-11-01

    Super-fine grain graphite (FGG) and pyrolytic carbon (PYC) of thicknesses around 200 μm were homogeneously implanted at room temperature with α-particles (0.5 MeV ≤ Eα ≤ 22 MeV). Thermal helium desorption spectrometry in the temperature range from 400 to 1900 K can be described by diffusion kinetics with an activation energy of 1.1 eV in FGG and about 0.75 eV in PYC. Desorption during temperature ramping at a constant rate of 0.83 K/s also shows significant differences of the two graphite species. It is found that in FGG and especially in PYC a considerable fraction of the implanted helium is retained even beyond 1000 K. This is in contrast to results reported after low energy implantations to high doses for various graphite species.

  17. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    Science.gov (United States)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  18. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  19. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    Science.gov (United States)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  20. Experimental study on desorption of soluble matter as influenced by cations in static water

    Institute of Scientific and Technical Information of China (English)

    Wen-sheng XU; Li CHEN; Xiao-xia TONG; Xiao-ping CHEN; Ping-cang ZHANG

    2014-01-01

    With variation of drainage basin environments, desorption of soluble matter has become one of the significant erosion processes in rivers. It has a considerable impact on flow and sediment transport, as well as processes of river bed deformation and landform evolution throughout a watershed. In this study, considering influences on sediment movement, especially on cohesive sediment transport, Ca2+ and H+ were chosen as characteristic ions of soluble matter, and the total desorption quantity of Ca2+ and pH value when the desorption equilibrium is reached were employed as two indexes representing the desorption of soluble matter. By means of an indoor experiment, desorption of soluble matter as influenced by cations in static water was investigated. The results show that the total desorption quantity of soluble matter increases with the initial cation concentration until a maximum desorption quantity value is obtained and maintained. The total desorption quantity of soluble matter depends on properties of the specific cations in static water, and the stronger the affinity is between the cation and sediment surface, the higher the total desorption quantity will be. Finally, a strong approximate linear relationship between desorption quantities for different kinds of soluble matters was obtained, which means that variation of pH values can accurately reflect the desorption results of soluble matter.

  1. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  2. [Sorption-desorption of phosphate in wastewater by hydrous iron oxide].

    Science.gov (United States)

    Xiang, Xue-Min; Liu, Ying; Zhou, Ji-Ti; Wang, Ren

    2008-11-01

    FeCl3 was used t o prepare hydrous iron oxide (HIO) as a n absorbent for phosphate (P) sorption and desorption study. The results showed that as pH decreased, the sorption capacity of HIO increased, and the sorption kinetics followed the second-order model, and the sorption isotherm could be fitted by the Langmuir equation. A 50 g/L NaOH solution was used for desorption of P from HIO, and the desorption rate could be reached over 98% . No relation was found between desorption rate and adsorption capacity. Based on above results, HIO was applied to adsorption of P from supernatant of sludge thickener, and after desorption, more than 90% of P was recovered. According to the results obtained, an effective system for P removal and recovery from municipal wastewater was suggested, which includes the following processes: adsorption, desorption, regeneration of HIO, and of recovery of P from P-rich desorption solution.

  3. Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata.

    Science.gov (United States)

    Boks, Niels P; Kaper, Hans J; Norde, Willem; Busscher, Henk J; van der Mei, Henny C

    2008-12-01

    Adhesion and desorption are simultaneous events during bacterial adhesion to surfaces, although desorption is far less studied than adhesion. Here, desorption of Staphylococcus epidermidis from substratum surfaces is demonstrated to be residence time dependent. Initial desorption rate coefficients were similar for hydrophilic and hydrophobic dimethyldichlorosilane (DDS)-coated glass, likely because initial desorption is controlled by attractive Lifshitz-Van der Waals interactions, which are comparable on both substratum surfaces. However, significantly slower decay times of the desorption rate coefficients are found for hydrophilic glass than for hydrophobic DDS-coated glass. This difference is suggested to be due to the acid-base interactions between staphylococci and these surfaces, which are repulsive on hydrophilic glass and attractive on hydrophobic DDS-coated glass. Final desorption rate coefficients are higher on hydrophilic glass than on hydrophobic DDS-coated glass, due to the so called hydrophobic effect, facilitating a closer contact on hydrophobic DDS-coated glass.

  4. Laser Desorption Mass Spectrometry. II. Applications to Structural Analysis.

    Science.gov (United States)

    1982-02-02

    was unexpected, was the quaternary amine Safranin -O. Ions corresponding to (M-HC)- at m/z 313 dominate the negative ion mass spectrum. Two classes of...and cluster species were observed. The positive ion LD mass spectrum of safranin -O, shown in Figure 6, is tvnical of LD results for salts. The...Figure 6. Laser Desorption Positive-ion Spectrum of Safranin 0. Figure 7. Laser Desorntion Mass Spectra of Doubly Charged Organic Salts Top - N,N

  5. Thermodynamic properties of water desorption of forage turnip seeds

    OpenAIRE

    Kelly Aparecida Sousa; Osvaldo Resende; André Luis Duarte Goneli; Thaís Adriana de Souza Smaniotto; Daniel Emanuel Cabral de Oliveira

    2014-01-01

    The purpose of this study was to determine the thermodynamic properties of the process of water sorption in forage turnip  seeds. The equilibrium moisture content of forage turnip  seeds was determined by the gravimetric-dynamic method for different values of temperature and water activity. According to the results, increasing the moisture content increases the energy required for the evaporation of water in forage turnip seeds, and the values of integral isosteric heat of desorption, within ...

  6. Thermodynamic properties of water desorption of forage turnip seeds

    OpenAIRE

    Sousa,Kelly Aparecida de; Resende,Osvaldo; Goneli, André Luis Duarte; Smaniotto,Thaís Adriana de Souza; Oliveira,Daniel Emanuel Cabral de

    2015-01-01

    The purpose of this study was to determine the thermodynamic properties of the process of water sorption in forage turnip seeds. The equilibrium moisture content of forage turnip seeds was determined by the gravimetric-dynamic method for different values of temperature and water activity. According to the results, increasing the moisture content increases the energy required for the evaporation of water in forage turnip seeds, and the values of integral isosteric heat of desorption, within th...

  7. Ammonia nitrogen desorption from sanitary landfill leachate in filling towers

    OpenAIRE

    Leite,Valderi D.; Barros,Aldre J. M.; Lopes,Wilton S.; Sousa,José T. de

    2014-01-01

    Sanitary landfill leachates present high concentrations of carbonaceous and nitrogenous materials. The crucial point is that carbonaceous materials are of difficult biodegradation, what compromises the performance of biological treatment processes, while nitrogenous materials, such as ammonia nitrogen, probably preclude the use of biological treatments. Therefore, the aim of this work was to study the desorption process of ammonia nitrogen from sanitary landfill leachate in filling towers. De...

  8. Study on adsorption and desorption of ammonia on graphene

    Science.gov (United States)

    Zhang, Zhengwei; Zhang, Xinfang; Luo, Wei; Yang, Hang; He, Yanlan; Liu, Yixing; Zhang, Xueao; Peng, Gang

    2015-09-01

    The gas sensor based on pristine graphene with conductance type was studied theoretically and experimentally. The time response of conductance measurements showed a quickly and largely increased conductivity when the sensor was exposed to ammonia gas produced by a bubble system of ammonia water. However, the desorption process in vacuum took more than 1 h which indicated that there was a larger number of transferred carriers and a strong adsorption force between ammonia and graphene. The desorption time could be greatly shortened down to about 2 min by adding the flow of water-vapor-enriched air at the beginning of the recovery stage which had been confirmed as a rapid and high-efficiency desorption process. Moreover, the optimum geometries, adsorption energies, and the charge transfer number of the composite systems were studied with first-principle calculations. However, the theoretical results showed that the adsorption energy between NH3 and graphene was too small to fit for the experimental phenomenon, and there were few charges transferred between graphene and NH3 molecules, which was completely different from the experiment measurement. The adsorption energy between NH4 and graphene increased stage by stage which showed NH4 was a strong donor. The calculation suggested that H2O molecule could help a quick desorption of NH4 from graphene by converting NH4 to NH3 or (NH3)n(H2O)m groups, which was consistent with the experimental results. This study demonstrates that the ammonia gas produced by a bubble system of ammonia water is mainly ammonium groups of NH3 and NH4, and the NH4 moleculars are ideal candidates for the molecular doping of graphene while the interaction between graphene and the NH3 moleculars is weak.

  9. Temperature Effect on Boron Adsorption—Desorption Kinetics in Soils

    Institute of Scientific and Technical Information of China (English)

    ZHUDUANWEI; SHILEI; 等

    1999-01-01

    The effect of temperature on the properties of boron adsorption-desorption in brown-red soil,yellowbrown soil and calcareous alluvial soil of Hubei Province was investigated with the mobile displacement technique.The experimental data of B adsorption-desorption amounts and reaction time at 25 and 40℃ were fitted by the zero-order,first-order and parabolic diffusion kinetic equations.The adsorption process was in conformity with the parabolic diffusion law at both the temperatures,and the values of rate constant of the parabolic diffusion equation in B adsorption were 0.138,0.124 and 0.105 mg kg-1 min-1/2 at 25℃,and 0.147,0.146and 0.135mg kg-1 min1/2 at 40℃ for the brown-red soil,yellow-brown soil,and calcareous alluvial soil,respectively,The relationship between amount of B desorption and reaction time could be well described by the first-order kinetic equation,and the corresponding values of rate constant were 0.0422,0.0563 and 0.0384min-1 at 25℃,and 0.0408,0.0423 and 0.0401min-1 at 40℃ for the brown-red soil,the yellow-brown soil and the calcareous alluvial soil,respectively.Therefore,the desorption process of B might be related to the amount of B adsorbed in soil,The higher th temperature,the lower the amount of B adsorption of the same soil in the same reaction time,The values of the apparent activation energy of B adsorption in the three soils calculated with the rate constants of parabolic diffusion equation were 3.27,8.44 and 12.99 kJ mol-1,respectively,based on the experimental data of B adsorption amounts and reaction time at and 40℃.

  10. Study on adsorption and desorption of ammonia on graphene.

    Science.gov (United States)

    Zhang, Zhengwei; Zhang, Xinfang; Luo, Wei; Yang, Hang; He, Yanlan; Liu, Yixing; Zhang, Xueao; Peng, Gang

    2015-12-01

    The gas sensor based on pristine graphene with conductance type was studied theoretically and experimentally. The time response of conductance measurements showed a quickly and largely increased conductivity when the sensor was exposed to ammonia gas produced by a bubble system of ammonia water. However, the desorption process in vacuum took more than 1 h which indicated that there was a larger number of transferred carriers and a strong adsorption force between ammonia and graphene. The desorption time could be greatly shortened down to about 2 min by adding the flow of water-vapor-enriched air at the beginning of the recovery stage which had been confirmed as a rapid and high-efficiency desorption process. Moreover, the optimum geometries, adsorption energies, and the charge transfer number of the composite systems were studied with first-principle calculations. However, the theoretical results showed that the adsorption energy between NH3 and graphene was too small to fit for the experimental phenomenon, and there were few charges transferred between graphene and NH3 molecules, which was completely different from the experiment measurement. The adsorption energy between NH4 and graphene increased stage by stage which showed NH4 was a strong donor. The calculation suggested that H2O molecule could help a quick desorption of NH4 from graphene by converting NH4 to NH3 or (NH3)n(H2O)m groups, which was consistent with the experimental results. This study demonstrates that the ammonia gas produced by a bubble system of ammonia water is mainly ammonium groups of NH3 and NH4, and the NH4 moleculars are ideal candidates for the molecular doping of graphene while the interaction between graphene and the NH3 moleculars is weak.

  11. Laser Desorption Postionization for Imaging MS of Biological Material

    OpenAIRE

    Akhmetov, Artem; Moore, Jerry F.; Gasper, Gerald L.; Koin, Peter J.; Hanley, Luke

    2010-01-01

    Vacuum ultraviolet single photon ionization (VUV SPI) is a soft ionization technique that has the potential to address many of the limitations of MALDI for imaging MS. Laser desorption postionization (LDPI) employs VUV SPI for postionization and is experimentally analogous to a MALDI instrument with the addition of a pulsed VUV light source. This review discusses progress in LDPI-MS over the last decade, with an emphasis on imaging MS of bacterial biofilms, analytes whose high salt environmen...

  12. North Pacific Acoustic Laboratory and Deep Water Acoustics

    Science.gov (United States)

    2016-10-27

    Acoustic Lab and Deep Water Acoustics” Encl: (1) Final Technical Report for Subject Grant (2) SF298 for Enclosure Enclosure (1) is the Final...North Pacific Acoustic Laboratory and Deep Water Acoustics Final Report PI James A. Mercer Applied Physics Laboratory...During FY16 the primary effort has been working on manuscripts as summarized below: 1) A test of deep water Rytov theory at 284 Hz and 107 km in

  13. ACOUSTIC EMISSION ANALYZER

    Directory of Open Access Journals (Sweden)

    J. J. Almeida-Pérez

    2004-12-01

    Full Text Available In this paper appears a solution for acoustic emission analysis commonly known as noise. For the accomplishmentof this work a personal computer is used, besides sensors (microphones and boards designed and built for signalconditioning. These components are part of a virtual instrument used for monitoring the acoustical emission. Themain goal of this work is to develop a virtual instrument that supplies many important data as the result of ananalysis allowing to have information in an easy and friendly way. Moreover this information is very useful forstudying and resolving several situations in planning, production and testing areas.The main characteristics of the virtual instrument are: signal analysis in time, effective power measurement inDecibels (dB, average intensity taken from the principle of paired microphones, as well as the data analysis infrequency. These characteristics are included to handle two information channels.

  14. Acoustic absorption by sunspots

    Science.gov (United States)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  15. A Martian acoustic anemometer.

    Science.gov (United States)

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions.

  16. Electromagnetic acoustic imaging.

    Science.gov (United States)

    Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A

    2013-02-01

    Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.

  17. Radiosurgery of acoustic neurinomas

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J.C.; Lunsford, L.D.; Coffey, R.J.; Linskey, M.E.; Bissonette, D.J.; Maitz, A.H.; Kondziolka, D. (Univ. of Pittsburgh School of Medicine, PA (USA))

    1991-01-15

    Eighty-five patients with acoustic neurinomas underwent stereotactic radiosurgery with the gamma unit at the University of Pittsburgh (Pittsburgh, PA) during its first 30 months of operation. Neuroimaging studies performed in 40 patients with more than 1 year follow-up showed that tumors were smaller in 22 (55%), unchanged in 17 (43%), and larger in one (2%). The 2-year actuarial rates for preservation of useful hearing and any hearing were 46% and 62%, respectively. Previously undetected neuropathies of the trigeminal (n = 12) and facial nerves (n = 14) occurred 1 week to 1 year after radiosurgery (median, 7 and 6 months, respectively), and improved at median intervals of 13 and 8 months, respectively, after onset. Hearing loss was significantly associated with increasing average tumor diameter (P = 0.04). No deterioration of any cranial nerve function has yet developed in seven patients with average tumor diameters less than 10 mm. Radiosurgery is an important treatment alternative for selected acoustic neurinoma patients.

  18. Dicyandiamide Sorption-Desorption Behavior on Soils and Peat Humus

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-Jun; WU Zhi-Jie; ZHOU Qi-Xing

    2004-01-01

    The sorption-desorption behavior of dicyandiamide (DCD) is an important chemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCD sorption-desorption on a phaeozem (Mollisol), a burozem (Alfisol), a soil with organic matter-removed and peat humus using the batch-equilibration procedure, and identified soil properties that influenced DCD sorption. The sorption on peat humus was higher than that on the phaeozem and the burozem, with much lower sorption observed on the soil with organic matter-removed, indicating that soil organic matter was the main carrier of DCD sorption. Due to its amphipathic property the DCD molecule sorption on the phaeozem and the burozem decreased as pH increased from about 2 to 5, but a further increase in pH led to a rise in DCD sorption.The DCD desorption hysteretic effect for peat humus was greater than that for the phaeozem and the burozem using 0.01 mol L-1 CaC12 as the background electrolyte, suggesting that the hydrophobic domains of organic matter may play an important role in DCD sorption.

  19. Thermodynamic properties of water desorption of forage turnip seeds

    Directory of Open Access Journals (Sweden)

    Kelly Aparecida Sousa

    2014-11-01

    Full Text Available The purpose of this study was to determine the thermodynamic properties of the process of water sorption in forage turnip  seeds. The equilibrium moisture content of forage turnip  seeds was determined by the gravimetric-dynamic method for different values of temperature and water activity. According to the results, increasing the moisture content increases the energy required for the evaporation of water in forage turnip seeds, and the values of integral isosteric heat of desorption, within the moisture content range of 3.33 to 11.30 (% d.b., varies from 4,222.70 to 2,870.34 kJ kg-1. With the elevation in the equilibrium moisture content, there is an increase in differential entropy and Gibbs free energy, which has positive values, demonstrating non-spontaneity in the process of desorption in the seeds. The theory of enthalpy-entropy compensation can be satisfactorily applied to the sorption phenomenon, and the process of water desorption of forage turnip seeds is controlled by enthalpy.

  20. Hydrogen absorption and desorption in rapidly solidified Mg- Al alloys

    Science.gov (United States)

    Urgnani, J.; Di Chio, M.; Palumbo, M.; Feuerbacher, M.; Fernandez, J. F.; Leardini, F.; Baricco, M.

    2009-01-01

    The addition of Al to Mg has been indicated as a suitable way to destabilise the hydride phase, in order to bring the absorption and desorption reactions close to reasonable temperatures and pressure values for hydrogen storage. Rapid solidification is known to refine the microstructure of Mg-Al alloys and it might improve the H2 absorption/desorption kinetics. In this paper, the interaction of H2 with rapidly solidified Mg-Al alloys have been studied for three different composition: Mg38.5Al61.5, Mg69Al31 and Mg72Al28. For Mg72Al28, no significant changes in the microstructure have been obtained by rapid solidification. In Mg69Al31, a significant grain refinement has been observed, whereas, for Mg38.5Al61.5, the formation of a metastable hexagonal phase has been found. In all cases, a disproportionation reaction has been observed after H2 absorption, leading to MgH2. After heating up to 430 °C the hydrogenated samples, a main desorption reaction from MgH2 has been observed, which brings again to the starting phases. Experimental results have been discussed on the basis of a thermodynamic assessment of the Mg-Al-H system.

  1. Adsorption and desorption of bivalent metals to hematite nanoparticles.

    Science.gov (United States)

    Grover, Valerie A; Hu, Jinxuan; Engates, Karen E; Shipley, Heather J

    2012-01-01

    The use of commercially prepared hematite nanoparticles (37.0 nm) was studied as an adsorbent in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) from aqueous solutions. Single-metal adsorption was studied as a function of metal and adsorbent concentrations, whereas binary metal competition was found to be dependent on the molar ratio between the competing metals. Competitive effects indicated that Pb had strong homogenous affinity to the nanohematite surface, and decreased adsorption of Cd, Cu, and Zn occurred when Pb was present in a binary system. Metal adsorption strength to nanohematite at pH 6.0 increased with metal electronegativity: Pb > Cu > Zn ∼ Cd. Equilibrium modeling revealed that the Langmuir-Freundlich composite isotherm adequately described the adsorption and competitive effects of metals to nanohematite, whereas desorption was best described by the Langmuir isotherm. The desorption of metals from nanohematite was found to be pH dependent, with pH 4.0 > pH 6.0 > pH 8.0, and results showed that greater than 65% desorption was achieved at pH 4.0 within three 24-h cycles for all metals.

  2. Laser desorption lamp ionization source for ion trap mass spectrometry.

    Science.gov (United States)

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds.

  3. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  4. Rapid decompression and desorption induced energetic failure in coal

    Directory of Open Access Journals (Sweden)

    Shugang Wang

    2015-06-01

    Full Text Available In this study, laboratory experiments are conducted to investigate the rapid decompression and desorption induced energetic failure in coal using a shock tube apparatus. Coal specimens are recovered from Colorado at a depth of 610 m. The coal specimens are saturated with the strong sorbing gas CO2 for a certain period and then the rupture disc is suddenly broken on top of the shock tube to generate a shock wave propagating upwards and a rarefaction wave propagating downwards through the specimen. This rapid decompression and desorption has the potential to cause energetic fragmentation in coal. Three types of behaviors in coal after rapid decompression are found, i.e. degassing without fragmentation, horizontal fragmentation, and vertical fragmentation. We speculate that the characteristics of fracture network (e.g. aperture, spacing, orientation and stiffness and gas desorption play a role in this dynamic event as coal can be considered as a dual porosity, dual permeability, dual stiffness sorbing medium. This study has important implications in understanding energetic failure process in underground coal mines such as coal gas outbursts.

  5. Thermal Desorption of Water-Ice in the Interstellar Medium

    CERN Document Server

    Fraser, H J; McCoustra, M R S; Williams, D A; Fraser, Helen J.; Collings, Mark P.; Coustra, Martin R.S. Mc; Williams, David A.

    2001-01-01

    Water (H2O) ice is an important solid constituent of many astrophysical environments. To comprehend the role of such ices in the chemistry and evolution of dense molecular clouds and comets, it is necessary to understand the freeze-out, potential surface reactivity, and desorption mechanisms of such molecular systems. Consequently, there is a real need from within the astronomical modelling community for accurate empirical molecular data pertaining to these processes. Here we give the first results of a laboratory programme to provide such data. Measurements of the thermal desorption of H2O ice, under interstellar conditions, are presented. For ice deposited under conditions that realistically mimic those in a dense molecular cloud, the thermal desorption of thin films (~50 molecular layers) is found to occur with zero order kinetics characterised by a surface binding energy, E_{des}, of 5773 +/- 60 K, and a pre-exponential factor, A, of 10^(30 +/- 2) molecules cm^-2 s^-1. These results imply that, in the den...

  6. Sorption and desorption of silver ions by bentonite clays.

    Science.gov (United States)

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Monteiro, Alessandra Maffei; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2017-04-01

    Anthropogenic activities have increased the concentration of metal species in the environment. The toxicity of silver ions to aquatic and terrestrial organisms has required monitoring by analytical methods, besides actions to promote its control as pollutant. Sorption and desorption processes are directly related to the mobility and availability of metal ions in the environment. In this context, clay minerals can be used for pre-concentration, removal and recovery of silver ions from aqueous solution. Herein, two bentonite clays (BaVC-1 and SWy-2) were characterised and applied to investigate the sorption and desorption of silver ions. Isotherms were fitted to the dual-mode Langmuir-Freundlich model to qualify and quantify sorption sites and evaluate the mobilisation process. The maximum sorption capacity was 743 and 849 meq kg(-1) for BaVC-1 and SWy-2, respectively. Hysteresis index (HI) and mobilisation factor (MF) suggest that the desorption of silver ions in BaVC-1 is about four times more conducive compared to that in SWy-2, although both materials have demonstrated a great potential for Ag(+) pre-concentration from aqueous solutions.

  7. Improved hydrogen desorption from lithium hydrazide by alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang, E-mail: liangzeng@hiroshima-u.ac.jp [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Miyaoka, Hiroki [Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2013-12-15

    Highlights: •LiH can dramatically improve the hydrogen desorption properties of LiNHNH{sub 2}. •KH doping had positive effect in promoting the hydrogen desorption properties of LiNHNH{sub 2}–LiH mixture. •The reaction mechanism between LiNHNH{sub 2} and LiH was studied and discussed. -- Abstract: Lithium hydrazide (LiNHNH{sub 2}), which is a white solid with 8.0 mass% of theoretical hydrogen content, was synthesized from a reaction between anhydrous hydrazine and n-butyllithium in diethyl ether. The thermodynamic properties of this compound and its detailed decomposition pathways had been investigated in our previous work. However, a number of undesired gaseous products such as hydrazine (N{sub 2}H{sub 4}) and ammonia (NH{sub 3}) were generated during the thermal decomposition of LiNHNH{sub 2}. In this work, alkali metal hydride was used to suppress the impurities in the desorbed hydrogen and improved the hydrogen desorption properties. The reaction mechanism between LiNHNH{sub 2} and LiH was also studied and discussed in this paper.

  8. Thermal desorption of circumstellar and cometary ice analogs

    CERN Document Server

    Martín-Doménech, Rafael; Bueno, Juan; Goesmann, Fred

    2014-01-01

    Thermal annealing of interstellar ices takes place in several stages of star formation. Knowledge of this process comes from a combination of astronomical observations and laboratory simulations under astrophysically relevant conditions. For the first time we present the results of temperature programmed desorption (TPD) experiments with pre-cometary ice analogs composed of up to five molecular components: H2 O, CO, CO2, CH3 OH, and NH3 . The experiments were performed with an ultra-high vacuum chamber. A gas line with a novel design allows the controlled preparation of mixtures with up to five molecular components. Volatiles desorbing to the gas phase were monitored using a quadrupole mass spectrometer, while changes in the ice structure and composition were studied by means of infrared spectroscopy. The TPD curves of water ice containing CO, CO2, CH3 OH, and NH3 present desorption peaks at temperatures near those observed in pure ice experiments, volcano desorption peaks after water ice crystallization, and...

  9. Hydrogen absorption and desorption in rapidly solidified Mg- Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Urgnani, J; Di Chio, M; Palumbo, M; Baricco, M [Dipartimento di Chimica I.F.M. and NIS, Universita di Torino, via P. Giuria, 10125, Torino (Italy); Feuerbacher, M [Institut fuer Mikrostrukturforschung, Forschungszentrum Juelich GmbH, Leo-Brand- Strasse, 52428 Juelich (Germany); Fernandez, J F; Leardini, F, E-mail: jacopo.urgnani@unito.i [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049, Madrid (Spain)

    2009-01-01

    The addition of Al to Mg has been indicated as a suitable way to destabilise the hydride phase, in order to bring the absorption and desorption reactions close to reasonable temperatures and pressure values for hydrogen storage. Rapid solidification is known to refine the microstructure of Mg-Al alloys and it might improve the H{sub 2} absorption/desorption kinetics. In this paper, the interaction of H{sub 2} with rapidly solidified Mg-Al alloys have been studied for three different composition: Mg{sub 38.5}Al{sub 61.5}, Mg{sub 69}Al{sub 31} and Mg{sub 72}Al{sub 28}. For Mg{sub 72}Al{sub 28}, no significant changes in the microstructure have been obtained by rapid solidification. In Mg{sub 69}Al{sub 31}, a significant grain refinement has been observed, whereas, for Mg{sub 38.5}Al{sub 61.5}, the formation of a metastable hexagonal phase has been found. In all cases, a disproportionation reaction has been observed after H{sub 2} absorption, leading to MgH{sub 2}. After heating up to 430 deg. C the hydrogenated samples, a main desorption reaction from MgH{sub 2} has been observed, which brings again to the starting phases. Experimental results have been discussed on the basis of a thermodynamic assessment of the Mg-Al-H system.

  10. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-12-22

    deflection”, by Heaney and Campbell , was published in JASA in February of 2016. This paper introduces the Peregrine model to the community and...diffraction of basin-scale hydroacoustic signals”, by Heaney, Campbell and Mark Prior (TNO/CTBTO) describing observations and modeling of seismic events...signals” by Kevin D. Heaney, Richard L. Campbell and Mark Prior, and it was re- submitted to Journal of the Acoustical Society of America on August 30

  11. Acoustic Characterization of Soil

    Science.gov (United States)

    2007-11-02

    ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Dept. of Electrical & Computer Enginnering Dept Natural Resources...same transduction device is used for transmit and receive, and the broad-band mechanical matching between the transduction device and the acoustic...has a direct influence over the imaging depth for a given dynamic range. Figure 10 demonstrated the influence of the roundtrip propagation loss as a

  12. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.

    2010-07-01

    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  13. Acoustic Communications for UUVs

    Science.gov (United States)

    2016-06-07

    through use of high-gain, error-control coding coupled with a modified decision feedback equalizer (DFE) which allows the gain to be exploited prior to...finished it wait for feedback from the receiver. At the host each packet is decoded and displayed if it is correct, or added to a list of bad packets if it...Systems Laboratory, Florida Alantic University, July 1998. L. Freitag el al: ‘A Bidriectional Coherent Acoustic Communications Systems for Underwater

  14. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials; Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Markus

    2008-02-22

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  15. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  16. Acoustically enhanced heat transport

    Science.gov (United States)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  17. Latest Trends in Acoustic Sensing

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  18. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  19. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  20. Wireless Acoustic Measurement System

    Science.gov (United States)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  1. Acoustic Imaging of Combustion Noise

    Science.gov (United States)

    Ramohalli, K. N.; Seshan, P. K.

    1984-01-01

    Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.

  2. Spacecraft Internal Acoustic Environment Modeling

    Science.gov (United States)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  3. Acoustic streaming with heat exchange

    Science.gov (United States)

    Gubaidullin, A. A.; Pyatkova, A. V.

    2016-10-01

    Acoustic streaming in a cylindrical cavity with heat exchange is numerically investigated. The cavity is filled with air. The boundaries of the cavity are maintained at constant temperature. The features of acoustic streaming manifesting with the decrease in the frequency of vibration in comparison with the resonant frequency are determined. The influence of the nonlinearity of process on acoustic streaming is shown. The nonlinearity is caused by the increase of the vibration amplitude.

  4. {sup 252}Cf plasma desorption and laser desorption mass spectrometry for the determination of molecular weight distribution of coal derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.R.; Bartle, K.D.; Ross, A.B.; Herod, A.A.; Kandiyoti, R.; Larsen, J.W. [University of Leeds, Leeds (United Kingdom). School of Chemistry

    1999-11-01

    A detailed knowledge of the molecular mass (MM) distribution in coal and its derived products is essential for a fundamental understanding of coal structure, and of the processes occurring during coal conversion. Fractionation using size exclusion chromatography (s.e.c.) using N-methyl-2-pyrrolidinone as the mobile phase has been applied to such materials and has provided improved MM distributions. Absolute calibration has been provided using matrix assisted laser desorption ionisation mass spectrometry (MAl.d.I.-m.s.). An alternative method of volatilising and ionising large molecules for mass spectrometry (m.s.) is {sup 252}Cf plasma desorption ({sup 252}Cf p.d.-m.s.). This involves the use of energetic fission fragments from the decay of {sup 252}Cf and produces mass spectra consisting predominantly of molecular ions from a range of polymers and biomolecules. This has been used by other workers to determine the molecular weight distribution of heavy distillation residues obtained from coal liquefaction processes either unfractionated or fractionated into broad fractions. Generally, a good agreement was obtained between values of MM determined by {sup 252}Cf p.d.-m.s. and s.e.c. A comparison is reported of MM distribution determined by {sup 252}Cf p.d.-m.s. and laser desorption mass spectrometry (l.d.-m.s.) for narrower fractions separated by s.e.c. from a coal tar pitch. 19 refs., 4 figs., 1 tab.

  5. Acoustic Communications Measurement Systems (ACOMMS)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Design and develop adaptive signal processing techniques to improve underwater acoustic communications and networking. Phase coherent and incoherent signal...

  6. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  7. Combined Environment Acoustic Chamber (CEAC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  8. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...... coefficients that are used in order to describe surface scattering (roughness of material) as well as scattering of reflected sound caused by limited surface size (diffraction). A method which combines scattering caused by diffraction due to surface dimensions, angle of incidence and incident path length...

  9. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  10. Desorption Kinetics and Mechanisms of CO2 on Amine-Based Mesoporous Silica Materials

    Directory of Open Access Journals (Sweden)

    Yang Teng

    2017-01-01

    Full Text Available Tetraethylenepentamine (TEPA-based mesoporous MCM-41 is used as the adsorbent to determine the CO2 desorption kinetics of amine-modified materials after adsorption. The experimental data of CO2 desorption as a function of time are derived by zero-length column at different temperatures (35, 50, and 70 °C and analyzed by Avrami’s fractional-order kinetic model. A new method is used to distinguish the physical desorption and chemical desorption performance of surface-modified mesoporous MCM-41. The activation energy Ea of CO2 physical desorption and chemical desorption calculated from Arrhenius equation are 15.86 kJ/mol and 57.15 kJ/mol, respectively. Furthermore, intraparticle diffusion and Boyd’s film models are selected to investigate the mechanism of CO2 desorption from MCM-41 and surface-modified MCM-41. For MCM-41, there are three rate-limiting steps during the desorption process. Film diffusion is more prominent for the CO2 desorption rates at low temperatures, and pore diffusion mainly governs the rate-limiting process under higher temperatures. Besides the surface reaction, the desorption process contains four rate-limiting steps on surface-modified MCM-41.

  11. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  12. Acoustic Mechanical Feedthroughs

    Science.gov (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  13. Frequency steerable acoustic transducers

    Science.gov (United States)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  14. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  15. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-12-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  16. Taming Acoustic Cavitation

    CERN Document Server

    Rivas, David Fernandez; Enriquez, Oscar R; Versluis, Michel; Prosperetti, Andrea; Gardeniers, Han; Lohse, Detlef

    2012-01-01

    In this fluid dynamics video we show acoustic cavitation occurring from pits etched on a silicon surface. By immersing the surface in a liquid, gas pockets are entrapped in the pits which upon ultrasonic insonation, are observed to shed cavitation bubbles. Modulating the driving pressure it is possible to induce different behaviours based on the force balance that determines the interaction among bubbles and the silicon surface. This system can be used for several applications like sonochemical water treatment, cleaning of surfaces with deposited materials such as biofilms.

  17. Acoustic Center or Time Origin?

    DEFF Research Database (Denmark)

    Staffeldt, Henrik

    1999-01-01

    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  18. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  19. Acoustic Ground-Impedance Meter

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.

  20. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabio [BIOAGRI Labs., Piracicaba, SP (Brazil). Div. de Quimica. Lab. de Radioquimica; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Ciencias Exatas; Lavorenti, Arquimedes [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Secao de Toxicologia

    2003-03-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh{sub 2}PO{sub 4} at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha{sup -1} of P{sub 2}O{sub 5}, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L{sup -1}), with a {sup 14}C radioactivity of 0.233 kBq mL{sup -1}. Four steps of the desorption procedures withCaCl{sub 2} 0.01 mol L{sup -1} and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L{sup -1}). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm{sup -3}. Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  1. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Directory of Open Access Journals (Sweden)

    Prata Fábio

    2003-01-01

    Full Text Available The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with KH2PO4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha-1 of P2O5, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L-1, with a 14C radioactivity of 0.233 kBq mL-1. Four steps of the desorption procedure with CaCl2 0.01 mol L-1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L-1. Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm-3. Moreover, a small amount of applied glyphosate was extracted (<10%, and the extraction increased with increasing soil phosphorus content.

  2. Determination of Surface Exciton Energies by Velocity Resolved Atomic Desorption

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Wayne P.; Joly, Alan G.; Beck, Kenneth M.; Sushko, Petr V.; Shluger, Alexander L.

    2004-08-20

    We have developed a new method for determining surface exciton band energies in alkali halides based on velocity-resolved atomic desorption (VRAD). Using this new method, we predict the surface exciton energies for K1, KBr, KC1, and NaC1 within +0.15 eV. Our data, combined with the available EELS data for alkali fluorides, demonstrate a universal linear correlation with the inverse inter-atomic distance in these materials. The results suggest that surface excitons exist in all alkali halides and their excitation energies can be predicted from the known bulk exciton energies and the obtained correlation plot.

  3. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... prior to the detection by MIMS. The gaseous sample is simply adsorbed on the adsorbent, which is then rapidly heated from 30 degrees C to 250 degrees C at a rate of 50 degrees C/min, Trapped organic compounds are released from the adsorbent into a helium stream at different temperatures depending...

  4. Desorption Techniques for Determination of Metals Mobility in Soils

    Directory of Open Access Journals (Sweden)

    P. Bartoš

    2002-01-01

    Full Text Available Three leaching techniques for assessment of fixed and mobile metal or radionuclides in soils are demonstrated on radiocaesium speciation. A new leaching technique based on the variation of the leaching solution volume to solid phase amount is proposed. It enables parallel treatment of large numbers of samples and, therefore, is suitable for a routine analysis of contaminant mobility in soils. As a leaching solution, 1 M ammonium acetate is proposed for caesium, but any other desorption solution harmonised with existing speciation schemes can be used.

  5. SVSCf plasma desorption mass spectrometry: recent advances and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kamensky, I.; Craig, A.G.

    1987-01-01

    SVSCf plasma desorption mass spectrometry (PDMS) as utilized in the BIO-ION instruments is described. The sensitivity of the technique is investigated for varying amounts of bovine insulin. The results show accurate mass assignment for pmole amounts of sample. Several methods, currently used for sample preparation in PDMS, are described. Spectra of the antibiotic nisin using two different sample preparation techniques show significant variation. The fragmentation pattern of reduced acetylated maltoheptaose is also presented. The initial results obtained using a new PDMS instrument equipped with variable flight path are shown. The increased resolution is illustrated using the extended flight path to measure the molecular ion region of the maltoheptaose.

  6. DESORPTION OF VOCs FROM POLYMERIC ADSORBENTS UNDER MICROWAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Desorption of volatile organic compounds (VOCs)from polymeric adsorbents by microwave was investigated experimentally. Two kinds of organic compounds, benzene and toluene,were separately used as adsorbates in this work. Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration, but also make the temperatures of the fixed beds much lower than that when using the heat regeneratton The weaker the polarity of a polymeric adsorbent, the easier its regeneration was.

  7. DESORPTION OF VOCs FROM POLYMERIC ADSORBENTS UNDER MICROWAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    LIXiang; LIZhong; 等

    2001-01-01

    Desorption of volatile organic compounds(VOCs) from polymeric adsorbents by microwave was investigated experimentally.Two kinds of organic compounds.benzene and toluene.were separately used as adsorbates in this work Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration,but also make the temperatures of the fixed beds much lower than that when using the heat regeneration the weaker the polarity of a polymericadsorbent,the easier its regeneration was.

  8. Surface oxidation and water desorption of CdS

    Institute of Scientific and Technical Information of China (English)

    陈正石; 李庆霖; 金振声

    1996-01-01

    The surface oxidation and HP desorption of powder CdS were studied by means of X-ray photoetectron spectroscopy (XPS), quadrupole mass spectrometry (QMS) and in-situ FTIR. The results show that with the changes of surface composition and the elongation of store time of CdS there are four types of H2O thermally desorbed at different temperatures. It has also been found that through high-temperature air treatment for a short time the oxidized surface layer of CdS can prevent O2 and H2O in air from further attacking the inner CdS molecules.

  9. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  10. Acoustic Absorption in Porous Materials

    Science.gov (United States)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  11. Wastewater treatment with acoustic separator

    Science.gov (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian

    2017-07-01

    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  12. Orbital dynamics of a solar sail accelerated by thermal desorption of coatings

    OpenAIRE

    2016-01-01

    In this study we considered a solar sail coated with materials that undergo thermal desorption at a specific temperature, as a result of heating by solar radiation at a particular heliocentric distance. Three different scenarios, that only differ in the way the sail approaches the Sun, were analyzed and compared. In every case once the perihelion is reached, the sail coat undergoes thermal desorption. When the desorption process ends, the sail then escapes the Solar System having the conventi...

  13. Site Specificity in Femtosecond Laser Desorption of Neutral H Atoms from Graphite(0001)

    DEFF Research Database (Denmark)

    Frigge, R.; Hoger, T.; Siemer, B.;

    2010-01-01

    Femtosecond laser excitation and density functional theory reveal site and vibrational state specificity in neutral atomic hydrogen desorption from graphite induced by multiple electronic transitions. Multimodal velocity distributions witness the participation of ortho and para pair states...... of chemisorbed hydrogen in the desorption process. Very slow velocities of 700 and 400  ms-1 for H and D atoms are associated with the desorption out of the highest vibrational state of a barrierless potential....

  14. Desorption of metals from Cetraria islandica (L. Ach. Lichen using solutions simulating acid rain

    Directory of Open Access Journals (Sweden)

    Čučulović Ana A.

    2014-01-01

    Full Text Available Desorption of metals K, Al, Ca, Mg, Fe, Ba, Zn, Mn, Cu and Sr from Cetraria islandica (L. with solutions whose composition was similar to that of acid rain, was investigated. Desorption of metals from the lichen was performed by five successive desorption processes. Solution mixtures containing H2SO4, HNO3 and H2SO4-HNO3 were used for desorption. Each solution had three different pH values: 4.61, 5.15 and 5.75, so that the desorptions were performed with nine different solutions successively five times, always using the same solution volume. The investigated metals can be divided into two groups. One group was comprised of K, Ca and Mg, which were desorbed in each of the five desorption processes at all pH values used. The second group included Al, Fe, Zn, Ba, Mn and Sr; these were not desorbed in each individual desorption and not at all pH values, whereas Cu was not desorbed at all under any circumstances. Using the logarithmic dependence of the metal content as a function of the desorption number, it was found that potassium builds two types of links and is connected with weaker links in lichen. Potassium is completely desorbed, 80% in the first desorption, and then gradually in the following desorptions. Other metals are linked with one weaker link (desorption 1-38% and with one very strong link (desorption below the metal detection limit. [Projekat Ministarstva nauke Republike Srbije, br. III43009 i br. ON 172019

  15. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  16. Acoustic data transmission method

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, A.

    1991-09-17

    This patent describes a method for transmitting time line data through a drillstring having drill pipe sections connected end-to-end by joints from a first location below the surface of the earth to a second location at or near the surface of the earth, the length and cross-sectional area of the drill pipe sections being different from the length and cross-sectional area of the joints. It comprises generating acoustic data signals having a single frequency content in at least one passband of the drillstring; transmitting the data signals through the drillstring from either the first location to the second location or from the second location to the first location during a time period prior to the onset of reflective interference caused by the data signals reflecting from along the length of the drillstring, the time period being equal to or less than the time for the data signals to travel three lengths of the drillstring; stopping the transmission of data signals at the onset of the reflective interference and allowing the acoustic signals to substantially attenuate; and detecting the data signals at the respective first or second location.

  17. [Acoustical parameters of toys].

    Science.gov (United States)

    Harazin, Barbara

    2010-01-01

    Toys play an important role in the development of the sight and hearing concentration in children. They also support the development of manipulation, gently influence a child and excite its emotional activities. A lot of toys emit various sounds. The aim of the study was to assess sound levels produced by sound-emitting toys used by young children. Acoustical parameters of noise were evaluated for 16 sound-emitting plastic toys in laboratory conditions. The noise level was recorded at four different distances, 10, 20, 25 and 30 cm, from the toy. Measurements of A-weighted sound pressure levels and noise levels in octave band in the frequency range from 31.5 Hz to 16 kHz were performed at each distance. Taking into consideration the highest equivalent A-weighted sound levels produced by tested toys, they can be divided into four groups: below 70 dB (6 toys), from 70 to 74 dB (4 toys), from 75 to 84 dB (3 toys) and from 85 to 94 dB (3 toys). The majority of toys (81%) emitted dominant sound levels in octave band at the frequency range from 2 kHz to 4 kHz. Sound-emitting toys produce the highest acoustic energy at the frequency range of the highest susceptibility of the auditory system. Noise levels produced by some toys can be dangerous to children's hearing.

  18. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...... reveals presence of a true emission from all ears tested. It is concluded that the cochlear echo can be recorded in normal-hearing newborns with an extremely low rate of type I errors.......Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...... a minor effect on the power spectra, i.e. the maximum jumps from one spectral peak to another. Experiments with deconvolution demonstrate that the emission generating system at least at a fixed intensity can be regarded as being linear and characterized by its impulse response which is similar...

  19. Simple sample transfer technique by internally expanded desorptive flow for needle trap devices.

    Science.gov (United States)

    Eom, In-Yong; Pawliszyn, Janusz

    2008-07-01

    Needle trap devices (NTDs) are improving in simplicity and usefulness for sampling volatile organic compounds (VOCs) since their first introduction in early 2000s. Three different sample transfer methods have been reported for NTDs to date. All methods use thermal desorption and simultaneously provide desorptive flow to transfer desorbed VOCs into a GC separation column. For NTDs having 'side holes', GC carrier gas enters a 'side hole' and passes through sorbent particles to carry desorbed VOCs, while for NTD not having a 'side hole', clean air as desorptive flow can be provided through a needle head by a air tight syringe to sweep out desorbed VOCs or water vapor has been reported recently to be used as desorptive flow. We report here a new simple sample transfer technique for NTDs, in which no side holes and an external desorptive flow are required. When an NTD enriched by a mixture of benzene, toluene, ethylbenzene, and xylene (BTEX) or n-alkane mixture (C6-C15) is exposed to the hot zone of GC injector, the expanding air above the packed sorbent transfers the desorbed compounds from the sorbent to the GC column. This internal air expansion results in clean and sharp desorption profiles for BTEX and n-alkane mixture with no carryover. The effect of desorption temperature, desorption time, and overhead volumes was studied. Decane having vapor pressure of approximately 1 Torr at 20 degrees C showed approximately 1% carryover at the moderate thermal desorption condition (0.5 min at 250 degrees C).

  20. 2nd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Menzel, Dietrich

    1985-01-01

    The second workshop on Desorption Induced by Electronic Transitions (DIET II) took place October 15-17, 1984, in SchloB Elmau, Bavaria. DIET II, fol­ lowing the great success of DIET I (edited by N. H. Tolk, M. M. Traum, J. C. Tully, T. E. Madey and published in Springer Ser. Chem. Phys. , Vol. 24), again brought together over 60 workers in this exciting field. The "hard co­ re of experts" was essentially the same as in DIET I but the general overlap of participants between the two meetings was small. While DIET I had the function of an exposition of the status of the field DIET II focussed more on new developments. The main emphasis was again on the microscopic under­ standing of DIET but a number of side aspects and the application of DIET ideas to other fields such as sputtering, laser-induced desorption, fractu­ re, erosion, etc. were considered, too. New mechanisms and new refined expe­ rimental techniques were proposed and discussed at the meeting critically but with great enthusiasm. In addition t...

  1. 3rd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Knotek, Michael

    1988-01-01

    These proceedings are the result of the third international workshop on Desorption Induced by Electronic Transitions, DIET III, which took place on Shelter Island, NY, May. 20-22, 1987. The work contained in this volume is an excellent summary of the current status of the field and should be a valuable reference text for both "seasoned" researchers and newcomers in the field of DIET. Based on the success of the meeting it seems clear that interest and enthusiasm in the field is strong. It is also apparent, from the many lively discussions during the meeting, that many unanswered questions (and controversies) remain to be solved. It was particularly pleasing to see many new participants from new and rapidly advancing fields, ranging from gas phase dynamics to semiconductor processing. The resulting cross-fertilization from these separate but related fields is playing an important role in helping us understand desorption processes at solid surfaces. In general, the topics covered during the course of the worksh...

  2. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  3. 5th International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Jennison, Dwight R; Stechel, Ellen B; DIET V; Desorption induced by electronic transitions

    1993-01-01

    This volume in the Springer Series on Surface Sciences presents a recent account of advances in the ever-broadening field of electron-and photon-stimulated sur­ face processes. As in previous volumes, these advances are presented as the proceedings of the International Workshop on Desorption Induced by Electronic Transitions; the fifth workshop (DIET V) was held in Taos, New Mexico, April 1-4, 1992. It will be abundantly clear to the reader that "DIET" is not restricted to desorption, but has for several years included photochemistry, non-thermal surface modification, exciton self-trapping, and many other phenomena that are induced by electron or photon bombardment. However, most stimulated surface processes do share a common physics: initial electronic excitation, localization of the excitation, and conversion of electronic energy into nuclear kinetic energy. It is the rich variation of this theme which makes the field so interesting and fruitful. We have divided the book into eleven parts in orde...

  4. The cooling effect by adsorption-desorption cycles

    Directory of Open Access Journals (Sweden)

    Wolak Eliza

    2017-01-01

    Full Text Available Adsorption appliances may turn out to be an alternative to compression-type refrigerators. The adsorption refrigeration machine may be driven by a low-grade heat source, especially solar energy. Solar adsorption cooling systems are environment-friendly and have zero ozone depletion potential. Therefore, the adsorption refrigeration is one kind of energy saving refrigeration methods. The merits of the adsorption refrigeration systems will be more significant especially when it is used in vehicles (automobiles, ships and locomotives, to preserve food and medicines and in air-conditioning. The paper presents the advantages and disadvantages as well as the evolution of the technology of adsorptive refrigeration systems. The methods of improving of adsorption refrigeration systems through improvements in adsorbents properties, use of advanced cycles and hybrid systems is also presented. Possible applications and perspectives for development of adsorption cooling systems are also analyzed. The paper describes a test stand of the adsorption-desorption refrigeration. The present investigations have been carried out utilizing the activated carbon granules as an adsorbent and methanol as an adsorbate. The paper demonstrates the measurement of temperature changes in the adsorbent bed and condenser during adsorption-desorption cycles.

  5. Wheat Growth in Soils Treated by Ex Situ Thermal Desorption.

    Science.gov (United States)

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Wick, Abbey F; Khan, E

    2017-07-01

    Successful remediation of oil-contaminated agricultural land may include the goal of returning the land to prespill levels of agricultural productivity. This productivity may be measured by crop yield, quality, and safety, all of which are influenced by soil characteristics. This research was conducted to determine if these metrics are affected in hard red spring wheat ( L. cultivar Barlow) when grown in soils treated by ex situ thermal desorption (TD) compared with wheat grown in native topsoil (TS). Additionally, TD soils were mixed with TS at various ratios to assess the effectiveness of soil mixing as a procedure for enhancing productivity. In two greenhouse studies, TD soils alone produced similar amounts of grain and biomass as TS, although grain protein in TD soils was 22% (±7%) lower. After mixing TS into TD soils, the mean biomass and grain yield were reduced by up to 60%, but grain protein increased. These trends are likely the result of nutrient availability determined by soil organic matter and nutrient cycling performed by soil microorganisms. Thermal desorption soil had 84% (±2%) lower soil organic carbon than TS, and cumulative respiration was greatly reduced (66 ± 2%). From a food safety perspective, grain from TD soils did not show increased uptake of polycyclic aromatic hydrocarbons. Overall, this research suggests that TD soils are capable of producing safe, high-quality grain yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Thermally assisted desorption processes in electron bombarded alkali halides

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziej, J.; Czuba, P.; Piatkowski, P.; Postawa, Z.; Kempter, V.; Szymonski, M. (Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki)

    The desorption of alkali and halogen atoms induced by the interaction of energetic electrons with surfaces of alkali halide crystals has been studied by means of an angular-resolved and mass-selected time-of-flight spectroscopy. It has been found that a considerable fraction of halogen atoms was ejected with hyperthermal energies of the order of 0.1 eV. However, alkali atoms and the remaining part of halogen emission had thermal (Maxwellian) spectra of kinetic energies. In this paper we will report on systematic investigations of these thermal desorption processes for single crystal (100) NaCl, KCl, KBr, RbBr, and Kl surfaces. The relative yield of the thermal component has been measured as a function of electron beam energy and beam current density at various sample temperatures. It will be shown that thermal halogen emission can be explained by thermally assisted diffusion of interstitial halogen atoms produced in the bulk of the crystal from decaying self-trapped excitons. The origin of the alkali atom component will be described as due to neutralization and subsequent thermal evaporation of excess alkali atoms from the halogen deficient surface. (Author).

  7. Laser desorption postionization for imaging MS of biological material.

    Science.gov (United States)

    Akhmetov, Artem; Moore, Jerry F; Gasper, Gerald L; Koin, Peter J; Hanley, Luke

    2010-02-01

    Vacuum ultraviolet single photon ionization (VUV SPI) is a soft ionization technique that has the potential to address many of the limitations of matrix-assisted laser desorption/ionization (MALDI) for imaging MS. Laser desorption postionization (LDPI) uses VUV SPI for postionization and is experimentally analogous to a MALDI instrument with the addition of a pulsed VUV light source. This review discusses progress in LDPI-MS over the last decade, with an emphasis on imaging MS of bacterial biofilms, analytes whose high salt environment make them particularly resistant to imaging by MALDI-MS. This review first considers fundamental aspects of VUV SPI including ionization mechanisms, cross sections, quantum yields of ionization, dissociation and potential mass limits. The most common sources of pulsed VUV radiation are then described along with a newly constructed LDPI-MS instrument with imaging capabilities. Next, the detection and imaging of small molecules within intact biofilms is demonstrated by LDPI-MS using 7.87 eV (157.6 nm) VUV photons from a molecular fluorine excimer laser, followed by the use of aromatic tags for detection of selected species within the biofilm. The final section considers the future prospects for imaging intact biological samples by LDPI-MS. Copyright 2010 John Wiley & Sons, Ltd.

  8. Laser desorption VUV postionization MS imaging of a cocultured biofilm.

    Science.gov (United States)

    Bhardwaj, Chhavi; Moore, Jerry F; Cui, Yang; Gasper, Gerald L; Bernstein, Hans C; Carlson, Ross P; Hanley, Luke

    2013-09-01

    Laser desorption postionization mass spectrometry (LDPI-MS) imaging is demonstrated with a 10.5 eV photon energy source for analysis and imaging of small endogenous molecules within intact biofilms. Biofilm consortia comprised of a synthetic Escherichia coli K12 coculture engineered for syntrophic metabolite exchange are grown on membranes and then used to test LDPI-MS analysis and imaging. Both E. coli strains displayed many similar peaks in LDPI-MS up to m/z 650, although some observed differences in peak intensities were consistent with the appearance of byproducts preferentially expressed by one strain. The relatively low mass resolution and accuracy of this specific LDPI-MS instrument prevented definitive assignment of species to peaks, but strategies are discussed to overcome this shortcoming. The results are also discussed in terms of desorption and ionization issues related to the use of 10.5 eV single-photon ionization, with control experiments providing additional mechanistic information. Finally, 10.5 eV LDPI-MS was able to collect ion images from intact, electrically insulating biofilms at ~100 μm spatial resolution. Spatial resolution of ~20 μm was possible, although a relatively long acquisition time resulted from the 10 Hz repetition rate of the single-photon ionization source.

  9. Desorption of alkali atoms from 4He nanodroplets.

    Science.gov (United States)

    Hernando, Alberto; Barranco, Manuel; Pi, Martí; Loginov, Evgeniy; Langlet, Marina; Drabbels, Marcel

    2012-03-21

    The dynamics following the photoexcitation of Na and Li atoms located on the surface of helium nanodroplets has been investigated in a joint experimental and theoretical study. Photoelectron spectroscopy has revealed that excitation of the alkali atoms via the (n + 1)s ←ns transition leads to the desorption of these atoms. The mean kinetic energy of the desorbed atoms, as determined by ion imaging, shows a linear dependence on excitation frequency. These experimental findings are analyzed within a three-dimensional, time-dependent density functional approach for the helium droplet combined with a Bohmian dynamics description of the desorbing atom. This hybrid method reproduces well the key experimental observables. The dependence of the observables on the impurity mass is discussed by comparing the results obtained for the (6)Li and (7)Li isotopes. The calculations show that the desorption of the excited alkali atom is accompanied by the creation of highly non-linear density waves in the helium droplet that propagate at supersonic velocities.

  10. Sorption and desorption of dyes by sulfonated coal

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, A.K. (Motilal Nehru Regional Coll. of Engineering, Allahabad (India)); Venkobachar, C. (Indian Inst. of Tech., Kanpur (India))

    Wastewaters from dye-manufacturing factories and textile, paper, and pulp industries are highly colored. Their discharge into river waters make the water inhibitory to aquatic life, aside from causing, visible pollution. Dyes have a tendency to sequester metals, thus causing microtoxicity to fish and other aquatic organisms. A wide variety of low-cost materials such as flyash, clay minerals, coal, tire chippings, coconut shell powder and biosorbents are being tried as viable substitutes for activated carbon to remove different pollutants such as pesticides, heavy metals, and dyes. The removal of dyes depends upon their physical and chemical characteristics, as well as the properties of the selected sorbents. To understand the nature of the chemical bonding between dyes and sorbents during the sorption process, it is essential to conduct desorption studies. The reversibility of adsorption of dyes can also be determined by a simple mathematical equation. These studies provide information on whether or not the sorbent material can be regenerated after exhaustion. The present study focuses on sorption-desorption of dyes by sulfonated coal, whose dye sorption potential was established by Mittal and Venkobachar (1990).

  11. Adsorption and desorption on coals for CO2 sequestration

    Institute of Scientific and Technical Information of China (English)

    WANG Zuo-tang; FU Zhen-kun; ZHANG Ban-gan; WANG Guo-xiong; RUDOLPH Victor; HUO Li-wen

    2009-01-01

    Adsorption and desorption of carbon dioxide, methane and other gases on coals has been investigated experimentally using representative Zhongliangshan coals. Gas adsorption is one of the major concerns for both CO2 sequestration and methane recovery processes. The experiments were carried out using both single and multi-component mixtures at 25 ℃ and 30 ℃ with the highest pressure of 12 MPa. The coal was under moisture equilibrated conditions. This provides experimental data from which a predictive assessment of CO2 sequestration and/or methane recovery can be conducted. The results show that for pure gasses the CH4 adsorption capacity is higher than the N2 adsorption capacity but lower than the CO2 adsorption capacity. Injection of CO2 or other gases into the coal significantly affects CH4 desorption. This allows the enhancement of CH4 recovery from the coals, thus supplying more clean energy while sequestering significant amounts of CO2 thereby reducing the greenhouse effect from human beings.

  12. Thermal desorption of PCBs from contaminated soil with copper dichloride.

    Science.gov (United States)

    Liu, Jie; Qi, Zhifu; Li, Xiaodong; Chen, Tong; Buekens, Alfons; Yan, Jianhua; Ni, Mingjiang

    2015-12-01

    Copper dichloride is an important catalyst both in the dechlorination of chlorinated aromatic compounds and the formation of PCDD/Fs. The effect of copper dichloride on polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) was studied in treated soil and off gas after thermal desorption of PCB-contaminated soil at 300, 400, 500, 600 °C. The presence of copper dichloride clearly enhances thermal desorption by promoting PCBs removal, destruction, and dechlorination. After thermal treatment at 600 °C for 1 h, the removal efficiency and destruction efficiency for PCBs reached 98.1 and 93.9%, respectively. Compared with the positive influence on PCBs, copper dichloride catalyzed large amount of PCDFs formation at 300 °C, with the concentration ratio of 2.35. The effect of CuCl2 on PCDFs formation weakened with the rising temperature since PCDFs destruction became dominant under higher temperature. Different from PCDFs, PCDDs concentration in treated soil and off gas decreased continuously with the increasing temperature.

  13. Magnesium growth in magnesium deuteride thin films during deuterium desorption

    Energy Technology Data Exchange (ETDEWEB)

    Checchetto, R., E-mail: riccardo.checchetto@unitn.it [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Miotello, A. [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Mengucci, P.; Barucca, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Università Politecnica delle Marche, I-60131 Ancona (Italy)

    2013-12-15

    Highlights: ► Highly oriented Pd-capped magnesium deuteride thin films. ► The MgD{sub 2} dissociation was studied at temperatures not exceeding 100 °C. ► The structure of the film samples was analyzed by XRD and TEM. ► The transformation is controlled by the re-growth velocity of the Mg layers. ► The transformation is thermally activated, activation energy value of 1.3 ± 0.1 eV. -- Abstract: Pd- capped nanocrystalline magnesium thin films having columnar structure were deposited on Si substrate by e-gun deposition and submitted to thermal annealing in D{sub 2} atmosphere to promote the metal to deuteride phase transformation. The kinetics of the reverse deuteride to metal transformation was studied by Thermal Desorption Spectroscopy (TDS) while the structure of the as deposited and transformed samples was analyzed by X-rays diffraction and Transmission Electron Microscopy (TEM). In Pd- capped MgD{sub 2} thin films the deuteride to metal transformation begins at the interface between un-reacted Mg and transformed MgD{sub 2} layers. The D{sub 2} desorption kinetics is controlled by MgD{sub 2}/Mg interface effects, specifically the re-growth velocity of the Mg layers. The Mg re-growth has thermally activated character and shows an activation energy value of 1.3 ± 0.1 eV.

  14. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    of a Mach-Zehnder interferometer (MZI). This is an optical device consisting if one waveguide that is split into two waveguide arms which are assembled again later on. By applying the mechanical field from a SAW the light in the two arms can be modulated and interfere constructively and destructively......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...... application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...

  15. Acoustic cavitation movies

    Science.gov (United States)

    Crum, Lawrence A.

    2003-04-01

    Acoustic cavitation is a phenomenon that occurs on microsecond time scales and micron length scales, yet, it has many macroscopic manifestations. Accordingly, it is often difficult, at least for the author, to form realistic physical descriptions of the specific mechanisms through which it expresses itself in our macroscopic world. For example, there are still many who believe that cavitation erosion is due to the shock wave that is emitted by bubble implosion, rather than the liquid jet created on asymmetric collapse...and they may be right. Over the years, the author has accumulated a number of movies and high-speed photographs of cavitation activity, which he uses to form his own visual references. In the time allotted, he will show a number of these movies and photographs and discuss their relevance to existing technological problems. A limited number of CDs containing the presented materials will be available to interested individuals. [Work supported in part by the NIH, USAMRMC, and the ONR.

  16. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on soun...... exchanging experiences about constructions fulfilling different classes, reducing trade barriers, and finally increasing the sound insulation of dwellings.......Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on sound...... insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...

  17. Electromagnetic acoustic transducer

    Science.gov (United States)

    Alers, George A.; Burns, Jr., Leigh R.; MacLauchlan, Daniel T.

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  18. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Parks, C.C.

    1983-11-01

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na/sup +/ and F/sup +/ desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H/sup +/, Li/sup +/, and F/sup +/ are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N/sub 2/-O/sub 2/ multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF/sub 2/ and a series of alkali halides are discussed in terms of desorption mechanisms.

  19. Acoustic/Magnetic Stress Sensor

    Science.gov (United States)

    Heyman, J. S.; Namkung, M.

    1986-01-01

    High-resolution sensor fast, portable, does not require permanent bonding to structure. Sensor measures nondestructively type (compressive or tensile) and magnitude of stresses and stress gradients present in class of materials. Includes precise high-resolution acoustic interferometer, sending acoustic transducer, receiving acoustic transducer, electromagnet coil and core, power supply, and magnetic-field-measuring device such as Hall probe. This measurement especially important for construction and applications where steel is widely used. Sensor useful especially for nondestructive evaluation of stress in steel members because of portability, rapid testing, and nonpermanent installation.

  20. Electro-acoustic stimulation. Acoustic and electric pitch comparisons

    National Research Council Canada - National Science Library

    McDermott, Hugh; Sucher, Catherine; Simpson, Andrea

    2009-01-01

    ... who had usable low-frequency hearing, either in the non-implanted ear or in both ears. The subjects assigned numerical pitch estimates to each of 5 acoustic pure tones and 5 single-electrode electric pulse trains...

  1. Acoustics of friction.

    Science.gov (United States)

    Akay, Adnan

    2002-04-01

    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of

  2. A Combined Desorption Ionization by Charge Exchange (DICE) and Desorption Electrospray Ionization (DESI) Source for Mass Spectrometry

    Science.gov (United States)

    Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.

  3. Feasibility of desorption atmospheric pressure photoionization and desorption electrospray ionization mass spectrometry to monitor urinary steroid metabolites during pregnancy.

    Science.gov (United States)

    Vaikkinen, Anu; Rejšek, Jan; Vrkoslav, Vladimír; Kauppila, Tiina J; Cvačka, Josef; Kostiainen, Risto

    2015-06-23

    Steroids have important roles in the progress of pregnancy, and their study in maternal urine is a non-invasive method to monitor the steroid metabolome and its possible abnormalities. However, the current screening techniques of choice, namely immunoassays and gas and liquid chromatography-mass spectrometry, do not offer means for the rapid and non-targeted multi-analyte studies of large sample sets. In this study, we explore the feasibility of two ambient mass spectrometry methods in steroid fingerprinting. Urine samples from pregnant women were screened by desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) Orbitrap high resolution mass spectrometry (HRMS). The urine samples were processed by solid phase extraction for the DESI measurements and by enzymatic hydrolysis and liquid-liquid-extraction for DAPPI. Consequently, steroid glucuronides and sulfates were detected by negative ion mode DESI-HRMS, and free steroids by positive ion mode DAPPI-HRMS. In DESI, signals of eleven steroid metabolite ions were found to increase as the pregnancy proceeded, and in DAPPI ten steroid ions showed at least an order of magnitude increase during pregnancy. In DESI, the increase was seen for ions corresponding to C18 and C21 steroid glucuronides, while DAPPI detected increased excretion of C19 and C21 steroids. Thus both techniques show promise for the steroid marker screening in pregnancy.

  4. NEAR-FIELD ACOUSTIC HOLOGRAPHY FOR SEMI-FREE ACOUSTIC FIELD BASED ON WAVE SUPERPOSITION APPROACH

    Institute of Scientific and Technical Information of China (English)

    LI Weibing; CHEN Jian; YU Fei; CHEN Xinzhao

    2006-01-01

    In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example,and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.

  5. Electronically driven adsorbate excitation mechanism in femtosecond-pulse laser desorption

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Hedegård, Per; Heinz, T. F.

    1995-01-01

    Femtosecond-pulse laser desorption is a process in which desorption is driven by a subpicosecond temperature pulse of order 5000 K in the substrate-adsorbate electron system, whose energy is transferred into the adsorbate center-of-mass degrees of freedom by a direct coupling mechanism. We presen...

  6. Desorption of two organophosphorous pesticides from soil with wastewater and surfactant solutions.

    Science.gov (United States)

    Hernández-Soriano, M C; Mingorance, M D; Peña, A

    2012-03-01

    A batch test was used to evaluate the extent of desorption of diazinon and dimethoate, preadsorbed on a calcareous agricultural soil, representative of the Mediterranean area. Urban wastewater from a secondary treatment and seven surfactant solutions, at concentrations ranging from 0.75 mg L(-1) to 10 gL(-1), were used. The surfactants assayed were cationic (hexadecyl trimethyl ammonium bromide (HD)), anionic (sodium dodecyl sulfate (SDS), Aerosol 22 (A22) and Biopower (BP)), and nonionic (Tween 80 (TW), Triton X 100 (TX) and Glucopon 600 (G600)). Desorption of dimethoate was either not affected or only slightly by the nonionic and anionic surfactants tested, while desorption of diazinon from the soil was only enhanced by A22, BP and TW. This desorption increase correlated significantly with the surfactant concentration of the solution used for desorption and with the concurrent increase in the supernatant of the dissolved organic carbon, in particular that originating from the surfactant. This parameter did not vary with the use of SDS, G600 and TX. The cationic surfactant HD was retained on the soil surface, as confirmed by an increase in soil organic carbon, resulting in a fall in desorption rate for both pesticides. Comparing treatment by wastewater with control water, there was no difference in desorption rate for either pesticide. Mixed TW/anionic surfactant solutions either did not modify or slightly increased desorption of both pesticides in comparison with individual surfactant solutions.

  7. [Effects of soil compositions on sorption and desorption behavior of tetrachloroethylene in soil].

    Science.gov (United States)

    Hu, Lin; Qiu, Zhao-Fu; He, Long; Dou, Ying; Lü, Shu-Guang; Sui, Qian; Lin, Kuang-Fei

    2013-12-01

    Sorption and desorption play an important role in the transport and the fate of tetrachloroethylene (PCE) in soil. In order to examine influences of different soil compositions on PCE sorption-desorption, equilibrium batch experiments were carried out using four sorbents (natural soil with 2.23% total organic carbon (TOC), H2O2-treated soil, 375 degrees C-treated soil and 600 degrees C-treated soil) with different initial PCE liquid concentrations (c0). The effects of main parameters (TOC, soft carbon, hard carbon, minerals, c0) on PCE sorption-desorption were investigated. At 16 degrees C, when c0 was increased from 5 to 80 mg x L(-1), the results showed that sorption and desorption isotherms of PCE on four sorbents can be best described by the Freundlich model (r2 > 0.96). The sorption contribution rate of SOM was higher than 60% in natural soil, and hard carbon was the main influencing factor,while the desorption contribution rate of SOM was close to that of minerals in natural soil, and soft carbon accounted for more than 80% in the total desorption contribution rate of SOM. In addition, the higher the c0, the higher the sorption contribution rate of PCE in hard carbon and desorption contribution rate of PCE in soft carbon and minerals were. Moreover, desorption of PCE from four sorbents exhibited hysteresis, and hard carbon played a remarkable role in the hysteresis of natural soil.

  8. Thermal desorption of deuterium from modified carbon nanotubes and its correlation to the microstructure

    NARCIS (Netherlands)

    Lisowski, W.; Keim, E.G.; Berg, van den A.H.J.; Smithers, M.A.

    2006-01-01

    The process of deuterium desorption from single-wall carbon nanotubes (SWNTs) modified by atomic (D) and molecular (D2) deuterium treatment was investigated in an ultrahigh vacuum environment using thermal desorption mass spectroscopy (TDMS). Microstructural and chemical analyses of SWNT material, m

  9. Kinetic characteristics of coal gas desorption based on the pulsating injection

    Institute of Scientific and Technical Information of China (English)

    Ni Guanhua; Lin Baiquan; Zhai Cheng; Li Quangui; Peng Shen; Li Xianzhong

    2014-01-01

    In order to understand the kinetic characteristics of coal gas desorption based on the pulsating injection (PI), the research experimentally studied the kinetic process of methane desorption in terms of the PI and hydrostatic injection (HI). The results show that the kinetic curves of methane desorption based on PI and HI are consistent with each other, and the diffusion model can best describe the characteristics of meth-ane desorption. Initial velocity, diffusion capacity and ultimate desorption amount of methane desorption after PI are greater than those after HI, and the ultimate desorption amount increases by 16.7-39.7%. Methane decay rate over the time is less than that of the HI. The PI influences the diffusion model param-eters, and it makes the mass transfer Biot number B0i decrease and the mass transfer Fourier series F00 increase. As a result, PI makes the methane diffusion resistance in the coal smaller, methane diffusion rate greater, mass transfer velocity faster and the disturbance range of methane concentration wider than HI. Therefore, the effect of methane desorption based on PI is better than that of HI.

  10. Desorption of isopropyl alcohol from adsorbent with non-thermal plasma.

    Science.gov (United States)

    Shiau, Chen Han; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2016-11-24

    Effective desorption of isopropyl alcohol (IPA) from adsorbents with non-thermal plasma is developed. In this system, IPA is effectively adsorbed with activated carbon while dielectric barrier discharge is applied to replace the conventional thermal desorption process to achieve good desorption efficiency, making the treatment equipment smaller in size. Various adsorbents including molecular sieves and activated carbon are evaluated for IPA adsorption capacity. The results indicate that BAC has the highest IPA adsorption capacity (280.31 mg IPA/g) under the operating conditions of room temperature, IPA of 400 ppm, and residence time of 0.283 s among 5 adsorbents tested. For the plasma desorption process, the IPA selectivity of 89% is achieved with BAC as N2 is used as desorbing gas. In addition, as air or O2 is used as desorbing gas, the IPA desorption concentration is reduced, because air and O2 plasmas generate active species to oxidize IPA to form acetone, CO2, and even CO. Furthermore, the results of the durability test indicate that the amount of IPA desorbed increases with increasing desorption times and plasma desorption process has a higher energy efficiency if compared with thermal desorption. Overall, this study indicates that non-thermal plasma is a viable process for removing VOCs to regenerate adsorbent.

  11. Cryogenic Acoustic Suppression Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will explore and test the feasibility and effectiveness of using a cryogenic fluid (liquid nitrogen) to facilitate acoustic suppression in a...

  12. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is to fabricate, characterize, and verify performance of a new type of frequency steered acoustic transducer...

  13. ADAPTIVE ELLIPSOIDAL ACOUSTIC INFINITE ELEMENT

    Institute of Scientific and Technical Information of China (English)

    Yang Ruiliang; Wang Hongzhen

    2004-01-01

    It is shown that the basis of the ellipsoidal acoustic infinite element Burnett method,the multipole expansion,cannot represent real ellipsoidal acoustic field exactly.To solve the problem,a weight of angular direction is added to the multipole expansion.The comparison of the modified method and the prime method shows that the modified method can describe and solve the ellipsoidal acoustic field more accurately than ever.A dilating sphere is used to test the new method further.Unlike other infinite element methods,varied ratio of the ellipsoidal artificial boundary instead of sphere is used.The pressure value of the artificial boundary is utilized as the initial value of the new method.Then the radiating phenomena of the ellipsoidal acoustic field can be researched using the new method.These examples show the feasibility of the adaptive method.

  14. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is to develop, fabricate, and characterize a novel frequency steered acoustic transducer (FSAT) for the...

  15. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  16. Sea Turtle Acoustic Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic tags were attached to sea turtles captured in various fishing gear and the animals are either actively or passively tracked

  17. Acoustically-driven microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  18. Acoustic Postprocessing of Multibody Simulations

    OpenAIRE

    Carrarini, Antonio

    2009-01-01

    SIMPACK allows models including flexible bodies to be set up and simulated efficiently in up to very high, relevant acoustic frequency ranges. In this article, a postprocessor module for SIMPACK which computes the sound power of a generic vibrating flexible component (so called structure-borne sound) is presented. The computed quantity is an indicator of the acoustic behaviour of the component and can also be used as an input for subsequent computations of ...

  19. Acoustic Rectification in Dispersive Media

    Science.gov (United States)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  20. Autonomous Adaptive Acoustic Relay Positioning

    Science.gov (United States)

    2013-09-01

    equipment construction and repair tasks [51]. Commercial ROVs range from large, versatile work-class vehicles like Soil Machine Dynamics (SMD) QUANTUM and...range-only formation control using teams of heterogeneous vehicles with wifi and acoustic communications. Shankar and Chitre formulated the multi-armed...acoustic communication and sensing by marine robots. IEEE Journal of Oceanographic Engineering, 38:522–533, 2013. [43] S. Shankar and Chitre. Tuning

  1. Acoustic Multipurpose Cargo Transfer Bag

    Science.gov (United States)

    Baccus, Shelley

    2015-01-01

    The Logistics Reduction (LR) project within the Advanced Exploration Systems (AES) program is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) are designed to be the same external volume as a regular cargo transfer bag, the common logistics carrier for the International Space Station. After use as a cargo bag, the MCTB can be unzipped and unfolded to be reused. This Acoustic MCTBs transform into acoustic blankets after the initial logistics carrying objective is complete.

  2. Wheel of concert hall acoustics

    OpenAIRE

    Kuusinen, A.; Lokki, T.

    2017-01-01

    More than a hundred years of research on concert hall acoustics has provided an extensive list of attributes to describe and evaluate the perceptual aspects of sound in concert halls. This brief overview discusses the current knowledge, and presents a "wheel of concert hall acoustics" in which the main aspects are gathered together with the descriptive attributes that are commonly encountered in the research literature. Peer reviewed

  3. Biological Effects of Acoustic Cavitation

    Science.gov (United States)

    2007-11-02

    rectified diffusion. 56 III. STABLE CAVITATION A. Introduction There are manv areas associated with the biological effects of ultrasound in which the...used said as cavitation indicators. Further, if clinical ultrasound systems are found to be inducing cavitation , either stable or transient, it will...O BIOLOGICAL EFFECTS OF ACOUSTIC CAVITATION by Lawrence A. Crum -- Physical Acoustics Research Laboratory Department of Physics and Astronomy ’ CTE

  4. Study Acoustic Emissions from Composites

    Science.gov (United States)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  5. Hypotonic elution, a new desorption principle in immunoadsorbent chromatography

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Sjöström, H; Norén, O

    1982-01-01

    of finding an efficient means of elution which is not denaturing to neither the purified enzyme nor the immunoadsorbent column. Common properties of the microvillar enzymes with regard to amphiphilicity, glycosylation or subunit composition could hypothetically account for the similar elution properties......A largely unrecognized immunoadsorbent desorption technique, hypotonic elution, has been successfully used in the immunoadsorbent purification of the microvillar enzymes aminopeptidase N (EC 3.4.11.2), dipeptidyl peptidase IV (EC 3.4.14.5), sucrase-isomaltase (EC 3.2.1.48-10), lactase......-phlorizin hydrolase (EC 3.2.1.23-62) and maltase-glucoamylase (EC 3.2.1.20). This elution method proved capable of achieving an acceptable yield (30-70%) while at the same time preserving the purified enzymes in an enzymically active state. It hereby offers a solution to the problem in immunoadsorbent chromatography...

  6. Thermal desorption of CH4 retained in CO2 ice

    CERN Document Server

    Luna, R; Domingo, M; Satorre, M A

    2008-01-01

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  7. Apparatus for low temperature thermal desorption spectroscopy of portable samples

    Science.gov (United States)

    Stuckenholz, S.; Büchner, C.; Ronneburg, H.; Thielsch, G.; Heyde, M.; Freund, H.-J.

    2016-04-01

    An experimental setup for low temperature thermal desorption spectroscopy (TDS) integrated in an ultrahigh vacuum-chamber housing a high-end scanning probe microscope for comprehensive multi-tool surface science analysis is described. This setup enables the characterization with TDS at low temperatures (T > 22 K) of portable sample designs, as is the case for scanning probe optimized setups or high-throughput experiments. This combination of techniques allows a direct correlation between surface morphology, local spectroscopy, and reactivity of model catalysts. The performance of the multi-tool setup is illustrated by measurements of a model catalyst. TDS of CO from Mo(001) and from Mo(001) supported MgO thin films were carried out and combined with scanning tunneling microscopy measurements.

  8. Solvent desorption dynamic headspace sampling of fermented dairy product volatiles.

    Science.gov (United States)

    Rankin, S A

    2001-01-01

    A method was developed based on solvent desorption dynamic headspace analysis for the identification and relative quantification of volatiles significant to the study of fermented dairy product aroma. Descriptions of applications of this method are presented including the measurement of diacetyl and acetoin in fermented milk, the evaluation of volatile-hydrocolloid interactions in dairy-based matrices, and the identification of volatiles in cheeses for canonical discriminative analysis. Advantages of this method include rapid analysis, minimal equipment investment, and the ability to analyze samples with traditional GC split/splitless inlet systems. Limitations of this method are that the sample must be in the liquid state and the inherent analytical limitation to those compounds that do not coelute with the solvent or solvent impurity peaks.

  9. Study of Thermal Desorption of Helium from Hydrogenated Zirconium

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-Ming; WEI Yu-Cheng; SHI Li-Qun

    2006-01-01

    @@ A new method prepared for helium and hydrogen co-containing Zr films is presented to simulate aging metal tritides, in which direct current magnetron sputtering with a He/H/Ar mixture is used. The retained amount and depth profiles of helium and hydrogen are determined by elastic recoil detection analysis. Thermal desorption spectrometry is applied to investigate He thermal release and the effect of hydrogen. It is found that the hightemperature peaks with a large mount of helium release obviously shifted toward lower temperature at high hydrogen concentration, especially at the hydride transformation region, and that the shapes of the release peaks also changed due to the additional hydrogen. However, at the low-temperature releasing region the peak intense decreases when phase transformation takes place. The mechanism of helium thermal release and the effect of hydrogen are also discussed.

  10. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with (137)Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([(133+137)Cs(+)]total) of 1.3 nM (10(-9) mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH4Cl, and (133)CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH4Cl (20%) > 1 M (133)CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na(+) concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  11. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, M.; Kondo, M.; Noda, N. [Hydrogen Isotope Research Center, University of Toyama, Gofuku, Toyama (Japan); Tanaka, M.; Nishimura, K. [National Institute for Fusion Science, Toki-shi, Gifu (Japan)

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  12. Experimental study of water effects on gas desorption during high-pressure water injection

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-hua; LIU Xian-xin; BI Ye-wu; PU Wen-long

    2011-01-01

    For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action,an independently designed gas desorption experimental measuring device was used under the condition of external solution invasion.The law of water effect on gas desorption was obtained after water invasion through experiment for the first time.The results show that water's later invasion not only can make the quantity of gas desorption greatly reduced,but also can make gas desorption end early.Therefore,when evaluating the applications of high-pressure water injection to increase gas extraction efficiency,we should take water damaging effects on gas desorption into account.

  13. Bonding configurations for nickelocene on Ag(100) and steric effects in thermal desorption

    Energy Technology Data Exchange (ETDEWEB)

    Borca, C.N.; Welipitiya, D.; Dowben, P.A.; Boag, N.M.

    2000-02-10

    The molecular adsorption and desorption of nickelocene, Ni(C{sub 5}H{sub 5}){sub 2}, on Ag(100) has been studied by coverage dependent angle-resolved thermal desorption. The angle-resolved thermal desorption of nickelocene is unusual in that the molecular orientation is seen to affect the angular dependence of molecular desorption. The coexistence of two chemisorption phases for molecular nickelocene adsorption on Ag(100) near the desorption temperature of approximately 230 K is identified. One phase, with the bonding configuration of the nickelocene molecular axis along the surface normal, appears to dominate at higher coverages. The results are discussed in the context of rehybridization and recent angle-resolved photoemission and high-resolution electron energy loss measurements.

  14. Hydrogen desorption in nanocrystalline MgH{sub 2} thin films at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.R., E-mail: joser.ares@uam.e [Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049, Madrid (Spain); Leardini, F.; Diaz-Chao, P.; Bodega, J. [Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049, Madrid (Spain); Koon, D.W. [Physics Department, St Lawrence University, Canton, NY, 13617 (United States); Ferrer, I.J.; Fernandez, J.F.; Sanchez, C. [Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049, Madrid (Spain)

    2010-04-16

    Hydrogen desorption process of Pd-capped magnesium hydride thin films of different thicknesses was investigated. Decomposition of magnesium hydride into magnesium under air exposure is observed in all investigated films. During decomposition no novel crystalline phases are detected. Desorption process was qualitatively analysed and it was concluded that is thermodynamically driven controlled by a nucleation and growth or by an interphase controlled mechanism. Moreover, H-kinetics investigation of desorption process was carried out by thermal desorption spectroscopy. Decomposition of MgH{sub 2} films occurs at T{sub d} {approx} 148 {sup o}C and the process seems to be controlled by a bidimensional interphase mechanism with an activation energy of 135 {+-} 20 kJ/mol H{sub 2}. No significant influence of thickness and crystallite size on desorption temperature is observed and obtained activation energy is similar to that of milled bulk magnesium.

  15. Desorption behavior of zinc atoms from zinc-sulfate solution irradiated with pulsed DC plasma

    Science.gov (United States)

    Takaba, Takafumi; Suzuki, Haruka; Toyoda, Hirotaka

    2016-07-01

    A DC pulsed plasma ignited between a metal needle and zinc sulfate (ZnSO4) solution electrode was used to investigate Zn metal desorption from an electrolyte solution. Using an ICCD camera and optical band-pass filter, 2D atomic absorption spectroscopy was carried out during irradiation of pulsed plasma to the surface of the solution. The time-resolved measurement of Zn atoms released to the gas phase revealed that the Zn desorption rate monotonically increased with increasing number of discharge repetitions. The surface temperature of the electrolyte solution was observed with a thermographic camera, and correlations between the H2O and Zn desorption rate were inspected. The correlation between the H2O and Zn desorption rate suggested that Zn desorption is assisted not only by the electric field of the discharge but also by H2O evaporating from the solution.

  16. Orbital dynamics of a solar sail accelerated by thermal desorption of coatings

    CERN Document Server

    Ancona, Elena

    2016-01-01

    In this study we considered a solar sail coated with materials that undergo thermal desorption at a specific temperature, as a result of heating by solar radiation at a particular heliocentric distance. Three different scenarios, that only differ in the way the sail approaches the Sun, were analyzed and compared. In every case once the perihelion is reached, the sail coat undergoes thermal desorption. When the desorption process ends, the sail then escapes the Solar System having the conventional acceleration due to solar radiation pressure. Thermal desorption here comes as an additional source of solar sail acceleration beside traditional propulsion systems for extrasolar space exploration. The compared scenarios are the following: i. Hohmann transfer plus thermal desorption. In this scenario the sail would be carried as a payload to the perihelion with a conventional propulsion system by an Hohmann transfer from Earth's orbit to an orbit very close to the Sun (almost at 0.1 AU) and then be deployed there. i...

  17. Atoms and Nanoparticles of Transition Metals as Catalysts for Hydrogen Desorption from Magnesium Hydride

    Directory of Open Access Journals (Sweden)

    N. Bazzanella

    2011-01-01

    Full Text Available The hydrogen desorption kinetics of composite materials made of magnesium hydride with transition metal additives (TM: Nb, Fe, and Zr was studied by several experimental techniques showing that (i a few TM at.% concentrations catalyse the H2 desorption process, (ii the H2 desorption kinetics results stabilized after a few H2 sorption cycles when TM atoms aggregate by forming nanoclusters; (iii the catalytic process occurs also at TM concentration as low as 0.06 at.% when TM atoms clustering is negligible, and (iv mixed Fe and Zr additives produce faster H2 desorption kinetics than single additive. The improved H2 desorption kinetics of the composite materials can be explained by assuming that the interfaces between the MgH2 matrix and the TM nanoclusters act as heterogeneous sites for the nucleation of the Mg phase in the MgH2 matrix and promote the formation of fast diffusion channels for H migrating atoms.

  18. Decomposition kinetics study of zirconium hydride by interrupted thermal desorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Mingwang; Liang, Li; Tang, Binghua; Xiang, Wei; Wang, Yuan; Cheng, Yanlin; Tan, Xiaohua, E-mail: caepiee@163.com

    2015-10-05

    Highlights: • Interrupted TDS was applied to investigate the mechanism of ZrH{sub 2} decomposition. • The activation energies for the five desorption peaks were determined. • The origins of the five desorption peaks were identified. • The γZrH phase was observed at ambient conditions. - Abstract: Thermal desorption kinetics of zirconium hydride powder were studied using thermogravimetry and simultaneous thermal desorption spectroscopy. The activation energies for observed desorption peaks were estimated according to Kissinger relation. The intermediate phase composition was studied using X-ray diffraction by rapid cooling on different stages of heating. The origins of the peaks were described as the equilibrium hydrogen pressure of a number of consecutive phase regions that decomposition reaction passed through. The zirconium monohydride γZrH was observed for extended periods of time at ambient conditions, which has been supposed to be metastable for a long time.

  19. Adsorption, Diffusion and Thermal Desorption Features of Cyclopentane and Cyclohexane in Silicalite-1

    Institute of Scientific and Technical Information of China (English)

    DUAN, Lin-Hai; SONG, Li-Juan; ZHANG, Xiao-Tong; TANG, Ke; DAI, Zhen-Hua; SUN, Zhao-Lin

    2006-01-01

    Adsorption, diffusion and thermal desorption features of cyclopentane and cyclohexane in silicalite-1 have been investigated using the intelligent gravimetric technique. Both the saturation adsorption loadings and diffusion coefficient of cyclopentane were greater than those of cyclohexane. The diffusivity of cyclopentane was about one order of magnitude greater than that of cyclohexane at the same temperature and initial loading. For cyclopentane, there was only one kind of desorption process at adsorption loadings lower than 4 muc (molecule per unit cell), but two desorption processes appeared at the adsorption loadings higher than 4 muc. While for cyclohexane, one desorption process was found in the whole range of loadings. Both thermal desorption peaks of cyclopentane and cyclohexane moved to higher temperature region with increasing loading.

  20. Sorption, desorption, and surface oxidative fate of nicotine.

    Science.gov (United States)

    Petrick, Lauren; Destaillats, Hugo; Zouev, Irena; Sabach, Sara; Dubowski, Yael

    2010-09-21

    Nicotine dynamics in an indoor environment can be greatly affected by building parameters (e.g. relative humidity (RH), air exchange rate (AER), and presence of ozone), as well as surface parameters (e.g. surface area (SA) and polarity). To better understand the indoor fate of nicotine, these parameter effects on its sorption, desorption, and oxidation rates were investigated on model indoor surfaces that included fabrics, wallboard paper, and wood materials. Nicotine sorption under dry conditions was enhanced by higher SA and higher polarity of the substrate. Interestingly, nicotine sorption to cotton and nylon was facilitated by increased RH, while sorption to polyester was hindered by it. Desorption was affected by RH, AER, and surface type. Heterogeneous nicotine-ozone reaction was investigated by Fourier transform infrared spectrometry with attenuated total reflection (FTIR-ATR), and revealed a pseudo first-order surface reaction rate of 0.035 +/- 0.015 min(-1) (at [O(3)] = 6 +/- 0.3 x 10(15) molecules cm(-3)) that was partially inhibited at high RH. Extrapolation to a lower ozone level ([O(3)] = 42 ppb) showed oxidation on the order of 10(-5) min(-1) corresponding to a half-life of 1 week. In addition, similar surface products were identified in dry and high RH using gas chromatography-mass spectrometry (GC-MS). However, FTIR analysis revealed different product spectra for these conditions, suggesting additional unidentified products and association with surface water. Knowing the indoor fate of condensed and gas phase nicotine and its oxidation products will provide a better understanding of nicotine's impact on personal exposures as well as overall indoor air quality.

  1. Plasma Desorption Mass Spectrometry analysis of HCOOH ice

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, D.P.P.; Rocco, M.L.M. [Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Ilha do Fundao, 21949-900 Rio de Janeiro, RJ (Brazil); Boechat-Roberty, H.M. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio, 43, Centro, Rio de Janeiro, RJ (Brazil); Iza, P.; Martinez, R. [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, 22543-900 Rio de Janeiro (Brazil); Homem, M.G.P. [Laboratorio Nacional de Luz Sincrotron (LNLS), Box 6192, 13084-971 Campinas, SP (Brazil); Silveira, E.F. da [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, 22543-900 Rio de Janeiro (Brazil)], E-mail: enio@vdg.fis.puc-rio.br

    2007-03-15

    Planetary magnetospheres, in which outer planet satellites orbit, are bombarded by energetic particles inducing chemical and physical changes in their icy surfaces. The existing condensed gases react to form new products, which then undergo thermal evolution from the natural day/night cycles of these satellites. Plasma irradiation of ice causes phase changes, e.g., water ice from crystalline to amorphous over short timescales. When ice is recrystallized by heating, the surface layers retain some disorder, which promote reactions among adsorbed molecules such as H{sub 2}O, CO{sub 2}, CH{sub 2}CO, HCOOH and theirs radiolysis products. In this work, chemical reactions involving formic acid condensed at 56 K are analyzed by using Plasma Desorption Mass Spectrometry-time-of-flight ({sup 252}Cf-PDMS-TOF). Mass spectra of positive and negative desorbed ions were obtained, giving information on the structure and abundance of the molecules on the ice; the expected cations and anions generated by the HCOOH dissociation have been observed. Furthermore, several series of cluster ions were also detected, all exhibiting the structure X{sub n}Y{sub m}R{sup {+-}}, where X and Y are the neutral ice molecules, such as HCOOH or H{sub 2}O, and R{sup {+-}} is either an atomic or a molecular ion, such as H{sup +}, H{sub 3}O{sup +} or COOH{sup -}. In general, the desorption yields of the observed positive and negative ions are characterized by a decreasing exponential function as the emitted ion mass increases; however, the (HCOOH){sub n}OH{sup -} series presents its maximum at n = 8.

  2. Opto-acoustic cell permeation

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  3. Acoustical evaluation of preschool classrooms

    Science.gov (United States)

    Yang, Wonyoung; Hodgson, Murray

    2003-10-01

    An investigation was made of the acoustical environments in the Berwick Preschool, Vancouver, in response to complaints by the teachers. Reverberation times (RT), background noise levels (BNL), and in-class sound levels (Leq) were measured for acoustical evaluation in the classrooms. With respect to the measured RT and BNL, none of the classrooms in the preschool were acceptable according to the criteria relevant to this study. A questionnaire was administered to the teachers to assess their subjective responses to the acoustical and nonacoustical environments of the classrooms. Teachers agreed that the nonacoustical environments in the classrooms were fair, but that the acoustical environments had problems. Eight different classroom configurations were simulated to improve the acoustical environments, using the CATT room acoustical simulation program. When the surface absorption was increased, both the RT and speech levels decreased. RASTI was dependent on the volumes of the classrooms when the background noise levels were high; however, it depended on the total absorption of the classrooms when the background noise levels were low. Ceiling heights are critical as well. It is recommended that decreasing the volume of the classrooms is effective. Sound absorptive materials should be added to the walls or ceiling.

  4. Photoabsorption and desorption studies on thiophene-based polymers following sulphur K-shell excitation

    Energy Technology Data Exchange (ETDEWEB)

    Santa Rita, J.R.; Arantes, C.; Araujo, G. [Departamento de Fisico-Quimica, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, RJ (Brazil); Roman, L.S. [Departamento de Fisica, Universidade Federal do Parana, 81531-990 Curitiba, PR (Brazil); Micaroni, L. [Departamento de Quimica, Universidade Federal do Parana, 81531-990 Curitiba, PR (Brazil); Rocco, M.L.M., E-mail: luiza@iq.ufrj.br [Departamento de Fisico-Quimica, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, RJ (Brazil)

    2011-04-15

    Research highlights: {yields} Photon stimulated ion desorption (PSID) measurements at the S K-shell excitation energies were performed on three thiophene-based polymer films, following their NEXAFS spectra. {yields} For poly(thiophene) (PT) and poly(3-methylthiophene) (P3MT) it was found that the S 1s {yields} {pi}*, {sigma}* (S-C) excitation produces S{sup +} desorption efficiently, showing the importance of the resonant Auger process for breaking the C-S bond. {yields} In the case of poly(3-hexylthiophene) (P3HT) S{sup +} desorption seems to be suppressed due to the orientation of 3-hexyl side-chains on the surface. {yields} Desorption ion yield curves for molecular fragments reproduce the photoabsorption spectrum, indicating that the indirect process is here predominant. - Abstract: Photon stimulated ion desorption (PSID) and NEXAFS studies have been performed on thiophene-based polymers at the Brazilian Synchrotron Light Source following sulphur K-shell photoexcitation. For poly(thiophene) (PT) and poly(3-methylthiophene) (P3MT) it was found that the S 1s {yields} {pi}*, {sigma}{sup *} (S-C) excitation produces S{sup +} desorption efficiently. On the other hand, S{sup 2+} desorption is enhanced at higher energy excitations. These results are interpreted in terms of the Auger-stimulated ion desorption mechanism. For poly(3-hexylthiophene) (P3HT) S{sup +} desorption seems to be suppressed, which may be due to the hexyl side-chains. Desorption ion yield curves for molecular fragments reproduce the photoabsorption spectrum, being dominated by the indirect process.

  5. Phosphorus sorption, desorption and resorption by soils of the Brazilian Cerrado supporting eucalypt

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Nairam F. Filho [Universidade Federal de Santa Maria, Dept. de Ciencia Florestal, Porto Alegre, RS (Brazil); Comerford, N.B. [Florida Univ., Soil and Water Science Dept., Gainesville, FL (United States); Barros, Nairam F. [Universidade Federal de Vicosa, Dept. do Solos, Vicosa, MG (Brazil)

    2005-02-01

    Oxisols of the Brazilian Cerrado are highly weathered phosphorus deficient soils, on which eucalypt is increasingly being grown as a source of carbon and energy for steel manufacturing. Phosphorus (P) fertilization is a necessary practice to assure adequate eucalypt production; therefore, an understanding of cycling by inorganic soil P should lead to efficient P management and more accurate modeling of P bioavailability. Since sorption and desorption reactions control inorganic P bioavailability, the purpose of this study was to contrast P sorption, desorption and subsequent resorption for a range of Cerrado soils. Its specific objectives were to determine (i) if desorption and resorption show the same hysteresis shown by sorption and desorption, (ii) if K{sub d} values of resorption and desorption for Cerrado soils are dependent on the soil's clay content and (iii) if resorption and desorption K{sub d} values are a function of the amount of labile P on the soil surface. Three levels of P were sorbed onto four Cerrado soils with clay contents between 13% and 81%. Phosphorus desorption was measured using anion-exchange membranes. Sorption was a function of soil clay content, and a pedotransfer function for the soil partition coefficient was calculated with an r{sup 2} = 0.99. Desorption and resorption were dependent on both the clay content of the soil (r{sup 2} = 0.59-0.99) and the amount of sorbed labile P. Pedotransfer functions for each of these processes depend on accurate measurement of the inorganic P that responds to disequilibria exchange. Desorption and resorption were not hysteretic; yet desorption was hysteretic with the original sorption isotherm. This suggests the question: how useful are commonly produced sorption isotherms? (Author)

  6. Surface acoustic wave microfluidics.

    Science.gov (United States)

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  7. Acoustic Signal Processing

    Science.gov (United States)

    Hartmann, William M.; Candy, James V.

    Signal processing refers to the acquisition, storage, display, and generation of signals - also to the extraction of information from signals and the re-encoding of information. As such, signal processing in some form is an essential element in the practice of all aspects of acoustics. Signal processing algorithms enable acousticians to separate signals from noise, to perform automatic speech recognition, or to compress information for more efficient storage or transmission. Signal processing concepts are the building blocks used to construct models of speech and hearing. Now, in the 21st century, all signal processing is effectively digital signal processing. Widespread access to high-speed processing, massive memory, and inexpensive software make signal processing procedures of enormous sophistication and power available to anyone who wants to use them. Because advanced signal processing is now accessible to everybody, there is a need for primers that introduce basic mathematical concepts that underlie the digital algorithms. The present handbook chapter is intended to serve such a purpose.

  8. Passive Acoustic Vessel Localization

    Science.gov (United States)

    Suwal, Pasang Sherpa

    This thesis investigates the development of a low-cost passive acoustic system for localizing moving vessels to monitor areas where human activities such as fishing, snorkeling and poaching are restricted. The system uses several off-the-shelf sensors with unsynchronized clocks where the Time Difference of Arrival (TDOA) or time delay is extracted by cross-correlation of the signal between paired sensors. The cross-correlation function uses phase correlation or Phase Transform (PHAT) which whitens the cross-spectrum in order to de-emphasize dominant frequency components. Using the locations of pairs of sensors as foci, hyperbolic equations can be defined using the time delay between them. With three or more sensors, multiple hyperbolic functions can be calculated which intersect at a unique point: the boat's location. It is also found that increasing separation distances between sensors decreased the correlation between the signals. However larger separation distances have better localization capability than with small distances. Experimental results from the Columbia and Willamette Rivers are presented to demonstrate performance.

  9. Covert underwater acoustic communications.

    Science.gov (United States)

    Ling, Jun; He, Hao; Li, Jian; Roberts, William; Stoica, Petre

    2010-11-01

    Low probability of detection (LPD) communications are conducted at a low received signal-to-noise ratio (SNR) to deter eavesdroppers to sense the presence of the transmitted signal. Successful detection at intended receiver heavily relies on the processing gain achieved by employing the direct-sequence spread-spectrum (DSSS) technique. For scenarios that lack a sufficiently low SNR to maintain LPD, another metric, referred to as low probability of interception (LPI), is of interest to protect the privacy of the transmitted information. If covert communications take place in underwater acoustic (UWA) environments, then additional challenges are present. The time-varying nature of the UWA channel prevents the employment of a long spreading waveform. Furthermore, UWA environments are frequency-selective channels with long memory, which imposes challenges to the design of the spreading waveform. In this paper, a covert UWA communication system that adopts the DSSS technique and a coherent RAKE receiver is investigated. Emphasis is placed on the design of a spreading waveform that not only accounts for the transceiver structure and frequency-selective nature of the UWA channel, but also possesses a superior LPI. The proposed techniques are evaluated using both simulated and SPACE'08 in-water experimental data.

  10. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  11. Reflective echo tomographic imaging using acoustic beams

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  12. Acoustic loading effects on oscillating rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.H.

    1980-01-01

    An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed.

  13. Lowering the desorption temperature of Mg(BH4)2 through doping

    Science.gov (United States)

    Harrison, D.; Thonhauser, T.

    2014-03-01

    Magnesium borohydride Mg(BH4)2 is a very promising hydrogen storage material due to its high gravimetric (14.9 mass%) and volumetric density. However, it is limited for practical storage applications by its high hydrogen desorption temperature of 270°C. Arguments have been made for both high thermodynamic stability and slow kinetics to be responsible for this high desorption temperature. In our study we show that doping of Mg(BH4)2 can address the thermodynamic stability issue and predictably lower its desorption enthalpy. We use ab initio calculations at the DFT level (utilizing vdW-DF) and calculate the change in desorption enthalpy from ground state energy and phonon contributions for several possible hydrogen release reactions. Note that van der Waals interactions are crucial to correctly describe the ground state of this complex hydride. We find that, depending on the reaction, the undoped phase has a desorption enthalpy of 50-75 kJ/mol H2 and doping can lower this number by approximately 5 kJ/mol per 10% doping at 300 K, making the desired range of 40 kJ/mol easily accessible. We argue that this lowering of desorption enthalpy will correspond to a lowering of the desorption temperature. Supported by NSF DMR-1145968.

  14. Photon stimulated desorption of and nuclear resonant scattering by noble gas atoms at solid surfaces

    CERN Document Server

    Ikeda, Akihiko

    2015-01-01

    When a noble gas atom approaches a solid surface, it is adsorbed via the Van der Waals force, which is called physisorption. In this thesis, several experimental results concerning physisorbed atoms at surfaces are presented. First, photon stimulated desorption of Xe atoms from a Au substrate using nano-second laser is presented. With the time-of-flight measurements, the translational temperature and the desorption yield of desorbing Xe as a function of laser fluence are obtained. It is discovered that there are non-thermal and thermal desorption pathways. It is discussed that the former path involves a transient formation of the negative ion of Xe. The desorption flux dependence of the thermal pathway is also investigated. We found that at a large desorption fluxes the desorption flow is thermalized due to the post-desorption collisions. The resultant velocity and the temperature of the flow is found to be in good agreement with the theoretical predictions based on the Knudsen layer formation. Lastly, nuclea...

  15. Plutonium desorption from mineral surfaces at environmental concentrations of hydrogen peroxide.

    Science.gov (United States)

    Begg, James D; Zavarin, Mavrik; Kersting, Annie B

    2014-06-01

    Knowledge of Pu adsorption and desorption behavior on mineral surfaces is crucial for understanding its environmental mobility. Here we demonstrate that environmental concentrations of H2O2 can affect the stability of Pu adsorbed to goethite, montmorillonite, and quartz across a wide range of pH values. In batch experiments where Pu(IV) was adsorbed to goethite for 21 days at pH 4, 6, and 8, the addition of 5-500 μM H2O2 resulted in significant Pu desorption. At pH 6 and 8 this desorption was transient with readsorption of the Pu to goethite within 30 days. At pH 4, no Pu readsorption was observed. Experiments with both quartz and montmorillonite at 5 μM H2O2 desorbed far less Pu than in the goethite experiments highlighting the contribution of Fe redox couples in controlling Pu desorption at low H2O2 concentrations. Plutonium(IV) adsorbed to quartz and subsequently spiked with 500 μM H2O2 resulted in significant desorption of Pu, demonstrating the complexity of the desorption process. Our results provide the first evidence of H2O2-driven desorption of Pu(IV) from mineral surfaces. We suggest that this reaction pathway coupled with environmental levels of hydrogen peroxide may contribute to Pu mobility in the environment.

  16. Effects of methamidophos and glyphosate on copper sorption-desorption behavior in soils

    Institute of Scientific and Technical Information of China (English)

    YU Ying; ZHOU Qixing; HE Zhenli

    2005-01-01

    A batch-equilibration technique was employed to study the impact of two organophosphorus pesticides methamidophos (MDP) and glyphosate (GPS) on copper (Cu2+) sorptiondesorption for phaeozem and burozem collected from Northeastern China. The addition of the two pesticides decreased Cu2+ sorption, increased Cu2+ desorption and prolonged the equilibrium time of Cu2+ sorption-desorption. But GPS appeared to exert a stronger influence on Cu2+ sorption-desorption due to its stronger complexion with Cu2+. When MDP was added, Cu2+ sorption-desorption was linearly correlated with MDP treatment concentrations. But in the presence of GPS, Cu2+ sorption first underwent a rapid decrease period, and then slowly tended towards a steady period. The reverse pattern could be found for Cu2+ desorption in the presence of GPS.Without pesticides and with the existence of MDP, Cu2+ sorption-desorption kinetics was well conformed to two-constant equation and Elovich equation. But that was not the case for Cu2+ desorption kinetics in the presence of GPS although its sorption could be also described by these two equations.

  17. Sonification of acoustic emission data

    Science.gov (United States)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  18. Acoustic constituents of prosodic typology

    Science.gov (United States)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The

  19. CALCULATION OF ACOUSTIC EFFICIENCY OF PORTABLE ACOUSTIC SCREEN

    Directory of Open Access Journals (Sweden)

    Aleksandr Skvortsov

    2016-03-01

    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  20. Neural correlates of acoustic reasoning.

    Science.gov (United States)

    Fangmeier, Thomas; Knauff, Markus

    2009-01-16

    We report an fMRI experiment on deductive reasoning with acoustically presented problems. Twelve volunteers received problems in which an acoustic stimulus came from the left or the right of another stimulus. The participants then heard a third stimulus coming from the left or the right of one of the proceeding stimuli. Their task was to determine the spatial relation between the two stimuli they never perceived together. In the psychology of reasoning, such problems are called transitive inferences or three-term-series problems. During the early phases of the inference, activity in primary and secondary acoustic areas and in the anterior prefrontal cortex was found. Further processing was accompanied by activity in medial frontal gyrus, the cingulate cortex, and in the parietal cortex. In the final phase, activity was found in the left frontal cortex, the right cerebellum, the right superior temporal gyrus, and in the parietal lobule. These results show that different brain areas are related to different phases of an inference. Based on these findings, we propose a three-stage-model of acoustic reasoning and identify the neural structures that are involved in the cognitive processes taking place in each phase. The results also show how acoustically presented reasoning problems differ from problems in which the problems are presented visually.

  1. Virtual acoustic displays

    Science.gov (United States)

    Wenzel, Elizabeth M.

    1991-01-01

    A 3D auditory display can potentially enhance information transfer by combining directional and iconic information in a quite naturalistic representation of dynamic objects in the interface. Another aspect of auditory spatial clues is that, in conjunction with other modalities, it can act as a potentiator of information in the display. For example, visual and auditory cues together can reinforce the information content of the display and provide a greater sense of presence or realism in a manner not readily achievable by either modality alone. This phenomenon will be particularly useful in telepresence applications, such as advanced teleconferencing environments, shared electronic workspaces, and monitoring telerobotic activities in remote or hazardous situations. Thus, the combination of direct spatial cues with good principles of iconic design could provide an extremely powerful and information-rich display which is also quite easy to use. An alternative approach, recently developed at ARC, generates externalized, 3D sound cues over headphones in realtime using digital signal processing. Here, the synthesis technique involves the digital generation of stimuli using Head-Related Transfer Functions (HRTF's) measured in the two ear-canals of individual subjects. Other similar approaches include an analog system developed by Loomis, et. al., (1990) and digital systems which make use of transforms derived from normative mannikins and simulations of room acoustics. Such an interface also requires the careful psychophysical evaluation of listener's ability to accurately localize the virtual or synthetic sound sources. From an applied standpoint, measurement of each potential listener's HRTF's may not be possible in practice. For experienced listeners, localization performance was only slightly degraded compared to a subject's inherent ability. Alternatively, even inexperienced listeners may be able to adapt to a particular set of HRTF's as long as they provide adequate

  2. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side......-attached DAR, with adjacent DAR units spaced by a distance much smaller than the wavelength, is analyzed. We show that such a chain of DAR units forms an analog of one-dimensional (1D) metamaterial with unique properties of dispersion and transmission, revealing the possibility of slowing sound (at 2 kHz) down...

  3. Dynamical Model in Low-Frequency-Pulsed Electron-Stimulated Desorption

    Institute of Scientific and Technical Information of China (English)

    张彤; 吴小山; 胡安; 毛福明; 杨学谦; 崔一平

    2003-01-01

    A dynamical model of low-frequency=pulsed electron=stimulated desorption is developed. The characteristic of desorbed gas flow is taken as an exponential function, and can be degenerated to a triangular and square wave.The transient pressure is given according to the gas flow of desorbing gas and vacuum system parameters,including the pumping speed and the system volume. Although the mathematical model is deduced from the electron-stimulated desorption, it can be applied to other similar processes of intermittent desorption.

  4. A kinetic Monte Carlo study of desorption of H2 from graphite (0001)

    CERN Document Server

    Gavardi, E; Hornekaer, L; 10.1016/j.cplett.2009.07.003

    2009-01-01

    The formation of H2 in the interstellar medium proceeds on the surfaces of silicate or carbonaceous particles. To get a deeper insight of its formation on the latter substrate, this letter focuses on H2 desorption from graphite (0001) in Temperature-Programmed-Desorption Monte-Carlo simulations. The results are compared to experimental results which show two main peaks and an intermediate shoulder for high initial coverage. The simulation program includes barriers obtained by ab-initio methods and is further optimised to match two independent experimental observations. The simulations reproduce the two experimental observed desorption peaks. Additionally, a possible origin of the intermediate peak is given.

  5. Tunable Adsorption and Desorption of Hydrogen Atoms on Single-Walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    赵明文; 夏日源; 马玉臣; 英敏菊; 刘向东; 梅良模

    2002-01-01

    Chemical adsorption and desorption of hydrogen atoms on single-walled carbon nanotubes (SWNTs) are investi-gated by using molecular dynamics simulations. It is found that the adsorption and desorption energy of hydrogenatoms depend on the hydrogen coverage and the diameter of the SWNTs. Hydrogen-adsorption geometry at thecoverage of 1.0 is more energetically stable. The adsorption energy decreases with the increasing diameter ofthe armchair tubes. The adsorption and desorption energy of hydrogen atoms can be modified reversibly byexternally radial deformation. The averaged C-H bond energy on the high curvature sites of the deformed tubeincreases with increasing radial deformation, while that on the low curvature sites decreases.

  6. Desorption of H atoms from graphite (0001) using XUV free electron laser pulses

    DEFF Research Database (Denmark)

    Siemer, B.; Olsen, Thomas; Hoger, T.;

    2010-01-01

    , and identifies the highest vibrational state in the adsorbate potential as a major source for the slow atoms. It is evident that multiple electron scattering processes are required for this desorption. A direct electronic excitation of a repulsive hydrogen-carbon bond seems not to be important.......The desorption of neutral H atoms from graphite with femtosecond XUV pulses is reported. The velocity distribution of the atoms peaks at extremely low kinetic energies. A DFT-based electron scattering calculation traces this distribution to desorption out of specific adsorption sites on graphite...

  7. A statistical study on in vivo sorption and desorption of water in ichthyosis vulgaris.

    Science.gov (United States)

    Mukherjee, S; Gupta, A B

    1994-02-01

    Experiments on the variation of electrical conductance on sorption and desorption of water were performed on the skin of 34 subjects: 17 ichthyosis vulgaris patients and 17 normal subjects, matched for age and gender, under different ambient conditions. An exponential model of the form ft = theta oe theta t, where ft denotes fractional conductance at time t, describes the process of desorption with high accuracy. The parameter theta, identifiable as the rate of desorption, is significantly different between the ichthyotic and normal populations. The study discusses the impaired barrier function of the ichthyotic skin.

  8. First-principles calculations of helium and neon desorption from cavities in silicon.

    Science.gov (United States)

    Eddin, A Charaf; Pizzagalli, L

    2012-05-02

    Combining density functional theory, the nudged elastic band technique, and the ultradense fluid model, we investigated the desorption process of He and Ne in silicon. Our results show that the internal surfaces of gas-filled bubbles are not a limiting factor during desorption experiments, since the surface reconstruction opens diffusion paths easier than in the bulk. We show that the vibrational contribution to the energy of helium in the bulk has to be considered in order to determine realistic pressures in the bubbles, when comparing experiments and simulations. At the maximum of desorption, an average pressure of 1-2 GPa is computed.

  9. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  10. Equilibrium moisture content (EMC) in Norway spruce during the first and second desorptions

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Engelund, Emil Tang; Thygesen, Lisbeth G.

    2011-01-01

    how drying and saturation procedures influence the differences between the 1st and the 2nd desorption curves for Norway spruce (Picea abies (L.) Karst.) sapwood. The study establishes 1st and 2nd desorption isotherms for a variety of initial conditions and it covers the RH range from 60.1% to 99.......9%. The state of the water is not affected by oven-drying and rewetting as demonstrated by time domain low field NMR relaxometry. The results challenge the conclusions of earlier studies and indicate that in these studies the 2nd desorption was initiated at much too low EMC and therefore fails to describe...

  11. Acoustic remote sensing of ocean flows

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.

    Acoustic techniques have become powerful tools for measurement of ocean circulation mainly because of the ability of acoustic signals to travel long distances in water, and the inherently non-invasive nature of measurement. The satellite remote...

  12. Golden Gate and Pt. Reyes Acoustic Detections

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...

  13. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    is to investigate the field of application an acoustic simulation program can have during an architectural acoustics design process. A case study is carried out in order to represent the iterative working process of an architect. The working process is divided into five phases and represented by typical results......The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...

  14. Acoustic network event classification using swarm optimization

    Science.gov (United States)

    Burman, Jerry

    2013-05-01

    Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

  15. Simultaneous effect of dissolved organic carbon, surfactant, and organic acid on the desorption of pesticides investigated by response surface methodology

    DEFF Research Database (Denmark)

    Trinh, Ha Thu; Duong, Hanh Thi; Ta, Thao Thi

    2017-01-01

    Desorption of pesticides (fenobucarb, endosulfan, and dichlorodiphenyltrichloroethane (DDT)) from soil to aqueous solution with the simultaneous presence of dissolved organic carbon (DOC), sodium dodecyl sulfate (SDS), and sodium oxalate (Oxa) was investigated in batch test by applying a full fac...... characteristics of flooding and irrigation water in rice fields, and surfactants from pollution increase the problem with desorption of legacy pesticides in the rice fields....... caused the minimum desorption. This point at conditions of concern for flooding water is high content of organic compounds causing potentially high contamination by desorption, and the remarkably lower desorption at organic matter-free conditions. The suspended organic matter is one of the common...

  16. Acoustic Communication for Medical Nanorobots

    CERN Document Server

    Hogg, Tad

    2012-01-01

    Communication among microscopic robots (nanorobots) can coordinate their activities for biomedical tasks. The feasibility of in vivo ultrasonic communication is evaluated for micron-size robots broadcasting into various types of tissues. Frequencies between 10MHz and 300MHz give the best tradeoff between efficient acoustic generation and attenuation for communication over distances of about 100 microns. Based on these results, we find power available from ambient oxygen and glucose in the bloodstream can readily support communication rates up to 10,000 bits/second between micron-sized robots. We discuss techniques, such as directional acoustic beams, that can increase this rate. The acoustic pressure fields enabling this communication are unlikely to damage nearby tissue, and short bursts at considerably higher power could be of therapeutic use.

  17. Classroom acoustics: Three pilot studies

    Science.gov (United States)

    Smaldino, Joseph J.

    2005-04-01

    This paper summarizes three related pilot projects designed to focus on the possible effects of classroom acoustics on fine auditory discrimination as it relates to language acquisition, especially English as a second language. The first study investigated the influence of improving the signal-to-noise ratio on the differentiation of English phonemes. The results showed better differentiation with better signal-to-noise ratio. The second studied speech perception in noise by young adults for whom English was a second language. The outcome indicated that the second language learners required a better signal-to-noise ratio to perform equally to the native language participants. The last study surveyed the acoustic conditions of preschool and day care classrooms, wherein first and second language learning occurs. The survey suggested an unfavorable acoustic environment for language learning.

  18. Software-based acoustical measurements

    CERN Document Server

    Miyara, Federico

    2017-01-01

    This textbook provides a detailed introduction to the use of software in combination with simple and economical hardware (a sound level meter with calibrated AC output and a digital recording system) to obtain sophisticated measurements usually requiring expensive equipment. It emphasizes the use of free, open source, and multiplatform software. Many commercial acoustical measurement systems use software algorithms as an integral component; however the methods are not disclosed. This book enables the reader to develop useful algorithms and provides insight into the use of digital audio editing tools to document features in the signal. Topics covered include acoustical measurement principles, in-depth critical study of uncertainty applied to acoustical measurements, digital signal processing from the basics, and metrologically-oriented spectral and statistical analysis of signals. The student will gain a deep understanding of the use of software for measurement purposes; the ability to implement software-based...

  19. Phoneme Recognition Using Acoustic Events

    CERN Document Server

    Huebener, K; Huebener, Kai; Carson-Berndsen, Julie

    1994-01-01

    This paper presents a new approach to phoneme recognition using nonsequential sub--phoneme units. These units are called acoustic events and are phonologically meaningful as well as recognizable from speech signals. Acoustic events form a phonologically incomplete representation as compared to distinctive features. This problem may partly be overcome by incorporating phonological constraints. Currently, 24 binary events describing manner and place of articulation, vowel quality and voicing are used to recognize all German phonemes. Phoneme recognition in this paradigm consists of two steps: After the acoustic events have been determined from the speech signal, a phonological parser is used to generate syllable and phoneme hypotheses from the event lattice. Results obtained on a speaker--dependent corpus are presented.

  20. Acoustic Localization with Infrasonic Signals

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  1. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)

    1997-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  2. Absorption boundary conditions for geomertical acoustics

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....

  3. Particle analysis in an acoustic cytometer

    Energy Technology Data Exchange (ETDEWEB)

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  4. Acoustic behaviors of unsaturated soils

    Science.gov (United States)

    Lu, Z.

    2011-12-01

    Soils are unconsolidated granular materials, consisting of solid particles, water and air. Their mechanical and dynamic behaviors are determined by the discrete nature of the media as well as external and inter-particle forces. For unsaturated soils, two factors significantly affect soils acoustic/seismic responses: external pressure and internal water potential/matric suction. In triaxial cell tests, unsaturated soils were subjected to predefined stress paths to undergo stages of normal consolidation, unload-reload cycles, and failure. The stress deformation curve and stress-P-wave velocity were measured and compared. The study revealed that soil's dynamic response to external pressure are similar to those of the load-deformation behaviors and demonstrated that acoustic velocity can be used to monitor the state of stress of soils. In a long term field soil survey, the P-wave velocities were found to be correlated with water potential as expressed as a power-law relationship. The above phenomena can be understood by using the Terzaghi' s the principle of effective stress. The measured results were in good agreement with Brutsaert theory. The effective stress concept can also be applied to explain the observations in a soil pipe flow study in which soil internal erosion processes were monitored and interpreted by the temporal evolution of the P-wave velocity. In addition to above linear acoustic behaviors, soils, like other earth materials, exhibit astonishing non-classical nonlinear behaviors such as end-point memory, hysteresis, strain -dependent shear modulus, resonant frequency shift, and phase shift, harmonics generation, etc. A nonlinear acoustic study of a soil as a function of water content showed that the nonlinear acoustic parameter are much sensitive to the variations of soil water content than that of the acoustic velocity.

  5. CT findings of acoustic neuroma

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Do Choul; Lee, Jae Mun; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic Univ., Seoul (Korea, Republic of)

    1987-10-15

    Computed Tomography (CT) is very accurate in evaluating the location, size, shape and extension of acoustic neuroma. We analysed CT findings of 23 acoustic neuromas seen at Department of Radiology, Kangnam St. Mary's Hospital, Catholic University Medical College during the period of from January 1981 to June 1987. 1. Five (22%) were men and 18 (78%) were women with the high incidence occurring in the 4th and 5th decades. 2. Twenty two cases were diagnosed satisfactorily by CT examinations which included axial, coronal and reconstruction images. One with the smallest dimension of 8 mm in diameter could not be detected by the conventional CT scan. But is could be seen after metrizamide cisternography. mean size of the tumor masses was estimated 3.6 cm in diameter. 3. The shape of the tumor was oval in 50%, round in 27% and lobulated in 23%. The masses were presented as hypodense in 50%, isodense in 32% and hyperdense in 18%. All tumors were extended from the internal acoustic and toward the cerebellopontine angle. The internal acoustic canal was widened in 77%. Hydrocephalus was associated in 45%. Widening of cerebellopontine angle cistern was noted in 50%. 4. After contrast infusion the tumors were enhanced markedly in 45%, moderately in 32% and mildly in 23%. The enhanced pattern was homogeneous in 41%, mixed in 41% and rim in 18%. The margin of the tumors was sharply defined in 82%. The tumors were attached to the petrous bone with acute angle in 73%. Cystic change within the tumor was found in 27%. The peritumoral edema was noted in 45%. In conclusion, CT is of most effective modalities to evaluate size, shape, extent and internal architecture of acoustic neuroma as well as relationship with adjacent anatomic structures including the internal acoustic canal.

  6. Acoustically-Induced Electrical Signals

    Science.gov (United States)

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  7. Kinetics of Surfactant Desorption at an Air–Solution Interface

    KAUST Repository

    Morgan, C. E.

    2012-12-18

    The kinetics of re-equilibration of the anionic surfactant sodium dodecylbenzene sulfonate at the air-solution interface have been studied using neutron reflectivity. The experimental arrangement incorporates a novel flow cell in which the subphase can be exchanged (diluted) using a laminar flow while the surface region remains unaltered. The rate of the re-equilibration is relatively slow and occurs over many tens of minutes, which is comparable with the dilution time scale of approximately 10-30 min. A detailed mathematical model, in which the rate of the desorption is determined by transport through a near-surface diffusion layer into a diluted bulk solution below, is developed and provides a good description of the time-dependent adsorption data. A key parameter of the model is the ratio of the depth of the diffusion layer, H c, to the depth of the fluid, Hf, and we find that this is related to the reduced Péclet number, Pe*, for the system, via Hc/Hf = C/Pe*1/2. Although from a highly idealized experimental arrangement, the results provide an important insight into the "rinse mechanism", which is applicable to a wide variety of domestic and industrial circumstances. © 2012 American Chemical Society.

  8. Quantitative analysis of biopolymers by matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tang, K.; Allman, S.L.; Jones, R.B.; Chen, C.H. (Oak Ridge National Lab., TN (United States))

    1993-08-01

    During the past few years, major efforts have been made to use mass spectrometry to measure biopolymers because of the great potential benefit to biological and medical research. Although the theoretical details of laser desorption and ionization mechanisms of MALDI are not yet fully understood, several models have been presented to explain the production of large biopolymer ions. In brief, it is very difficult to obtain reliable measurements of the absolute quantity of analytes by MALDI. If MALDI is going to become a routine analytical tool, it is obvious that quantitative measurement capability must be pursued. Oligonucleotides and protein samples used in this work were purchased from commercial sources. Nicotinic acid was used as matrix for both types of biopolymers. From this experiment, it is seen that it is difficult to obtain absolute quantitative measurements of biopolymers using MALDI. However, internal calibration with molecules having similar chemical properties can be used to resolve these difficulties. Chemical reactions between biopolymers must be avoided to prevent the destruction of the analyte materials. 10 refs., 8 figs.

  9. Pulsed light desorption of molecular nitrogen from a glass surface

    Science.gov (United States)

    Atutov, S. N.; Danilina, N. A.; Mikerin, S. L.; Plekhanov, A. I.

    2014-03-01

    Experimental results on the pulsed light desorption (PLD) of molecular Nitrogen from the surface of C-52 and Pyrex glasses are presented. The aim of the study was to determine the experimental conditions to obtain the maximum manifestation of the PLD effect of molecular gases. These studies were conducted in vacuum glass cells of different sizes and shapes filled by Nitrogen, whose inner surface was illuminated by the light of a powerful flash lamp. The variation in the density of the desorbed gas in the cell caused by PLD was studied using both a mass spectrometer and a vacuum gauge attached to the illuminated cells. The experimental results are in qualitative agreement with the theoretical model developed. We demonstrates that PLD can drastically increase a peak density of desorbed Nitrogen in a cell and the maximal Nitrogen density can be achieved in a small diameter long cell of cylindrical form. We believe that the results of this experiment can be applied to the loading of some gases inside a hollow-core, photonic band-gap fiber to generate a large optical depth for an experiment in low-light-level nonlinear optics.

  10. Thermal desorption from surfaces with laser-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Szabelski, Pawel; Panczyk, Tomasz; Rudzinski, Wladyslaw

    2002-12-30

    Monte Carlo simulation method was used to mimic surface damage development caused by short laser pulses. The influence of pulsed laser irradiation on the creation of defect concentration was examined in the case of a model surface. In particular, the dependence of the intact surface area on a number of laser scans was studied and compared with the experimental results obtained for Rh(1 1 1) crystal face. Changes in the adsorptivoperties of the surface produced by laser irradiation are explained with the help of a simple geometric model connecting the laser intensity and the disordered area generated by a single laser shot. It was demonstrated that exponential decay of the Low Energy Electron Diffraction (LEED) signal with the number of laser scans, which is observed experimentally, may result directly from the overlapping of the laser spots created on the surface. This effect becomes enhanced when the laser intensity, hence the spot size, increases. The importance of laser-induced defects in the kinetics of catalytic/separation processes was examined in the case of temperature programmed desorption (TPD) spectra from surfaces subjected to a different number of laser shots. The spectra were simulated by employing the Monte Carlo method as well as by application of the absolute rate theory (ART) coupled with the mean field approximation. The results obtained with both methods were in a good agreement even when weak lateral interactions in the adsorbed phase were allowed.

  11. Prompt Gas Desorption Due to Ion Impact on Accelerator Structures

    Science.gov (United States)

    Vijay, Sagar; Seidl, Peter A.; Faltens, Andy; Lidia, Steven M.

    2011-10-01

    The repetition rate and peak current of high intensity ion accelerators for inertial fusion or other applications may be limited under certain conditions by the desorption of gas molecules and atoms due to stray ions striking the accelerator structure. We have measured the prompt yield of atoms in close proximity to the point of impact of the ions on a surface. Using the 300-keV, K+ ion beam of the Neutralized Drift Compression Experiment (NDCX-I), ions strike a metal target in a 5-10 microsecond bunch. The collector of a Bayert-Alpert style ionization gauge is used to detect the local pressure burst several centimeters away. Pressure transients are observed on a micro-second time scale due to the initial burst of desorbed gas, and on a much longer (~1 second) timescale, corresponding to the equilibration of the pressure after many ``bounces'' of atoms in the vacuum chamber. We report on these time dependent pressure measurements, modeling of the pressure transient, and implications for high-intensity ion accelerators. Work performed under auspices of U.S. DOE by LBNL under Contract DE-AC02-05CH1123.

  12. A combined whelk watch suggests repeated TBT desorption pulses.

    Science.gov (United States)

    Ruiz, J M; Albaina, N; Carro, B; Barreiro, R

    2015-01-01

    Environmental quality in coastal Europe has improved since the complete 2003 ban on the use of tributyltin (TBT) in antifouling paints. However, there is evidence that TBT is entering the water column, presumably from illegal practices. We determined the concentration of butyltins (BTs: TBT and derivatives) in populations of two gastropods, the rock snail Nucella lapillus (n=17) and the mud snail Nassarius reticulatus (n=18) at regular intervals from pre-ban times until 2009 and 2011, respectively, in NW Spain. Although a substantial decline in TBT occurred shortly after the ban, no significant changes were observed in either species over the last 3-year period of study. In addition, the proportion of TBT relative to the sum of BTs (a marker of recent pollution) in the most recent rock snail samples unexpectedly increased; this proportion therefore showed a generally decreasing but oscillatory trend over time. The results are consistent with the theoretical expectation of BT desorption from sediments; however, this natural phenomenon is now interpreted as a recurrent episode rather than a unique, transient event. Evidence of this subtle input improves our understanding of TBT persistence in the environment in Europe and worldwide.

  13. News on sputter theory: Molecular targets, nanoparticle desorption, rough surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.d [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Anders, Christian [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Rosandi, Yudi [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Department of Physics, Universitas Padjadjaran, Jatinangor, Sumedang 45363 (Indonesia)

    2011-05-01

    Sputtering theory has existed as a mature and well-understood field of physics since the theory of collision-cascade sputtering has been developed in the late 1960s. In this presentation we outline several directions, in which the basic understanding of sputter phenomena has been challenged and new insight has been obtained recently. Sputtering of molecular solids: after ion impact on a molecular solid, not all of the impact energy is available for inducing sputtering. Part of the energy is converted into internal (rotational and vibrational) excitation of the target molecules, and part is used for molecule dissociation. Furthermore, exothermic or endothermic chemical reactions may further change the energy balance in the irradiated target. Nanoparticle desorption: usually, the flux of sputtered particles is dominated by monatomics; in the case of a pronounced spike contribution to sputtering, the contribution of clusters in the sputtered flux may become considerable. Here, we discuss the situation that nanoparticles were present on the surface, and outline mechanisms of how these may be desorbed (more or less intact) by ion or cluster impact. Rough surfaces: real surfaces are rough and contain surface defects (adatoms, surface steps, etc.). For grazing ion incidence, these influence the energy input into the surface dramatically. For such incidence angles sputtering vanishes for a flat terrace; however, ion impact close to a defect may lead to sputter yields comparable to those at normal incidence. In such cases sputtering also exhibits a pronounced azimuth and temperature dependence.

  14. Pesticide sorption and desorption from soils having different land use

    Directory of Open Access Journals (Sweden)

    Ismael Madrigal Monárrez

    2010-05-01

    Full Text Available This study was carried out within the framework of a multidisciplinary project for evaluating buffer zones for combating pesticide contamination of surface water. Such areas are effective in removing pesticides transported by run-off; however, little information is available about the fate of the pesticides so intercepted. Two herbicides having contrasting properties (isoproturon, moderately hydrophobic (log Kow = 2.5, diflufenican, strongly hydrophobic (log K ow = 4.9 and isopropylaniline (an isoproturon metabolite were used for characterising sorption and desorption from soil having three different land uses: grass buffer strip, woodland and cultivated plot. The experiments were carried out in controlled laboratory conditions using isoproturon labelled with 14C in the benzene ring. The results demonstrated that diflufenican and isopropilaniline retention was more significant than isoproturon in three soils. The three molecules’ Kd values revealed that isoproturon and diflufenicanil retention was more important in woodland soil where carbon content was more significant (ZB 0-2: Kd IPU = 15.1 Ls kg-1; Kd DFF = 169.2 Ls kg-1. Isopropilanilina Kd was higher in grass buffer strip soil (BE 0-2: Kd IPA = 53.1 L kg-1. These differences were related to different organic matter content and nature according to the type of land use.

  15. Adsorption and desorption characteristics of diphenylarsenicals in two contrasting soils

    Institute of Scientific and Technical Information of China (English)

    Anan Wang; Shixin Li; Ying Teng; Wuxin Liu; Longhua Wu; Haibo Zhang; Yujuan Huang

    2013-01-01

    Diphenylarsinic acid (DPAA) is formed during the leakage of aromatic arsenic chemical weapons in soils,is persistent in nature,and results in arsenic contamination in the field.The adsorption and desorption characteristics of DPAA were investigated in two typical Chinese soils,an Acrisol (a variable-charge soil) and a Phaeozem (a constant-charge soil).Their thermodynamics and some of the factors influencing them (i.e.,initial pH value,ionic strength and phosphate) were also evaluated using the batch method in order to understand the environmental fate of DPAA in soils.The results indicate that Acrisol had a stronger adsorption capacity for DPAA than Phaeozem.Soil DPAA adsorption was a spontaneous and endothermic process and the amount of DPAA adsorbed was affected significantly by variation in soil pH and phosphate.In contrast,soil organic matter and ionic strength had no significant effect on adsorption.This suggests that DPAA adsorption may be due to specific adsorption on soil mineral surfaces.Therefore,monitoring the fate of DPAA in soils is recommended in areas contaminated by leakage from chemical weapons.

  16. Electrical Characteristics and Desorption Kinetics of Soil Boron

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The status and activities of boron in soils were studied by the approach of electro-ultrafiltration (EUF). The samples of soils, including brown-red soil and calcareous alluvial soil, were collected from Hubei Province of China. The soil samples were incubated in saturated water and then their nutrients were ultrafiltrated with EUF equipment. Filtration and extraction were conducted in accordance with routine process, but fractions in anode and cathode were all collected. Analyses of B, K+, Mg2+, Ca2+, C1- and pH in fractions supposed that boron existed not only in a simple form of borate but also in ion-pair with cations partly in acidic soil,and borate was the primary form existing in the calcareous soil. In studying desorption kinetics with EUF,the boron content of Fractions 2~6 was accumulated, and the accumulative quantities were fit to time factors in three kinetic equations: the zero-order, first-order, and arabolic diffusion equations. Fit degree of the parabolic diffusion equation was the best, followed by the zero-order quation, and the first-order equation was the worst.

  17. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  18. Acoustic-gravity nonlinear structures

    Directory of Open Access Journals (Sweden)

    D. Jovanović

    2002-01-01

    Full Text Available A catalogue of nonlinear vortex structures associated with acoustic-gravity perturbations in the Earth's atmosphere is presented. Besides the previously known Kelvin-Stewart cat's eyes, dipolar and tripolar structures, new solutions having the form of a row of counter-rotating vortices, and several weakly two-dimensional vortex chains are given. The existence conditions for these nonlinear structures are discussed with respect to the presence of inhomogeneities of the shear flows. The mode-coupling mechanism for the nonlinear generation of shear flows in the presence of linearly unstable acoustic-gravity waves, possibly also leading to intermittency and chaos, is presented.

  19. Acoustic performance of membrane absorbers

    Science.gov (United States)

    Frommhold, W.; Fuchs, H. V.; Sheng, S.

    1994-03-01

    This paper is a report on the acoustic properties of absorbing elements, which consist of metal membranes and show good sound absorption at low and medium frequencies over more than one octave. The studies refer to the sound absorption coefficient and acoustic impedance at normal incidence of the sound waves. It is shown that the behavior of the absorbing element is mainly determined by a combination of Helmholtz resonance and plate resonance. The parameters of the separate resonators are determined both by theory and experiment and serve as input data for a simplified calculation model, which can be used as an auxiliary tool for designing membrane absorber silencers.

  20. Physical foundations of technical acoustics

    CERN Document Server

    Malecki, I

    1969-01-01

    Physical Foundations of Technical Acoustics discusses theoretical foundations of acoustical engineering. It is not so much a technical compendium as a systematic statement of physical laws so conceived that technologists might find in it all the information they need to become acquainted with the physical meaning and mathematical expression of phenomena they encounter in their work. To facilitate the acquirement of notions, which lie beyond a layman's grasp, the plan of narration adopted consists in beginning with the simplest idealized cases and then gradually moving on to the truest possibl

  1. Predicting and auralizing acoustics in classrooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    2005-01-01

    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven...

  2. Aero-acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Michelsen, Jess; Sørensen, Jens Nørkær

    2002-01-01

    A numerical algorithm for acoustic noise generation is extended to 3D flows. The approach involves two parts comprising a viscous incompressible flow part and an inviscid acoustic part. In order to simulate noise generated from a wind turbine, the incompressible and acoustic equations are written...

  3. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...

  4. Location of an acoustic window in dolphins.

    Science.gov (United States)

    Popov, V V; Supin, A Y

    1990-01-15

    Auditory brainstem responses (ABR) to sound clicks from sources in different positions were recorded in dolphins Inia geoffrensis. The position of the acoustic window was determined by measurement of acoustic delays. The acoustic window was found to lie close to the auditory meatus and the bulla rather than on the lower jaw.

  5. Outdoor Acoustics as a General Discipline

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1999-01-01

    A tutorial paper exploring the characteristics of sound outdoors. Outdoor acoustics is contrasted to room acoustics. A number of important aspects of outdoor acoustics are exemplified and theoretical approaches are outlined. These are influence of ground impedance, influence of weather, screening...

  6. Temperature dependence of CO desorption kinetics at a novel Pt-on-Au/C PEM fuel cell anode

    DEFF Research Database (Denmark)

    Pitois, A.; Pilenga, A.; Pfrang, A.;

    2010-01-01

    techniques. The temperature dependence of the CO desorption process on this system has been investigated using isotopic exchange experiments. The CO desorption kinetics have been studied as a function of temperature and flow rate. Desorption rate constants have been measured for a temperature range between...... 25 and 150 degrees C. These desorption rate constants have been compared with the benchmarking desorption rate data obtained for the commercial Pt/C catalyst under similar experimental conditions. A comparable desorption rate constant for the Pt-on-Au/C and Pt/C systems has been obtained at 25...... degrees C. The dependence in temperature of the desorption rate constants for the novel Pt-on-Au/C system is however much lower than that observed for the Pt/C system. This suggests that the nature of the substrate has a significant influence on the catalyst surface properties. It shows that, in surface...

  7. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...

  8. The adsorption-desorption cycle. Reversibility of the BSA-silica system

    NARCIS (Netherlands)

    Giacomelli, CE; Norde, W

    2001-01-01

    The reversibility of the adsorption-desorption cycle was established by comparing the thermostability (determined by differential scanning calorimetry) and secondary structure (obtained by circular dichroism spectroscopy) of BSA before adsorption, adsorbed on, and exchanged from silica particles. Ci

  9. The adsorption-desorption cycle. Reversibility of the BSA-silica system

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2001-01-01

    The reversibility of the adsorption–desorption cycle was established by comparing the thermostability (determined by differential scanning calorimetry) and secondary structure (obtained by circular dichroism spectroscopy) of BSA before adsorption, adsorbed on, and exchanged from silica particles. Ci

  10. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil.

    Science.gov (United States)

    Marchal, Geoffrey; Smith, Kilian E C; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G

    2013-10-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg(-1)) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Threshold character of temperatures on deuterium desorption from the Mg-Zr composite

    Science.gov (United States)

    Neklyudov, I. M.; Morozov, O. M.; Kulish, V. G.; Zhurba, V. I.; Lomino, N. S.; Ovcharenko, V. D.; Kuprin, O. S.

    2011-06-01

    The plasma evaporation-sputtering method was used to manufacture composite materials of the Mg-Zr system. The ion-implanted deuterium desorption temperature variations depending on the component concentrations were studied. It has been established that the introduction of a Zr impurity to magnesium leads to the significant decrease of the deuterium desorption temperature (~400K) as compared to the release from Mg samples. A step-like form of the curve of the deuterium desorption temperature testifies to presence of two various structural conditions at composite Mg-Zr depending on the relation of components. The hydrogen desorption data obtained using Mg-Zr composites can be used for the further invrstigations into the hydrogen storage materials containing chemical elements with a low solubility in the alloy components.

  12. Threshold character of temperatures on deuterium desorption from the Mg-Zr composite

    Energy Technology Data Exchange (ETDEWEB)

    Neklyudov, I M; Morozov, O M; Kulish, V G; Zhurba, V I; Lomino, N S; Ovcharenko, V D; Kuprin, O S, E-mail: morozov@kipt.kharkov.ua [National Science Center ' Kharkov Institute of Physics and Technology' , 61108 Kharkov (Ukraine)

    2011-06-23

    The plasma evaporation-sputtering method was used to manufacture composite materials of the Mg-Zr system. The ion-implanted deuterium desorption temperature variations depending on the component concentrations were studied. It has been established that the introduction of a Zr impurity to magnesium leads to the significant decrease of the deuterium desorption temperature ({approx}400K) as compared to the release from Mg samples. A step-like form of the curve of the deuterium desorption temperature testifies to presence of two various structural conditions at composite Mg-Zr depending on the relation of components. The hydrogen desorption data obtained using Mg-Zr composites can be used for the further invrstigations into the hydrogen storage materials containing chemical elements with a low solubility in the alloy components.

  13. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n—HEXANE ON ACTIVATED CARBONS BY PTD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIZhong; WANGHongjuan; 等

    2001-01-01

    In this paper,six kinds of activated carbons such as Ag+-activated carbon,Cu2+activated carbon,Fe3+-activated carbon,activated carbon,Ba2+-activated carbon and Ca2+activated carbon were prepared.The model for estimating activated energy of desorption was established.Temperature-programmed desorption(TPD)experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons.Results showed that the activation energy for the desorption of n-hexanol on the Ag+-activated carbon,the Cu2+-activated carbon and the Fe3+-activated carbon were higher than those of n-hexanol on the activated carbon,the Ca2+-activated carbon and the Ba2+-activated carbon.

  14. ESTIMATION OF ACTIVATED ENERGY OF DESORPTION OF n-HEXANE ON ACTIVATED CARBONS BY TPD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, six kinds of activated carbons such as Ag+-activated carbon, Cu2+-activated carbon, Fe3+- activated carbon, activated carbon, Ba2+- activated carbon and Ca2+-activated carbon were prepared. The model for estimating activated energy of desorption was established. Temperature-programmed desorption (TPD) experiments were conducted to measure the TPD curves of n-hexanol and then estimate the activation energy for desorption of n-hexanol on the activated carbons. Results showed that the activation energy for the desorption of n-hexanol on the Ag+- activated carbon, the Cu2+- activated carbon and the Fe3+- activated carbon were higher than those of n-hexanol on the activated carbon, the Ca2+- activated carbon and the Ba2+- activated carbon.

  15. Study on impurity desorption induced by femtosecond pulse laser based on a stochastic process model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With the advantages on non-equilibrium heating and desorption induced by electronic transition, the femtosecond pulse laser introduces a new way for solving the problem of impurity pollution adsorbed on a solid thin film in micro-electro-mechanical systems (MEMS). A model based on stochastic processes was established for stimulated desorption induced by the femtosecond pulse laser to interpret the interaction of the optically excited hot electrons with the adsorbed molecules in a metal substrate. Numerical simulation results reveal a time-dependent desorption probability of adsorbed molecules and indicate that how key parameters of femtosecond pulse laser, such as incident laser energy flux, pulse duration, and wavelength of pulse, have a great effect on the desorption probability.

  16. Low energy electron stimulated desorption from DNA films dosed with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Mirsaleh-Kohan, Nasrin; Bass, Andrew D.; Cloutier, Pierre; Massey, Sylvain; Sanche, Leon [Groupe en sciences des radiations, Faculte de medecine et des sciences de la sante, Universite de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2012-06-21

    Desorption of anions stimulated by 1-18 eV electron impact on self-assembled monolayer (SAM) films of single DNA strands is measured as a function of film temperature (50-250 K). The SAMs, composed of 10 nucleotides, are dosed with O{sub 2}. The OH{sup -} desorption yields increase markedly with exposure to O{sub 2} at 50 K and are further enhanced upon heating. In contrast, the desorption yields of O{sup -}, attributable to dissociative electron attachment to trapped O{sub 2} molecules decrease with heating. Irradiation of the DNA films prior to the deposition of O{sub 2} shows that this surprising increase in OH{sup -} desorption, at elevated temperatures, arises from the reaction of O{sub 2} with damaged DNA sites. These results thus appear to be a manifestation of the so-called 'oxygen fixation' effect, well known in radiobiology.

  17. Research on the gas desorption law of the consumingly destruct coal

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiang-jun; WANG Zhao-feng; YANG Hong-min; XIAO Dong-hui

    2008-01-01

    To solve the issues of calculating gas loss quantity during sampling, simulated gas desorption process of the consumingly destruct coal with the assembly simulation testing device. Through an analysis of the simulation test datum using SPSS software,established a new formula that can be better description on gas desorption process, more accurate calculation of the gas loss quantity during sampling process, and calculating releasable gas quantity during a certain period. Aimed at the new formula, the best time of taking sample is confirmed 3 minutes for consumingly destruct coal, the computative error is less than 10%. Through experiment at laboratory and locale, the new formula could well describe consumingly destruct coal gas desorption law, and it has high calculation precision of gas loss quantity in sampling and desorption quanlity.

  18. EFFECTS OF BIOSOLIDS ON SORPTION AND DESORPTION BEHAVIOR OF CADMIUM IN BIOSOLIDS-AMENDED SOILS

    Science.gov (United States)

    Cadmium sorption and desorption experiments were conducted on different fractions of soils amended with different biosolids with varying chemical properties and unamended soil (control). Biosolids addition increased the slope of the Cd sorption isotherms compared to the control s...

  19. Catalitic effect of Co on hydrogen desorption form nanostucturated magnesium hydride

    Directory of Open Access Journals (Sweden)

    Matović Ljiljana Lj.

    2008-01-01

    Full Text Available To study the influence of 3d transition metal addition on desorption kinetics of MgH2 ball milling of MgH2-Co blends was performed under Ar. Microstructural and morphological characterization, performed by XRD and SEM, show a huge correlation with thermal stability and hydrogen desorption properties investigated by DSC. A complex desorption behavior is correlated with the dispersion of the metal additive particles on hydride matrix. The activation energy for H2 desorption from MgH2-Co composite was calculated from both non-isothermal and isothermal methods to be 130 kJ/mol which means that mutually diffusion and nucleation and growth of new phase control the dehydration process.

  20. Modelling of hydrogen thermal desorption spectrum in nonlinear dynamical boundary-value problem

    Science.gov (United States)

    Kostikova, E. K.; Zaika, Yu V.

    2016-11-01

    One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a distributed boundary-value problem of thermal desorption and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order (compared with, e.g., the method of lines) ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).

  1. Hydrogen absorption and desorption in nanocrystalline LaMg{sub 2}Ni

    Energy Technology Data Exchange (ETDEWEB)

    Di Chio, M. [Dipartimento di Chimica IFM and NIS-Centre of Excellence, Universita di Torino, Via P. Giuria, 9-10125 Torino (Italy); Schiffini, L. [Dipartimento di Chimica, Universita di Sassari, Via Vienna, 2-07100 Sassari (Italy); Enzo, S. [Dipartimento di Chimica, Universita di Sassari, Via Vienna, 2-07100 Sassari (Italy); Cocco, G. [Dipartimento di Chimica, Universita di Sassari, Via Vienna, 2-07100 Sassari (Italy); Baricco, M. [Dipartimento di Chimica IFM and NIS-Centre of Excellence, Universita di Torino, Via P. Giuria, 9-10125 Torino (Italy)]. E-mail: marcello.baricco@unito.it

    2007-05-31

    Hydrogen absorption and desorption properties in LaMg{sub 2}Ni compound are presented. Nanostructured phases have been obtained by means of ball milling in order to study the influence of the microstructure on the absorption/desorption properties. The structural and hydriding properties were examined by X-ray diffraction, thermal analysis, hydrogen pressure-composition and thermal desorption measurements. Ball milling of as-cast compound gives a significant refinement of the microstructure. Hydrogenation at 443 K leads to the formation of LaMg{sub 2}NiH{sub 7}, but at higher temperatures (523 K) LaH{sub 2} is produced. Two hours of ball milling promote the formation of LaH{sub 2} under hydrogenation at 443 K. Thermal desorption up to 983 K of hydrogenated samples leads again to parent LaMg{sub 2}Ni phase.

  2. omniSpect: an open MATLAB-based tool for visualization and analysis of matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry images.

    Science.gov (United States)

    Parry, R Mitchell; Galhena, Asiri S; Gamage, Chaminda M; Bennett, Rachel V; Wang, May D; Fernández, Facundo M

    2013-04-01

    We present omniSpect, an open source web- and MATLAB-based software tool for both desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) that performs computationally intensive functions on a remote server. These functions include converting data from a variety of file formats into a common format easily manipulated in MATLAB, transforming time-series mass spectra into mass spectrometry images based on a probe spatial raster path, and multivariate analysis. OmniSpect provides an extensible suite of tools to meet the computational requirements needed for visualizing open and proprietary format MSI data.

  3. Acoustic trapping for bacteria identification in positive blood cultures with MALDI-TOF MS.

    Science.gov (United States)

    Hammarström, Björn; Nilson, Bo; Laurell, Thomas; Nilsson, Johan; Ekström, Simon

    2014-11-04

    Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently changing the clinical routine for identification of microbial pathogens. One important application is the rapid identification of bacteria for the diagnosis of bloodstream infections (BSI). A novel approach based on acoustic trapping and an integrated selective enrichment target (ISET) microchip that improves the sample preparation step for this type of analysis is presented. The method is evaluated on clinically relevant samples in the form of Escherichia coli infected blood cultures. It is shown that noncontact acoustic trapping enables capture, enrichment, and washing of bacteria directly from the complex background of crude blood cultures. The technology replaces centrifugation-based separation with a faster and highly automated sample preparation method that minimizes manual handling of hazardous pathogens. The presented method includes a solid phase extraction step that was optimized for enrichment of the bacterial proteins and peptides that are used for bacterial identification. The acoustic trapping-based assay provided correct identification in 12 out 12 cases of E. coli positive blood cultures with an average score of 2.19 ± 0.09 compared to 1.98 ± 0.08 when using the standard assay. This new technology opens up the possibility to automate and speed up an important and widely used diagnostic assay for bloodstream infections.

  4. Heavy-ion-induced desorption of organic molecules studied with Langmuir-Blodgett multilayer systems (DE)

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Schoppmann, C.; Brandl, D.; Ostrowski, A.; Voit, H. (Physikalisches Institut der Universitaet Erlangen-Nuernberg D-8520 Erlangen, (Germany)); Johannsmann, D.; Knoll, W. (Max-Planck-Institut fuer Polymerforschung Mainz D-6500 Mainz, (Germany))

    1991-07-01

    Heavy-ion-induced desorption has been studied with samples consisting of Langmuir-Blodgett films made from Cd salts of fatty acids. The experiments confirm the result of previous works that heavy ions drill a crater into the sample surface. The explicit dependence of the crater depth on the electronic energy loss could be determined from the experiments. The craters exhibit the shape of a symmetric cone as obtained from a desorption model applied to the experimental data.

  5. Oxygen Sorption and Desorption Properties of Selected Lanthanum Manganites and Lanthanum Ferrite Manganites

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Skou, Eivind M.; Jacobsen, Torben

    2015-01-01

    Temperature‐programmed desorption (TPD) with a carrier gas was used to study the oxygen sorption and desorption properties of oxidation catalysts and solid‐oxide fuel cell (SOFC) cathode materials (La0.85Sr0.15)0.95MnO3+δ (LSM) and La0.60Sr0.40Fe0.80Mn0.20O3‐δ (LSFM). The powders were characteriz...

  6. Desorption of organo phosphorous pesticides from soil with wastewater and surfactant solution

    OpenAIRE

    Hernandez-Soriano, Maria del Carmen; Mingorance, Maria Dolores; Peña, Aranzazu

    2008-01-01

    Surfactants can be introduced in the environment by wastewater discharge, point-charge pollution or deliberate action, e.g. to remediate contaminated soil or groundwater. The irrigation of soil with wastewater containing surfactants may modify pesticide desorption from soil, thus affecting their environmental fate. Desorption from soil of the plain of Granada (South-eastern Spain) of two organophosphorous pesticides, diazinon and dimethoate, differing in solubility and hydrophobicity...

  7. Various causes behind the desorption hysteresis of carboxylic acids on mudstones.

    Science.gov (United States)

    Rasamimanana, S; Lefèvre, G; Dagnelie, R V H

    2017-02-01

    Adsorption desorption is a key factor for leaching, migration and (bio)degradation of organic pollutants in soils and sediments. Desorption hysteresis of apolar organic compounds is known to be correlated with adsorption/diffusion into soil organic matter. This work focuses on the desorption hysteresis of polar organic compounds on a natural mudstone sample. Acetic, citric and ortho-phthalic acids displayed adsorption-desorption hysteresis on Callovo-Oxfordian mudstone. The non-reversible behaviours resulted from three different mechanisms. Adsorption and desorption kinetics were evaluated using 14C- and 3H-labelled tracers and an isotopic exchange method. The solid-liquid distribution ratio of acetate decreased using a NaN3 bactericide, indicating a rapid bacterial consumption compared with negligible adsorption. The desorption hysteresis of phthalate was apparent and suppressed by the equilibration of renewal pore water with mudstone. This confirms the significant and reversible adsorption of phthalate. Finally, persistent desorption hysteresis was evidenced for citrate. In this case, a third mechanism should be considered, such as the incorporation of citrate in the solid or a chemical perturbation, leading to strong desorption resilience. The results highlighted the different pathways that polar organic pollutants might encounter in a similar environment. Data on phthalic acid is useful to predict the retarded transport of phthalate esters and amines degradation products in sediments. The behaviour of citric acid is representative of polydentate chelating agents used in ore and remediation industries. The impact of irreversible adsorption on solid/solution partitioning and transport deserves further investigation.

  8. A Monte Carlo study of temperature-programmed desorption spectra with attractive lateral interactions

    CERN Document Server

    Jansen, A P J

    1995-01-01

    We present results of a Monte Carlo study of temperature-programmed desorption in a model system with attractive lateral interactions. It is shown that even for weak interactions there are large shifts of the peak maximum temperatures with initial coverage. The system has a transition temperature below which the desorption has a negative order. An analytical expression for this temperature is derived. The relation between the model and real systems is discussed.

  9. Effect of pH on desorption of CO2 from alkanolamine - rich solvents

    Science.gov (United States)

    Du, Min

    2017-08-01

    Adipic acid was used as a pH regulator, which was added to 0.4 mol/L MEA, DEA and MDEA solvents during CO2 desorption process. It is found that when pH value of the solvents swing between 8-10, CO2 desorption rate enhanced, and energy consumption has declined obviously. This research may have reference significance on optimization of alkanolamine CO2 capture process.

  10. Treating high-mercury-containing lamps using full-scale thermal desorption technology.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C

    2009-03-15

    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  11. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  12. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth.

    Science.gov (United States)

    Son, H K; Sivakumar, S; Rood, M J; Kim, B J

    2016-01-15

    Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40-900 ppm(v)) and superficial gas velocity (6.3-9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  13. Photoinduced Br Desorption from CsBr Thin Films Grown on Cu(100)

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Matthew T.; Joly, Alan G.; Hess, Wayne P.; Shluger, AL

    2015-10-22

    Thin films of CsBr deposited onto metals such as copper are potential photocathode materials for light sources and other applications. We investigate desorption dynamics of Br atoms from CsBr films grown on insulator (KBr, LiF) and metal (Cu) substrates induced by sub-bandgap 6.4 eV laser pulses. The experimental results demonstrate that the peak kinetic energy of Br atoms desorbed from CsBr/Cu films is much lower than that for the hyperthermal desorption from CsBr/LiF films. Kelvin probe measurements indicate negative charge at the surface following Br desorption from CsBr/Cu films. Our ab initio calculations of excitons at CsBr surfaces demonstrate that this behavior can be explained by an exciton model of desorption including electron trapping at the CsBr surface. Trapped negative charges reduce the energy of surface excitons available for Br desorption. We examine the electron-trapping characteristics of low-coordinated sites at the surface, in particular, divacancies and kink sites. We also provide a model of cation desorption caused by Franck-Hertz excitation of F centers at the surface in the course of irradiation of CsBr/Cu films. These results provide new insights into the mechanisms of photoinduced structural evolution of alkali halide films on metal substrates and activation of metal photocathodes coated with CsBr.

  14. Characteristics and applications of gas desorption with excavation disturbances in coal mining

    Institute of Scientific and Technical Information of China (English)

    Jiachen Wang; Renlun Wu; Peng Zhang

    2015-01-01

    According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary and auxiliary boxes, power transmission system, mining system, loading system, gas charging system, data monitoring and intelligent acquisition system. The maximum experiment coal consumption is 1200 kg, the mining system is developed to conduct experiment for gas desorption under excavating disturbance, and the plane-charging cribriform ventilation device is developed to realize uniform ventilation for experiment coal sample, which is accord with the actual gas source situation of coal bed. The desorption characteristics of gas in coal are experimentally studied under the conditions of nature and mining using the experiment system. The results show that, compare with nature condition, the permeability of coal and the velocity of gas desorption could significantly increase under the influence of coal pressure relief and destruction caused by mining, and the degree of gas desorption could somewhat increase too. Finally, pressure relief gas extraction of current seam and adjacent seams after mining in a certain coal mine of Yangquan mining area are introduced, and the gas desorption experiment results is verified by analyzing the effect of gas extraction.

  15. Enhanced hydrogen desorption property of MgH{sub 2} with the addition of cerium fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huai-Jun, E-mail: huaijun.lin.489@s.kyushu-u.ac.jp [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Matsuda, Junko [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Li, Hai-Wen [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395 (Japan); Zhu, Min [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); China–Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510640 (China); Akiba, Etsuo [Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395 (Japan)

    2015-10-05

    Highlights: • Activation energy of MgH{sub 2} desorption is remarkably reduced with the dopant of CeF{sub 4}. • The improvement might be attributed to new Ce–F–Mg species at the CeF{sub 4}/MgH{sub 2} interface. • Easy electron transfer induced from the high valence Ce-cation benefits MgH{sub 2} desorption. - Abstract: Hydrogen desorption property of MgH{sub 2} doped with cerium fluorides with different valences prepared using ball milling has been studied. CeF{sub 4} is catalytically active for hydrogen desorption of MgH{sub 2}. Hydrogen desorption temperature and apparent activation energy of MgH{sub 2} are significantly reduced with dopant of 2 mol% of CeF{sub 4}, which might be attributed to the formation of a new Ce–F–Mg specie at the CeF{sub 4}/MgH{sub 2} interface and the easy electron transfer induced from the high valence Ce-cation. The apparent activation energy of hydrogen desorption of MgH{sub 2} is reduced from ∼160 kJ/mol to ∼110 kJ/mol with the dopant of CeF{sub 4}.

  16. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    Science.gov (United States)

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings.

  17. ATRAZINE ADSORPTION-DESORPTION BEHAVIOR IN DAREHASALUIE KAVAR CORN FIELD SOIL

    Directory of Open Access Journals (Sweden)

    M. Dehghani, S. Nasseri, S. Amin, K. Naddafi, M. Yunesian, M. Taghavi and N. Maleki

    2005-10-01

    Full Text Available Adsorption desorption behaviors of widely applied atrazine soil were studied, employing a batch technique as a case study in Darehasaluie Kavar corn field in Fars Province in 2005. Samples were collected into 0 to 20 cm soil depth, where was cultivated under a crop rotation (corn-wheat during the past 10 years. Sorption kinetics exhibited two phenomena: an immediate rapid sorption (1.31 µg/g soil after 12 hours followed by a slow sorption process (1.37 µg/g soil after 24 hours. Desorption behavior of atrazine was similar to its adsorption, but at a very slower rate. Atrazine desorption efficiencies were much less effective and incomplete even after a long equilibration time (only 9.16% after 96 hours. The adsorption-desorption rate for most of the time was positively related to the amount of applied atrazine and the time required for equilibration (P<0.01. Desorption data exhibited hysteresis phenomena. Atrazine adsorption data described well according to Freundlich (r2=0.95, Langmuir (r2=0.82 and Temkin (r2=0.84 isotherms. However, the fit to Freundlich adsorption model in a non linear form (1/n <1 was closer than the others. Desorption isotherm could be well described by the Temkin (r2=0.96 and Freundlich (r2=0.92 isotherms, but the fit to Temkin model was closer than that of Freundlich.

  18. Satellite and acoustic tracking device

    KAUST Repository

    Berumen, Michael L.

    2014-02-20

    The present invention relates a method and device for tracking movements of marine animals or objects in large bodies of water and across significant distances. The method and device can track an acoustic transmitter attached to an animal or object beneath the ocean surface by employing an unmanned surface vessel equipped with a hydrophone array and GPS receiver.

  19. Numerical investigation of acoustic solitons

    CERN Document Server

    Lombard, Bruno; Richoux, Olivier

    2014-01-01

    Acoustic solitons can be obtained by considering the propagation of large amplitude sound waves across a set of Helmholtz resonators. The model proposed by Sugimoto and his coauthors has been validated experimentally in previous works. Here we examine some of its theoretical properties: low-frequency regime, balance of energy, stability. We propose also numerical experiments illustrating typical features of solitary waves.

  20. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise...

  1. Topology optimization for acoustic problems

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2006-01-01

    In this paper a method to control acoustic properties in a room with topology optimization is presented. It is shown how the squared sound pressure amplitude in a certain part of a room can be minimized by distribution of material in a design domain along the ceiling in 2D and 3D. Nice 0-1 designs...

  2. MTCI acoustic agglomeration particulate control

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, R.R.; Mansour, M.N. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States); Scaroni, A.W.; Koopmann, G.H. [Pennsylvania State Univ., University Park, PA (United States); Loth, J.L. [West Virginia Univ., Morgantown, WV (United States)

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  3. Murray Strasberg and bubble acoustics

    NARCIS (Netherlands)

    Prosperetti, Andrea

    2014-01-01

    Murray Strasberg made seminal contributions to the nucleation and acoustics of bubbles. Half a century after publication, these papers still receive a sizable number of citations every year. The talk will review this work, comment on its impact, and put Strasberg's classical results in a modern

  4. Acoustic Liner for Turbomachinery Applications

    Science.gov (United States)

    Huff, Dennis L.; Sutliff, Daniel L.; Jones, Michael G.; Hebsur, Mohan G.

    2010-01-01

    The purpose of this innovation is to reduce aircraft noise in the communities surrounding airports by significantly attenuating the noise generated by the turbomachinery, and enhancing safety by providing a containment barrier for a blade failure. Acoustic liners are used in today's turbofan engines to reduce noise. The amount of noise reduction from an acoustic liner is a function of the treatment area, the liner design, and the material properties, and limited by the constraints of the nacelle or casement design. It is desirable to increase the effective area of the acoustic treatment to increase noise suppression. Modern turbofan engines use wide-chord rotor blades, which means there is considerable treatment area available over the rotor tip. Turbofan engines require containment over the rotors for protection from blade failure. Traditional methods use a material wrap such as Kevlar integrated with rub strips and sometimes metal layers (sandwiches). It is possible to substitute the soft rub-strip material with an open-cell metallic foam that provides noise-reduction benefits and a sacrificial material in the first layer of the containment system. An open-cell foam was evaluated that behaves like a bulk acoustic liner, serves as a tip rub strip, and can be integrated with a rotor containment system. Foams can be integrated with the fan-containment system to provide sufficient safety margins and increased noise attenuation. The major innovation is the integration of the foam with the containment.

  5. Fundamentals of Acoustic Backscatter Imagery

    Science.gov (United States)

    2011-09-20

    41 6.12 Geocoding ...47 7.6 Errors in Geocoding .............................................................................................................. 47...h = z - R cos6 (39a) and x = rt sin6. (39b) 6.12 Geocoding Acoustic backscatter imagery data are collected by recording the across-track signals

  6. Acoustic Absorption Characteristics of People.

    Science.gov (United States)

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  7. Acoustical coupling of lizard eardrums

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob; Manley, Geoffrey A

    2008-01-01

    Lizard ears are clear examples of two-input pressure-difference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi- and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct and...

  8. APL - North Pacific Acoustic Laboratory

    Science.gov (United States)

    2011-09-01

    the roles of internal waves, ocean spice, internal tides, fronts and eddies in causing fluctuations in acoustic receptions. 5. To improve basin-scale...Farmer, R. Gentry, T. Gross, A. Hawkins, F.~Li, K. Metcalf , J.H. Miller, D. Moretti, C. Rodrigo, and T. Shinke, (2011). “An International Quiet

  9. Acoustic Climb to Cruise Test

    Science.gov (United States)

    1991-01-01

    Flight test film footage of three different aircraft testing the acoustical noise levels during take-off, climb, maneuvers, and touch and go landings are described. These sound tests were conducted on two fighter aircraft and one cargo aircraft. Results from mobile test vehicle are shown.

  10. Acoustics SIMOPS: managing the unnecessary

    Energy Technology Data Exchange (ETDEWEB)

    Hanton, Samuel John [Nautronix Marine Technology Solutions, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Time is money, and offshore operations are expensive. The desire therefore, is to increase efficiency through the condensing of schedules. This inevitably leads to SIMOPS of some degree, and this paper discusses SIMOPS along with, more specifically, the challenges they provide to acoustic positioning. (author)

  11. Acoustic design by topology optimization

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Jensen, Jakob Søndergaard; Sigmund, Ole

    2008-01-01

    To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions...

  12. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  13. An overview of Arctic Ocean acoustics

    Science.gov (United States)

    Hutt, Dan

    2012-11-01

    This paper presents a review of the underwater acoustics of the Arctic Ocean. It discusses the main features of the underwater acoustic environment and how they are so strongly affected by the presence of ice cover. The paper also discusses the history of Arctic Ocean acoustics research, how the motivation was originally military in character during the Cold War and how it changed to being driven by environmental considerations today. Originally, the physics of the Arctic Ocean was studied in order to predict its acoustic properties, and now acoustic techniques are used to help understand its physical environment.

  14. Robust acoustic wave manipulation of bubbly liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gumerov, N. A., E-mail: gumerov@umiacs.umd.edu [Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742 (United States); Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Akhatov, I. S. [Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Ohl, C.-D. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Sametov, S. P. [Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Khazimullin, M. V. [Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076 (Russian Federation); Institute of Molecule and Crystal Physics, Ufa Research Center of Russian Academy of Sciences, Ufa 450054 (Russian Federation); Gonzalez-Avila, S. R. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2016-03-28

    Experiments with water–air bubbly liquids when exposed to acoustic fields of frequency ∼100 kHz and intensity below the cavitation threshold demonstrate that bubbles ∼30 μm in diameter can be “pushed” away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  15. Desorption of a methamphetamine surrogate from wallboard under remediation conditions

    Science.gov (United States)

    Poppendieck, Dustin; Morrison, Glenn; Corsi, Richard

    2015-04-01

    Thousands of homes in the United States are found to be contaminated with methamphetamine each year. Buildings used to produce illicit methamphetamine are typically remediated by removing soft furnishings and stained materials, cleaning and sometimes encapsulating surfaces using paint. Methamphetamine that has penetrated into paint films, wood and other permanent materials can be slowly released back into the building air over time, exposing future occupants and re-contaminating furnishings. The objective of this study was to determine the efficacy of two wallboard remediation techniques for homes contaminated with methamphetamine: 1) enhancing desorption by elevating temperature and relative humidity while ventilating the interior space, and 2) painting over affected wallboard to seal the methamphetamine in place. The emission of a methamphetamine surrogate, N-isopropylbenzylamine (NIBA), from pre-dosed wallboard chambers over 20 days at 32 °C and two values of relative humidity were studied. Emission rates from wallboard after 15 days at 32 °C ranged from 35 to 1400 μg h-1 m-2. Less than 22% of the NIBA was removed from the chambers over three weeks. Results indicate that elevating temperatures during remediation and latex painting of impacted wallboard will not significantly reduce freebase methamphetamine emissions from wallboard. Raising the relative humidity from 27% to 49% increased the emission rates by a factor of 1.4. A steady-state model of a typical home using the emission rates from this study and typical residential building parameters and conditions shows that adult inhalation reference doses for methamphetamine will be reached when approximately 1 g of methamphetamine is present in the wallboard of a house.

  16. Mercury speciation during in situ thermal desorption in soil

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Min, E-mail: cmpark80@gmail.com; Katz, Lynn E.; Liljestrand, Howard M.

    2015-12-30

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg{sup 0} gas until the temperature reached 358.15 K. • Phase change of HgCl{sub 2(s)} completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg{sup 0}) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  17. Carbon dioxide sorption/ desorption characteristics of coals in Taiwan

    Science.gov (United States)

    Chien-Hung, Hsiao; Loung-Yie, Tsai

    2013-04-01

    Geological sequestration of CO2 into depleted oil reservoir, saline aquifer or unmineable coal seam is now being actively investigated for the purpose of reducing greenhouse gas in the atmosphere. Understanding the physical, chemical, and thermodynamic phenomena occurred with CO2 injection is very important in marking a reliable prediction of sequestration. This study examined the feasibility of carbon dioxide sequestration into unmineable coal seams in Taiwan. A total of 20 Miocene-aged coal samples from Western Foothill Belt, NW Taiwan, were collected. The stratigraphy include Mushan, Shihti, and Nanchuang Formation from bottom up. Proximate and petrographic analyses include maceral composition, Vitrinite reflectance were also measured. Carbon dioxide adsorption isotherms were analyzed at 35 degrees Celsius and up to 800 psi, by using a gravimetric ad/desorption apparatus. Isotherms were then fitted with a modified Langmuir Isotherm model by using Langmuir Pressure and Langmuir Volume so the model can be applied to supercritical conditions. According to the result of adsorption experiment, the pressure and temperature were quite significant. The gas storage capacity of CO2 was about 400 600 scf/ton at pressure up to 800 psi. Comparing the results of adsorption capacity with Proximate analysis and vitrinite reflectance, the Langmuir Volume shows a strong positive correlation with fixed carbon and vitrinite content. Furthermore, Adsorption capacity is closely related to micropores which were also rank and maceral dependent. It is noticed that the observed coal pore structures were affected by rank, and then exhibit have different diffusion rate of CO2.Finally, images under SEM were evaluated to understand the pathways of gas sorption.

  18. Single Component Sorption-Desorption Test Experimental Design Approach Discussions

    Energy Technology Data Exchange (ETDEWEB)

    Phil WInston

    2011-09-01

    A task was identified within the fission-product-transport work package to develop a path forward for doing testing to determine behavior of volatile fission products behavior and to engage members of the NGNP community to advise and dissent on the approach. The following document is a summary of the discussions and the specific approaches suggested for components of the testing. Included in the summary isare the minutes of the conference call that was held with INL and external interested parties to elicit comments on the approaches brought forward by the INL participants. The conclusion was that an initial non-radioactive, single component test will be useful to establish the limits of currently available chemical detection methods, and to evaluated source-dispersion uniformity. In parallel, development of a real-time low-concentration monitoring method is believed to be useful in detecting rapid dispersion as well as desorption phenomena. Ultimately, the test cycle is expected to progress to the use of radio-traced species, simply because this method will allow the lowest possible detection limits. The consensus of the conference call was that there is no need for an in-core test because the duct and heat exchanger surfaces that will be the sorption target will be outside the main neutron flux and will not be affected by irradiation. Participants in the discussion and contributors to the INL approach were Jeffrey Berg, Pattrick Calderoni, Gary Groenewold, Paul Humrickhouse, Brad Merrill, and Phil Winston. Participants from outside the INL included David Hanson of General Atomics, Todd Allen, Tyler Gerczak, and Izabela Szlufarska of the University of Wisconsin, Gary Was, of the University of Michigan, Sudarshan Loyalka and Tushar Ghosh of the University of Missouri, and Robert Morris of Oak Ridge National Laboratory.

  19. Laser Desorption Supersonic Jet Spectroscopy of Hydrated Tyrosine

    Science.gov (United States)

    Oba, Hikari; Shimozono, Yoko; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Carcabal, Pierre

    2013-06-01

    The structure of tyrosine (tyr) consists of amino-acid chain and phenol, and it has roughly two possible binding sites for water, amino-acid site and phenolic OH site. Investigating how water molecule binds to tyr will give fundamental information for hydrations of peptide and protein. Resonance enhanced multi photon ionization (REMPI) spectrum of tyr-water 1:1 cluster has already been reported by de Vries and co-workers, however, no analysis on the hydrated structures has been reported. In the REMPI spectrum, two clusters of bands are observed; one appears at ˜35600 cm^{-1} energy region which is the almost same with 0-0 transitions of tyr monomer, and another is observed at ˜300 cm^{-1} lower than the former. Based on the electronic transition energy of phenylalanine and the hydrated clusters, the former is expected to be derived from a structure that water binds to amino acid site. On the other hand, it is plausibly predicted that the latter originates from a structure that water binds to phenolic OH group, because the electronic transition of mono hydrated phenol is ˜300 cm^{-1} red-shifted from the monomer. We applied IR dip spectroscopy which can measure conformer selective IR spectra to the tyr-(H_{2}O)_{1} clusters by using laser desorption supersonic jet technique to confirm the assignments. Especially in the phenolic OH bound isomer, it was found that the intra molecular hydrogen bond within amino-acid chain, which is far from the water molecule and cannot interact directly with each other, is strengthened by the hydration. A. Abio-Riziq et al., J. Phys. Chem. A, 115, 6077 (2011). Y. Shimozono, et al., Phys. Chem. Chem. Phys., (2013) DOI: 10.1039/c3cp43573c. T. Ebata et al., Phys. Chem. Chem. Phys., 8, 4783 (2006). T. Watanabe et al., J. Chem. Phys., 105, 408 (1996).

  20. On architectural acoustic design using computer simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    acoustic design process. The emphasis is put on the first three out of five phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference to the design of Bagsværd Church by Jørn Utzon. The paper......Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...

  1. Handbook of Signal Processing in Acoustics

    CERN Document Server

    Havelock, David; Vorländer, Michael

    2009-01-01

    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.

  2. On architectural acoustic design using computer simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process. The emphasis is put on the first three out of five phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference to the design of Bagsværd Church by Jørn Utzon. The paper...

  3. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. Scott; May, Robert A.; Kay, Bruce D.

    2016-03-03

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from grapheme covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multi- layer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The non-alignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.

  4. Fate and transport with material response characterization of green sorption media for copper removal via desorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-07-01

    Multiple adsorption and desorption cycles are required to achieve the reliable operation of copper removal and recovery. A green sorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was evaluated in this study for its desorptive characteristics as a companion study of the corresponding adsorption process in an earlier publication. We conducted a screening of potential desorbing agents, batch desorption equilibrium and kinetic studies, and batch tests through 3 adsorption/desorption cycles. The desorbing agent screening revealed that hydrochloric acid has good potential for copper desorption. Equilibrium data fit the Freundlich isotherm, whereas kinetic data had high correlation with the Lagergren pseudo second-order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles showed that the coconut coir and media mixture were the most resilient, demonstrating they could be used through 3 or more adsorption/desorption cycles. FE-SEM imaging, XRD, and EDS analyses supported the batch adsorption and desorption results showing significant surface sorption of CuO species in the media mixture and coconut coir, followed by partial desorption using 0.1 M HCl as a desorbing agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Njikam, Eloh, E-mail: ennjikam@alaska.edu [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775 (United States); Schiewer, Silke, E-mail: sschiewer@alaska.edu [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775 (United States)

    2012-04-30

    Graphical abstract: Cadmium was completely and quickly desorbed from grapefruit peels using 0.01 M HNO{sub 3}. The kinetics followed a novel 1st or 2nd order kinetic model, related to the remaining metal bound as the rate-determining reactant concentration. For 0.001 M HNO{sub 3}, desorption was incomplete and the model fit less perfect. Highlights: Black-Right-Pointing-Pointer Metal desorption was over 90% complete within 50 min for most desorbents. Black-Right-Pointing-Pointer Models for biosorbent desorption kinetics were developed. Black-Right-Pointing-Pointer Desorption kinetics best fit a novel first-order model related to remaining metal bound. Black-Right-Pointing-Pointer Cd uptake after desorption by HNO{sub 3} was similar to the original uptake. Black-Right-Pointing-Pointer The optimal desorbent was 0.1 or 0.01 M acid, being fast, efficient and cheap. - Abstract: Citrus peel biosorbents are efficient in removing heavy metals from wastewater. Heavy metal recovery and sorbent regeneration are important for the financial competitiveness of biosorption with other processes. The desorbing agents HNO{sub 3}, NaNO{sub 3}, Ca(NO{sub 3}){sub 2}, EDTA, S, S-EDDS, and Na-Citrate were studied at different concentrations to optimize cadmium elution from orange or grapefruit peels. In most cases, desorption was fast, being over 90% complete within 50 min. However sodium nitrate and 0.001 M nitric acid were less efficient. Several new models for desorption kinetics were developed. While zero-, first- and second-order kinetics are commonly applied for modeling adsorption kinetics, the present study adapts these models to describe desorption kinetics. The proposed models relate to the number of metal-filled binding sites as the rate-determining reactant concentration. A model based on first order kinetics with respect to the remaining metal bound performed best. Cd bound in subsequent adsorption after desorption was similar to the original amount bound for desorption by

  6. High-overtone Bulk-Acoustic Resonator gravimetric sensitivity: towards wideband acoustic spectroscopy

    CERN Document Server

    Rabus, D; Ballandras, S; Baron, T; Lebrasseur, E; Carry, E

    2015-01-01

    In the context of direct detection sensors with compact dimensions, we investigate the gravimetric sensitivity of High-overtone Bulk Acoustic Resonators, through modeling of their acoustic characteristics and experiment. The high frequency characterizing such devices is expected to induce a significant effect when the acoustic field boundary conditions are modified by a thin adlayer. Furthermore, the multimode spectral characteristics is considered for wideband acoustic spectroscopy of the adlayer, once the gravimetric sensitivity dependence of the various overtones is established. Finally, means of improving the gravimetric sensitivity by confining the acoustic field in a low acoustic-impedance layer is theoretically established.

  7. APPLICATION OF DOMAIN DECOMPOSITION IN ACOUSTIC AND STRUCTURAL ACOUSTIC ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Conventional element based methods for modeling acoustic problems are limited to low-frequency applications due to the huge computational efforts. For high-frequency applications, probabilistic techniques, such as statistical energy analysis (SEA), are used. For mid-frequency range, currently no adequate and mature simulation methods exist. Recently, wave based method has been developed which is based on the indirect TREFFTZ approach and has shown to be able to tackle problems in the mid-frequency range. In contrast with the element based methods, no discretization is required. A sufficient, but not necessary, condition for convergence of this method is that the acoustic problem domain is convex. Non-convex domains have to be partitioned into a number of (convex) subdomains. At the interfaces between subdomains, specific coupling conditions have to be imposed. The considered two-dimensional coupled vibro-acoustic problem illustrates the beneficial convergence rate of the proposed wave based prediction technique with high accuracy. The results show the new technique can be applied up to much higher frequencies.

  8. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  9. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P. [Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, building 7, Moscow, 125009 (Russian Federation)

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  10. Evaluation of sorption-desorption processes for metalaxyl in natural and artificial soils.

    Science.gov (United States)

    Sukul, Premasis; Lamshöft, Marc; Zühlke, Sebastian; Spiteller, Michael

    2013-01-01

    The main process controlling soil-pesticide interaction is the sorption-desorption as influenced by active soil surfaces. The sorption phenomena can influence translocation, volatility, persistence and bioactivity of a pesticide in soil. The present investigation was conducted on natural and artificial soils in order to enumerate the effect of soil components such as montmorillonite and ferrihydrite on the sorption behaviour of the fungicide metalaxyl and if sorption-desorption of the chiral pesticide affects the enantiomeric ratio. The sorption-desorption characteristics of metalaxyl were investigated by batch equilibration technique in a natural soil, two artificial soils, and in pure montmorillonite and ferrihydrite. After extraction, pesticide residues were analyzed by conventional and chiral chromatography using tandem mass spectrometry. A KdSorp (2.3-6.5) suggests low level sorption of metalaxyl with an appreciable risk of run-off and leaching. Thus, metalaxyl poses a threat to surface and ground water contamination. Furthermore, desorption tests revealed a hysteretic effect (H ≤ 0.8) in natural and artificial soils. Significant amount of metalaxyl was found tightly bound to the adsorbents without desorbing readily after desorption cycle. Desorption of 22-56% of the total amount of the retained metalaxyl was determined. This study reveals that an artificial soil derived from different soil constituents can be used to assess their influence on sorption/desorption processes. The present investigation showed that both montmorillonite and ferrihydrite play a significant role in the sorption of metalaxyl. The sorption doesn't influence the enantiomeric ratio of racemic metalaxyl.

  11. Characteristics and influencing factors of tetrachloroethylene sorption-desorption on soil and its components.

    Science.gov (United States)

    Qiu, Zhaofu; Yang, Weiwei; He, Long; Zhao, Zhexuan; Lu, Shuguang; Sui, Qian

    2016-02-01

    To investigate the effects of soil structure, soil organic carbon (SOC), minerals, initial tetrachloroethylene (PCE) concentration (C0), and ionic strength (Ci) on PCE sorption-desorption, six types of soil were adopted as adsorbents, including two types of natural soil and four types of soil with most of the "soft carbon" pre-treated by H2O2 or with all SOC removed from the original soil by 600 °C ignition. The results showed that all of the sorption-desorption isotherms of PCE were non-linear within the experimental range, and the H2O2-treated samples exhibited higher non-linear sorption isotherms than those of the original soils. The hysteresis index of PCE sorption to original soil is less pronounced than that of the H2O2-treated and 600 °C-heated samples due to the entrapment of sorbate molecules in the "hard carbon" domain, together with the meso- and microporous structures within the 600 °C-heated samples. Both SOC and minerals have impacts on the sorption-desorption of PCE, and the sorption-desorption contribution rate of minerals increased with decreasing SOC content. C0 has almost no influence on the sorption to minerals of the soils, but the contribution rate of minerals decreased with increasing C0 in the desorption stage. As a result of the salting-out effect, PCE sorption capacity was increased by increasing Ci, especially when Ci ≥ 0.1 M. Moreover, desorption increased and hysteresis weakened with increasing Ci, except for the 600 °C-heated samples. In addition, no significant effect of Ci on desorption of PCE and no hysteresis was observed in this experimental range for the 600 °C-heated samples.

  12. 2,5-Dihydroxybenzoic acid: laser desorption/ionisation as a function of elevated temperature

    Science.gov (United States)

    Wallace, W. E.; Arnould, M. A.; Knochenmuss, R.

    2005-03-01

    The temperature dependence of laser desorption/ionization (LDI) ion yields has been measured for 2,5-dihydroxybenzoic acid (2,5-DHB) single crystals from room temperature to 160 °C using time-of-flight (TOF) mass spectrometry. A steep rise in ion production occurs at 90 °C, achieving a maximum at 120 °C, then decreases sharply to a minimum at 140 °C, and returns to a second maximum at 150 °C. Above 160 °C, useful information could not be obtained because of rapid volatilization of the sample into the vacuum. The overall trend in ion production, but not some of the details, is well described by a recent two-step theory of the laser desorption/ionization process, which takes into account the temperature-dependent effects of plume expansion. Measuring the background vacuum composition with a quadrupole mass spectrometer residual gas analyzer (RGA) showed an increase in thermal desorption of 2,5-DHB starting at 90 °C and maximizing at 130 °C. The increased neutral production by thermal desorption is believed to be the cause of the decrease in LDI ion production due to reduced pooling probabilities for laser-excited 2,5-DHB molecules. Thermal dehydration, condensation, and decarboxylation increase the volume of gas released at high temperatures which also serve to decrease LDI ion production at elevated temperatures. Lastly, to confirm the mass spectrometry results, the thermal desorption of 2,5-DHB single crystals under vacuum was measured using a quartz-crystal microbalance (QCM). The onset of desorption was found to occur at 90 °C and the maximum desorption rate was found at 135 °C.

  13. Surface and Particle-Size Effects on Hydrogen Desorption from Catalyst-Doped MgH2

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J.M.; Wang, Lin-Lin; Johnson, Duane D.

    2012-09-04

    With their high capacity, light-metal hydrides like MgH2 remain under scrutiny as reversible H-storage materials, especially to develop control of H-desorption properties by decreasing size (ball-milling) and/or adding catalysts. By employing density functional theory and simulated annealing, we study initial H2 desorption from semi-infinite stepped rutile (110) surface and Mg31H62 nanoclusters, with(out) transition-metal catalyst dopants (Ti or Fe). While Mg31H62 structures are disordered (amorphous), the semi-infinite surfaces and nanoclusters have similar single, double, and triple H-to-metal bond configurations that yield similar H-desorption energies. Hence, there is no size effect on desorption energetics with reduction in sample size, but dopants do reduce the H-desorption energy. All desorption energies are endothermic, in contrast to a recent report.

  14. Acoustic reflex and general anaesthesia.

    Science.gov (United States)

    Farkas, Z

    1983-01-01

    Infant and small children are not always able to cooperate in impedance measurements. For this reason it was decided, -in special cases, -to perform acoustic reflex examination under general anaesthesia. The first report on stapedius reflex and general anaesthesia was published by Mink et al. in 1981. Under the effect of Tiobutabarbital, Propanidid and Diazepam there is no reflex response. Acoustic reflex can be elicited with Ketamin-hydrochlorid and Alphaxalone-alphadolone acetate narcosis. The reflex threshold remains unchanged and the amplitude of muscle contraction is somewhat increased. The method was used: 1. to assess the type and degree of hearing loss in children with cleft palate and/or lip prior to surgery. 2. to exclude neuromuscular disorders with indication of pharyngoplasties. 3. to quantify hearing level in children--mostly multiply handicapped--with retarded speech development. The results of Behavioral Observation and Impedance Audiometry are discussed and evaluated.

  15. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  16. Acoustic modes in fluid networks

    Science.gov (United States)

    Michalopoulos, C. D.; Clark, Robert W., Jr.; Doiron, Harold H.

    Pressure and flow rate eigenvalue problems for one-dimensional flow of a fluid in a network of pipes are derived from the familiar transmission line equations. These equations are linearized by assuming small velocity and pressure oscillations about mean flow conditions. It is shown that the flow rate eigenvalues are the same as the pressure eigenvalues and the relationship between line pressure modes and flow rate modes is established. A volume at the end of each branch is employed which allows any combination of boundary conditions, from open to closed, to be used. The Jacobi iterative method is used to compute undamped natural frequencies and associated pressure/flow modes. Several numerical examples are presented which include acoustic modes for the Helium Supply System of the Space Shuttle Orbiter Main Propulsion System. It should be noted that the method presented herein can be applied to any one-dimensional acoustic system involving an arbitrary number of branches.

  17. Cooperative OFDM underwater acoustic communications

    CERN Document Server

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  18. [Acoustic information in snoring noises].

    Science.gov (United States)

    Janott, C; Schuller, B; Heiser, C

    2017-02-01

    More than one third of all people snore regularly. Snoring is a common accompaniment of obstructive sleep apnea (OSA) and is often disruptive for the bed partner. This work gives an overview of the history of and state of research on acoustic analysis of snoring for classification of OSA severity, detection of obstructive events, measurement of annoyance, and identification of the sound excitation location. Based on these objectives, searches were conducted in the literature databases PubMed and IEEE Xplore. Publications dealing with the respective objectives according to title and abstract were selected from the search results. A total of 48 publications concerning the above objectives were considered. The limiting factor of many studies is the small number of subjects upon which the analyses are based. Recent research findings show promising results, such that acoustic analysis may find a place in the framework of sleep diagnostics, thus supplementing the recognized standard methods.

  19. Uncertainty analysis in acoustic investigations

    OpenAIRE

    2013-01-01

    The problem of uncertainty assessment in acoustic investigations is presented in the hereby paper. The aspect of the uncertainty asymmetry in processing of data obtained in the measuring test of sound levels, determined in decibels, was sketched. On the basis of the analysis of data obtained in the continuous monitoring of road traffic noise in Krakow typical probability distributions for a day, evening and night were determined. The method of the uncertainty assessment based on the propagati...

  20. Acoustical characterization of portuguese libraries

    OpenAIRE

    António Pedro Oliveira de Carvalho; António Eduardo Batista da Costa

    2010-01-01

    This paper presents the acoustical characterization of the main reading room of 28 public li-braries in Portugal. In situ measurements were held regarding the interior sound pressure lev-els (background noise, with and without the HVAC equipment working), the Noise Criteria and Noise Rating values (NC/NR), the objective speech intelligibility using the Rapid Speech Transmission Index (RASTI) and Reverberation Time (125 to 4k Hz). Two groups of librar-ies were formed (Classic and Modern librar...

  1. Underwater Acoustic Beacon Location System

    Science.gov (United States)

    2016-12-23

    transpose operator is a standard operator in linear or matrix algebra . The transpose operator converts the row vector   T aaaa z,y,x=P to a column...February 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...300087 1 of 31 UNDERWATER ACOUSTIC BEACON LOCATION SYSTEM [0001] The present application claims the benefit of United States Provisional

  2. Acoustic Propagation Modeling Using MATLAB

    Science.gov (United States)

    1993-09-01

    Acoustic propagation, transient waves, transfer function, linear systems theory 16. PRICE CODE 17. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 1...method of diffraction prediction. This report describes an ap- proach based on linear systems theory and the Fourier transform. The goal was to achieve a...differed by the use of linear systems theory . Linear systems theory revealed the importance of the total impulse response and its equivalence to the

  3. Annual Report for Ocean Acoustics

    Science.gov (United States)

    2013-09-30

    feeding , diving) and social boundings (mum- calf , mum- calf and associated adult, adult-adult). Moreover, by cross- correlating the transmitted and received...such approach. In order to do so, we make use of existing numerical acoustic propagation methods, e.g. Vertex, feed these methods with different...transmission occurs. We also consider the cost of feeding this channel state information back and develop a controller that minimizes the number of both

  4. APL - North Pacific Acoustic Laboratory

    Science.gov (United States)

    2015-03-04

    Flatté’s statistical acoustic code to Mike Porter at HLS Research for inclusion in the OALIB website. PUBLICATIONS Andrew, Rex K., James A...show the MCPE confidence intervals and curves with diamonds show confidence intervals on the measured values. Diamonds indicate the depths at which...left, except that only depths from 800 to 1400 m are shown. The diamond -shaped symbols show the arrival depth and corresponding intensity of rays with

  5. Acoustic telemetry and fisheries management

    Science.gov (United States)

    Crossin, Glenn T.; Heupel, Michelle R.; Holbrook, Christopher; Hussey, Nigel E.; Lowerre-Barbieri, Susan K; Nguyen, Vivian M.; Raby, Graham D.; Cooke, Steven J.

    2017-01-01

    This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applications titled “Acoustic Telemetry and Fisheries Management”. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy. We review the literature on this issue, identify the strengths and weaknesses of work done to date, and highlight knowledge gaps and difficulties in applying empirical fish telemetry studies to fisheries policy and practice. We then highlight the key areas of management and policy addressed, as well as the challenges that needed to be overcome to do this. We conclude with a set of recommendations about how researchers can, in consultation with stock assessment scientists and managers, formulate testable scientific questions to address and design future studies to generate data that can be used in a meaningful way by fisheries management and conservation practitioners. We also urge the involvement of relevant stakeholders (managers, fishers, conservation societies, etc.) early on in the process (i.e. in the co-creation of research projects), so that all priority questions and issues can be addressed effectively.

  6. Vibro-acoustic analysis of the acoustic-structure interaction of flexible structure due to acoustic excitation

    Science.gov (United States)

    Djojodihardjo, Harijono

    2015-03-01

    The application of BE-FE acoustic-structure interaction on a structure subject to acoustic load is elaborated using the boundary element-finite element acoustic structural coupling and the utilization of the computational scheme developed earlier. The plausibility of the numerical treatment is investigated and validated through application to generic cases. The analysis carried out in the work is intended to serve as a baseline in the analysis of acoustic structure interaction for lightweight structures. Results obtained thus far exhibit the robustness of the method developed.

  7. SORPTION AND DESORPTION OF GLYPHOSATE IN MOLLISOLS AND ULTISOLS SOILS OF ARGENTINA.

    Science.gov (United States)

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-05-08

    In Argentina, glyphosate use has increased exponentially in the past years due to the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in three Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (Kf ). Glyphosate sorption was high and the Kf varied from 115.6 to 1612 mg (1-1/n) L(1/n) /Kg. Cerro Azul soil had the highest glyphosate sorption capacity due to a combination of factors such as higher clay content, CEC, total Fe, Al oxides and lower available phosphorous and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significant higher desorption coefficient (Kfd ) than the other soils, associated with its lower clay content and higher pH and phosphorous. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability increasing its persistence and favoring its accumulation in environment. Results of this study contribute to the knowledge and characterization of glyphosate retention in different soils. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Kinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System

    Directory of Open Access Journals (Sweden)

    Hiroki Miyaoka

    2015-06-01

    Full Text Available Various synthesis and rehydrogenation processes of lithium hydride (LiH and magnesium amide (Mg(NH22 system with 8:3 molar ratio are investigated to understand the kinetic factors and effectively utilize the essential hydrogen desorption properties. For the hydrogen desorption with a solid-solid reaction, it is expected that the kinetic properties become worse by the sintering and phase separation. In fact, it is experimentally found that the low crystalline size and the close contact of LiH and Mg(NH22 lead to the fast hydrogen desorption. To preserve the potential hydrogen desorption properties, thermochemical and mechanochemical rehydrogenation processes are investigated. Although the only thermochemical process results in slowing the reaction rate due to the crystallization, the ball-milling can recover the original hydrogen desorption properties. Furthermore, the mechanochemical process at 150 °C is useful as the rehydrogenation technique to preserve the suitable crystalline size and mixing state of the reactants. As a result, it is demonstrated that the 8LiH and 3Mg(NH22 system is recognized as the potential hydrogen storage material to desorb more than 5.5 mass% of H2 at 150 °C.

  9. Kinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System.

    Science.gov (United States)

    Miyaoka, Hiroki; Wang, Yongming; Hino, Satoshi; Isobe, Shigehito; Tokoyoda, Kazuhiko; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2015-06-29

    Various synthesis and rehydrogenation processes of lithium hydride (LiH) and magnesium amide (Mg(NH₂)₂) system with 8:3 molar ratio are investigated to understand the kinetic factors and effectively utilize the essential hydrogen desorption properties. For the hydrogen desorption with a solid-solid reaction, it is expected that the kinetic properties become worse by the sintering and phase separation. In fact, it is experimentally found that the low crystalline size and the close contact of LiH and Mg(NH₂)₂ lead to the fast hydrogen desorption. To preserve the potential hydrogen desorption properties, thermochemical and mechanochemical rehydrogenation processes are investigated. Although the only thermochemical process results in slowing the reaction rate due to the crystallization, the ball-milling can recover the original hydrogen desorption properties. Furthermore, the mechanochemical process at 150 °C is useful as the rehydrogenation technique to preserve the suitable crystalline size and mixing state of the reactants. As a result, it is demonstrated that the 8LiH and 3Mg(NH₂)₂ system is recognized as the potential hydrogen storage material to desorb more than 5.5 mass% of H₂ at 150 °C.

  10. Hydrogen desorption properties of magnesium hydride catalyzed multiply with carbon and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Klimkowicz, Alicja [AGH University of Science and Technology Faculty of Energy and Fuels, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Shibaura Institute of Technology, Department of Engineering Science and Mechanics, 3-7-5 Toyosu, Koto-ku 135-8548, Tokyo (Japan); Takasaki, Akito, E-mail: takasaki@sic.shibaura-it.ac.jp [Shibaura Institute of Technology, Department of Engineering Science and Mechanics, 3-7-5 Toyosu, Koto-ku 135-8548, Tokyo (Japan); Gondek, Łukasz; Figiel, Henryk [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Świerczek, Konrad [AGH University of Science and Technology Faculty of Energy and Fuels, al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2015-10-05

    Highlights: • Crystal structure of 2 mol MgH{sub 2} + (1 − X) mol C + X mol Si (for X = 0, 0.25, 0.5, 0.75 and 1). • Enhanced hydrogen desorption properties. • Lowered temperature of hydrogen desorption for MgH{sub 2} with the multiple addition of C and Si. • Distribution of Si and C on MgH{sub 2} particles after mechanical milling. - Abstract: Magnesium hydride (MgH{sub 2}) is considered as one of hydrogen storage materials. However, the application is limited because of slow hydrogen kinetics and high thermodynamic stability. In this study, MgH{sub 2} powders were mechanically milled with graphite (C) and/or silicon (Si) powders, and effect of multiple addition of C and Si on hydrogen desorption properties was investigated. The multiple addition caused a decrease of the hydrogen desorption (onset and peak) temperatures more than single addition, and the lowest activation energy for hydrogen desorption, 62 kJ/mol, was obtained from sample powders of (2 mol MgH{sub 2} + 0.5 mol C + 0.5 mol Si). The surface of the sample powders after mechanical milling revealed a good distribution of C on the MgH{sub 2} surface and a presence of finer Si particles.

  11. Long-term tillage effects on soil metolachlor sorption and desorption behavior.

    Science.gov (United States)

    Ding, Guangwei; Novak, Jeffrey M; Herbert, Stephen; Xing, Baoshan

    2002-09-01

    Sorption and desorption are two important processes that influence the amount of pesticides retained by soils. However, the detailed sorption mechanisms as influenced by soil tillage management are unclear. This study examined the sorption and desorption characteristics of metolachlor [2-chloro-N-(2-ethyl-6-methyphenyl)-N-(2-methoxy-1-methylethyl)-acetamide] using the soil samples collected from the long-term conservation tillage (CnT) and conventional tillage (CT) research plots established in 1979 in Darlinton, SC. Humic acid (HA) and humin were extracted from the soils and used in the sorption experiments along with the whole soil samples. The sorption experiments were conducted using a batch-equilibration method. Three sequential desorption rinses were carried out following the sorption experiments. By comparing metolachlor sorption and desorption results we observed hysteresis for all soil samples and their organic matter fractions. Sorption nonlinearity (N) and hysteresis were dependent on the structure and composition of soil organic matter (SOM), e.g., Freundlich isotherm exponents (N) of HA and humin from CnT were higher than those of CT treatment, which may be related to high aromaticity of SOM fractions in CT treatment. Sorption capacity (K'f) was positively correlated with soil organic carbon (SOC) content. These results show that long-term tillage management can greatly affect metolachlor sorption and desorption behavior probably by qualitative differences in the structural characteristics of the humic substances.

  12. Adsorption and Desorption of Ammonium in Wetland Soils Subject to Freeze-Thaw Cycles

    Institute of Scientific and Technical Information of China (English)

    YU Xiao-Fei; ZHANG Yu-Xia; ZOU Yuan-Chun; ZHAO Hong-Mei; LU Xian-Guo; WANG Guo-Ping

    2011-01-01

    Nitrogen (N) cycling in boreal peatland ecosystems may be influenced in important ways by freeze-thaw cycles (FTCs). Adsorption and desorption of ammonium ions (NH4+) were examined in a controlled laboratory experiment for soils sampled from palustrine wetland, riverine wetland, and farmland reclaimed from natural wetland in response to the number of FTCs. The results indicate that freeze-thaw significantly increased the adsorption capacity of NH4+ and reduced the desorption potential of NH4+ in the wetland soils. There were significant differences in the NH4+ adsorption amount between the soils with and without freeze-thaw treatment.The adsorption amount of NH4+ increased with increasing FTCs. The palustrine wetland soil had a greater adsorption capacity and a weaker desorption potential of NH4+ than the riverine wetland soil because of the significantly higher clay content and cation exchange capacity (CEC) of the riverine wetland soil. Because of the altered soil physical and chemical properties and hydroperiods, the adsorption capacity of NH4+ was smaller in the farmland soil than in the wetland soils, while the desorption potential of the farmland soil was higher than that of the wetland soils. Thus, wetland reclamation would decrease adsorption capacity and increase desorption potential of NH4+, which could result in N loss from the farmland soil. FTCs might mitigate N loss from soils and reduce the risk of water pollution in downstream ecosystems.

  13. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Elizabeth Guthrie [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)], E-mail: elizabeth_nichols@ncsu.edu; Gregory, Samuel T.; Musella, Jennifer S. [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)

    2008-12-15

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C{sub 3}-phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k{sub slow} and k{sub veryslow}. After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior.

  14. [Sorption and desorption of phenanthrene by organo-mineral complexes with different bridge cations].

    Science.gov (United States)

    Ni, Jin-zhi; Luo, Yong-ming; Wei, Ran; Li, Xiu-hua; Qian, Wei

    2008-12-01

    Sorption and desorption of phenanthrene by organo-mineral complexes with Ca2+, Fe3+ and Al3+ as bridge cations were studied according to the association type between organic matter and minerals in natural soils. The results showed that the data of phenanthrene sorption and desorption by different cation saturated montmorillonite and their corresponding humic acid and mineral complexes could be fitted with Freundlich model, and the order of the sorption capacities (Kf) were Ca-Mont (0.184) > Fe-Mont (0.028) > Al-Mont (0.015) and Fe-Mont-HA (2.341) > Ca-Mont-HA (1.557) > Al-Mont-HA (1.136), respectively. The Kf values of humic acid and mineral complexes were far greater than those of minerals, which demonstrated that humic acid made great contributions to the sorption of phenanthrene in the organo-mineral complexes. However, the Kf values of the organo-mineral complexes with different bridge cations were not consistent with their organic carbon content, which indicated that both the organic carbon content and the combined types between organic matter and mineral could affect the sorption capacity of phenanthrene by the organo-mineral complexes. The desorption hysteresis of phenanthrene was significant for Ca2+ and Al3+ bridged organo-mineral complexes. Desorption hysteresis of phenanthrene was mainly from the sorption of phenanthrene by organic matter, and the contributions of mineral to the desorption hysteresis were not significant.

  15. Freeze-thaw Effects on Sorption/Desorption of Dissolved Organic Carbon in Wetland Soils

    Institute of Scientific and Technical Information of China (English)

    YU Xiaofei; ZHANG Yuxia; ZHAO Hongmei; LU Xianguo; WANG Guoping

    2010-01-01

    The effects of freeze-thaw cycles on sorption/desorption of dissolved organic carbon (DOC) in two wetland soils and one reclaimed wetland soil were investigated. DOC concentrations added were 0-600 mg/L. Laboratory in-cubations of sorption/desorption of DOC had been carried out at -15℃ for 10 h, and then at +5℃ for 13 h. Soil sam-ples were refrozen and thawed subsequently for 5 cycles. Initial Mass model was used to describe sorption behavior of DOC. The results indicate that freeze-thaw cycles can significantly increase the sorption capacity of DOC and reduce the desorption capacity of DOC in the three soils. The freeze-thaw effects on desorption of DOC in soils increase with the increasing freeze-thaw cycles. The conversion of natural wetlands to soybean farmland can decrease the sorption capacity and increase the desorption capacity of DOC in soils. Global wanning and reclamation may increase DOC re-lease, and subsequently increase the loss of carbon and the emission of greenhouse gas.

  16. Ion desorption from frozen H 2O irradiated by MeV heavy ions

    Science.gov (United States)

    Collado, V. M.; Farenzena, L. S.; Ponciano, C. R.; Silveira, E. F. da; Wien, K.

    2004-10-01

    Nitrogen (0.13-0.85 MeV) and 252Cf fission fragments (˜65 MeV) beams are employed to sputter positive and negative secondary ions from frozen water. Desorption yields are measured for different ice temperatures and projectile energies. Target surface is continuously refreshed by condensed water while the target temperature varies and ice thickness changes. In both projectile energy ranges, the preferentially ejected ions are H +, H2+ and (H 2O) nH +-cluster ions. The yields of the corresponding negative ions H - and (H 2O) nO - or (H 2O) nOH - are 1-2 orders of magnitude lower. The (H 2O) nH + desorption yields decrease exponentially as the cluster size, n, increases. In the low energy range, the desorption of positive ion clusters may occur in a two-step process: first, desorption of preformed H 2O clusters and, then, ionization by H + or H 3O + capture. For 0.81 MeV N + projectile ions, the cluster ion emission contributes with 0.05% to the total H 2O desorbed yield. There are indications that emission of the (H 2O) nH + disappears for an electronic energy loss lower than 20 eV/Å. For the high energy range, desorption of small ion clusters is particularly enhanced, revealing that a fragmentation process also exists.

  17. Improvement of the LiBH{sub 4} hydrogen desorption by confinement in modified carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.T.; Wan, C.B.; Meng, X.H.; Ju, X., E-mail: jux@ustb.edu.cn

    2015-10-05

    Highlights: • The desorption kinetics for LiBH{sub 4} greatly promoted using melt infiltration method. • The LiBH{sub 4} confined in modified MWCNTs shows the best desorption kinetics. • The crystal structure of MWCNTs and SWCNTs is unchanged after ball milling. • Ball milling introduces a great amount of structural defects in the CNTs. • Nano-confinement is dominant on improving the hydrogen desorption of LiBH{sub 4}. - Abstract: The dehydrogenation kinetics of LiBH{sub 4} incorporated within various carbon nanotubes has been studied. It is demonstrated that the desorption kinetics of LiBH{sub 4} could be greatly promoted using a simple melt infiltration method and LiBH{sub 4} confined in modified multi-walled carbon nanotubes (MWCNTs) shows the best desorption kinetics. The structural properties of carbon nanotubes and confined samples are demonstrated by means of transmission electron microscopy, powder X-ray diffraction and Raman spectroscopy. The crystal structure of MWCNTs and single-walled carbon nanotubes (SWCNTs) are almost unchanged after ball milling. But high energy ball milling leads to a decrease in the average nanotube length and introduces a great amount of local disorder and structural defects in the CNTs, which may provide a considerable kinetic improvement.

  18. Adsorption and desorption of herbicide monosulfuron-ester in Chinese soils

    Institute of Scientific and Technical Information of China (English)

    Chunxian Wu; Suzhi Zhang; Guo Nie; Zhongming Zhang; Jinjun Wang

    2011-01-01

    Monosulfuron-ester is a new,low rate,sulfonylurea herbicide that is being promoted for annual broadleaf and gramineal weed control; however,there is a lack of published information on its behavior in soils.The adsorption and desorption of monosulfuronester by seven type soils were measured using a batch equilibrium technique.The results showed that the Freundlich equation fitted its adsorption and desorption well,and the Freundlich constant values (Kf-~) ranged from 0.88 to 5.66.Adsorption isotherms were nonlinear with l/nf-ads values < 1.Soil pH,organic matter (OM),and clay content were the main factors influencing its adsorption and desorption.Adsorption and desorption were negatively correlated with pH 4.0-8.0 while positively correlated with OM and clay content.The adsorption of monosulfuron-ester was mainly a physical process,because its free energy (ΔG) in seven soils was less than 40 kJ/mol.Monosulfuron-ester adsorption by three soils increased with increasing CaCl2 concentration using CaCl2 as a background electrolyte.Monosulfuron-ester desorption was hysteretic in all tested soils.

  19. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, Michael E.; Creighton, J. Randall

    1999-05-26

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N15H3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia.

  20. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    Science.gov (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques.